
 

 

LECTURE 25 

HYPOTHESIS TESTING 

BY 

DR GAURAV SANKALP 

 

INTRODUCTION 

Hypothesis testing is a tool for making statistical inferences about the population data. It is an 

analysis tool that tests assumptions and determines how likely something is within a given 

standard of accuracy. Hypothesis testing provides a way to verify whether the results of an 

experiment are valid. 

A null hypothesis and an alternative hypothesis are set up before performing the hypothesis 

testing. This helps to arrive at a conclusion regarding the sample obtained from the 

population. In this article, we will learn more about hypothesis testing, its types, steps to 

perform the testing, and associated examples. 

What is Hypothesis Testing? 

Hypothesis testing uses sample data from the population to draw useful conclusions regarding 

the population probability distribution. It tests an assumption made about the data using 

different types of hypothesis testing methodologies. The hypothesis testing results in either 

rejecting or not rejecting the null hypothesis. 

Hypothesis Testing Definition 

Hypothesis testing can be defined as a statistical tool that is used to identify if the results of 

an experiment are meaningful or not. It involves setting up a null hypothesis and an 

alternative hypothesis. These two hypotheses will always be mutually exclusive. This means 

that if the null hypothesis is true then the alternative hypothesis is false and vice versa. An 

example of hypothesis testing is setting up a test to check if a new medicine works on a 

disease in a more efficient manner. 

Null Hypothesis 

The null hypothesis is a concise mathematical statement that is used to indicate that there is 

no difference between two possibilities. In other words, there is no difference between certain 

characteristics of data. This hypothesis assumes that the outcomes of an experiment are based 

on chance alone. It is denoted as H0. Hypothesis testing is used to conclude if the null 

hypothesis can be rejected or not. Suppose an experiment is conducted to check if girls are 

shorter than boys at the age of 5. The null hypothesis will say that they are the same height. 

Alternative Hypothesis 
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The alternative hypothesis is an alternative to the null hypothesis. It is used to show that the 

observations of an experiment are due to some real effect. It indicates that there is a statistical 

significance between two possible outcomes and can be denoted as H1or Ha. For the above-

mentioned example, the alternative hypothesis would be that girls are shorter than boys at the 

age of 5. 

Hypothesis Testing P Value 

In hypothesis testing, the p value is used to indicate whether the results obtained after 

conducting a test are statistically significant or not. It also indicates the probability of making 

an error in rejecting or not rejecting the null hypothesis.This value is always a number 

between 0 and 1. The p value is compared to an alpha level, α or significance level. The alpha 

level can be defined as the acceptable risk of incorrectly rejecting the null hypothesis. The 

alpha level is usually chosen between 1% to 5%. 

Hypothesis Testing Critical region 

All sets of values that lead to rejecting the null hypothesis lie in the critical region. 

Furthermore, the value that separates the critical region from the non-critical region is known 

as the critical value. 

Important Notes on Hypothesis Testing 

Hypothesis testing is a technique that is used to verify whether the results of an experiment 

are statistically significant. 

 It involves the setting up of a null hypothesis and an alternate hypothesis. 

 There are three types of tests that can be conducted under hypothesis testing - z test, t 

test, and chi square test. 

 Hypothesis testing can be classified as right tail, left tail, and two tail tests. 

 

Introduction or Conceptual Framework of Hypothesis 

A hypothesis (plural hypotheses) is a proposed explanation for a phenomenon. For a hypothesis to 

be a scientific hypothesis, the scientific method requires that one can test it. Scientists generally 

base scientific hypotheses on previous observations that cannot satisfactorily be explained with the 

available scientific theories. Even though the words "hypothesis" and "theory" are often used 

synonymously, a scientific hypothesis is not the same as a scientific theory. A working hypothesis is a 

provisionally accepted hypothesis proposed for further research. 
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https://www.cuemath.com/data/probability/


 

 

A different meaning of the term hypothesis is used in formal logic, to denote the antecedent of a 

proposition; thus in the proposition "If P, then Q". P denotes the hypothesis (or antecedent); Q can 

be called a consequent. P is the assumption in a (possibly counterfactual) what if question.  

The adjective hypothetical, meaning "having the nature of a hypothesis", or "being assumed to exist 

as an immediate consequence of a hypothesis", can refer to any of these meanings of the term 

"hypothesis".  

Uses of Hypothesis 

In its ancient usage, hypothesis referred to a summary of the plot of a classical drama the english 

word hypothesis comes from the ancient Greek úпóθεσις (hupothesis), meaning "to put under" or 

"to suppose".  

In Plato's Meno (86e-87b), Socrates dissects virtue with a method used by mathematicians, that of 

"investigating from a hypothesis". In this sense, 'hypothesis' refers to a clever idea or to a convenient 

mathematical approach that simplifies cumbersome calculations. Cardinal Bellarmine gave a famous 

example of this usage in the warning issued to Galileo in the early 17th century that he must not treat 

the motion of the earth as a reality, but merely as a hypothesis. 

In common usage in the 21st century. a hypothesis refers to a provisional idea whose merit requires 

evaluation. For proper evaluation, the framer of a hypothesis needs to define specifics in operational 

terms. A hypothesis requires more work by the researcher in order to either confirm or disprove it in 

due course, a confirmed hypothesis may become part of a theory or occasionally may grew to 

become a theory itself. Normally, scientific hypotheses have the form of a mathematical model. 

Sometimes, but not always, one can also formulate them as existential statements, stating that 

some particular instance of the phenomenon under examination has some characteristic and causal 



 

 

explanations, which have the general form of universal statements, stating that every instance of the 

phenomenon has a particular characteristic.  

Any useful hypothesis will enable predictions by reasoning (including deductive reasoning). It might 

predict the outcome of an experiment in a laboratory setting or the observation of a phenomenon in 

nature. The prediction may also invoke statistics and only talk about probabilities. Karl Popper, 

following others, has argued that a hypothesis must be falsifiable, and that one cannot regard a 

proposition or theory as scientific if it does not admit the possibility of being shown false. Other 

philosophers of science have rejected the criterion of falsifiability or supplemented it with other 

criteria, such as verifiability (e.g., verificationism) or coherence (e.g., confirmation holism). The 

scientific method involves experimentation, to test the ability of some hypothesis to adequately 

answer the question under investigation. In contrast, unfettered observation is not as likely to raise 

unexplained issues or open questions in science, as would the formulation of a crucial experiment to 

test the hypothesis. A thought experiment might also be used to test the hypothesis as well.  

In framing a hypothesis, the investigator must not currently know the outcome of a test or that it 

remains reasonably under continuing investigation. Only in such cases does the experiment, test or 

study potentially increase the probability of showing the truth of a hypothesis. If the researcher 

already knows the outcome, it counts as a "consequence"  and the researcher should have already 

considered this while formulating the hypothesis. If one cannot assess the predictions by 

observation or by experience, the hypothesis needs to be tested by others providing observations. 

For example, a new technology or theory might make the necessary experiments feasible.  

Scientific Hypothesis  

People refer to a trial solution to a problem as a hypothesis, often called an "educated guess" 

because it provides a suggested solution based on the evidence. However, some scientists reject the 

term "educated guess" as incorrect. Experimenters may test and reject several hypotheses before 

solving the problem.  

Working Hypothesis  

A working hypothesis is a hypothesis that is provisionally accepted as a basis for further research in 

the hope that a tenable theory will be produced, even if the hypothesis ultimately fails. Like all 

hypotheses, a working hypothesis is constructed as a statement of expectations, which can be linked 



 

 

to the exploratory research purpose in empirical investigation. Working hypotheses and are often 

used as a conceptual framework in qualitative research.  

The provisional nature of working hypotheses make them useful as an organizing device in applied 

research. Here they act like a useful guide to address problems that are still in a formative phase.  

In recent years, philosophers of science have tried to integrate the various approaches to evaluating 

hypotheses, and the scientific method in general, to form a more complete system that integrates 

the individual concerns of each approach. Notably, Imre Lakatos and Paul Feyerabend, Karl Popper's 

colleague and student, respectively, have produced novel attempts at such a synthesis.  

Measurement of Hypothesis 

Concepts in Hempel's deductive homological model play key role in the development and testing of 

hypothesis. Most formal hypothesis connect concepts by specifying the expected relationships 

between propositions. When a set of hypothesis are grouped together they become a type of 

conceptual framework. When a conceptual framework is complex and incorporates causality or 

explanation it is generally referred to as a theory. According to noted philosopher of science Carl 

Gustav Hempel " an adequate empirical interpretation turns a theoretical system into a testable 

theory. The hypothesis whose constituent terms have been interpreted become capable of test by 

reference to observable phenomena. Frequently the interpreted hypothesis will be derivative 

hypotheses of the theory; but their confirmation or disconfirmation by empirical data will then 

immediately strengthen or weaken also the primitive hypotheses from which they were derived."  

Hempel provides a useful metaphor that describes the relationship between a conceptual 

framework and the framework as it is observed and perhaps tested (interpreted framework). "The 

whole system floats, as it were, above the plane of observation and is anchored to it by rules of 

interpretation. These might be viewed as strings which are not part of the network but link certain 

points of the latter with specific places in the plane of observation. By virtue of those interpretative 

connections, the network can function as a scientific theory". Hypotheses with concepts anchored in 

the plane of observation are ready to be tested. In "actual scientific practice the process of framing a 

theoretical structure and of interpreting it are not always sharply separated, since the intended 

interpretation usually guides the construction of the theoretician". It is, however, "possible and 

indeed desirable, for the purposes of logical clarification, to separate the two steps conceptually." 

Statistical Hypothesis testing  

When a possible correlation or similar relation between phenomena is investigated, such as whether 

a proposed remedy is effective in treating a disease, the hypothesis that a relation exists cannot be 

examined the same way one might examine a proposed new law of nature. In such an investigation, 

if the tested remedy shows no effect in a few cases, these do not necessarily falsify the hypothesis. 

Instead, statistical tests are used to determine how likely it is that the overall effect would be 

observed if the hypothesized relation does not exist. If that likelihood is sufficiently small (e.g., less 

than 1%), the existence of a relation may be assumed. Otherwise, any observed effect may be due to 

pure chance.  



 

 

In statistical hypothesis testing, two hypotheses are compared. These are called the null hypothesis 

and the alternative hypothesis. The null hypothesis is the hypothesis that states that there is no 

relation between the phenomena whose relation is under investigation, or at least not of the form 

given by the alternative hypothesis. The alternative hypothesis, as the name suggests, is the 

alternative to the null hypothesis. it states that there is some kind of relation. The alternative 

hypothesis may take several forms, depending on the nature of the hypothesized relation; in 

particular it can be two-sided (for example: there is some effect, in a yet unknown direction) or one-

sided (the direction of the hypothesized relation positive or negative, is fixed in advance). 

Conventional significance levels for testing hypotheses (acceptable probabilities of wrongly rejecting 

a true null hypothesis) are .10, .05, and .01. Whether the null hypothesis is rejected and the 

alternative hypothesis is accepted, must be determined in advance, before the observations are 

collected or inspected. If these criteria are determined later, when the data to be tested are already 

known, the test is invalid. 

The above procedure is actually dependent on the number of the participants (units or sample size) 

that is included in the study. For instance, the sample size may be too small to reject a null 

hypothesis and, therefore, it is recommended to specify the sample size from the beginning. It is 

advisable to define a small, medium and large effect size for each of a lumber of important statistical 

tests which are used to test the hypotheses. 

Test of Goodness of fit 

The goodness of fit of a statistical model describes how well it fits a set of observations. Measures of 

goodness of fit typically summarize the discrepancy between observed values and the values 

expected under the model in question. Such measures can be used in statistical hypothesis testing, 

ego to test for normality of residuals, to test whether two samples are drawn from identical 

distributions (see Kolmogorov-Smirnov test), or whether outcome frequencies follow a specified 

distribution (see Pearson's chi-squared test). In the analysis of variance, one of the components into 

which the variance is partitioned may be a lack-of-fit sum of squares.  

Fit of distributions  

In assessing whether a given distribution is suited to a data-set, the following tests and their 

underlying measures of fit can be used : 

 Kolmogorov-Smirnov test; 

 Cramér-von Mises criterion; 

 Anderson-Darling test; 

 Shapiro-Wilk test, 

 Chi Square test; 

 Akaike Information criterion; 

 Hosmer-Lemeshow test;  



 

 

Regression analysis  

In regression analysis, the following relate to goodness of fit: 

 Coefficient of determination (The R squared measure of goodness of fit); 

 Lack-of-fit sum of squares.  

Example  

One way in which a measure of goodness of fit statistic can be constructed, in the case where the 

variance of the measurement error is known, is to construct a weighted sum of squared errors.  
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where 2 is the known variance of the observation, O is the observed data and E is the theoretical 

data. This definition is only useful when one has estimates for the error on the measurements, but it 

leads to a situation where a chi-squared distribution can be used to test goodness of fit, provided 

that the errors can be assumed to have a normal distribution.  

The reduced chi-squared statistic is simply the chi-squared divided by the number of degrees of 

freedom: 
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where  is the number of degrees of freedom, usually given by N–n–1, where N is the number of 

observations, and n is the number of fitted parameters, assuming that the mean value is an 

additional fitted parameter. The advantage of the reduced chi-squared is that it already normalizes 

for the number of data points and model complexity. This is also known as the mean square 

weighted deviation.  

As a rule of thumb (again valid only when the variance of the measurement error is known a prior 

rather than estimated from the data), 1 2 redXa  indicates a poor model fit 1X A 2
red   indicates 

that the fit has not fully captured the data (or that the error variance has been underestimated). In 

principle, a value of 1X2
red   indicates that the extent of the match between observation and 

estimates is in accord with the error variance 1X A 2
red   indicates that the model is 'over-fitting' 

the data either the model is improperly fitting noise, or the error variance has been overestimated.  

Categorical Data  

The following are examples that arise in the context of categorical data. 



 

 

Pearson's Chi-Squared test  

Pearson's chi-squared test uses a measure of goodness of fit which is the sum of differences 

between observed and expected outcome frequencies (that is, counts of observations), each 

squared and divided by the expectation  
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Where : 

 Oi = an observed frequency (i.e. count) for bin i 

 Ei = an expected (theoretical) frequency for bin i, asserted by the null hypothesis.  

The expected frequency is calculated by : 

     N YFYFE ui l  

where :  

F = the cumulative distribution function for the distribution being tested.  

Yu = the upper limit for class i, and  

Yl = the lower limit for class i, and  

N = the sample size  

The resulting value can be compared to the chi-squared distribution to determine the goodness of 

fit. In order to determine the degrees of freedom of the chi-squared distribution, one takes the total 

number of observed frequencies and subtracts the number of estimated parameters. The test 

statistic follows, approximately, a chi-square distribution with (k – c) degrees of freedom where k is 

the number of non-empty cells and c is the number of estimated parameters (including location and 

scale parameters and shape parameters) for the distribution.  

Example : Equal Frequencies of men and women 

For example, to test the hypothesis that a random sample of 100 people has been drawn from a 

population in which men and women are equal in frequency, the observed number of men and 

women would be compared to the theoretical frequencies of 50 men and 50 women. If there were 

44 men in the sample and 56 women, then  
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If the null hypothesis is true (i.e., men and women are chosen with equal probability in the sample), 

the test statistic will be drawn from a chi-squared distribution with one degree of freedom, though 

one might expect two degrees of freedom (one each for the men and women), we must take into 

account that the total number of men and women is constrained (100), and thus there is only one 



 

 

degree of freedom (2 – 1). Alternatively, if the male count is known the female count is determined, 

and vice-versa.  

Consultation of the chi-squared distribution for 1 degree of freedom shows that the probability of 

observing this difference (or a more extreme difference than this) if men and women are equally 

numerous in the population is approximately 0.23. This probability is higher than conventional 

criteria for statistical significance (.001 – .05), so normally we would not reject the null hypothesis 

that the number of men in the population is the same as the number of women (i.e. we would 

consider our sample within the range of what we'd expect for a 50/50 male/female ratio.)  

Binomial Case 

A binomial experiment is a sequence of independent trials in which the trials can result in one of two 

outcomes, success or failure. There are n trials each with probability of success, denoted by p. 

Provided that ppi » 1 for every i (where i = 1, 2, ... , k), then  
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This has approximately a chi-squared distribution with k – 1 df. The fact that df = k – 1 is a 

consequence of the restriction   nNi . We know there are k observed cell counts, however, 

once any k – 1 are known, the remaining one is uniquely determined. Basically, one can say, there 

are only k – 1 freely determined cell counts, thus df = k – 1. 

Other Measures of fit  

The likelihood ratio test statistic is a measure of the goodness of fit of a model, judged by whether 

an expanded form of the model provides a substantially improved fit. 

Chi-Square Test 

The chi-square test is an important test amongst the several tests of significance developed by 

statisticians. Chi-square, symbolically written as 2 (Pronounced as Ki-square), is a statistical 

measure used in the context of sampling analysis for comparing a variance to a theoretical variance. 

As a non-parametric* test, it "can be used to determine if categorical data shows dependency or the 

two classifications are independent. It can also be used to make comparisons between theoretical 

populations and actual data when categories are used." Thus, the chi-square test is applicable in 

large number of problems. The test is, in fact, a technique through the use of which it is possible for 

all researchers to (i) test the goodness of fit; (ii) test the significance of association between two 

attributes, and (iii) test the homogeneity or the significance of population variance.  



 

 

Chi-Square as a test for comparing variance 

The chi-square value is often used to judge the significance of population variance i.e., we can use 

the test to judge if a random sample has been drawn from a normal population with mean () and 

with a specified variance (
2
p ). The test is based on 2 – distribution. Such a distribution we 

encounter when we deal with collections of values that involve adding up squares. Variances of 

samples require us to add a collection of squared quantities and, thus, have distributions that are 

related to 2 – distribution. If we take each one of a collection of sample variances, divided them by 

the known population variance and multiply these quotients by (n – 1), where n means the number 

of items in the sample, we shall obtain a 2 – distribution. Thus,  
2
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 (d.f.) would have 

the same distribution as 2 –distribution with (n –1) degrees of freedom. 

The 2 –distribution is not symmetrical and all the values are positive. For making use of this 

distribution, one is required to know the degrees of freedom since for different degrees of freedom 

we have different curves. The smaller the number of degrees of freedom, the more skewed is the 

distribution which is illustrated in Fig. 10.1:  

 

Fig. 10.1 



 

 

Table given in the Appendix gives selected critical values of 2 for the different degrees of freedom. 


2 -values are the quantities indicated on the x-axis of the above diagram and in the table are areas 

below that value.  

In brief, when we have to use chi-square as a test of population variance, we have to work out the 

value of 2 to test the null hypothesis (viz., H0 : 
2
s  = 

2
p ) as under : 
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where 

2
s  = variance of the sample; 

2
p  = variance of the population;  

(n–1) =  degrees of freedom, n being the number of items in the sample.  

Then by comparing the calculated value with the table value of 2 for (n – 1) degrees of freedom at a 

given level of significance, we may either accept or reject the null hypothesis. If the calculated value 

of 2 is less than the table value, the null hypothesis is accepted, but if the calculated value is equal 

or greater than the table value, the hypothesis is rejected. All this can be made clear by an example.  

Illustration 1 

Weight of 10 students is as follows : 

S.No. 1 2 3 4 5 6 7 8 9 10 

Weight (kg.) 38 40 45 53 47 43 55 48 52 49 

Can we say that the variance of the distribution of weight of all students from which the above 

sample of 10 students was drawn is equal to 20 kgs? Test this at 5 per cent and 1 per cent level of 

significance.  

Solution 

First of all we should work out the variance of the sample data or 
2
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worked out as under:  
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Let the null hypothesis be 
2
s

2
p0H : . In order to test this hypothesis we work out the 2 value 

as under:  
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Degrees of freedom in the given case is (n – 1) = (10 – 1) = 9. At 5 per cent level of significance the 

table value of 2 = 16.92 and at 1 per cent level of significance, it is 21.67 for 9 d.f. and both  these 

values are greater than the calculated value of 2 which is 13.999. Hence we accept the null 

hypothesis and conclude that the variance of the given distribution can be taken as 20 kgs at 5 per 

cent as also at 1 per cent level of significance. In other words, the sample can be said to have been 

taken from a population with variance 20 kgs.  

Illustration 2 

A sample of 10 is drawn randomly from a certain population. The sum of the squared deviations 

from the mean of the given sample is 50. Test the hypothesis that the variance of the population is 5 

at 5 per cent level of significance.  

 



 

 

Solution. 

 n = 10 
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Take the null hypothesis as 
2
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2
p0H : . In order to test this hypothesis, we work out the 2 

value as under:  
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Degrees of freedom = (10 – 1) = 9.  

The table value of 2 at 5 per cent level for 9 d.f. is 16.92. The calculated value of 2 is less than this 

table value, so we accept the null hypothesis and conclude that the valiance of the population is 5 as 

given in the question. 

Chi-Square as a Non-parametric test 

Chi-square is an important non-parametric test and as such no rigid assumptions are necessary in 

respect of the type of population. We require only the degrees of freedom (implicitly of course the 

size of the sample) for using this test. As a non-parametric test, chi-square can be used (i) as a test of 

goodness of fit and (ii) as a test of independence.  

As a test of goodness of fit, 2 test enables us to see how well does the assumed theoretical 

distribution (such as Binomial distribution, Poisson distribution or Normal distribution) fit to the 

observed data. When some theoretical distribution is fitted to the given data, we are always 

interested in knowing as to how well this distribution fits with the observed data. The chi-square test 

can give answer to this. If the calculated value of 2 is less than the table value at a certain level of 

significance, the fit is considered to be a good one which means that the divergence between the 

observed and expected frequencies is attributable to fluctuations of sampling. But if the calculated 

value of 2 is greater than its table value, the fit is not considered to be a good one.  

As a test of independence, 2 test enables us to explain whether or not two attributes are 

associated. For instance, we may be interested in knowing whether a new medicine is effective in 

controlling fever or not, 2 test will helps us in deciding this issue. In such a situation, we proceed 

with the null hypothesis that the two attributes (viz., new medicine and control of fever) are 

independent which means that new medicine is not effective in controlling fever. On this basis we 

first calculate the expected frequencies and then work out the value of 2. If the calculated value of 


2 is less than the table value at a certain level of significance for given degrees of freedom, we 



 

 

conclude that null hypothesis stands which means that the two attributes are independent or not 

associated (i.e., the new medicine is not effective in controlling the fever). But if the calculated value 

of 2 is greater than its table value, our inference then would be that null hypothesis does not hold 

good which means the two attributes are associated and the association is not because of some 

chance factor but it exists in reality (i.e., the new medicine is effective in controlling the fever and as 

such may be prescribed). It may, however, be stated here that 2 is not a measure of the degree of 

relationship or the form of relationship between two attributes, but is simply a technique of judging 

the significance of such association or relationship between two attributes. 

In order that we may apply the chi-square test either as a test of goodness of fit or as a test to judge 

the significance of association between attributes, it is necessary that the observed as well as 

theoretical or expected frequencies must be grouped in the same way and the theoretical 

distribution must be adjusted to give the same total frequency as we find in case of observed 

distribution. 2 is then calculated as follows : 
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where, 

 Oij = observed frequency of the cell in ith row and jth column. 

 Eij  = expected frequency of the cell in ith row and jth column.  

If two distributions (observed and theoretical) are exactly alike, 2 = 0; but generally due to sampling 

errors, 2 is not equal to zero and as such we must know the sampling distribution of 2 so that we 

may find the probability of an observed 2 being given by a random sample from the hypothetical 

universe. Instead of working out the probabilities, we can use ready table which gives probabilities 

for given values of 2. Whether or not a calculated value of 2 is significant can be ascertained by 

looking at the tabulated values of 2 for given degrees of freedom at a certain level of significance. If 

the calculated value of 2 is equal to or exceeds the table value, the difference between the 

observed and expected frequencies is taken as significant, but if the table value is more than the 

calculated value of 2, then the difference is considered as insignificant i.e., considered to have 

arisen as a result of chance and as such can be ignored.  

As already stated, degrees of freedom play an important part in using the chi -square distribution 

and the test based on it, one must correctly determine the degrees of freedom. If there are 10 

frequency classes and there is one independent constraint, then there are (10 – 1) = 9 degrees of 

freedom. Thus, if 'n' is the number of groups and one constraint is placed by making the totals of 

observed and expected frequencies equal, the d.f. would be equal to (n – 1). In the case of a 

contingency table (i.e., a table with 2 columns and 2 rows or a table with two columns and more 

than two rows or a table with two rows but more than two columns or a table with more than two 

rows and more than two columns), the d.f. is worked out as follows:  

 d.f. = (c – 1) (r – 1) 

where 'c' means the number of columns and 'r' means the number of rows.  



 

 

The following conditions should be satisfied before 2 test can be applied:  

(i) Observations recorded and used are collected on a random basis.  

(ii) All the items in the sample must be independent.  

(iii) No group should contain very few items, say less than 10. In case where the 

frequencies are less than 10, regrouping is done by combining the frequencies of 

adjoining groups so that the new frequencies become greater than 10. Some 

statisticians take this number as 5, but 10 is regarded as better by most of the 

statisticians.  

(iv) The overall number of items must also be reasonably large. It should normally be at 

least 50, howsoever small the number of groups may be.  

(v) The constraints must be linear. Constraints which involve linear equations in the cell 

frequencies of a contingency table (i.e., equations containing no squares or higher 

powers of the frequencies) are known are know as linear constraints.  

 


