Uttar Pradesh Rajarshi Tandon Open University

School of Science, Assignment Session 2021-22

Course Code: DCEMM-109	Course Title: Abstract Algebra	Maximum Marks : 30

(Section 'A')
(Long Answer Questions)

NOTE: Answer each question in $\mathbf{5 0 0}$ to $\mathbf{8 0 0}$ words. All carry equal marks.
Maximum Marks: 18

1. State and Prove fundamental theorem of group homomorphism.
2. Let N be a normal subgroups of a group G and H be a subgroup of G then show that:
(i) $\mathrm{H} \cap \mathrm{N}$ is normal subgroup of H (ii) HN is a subgroup of G (iii) N is normal subgroup of HN.
3. Prove that if G is abelian then $\mathrm{G} \mid \mathrm{Z}(\mathrm{G})$ is cyclic where $\mathrm{Z}(\mathrm{G})$ is centre of G .

$$
(\text { Section }-\mathbf{B})
$$

(Short Answer Questions)
Maximum Marks: 12

Note: Answer each question in 200 to 300 Words. All carry equal marks.
4. Give all sub groups of $\left(\mathrm{Z}_{12},+\right)$
5. Let $f: G_{1} 1 \rightarrow G_{2}$ be a group homomorphism then show that kernel f is a normal subgroup of G_{1}.
6. Give an example non-cycle group whose all subgroups are cyclic.
7. Find all zero divisor elements of $Z / 20$.

Uttar Pradesh Rajarshi Tandon Open University

School of Science, Assignment Session 2021-22

Course Code: DCEMM-110	Course Title: Number Theory	Maximum Marks : 30

(Section 'A')
(Long Answer Questions)

NOTE: Answer each question in 500 to 800 words. All carry equal marks.
Maximum Marks: 18

1. Find the remainders obtained on division of the following:
(a) 3^{50} by 101
(b) 159^{7654} by 23
2. Find the g.c.d. of 163 and 34 and express it in the form $163 m+$ $34 n$ in two ways.
3. Prove that (a) $18!+1 \equiv 0(\bmod 437)(b) 28!+233 \equiv 0(\bmod 899)$.
(Section - B)
(Short Answer Questions)
Maximum Marks: 12

Note : Answer each question in 200 to $\mathbf{3 0 0}$ Words. All carry equal marks.
4. Show that every square is congruent to 0 or $1(\bmod 8)$.
5. Find the value of $\emptyset(m)$ if $m=500$.
6. Find the following Legendre symbols: (a) $\left(\frac{19}{41}\right)$ (b) $\left(\frac{3}{7}\right)$ (c) $\left(\frac{5}{11}\right)$ (d) $\left(\frac{6}{11}\right)$
7. Find the value of Mobius function $\mu(n)$ for n
(a) 15 (b) 30 (c) 47 (d) 100

Uttar Pradesh Rajarshi Tandon Open University

School of Science, Assignment Session 2021-22

Course Code: DCEMM-112	Course Title: Advance Analysis	Maximum Marks : 30

(Section ' \mathbf{A} ')
(Long Answer Questions)
NOTE: Answer each question in 500 to 800 words. All carry equal marks. Maximum Marks: 18

1. Every Cauchy sequence $\left(S_{n}\right)$ of real Numbers converges.
2. Let $\left(\mathrm{X}_{1}, \mathrm{~d}_{1}\right)$ and $\left(\mathrm{X}_{2}, \mathrm{~d}_{2}\right)$ be two discrete metric spaces. Then verify that the product metric on $\mathrm{X}_{1} \times \mathrm{X}_{2}$ is discrete.
3. Show that a Cauchy sequence is convergent \Leftrightarrow it has a convergent subsequence.
4. Let (X, d) be a metric space and $A \subseteq X$. Show that $\bar{A}=\{x \in X: d(x, A)=0\}$.

> (Section - B)
> (Short Answer Questions)

Maximum Marks: 12
Note : Answer each question in 200 to 300 Words. All carry equal marks.
5. Define Complete Metric Space. Given an example of a metric space which is not Complete.
6. Any compact metric space is totally bounded.
7. Statement and Prove Mean value theorem.

Uttar Pradesh Rajarshi Tandon Open University

School of Science, Assignment Session 2021-22

Course Code: DCEMM-113	Course Title: Function of Complex Variable	Maximum Marks : 30

(Section 'A')

(Long Answer Questions)
NOTE: Answer each question in 500 to 800 words. All carry equal marks.

1. If $u=\frac{1}{2} \log \left(x^{2}+y^{2}\right)$, find v such that $f(z)=u+i v$ is analytic. Determine $f(z)$ in terms of z.
2. Find the radius of convergence R of the following power series:
(i) $\sum_{n=0}^{\infty} z^{n}$
(ii) $\sum_{n=1}^{\infty} \frac{z^{n}}{n}$
(iii) $\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}$
3. Using Cauchy integral formula, calculate the following integrals.
$\int_{c} \frac{\cos (\pi z)}{z\left(z^{2}+1\right)} d z$, where C is the circle $|z|=2$
4. Evaluate $\int_{0}^{3+i} z^{2} d z$ along the line joining the points $(0,0)$ and $(3,1)$.
(Section - B)
(Short Answer Questions)
Maximum Marks: 12

Note : Answer each question in 200 to 300 Words. All carry equal marks.
5. Evaluate $\int_{c} \frac{d z}{z-2}$ for $n=2,3,4 \ldots$ where $z=a$ is a point inside the simple closed curve c .
6. Find Taylor Series of $f(z)=\frac{1}{z}$ about $z=-1, z=1$ and $z=2$. Determine the circle of convergence in each case.
7. For the conformal transformation $w=z^{2}$. Show that the circle $|z-1|=1$ transforms into the cardioid $R=2(1+\cos \emptyset)$ where $w=R e^{i \theta}$ in the w-plane.

Uttar Pradesh Rajarshi Tandon Open University

School of Science, Assignment Session 2021-22

Course Code: SBSMM-03	Course Title: Elementary Analysis	Maximum Marks : 30

(Section ' A ')
(Long Answer Questions)
NOTE: Answer each question in 500 to 800 words. All carry equal marks.
Maximum Marks: 18

1. Write truth tables fo the sentence $P \Rightarrow P$ and

$$
P \Rightarrow-P \text {. Is the First sentence a tautology. }
$$

2. The diagonal or the equality relation \& in a set S is an equivalence
relation in S. For it $x, y \in S$ the $x y$ iff $x=y$.
3. Let x be a set. Consider the relation R in (e(x$)$), given by : for A, B

$$
\in(\mathrm{e}(\mathrm{n})) \mathrm{ARB} \text { if } \mathrm{A} \subseteq \mathrm{~B} .
$$

4. Let $f: X \rightarrow Y$ be a map and let A and B subsets of X, then $A \subseteq B \Rightarrow f(A)$

$$
\subseteq f(B)
$$

(Section - B)
(Short Answer Questions)

Note : Answer each question in 200 to 300 Words. All carry equal marks.
5. Let $X=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], y=[-1,1]$

$$
\text { Let } f: X \rightarrow Y \text { given by } f(x)=\sin x, x \in X
$$

6. Evaluate $\iint x y d x d y$ over the region in the positive quadrant for which $x+y \leq 1$. 7. Find the volume inside the paraboloid $\mathrm{x}^{2}+4 \mathrm{z}^{2}+8 \mathrm{y}=16$ and on the positive side of $x z$-plane.
