School of Science, Assignment Session 2021-22

Course Code: DCEMM-109 Course Title: Abstract Algebra Maximum Marks : 30

(Section 'A')

(Long Answer Questions)

NOTE: Answer each question in 500 to 800 words. All carry equal marks.

Maximum Marks: 18

- 1. State and Prove fundamental theorem of group homomorphism.
- Let N be a normal subgroups of a group G and H be a subgroup of G then show that:
 (i) H ∩ N is normal subgroup of H (ii) HN is a subgroup of G (iii) N is normal subgroup of HN.
- 3. Prove that if G is abelian then $G|_{Z(G)}$ is cyclic where Z(G) is centre of G.

(Section – B)

(Short Answer Questions)

Maximum Marks: 12

Note: Answer each question in 200 to 300 Words. All carry equal marks.

- 4. Give all sub groups of $(Z_{12}, +)$
- 5. Let $f: G_{11} \to G_2$ be a group homomorphism then show that kernel f is a normal subgroup of G_1 .
- 6. Give an example non-cycle group whose all subgroups are cyclic.
- 7. Find all zero divisor elements of Z/20.

School of Science, Assignment Session 2021-22

Course Code: DCEMM-110 Course Title: Number Theory Maximum Marks : 30

(Section 'A')

(Long Answer Questions)

NOTE: Answer each question in 500 to 800 words. All carry equal marks.

Maximum Marks: 18

1. Find the remainders obtained on division of the following:

(a) 3⁵⁰ by 101 (b) 159⁷⁶⁵⁴ by 23

2. Find the g.c.d. of 163 and 34 and express it in the form 163m +

34*n* in two ways.

3. Prove that (a) $18! + 1 \equiv 0 \pmod{437}$ (b) $28! + 233 \equiv 0 \pmod{899}$.

(Section – B)

(Short Answer Questions)

Maximum Marks: 12

Note : Answer each question in 200 to 300 Words. All carry equal marks.

- **4.** Show that every square is congruent to 0 or 1 (mod 8).
- 5. Find the value of $\phi(m)$ if m = 500.
- 6. Find the following Legendre symbols: (a) $\begin{pmatrix} 19\\ 41 \end{pmatrix}$ (b) $\begin{pmatrix} 3\\ 7 \end{pmatrix}$ (c) $\begin{pmatrix} 5\\ 11 \end{pmatrix}$ (d) $\begin{pmatrix} 6\\ 11 \end{pmatrix}$
- 7. Find the value of Mobius function $\mu(n)$ for n
 - (a) 15 (b) 30 (c) 47 (d) 100

School of Science, Assignment Session 2021-22

Course Code: DCEMM-112 Course Title: Advance Analysis Maximum Marks : 30

(Section 'A')

(Long Answer Questions)

NOTE: Answer each question in 500 to 800 words. All carry equal marks.

Maximum Marks: 18

- **1.** Every Cauchy sequence (S_n) of real Numbers converges.
- 2. Let (X_1, d_1) and (X_2, d_2) be two discrete metric spaces. Then verify that the product metric on $X_1 \ge X_2$ is discrete.
- 3. Show that a Cauchy sequence is convergent⇔ it has a convergent subsequence.
- 4. Let (X, d) be a metric space and $A \subseteq X$. Show that $\overline{A} = \{x \in X : d(x, A) = 0\}$.

(Section – B)

(Short Answer Questions)

Maximum Marks: 12

Note : Answer each question in 200 to 300 Words. All carry equal marks.

5. Define Complete Metric Space. Given an example of a metric space which is not Complete.

6. Any compact metric space is totally bounded.

7. Statement and Prove Mean value theorem.

School of Science, Assignment Session 2021-22

Course Code: DCEMM-113	Course Title: Function of Complex	Maximum Marks : 30
	Variable	

(Section 'A')

(Long Answer Questions)

NOTE: Answer each question in 500 to 800 words. All carry equal marks.

Maximum Marks: 18

- 1. If $u = \frac{1}{2}\log(x^2 + y^2)$, find v such that f(z) = u + iv is analytic. Determine f(z) in terms of z.
- 2. Find the radius of convergence R of the following power series:

(i) $\sum_{n=0}^{\infty} z^n$ (ii) $\sum_{n=1}^{\infty} \frac{z^n}{n}$ (iii) $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$

3. Using Cauchy integral formula, calculate the following integrals.

$$\int_{c} \frac{\cos(\pi z)}{z(z^{2}+1)} dz$$
, where *C* is the circle $|z| = 2$

4. Evaluate $\int_0^{3+i} z^2 dz$ along the line joining the points (0, 0) and (3, 1).

(Section – B)

(Short Answer Questions)

Maximum Marks: 12

Note: Answer each question in 200 to 300 Words. All carry equal marks.

5. Evaluate $\int_c \frac{dz}{z-2}$ for n = 2,3,4 ... where z = a is a point inside the simple closed curve c.

- 6. Find Taylor Series of $f(z) = \frac{1}{z}$ about z = -1, z = 1 and z = 2. Determine the circle of convergence in each case.
- 7. For the conformal transformation $w = z^2$. Show that the circle |z 1| = 1 transforms into the cardioid $R = 2(1 + \cos \emptyset)$ where $w = Re^{i\theta}$ in the *w*-plane.

School of Science, Assignment Session 2021-22

Course Code: SBSMM-03	Course Title: Elementary Analysis	Maximum Marks : 30

(Section 'A') (Long Answer Questions)

NOTE: Answer each question in 500 to 800 words. All carry equal marks.

Maximum Marks: 18

1. Write truth tables fo the sentence $P \Rightarrow P$ and

 $P \Rightarrow -P$. Is the First sentence a tautology.

2. The diagonal or the equality relation & *in a set S is an equivalence*

relation in S. For it $x, y \in S$ the x y iff x = y.

- **3**. Let x be a set. Consider the relation R in (e(x)), given by : for A, B $\in (e(n))$ ARB if A \subseteq B.
- **4**. Let $f: X \to Y$ be a map and let A and B subsets of X, then $A \subseteq B \Rightarrow f(A)$ $\subseteq f(B)$

(Section – B) (Short Answer Questions)

Maximum Marks: 12

Note: Answer each question in 200 to 300 Words. All carry equal marks.

5. Let
$$X = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$
, $y = [-1, 1]$

Let $f: X \to Y$ given by $f(x) = sinx, x \in X$.

6. Evaluate $\iint xy \, dx dy$ over the region in the positive quadrant for which $x + y \le 1$. 7. Find the volume inside the paraboloid $x^2 + 4z^2 + 8y = 16$ and on the positive side of xz -plane.