Uttar Pradesh Rajarshi Tandon Open University

School of Science, Assignment Session 2022-23

Course Code: UGMM -101	Course Title: Differential Calculus	Maximum Marks : 30

(Section 'A')

(Long Answer Questions)

NOTE: Answer each question in 500 to 800 words. All carry equal marks.
Maximum Marks: 18

1. Let f be defined on R such that $f(x)=0$ and $f(x)=\frac{e^{1 / x}}{1+e^{1 / x}}$ when $x \neq 0$ Does limt exit when $x \rightarrow 0$
2. Let f be defined on R such that $f(x)=5 x-4$ when $0 \leq x \leq 1$

$$
\begin{aligned}
& f(x)=4 x^{2}-3 \text { when } 1 \leq x \leq 2 \\
& f(x)=5 x+4 \text { when } x>2
\end{aligned}
$$

is f continuous at $x=1$ and $x=2$?
3. Show that if faction is differentiable at given point then it is continuous at that point. is the converse true ? Support your answer.

(Section - B)

(Short Answer Questions)
Maximum Marks: 12

Note : Answer each question in 200 to 300 Words. All carry equal marks.
4. Let R be a relation defined in the set of natural numbers N such that $R=\{(x, y): 3 x+y=15\}$ find the domain and range of R .
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $f(x)=x^{2} \quad$ and

$$
\text { let } A=\{x \in \mathbb{R}: 1 \leq x \leq 2\} \text { find } f(A)
$$

6. If $f x=2 x-1$ and $g(x)=x+4$ then find $(f . g)(x)$.
7. Consider a map $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=4 x^{2}-3$ is f injective.

Uttar Pradesh Rajarshi Tandon Open University

School of Science, Assignment Session 2022-23

Course Code: UGMM-102	Course Title: Analytical Geometry	Maximum Marks : 30

(Section 'A')
 (Long Answer Questions)

NOTE: Answer each question in 500 to 800 words. All carry equal marks.
Maximum Marks: 18

1. Find the point of intersection of the line $\frac{x+1}{1}=\frac{y+3}{3}=\frac{z-2}{2}$ with the plain $3 x+4 y+z=$ 10
2. Find the equation of the sphere for which the circle $x^{2}+y^{2}+z^{2}+7 y-2 z+2=0,2 x+3 y+4 z=8$ is a great circle.
3. Find the equation of the tenant plains of the sphere $x^{2}+y^{2}+z^{2}-2 x+4 y-6 z+30=$ 0 which are parallel $2 x-y+z=0$

(Section - B)

(Short Answer Questions)
Maximum Marks: 12

Note : Answer each question in 200 to 300 Words. All carry equal marks.
4. If the equation $x^{2}-y^{2}-2 x+2 y+\lambda=0$
represent a degenerate conic then find the value of λ
5. Find the angle between the pair of straight lines $x^{2}+4 y^{2}-7 x y=0$
6. Find the perpendicular distance from the origin to the plain $x+2 y+z=3$ also find the direction cosines of the normal to the plain.
7. Find the angle between the planes $2 x-y+z=5$ and $x+3 y+2 z=7$

Uttar Pradesh Rajarshi Tandon Open University

School of Science, Assignment Session 2022-23

Course Code: UGMM-103	Course Title: Integral Calculus	Maximum Marks : 30

(Section 'A')
(Long Answer Questions)

NOTE: Answer each question in 500 to 800 words. All carry equal marks.
Maximum Marks: 18

1. Show that $x y=1$ and $x^{2}+y^{2}=2$ tuch each other at two points.
2. Under what condition the curves $a_{1} x^{2}+b_{1} y^{2}=1$ and $a_{2} x^{2}+b_{2} y^{2}=1$ cut orthogonally
3. Find the angle of the intersection of the curves $y^{2}=x$ and $x^{2}+y^{2}=4$

(Section - B)

(Short Answer Questions)
Maximum Marks: 12

Note : Answer each question in 200 to 300 Words. All carry equal marks.
4. Show that $\int_{0}^{\pi / 2}\left(\sin ^{2} x\right) \cos x d x=\frac{1}{3}$
5. Integrate $e^{\operatorname{ten} x} \cdot \sec ^{2} x$ w.r.t. $\quad x$
6. Evaluate $\int_{0}^{\pi / 4}\left(\operatorname{ten}^{5} x\right) d x$
7. Integrate $\frac{\sqrt{x}}{1+x^{1 / 4}} \quad$ w.r.t. x

Uttar Pradesh Rajarshi Tandon Open University

School of Science, Assignment Session 2022-23

Course Code: UGMM-104	Course Title: Differential Equation	Maximum Marks : 30

(Section 'A')
(Long Answer Questions)

NOTE: Answer each question in 500 to 800 words. All carry equal marks.
Maximum Marks: 18

1. Solve that differential equation

$$
\left(1+4 x y+2 y^{2}\right) d x+\left(1+4 x y+2 x^{2}\right) d y=0
$$

2. Solve $x^{2}+p^{2} x=y p$
3. Find the orthogonal trajectories of the cardiod $r=a(1-\cos \theta)$, a being the parameter.

(Section - B)

(Short Answer Questions)
Maximum Marks: 12

Note : Answer each question in 200 to 300 Words. All carry equal marks.
4. Solve $\frac{d y}{d x}=e^{x-y}+x^{2} e^{-y}$
5. Solve $x . D y+y=x y^{3}$
6. Solve $y=c x+a / c$
7. Is the following equation excel $\left(1+e^{x / y}\right) d x+e^{x / y}(1-x / y) d y=0$

Uttar Pradesh Rajarshi Tandon Open University

School of Science, Assignment Session 2022-23

Course Code: UGMM-105	Course Title: Mechanics-I (Statics and Dynamics)	Maximum Marks :30

(Section 'A')
 (Long Answer Questions)

NOTE: Answer each question in 500 to 800 words. All carry equal marks.
Maximum Marks: 18

1. If T be the tension at any point P of a common catenary and $T o$ be the tension at the lowest point A then prove that $T^{2}-T o^{2}=W^{2}$ when W in the weight of the are AP of the cetenery.
2. Five weight less rods of equal length are joined together so as to from a rhombus ABCD with one diagonal $B D$. at a weight W be attached to C and the system be suspended from A then show that there is a thrust in $B D$ equal $w / \sqrt{3}$.
3. The velocities of a pastiche along and perpendicular to the radius vector from a fixed point are $\lambda r \& \mu \theta$. Find the path of the particle.

$$
(\text { Section }-\mathbf{B})
$$

(Short Answer Questions)
Maximum Marks: 12

Note : Answer each question in 200 to 300 Words. All carry equal marks.
4. A particle is allowed to move from the top of a cycloid whose vertex is upward and plane vertical with negligible velocity. Find the point where the particle leaves the cycloid.
5. A body consisting at a core and a hemisphere on the same base rests on a rough horizontal table the hemisphere being in contact with the table of the height of the cone is $\sqrt{3}$ times the radius of the hemisphere. Find whether the equilibrium will be stable or unstable.
6. A particle moves with a central acceleration which varies inversely as the cube of the distance if it is projected from an apse at a distance a from the origin with velocity which is $\sqrt{2}$ time of the velocity for a circle of radius a then show that its path is $r \cos \frac{\theta}{\sqrt{2}}=a$.
7. A particle whose mass is m is acted upon by a force $m \mu\left(x+\frac{a^{4}}{x^{3}}\right)$ towards the origin if it stats from rest a distance a then show that it will arrive at the origin is time $\frac{\pi}{4 \sqrt{\mu}}$

Uttar Pradesh Rajarshi Tandon Open University

School of Science, Assignment Session 2022-23

Course Code: UGMM-106	Course Title: Mechanics-II (Dynamics and Hydrodynamics)	Maximum Marks :30

(Section 'A')
(Long Answer Questions)

NOTE: Answer each question in 500 to 800 words. All carry equal marks.
Maximum Marks: 18

1. Find the moment of inertia of a rod of length $2 a$ \& mass M about a line through its centre perpendicular to its length.
2. Find the moment of inertia of a circular disc of radian ' a ' about its diametre.
3. At the vertex c of a tangle ABC which is a right angle at c show that the principle axis in the plane are inclined to the sides at an angle $\frac{1}{2} \tan ^{-1} \frac{a b}{a^{2}-b^{2}}$.

(Section - B)

(Short Answer Questions)
Maximum Marks: 12

Note :Answer each question in 200 to 300 Words. All carry equal marks.
4. One end of a light string is fixed to a point of the rim of a uniform circular disc of radian 'a' \& mass ' m ' and the string is wound several times round the rim. the free end is attached to a fixed point and the disc is held so that the part of the string not in contact with the vertical of the disc be let go find the acceleration \& tension of the string.
5. Find the moment of inertia of a right circular cylinder about a straight line through its centre of gravity perpendicular to its axis.
6. A straight uniform rod can turn freely about one end O, hangs from O vertically. Find the least angular velocity with which it must begin to moves so that it may perform complete revolution in a vertical plane.
7. Show that the moment of inertia of the area bounded by $r^{2}=a^{2} \cos 2 \theta$ about its axis is $\frac{M a^{2}}{16}(\pi-8 / 3)$

Uttar Pradesh Rajarshi Tandon Open University

School of Science, Assignment Session 2022-23

Course Code: UGMM-107	Course Title: Linear Algebra	Maximum Marks : 30

(Section 'A')
 (Long Answer Questions)

NOTE: Answer each question in 500 to 800 words. All carry equal marks.
Maximum Marks: 18

1. Find all eign values and eign vectors of a linear transformation
$T: I R^{3} I R^{3}$, defined as $T(x, y, z)=(2 x+y, y-z, 2 y+4 z)$. Is T diagonolizatble
2. If w_{1} and w_{2} are any two finite subspaces of a vector space V then show that

$$
\operatorname{dim}\left(w_{1}+w_{2}\right)=\operatorname{dim} w_{1}+\operatorname{dim} w_{2}-\operatorname{dim}\left(w_{1} \cap w_{2}\right)
$$

3. Find the eigen Values and eigen vectors of the matrix $\quad A=\left(\begin{array}{ccc}1 & 1 & 3 \\ 3 & 2 & 4 \\ 3 & 4 & 5\end{array}\right)$

(Section - B)

(Short Answer Questions)
Maximum Marks: 12

Note : Answer each question in 200 to 300 Words. All carry equal marks.
4. Let V be a vector space over a field F such that it has no proper subspace. Then show that either

$$
V=\{o\} \text { or } \operatorname{dim} V=1 .
$$

5. Which of the following is a linear transformation where $T: I R^{2} \rightarrow I R^{2}$
(a) $T\left(x_{1}, x_{2}\right)=\left(1+x_{1}, x_{2}\right)$
(b) $T\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{1}\right)$
6. A function f is defined on $I R^{2}$ as follows:

$$
\begin{gathered}
f(x, y)=\left(x_{1}-y_{1}\right) 2+x_{1} y_{2}, \text { where } x=\left(x_{1}-x_{2}\right) \text { and } y=\left(y_{1}, y_{2}\right) \\
\text { Is } f \text { a bilinear forms? Verify. }
\end{gathered}
$$

Uttar Pradesh Rajarshi Tandon Open University

School of Science, Assignment Session 2022-23

Course Code: UGMM-108	Course Title: Calculus of function of several variable and Vector Calculus	Maximum Marks : 30

(Section 'A')

(Long Answer Questions)

NOTE: Answer each question in 500 to 800 words. All carry equal marks.
Maximum Marks: 18

1. at $u=e^{x y z}$ then show that $\frac{\partial^{3} u}{\partial x \partial y \partial z}=\left(1+3 x y z+x^{2} y^{2} z^{2}\right)$ is it also equal to $\frac{\partial^{3} u}{\partial y \partial z \partial x}$?
2. Show that $\frac{\partial(u, v)}{\partial(x, y)} \times \frac{\partial(x, y)}{\partial(u, v)}=1$
3. A particle moves so that its position vector in given by $\bar{r}=\hat{\imath} \cos w t+\hat{\jmath} \sin w t$ Show that the velocity \bar{v} is perpendicular \bar{r} and $\bar{r} \times \bar{v}$ is constant vector.

(Section - B)

(Short Answer Questions)
Maximum Marks: 12
Note : Answer each question in 200 to 300 Words. All carry equal marks.
4. Find the deviational derivative of $f(x)=x y^{2}+y z^{3}$ at the point $(1,-1,1)$ along the vector $\hat{\imath}+2 \hat{\jmath}+2 \hat{k}$
5. at $u=\tan ^{-1}\left(\frac{x^{3}+y^{3}}{x-y}\right)$ then show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\sin 2 u$
6. Determine the point where the function $x^{4}+y^{4}-2 x^{2}+4 x y-2 y^{2}$ has a maximum are minimum.
7. Find curl (curl $\overline{\mathrm{F}})$ at the point $(0,1,2)$ where $\overline{\mathrm{F}}=\left(\mathrm{x}^{2} \mathrm{y}\right) \hat{\imath}+(x y z) \hat{\jmath}+\left(\mathrm{z}^{2} y\right) \hat{\mathrm{k}}$

Or
Evaluate $\int \bar{F}$. $d \bar{r}$ whre $\bar{F}=\left(3 x^{2}\right) \hat{\imath}+(2 x z-y) \hat{\jmath}+z \hat{k}$ along the straight line joinery $(0,0,0) \&(2,1,3)$

