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Block-1 

Calculus of Finite Differences 

Numerical analysis holds significant importance in various domains such as Engineering, 

Science, and Technology. It involves obtaining results in numerical form through computational 

methods applied to given data. The foundation of numerical analysis lies in the calculus of finite 

differences, a branch that addresses alterations in the dependent variable resulting from changes 

in the independent variable. Finite differences can be computed in both forward and backward 

directions, depending on whether values ahead or behind are used in the calculations. Finite 

differences have various applications in numerical analysis, providing a versatile tool for 

approximating derivatives, solving differential equations, and interpolating functions.  

Finite differences are frequently used to approximate derivatives of a function. By expressing 

derivatives as finite difference quotients, such as the forward difference or central difference, 

numerical approximations can be obtained. This is particularly useful when dealing with 

functions for which analytical derivatives are challenging to compute. Finite differences play a 

crucial role in interpolation methods. Newton's divided difference interpolation formula relies 

on finite differences to construct polynomial interpolants. This technique is used to estimate 

values between known data points. Finite difference methods are employed to numerically solve 

differential equations. Discretizing the differential equation using finite differences transforms 

the problem into a system of algebraic equations, which can be solved using numerical 

techniques like the Euler method, the Runge-Kutta method, or finite difference schemes for 

partial differential equations. Finite differences are used in numerical methods for root finding, 

such as Newton's method. The finite difference quotient helps approximate the derivative in the 

iterative process of finding roots of equations. 

In the first unit, we shall discussed the Finite differences, operators and relations between the 

operators. A finite difference table is a systematic way of organizing finite differences at different 

orders. It helps identify patterns and relationships in the data. In second unit we shall discuss the 

fundamental theorem difference calculus, factorial function, properties of factorial function. 

 



UNIT-1: Finite Differences 

 

Structure 

1.1  Introduction 

1.2  Objectives 

1.3   Finite Differences 

1.4   Forward Differences 

1.5  Backward Differences 

1.6  Central Differences 

1.7  Shift Operators E 

1.8   Relations between the Operators 

1.9  Summary 

1.10  Terminal Questions 

 

 

 

  



1.1 Introduction 

 

Numerical analysis plays a crucial role in Engineering, Science, and Technology by providing 

numerical results through computational methods applied to given datasets. At its core, 

numerical analysis relies on the principles of the calculus of finite differences, which explores 

how changes in the independent variable lead to corresponding changes in the dependent 

variable. The Calculus of Finite Differences constitutes a mathematical discipline concerned with 

discrete quantities and the distinctions between successive values. Finite differences are used in 

optimization algorithms, where gradients or partial derivatives are approximated numerically to 

find extrema of functions. 

Finite differences provide a powerful and intuitive approach to solving various numerical 

problems, making them a fundamental tool in the field of numerical analysis. In contrast to 

classical calculus, which revolves around continuous functions and limits, the calculus of finite 

differences directs its attention to the discrete characteristics of data or functions defined at 

specific points. In the present unit we shall discuss about the finite differences, forward 

differences, backward differences, central differences, shift operators and relations between 

operators.  

A finite difference table is a systematic way of organizing finite differences at different orders. 

It helps identify patterns and relationships in the data. Finite differences can be computed in both 

forward and backward directions, depending on whether values ahead or behind are used in the 

calculations. Finite differences find applications in diverse fields, including numerical analysis, 

computer science, physics, engineering, and discrete mathematics. Finite differences are 

employed in interpolation to estimate values between known points and extrapolation to predict 

values beyond the given data points. Finite differences are used in error analysis of numerical 

methods. Understanding the behavior of finite differences helps assess the accuracy and 

convergence of numerical algorithms. 

 

 



1.2 Objectives 

 

After reading this unit the learner should be able to understand about the: 

 Finite Differences 

 Forward differences  

 backward differences 

 Central Differences 

 Shift Operators E 

 Relations between the operators 

 

1.3 Finite Differences 

 

Finite Differences refers to a mathematical concept that involves the computation of discrete 

changes or differences between consecutive values of a function or sequence. Unlike traditional 

calculus, which deals with continuous and infinitesimal changes, finite differences focus on the 

specific, discrete variations in values at distinct points. Finite Differences is a numerical analysis 

technique used to approximate derivatives, integrals, and other mathematical operations.  

This method is particularly useful when dealing with functions or equations for which analytical 

solutions are difficult to obtain. The basic idea behind finite differences is to approximate the 

derivative of a function by considering the differences in function values at discrete points. 

The concept of finite differences is particularly useful when dealing with discrete data sets or 

functions defined at specific points, providing a practical and numerical approach to 

understanding changes in values.  

Let y = f(x) be a function of x, the value of independent variable x (x0, x1,………, xn) are called 

arguments and corresponding values of dependent variable y (y0, y1,…….…, yn) are called 



entries. To find the values of y and 
dx

dy
, for some intermediate value of x, is based on principle 

of finite difference. 

 

1.4 Forward Differences 

 

Consider the function 

                                    y = f(x)               ….. (1) 

where the function is not known only the data set are given. 

The first forward differences is defined by  

   0 1 0y y y   , where h =1 is interval difference. 

The differences 1 0 2 1 1, , ................., n ny y y y y y     are known as the first forward 

differences of equation (1) and denoted by 0 1 1, ,..........., ,ny y y    respectively, where  is 

known as the forward difference operator. 

Generally, the first forward differences is defined by  

   xhxx yyy   , where h is interval difference. 

or         f x f x h f x    , where h is interval difference. 

The differences of the first forward differences are known as the second forward differences and 

denoted by .....,, 1

2

0

2 yy  etc. 

Therefore, we have  

][ 00

2 yy   

    ][ 01 yy  , where h =1 is interval difference. 

01 yy   

    )()( 0112 yyyy   



    012 2 yyy               …(2) 

Similarly, we have 

     ][ 121

2 yyy   

12 yy   

)()( 1223 yyyy    

123 2 yyy                  …(3) 

Generally, we have  

xxx yyy  1

2
, where h = 1 is interval difference. 

Forward Difference Table: 

Argument 

x  

Entry 

)(xfy   

First 

Differences 

y  

Second 

Differences 

y2  

Third 

Differences 

y3  

Fourth 

Differences 

y4  

0x  

hx 0  

hx 20   

hx 30   

hx 40   

0y  

1y  

2y  

3y  

4y  

001 yyy   

112 yyy   

223 yyy   

334 yyy   

 

0

2

01 yyy   

1

2

12 yyy   

2

2

23 yyy   

 

0

3

0

2

1

2 yyy   

1

3

1

2

2

2 yyy   

 

 

0

4

0

3

1

3 yyy   

  



Again, the differences of second forward differences are known as third forward differences and 

denoted by 3 3

0 1,y y  etc. 

Thus we have      0

2

1

2

0

3 yyy   

    )2()2( 012123 yyyyyy       [from equation (2) and  (3)] 

    0123 33 yyyy   and so on. 

In general, the nth forward difference is given by 

  1 1n n n

x x h xy y y 

    , where h is interval difference. 

 

1.5 Backward Differences 

 

Consider the function 

 y = f(x)              ….. (1) 

where the function is not known only the data set are given. 

The differences 11201 .......,..........,,  nn yyyyyy  are known as the first backward 

differences of equation (1) and denoted by 1 2, ,.............., ,ny y y   respectively, 

where  is known as the backward differences operator. 

Generally, the first backward difference is defined by 

   1 xxx yyy , where h = 1 is interval difference. 

or       f x f x f x h    , where h is interval difference. 

The differences of the first backward differences are known as second backward differences and 

denoted by ,, 3

2

2

2 yy  ….. etc. 

Therefore we have 



   )( 22

2 yy   

)( 12 yy  , where h = 1 is interval difference. 

12 yy   

    2 1 1 0( ) ( )y y y y     

012 2 yyy   

Generally, we have  

1

2

 xxx yyy , where h = 1 is interval difference. 

Backward Differences Table: 

Argument 

x  

Entry 

)(xfy   

First 

Differences 

 y 

Second 

Differences 

y2  

Third  

Differences 

y3  

Fourth 

Differences 

y4  

0x  

hx 0  

hx 20   

hx 30   

hx 40   

0y  

1y  

2y  

3y  

4y  

 

101 yyy   

212 yyy   

323 yyy   

434 yyy   

 

 

2

2

12 yyy   

3

2

23 yyy   

4

2

34 yyy   

 

 

3

3

2

2

3

2 yyy   

4

3

3

2

4

2 yyy   

 

 

 

4

4

3

3

4

3 yyy   

 

Again the differences of second backward differences are known as third backward differences 

and denoted by 
4

3

3

3 , yy  , …… etc. 

Thus we have  



1

223

 xxx yyy  

In general, the nth backward differences is given by 

   
1

11



  x

n

x

n

x

n yyy  

 

1.6 Central Differences 

 

The differences 2/112/3122/101 ......,,,   nnn yyyyyyyyy  are known as 

central differences and  is known as central differences operator. 

Similarly, we have 

   1

2

2/12/3 yyy    

   2

2

2/32/5 yyy    

   2/3

3

1

2

2

2 yyy    and so on. 

 

Central Difference Table: 

 

Argument  

x  

Entry 

)(xfy   

First 

Differences 

y  

Second 

Differences 

y2  

Third 

Differences 

y3  

Fourth 

Differences 

y4  

0x  

1x  

2x  

3x  

4x  

0y  

1y  

2y  

3y  

4y  

 

2/1y  

2/3y  

2/5y  

2/7y  

 

1

2 y  

2

2 y  

3

2 y  

 

 

2/3

3 y  

2/5

2 y  

 

 

2

4 y  

 



In generally, the central differences is given by 

/2 /2x x h x hy y y    , where h is interval difference. 

 

1.7 Shift Operator E 

 

The shift (increment) operator E is defined as 

   hxx yEy  , where h is the interval difference. 

hxx yyE 2

2

  

  

nhxx

n yyE   

Also the inverse operator E-1 is defined as 

   
1

( )x x hE y y

   

            x hy  , where h is the interval difference. 

 

Check your Progress 

 

1. What do you mean by Finite Differences? 

2. Explain the forward and backward differences. 

3. Define the central differences 

4. What is shift operator? 

 

1.8 Relations between the Operators 

There are several relations between the operators. Some of the important relations are following: 



(i)  To show that    1E         or     1E . 

We know that        x x h xy y y    

x xEy y   

    xx yEy )1( 
 

Thus we have 

   1E            

or     1E . 

(ii) To show that 
11  E     or     11E . 

We know that        x x x hy y y     

1

x xy E y    

1(1 ) xE y   

Thus we have  

11  E       

or 
1 1 .E    

(iii) To show that .E E             

We have     ( )x x x hE y E y y     

x x hEy Ey    

x h xy y   

   x xE y y     

   E         ….. (1) 



Again we have    x x hEy y    

x h xy y   

        xx yEy   

        E       ….. (2) 

Using equations (1) and (2), we have 

          EE  

(iv) To show that     
1/2 1/2.E E    

We know that /2 /2x x h x hy y y     

         1/2 1/2

x xE y E y   

1/2 1/2( )x xy E E y  
 

Thus we have 

      
1/2 1/2.E E    

(v) To show that 
1/2.E   

We know that       xhxx yyy    

   x xEy y   

   ( 1) xE y   

   xyEEE 2/12/12/1 )( 
 

                              1/2

x xy E y   



Thus we have 

   
1/2.E   

(vi) To show that .hDE e  

We know that       )()( hxfxEf   

    .....)(
!2

)()(
2

 xf
h

xfhxf  (Using Taylor’s Theorem) 

    
....)(

!2
)()( 2

2

 xfD
h

xhDfxf
 

    

)(.....
!2

1 2
2

xfD
h

hD 









 

                               
)()( xfexEf hD

 

Thus we have 

.hDE e  

(vii) To show that   (1 )(1 ) 1.    

We know that (1 )(1 ) ( ) (1 )( ( ) ( ))f x f x f x      

))]()(()()[1( hxfxfxf   

(1 ) ( )f x h    

( )Ef x h   

                    
)()()1)(1( xfxf 
 

Thus we have 



     (1 )(1 ) 1.    

 

Examples 

 

Example.1. Show that .133 233  EEE  

Solution: Using the definition of  , we have  

  )()()( xfhxfxf   

and   ( ) ( )Ef x f x h   

Therefore, we have      

            )()( nhxfxfE n   

            )]()([)(2 xfhxfxf   

)()(2)2( xfhxfhxf   

and   )]()(2)2([)(3 xfhxfhxfxf   

   )()(3)2(3)3( xfhxfhxfhxf   

   )()(3)(3)( 23 xfxEfxfExfE   

  )()133()( 233 xfEEExf   

or           .133 233  EEE   

 



Example.2. Prove that [log ] log 1 .
h

x
x

 
   

   

Sol: Using the definition of  , we have  

  )()()( xfhxfxf  , where h is the interval difference. 

Now we have  [log ] log logx x h x     

 log
x h

x

 
  

 
 

   log 1 .
h

x

 
  

 
 

 

Example.3. Prove that 
1 1

2

5
tan 5 tan .

1 25 25

h
x

x xh

   
   

    

Sol: Using the definition of  , we have  

  )()()( xfhxfxf  , where h is the interval difference. 

Now we have       

                
1 1 1tan 5 tan 5( ) tan 5x x h x     

 

     
1 5( ) 5

tan
1 5( )5

x h x

x h x

  


 
  

1 5
tan

1 25 ( )

h

x x h


 

 

1

2

5
tan .

1 25 25

h

x xh

  
  

  
  

 



Example.4. Prove that  .ΔΔ 2  
 

Sol: We have  xf Δ
 

  xf  

    xfhxf   

   xfhxf 
 

           

        hxfxfhhxfhxf 
 

           
       2 ... 1f x h f x f x h    

 

Now we have 

   2 f x f x     
 

  


























22

h
xf

h
xf  

  
2 2

h h
f x f x 
   

      
     

                                      



















2222

hh
xf

hh
xf

2 2 2 2

h h h h
f x f x
   

        
     

               
       2 ... 2f x h f x f x h    

 

Now we have

     

    

       f x f x f x      

         f x h f x f x f x h             

       2f x h f x f x h    
 



From equations (1), (2), (3), we have 

                                2 .    
 

 

Example.5. Prove that 
2

21
 1 .

2 4


    

    

Sol:  We know that 

          
1/2 1/2.E E    

Here we have 

             
4

1
2

1

4
1

2

1
22121

212122121
2

2
//

//// EE
EEEE


 






                   

                       

   
4

24

2

1 1
212122121 




 EE
EEEE ////

 

              

     
4

2
2

1
22121

21211
//

// EE
EEEE


 

  

   
 1/2 1/2

1 1/2 1/21
2

2 2

E E
E E E E



 


      

   1 -11
2 E-E

2
E E    

 
 

 
1

2 2
2

E     

 
1

2 1
2

E     

1E   



.  

 

Example.6. Prove that .
)(

)(
1log)(log 







 


xf

xf
xf  

Solution: Using the definition of  , we have  

      log ( ) log ( ) log ( )f x f x h f x    , where h is the interval difference. 

    
( )

log
( )

f x h

f x


  

 
( )

log
( )

Ef x

f x

 
  

 
 

   






 


)(

)()1(
log

xf

xf
    ]1[ E  

   
( ) ( )

log
( )

f x f x

f x

  
  

 
   

( )
log 1 .

( )

f x

f x

 
  

 
 

 

Example.7. Evaluate the following 

    (i) 
2 (2 )xe , where h =1   (ii) )]([ baxSin   

Solution: Using the definition of  , we have  

  )()()( xfhxfxf  , where h is the interval difference. 



(i) We have    2 22 2x xe e     

  2 . xe    

 12 x xe e   , where h = 1 is the interval difference. 

 2 1 12 x x x xe e e e       

 22 2 1 xe e e    

22( 1) .xe e   

(ii) We have 

   [sin( )] sin( ( ) ) sin( )cx d c x h d cx d        

       
( ) ( )

2cos sin
2 2

c x h d cx d c x h d cx d          
    

   
 

        2cos sin .
2 2

ch ch
cx d
 

   
 

 

 

Example.8. Evaluate ).sin3( 2 xex x   

Solution: Using the definition of  , we have  

  )()()( xfhxfxf  , where h is the interval difference. 

 
2 2( ) 2(3 sin ) [3( ) sin( )] [3 sin ]x x h xx e x x h e x h x e x            

   =
2 23 [( 1) 2cos sin

2 2

x h x h x x h x
h e e

    
    

 
 

   .
2

sin
2

cos2)1(3 22


















hh
xeeh hx

 



 

Example.9. Evaluate ].3log[ 2 xe x  

Solution: We know that 

 )()()()()]()([ xfxgxghxfxgxf   

Take  
2( ) , ( ) log3 .xf x e g x x   

Then we have 

xhxx exxexe 2)(22 3log3log)3log(  
 

  
2( ) 2( ) 2[log3( ) log3 ] log3 .( )x h x h xe x h x x e e       

  
2( ) 2 23( )

log log3 . ( 1)
3

x h x hx h
e x e e

x

  
   

 
                      

                        
2 2 2log 1 ( 1) log3 .x h hh

e e e x
x

  
     

  
 

 

Example.10. Evaluate ( ), 1.n ax he h   

Solution. We know that 

 )()1()( xfxfxf  , where h = 1 is the interval difference. 

   
( 1)ax b a x b ax be e e       

( 1)ax b ae e   

Again   
2 ( )ax b ax be e      



[ ( 1)]ax b ae e    

   ( 1)a ax be e     

( 1) ( 1)a ax b ae e e    

   =
baxa ee  2)1(  

Proceeding in the same way, we get 

  
baxnabaxn eee   )1()(  

 

Example.11. Show that rx

r

x

r yy   

Solution: We have 
rx

r

rx

r yEy 



  )1( 1    [ ]1 1 E  

   
1

r

x r

E
y

E


 
  
 

 

( 1)r r

x rE E y

   

   
x

r yE )1(      ]1[  E  

   .r

xy     

 

Example.12. Evaluate cos(2 3 )x  . 

Solution: Using the definition of  , we have  

  )()()( xfhxfxf  , where h is the interval difference. 



We have 

          cosh(2 3 ) cosh(2 3( )) -cosh(2 3 )x x h x       

   
2 3( ) 2 3 2 3( ) 2 3

2sinh sinh
2 2

x h x x h x       
  

   
3 3

2sinh 2 3 sinh
2 2

h h
x

 
   

 
. 

 

Example.13. Find the value of 
2

3 ,  where  1.x h
E

 
 

 
 

Solution: We have 
2 2

3 3( 1)E
x x

E E

    
   

   
  ]1[  E  

2
31 2E E

x
E

  
  
 

 

   
1 3[ 2 ]E E I x    

3 3 3( 1) ( 1) 2x x x      

   
3 2 3 2 33 3 1 3 3 1 2x x x x x x x          

6 .x  

 

1.9 Summary 

 

The first forward differences is defined by  

   0 1 0y y y   , where h =1 is interval difference. 



The first backward difference is defined by 

   x x x hy y y    , where h is interval difference. 

The differences 2/112/3122/101 ......,,,   nnn yyyyyyyyy  are known as 

central differences and  is known as central differences operator. 

The shift (increment) operator E is defined as 

   hxx yEy  , where h is the interval difference. 

The inverse operator E-1 is defined as  
1

( )x x hE y y

   

Some of the important relations are following: 

(i)  1E         or     1E                           (ii) 
11  E     or     11E . 

(iii) .E E        (iv) 
1/2 1/2.E E    

(v)
1/2.E       (vi) .hDE e  

(vii) (1 )(1 ) 1.    

 

1.10  Terminal Questions 

 

Q.1. What do you means by Finite Differences?  

Q.2. Explain the shift operators. 

Q.3. Write a short note on Central difference operators. 

Q.4. Prove that .1222  EE  

Q.5. Evaluate the following: 



(i) )]([sinh bxa                 

(ii)  ][tan ax  

(iii) ]2[cot x                 

(iv) )cos( xx   

(v) )2( 2  xex     

(vi)  ]log[ bxeax     

(vii) 









x

x

2cos

2

 

Q.6. Evaluate the following: 

         (i) x2cos2                  

        (ii) )(2 cxab  

         (iii) 
2

3x
E

 
 
 

                 

        (iv) 













65

125
2

2

xx

x
 

Q.7. Evaluate the following: 

 (i) )12)(12( 22  xx     

 (ii) )12)(12)(1( 2  xx  

  (iii) )2)(1)(2( xEE hx  
     



(iv) xEE hx  2)23( 2
 

Q.8. Prove that if )(xf and )(xg are the function of x then 

(i) )()()]()([ xgxfxgxf   

(ii) [ ( )] ( )a f x a f x    

(iii) [ ( ) ( )] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )f x g x f x g x g x h f x f x h g x g x f x            

(iv) 
)()(

)()()()(

)(

)(

hxgxg

xgxfxfxg

xg

xf













  

 

 

Answers 

 

5. (i) 
















bx

b
a

b

2
cosh

2
sinh2   

   (ii) 
)1(coscos

sin

xaax

a
 

   (iii) 
12cos  xec                

   (iv) 

















2
sin

2
sin2

hh
xh  

   (v) )1(2 2  hx eehhx     

   (vi)  
















 bxe

x

h
ee ahahax log)1(1log   



    (vii) 
xhx

hxhxxhxh

2cos)22cos(

)2sin(sin2cos)2( 2




 

6. (i) )22(cossin4 2 hxh                

    (ii) 
cxc abb )1(   

    (iii) 6x               

     (iv) 
)5)(4)(3(

6

)4)(3)(2(

4




 xxxxxx
 

7. (i) 12225 22  xxhhxh    

    (ii) 12225 22  xxhhxh  

    (iii) h      

    (iv) h 
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3. Sastry, S.S.: Introductory Methods of Numerical Analysis, UBS Publishers, 2012. 
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UNIT- 2: APPLICATION OF FINITE DIFFERENCES 

 

Structure 

2.1 Introduction 

2.2 Objectives 

2.3  Fundamental Theorem of the Difference Calculus 

2.4 Factorial Function  

2.5       Properties of Factorial Function  

2.6 Summary 

2.7 Terminal Questions 

  



2.1 Introduction 

 

In the present unit we shall discuss the fundamental theorem difference calculus, factorial 

function, properties of factorial function with examples. The Fundamental Theorem of Difference 

Calculus is a principle in mathematics that provides a fundamental relationship between 

summation and differencing operations. It is a counterpart to the Fundamental Theorem of 

Calculus, which connects integration and differentiation. This fundamental theorem plays a 

crucial role in discrete mathematics and is applicable in various areas, including numerical 

analysis and computer science.  

In numerical analysis, the factorial function often plays a role in various computations, especially 

in problems involving combinatory, series expansion, and algorithms. In numerical algorithms, 

factorials may appear in computations involving series expansions, especially in contexts where 

precise numerical evaluation is required. When dealing with large factorials, it's important to 

consider numerical precision and computational efficiency. For very large factorials, numerical 

libraries or specialized algorithms may be employed to avoid overflow issues and enhance 

computational performance. 

 

2.2 Objectives 

  

After studying this unit, the learner will be able to understand: 

 the fundamental theorem on difference calculus 

 the factorial function 

 the properties of factorial functions 

  



2.3 Fundamental Theorem of the Difference Calculus   

 

The fundamental theorem of the difference calculus in numerical analysis is a principle that 

establishes a connection between the process of differencing a sequence and the original 

sequence itself. It plays a crucial role in understanding and manipulating discrete data.  

This theorem is foundational in numerical analysis, especially in techniques involving finite 

differences, interpolation, and the construction of numerical algorithms. It provides a theoretical 

basis for understanding the relationship between cumulative sums and differencing in the discrete 

domain. Let f(x) be a polynomial of nth degree in x, then the nth difference of f(x) is constant and 

.0)(1   xfn
 

Proof: Consider the nth degree polynomial 

 n

nxAxAxAAxf  ....)( 2

210
 

Where 0 1 2, , ,..........., nA A A A  all are constants and n is a positive integer. 

)()()( xfhxfxf   

  2 2

0 1 2 0 1 2[ ( ) ( ) ..... ( ) ] [ ... ]n n

n nA A x h A x h A x h A A x A x A x             

  ])[(....])[(])[( 33

3

22

21

nn

n xhxAxhxAxhxAhA   

  ...][][ 332

2

32

1

33

3

22

1

22

21  xhxChxCxAxhxhCxAhA  

    )....[ 22

2

1

1

nn

n

nnnnnn

n xhChxChxCxA    

or   12

1

2

321 .....)( 

  n

n

n

n hxnAxBxBxBBxf                   …..(1) 

Where 1 2 1, ,..............., nB B B  all are constants. 

Using equation (1), we see that the first difference of a polynomial of degree n is given a 

polynomial of degree (n-1). 

Again we have 

          )()()(2 xfhxfxf   

12

1

2

321 )()(.....)()( 

  n

n

n

n hxhnAhxBhxBhxBB  



   ]....[ 12

1

2

321



  n

n

n

n hxnAxBxBxBB  

2 2 3 3

2 3 4[( ) ] [( ) ] .....B h B x h x B x h x         

    ])[(])[ 1122

1



  nn

n

nn

n xhxhnAxhxB  

2 2 2 2 3 3 2

2 3 1 4 1[ ] [B h B x C xh h x B x C x h        

   hxCxBxhxhC nnn

n

3

1

22

1

332

2

3 [.....] 

   

   ]..... 22

2

223

2

2 



  nn

n

nnn xhChxC  

   ]....[ 1

1

123

2

12

1

11 



  nn

n

nnnnnn

n xhChxChxCxhnA  

or  2 2 3 2 2

2 3 4 1( ) ..... ( 1)n n

n nf x C C x C x C x n n h A x 

                        …..(2) 

where 2 3 2 1, ,................, ,n nC C C C   are constants. 

Using equation (2), we see that the second difference of a polynomial of degree n is again a 

polynomial of degree (n-2). 

Proceeding in the same way, we will get a zero degree polynomial for the nth difference i.e., 

 ( ) ( 1)( 2).........1n n n n

nf x n n n h a x      

   ! .n

nn h a  

Therefore the nth difference is constant. 

Now we have 

   
1 ( ) [ ( )]n nf x f x      

       [ ! ]n

nn h a      

       0     ]0[ C  

Hence the nth difference of f(x) is constant and .0)(1   xfn
 

 



2.4 Factorial Function   

 

A product of the form ( )( 2 )..........( ( 1) )x x h x h x n h     is known as factorial 

function and denoted by x(n). 

We have 

( ) ( )( 2 )..........( ( 1) )nx x x h x h x n h      

If the interval of differencing is unity. Then we have 

( ) ( 1)( 2)( 3)............( ( 1)).nx x x x x x n       

 

Check your Progress 

 

1. What do you mean by Fundamental theorem of the difference calculus? 

2. Define the factorial function. 

 

2.5 Properties of Factorial Function   

 

(i) To show that 
( ) 1 ( )!  and 0.n n n n nx n h x     

Proof. By the definition of  , we have 

)()()( )( nnn xhxx   

 ))1()....(2)()(( hnhxhhxhhxhx   

     ))1()....(2)(( hnxhxhxx   

))2()....(2)(()( hhnxhxhxxhx   

    ( )( 2 )....( ( 2) )( ( 1) )x x h x h x n h x n h        

))1(())(()2()....(2)(( hnxhxhnxhxhxx   



( 1)

( 1)

n

n

x nh

nh x








 

Again we have 

  
2 ( )n nx x    

1[ ]nnhx    

1nnh x    

1 1[( ) ]n nnh x h x     

 ))2()....(2)()([ hnhxhhxhhxhxnh   

   ])2()....(2)(( hnxhxhxx   

 ))3()....(2)(()[( hnxhxhxxhxnh   

              )])2()()3()....(2)(( hnxhnxhxhxx   

 ( )( 2 )....( ( 3) )[ ( ( 2) )]nh x x h x h x n h x h x n h          

 hnxnh n )1(2  
 

 
22)1(  nxhnn  

Proceeding in the same way, we get 

  
( ) ( )( 1)( 2)....1n n n n nx n n n h x      

! nn h  

Again we have 



1 ( ) ( )n n n nx x     

    
( ! )

0.

nn h 


 

 

(ii) To show that f(a+nh) = f(a) + )(.....)()( 2

21 afCafCafC n

n

nnn   

Prof. We shall prove this by the method of mathematical induction. 

We have  )()()( afhafaf   

        )()()()()( afafafafhaf    [It is true for n =1] 

Again we have  

)()2()( hafhafhaf   

   )()()2( hafhafhaf   

     [ ( ) ( )] ( ) ( )f a f a f a f a       

     )()(2)( 2 afafaf   

         )()()()2( 2

1

2 afafCafhaf   

It is true for n =2. 

Similarly, we have 

                   )2()2()3( hafhafhaf   

          )]()(2)([)]()(2)([ 22 afafafafafaf   

        )()(3)(3)( 32 afafafaf   



          )()()()()3( 32

2

3

1

3 afafCafCafhaf   

It is true for n =3. 

Now Assume that it is true for n = k then we have 

 
1 2( ) ( ) ( ) ( ) .............. ( )k k k k

kf a kh f a C f a C f a C f a         

Now we shall show that this result is true for n=k +1. 

Now we have 

)()())1(( khafkhafhkaf   

       2

1 2[ ( ) ( ) ( ) ........... ( )]k k k k

kf a C f a C f a C f a         

     2

1 2[ ( ) ( ) ( ) ............. ( )]k k k k

kf a C f a C f a C f a         

      )(][)(]1[)( 2

121 afCCafCaf kkk   

    1

3 2[ ] ( ) .............. ( ).k k kC C f a f a      

     ).(.....)()()()())1(( 13

3

12

2

1

1

1 afafCafCafCafhkaf kkkk    

Thus the result is true for n = k +1.   [ ]1

1

1 



  r

k

r

k

r

k CCC  

Hence by the principle of mathematical induction it is true for all n, we have 

2

1 2( ) ( ) ( ) ( ) ............. ( )n n n n

nf a nh f a C f a C f a C f a         . 

 

Examples 

 

Example.1. Find the value of 
3(1 )(1 2 )(1 3 ), 1.x x x where h      



Solution: We have 

           )31)(21)(1()( xxxxf   

          
32 61161 xxx   

This is the polynomial of degree 3 in x. Therefore we have 

)61161()( 3233 xxxxf   

   0 6.0 11.0 6.3!      
( ) 3 3! and 3!n n nx n h x       

36.   

 

Example.2. Using the following forward difference table, determine the value of  ).1(4 y  

x 1 2 3 4 5 

y 3 6 11 21 31 

 

Solution: The forward difference table for the given data is 

 

x  )(xfy   y  y2  y3  y4  

1 

2 

3 

6 

 

3 

 

2 

 

 

 

 



3 

4 

5 

11 

21 

31 

5 

10 

10 

5 

0 

3 

5 

8 

 

From the above forward difference table we see that the value of the 

 .8)1(4  y  

 

Example.3. Using the backward difference table, determine the value of  
4 (5)y  from the 

following data: 

x 1 2 3 4 5 

y 1 4 9 18 28 

 

Solution: The forward difference table for the given data is 

 

x  )(xfy   y  2 y  
3 y  

4 y  

1 

2 

1 

4 

 

3 

5 

 

2 

 

 

2 

 

 



3 

4 

5 

9 

18 

28 

9 

10 

4 

1 

3 5 

 

From the above forward difference table we see that the value of the  

4 (5) 5.y    

 

Example.4. Using the following forward difference table, determine the value of  
3 (1).y  

x 1 2 3 4 

y 3 8 18 45 

 

Solution: The forward difference table for the given data is 

 

x  ( )y f x  y  y2  y3  

1 

2 

3 

4 

(1)f  3 

8 

18 

 

(1)f  5 

10 

27 

 

5 

17 

 

 

12 



45 

 

From the above forward difference table we see that the value of the 
3 (1) 12.y   

 

Example.5. Represent the function 9304212)( 234  xxxxxf and its successive 

differences into factorial notation. 

Solution: The given function is 

EDxCxBxAxxxxx  )1()2()3()4(234 9304212  

  ( 1)( 2)( 3) ( 1)( 2) ( 1) ...(1)Ax x x x Bx x x Cx x Dx E            

Where A, B, C, D and E are constants. Now, we will find the value of these constants. 

Putting x = 0 in equation (1), we get 

   E = 9 

Again putting x = 1 in equation (1), we get  

1  12 + 42 30 + 9 = D + E 

   D = 1 

Putting x = 2 in the equation (1), we get  

16  12  8 + 42 430  2 + 9 = 2C + 2D + E 

   C = 13 

Putting x = 3 in the equation (1), we get  

81 12  27 + 42  9 – 30  3 +9 = 6B + 6C + 3D + E 



     B =  6 

Equating the coefficient of x4 on both sides, we get A =1. Putting the values of A, B, C, D, E in 

equation (1), we get 

 
4 3 2( ) 12 42 30 9f x x x x x      

  (4) (3) (2) (1)6 13 9x x x x      

Now we have 

 
(3) (2) (1)( ) 4 18 26 1f x x x x      

  263612)( )1()2(2  xxxf  

  3624)( )1(3  xxf  

  24)(4  xf  

  0)(5  xf  

Hence  .9136)( )1()2()3()4(  xxxxxf  

 

Example.6. Determine the function whose first difference is .ax be 
 

Solution: Consider )(xf is the required function. 

Then we have 
baxexf  )(       …. (1) 

Let   
baxAexf )(  

Therefore we have 



   ( ) [ ]ax bf x Ae     

ax bA e    

   
( 1)[ ]a x b ax bA e e     

   ]1[   abax eAe      …. (2) 

Comparing equations (1) and (2), we get 

  
1

1




ae
A  

Hence ( ) .
1

ax b

a

e
f x

e






 

  

Example.7. Determine the function whose first difference is 
29 11 5.x x   

Solution: Consider )(xf  is the required function. 

Then we have 5119)( 2  xxxf      

Here first, we change )(xf in the factorial notation. 

Now we have 

2 (2) (1)9 11 5x x Ax Bx C      

   CBxxAx  )1(    … (1) 

Putting x = 0 in equation (1), we get  

C = 5 



Putting x =1 in equation (1), we get  

9 +11+5 = B +C    

  B = 20 

Comparing the term x2 in equation (1), we get  

A = 9 

Now putting the values of A, B and C in equation (1), we get 

 5209)( )1()2(  xxxf  

Integrating, we get  

(3) (2)
(1)

1

9 20
( ) 5 .

3 2

x x
f x x C      where C1 is constant of Integration. 

  15)1(10)2)(1(3 Cxxxxxx   

Hence 
3 2

1( ) 3 .f x x x x C     

 

Example.8. Determine the lowest degree polynomial which have taken the following values: 

x 0 1 2 3 4 5 

f(x) 0 3 8 15 24 35 

Solution: The forward difference table is: 



x )(xf  )(xf  )(2 xf  )(3 xf  

0 

1 

2 

3 

4 

5 

0 

3 

8 

15 

24 

35 

3 

5 

7 

9 

11 

 

2 

2 

2 

2 

 

 

 

0 

0 

0 

 

We know that  

.....)()()()()( 3

3

2

21  afCafCafCafnhaf nnn
  …(1) 

Putting a = 0, h =1, n = x in equation (1), we get 

 
2 3

1 2 3( ) (0) (0) (0) (0) .....x x xf x f C f C f C f         …(2) 

Now putting the value of )0(),0(),0( 2 fff   and )0(3 f  in the equation (2) from the 

above forward difference table, we get 

 
( 1) ( 1)( 2)

( ) 0 .3 .2 .0 0
2! 3!

x x x x x
f x x

  
      

 ( ) 3 ( 1)f x x x x    

Hence 2( ) 2 .f x x x   

 



Example.9. Evaluate 
-1 .n n nax bx     

Sol. We have      11   nnnnnnn bxaxbxax  

                    1 nnnn xbxa  

 ! .0a n b   

 ! .a n  

 

Example.10. Given 28,21,11,1 3210  uuuu and 4 29,u  determine the value 

of 
0

4u without forming difference table. 

Solution: We know that  

4 4

0 0( 1)u E u    

4 4 3 4 2 4

1 2 3 0( 1)E C E C E C E u      

   
000

2

0

3

0

4 464 uEuuEuEuE   

   01234 464 uuuuu   

   111421628429   

   

29 112 126 44 1

0.

    



 

 

Example.11. Show that 
2 1

1 2 3 ..... .n n

x x x x x n x nu u u u u u

           



Solution: We have 

     
n n n

x x n x xu u u E u

    

1
n

xn
u

E

 
  
 

 

n n

xn

E
u

E

  
  
 

 

1 2 3 2 1( )[ .... ]1

( )

n n n n

x

n

E E E E u

E E

        



  )1( E  

  x

nn uEEEE )....( 13221    

            
2 1

1 2 3 ..... n

x x x x nu u u u

         

Hence      
2 1

1 2 3 ........... .n n

x x x x x n x nu u u u u u

           

 

Example.12. Show that  

           (a) )1()1()2()3()4( 32 fffff   

(b) )1(10)1(6)0(4)0()4( 32  fffff  

As for as third difference.  

Solution: (a) We have  

 )3()4()3( fff   

or  )3()3()4( fff   



  )]2()2([)3( fff      )]2()3()2([ fff   

  )2()2()3( 2 fff   

  )]1()1([)2()3( 2 ffff    )]1()2()1([ fff   

   )1()1()2()3()4( 32 fffff  . 

 

(b)  We have  

 (4) ( 1 5)f f    

         
5 ( 1)E f   

 
5(1 ) ( 1)f    

  )1()1( 5

5

54

4

53

3

52

2

5

1

5  fCCCCC  

  
2 3( 1) 5 ( 1) 10 ( 1) 10 ( 1) taking up to 3rd differencef f f f            

  )1(10)1(6)]1()1([4)1()1([ 322  ffffff  

  
2 3[ ( 1) ( 1)] 4[ ( 1) ( 1)] 6 ( 1) 10 ( 1)f f f f f f               

  )1(10)1(6)0(4)0( 32  ffff

 )]1()0()1([  fff  

Hence )1(10)1(6)0(4)0()4( 32  fffff . 

 



Example.13. Find the second degree polynomial which is passes through the points (0, 3), 

(1, 5), (2, 9) and (3, 15).  

Solution: The forward difference table is: 

x )(xf  )(xf  )(2 xf  )(3 xf  

0 

1 

2 

3 

3 

5 

9 

15 

 

2 

4 

6 

 

2 

2 

 

 

 

0 

 

We know that 

2 3

1 2 3 1( ) ( ) ( ) ( ) ( ) .......... ( )n n n n nf a nh f a C f a C f a C f a C f a                …(1) 

Putting a = 0, h =1, n = x in equation (1), we get 

 
2 3

1 2 3( ) (0) (0) (0) (0) ....x x xf x f C f C f C f           …(2) 

Now putting the value of )0(),0(),0( 2 fff   and )0(3 f in equation (2) from the above 

forward difference table, we get 

 
( 1) ( 1)( 2)

( ) 3 .2 .2 .0
2! 3!

x x x x x
f x x

  
     

  3 2 ( 1)x x x     

23 2x x x     



Hence 
2( ) 3.f x x x    

 

Example.14. To show that 1 1 2 2 ........... ( 1)n n n n

x x n x n x n xu u C u C u u            

Solution: We have 1 1 2 2 ........... ( 1)n n n

x n x n x n xu C u C u u          

   
1 2

1 2( ........... ( 1) )n n n n n n

xE C E C E u        

   ( 1)n

xE u   

.n

xy   

 

Example.15. To show that  

1 1 1 2

0 1 2 1 0 2 0 3 0 0..... .......... .n n n n

nu u u u C u C u C u u              

Solution: We have  

00

2

00210 ......... uEuEEuuuuuu n

n   

   
2

0(1 ............ )nE E E u       

1

0

1

1

nE
u

E

 



  [Using the concept of sum of n term in G.P.] 

   0

1 1)1(
u

n








 

   
0

1

1

13

3

12

2

1

1

1 ]1.....1[
1

uCCCC n

n

nnnn 


 



  



   ].....[
1

0

1

1

1

0

3

3

1

0

2

2

1

01

1 uCuCuCuC n

n

nnnn 



 


  

   
1 1 1 2

1 0 2 0 3 0 0......... .n n n nC u C u C u u          

 

Example.16. To show that  

2 3
2 3 2

1 2 3 1 1 12 3
.......... .... and 0 1.

1 (1 ) (1 )

x x x
u x u x u x u u u x

x x x
          

  
 

Solution: We have 

2 3
2

1 1 12 3
........

1 (1 ) (1 )

x x x
u u u

x x x
    

  
 

  ....)1(
)1(

)1(
)1(1

1

2

3

3

12

2

1 








 uE
x

x
uE

x

x
u

x

x
 

  
2 3 2 3

1 12 3 2 3

2
....

1 (1 ) (1 ) (1 ) (1 )

x x x x x
u Eu

x x x x x

   
        

       
 

   ..........
)1(

1

2

3

3












 uE

x

x
 

  
1 22

1 22
1 1

1 (1 ) (1 ) 1

x x x x
u u

x x x x

 
   

       
     

 

      ........
1

1
)1(

3

3

3

3


















u
x

x

x

x
 

  

1 22

1 22

1 1

1 (1 ) (1 ) 1

x x x x x x
u u

x x x x

 
     

     
     

 



      

33

33

1
........

(1 ) 1

x x x
u

x x


  

  
  

 

1 2 32 3

1 2 32 3

1 1 1
........

1 (1 ) (1 ) 1 (1 ) 1

x x x
u u u

x x x x x x

  
     

         
         

 

2 3
2 3

1 2 32 3
(1 ) (1 ) (1 ) .........

1 (1 ) (1 )

x x x
x u x u x u

x x x
       

  
 

  
2 3 4

1 2 3 4 .................u x u x u x u x      

 

Example.17. Prove that 
n

nx

n

x

n xuxuCxuCu  .......2

210        

         00

222

20

1

10 ....)1()1()1( uxuxxCuxxCux nnnnnnn  
 

Solution: We have   

1 2 2 2

0 1 0 2 0 0(1 ) (1 ) (1 ) .......n n n n n n nx u C x x u C x x u x u            

   
0((1 ) )nx x u     

0(1 (1 ))nx u    

0(1 )nxE u   

   0

33

3

22

21 )......1( uExExCExCxEC nnnnn   

   
2 3

0 1 1 2 3 3 ........... .n n n n

nu C u x C x C u x x u       

 

2.6 Summary 



 

Let f(x) be a polynomial of nth degree in x, then the nth difference of f(x) is constant and 

.0)(1   xfn
 

A product of the form ( )( 2 )..........( ( 1) )x x h x h x n h     is known as factorial function 

and denoted by x(n). 

Properties of Factorial function: 

(i) 
( ) 1 ( )!  and 0.n n n n nx n h x     

(ii) f(a+nh) = f(a) + )(.....)()( 2

21 afCafCafC n

n

nnn   

 

2.7 Terminal Questions 

 

Q.1. Explain the factorial function. 

Q.2. State the fundamental theorem on difference calculus. 

Q.3. Construct a forward difference table for the following data: 

  

x 0 5 10 15 20 25 

f(x) 
7 11 14 18 24 32 

 

Q.4. If 12)3(,8)2(,6)1(,3)0(  ffff prepare the forward difference table. 



Q.5. Given (0) 3, (10) 12, (2) 81, (3) 200, (4) 100 and (5) 8.f f f f f f       Using 

the difference table and find the value of ).0(5 f  

Q.6. Given 8,100,200,81,12,3 543210  uuuuuu , determine the value of 
0

5u without 

forming difference table. 

Q.7. If 12)3(,8)2(,6)1(,3)0(  ffff and the third difference being constant, 

determine the value of ).6(f  

Q.8. Represent the function 10332)( 23  xxxxf and its successive differences into 

factorial notation. 

Q.9. Determine the function whose first difference is 1253 23  xxx . 

Q.10. Obtain the function whose first difference is: 

(i) 
xe     

(ii) )1( xx    

(iii) a     

(iv)  xx 5)2(     

(v) xsin    

(vi) 
x5  

Q.11. Prove that ......... 2

4

21

2

12

2

2110   x

x

x

x

x

xx uCuCuuCuCu  

Q.12. Evaluate the following: 

          (i) 









x

n 1
                

         (ii) )]([sin baxn   



         (iii) )1)(1)(1( 32  cxbxax    

         (iv) ][ 1 nnn bxax  

 

Answers 

5. 755   

6. 755 

7. 126   

8. 
(3) (2) (1) (2) (1) (1)2 3 2 10, 6 6 2, 12 6, 12.x x x x x x       

9. (4) (3) (2) (1)1 9
2 12 .

4 2
x x x x C     

10. (i) C
e

e
h

x


 )1(

       (ii) C
x


3

)3(

   

     (iii) ax + C          (iv) C
xx


2

5

3

23

  

      (v) xsin
2

1
       (vi) .5

4

1 x  

12. (i) 
))....(2)(1(

!)1(

nxxxx

nn




  



    (ii) 














 










2
sin

2
sin2

a
nbax

a
n

 

    (iii) 720 abc      

    (iv) a (n!). 
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Block-2 

Interpolation 

 

Interpolation is a mathematical technique used to estimate values that fall between known, 

measured, or observed data points. It involves constructing a function that passes through the 

given data points, allowing the estimation of values at points within the range of the data. 

Interpolation is particularly useful when you have discrete data points and need to estimate values 

at other points within the dataset. Here are some key concepts and methods related to 

interpolation: Linear Interpolation; Polynomial Interpolation; Lagrange’s Interpolation; Newton 

Interpolation; Spline Interpolation; Bilinear and Bicubic Interpolation. Bilinear and bicubic 

interpolation techniques used in image processing which estimate the pixel values between 

known values in an image. 

Interpolation is widely used in various fields such as computer graphics, image processing, 

numerical analysis, and scientific computing. It provides a valuable tool for estimating values 

within a dataset, making it easier to analyze and visualize data. Interpolation has numerous 

applications across various fields: such as Computer Graphics; Geographic Information Systems; 

Image Processing; Numerical Analysis; Signal Processing; Finance; Cartography; Physics and 

Engineering; Machine Learning; Medical Imaging and Economics and Econometrics. 

Interpolation is applied in economic modeling to estimate values between observed economic 

data points. It helps in constructing economic indicators and forecasting. These applications 

demonstrate the versatility of interpolation in various domains, where the need to estimate values 

between known data points is a common requirement. 

In the third unit, we shall discussed about  determine one or two missing terms and Newton’s 

forward and backward interpolation with equal intervals and in the fourth unit we deal with 

Gauss’s and Stirling Interpolation formula for Equal Intervals. Lagrange’s Interpolation Formula 

for Unequal Intervals is discussed in unit fifth.  

 



UNIT- 3: NEWTON’s INTERPOLATION FORMULA WITH EQUAL 

INTERVALS 

 

Structure 

3.1 Introduction 

3.2 Objectives 

3.3  To find one missing term 

3.4 To find two missing terms  

3.5  Newton’s forward interpolation with equal intervals 

3.6     Newton’s backward interpolation with equal intervals 

3.7 Summary 

3.8 Terminal Questions 

  



3.1 Introduction 

Interpolation is extensively used in computer graphics to generate smooth curves and surfaces. 

Geographic Information Systems applications often involve interpolating values between known 

geographic data points to generate continuous maps. In image processing, interpolation is used 

to estimate pixel values between known values. Bilinear and bicubic interpolation are common 

techniques for image resizing and enhancement. In numerical analysis, interpolation helps in 

estimating values at intermediate points within a set of discrete data points. 

In signal processing, interpolation is used to estimate values between discrete samples of a signal. 

It plays a crucial role in applications like audio signal processing and telecommunications. 

Interpolation is used in finance for pricing financial instruments and estimating key financial 

metrics. It helps in modelling yield curves and estimating future cash flows. Cartographers use 

interpolation to generate smooth contours and surfaces on maps. Elevation data and contour lines 

are often interpolated to create realistic terrain representations.  

Interpolation is employed in various scientific and engineering applications. It is used in finite 

element analysis, simulation models, and experimental data analysis. In machine learning, 

interpolation is used to fill in missing data points in datasets and also it can be applied to impute 

missing values in features or labels during data pre-processing. Interpolation is used in medical 

imaging to enhance image resolution and improve the quality of reconstructed images. It aids in 

generating smoother transitions between pixel values.  

In the third unit we shall discuss the method of finding the missing one and more terms, and 

Newton’s forward and backward interpolation with equal intervals. Suppose y =f (x) be a 

function of x and y0, y1, y2, …………, yn are the values of the function f(x) at x0, x1,x2, …………, 

xn respectively, then the method to obtaining the value of f(x) at point x = xi which lie between 

x0 and xn is called interpolation. Thus, interpolation is the technique of computing the value of 

the function outside the given interval. If x= xi does not lie between x0 and xn then computing the 

value of f(x) at this point is called the extrapolation. The study of interpolation depends on the 

calculus of finite difference.  

 



3.2 Objectives 

 

After studying this unit the learner will be able to: 

 understand how to find one missing term 

 understand how to find two missing terms 

 understand the Newton’s forward interpolation with equal intervals 

 understand the Newton’s backward interpolation with equal intervals 

 

3.3 To find one missing term  

 

In numerical analysis, finding a missing term typically involves identifying a pattern or 

relationship within a sequence of numbers. There are two method for finding one missing terms: 

 

Method 1.  

Consider one value of f(x) be missing from the given set of (n+1) values (i.e., n values are given) 

of x, the values of x being equidistant. Suppose the unknown value be Y. Now construct the 

difference table.  

We can ensure y= f(x) to be a polynomial of degree (n1) in x, since n values of y are given. 

Therefore equating to zero the nth difference to determine the value of x. 

 

Method 2.  

Consider one value of f(x) be missing from the given set of (n+1) values (i.e., n values are given) 

of x, the values of x being equidistant. This means we can assume y = f(x) to be a polynomial of 

degree (n-1) in x. So we have 



      n f(x)= 0 

or      (E-I)n f(x)= 0 

or   {En - nC1E
n-1 + nC2 E

n-2- …….. + (-1)n I} f (x) = 0 

or  En f(x) - nC1E
n-1 f(x) + nC2E

n-2 f(x) - …………….. + (-1)n f(x) = 0 

or  f(x + nh) - nC1f(x+ (n-1)h) + 
nC2 f(x + (n-2)h) - ---- + (-1)n f(x) = 0  …(1) 

If x=x0 is the first value of x then we put x = x0 in equation (1) and after solving we get the value 

of Y i.e., missing term.  

  

3.4 To find two missing term  

 

To find missing terms in a sequence using a difference table, we look at the changes between the 

consecutive terms. The table is made by finding the differences between neighboring terms, 

showing patterns that help predict the missing ones.  

Consider two value Y1 and Y2 of f(x) be missing from the given set of (n+2) values (i.e., n values 

are given) of x, the values of x being equidistant. This means we can assume y = f(x) be a 

polynomial of degree (n-1) in x. Therefore we have 

   n f (x) = 0 

or  f(x + nh) - nC1f(x+ (n-1) h) + 
nC2 f(x + (n-2)h) - ---- + (-1)n f(x) = 0   …(2) 

If x = x0 is the first value of x then we put x = x0, and x = x1 successively in equation (2).  

Therefore we get two equation in terms of Y1 and Y2. After solving these two equations we get 

the value of Y1 and Y2. 

 



Check your Progress 

 

1. What do you mean by the concept of solving one missing term? 

2. Explain the procedure to find the two missing terms in the given data. 

 

Examples 

 

Example.1. Find the missing term from the following data: 

 

 

         

 

 

Sol.

  

Let y2 be the missing term. Since there are 4 values of y are given. This means we can 

assume y = f(x) to be a polynomial of three degree in x. So we have 

    4 y = 0.         

or         (E-I)4 yx = 0 

or  

     

 4 3 24 6 4 1 0xE E E E y    

 

       

or          0464 234   xhxhxhxhx yyyyy     …. (1)

 

Putting x = 0 and h =1 in equation (1), we get 

4 3 2 1 04 6 4 0y y y y y      

or   125 – 4 × 64 + 6y2 – 4 × 8 + 1 = 0   

x 0 1 2 3 4 

y=f(x) y0 = 1 y1 = 8 ? y3 = 64 y4 = 125 



or           6y2  = 162   

or        y2=27. 

Hence the missing term from the above data is 27. 

 

Example.2. Given that u0 = 230, u1 = 210, u2 = 120, u3 = ----, u4 = 110. Determine the value 

of u3. 

Solution. Consider the missing term u3 = Y. The forward difference is  

 

x ux ux 2ux 3ux 4ux 

0 

1 

2 

3 

4 

230 

210 

120 

Y 

110 

 

-20 

-90 

Y-120 

110-Y 

 

-70 

Y-30 

230 – 2Y 

 

 

Y+40 

260–3Y 

 

 

220 – 4Y 

 

Here four values of ux are given. This means we can assume ux to be a polynomial of three degree 

in x. So we have 

   4ux = 0   

or      220 – 4Y = 0 

or        Y = 55. 



Hence the missing term from the above data is 55. 

Another method:  

Since the four values of ux are given. Therefore, we can assume ux to be a polynomial of degree 

3 in x. Therefore we have 

4 0xu   

or     (E-I)4 ux = 0 

or     (E4 – 4C1 E
3 + 4C2 E

2 - 4C3 E+I) ux = 0 

or     (E4 ux – 4E3ux 
 + 6Eux

 – 4Eux + ux = 0 

or    ux + 4h – 4ux + 3h + 6ux + 2h – 4ux + h  + ux = 0   …(1) 

Putting x= 0 and h=1 in equation (1), we get  

0464 01234  uuuuu  

or   110 4 6 120 4 210 230 0Y        

or   220 4 0Y   

or   55.Y   

 

Example.3. Estimate the missing term in the following: 

 

x 1 2 3 4 5 6 7 

y 2 4 8 - 32 64 128 



 

Solution. Let Y be the missing terms. Since there are 6 values of y are given. Therefore, we can 

assume y to be a polynomial of degree 5 in x. So we have  

6 y = 0 

or     (E-I)6 yx = 0 

or   0)( 5

62

4

63

3

64

2

65

1

66  xyIECECECECECE  

or   061520156 23456   xhxhxhxhxhxhx yyyyyyy   …(1) 

Putting x= 1 and h=1 in equation (1), we get  

or   128 -  64 + 15  32 – 20Y + 15  8 – 6  4 + 2 = 0 

or   128 – 384 + 480 – 20Y + 120 – 24 + 2= 0 

or   322 – 20Y = 0 

   Y = 
322

20
 

    16.1.  

 

Example.4. Find the missing terms in the following table: 

 

x 1 2 3 4 5 6 7 8 

f(x) 1 8 - 64 - 216 343 512 



 

Solution. Let Y1 and Y2 are the missing terms. Here six values of f(x) are given. Therefore, we 

can assume f(x) to be a polynomial of degree 5 in x.  

So we have 

    6f(x) = 0 

or    (E-I)6 f(x) = 0 

or  0)()( 5

62

4

63

3

64

2

65

1

66  xfIECECECECECE  

or  ( 6 ) 6 ( 5 ) 15 ( 4 )f x h f x h f x h        

20 ( 3 ) 15 ( 2 ) 6 ( ) ( ) 0 ...(1)f x h f x h f x h f x         

Putting h =1 and x =1, and 2 successively in equation (1), we get 

(7) 6 (6) 15 (5) 20 (4) 15 (3) 6 (2) (1) 0f f f f f f f        

and   (9) 6 (7) 15 (6) 20 (5) 15 (4) 6 (3) (2) 0f f f f f f f        

or   
2 1343 6 216 15 20 64 15 6 8 1 0Y Y           

and   
2 1512 6 343 20 15 64 6 8 0Y Y         

or   15Y2 + 6Y1 = 2280          .…(2) 

and   20Y2 + 6Y1 = 2662           .…(3) 

Solving equations (1) and (2), we have  

       Y1 = 27   

and  Y2 =125 



Hence the missing terms are f(3) = 27 and f (5) = 125. 

 

Example.5. Find the first term of the series whose second and subsequent terms are 8, 3, 0, 

-1, 0. 

Solution. The given data is  

 

x 0 1 2 3 4 5 

f(x) - 8 3 0 -1 0 

 

Let f(0) be the missing terms. Here five values of f(x) are given. Therefore, we can assume f(x) 

to be a polynomial of degree 4 in x. So we have 

        5f(x) = 0 

or    (E-I)5 f(x) = 0 

or  0)()( 5

5

4

52

3

53

2

54

1

55  xfICECECECECE  

or  5 4 3 2( ) 5 ( ) 10 ( ) 10 ( ) 5 ( ) ( ) 0, Since  =1E f x E f x E f x E f x Ef x f x h       

or  0)()1(5)2(10)3(10)4(5)5(  xfxfxfxfxfxf             ….(1) 

Putting x = 0 in the equation (1), we get 

0)0()1(5)2(10)3(10)4(5)5(  ffffff  

or  0 5( 1) 10 0 10 3 5 8 (0) 0f           



or (0) 15.f   

Hence the missing term is f(0) = 15. 

 

Example.6. Given that u0+u8 = 1.9243, u1+u7 = 1.9590, u2 + u6 = 1.9823, and u3 + u5 = 1.9956. 

Determine the value of u4.  

Solution. The given values are  

u0+u8 = 1.9243,  

u1+u7 = 1.9590,  

u2 + u6 = 1.9823,  

and u3 + u5 = 1.9956. 

Here 8 values of ux are given. Therefore we have 

  8 ux= 0  

or   (E-I)8 ux= 0 

or  8 8 7 8 6 8 5 8 4 8 3 8 2 8 8

1 2 3 4 5 6 7 8( ) 0xE C E C E C E C E C E C E C E C I u          

or 8 7 6 5 4 3 28 28 56 70 56 28 8 0x x x x x x x x xE u E u E u E u E u E u E u Eu u            ….(1) 

Putting x = 0 in the equation (1), we get 

or  0828567056288 012345678  uuuuuuuuu  

or  070)(56)(28)(8)( 435261708  uuuuuuuuu  

or  0709956.1569823.1289590.159243.1 4  u  



or  70u4 = 69.9969  

or  u4 = 0.9999. 

Hence the value of u4 is 0.9999. 

 

3.5 Newton’s forward Interpolation with equal intervals  

 

Newton's forward interpolation is a numerical method used to find the values of a function at 

points between the given data points. This method specifically applies when the intervals 

between the data points are equal. It is also known as Newton-Gregory’s Formula for Forward 

Interpolation with equal intervals. 

Suppose y = f(x) is a function which assumes the values f(a), f(a+h), f(a + 2h), ….…., f (a + nh) 

for x = a, a + h, a + 2h, ………., a + nh respectively where h is the difference of the arguments. 

x a a + h a + 2h ….…. a + nh 

y f(a) f(a+h) f(a + 2h) ….…. f (a + nh) 

Consider f(x) is a polynomial in x of degree n. Therefore f(x) can be written as 

 f(x)  = a0 + a1(x-a) + a2 (x – a) (x – a – h) + a3 (x – a) (x – a – h) (x – a – 2h)  

                                     + ……... + an(x – a) (x – a – h) …….... (x – a – (n – 1) h)          ….(1) 

Where a0, a1, a2, ………,., an are constants 

Substituting the sequentially values x= a, a + h, a + 2h, ………….., a + nh in equation (1), we 

get 

f(a) = a0     



or    a0 = f(a) 

Now we have   

   f(a + h) = a0 + a1 (a + h – a)  

or   f(a + 2h) = a0 + a1h  

      0
1

( )f a h a
a

h

 
  

                                                  
( ) ( )f a h f a

h

 
  

       
( )f a

h


  

or     
1

( )f a
a

h


  

Again we have   

f(a+2h) = a0 + a1 (a+ 2h –a) + a2 (a + 2h –a) (a + 2h –a – h) 

    = a0 + a12h - a2 2h.h 

or      2h2
 a2 = f(a + 2h) – 2ha1 – a0 

or           2 2

( 2 ) 2( ( ) ( )) ( )

2!

f a h f a h f a f a
a

h

    
  

     2

( 2 ) 2 ( ) ( )

2!

f a h f a h f a

h

   
  

                  

2

2

( )

2!

f a

h




 

Proceeding in the same way, we get   



        

3

3 3

( )
,

3!

f a
a

h


  

............................ , 

............................ , 

       
( )

!

n

n n

f a
a

n h


  

Putting the values 0 1 2 3 1, , , ,.........., ,n na a a a a a into equation (1), we get 

2

2

( ) ( )
( ) ( ) ( ) ( ) ( )

2!

f a f a
f x f a x a x a x a h

h h

 
        

        

3

3

( )
( )( )( 2 ) ...............

3!

f a
x a x a h x a h

h


        

( )
( )( )( 2 ) ... ( ( 1) )

! !

n

n

f a
x a x a h x a h x a n h

n h


                     … (2) 

This is Newton-Gregory formula for forward interpolation putting x=a+hu in the equation (2), 

we get  

2( 1) ( 1)( 2)....( ( 1))
( ) ( ) ( ) ( ) ........ ( )

2! !

nu u u u u u n
f a hu f a u f a f a f a

n

    
          

This method is useful for estimating values between the given data points with equal intervals 

when interpolating forward.  

The accuracy of the interpolation depends on the degree of the interpolating polynomial and the 

number of data points used in the interpolation. 

 

 



3.6 Newton’s backward Interpolation with equal intervals  

 

Newton backward interpolation is a numerical method used to find the values of a function at 

points between the given data points, specifically when the intervals between the data points are 

equal. This method is an extension of Newton's forward interpolation and is useful when you 

need to interpolate backward from a given point. It is also known as Newton-Gregory’s Formula 

for backward Interpolation with equal intervals.  

Suppose y = f(x) is a function which assumes the value f(a), f(a+h), f(a+2h), …………. f(a + nh) 

for x = a, a + h, a + 2h, ………….., a + nh, respectively where h is the difference of arguments.  

 

x a a + h a + 2h ….…. a + nh 

y f(a) f(a+h) f(a + 2h) ….…. f (a + nh) 

 

Consider f(x) is a polynomials in x of degree n. Therefore f(x) can be written as 

))1()(()()( 210 hnaxnhaxanhaxaaxf   

        ....)2()()1()((3  hnaxhnaxnhaxa  

            ( )( ( 1) ).............( )na x a nh x a n h x a h          …(3) 

where a0, a1, a2,……..., an are constants. 

Substituting the sequentially values x=a+nh, a+(n+1)h, a + (n-2)h, …….…….., a + h in the 

equation (3), we get  

                  0( )f a nh a   



0 ( )a f a nh    

Now we have   

0 1( ( 1) ) ( ( 1) )f a n h a a a n h a nh       
 

or   
1

( ) ( ( 1) )f a nh f a n h
a

h

   
  

( )f a nh

h

 
  

or     
1

( )f a nh
a

h

 
  

Again we have   

0 1

2

( ( 2) ) ( ( 2) )

( ( 2) ).( ( 2) ( 1) )

f a n h a a a n h a nh

a a n h a nh a n h a n h

       

         
 

or   

2

2 2

( )

2!

f a nh
a

h

 
  

Proceeding in the same way, we get 

3

3

3
!3

)(

h

nhaf
a


  

............................ , 

............................ , 

n

n

n
hn

nhaf
a

!

)( 


 

Putting the values 0 1 2 3 1, , , ,.........., ,n na a a a a a into equation (3), we get 



2

2

( ) ( )
( ) ( ) ( ) ( )( ( 1) )

2!

f a nh f a nh
f x f a nh x a nh x a nh x a n h

h h

   
            

( )
..... ( )( ( 1) ).........( )

!

n

n

f a nh
x a nh x a n h x a h

n h

 
                     …(4) 

This is the Newton-Gregory’s formula for backward interpolation putting x=a+nh+hu in 

equation (4), we get 

2( 1)
( ) ( ) ( ) ( )

2!

( 1)( 2).......( 1)
............. ( )

!

n

u u
f a nh hu f a nh u f a nh f a nh

u u u u n
f a nh

n


         

   
   

 

This method is useful for estimating values between the given data points with equal intervals 

when interpolating backward.  

The accuracy of the interpolation depends on the degree of the interpolating polynomial and the 

number of data points used in the interpolation. 

 

Examples 

 

Example.7. Using the Newton formula to find the number of students who obtain less than 

45 marks, from the following data: 

Marks 30-40 40-50 50-60 60-70 70-80 

No. of students 31 42 51 35 31 

 

Solution. The difference table of the given data is: 

 



Marks No. of students  f(x) 2f(x) 3f(x) 4f(x) 

Below 40 

Below 50 

Below 60 

Below 70 

Below 80 

31 

73 

124 

159 

190 

 

42 

51 

35 

31 

 

9 

-16 

-4 

 

 

-25 

12 

 

 

37 

 

Here a = 40, h = 10, x = 45.  

Than we have   

 
45 40

10

0.5.

x a
u

h









 

Using Newton forward interpolation formula, we have 

......)(
!3

)2)(1(
)(

!2

)1(
)()()( 32 





 af

uuu
af

uu
afuafxf        …(1) 

From equation (1) and using above table, we have 

2(0.5)(0.5 1)
(45) (40) 0.5 (40) (40)

2!
f f f f


      

3(0.5)(0.5 1)(0.5 2)
(40)

3!
f

 
   

)40(
!4

35.0)(25.0)(15.0)(5.0( 4 f


  



          
(0.5)( 0.5) (0.5)( 0.5)( 1.5)

31 0.5(42) (9) ( 25)
2 6

  
      

   
(0.5)( 0.5)(1.5)( 2.5)

(37)
24

 
  

= 445.1563.1125.12131   

  f(45) = 47.867. 

Hence the approximately 47.867 students obtained less than 45 marks. 

Example.8. Determine the values of y(0.25),  y(0.62) and y(0.46) from the following data:    

 

: 0 0.2 0.4 0.6 0.8

: 0.3989 0.3910 0.3683 0.3332 0.2897

x

y f x
 

Sol.  As per discussed in the question for finding the value of y at x = 0.25 can be obtained by 

using Newton forward interpolation formula. And for x = 0.46 and 0.62, the values of y can be 

obtained by using Newton backward interpolation formula. 

The forward difference table is 

 

x y=f(x) ∆y=∆f(x) ∆2y ∆3y ∆4y 

0 

0.2 

0.4 

0.6 

0.8 

0.3989 

0.3910 

0.3683 

0.3332 

0.2897 

 

–0.0079 

–0.0227 

–0.0351 

–0.0435 

 

–0.0148 

–0.0124 

–0.0084 

 

 

0.0024 

0.0040 

 

 

 

0.0016 



 

Here a = 0, h = 0.2, x = 0.25.  

Than we have 

 
0.25 0

1.25.
0.2

x a
u

h

 
    

Using Newton forward interpolation formula, we have 
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From equation (1) and using above table, we have 

   
 

 01480
2

1251251
0079025139890250 .

..
....y 




 

                     

  
 

   
 

1.25 1.25 1 1.25 2 1.25 1.25 1 1.25 2 1.25 3
0.0024 0.0016

6 24

    
 

 

           

0.3989 0.009875 0.00231255 0.00009375 0.000027343      

0.386646093  

 0.3866 Approximately .

 

Newton backward interpolation formula is 

2( 1)
( ) ( ) ( ) ( )

2!

u u
f a nh hu f a nh u f a nh f a nh


                  

                               
( 1)( 2).......( 1)

............. ( )
!

nu u u u n
f a nh

n

   
              …(2) 

 
where

x a nh
u

h

 


 



For      0.46,    we have     x   

 
0.46 0.8

1.7 ... 3
0.2

u


    

and for 0.62, we have x   

 
0.62 0.8

       – 0.9 ... 4
0.2

u


 
 

Using equations (2) and (3), we have 

    ( ) 0.46 0.2897 1.7 0.0435f a nh hu y x       
 

                     

  
 

1.7 1.7 1
0.0084

2

  
 

   
 

1.7 1.7 1 1.7 2
0.0040

6

    
  

                                        
    

 
1.7 1.7 1 1.7 2 1.7 3

0.0016
24

      


 

                         
00000309400002380004998007395028970 ..... 

 

    0.46 0.358920940y   

            0.3589 Approximately .
 

Using equations (2) and (4), we have 

    
  

 00840
2

19091
0435009028970620 .

..
....y 




 

                           

   
 

    
 

1.9 0.9 1 0.9 2
0.0040

6

1.9 0.9 1 0.9 2 0.9 3
0.0016

24

   


      


 



  
0.2897 0.03915 0.00037 0.000066 0.00001386      

 0.62 0.32914814y   

         0.3291 Approximately .  

Hence the approximately values of y(0.25),  y(0.62) and y(0.46) are 0.3866, 0.3589 and 0.3291 

respectively 

 

Example.9. Using Newton’s forward and backward interpolation formulae’s, obtained the 

value of f(1.6) from the following data: 

x 1 1.4 1.8 2.2 

f(x) 3.49 4.82 5.96 6.5 

 

Solution: The forward difference table of the given data is: 

 

x f(x) f(x) 2f(x) 3f(x) 

1 

1.4 

1.8 

2.2 

3.49 

4.82 

5.96 

6.5 

 

1.33 

1.14 

0.54 

 

-0.19 

-0.6 

 

 

-0.41 

 

Here a = 1, h = 0.4, x = 1.6.  



Than we have 
1.6 1 0.6

1.5.
0.4 0.4

u


    

Using Newton forward interpolation formula, we have 
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From equation (1) and using above table, we have 

)1(
!3

)215)(15.1(5.1
)1(

!2

)15.1(5.1
)1(5.1)1()6.1( 32 fffff 





  

)41.0(
!3

)5.0(5.05.1
)19.0(

!2

5.05.1
33.15.149.3 





  

=3.49+1.995-0.07125+0.025625 

  f(1.6) = 5.439375. 

Now the backward difference table of the given data is:  

 

x f(x) f(x) 2f(x) 3f(x) 

1 

1.4 

1.8 

2.2 

3.49 

4.82 

5.96 

6.5 

 

1.33 

1.14 

0.54 

 

-0.19 

-0.6 

 

 

-0.41 

 

Newton backward interpolation formula is 



2( 1)
( ) ( ) ( ) ( )

2!

( 1)( 2).......( 1)
............. ( )

!

n

u u
f a nh hu f a nh u f a nh f a nh

u u u u n
f a nh

n


         

   
   

                 …(2) 

 
where

x a nh
u

h

 


 

Here x = 1.6, a + nh = 2.2, h = 0.4.  

Then we have 

   5.1
4.0

6.0

4.0

2.26.1)











h

nhax
u    …(3) 

Using equations (2) and (3), we have 

( 1.5)( 1.5 1)( 1)
(1.6) 6.5 ( 1.5) 0.54 ( 0.6)

2!

u
f

   
       

( 1.5)( 1.5 1)( 1.5 2)
( 0.4)

3!

    
   

= 6.5 – 0.81 – 0.225 – 0.025625 

f(1.6) = 5.439375. 

 

Example.10. The population of a town in the decennial census were as under: 

 

Year x 1891 1901 1911 1921 1931 

Population f(x) (In thousands) 46 66 81 93 101 

 

Calculate the population for the year 1895 and 1925 with the help of Newton forward as 

well as backward interpolation formula. 



Solution: The difference table of the given data is as under: 

 

x y = f(x) f(x) 2f(x) 3f(x) 4f(x) 

1891 

1901 

1911 

1921 

1931 

46 

66 

81 

93 

101 

 

20 

15 

12 

8 

 

-5 

-3 

-4 

 

 

2 

-1 

 

 

-3 

 

Here a = 1891, h =10, x = 1895.  

Than we have  

1895 1891 4
0.4.

10 10
u


    

Using Newton forward interpolation formula, we have 
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From equation (1) and using above table, we have 

2(0.4)(0.4 1)
(1895) (1891) (0.4) (1891) (1891)

2!
f f f f


      

                   3 4(0.4)(0.4 1)(0.4 2) (0.4)(0.4 1)(0.4 2)(0.4 3)
(1891) (1891)

3! 4!
f f

    
     

    
(0.4)( 0.6) (0.4)(0.6)( 1.6)

46 0.4 20 ( 5) (2)
2! 3!

 
       



(0.4)( 0.6)( 1.6)( 2.6)
( 3)

4!

  
   

       = 46+8+0.6+0.128+0.1248 

(1895)f =54.8528. 

Now for x=1925. We have a =1891, h = 10, x = 1925.  

Than we have  

 
1925 1891

3.4.
10

x a
u

h

 
         …(2) 

Using equations (1) and (2), we have 

2(3.4)(3.4 1)
(1925) (1891) (3.4) (1891) (1891)

2!
f f f f


      

           

3

4

(3.4)(3.4 1)(3.4 2)
(1891)

31

(3.4)(3.4 1)(3.4 2)(3.4 3)
(1891)

4!

f

f

 
 

  
 

 

    

3.4 2.4 3.4 2.4 1.4
46 3.4 20 ( 5) (2)

2! 3!

3.4 2.4 1.4 0.4
( 3)

4!

  
      

  
 

 

  46 68 20.4 3.808 0.5712      

(1925) 96.8368.f  . 

Now using the Newton Backward interpolation Formula. The backward difference table of the 

given data is as under 

 

x y=f(x) f(x) 2f(x) 3f(x) 4f(x) 

1891 46 
 

   



1901 

1911 

1921 

1931 

66 

81 

93 

101 

20 

15 

12 

8 

-5 

-3 

-4 

 

2 

-1 

 

-3 

 

Here (a+ nh) = 1931= b, h =10, x =1895. 

Then we have 

 
1895 1931

10
u


     

36

10


   

3.6                  …(3) 

Newton backward interpolation formula is 
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From equation (4) and using above table, we have 
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( 3.6) (2.6) ( 3.6)(2.6)( 1.6)

101 ( 3.6) 8 ( 4) ( 1)
2! 3!

   
         

)3(
!4

)6.0)(6.1)(6.2)(6.3(



  

   101 28.8 18.72 2.496 1.1232      

(1895) 54.8528.f  . 

Now for x=1925.  

We have a+nh =1931, h = 10, x = 1925.  

Than we have  

 

( )

1925 1931 6
0.6

10 10

x a nh
u

h

 


 
   

      …(5) 

Using equations (4) and (5), we have 

)1931(
!2

)16.0)(6.0(
)1931()6.0()1931()1925( 3 ffff 




 

3( 0.6)( 0.6 1)( 0.6 2)
(1931)

3!
f

    
   

     4( 0.6)( 0.6 1)( 0.6 2)( 0.6 3)
(1931)

4!
f

      
   

  )1(
)4.1)(4.0)(6.0(

)4(
!2

)4.0()6.0(
8)6.0(101 





  

)3(
!4

)4.2)(4.1)(4.0)(6.0(
  

   =101 - 4.8 + 0.48 + 0.056+ 0.1008  



(1925) 96.8368.f   

 

Example.11. From the following table, determine the form of the function f(x): 

 

x 0 1 2 3 4 

f(x) 13 19 28 40 55 

 

Solution: The forward difference table of the given data is: 

 

x f(x) f(x) 2f(x) 3f(x) 3f(x) 

0 

1 

2 

3 

4 

13 

19 

28 

40 

55 

 

6 

9 

12 

15 

 

3 

3 

3 

 

 

0 

0 

 

 

0 

 

Here a = 0, h =1. 

Than we have  

0
.

1

x
u x


   

Using Newton forward interpolation formula, we have 
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From equation (1) and using above table, we have 

2 3( 1) ( 1)( 2)
( ) (0) (0) (0) (0) ....

2! 3!

x x x x x
f x f x f f f

  
         

( 1)
13 (6) (3)

2!

x x
x


    

23 3
13 6

2 2
x x x     

Hence the function f(x) is 
23 9

13.
2 2

x x   

                          

3.7 Summary 

 

In numerical analysis, discovering a missing term usually entails recognizing a pattern or 

relationship within a sequence of numbers.  

Consider one value of f(x) be missing from the given set of (n+1) values (i.e., n values are given) 

of x, the values of x being equidistant. This means we can assume y = f(x) to be a polynomial of 

degree (n-1) in x. Therefore, we have 

  n f(x)= 0   or (E-I)n f(x)= 0. 

Newton forward interpolation formula is 

......)(
!3

)2)(1(
)(

!2

)1(
)()()( 32 





 af

uuu
af

uu
afuafxf        

where .
x a

u
h


  



Newton backward interpolation formula is 

2( 1)
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( 1)( 2).......( 1)
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n
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where .
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u
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3.8 Terminal Questions 

 

Q.1. Write the Newton Forward and backward difference formula. 

Q.2. From the following table to determine the values of

(0.2), (1.1), (1.9), (2.1), (2.9), (3.8)f f f f f f ; suggest which method (either Newton 

forward interpolation formula or Newton backward interpolation formula) is appropriate for 

finding the (0.2), (1.1), (1.9), (2.1), (2.9), (3.8)f f f f f f values.  

x 0 1 2 3 4 

f(x) 2 5 15 22 42 

 

Q.3. Determine the missing term in the following table: 

x 0 1 2 3 4 

f(x) 1 3 9  81 

 



Q.4. Determine the missing terms in the following table: 

x 2 2.1 2.2 2.3 2.4 2.5 2.6 

f(x) 0.135  0.111 0.100  0.082 0.024 

 

Q.5. Determine the value of the area of the circle of diameter 82 from the following data: 

D(Diameter) 80 85 90 95 100 

A(Area) 5026 5674 6362 7088 7854 

 

Q.6. From the following table, obtain the form of the function f(x): 

x 3 5 7 9 11 

f(x) 6 24 58 108 174 

 

Q.7. Obtain the values of f(1.5) and f(7.5) from the following data: 

x 1 2 3 4 5 6 7 8 

y 1 8 27 64 125 216 343 512 

                             

Answer 

3. 31. 

4. 0.123 and 0.090. 



5. 5280. 

6. 2x2 + 7x + 9 

7. 3.375, 421.87. 
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5. Gupta. R. S., Elements of Numerical Analysis, 2nd Edition, Cambridge University Press, 

2015. 

 



UNIT-4: Gauss’ and Stirling Interpolation Formula with Equal Intervals 

 

Structure 

4.1  Introduction 

4.2  Objectives 

4.3   Gauss’ Forward Interpolation Formula with Equal Intervals 

4.4   Gauss’ Backward Interpolation Formula with Equal Intervals 

4.5  Stirling Difference Formula 

4.6  Summary 

4.7 Terminal Questions 

  



4.1 Introduction 

 

Gauss' Interpolation Formula is a mathematical technique used to estimate values between 

known data points in a sequence. It helps in predicting intermediate values within a set of given 

data points. This method is especially useful when you want to approximate values between two 

known points in a sequence or dataset. Gauss’ Forward Interpolation Formula is a numerical 

method used for estimating values between known data points in a sequence or dataset. 

Specifically, it is employed for forward interpolation, helping approximate values that come after 

the known data points. This formula is particularly useful when the intervals between data points 

are equal. In numerical analysis, Gauss’ Forward Interpolation Formula serves as a mathematical 

tool for making predictions or approximations in situations where only specific data points are 

available. 

The Stirling interpolation Formula is a method used in numerical analysis for interpolation. It 

allows for the estimation of values between known data points in a sequence or dataset. In 

essence, this formula helps fill in the gaps between existing data points, providing a way to make 

predictions or approximations within a given set of numerical values.  

In this unit we shall discuss about the Gauss’ Forward interpolation formula with equal intervals, 

Gauss’ Backward interpolation formula with equal intervals and Stirling difference formula.  

 

4.2       Objectives 

 

After reading this unit the learner should be able to understand about: 

 Gauss’ Forward interpolation formula with equal intervals 

 Gauss’ Backward interpolation formula with equal intervals 

 Stirling Difference Formula    



4.3 Gauss’ Forward Interpolation Formula with Equal Intervals 

 

Gauss’ Forward Interpolation formula is a mathematical method for estimating intermediate 

values within a set of known data points. It is particularly useful for approximating values 

between two known points in a sequence.  

The Gauss’s forward interpolation formula is  

2 3

0 0 1 1

( 1) ( 1) ( 1)

2! 3!
u

u u u u u
y y u y y y 

  
        

4

2

( 1) ( 1)( 2)
...............

4!

u u u u
y

  
    

 

4.4 Gauss’ Backward Interpolation Formula with Equal Intervals 

 

Gauss’ Backward Interpolation Formula is a numerical technique used to estimate values 

between known data points in a sequence or dataset. It is particularly useful for interpolating 

values when the intervals between data points are not equal. This formula allows for backward 

interpolation, meaning it helps approximate values that precede the known data points in the 

sequence.  

In numerical analysis, Gauss’ Backward Interpolation Formula provides a mathematical tool for 

making predictions or approximations in situations where only specific data points are available. 

The Gauss’s backward interpolation formula is 

2 3
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y y u y y y  
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                                   ...............
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u u u u
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4.5 Stirling Interpolation Formula  

 

Stirling interpolation Formula is a mathematical tool in numerical analysis used for interpolation. 

Specifically, it's employed to estimate values between known data points in a sequence or dataset. 

This formula is part of the broader set of techniques for interpolating values and finding 

intermediate points within a given dataset.  

Stirling's interpolation Formula is employed for both forward and backward interpolation, 

allowing for the approximation of values that precede or succeed the available data points. In 

essence, this formula is a mathematical tool that aids in making predictions or approximations in 

situations where only specific data points are known and a continuous estimate is needed. The 

mean of Gauss’s forward interpolation formula and Gauss’s backward interpolation formula 

gives Stirling’s interpolation formula. The Gauss’s forward interpolation formula is  
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              ….(1) 

and the Gauss’s backward interpolation formula is 
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The mean of equation (1) and (2) is  
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The equation (3) is known as the Stirling’s interpolation formula.  

Check your Progress 

 

1. Write the formula for Gauss’s forward and backward interpolation formula? 

2. Write the formula for Stirling interpolation formula. 

 

Examples 

 

Example.1. Use Gauss’s Forward formula to find the value of f(25), from the following 

data: 

x 20 24 28 32 

y = f (x) 14 32 35 40 

 

Solution. Here h =4. Taking 24 as origin, i.e. a = 24. Now we have  

25 24 1
0.25.

4 4

x a
u

h

 
     

The difference table is: 

x u yu yu 2yu 3yu 

20 

24 

1 

0 

14 

32 

 

18 

3 

 

15 

 

 



28 

32 

1 

2 

35 

40 

5 2 17 

 

 

The Gauss’s forward interpolation formula is  
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          ....(1) 

From equation (1) and using above table, we have 

        
(0.25)(0.25-1) (0.25+1)(0.25)(0.25-1)

=32+(0.25) 3+ (-15)+ (17)
2! 3!

  

        
(0.25)(0.25-1) (0.25+1)(0.25)(0.25-1)

=32+(0.25) 3+ (-15)+ (17)
2 6

  

 =32+0.75+(-0.09375)(-15)+(-0.0390625)(17)   

 =32+0.75+1.40625-0.6640625  

 =33.4921875.

 

         33.49.  

Hence the value of f(25) is 33.49. 

 

Example.2. Use Gauss’s Backward formula to show that the value of 

12516 =111.8749301, from the following data: 



x 12500 12510 12520 12530 

y = f (x)= x  111.803399 111.848111 111.892806 111.937483 

 

Solution. Here h = 10. Taking 12520 as origin, i.e. a = 12520. Now we have  

12516 12520 4
0.4.

10 10

x a
u

h

  
      

The difference table is: 

x u 106 f(x) 106f(x) 1062f(x) 1063f(x) 

12500 

12510 

12520 

12530 

2 

-1 

0 

1 

111803399 

111848111 

111892806 

111937483 

 

44712 

44695 

44677 

 

17 

-18 

 

 

-1 

 

 

The Gauss’s backward interpolation formula is  
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From equation (1) and using above table, we have 



 

 6 (-0.4)(-0.4+1)
10 0.4 =111892806+(-0.4) (44695)+ (-18)

2!

(-0.4+1)(-0.4)(-0.4-1)
+ (-1)

3!

f  

 

              
(0.4)(0.6) (0.6)(0.4)(1.4)

=111892806-17878+ (18)- (1)
2 6

 

              =111892806-17878+2.16-0.056  

     =111874930.104   

 0.4 =111.874930104f   

Hence the value of 12516 is 111.874930104. 

 

Example.3. Use Stirling’s formula to obtain y32 given that  

 

: 20 25 30 35 40 45

: 14.035 13.674 13.257 12.734 12089 11.309

x

y f x  

Solution. Here h =5. Taking 30 as origin, i.e. a = 30. Now we have  

32 30
0.4.

5

x a
u

h

 
    

The difference table is: 

x u yu yu 2yu 3yu 4yu 5yu 

20 2 14.035 
 

0.361 

 
 

 

 
 

 



25 

30 

35 

40 

45 

1 

0 

1 

2 

3 

13.674 

13.275 

12.734 

12.089 

11.309 

0.399 

 0.541 

0.645 

0.780 

0.038 

0.142 

0.104 

0.135 

 0.104 

 0.038 

 0.031 

 

0.142 

0.069 

 

0.211 

 

We know that the Stirling’s interpolation formula is  
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              ....(1) 

From equation (1) and using above table, we have 

        

2(-0.399-0.541) (0.4)
=13.275+(0.4) + (-0.142)

2 2!
 

         

2 2 2(0.4)((0.4) -1) 0.038-0.104 (0.4) ((0.4) -1)
+ + (0.142)

3! 2 4!

 
 
 

 

         =13.275  0.188  0.01136 + 0.001848  0.0007952 

 =13.07669.

 

         13.077.  

Hence the value of y32 is 13.077. 

 



Example.4. Use Stirling formula to obtain y12.2 from the following data: 

 

x 10 11 12 13 14 

105yx 23967 28060 31788 35209 38368 

                                                                                                 

Solution. Here h = 1. Taking 12 as origin, i.e. a = 12. 

Now we have  

12.2 12
0.2.

1

x a
u

h

 
    

The difference table is: 

 

x u 105yu 105yu 1052yu 1053yu 1054yu 

10 

11 

12 

13 

14 

2 

 1 

0 

1 

2 

23967 

28060 

31788 

35209 

38368 

 

4093 

3728 

3421 

3159 

 

 365 

 307 

 262 

 

 

58 

45 

 

 

13 

 



We know that the Stirling’s interpolation formula is  

2
20 1

0 1

3 32 2 2
41 2

2

( )

2 2!

( )( 1) ( 1)
                  ..........

3! 2 4!

u

y y u
y y u y

y yu u u u
y




 


  
   

   
   

              ....(1) 

From equation (1) and using above table, we have 

         

2(3421 3728) (0.2)
31788 (0.2) ( 307)

2 2!


     

              

2 2 2(0.2)((0.2) 1 (0.2) ((0.2) -1)
           (45 58)+ (-13)

3! 4!


   

        = 31788 + 714.9  6.14  3.296 + 0.0208 

       = 32493.4848 

       32493.49.  

Hence the value of y12.2 is 32493.49. 

 

Example.5. Use Stirling formula, to determine log 337.5 from the following data: 

 

x 310 320 330 340 350 360 

log10x 2.4913617 2.5051500 2.5185139 2.5314789 2.5440680 2.5563025 

 

Solution: Here h =10. Taking 330 as origin, i.e. a = 330.  



Now we have  

337.5 330
0.75.

10

x a
u

h

 
    

The difference table is: 

 

x u yu  yu 2yu 3yu 4yu 5yu 

310 

320 

330 

340 

350 

360 

 2 

 1 

0 

1 

2 

3 

2.4913617 

2.5051500 

2.5185139 

2.5314789 

2.5440680 

2.5563025 

 

0.0137883 

0.0133639 

0.0129650 

0.0128891 

0.0122345 

 

 0.0004244 

 0.0003989 

 0.0003759 

 0.0003546 

 

 

0.0000255 

0.0000230 

0.0000213 

 

 

0.0000025 

0.0000017 

 

 

 

0.0000008 

 

We know that the Stirling’s interpolation formula is  

2
20 1

0 1

3 32 2 2
41 2

2

( )

2 2!

( )( 1) ( 1)
                  ..........

3! 2 4!

u

y y u
y y u y

y yu u u u
y




 


  
   

   
   

              ....(1) 

From equation (1) and using above table, we have 

       )0003989.0(
!2

)75.0(

2

)0129650.00133639.0(
)75.0(5185139.2

2




  



                   

2(0.75)((0.75) 1) (0.0000255 0.0000230)

3! 2

 
   

2 2(0.75) ((0.75) 1)
(0.0000025)

4!


  

=2.52827374 

          2.52827374.  

Hence the value of log337.5 is 2.5282737. 

Example.6. For the following data:  

            
 

: 0.10 0.15 0.20 0.25 0.30

: 0.1003 0.1511 0.2026 0.2554 0.3093

x

y f x
 

Use suitable interpolation formula to calculate the values of y for: 

(i) x = 0.14   (ii) x = 0.21    (iii) x = 0.28.  

Sol.  The difference table is 

 

x y = f(x) y 2y 3y 4y 

0.10 

0.15 

0.20 

0.25 

0.30 

0.1003 

0.1511 

0.2026 

0.2554 

0.3093 

 

0.0508 

0.0515 

0.0528 

0.0539 

 

0.0007 

0.0013 

0.0011 

 

 

0.0006 

-0.0002 

 

 

 

-0.0008 



 

(i) For x = 0.14, to determine the value of y(0.14) we use Newton Forward interpolation formula. 

Here a = 0.10, h = 0.05, x = 0.14.  

Than we have  

0.14 0.10 0.04
0.8.

0.05 0.05

x a
u

h

 
     

Using Newton forward interpolation formula, we have 

......)(
!3

)2)(1(
)(

!2

)1(
)()()( 32 





 af

uuu
af

uu
afuafxf        …(1) 

From equation (1) and using above table, we have 

 
 

0.8 (0.8 1)
(0.14) 0.1003 0.8 0.0508 (0.0007)

2
f

 
  

 

                   

  0.8 0.8 1 0.8 2
0.0006

3!

 
 

   0.8 0.8 1 0.8 2 0.8 3
( 0.0008)

4!

  
  

 

   
0.8 ( 0.2)

0.1003 0.04064 (0.0007)
2

 
  

   

 

0.8 ( 0.2) ( 1.2) 0.8 ( 0.2) ( 1.2) ( 2.2)
0.0006 ( 0.0008)

6 24

         
    

  

   
 

0.8 (0.2)
0.1003 0.04064 (0.0007)

2


  

   

           

0.8 (0.2) (1.2) 0.8 (0.2) (1.2) (2.2)
0.0006 (0.0008)

6 24

    
   

    

     
= 0.1003+0.04064-0.00056+0.0000192+0.00001408 

      = 0.100333328 



 

(ii) Now to determine the value of y = (0.21), we use Stirling’s interpolation formula.  

The difference table is: 

 

x u y = f(x) y 2y 3y 4y 

0.10 

0.15 

0.20 

0.25 

0.30 

 2 

 1 

0 

1 

2 

0.1003 

0.1511 

0.2026 

0.2554 

0.3093 

 

0.0508 

0.0515 

0.0528 

0.0539 

 

0.0007 

0.0013 

0.0011 

 

 

0.0006 

-0.0002 

 

 

 

-0.0008 

 

Here h =0.05. Taking 0.20 as origin, i.e. a = 0.20.  

Now we have  

0.21 0.20 0.01
0.2.

0.05 0.05

x a
u

h

 
     

The Stirling’s difference formula is  

2
20 1

0 1

( )

2 2!
u

y y u
y y u y



 
          

              
3 32 2 2

41 2
2

( )( 1) ( 1)
                  ..........

3! 2 4!

y yu u u u
y 


  
             ....(2) 



From equation (2) and using above table, we have 

        

20.0528 0.0515 (0.2)
0.2026 (0.2) (0.0013)

2 2

 
    

 
 

                                  

 

 

2

2 2

(0.2) (0.2) 1 0.0002 0.0006

3! 2

(0.2) (0.2) 1
( 0.0008)

4

   
  

 


  

 

  

      
 

0.04
0.2026 (0.2) 0.05215 (0.0013)

2
     

                    
 

 
 (0.2) 0.04 1 (0.04) 0.04 1

0.0002 ( 0.0008)
6 4

 
   

 

        

0.2026 0.01043 (0.02) 0.0013

( 0.032) (0.0002) ( 0.0096) ( 0.0008)

   

      
 

        = 0.2026+0.01043+0.000026–0.0000064+0.00000768 

        = 0.21305728. 

 

(iii) For x = 0.28, to determine the value of y(0.28) we use Newton backward interpolation 

formula. 

Here (a+ hn) = 0.30= b, h =0.05, x =0.28. 

Then we have 

 
0.28 0.30 0.02

0.4.
0.05 0.05

u
 

                 …(3) 

Newton backward interpolation formula is 



2( 1)
( ) ( ) ( ) ( )

2!

u u
f a nh hu f a nh u f a nh f a nh


              

       
( 1)( 2).......( 1)

............. ( )
!

nu u u u n
f a nh

n

   
                  …(4) 

From equations (3), (4) and above table, we have 

             

 ( 0.4) 0.4 1
0.3093 ( 0.4) 0.0539 (0.0011)

2!

  
     

 

                  

  ( 0.4) 0.4 1 0.4 2
( 0.0002)

3!

    
    

       
    ( 0.4) 0.4 1 0.4 2 0.4 3

( 0.0008)
4!

      
    

             
 ( 0.4) 0.6

0.3093 0.02156 0.0011
2

   
 

                        

       (0.4) 0.6 1.6 (0.4) 0.6 1.6 2.6
(0.0002) ( 0.0008)

6 24
    

 

             0.3093 0.02156 0.12 0.0011   
 

                        
 0.64 (0.0002) (0.0416) (0.0008)   

 

             = 0.3093 – 0.02156-0.000132 +0.0000128+0.00003328 

            = 0.28765408.
 

 

Example.7. Given the following data: 



 0° 5° 10° 15° 20° 25° 30° 

f = tan 0.00 0.0875 0.1763 0.2679 0.3640 0.4663 0.5774 

 

Determine the value of tan 3°, tan16°, tan28° stating the appropriate formula used.                                                                           

Sol. The difference table for given data is: 

 

° tan f 2f 3f 4f 5f 6f 

0° 

5° 

10° 

15° 

20° 

25° 

30° 

0 

0.0875 

0.1763 

0.2679 

0.364 

0.4663 

0.5774 

 

0.0875 

0.0888 

0.0916 

0.0961 

0.1023 

0.1111 

 

0.0013 

0.0028 

0.0045 

0.0062 

0.0088 

 

 

0.0015 

0.0017 

0.0017 

0.0026 

 

 

0.0002 

0 

0.0009 

 

 

 

–0.0002 

0.0009 

 

 

 

0.0011 

 

For  = 30, to determine the value of f() = tan 3°,  we use Newton Forward interpolation formula. 

Here a = 0, h = 5, x = 3.  



Than we have  

3 0 3
0.6.

5 5

x a
u

h

 
     

Using Newton forward interpolation formula, we have 

......)(
!3

)2)(1(
)(

!2

)1(
)()()( 32 





 af

uuu
af

uu
afuafxf        …(1) 

From equation (1) and using above table, we have 

   
   

 
    

 
0.6 0.6 1 0.6 0.6 1 0.6 2

tan3 0 0.6 0.0875 0.0013 0.0015
2! 3!

  
    

 

                 

     
 

0.6 0.6 1 0.6 2 0.6 3
0.0002

4!

  
      

                       
      

 
0.6 0.6 1 0.6 2 0.6 3 0.6 4

0.0002
5!

   
 

 

                            

       
 

0.6 0.6 1 0.6 2 0.6 3 0.6 4 0.6 5
0.0011

6!

    
 

 

           

   
 

    
 

0.6 0.4 0.6 0.4 1.4
0 0.0525 0.0013 0.0015

2 6

  
   

 

                   

     
 

0.6 0.4 1.4 2.4
0.0002

24

  
  

                             
      

 
0.6 0.4 1.4 2.4 3.4

0.0002
120

   
 

 

                                    

       
 

0.6 0.4 1.4 2.4 3.4 4.4
0.0011

720

    
 

 

            
       0 0.0525 0.12 0.0013 0.056 0.0015   

 



                       
           0.0336 0.0002 0.022848 0.0002 0.0167552 0.0011     

            = 0 + 0.0525 – 0.00156 + 0.000084 – 0.00000672 - 0.0000045696 – 0.00001843072 

           = 0.05099427968. 

          0.0510 . 

Now to determine the value of of f() = tan 16°,  we use Stirling’s interpolation formula.  

The difference table is: 

 

° u tan f 2f 3f 4f 5f 6f 

0° 

5° 

10° 

15° 

20° 

25° 

30° 

-3 

 2 

 1 

0 

1 

2 

3 

0 

0.0875 

0.1763 

0.2679 

0.364 

0.4663 

0.5774 

 

0.0875 

0.0888 

0.0916 

0.0961 

0.1023 

0.1111 

 

0.0013 

0.0028 

0.0045 

0.0062 

0.0088 

 

 

0.0015 

0.0017 

0.0017 

0.0026 

 

 

0.0002 

0 

0.0009 

 

 

 

–0.0002 

0.0009 

 

 

 

0.0011 

 

Here h =5. Taking 15 as origin, i.e. a = 15.  

Now we have  



16 15

5

1
0.2.

5

x a
u

h







 

 

The Stirling’s interpolation formula is  

2
20 1

0 1

3 32 2 2
41 2

2

5 52 2 2 2 2 2 2
63 2

3

( )

2 2!

( )( 1) ( 1)
          

3! 2 4!

( )( 1)( 2 ) ( 1)( 2 )
              .......

5! 2 6!

u

y y u
y y u y

y yu u u u
y

y yu u u u u u
y




 


 


  
   

   
  

     
   

    

                    ....(2) 

From equation (2) and using above table, we have 

 
 

 
2

0.20.0961 0.0916
tan 16 0.2679 0.2 0.0045

2 2!

 
    

                 

                     

       
2 2 2

0.2 0.2 1 0.2 0.2 10.0017 0.0017
0

3! 2 4!

            
         

                      

     
2 2 2 20.2 0.2 1 0.2 2 0.0002 0.0009

5! 2

            
 

 

                            
     

 

2 2 2 20.2 0.2 1 0.2 2
0.0011

6!

    
       

               0.2679 0.2 (0.09385) 0.02 0.0045 0.032 0.0017 0      
               

                              
        0.006336 0.00035 0.0002112 0.0011   



       0.2679 0.01877 0.00009 0.0000544 0.0000022176 0.00000023232       

           0.2867080499.   

          0.2867.  

Now to determine the value of of f() = tan 28°,  we use Newton backward interpolation formula. 

Here (a+ hn) = 30= b, h =5, x =28. 

Then we have 

 
28 30 2

0.4.
5 5

u
 

                 …(3) 

Newton backward interpolation formula is 

2( 1)
( ) ( ) ( ) ( )

2!

( 1)( 2).......( 1)
............. ( )

!

n

u u
f a nh hu f a nh u f a nh f a nh

u u u u n
f a nh

n


         

   
   

                 …(4) 

From equations (3), (4) and above table, we have 

  
  

 
0.4 0.4 1

tan 28 0.5774 0.4 0.1111 0.0088
2!

  
      

                      

     0.4 0.4 1 0.4 2
0.0026

3!

    
   

                           
      0.4 0.4 1 0.4 2 0.4 3

0.0009
4!

      
   

                                   

       
 

0.4 0.4 1 0.4 2 0.4 3 0.4 4
0.0009

5!

        
   

                           
        

 
0.4 0.4 1 0.4 2 0.4 3 0.4 4 0.4 5

0.0011
6!

          
   



    0.5324  

 

Example.8. Use the following data to calculate the values of y when x=1.1, x=1.7, x=1.9. 

 

        
 

: 1.00 1.2 1.4 1.6 1.8 2.0

: 0.1120 0.1125 0.1243 0.1475 0.1623 0.1824

x

y f x  

 

Sol.
 
The forward difference table is  

x y ∆y ∆2y ∆3y ∆4y ∆5y 

1.0 

1.2 

1.4 

1.6 

1.8 

2.0 

0.1120 

0.1125 

0.1243 

0.1475 

0.1623 

0.1824 

 

0.0005 

0.0118 

0.0232 

0.0148 

0.0201 

 

0.0113 

0.0114 

–0.0084 

0.0053 

 

 

0.0001 

–0.0198 

0.0137 

 

 

–0.0199 

0.0335 

 

 

 

0.0534 

 

 For x = 1.1, to determine the value of y(1.1) we use Newton Forward interpolation formula. 

Here a = 1, h = 0.2, x = 1.1.  

Than we have  

1.1 1 0.1
0.5.

0.2 0.2

x a
u

h

 
     



Using Newton forward interpolation formula, we have 

......)(
!3

)2)(1(
)(

!2

)1(
)()()( 32 





 af

uuu
af

uu
afuafxf        …(1) 

From equation (1) and using above table, we have 

     
   

 
0.5 0.5 1

1.1 0.1120 0.5 0.0005 0.0113
2!

y


  
 

     

    
 

    
 

0.5 0.5 1.5 0.5 0.5 1.5 2.5
0.0001 0.0199

3! 4!

    
  

 

  

     
 

0.5 0.5 1.5 2.5 3.5
0.0534

5!

   


 

      
   

 
0.5 0.5 1

1.1 0.1120 0.5 0.0005 0.0113
2

y


  
 

 

    
 00010

6

515050
.

... 


    
 01990

24

52515050
.

....





 

  

     
 05340

120

535251250
.

.... 
  

                0.1120 0.00025 0.125 0.0113 0.0625 0.0001         

      0.0390625 0.0199 0.02734375 0.0534 
 

 
0.1120 0.00025 0.0014125 0.00000625      

0.00077734375 0.00146015625   

  = 0.1120 + (–14125×10–3) + 0.0000025+0.00077734+0.0014601
     

             = 0.11308125. 

Now to determine the value of y = (1.7), we use Stirling’s interpolation formula.  



Here h =0.2. Taking 1.6 as origin, i.e. a = 1.6.  

Now we have  

1.7 1.6 0.1
0.5.

0.2 0.2

x a
u

h

 
     

The difference table is: 

x y u ∆y ∆2y ∆3y ∆4y ∆5y 

1.0 

1.2 

1.4 

1.6 

1.8 

2.0 

0.1120 

0.1125 

0.1243 

0.1475 

0.1623 

0.1824 

 3 

 2 

 1 

0 

1 

2 

 

0.0005 

0.0118 

0.0232 

0.0148 

0.0201 

 

0.0113 

0.0114 

–0.0084 

0.0053 

 

 

0.0001 

–0.0198 

0.0137 

 

 

–0.0199 

0.0335 

 

 

 

0.0534 

The Stirling’s difference formula is  

2
20 1

0 1

3 32 2 2
41 2

2

5 52 2 2 2 2 2 2
63 2

3

( )

2 2!

( )( 1) ( 1)
          

3! 2 4!

( )( 1)( 2 ) ( 1)( 2 )
              .......

5! 2 6!

u

y y u
y y u y

y yu u u u
y

y yu u u u u u
y




 


 


  
   

   
  

     
   

    

                    ....(2) 

From equation (2) and using above table, we have 



   
0.0148 0.0232

1.7 0.1475 0.5
2

y
 

   
   

          

 
 

  
2

0.5 0.5 0.25 1 0.0137 ( 0.0198)
0.0084

2! 3! 2

   
    

   
 

     
   

 
2

0.5 0.25 1
0.0335

4!


  

                 0.1475 0.5 0.019 0.125 0.0084  
 

  
     0.0625 0.00305 0.0078125 0.0335 

 
 

 0.1475 0.0095 0.00105 0.000190625 0.00026171875    
 

             

0.15640234375

0.1564.



  

For x = 1.9, to determine the value of y(1.9) we use Newton backward interpolation formula. 

Here (a+ hn) = 2.0= b, h =0.2, x = 1.9. 

Then we have 

 
1.9 2.0 0.1

0.5.
0.2 0.2

u
 

                           …(3) 

Newton backward interpolation formula is 

2( 1)
( ) ( ) ( ) ( )

2!

( 1)( 2).......( 1)
............. ( )

!

n

u u
f a nh hu f a nh u f a nh f a nh

u u u u n
f a nh

n


         

   
   

                 …(4) 

From equations (3), (4) and above table, we have
 



    
  

 
0.5 0.5

1.9 0.1824 0.5 0.0201 0.0053
2!

y


    
 

                 

   
 

    
 

0.5 0.5 1.5 0.5 0.5 1.5 2.5
0.0137 0.0335

3! 4!

 
 

 

      

     
 

0.5 0.5 1.5 2.5 3.5
0.0534

5!


  

                
  

 
0.5 0.5

0.1824 0.5 0.0201 0.0053
2

  
 

                    

   
 

    
 

0.5 0.5 1.5 0.5 0.5 1.5 2.5
0.0137 0.0335

6 24
 

 

       

     
 

0.5 0.5 1.5 2.5 3.5
0.0534

120
  

              0.1824 0.01005 0.0006625  
 

                    
0.00085625 0.00130859375 0.00146015625  

 

       

0.1693875

0.1694.



     

 

4.6 Summary 

 

The Gauss’s forward interpolation formula is  

2 3

0 0 1 1

4

2

( 1) ( 1) ( 1)

2! 3!

( 1) ( 1)( 2)
...............

4!

u

u u u u u
y y u y y y

u u u u
y

 



  
      

  
  

              



and the Gauss’s backward interpolation formula is 

2 3

0 1 1 2

4

2

( 1) ( 1) ( 1)

2! 3!

( 2)( 1) ( 1)
                                   ...............

4!

u

u u u u u
y y u y y y

u u u u
y

  



  
      

  
  

              

The mean of Gauss’s forward interpolation formula and Gauss’s backward interpolation formula 

gives Stirling’s interpolation formula. The Stirling’s interpolation formula is 

2
20 1

0 1

3 32 2 2
41 2

2

5 52 2 2 2 2 2 2
63 2

3

( )

2 2!

( )( 1) ( 1)
          

3! 2 4!

( )( 1)( 2 ) ( 1)( 2 )
              .......

5! 2 6!

u

y y u
y y u y

y yu u u u
y

y yu u u u u u
y




 


 


  
   

   
  

     
   

    

           

4.7 Terminal Questions 

 

Q.1. Write the Gauss’s Interpolation Formula. 

Q.2. What do you mean by Stirling Interpolation Formula. 

Q.3. Use Gauss Forward Interpolation formula to find the value of f(3.75), from the following data: 

 

x 2.5 3 3.5 4 4.5 5 

f (x) 24.145 22.043 20.225 18.644 17.262 16.047 

 

Q.4.. Use Gauss Forward Interpolation formula to obtain a polynomial of degree four which 

takes the following values of the function f(x): 



x 1 2 3 4 5 

y = f (x) 1 -1 1 -1 1 

 

Q.5. Use Gauss Backward Interpolation formula to obtain the values of the function f(x) at x=5.8: 

x 4 5 6 7 

y = f (x) 270 648 1330 2448 

 

Q.6. Use Stirling Interpolation formula to obtain the values of the function f(x) at x = 0.41: 

x 0.30 0.35 0.40 0.45 0.50 

y = f (x) 0.1179 0.1368 0.1554 0.1736 0.1915 

 

Answer 

3.    19.407426. 

4.     4 3 22 100
-8 + -56 +31.

3 3
f x x x x x  

5.    1162.944. 

6.    0.15907168. 
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UNIT-5: Lagrange’s Interpolation Formula for Unequal Intervals 

 

Structure 

5.1  Introduction 

5.2  Objectives 

5.3   Lagrange’s Interpolation Formula for Unequal Intervals 

5.4  Inverse Lagrange’s Interpolation Formula for Unequal Intervals  

5.5  Summary 

5.6   Terminal Questions 

 

 

  



5.1 Introduction 

 

Lagrange's Interpolation Formula for Unequal Intervals is a mathematical method used to 

estimate the value of a function between known data points when the intervals between these 

points are not equal. This interpolation formula is based on the Lagrange polynomial, which is a 

polynomial that passes through given data points. This formula allows for the estimation of the 

function's value at any point within the given range, even if the intervals between the known data 

points are irregular. It is a powerful tool in numerical analysis for approximating values in 

situations where the data is unevenly distributed.  

Lagrange's Interpolation Formula can be applied when the intervals between the known data 

points are not uniform or equal. This makes it suitable for scenarios where data points are 

irregularly spaced. The formula is used to construct a polynomial (Lagrange polynomial) that 

passes through the given data points. This polynomial can then be used to approximate the 

function's values at points within the range. 

Lagrange's method is effective for estimating function values at points within the range covered 

by the known data points. In this unit we shall discuss about Lagrange’s interpolation formyla 

for unequal length and inverse lagrange’s interpolation formula for unequal length. 

 

5.2       Objectives 

 

After reading this unit the learner should be able to understand about  

 the Lagrange’s Interpolation Formula for unequal intervals 

 the Inverse Lagrange’s Interpolation Formula for unequal intervals 

 

 



5.3   Lagrange’s Interpolation Formula for Unequal Intervals 

 

Lagrange's Interpolation Formula is used when you have a set of data points with associated 

function values, and estimate the value of the function at a point that falls within the range of 

those data points. Lagrange's Interpolation Formula is beneficial in the some special situations 

such as unequal intervals, polynomial interpolation and Interpolation within a range. 

The general form of the Lagrange's Interpolation Formula is versatile and can be applied to 

various contexts, providing a flexible tool for numerical analysis and approximation. Let us 

consider y0, y1, y2, ……………, yn be the values of function y=f (x) corresponding to the arguments 

x0, x1, x2,………., xn not necessarily equally spaced.  

If the (n+1) values of the function f(x) are given then the (n+1)th difference is zero. Thus f(x) is 

supposed to be polynomial in x of degree n. 

We have 

 0 1 2 3( ) ( ) ( )( )( )................( )ny x f x a x x x x x x x x       

                              1 0 2 3( )( )( ).............( )na x x x x x x x x      

          2 0 1 3( )( )( )................( )na x x x x x x x x      

                                   3 0 1 2( )( )( ).................( )na x x x x x x x x      

         0 1 2 1.............. ( )( )( ).................( )n na x x x x x x x x        …(1) 

Where a0, a1, a2,….., an all are constants. 

To determine the value of a0,  

Put x = x0 and 0yy   in the equation (1), we get 



0 0 0 1 0 2 0 3 0( ) ( ) ( )..................( )ny a x x x x x x x x      

0
0

0 1 0 2 0 3 0( ) ( ) ( )..................( )n

y
a

x x x x x x x x
 

   
 

Similarly to determine the value of a1, 

Put x = x1 and 1  y y
 
in the equation (1), we get

 

1 1 1 0 1 2 1 3 1( )( )( )..............( )ny a x x x x x x x x      

   
1

1

1 0 1 2 1 3 1( )( )( )..........( )n

y
a

x x x x x x x x


   
 

Put x = x2 and 2  y y
 
in the equation (1), we get

 

2 1 2 0 2 1 2 3 2( )( )( )................( )ny a x x x x x x x x      

   2
2

2 0 2 1 2 3 2( )( )( )................( )n

y
a

x x x x x x x x


   
 

Put x = x3 and 3  y y
 
in the equation (1), we get

 

3 1 3 0 3 1 3 2 3( )( )( ).................( )ny a x x x x x x x x      

   3
3

3 0 3 1 3 2 3( )( )( )..................( )n

y
a

x x x x x x x x


   
 

Proceeding in this way, we get 

0 1 2 1( )( )( )...............( )

n
n

n n n n n

y
a

x x x x x x x x 


   

 

Putting these values of a1, a2, ……………, an in the equation (1), we get 



1 2 3
0

0 1 0 2 0 3 0

( )( )( )......................( )
( ) ( )

( )( )( ).................( )

n

n

x x x x x x x x
y x f x y

x x x x x x x x

   
 

   
 

0 2 3
1

1 0 1 2 1 3 1

( )( )( ).............( )

( )( )( ).........( )

n

n

x x x x x x x x
y

x x x x x x x x

   


   
 

0 1 3
2

2 0 2 1 2 3 2

( )( )( ).............( )

( )( )( ).........( )

n

n

x x x x x x x x
y

x x x x x x x x

   


   
 

0 1 2 1

0 1 2 1

( )( )( )...........( )
.......

( )( )( )........( )

n
n

n n n n n

x x x x x x x x
y

x x x x x x x x





   
 

   
             …(2) 

This equation (2) is known as the Lagrange’s interpolation formula for unequal intervals. 

 

5.4  Inverse Lagrange’s Interpolation Formula for Unequal Intervals 

 

The Inverse Lagrange’s Interpolation formula for unequal intervals is  

1 2 3
0

0 1 0 2 0 3 0

( - )( - )( - ).............( - )
( )

( - )( - )( - )..........( - )

n

n

y y y y y y y y
x y x

y y y y y y y y
  

             
0 2 3

1

1 0 1 2 1 3 1

( - )( - )( - ).............( - )

( - )( - )( - )..........( - )

n

n

y y y y y y y y
x

y y y y y y y y
  

          
0 1 3

2

2 0 2 1 2 3 2

( - )( - )( - )............( - )

( - )( - )( - )..........( - )

n

n

y y y y y y y y
x

y y y y y y y y
  

       0 1 2 1

0 1 2 1

( - )( - )( - )............( - )
............

( - )( - )( - )..........( - )

n
n

n n n n n

y y y y y y y y
x

y y y y y y y y





   

 



Check your Progress 

 

1. What do you mean by Lagrange interpolation formula for unequal interval? 

2. Write the inverse Lagrange interpolation formula for unequal interval. 

 

Examples 

 

Example.1. Using Lagrange interpolation
 

formula to find a cubic polynomial that 

approximation the data given below
 

              

392434:

5410:

y

x

      

Also determine the value of  (i) y(3) (ii) y(6) and (iii)  y(12).         

    

Sol.  It is given that x0 = 0, x1 = 1,  x2 = 4 and x3 = 5. Also y0 = 4, y1 = 3,  y2 = 24 and y3 = 39. 

We know that the Lagrange’s Interpolation formula is 

1 2 3
0

0 1 0 2 0 3 0

( )( )( )......................( )
( ) ( )

( )( )( ).................( )

n

n

x x x x x x x x
y x f x y

x x x x x x x x

   
 

   
 

0 2 3
1

1 0 1 2 1 3 1

( )( )( ).............( )

( )( )( ).........( )

n

n

x x x x x x x x
y

x x x x x x x x

   


   
 

0 1 2 1

0 1 2 1

( )( )( )...........( )
.......

( )( )( )........( )

n
n

n n n n n

x x x x x x x x
y

x x x x x x x x





   
 

   
           …(1) 

or     
   

   
1 2 3

0

0 1 0 2 0 3

( )
x x x x x x

y x y
x x x x x x

  


  
 



                                      

   
    1

312101

320 y
xxxxxx

xxxxxx






 

                                              

   
    2

321202

310 y
xxxxxx

xxxxxx




  

                                                          
   

    3

231303

210 y
xxxxxx

xxxxxx






 

                

   

   
 

   

   
 

-1 - 4 -5 - 0 - 4 -5
4 3

0 -1 0 - 4 0 -5 1- 0 1- 4 1-5

x x x x x x
   

 

                                  

   

   

   

   

-0 -1 -5 -0 -1 - 4
24 39

4 -0 4 -1 4 -5 5-0 5-1 5- 4

x x x x x x
   

            

                

240 60 80

20

x x 


           

                     
2( ) 2 3 4y x x x  

                      
….(2)

 

(i) Put x =3 in the equation (2), we get  

y(3)=13.

 

(ii) Put x = 6 in the equation (2), we get  

y(6)= 58. 

(iii) Put x =12 in the equation (2), we get 

 y(12)=256. 

Hence the values of y(3), y(6) and  y(12) are 13, 58 and 256 respectively.   

           



Example.2. Use Lagrange’s interpolation formula to find f(10), from the following data:    

 

: 5 6 9 11

12 13 14 16

x

y f x
                   

Sol.  It is given that x0 = 5, x1 = 6, x2 = 9 and x3 = 11. Also y0 = 12, y1 = 13,  y2 = 14 and y3 = 16. 

We know that the Lagrange’s Interpolation formula is 

1 2 3
0

0 1 0 2 0 3 0

( )( )( )......................( )
( ) ( )

( )( )( ).................( )

n

n

x x x x x x x x
y x f x y

x x x x x x x x

   
 

   
 

0 2 3
1

1 0 1 2 1 3 1

( )( )( ).............( )

( )( )( ).........( )

n

n

x x x x x x x x
y

x x x x x x x x

   


   
 

0 1 2 1

0 1 2 1

( )( )( )...........( )
.......

( )( )( )........( )

n
n

n n n n n

x x x x x x x x
y

x x x x x x x x





   
 

   
       …(1) 

or       
     
    

 0

02010

21 xf
xxxxxx

xx.....xxxx
xf

n

n






 

                      

     
     

  ....xf
xx....xxxx

xxxxxx

n

n 



 1

12101

20

 

                         

       

      
 0 1 2 1

0 1 2 1

..........
.......

.......

n

n

n n n n n

x x x x x x x x
f x

x x x x x x x x





   
 

   
 

 
    

   

     

    

10 6 10 9 10 11 10 5 10 9 10 11
10 12 13

5 6 5 9 5 11 6 5 6 9 6 11
f

     
   

       

                    

    
   

     
    

16
911611511

910610510
14

1196959

1110610510












 

 
 

   

     

    

(4) (1) 1 5 1 1
12 13

1 4 6 1 3 5

 
   

      



                    

    

   

     

    

5 4 1 5 4 1
14 16

4 3 2 6 5 2


   

  

   
13 35 16

2
3 3 3

   

 

      = 2 – 4.3333 + 11.6667+ 5.3333 

Hence the value of  f(10) is 14.6667. 

 

Example.3. Use Lagrage’s formula inversely to find upto the two decimal places, the value 

of x, when 19y  , given the following  

                                   

 

 

Sol. Using the Inverse Lagrange’s interpolation formula for unequal intervals is 

1 2 3
0

0 1 0 2 0 3 0

0 2 3
1

1 0 1 2 1 3 1

0 1 3

2

( - )( - )( - ).............( - )
( )

( - )( - )( - )..........( - )

( - )( - )( - ).............( - )

( - )( - )( - )..........( - )

( - )( - )( - )............( - )

(

n

n

n

n

n

y y y y y y y y
x y x

y y y y y y y y

y y y y y y y y
x

y y y y y y y y

y y y y y y y y

y





 2

0 2 1 2 3 2

0 1 2 1

0 1 2 1

- )( - )( - )..........( - )

( - )( - )( - )............( - )
............

( - )( - )( - )..........( - )

n

n
n

n n n n n

x
y y y y y y y

y y y y y y y y
x

y y y y y y y y





 

 

        …(1) 

It is given that y0 = 0, y1 = 1, and y2 = 20. Also x0 = 0, x1 = 1  and x2 = 2. 

x: 0 1 2 

y: 0 1 20 



Put the above values in the equation (1), we get 

 

  

  

  

  

 

(19 -1) 19 - 20 19 - 0 19 - 20 19 - 0 19 -1
( ) 0 1 2

0 -1 0 - 20 1- 0 1- 20 20 - 0 (20 -1)
x y        

         
19 ( 1) 1 19 18

0 2
1 19 20 19

   
   

  
 

        1 1.8     

         2.8.           

Hence the value of  x(19) is 2.8. 

 

Example.4. Use Lagrange’s interpolation formula to find the value of y when x = 2, from 

the following table:  

x 0 1 3 4 

y 5 6 50 105 

 

Solution: Here x0 = 0, x1 = 1, x2 = 3, x3 = 4 

and   y0 =5, y1 = 6, y2 = 50, y3 = 105. 

We know that the Lagrange’s Interpolation formula is 

1 2 3
0

0 1 0 2 0 3 0

( )( )( )......................( )
( )

( )( )( ).................( )

n

n

x x x x x x x x
y x y

x x x x x x x x

   


   
 

                
0 2 3

1

1 0 1 2 1 3 1

( )( )( ).............( )

( )( )( ).........( )

n

n

x x x x x x x x
y

x x x x x x x x

   


   
 



  
0 1 2 1

0 1 2 1

( )( )( )...........( )
.......

( )( )( )........( )

n
n

n n n n n

x x x x x x x x
y

x x x x x x x x





   
 

   
           …(1) 

or     
   

   
1 2 3

0

0 1 0 2 0 3

( )
x x x x x x

y x y
x x x x x x

  


  

   
    1

312101

320 y
xxxxxx

xxxxxx






 

               

   
    2

321202

310 y
xxxxxx

xxxxxx






   
    3

231303

210 y
xxxxxx

xxxxxx






 

Putting x = 2 in above expression, we get 

50
)43)(13)(03(

)42)(12)(02(
6

)41)(31)(01(

)42)(32)(02(
5

)40)(30)(10(

)42)(32)(12(
)2( 














y  

                  105
)34)(14)(04(

)32)(12)(02(





  

         
1 ( 1) ( 2) 2 ( 1) ( 2) 2 1 ( 2) 2 1 ( 1)

5 6 50 105
( 1) ( 3) ( 4) 1 ( 2) ( 3) 3 2 ( 1) 4 3 1

             
       

             
 

         
10 100 105

4
12 3 6

      

           

10 48 400 210

12

19.

   




 

Hence the value of  y(2) is 19. 

Example.5. The value of x and y are given as below: 

 

x 0 1 2 5 

y 2 5 7 8 

 



Find the value of y when x = 4. 

Solution: Here x0 = 0, x1 = 1, x2 = 2, x3 = 5 

and  y0 =2, y1 = 5, y2 = 7, y3 = 8. 

We know that the Lagrange’s Interpolation formula is 

1 2 3
0

0 1 0 2 0 3 0

( )( )( )......................( )
( )

( )( )( ).................( )

n

n

x x x x x x x x
y x y

x x x x x x x x

   


   
 

0 2 3
1

1 0 1 2 1 3 1

( )( )( ).............( )

( )( )( ).........( )

n

n

x x x x x x x x
y

x x x x x x x x

   


   
 

0 1 2 1

0 1 2 1

( )( )( )...........( )
.......

( )( )( )........( )

n
n

n n n n n

x x x x x x x x
y

x x x x x x x x





   
 

   
           …(1) 

or     
   

   
1 2 3

0

0 1 0 2 0 3

( )
x x x x x x

y x y
x x x x x x

  


  
 

                           
   
    1

312101

320 y
xxxxxx

xxxxxx






 

                                  

   
    2

321202

310 y
xxxxxx

xxxxxx




  

                                       
   

    3

231303

210 y
xxxxxx

xxxxxx






 

Putting x = 4 in above expression, we get 

(4 1)(4 2)(4 5) (4 0)(4 2)(4 5)
( ) 2 5

(0 1)(0 2)(0 5) (1 0)(1 2)(1 5)
y x

     
   

     
 

      
(4 0)(4 1)(4 5) (4 0)(4 1)(4 2)

7 8
(2 0)(2 1)(2 5) (5 0)(5 1)(5 2)

     
   

     
 



         8
345

234
7

)3(12

)1(34
5

)4()1(1

)1(24
2

)5()2()1(

)1(23




















  

         
6 16

( 10) 14
10 5

      

           
3 20 16

5

 
   

            
3.9

5
  

 (4) 7.8.y   

Hence the value of  y(4) is 7.8. 

 

Example.6. Find the value of y at x = 5 from the following data: 

x 1 3 4 8 10 

y = f(x)  8 15 19 32 40 

 

Solution: Here x0 = 1, x1 = 3, x2 = 4, x3 = 8, x4 = 10 

and  y0 =8, y1 = 15, y2 = 19, y3 = 32, y4 = 40. 

We know that the Lagrange’s Interpolation formula is 

1 2 3
0

0 1 0 2 0 3 0

( )( )( )......................( )
( ) ( )

( )( )( ).................( )

n

n

x x x x x x x x
y x f x y

x x x x x x x x

   
 

   
 

0 2 3
1

1 0 1 2 1 3 1

( )( )( ).............( )

( )( )( ).........( )

n

n

x x x x x x x x
y

x x x x x x x x

   


   
 



0 1 2 1

0 1 2 1

( )( )( )...........( )
.......

( )( )( )........( )

n
n

n n n n n

x x x x x x x x
y

x x x x x x x x





   
 

   
           …(1) 

or       
   

   
1 2 3

0

0 1 0 2 0 3

x x x x x x
y x f x y

x x x x x x

  
 

  

   
    1

312101

320 y
xxxxxx

xxxxxx






 

               

   
    2

321202

310 y
xxxxxx

xxxxxx






   
    3

231303

210 y
xxxxxx

xxxxxx






 

Putting x = 5 in above expression, we get 

(5 3)(5 4)(5 8)(5 10) (5 1)(5 4)(5 8)(5 10)
(5) 8 15

(1 3)(1 4)(1 8)(1 10) (3 1)(3 4)(3 8)(3 10)
y

       
   

       
 

       32
)108)(48)(38)(18(

)105)(45)(35)(15(
19

)104)(84)(34)(14(

)105)(85)(35(15(










  

40
)810)(410)(310)(110(

)85)(45)(35)(15(





  

          15
)7()5()1(2

)5()3(14
8

)9()7()3()2(

)5()3(12










  

                    40
2679

)3(124
32

)2(457

)5(124
19

)6()4(13

)5()3(24















  

             
40 90 95 32 80

63 7 3 7 63
      

 
40 9 90 95 21 32 9 80

63

      
  

 
40 810 1995 288 80

63

   
  



 
930 2323

63

 
  

 
1433

63
  

 22.746031746031  

(5) 22.75.y   

Hence the value of  y(5) is 22.75. 

 

Example.7. Apply Lagrange’s formula to find the cubic polynomial which includes the 

following values of x and y. 

x 0 1 4 6 

( ) ( )y x f x  1 -1 1 -1 

 

Solution: Here x0 = 0, x1 = 1, x2 = 4, x3 = 6, and  y0 =1, y1 = 1, y2 = 1, y3 = 1. 

We know that the Lagrange’s Interpolation formula is 

1 2 3
0

0 1 0 2 0 3 0

( )( )( )......................( )
( ) ( )

( )( )( ).................( )

n

n

x x x x x x x x
y x f x y

x x x x x x x x

   
 

   
 

0 2 3
1

1 0 1 2 1 3 1

( )( )( ).............( )

( )( )( ).........( )

n

n

x x x x x x x x
y

x x x x x x x x

   


   
 

0 1 2 1

0 1 2 1

( )( )( )...........( )
.......

( )( )( )........( )

n
n

n n n n n

x x x x x x x x
y

x x x x x x x x





   
 

   
           …(1) 



or     
   

   
1 2 3

0

0 1 0 2 0 3

( )
x x x x x x

y x y
x x x x x x

  


  
 

   
   
    1

312101

320 y
xxxxxx

xxxxxx






 

                        

   
    2

321202

310 y
xxxxxx

xxxxxx




  

   
    3

231303

210 y
xxxxxx

xxxxxx






 

( 1)( 4)( 6) ( 0)( 4)( 6)
( ) 1 ( 1)

(0 1)(0 4)(0 6) (1 0)(1 4)(1 6)

( 0)( 1)( 6) ( 0)( 1)( 4)
1 ( 1)

(4 0)(4 1)(4 6) (6 0)(6 1)(6 4)

x x x x x x
f x

x x x x x x

     
    

     

     
    

     

 

 
3 2 3 21 1

[ 11 34 24] [ 10 24 ]
24 15

x x x x x x         

   
3 2 3 21 1

[ 7 6 ] [ 5 4 ]
24 60

x x x x x x       

3 21 3 10
( ) 1.

6 2 3
f x x x x      

Hence the cubic polynomial is 
3 21 3 10

( ) 1.
6 2 3

f x x x x      

 

Example.8. Using Lagrange’s method to show that 

 3 0 6 1 5 2 40.05( ) 0.3( ) 0.75( )y y y y y y y       



Solution: Here 6,5,4,2,1,0 543210  xxxxxx  and their corresponding values of 

function are given by y0, y1, y2, y4, y5 and y6. 

We know that the Lagrange’s Interpolation formula is 

1 2 3
0

0 1 0 2 0 3 0

( )( )( )......................( )
( ) ( )

( )( )( ).................( )

n

n

x x x x x x x x
y x f x y

x x x x x x x x

   
 

   
 

0 2 3
1

1 0 1 2 1 3 1

( )( )( ).............( )

( )( )( ).........( )

n

n

x x x x x x x x
y

x x x x x x x x

   


   
 

0 1 2 1

0 1 2 1

( )( )( )...........( )
.......

( )( )( )........( )

n
n

n n n n n

x x x x x x x x
y

x x x x x x x x





   
 

   
       …(1) 

or    0 1

( 1)( 2)( 4)( 5)( 6) ( 0)( 2)( 4)( 5)( 6)

(0 1)(0 2)(0 4)(0 5)(0 6) (1 0)(1 2)(1 4)(1 5)(1 6)
x

x x x x x x x x x x
y y y

         
  

         
 

     2 4

( 0)( 1)( 4)( 5)( 6) ( 0)( 1)( 2)( 5)( 6)

(2 0)(2 1)(2 4)(2 5)(2 6) (4 0)(4 1)(4 2)(4 5)(4 6)

x x x x x x x x x x
y y

         
  

         
 

                   5 6

( 0)( 1)( 2)( 4)( 6) ( 0)( 1)( 2)( 4)( 5)

(5 0)(5 1)(5 2)(5 4)(5 6) (6 0)(6 1)(6 2)(6 4)(6 5)

x x x x x x x x x x
y y

         
  

         
 

To determine the value of y3, put x = 3 in above expression, we get 

654103
240

12

60

18

48

36

60

18

240

12
yyyyyy   

      )(
4

3
)(

10

3
)(

20

1
425160 yyyyyy   

      = 0 6 1 5 2 40.05( ) 0.3( ) 0.75( ).y y y y y y      

 



Example.9. Using Inverse Lagrange interpolation
 
formula to find a cubic polynomial that 

approximation the following data:

              

: 0 1 3 6

: 1 2 4 9

x

y
      

Sol.  It is given that x0 = 0, x1 = 1,  x2 = 3 and x3 = 6. Also y0 = 1, y1 = 2,  y2 = 4 and y3 = 9. Using 

the Inverse Lagrange’s interpolation formula for unequal intervals is 

1 2 3
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y y y y y y y y





 

 

           …(1) 

From equation (1), we get 

1 2 3 0 2 3
0 1

0 1 0 2 0 3 1 0 1 2 1 3
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or  
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( ) 0 1

1- 2 1- 4 1-9 2 -1 2 - 4 2 -9

y y y y y y
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( -1) - 2 ( -9) -1 - 2 ( - 4)
3 6

4 -1 4 - 2 4 -9 9 -1 9 - 2 9 - 4
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-1 - 4 ( -9) ( -1) - 2 ( -9) -1 - 2 ( - 4)
( ) 0 1 3 6

1 2 -7 3 2 -5 8 7 5

y y y y y y y y y
x y       


 

           

       -1 - 4 ( -9) ( -1) - 2 ( -9) 3 -1 - 2 ( - 4)

14 10 140

y y y y y y y y y
  

              

           

 
     - 4 ( -9) - 2 ( -9) 3 - 2 ( - 4)

-1
14 10 140

y y y y y y
y

 
   

   

            
2 2 213 36 11 18 3 18 24

-1
14 10 140

y y y y y y
y

      
   

 
 

            
2 2 210 130 360 14 154 252 3 18 24

-1
140 140 140

y y y y y y
y

      
   

 
 

          
2 6 132

-1
140

y y
y

   
  

 
 

         

3 27 126 132
( )

140

y y y
x y

   
            

Hence the cubic polynomial is 

3 27 126 132
( ) .

140

y y y
x y

   
  

 

5.9 Summary 

 

Lagrange's Interpolation Formula is beneficial in the some special situations such as unequal 

intervals, polynomial interpolation and interpolation within a range, and extrapolation. 



The Lagrange’s Interpolation formula is 

1 2 3
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0 1 0 2 0 3 0

( )( )( )......................( )
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The Inverse Lagrange’s Interpolation formula for unequal intervals is  
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5.10 Terminal Questions 

 

Q.1. Write the Lagrange’s Interpolation Formula for unequal intervals.  

Q.2. Write the Inverse Lagrange’s Interpolation Formula for unequal intervals.  

Q.3. Use Lagrange’s interpolation formula to find f(35), from the following data:    

              
 

: 25 30 40 50

52 67.3 84.1 94.4

x

y f x
                  

 



 

Q.4. Find the value of y at x = 7 given that: 

 

x 0 2 5 8 10 12 

y = f(x)  7.5 10.25 15 16 18 21 

 

Q.5. Using the Lagrange’s formula to find the polynomial which includes the following values 

of x and y. 

 

x 0 1 2 3 4 

y = f(x)  3 6 11 18 27 

 

Q.6. Using the Lagrange’s interpolation formula to determine the value f(5), from the following 

data:    

x 1 2 3 4 7 

y = f(x)  2 4 8 16 128 

 

Answer 

3. 77.41 

4. 15.7 



5. 
2( ) 2 3.y f x x x     

6. 32.93. 

 

Suggested  Further Readings: 

1. Atkinson, K. and Han, W. Theoretical Numerical Analysis, Springer Science & Business 

Media, 2010. 

2. Jain, M.K., Iyengar, S.R.K and Jain, R.K.: Numerical Methods for Scientific and 

Engineering Computations, New Age International (P) Ltd. New Delhi, 2014. 

3. Sastry, S.S.: Introductory Methods of Numerical Analysis, UBS Publishers, 2012. 

4. Bradie, B. A friendly introduction to Numerical Analysis. Pearson Education, 2007. 

5. Gupta. R. S., Elements of Numerical Analysis, 2nd Edition, Cambridge University Press, 

2015. 

 

  



                                              
 

 

 

 

 

                                     
                  

             

 
 

  

Block  

3 Solution of Linear Simultaneous Equations 

Unit- 6 

Solution of Linear Simultaneous Equations-I 

 

Unit- 7 

Solution of Linear Simultaneous Equations-II 

 

  
 

 

 

 

 

  

Master of Science 

PGMM -104N 

Numerical Analysis  

U. P. Rajarshi Tandon   

Open University 



Block-3 

Solution of inear Simultaneous Equations-I 

 

Simultaneous linear equations are fundamental in various fields, including physics, engineering, 

economics, and many other scientific disciplines. The choice of method for solving such systems 

depends on the characteristics of the system, the size of the problem, and the efficiency of the 

chosen algorithm. Simultaneous linear equations are of significant importance in various areas 

of mathematics, science, engineering, and other fields. Simultaneous linear equations refer to a 

system of multiple equations, each of which is a linear equation, all involving the same set of 

variables. These systems are commonly represented in matrix form as AX=B, where A is the 

coefficient matrix; X is the column vector of variables and B is the column vector of constants. 

There are various methods to solve simultaneous linear equations, including: Matrix Methods 

(Gauss Elination and LU Decomposition); Iterative methods (Jacobi Method and Gauss Seidel 

Method); and Determinants and Cramer’s rule. 

Simultaneous linear equations are mathematical model to describe the physical systems in 

various disciplines such as physics and engineering. These equations provide a mathematical 

representation of relationships between different variables in a system. In engineering, 

simultaneous linear equations are crucial for solving problems related to circuit analysis, 

structural analysis, control systems, and optimization. They help engineers analyze and design 

systems efficiently. Economic models often involve systems of linear equations to represent 

relationships among economic variables such as supply, demand, production, and consumption. 

In finance, these equations are used for portfolio optimization and risk management. 

In the sixth unit, we shall discussed about the simultaneous linear equations by Gauss 

Elimination method and Gauss seidel Method. And in unit seventh we solved the simultaneous 

linear equations by LU Decomposition method, Crout’s method and Choleski’s method.  



UNIT-6: Solution of Linear Simultaneous Equations-I 

 

Structure 

6.1  Introduction 

6.2  Objectives 

6.3   Linear Equations 

6.4  Gauss Elimination Method 

6.5  Gauss Seidel Method 

6.6   Summary 

6.7   Terminal Questions 

 

 

 

 

 

 

 



6.1 Introduction 

Simultaneous linear equations occur in the field of science and engineering like as analysis of a 

network under sinusoidal steady-state condition, determination of the output of a chemical plant 

and finding the cost of reaction, the analysis of electronic circuits having a number of invariant 

element etc. Gaussian Elimination is a fundamental method in solving linear systems and is used 

in various applications, including solving systems of equations in engineering, physics, computer 

science, and more. The Gauss-Seidel method is generally faster than the Gauss elimination 

method for solving large systems of linear equations, especially when the coefficient matrix is 

sparse.  

However, it may not converge for all systems, and the convergence rate can be influenced by the 

properties of the coefficient matrix. Some systems may require preconditioning or other methods 

to improve convergence. We can solved the system of simultaneous linear equations by matrix 

method or by Cramer’s rule. But for large system, these methods are failed.  

In this unit we shall discuss some direct and iterative method of solutions: Gauss Elimination 

Method and Gauss Seidel Method. The resulting matrix in row-echelon form will have a 

triangular shape, and the solutions can be easily obtained through back substitution. If the system 

is consistent and has a unique solution, the matrix will be in reduced row-echelon form, and each 

variable will have a unique value. 

 

6.2       Objectives 

After reading this unit the learner should be able to understand about: 

 the linear equations and their structure in matrix form 

 the Gauss Elimination Method with their solution procedure 

 the Gauss Seidel Method with their solution procedure 

 

 



6.3    Linear Equations 

 

Consider the m first degree equations in n variables  
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The above system of equations can be written in the matrix form: 
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i.e.,    AX = B 

where   A = [aij], X = 
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,  

Homogeneous System: 

The above system of equations is said to be homogeneous if all the bi (i=1, 2, ……., m) are zero.  

Non-homogeneous System: 

If atleast one bi (i=1, 2, ……., m) is not equal to zero then the above system of equations is called 

as non-homogeneous system.  

The solution of such types of equations can be obtained by 



1. Determinant method 

2. Matrix inversion method 

3. Direct methods 

(i) Gauss elimination method   

(ii) Gauss-Jordan method  

(iii) Triangularization method. 

4. Indirect methods 

            (i) Tacobi iterative method  

(ii) Gauss-Seidel iterative method   

(iii) Relaxation method. 

Here in this unit, we shall discuss only two important methods Gauss elimination method and 

Gauss-Seidel method.  

 

6.4   Gauss Elimination Method 

 

Gaussian Elimination is a method used in linear algebra to solve systems of linear equations by 

transforming the augmented matrix of the system reduced into row-echelon form. This process 

simplifies the system and makes it easier to find the solutions.  

In this method, the unknowns from the system of equations are eliminated successively such that 

system of equation is reduced to an upper triangular system from which the unknowns are 

determined by back substitution. We proceed a step-by-step explanation of the Gaussian 

Elimination method as follows: 

Consider the given system of equations are 
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          …(1) 

Step-I. First we eliminating x1 from the second, third, fourth, ……….. nth equation. Consider 

a110. The variable x1 eliminated from the second equation by subtracting 
11

21

a

a
times the first 

equation from the second equation, similarly we eliminate x1 from third equation by subtracting 

11

31

a

a
times the first equation from the third equation, etc. Then we get the new system of equation
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  …(2) 

Step-II. To eliminate x2 from the third, fourth ….. nth equation. Consider b220. The variable x2 

eliminated from the third equation by subtracting 
22

32

b

b
times the second equation from the third 

equation, similarly we eliminate x2 from fourth equation by subtracting 
22

42

b

b
times the second 

equation from the fourth equation, etc. Then we get the new system of equation as 

11 1 12 2 13 3 1 1

22 2 23 3 2 2

33 3 3 3

( 1)

3 3

.....

......

......

......

n n

n n

n n
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m mn n m

a x a x a x a x b

b x b x b x b

c x c x b

c x c x b


    
   


   



   

   …(3) 

Step-III. Proceeding in the same ways, eliminated x3 in third step, and eliminate x4 in fourth step 

and so on.  



Therefore we get new the system of equation as  

   

11 1 12 2 13 3 1 1

22 2 23 3 2 2

33 3 3 3

( 1)

.....

......

......

n n

n n

n n

m

mn m

a x a x a x a x b

b x b x b x b

c x c x b

d x b


    
   


   



 

            …(4) 

To determine the value of unknown  

Hence the value of x1 x2…………. xn are given by the system of equations (4) by back 

substitution.  

 

Check your Progress 

 

1. What do you mean by Linear system of equation? 

2. Explain the homogeneous and non-homogeneous system. 

 

Examples 

 

Example.1. Solve the following system of equations using Gauss’s elimination method: 

532  zyx , 3344  zyx , 2232  zyx  

Solution: The give system of equations are  

532  zyx     …(1) 

   3344  zyx     …(2) 

   2232  zyx     …(3) 



First eliminating x from the equations (2) and (3), by subtracting 2 and 1 times of equation (1) 

respectively, we get 

   532  zyx     …(4) 

2 7y z      …(5) 

6 3 3y z      …(6) 

Again eliminating y from the equation (6) with the help of equation (5). Equation (5) is subtracted 

after multiplies by 3 from the equation (6), we get 

 532  zyx                                                 …(7) 

   2 7y z       …(8) 

   6 18z    or 3z      …(9) 

Put the value of z into equation (8), we get 

   2y   

Now put the values of y and z into equation (7), we get 

   1x   

Hence the solutions of the given system of equations are 

  1 2 31, 2, 3.x x x    

 

Example.2. Solve the following system of equations using Gauss’s elimination method: 

   1 2 3 1 2 3 1 2 32 4, 3 3 4, 2 3 5 5.x x x x x x x x x            

Solution: The give system of equations are  



42 321  xxx
    …(1) 

   1 2 33 3 4x x x        …(2) 

   1 2 32 3 5 5x x x        …(3) 

First eliminating x1 from the equations (2) and (3), by subtracting 3 and 2 times of equation (1) 

respectively, we get 

   42 321  xxx      …(4) 

1692 32  xx      …(5) 

1395 32  xx      …(6) 

Again eliminating x2 from the equation (6) with the help of equation (5). Divided the equation 

(5) by 2 and then this equation is subtracted after multiplies by 5 from equation (6), we get 

 42 321  xxx                                                       …(7) 

   8
2

9
32  xx       …(8) 

   27
2

27
3  x   or 3 2x     …(9) 

Put the value of x3 into equation (8), we get 

   12
2

9
82 x  

Now put the values of x2 and x3 into equation (7), we get 

   14141 x  

Hence the solutions of the given system of equations are 



   1 2 31, 1, 2.x x x     

 

Example.3. Solve the following simultaneous linear equations: 

  342 321  xxx , 1 2 33 2 2 2x x x    , 6321  xxx . 

using Gauss’s elimination method. 

Solution: The give system of equations can be written in the following order: 

   1 2 3 6x x x     …(1) 

342 321  xxx    …(2) 

2223 321  xxx    …(3) 

First eliminating x1 from equations (2) and (3) by subtracting 2 and 3 times of equation (1) 

respectively, we get  

   6321  xxx    …(4) 

   96 32  xx     …(5) 

2055 32  xx    …(6) 

Again eliminating x2 from equation (6) with the help of equation (5). Divided equation (5) by 6 

and then this equation is subtracted after multiplies by 5 from equation (6), we get. 

6321  xxx    …(7) 

   96 32  xx     …(8) 

33 x     …(9) 



Put the value of x3 into equation (8), we get 

   1
6

39
2 


x  

Now put the values of x2 and x3 into equation (7), we get 

   23161 x  

Hence the solutions of the given system of equations are 

  1 2 32, 1, 3.x x x     

 

Example.4. Solve the following system of simultaneous linear equations: 

   6236  zyx , 0346  zyx , 0121520  zyx . 

by Gauss’s elimination method. 

Solution: The give system of equations are  

6236  zyx    …(1) 

0346  zyx    …(2) 

   0121520  zyx    …(3) 

First, divide the equation (1) by 6, we get 

1
3

1

2

1
 zyx    …(4) 

0346  zyx    …(5) 

0121520  zyx    …(6) 



Now eliminating x from (5) and (6) equations by subtracting 6 and 20 times of equation (1) 

respectively, we get 

1
3

1

2

1
 zyx    …(7) 

6 zy     …(8) 

20
3

16
5  zy    …(9) 

Now eliminating y from equation (9) by subtracting 5 times of equation (8), we get 

1
3

1

2

1
 zyx    …(10) 

6 zy     …(11) 

   10
3

1
z  or  30z   …(12) 

Substitute the values of z into equation (11), we get 

  36306 y  

And again substitute the values of y and z into equation (10), we get 

  )80(
3

1
)36(

2

1
1 x   

 or   9x  

Hence the solutions of the given system of equations are 

  9, 36, 30.x y z     

 



6.5   Gauss Seidel Method 

 

The Gauss-Seidel method is an iterative numerical technique used to solve a system of linear 

equations. It is named after the mathematicians Carl Friedrich Gauss and Philipp Ludwig von 

Seidel.  

This method is particularly useful for solving large systems of linear equations efficiently.  

Consider a system of n equation in n variables in which aii  0 
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21 1 22 2 2 2
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n n nn n n
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The above system of equation can be written as  
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   …(2) 

First we put the first approximations 
(1) (1) (1)

1 2, ,..........., nx x x in the right hand side of first equation 

of (2), we get  

(2) (1) (1) (1)

1 1 12 2 13 3 1

11

1
................... n nx b a x a x a x

a
      



Now we put 
(2) (1) (1) (1)

1 2 3, , ,............. nx x x x  in the right hand side of second equation of (2), so we 

get 

      (2) (2) (1) (1)

2 2 21 1 23 3 2

22

1
................. n nx b a x a x a x

a
      

Now again we put 
(2) (2) (1) (1)

1 2 3, , ,..........., nx x x x  in the right hand side of third equation of (2), so we 

get. 

(2) (2) (2) (1)

3 3 31 1 32 2 3

33

1
................ n nx b a x a x a x

a
      

Proceeding in the same way we put 
(2) (2) (2) (1)

1 2 3, , ,............, nx x x x  in the last equation of (2), so we 

get  

 (2) (2) (2) (2)

1 1 2 2 ( 1) 1

1
.............n n n n n n n

nn

x b a x a x a x
a

 
      

Here the first stage of iteration is completed. 

The whole process is repeated untill the values of x1, x2, ……….…, xn are obtained upto the 

desired accuracy level. Gauss-Seidel method is also known as a method of successive 

displacement. 

 

Examples 

 

Example.5. Solve the following system of equations by Gauss-Seidel iteration method: 

  9541183  zyx , 10413527  zyx , 712983  zyx . 

Solution. The given system of equations are  

9541183  zyx     …(1) 



10413527  zyx     …(2) 

   712983  zyx     …(3) 

The above given equation can be written as in the iteration form:  

   )41195(
83

1
zyx     …(4) 

   )137104(
52

1
zxy     …(5) 

   )8371(
29

1
yxz      …(6) 

Here first we taking the initial solution 0,0,0 )1()1()1(  zyx and put these values in 

the equation (4), we get 

   
(2) (1) (1)1

(95 11 4 )
83

x y z    

          
1

(95 11 0 4 0)
83

      

       
95

83
  

      1.14  

Now put ,0,0,14.1 )1()1()2(  zyx in the equation (5), we get 

   

(2) (2) (1)1
(104 7 13

52

1
(104 7 1.14 13 0)

52

y x z  

    

 



        
96.02

52
  

     1.85  

Now put 0,85.1,14.1 )1()2()2(  zyx  in the equation (6), we get 

  )8371(
29

1 )2()2()2( yxz   

       
1

(71 3 1.14 8 1.85)
29

      

         

52.78

29

1.82





 

Now put 82.1,85.1,14.1 )2()2()2(  zyx  in the equation (4), we get 

  
(3) (2) (2)1

(95 11 4 )
83

x y z    

        
1

(95 11 1.85 4 1.82)
83

      

        

81.93

83

0.99





 

Now put 82.1,85.1,99.0 )2()2()3(  zyx  in the equation (5), we get 

         

(3) (3) (3)1
(104 7 13

52

1
(104 7 0.99 13 1.82)

52

y x z  

    

 



                

73.41

52

1.41





 

Now put 82.1,41.1,99.0 )2()3()3(  zyx  in the equation (6), we get 

        

(3) (3) (3)1
(71 3 8 )

29

1
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Now put 95.1,44.1,99.0 )3()3()3(  zyx  in the equation (5), we get 

      )41195(
83

1 )3()3()4( zyx   

  )95.1441.11195(
83

1
  

  

87.29

83
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Now put 95.1,41.1,05.1 )3()3()4(  zyx  in the equation (5), we get 

)137104(
52

1 )3()3()4( zxy   

       )95.11305.17104(
52

1
  

        

71.3

52

1.37





 



Now put 95.1,37.1,05.1 )3()4()4(  zyx  in the equation (6), we get  

)8371(
29

1 )4()4()4( yxz   

      )37.1805.1371(
29

1
  

                 

56.89

29

1.96





 

Here 
(4) (4) (4)1.05, 1.37, 1.96x y z   . These values are sufficiently close to the above x(3), y(3), 

z(3)
  respectively. Hence the solutions of the given system of equations are 

 1.05, 1.37, 1.96.x y z    

 

Example.6. Solve the following system of equation by Gauss-Seidel iteration method 

9210  zyx , 442202  zyx , 221032  zyx  

Solution: The give system of equations are  

9210  zyx     …(1) 

442202  zyx     …(2) 

   221032  zyx     …(3) 

The above given equation can be written as in the iteration form:  

1
(9 2 )

10
x y z       …(4) 



   )2244(
20

1
zxy     …(5) 

   )3222(
10

1
yxz      …(6) 

Here first we taking the initial solution 0,0,0 )1()1()1(  zyx and put these values in 

the equation (4), we get 

(2) (1) (1)1
(9 2 )

10
x y z     

1
(9 2 0 0)

10

9

10

0.9

   





 

Now put 
(2) (1) (1)0.9, 0, 0x y z    in the equation (5), we get 

(2) (2) (1)1
( 44 2 2 )

20

1
( 44 2 0.9 2 0)

20

y x z   

     

 

       

45.8

20

2.29

 

 

 

Now put 
(2) (2) (1)0.9, 2.29, 0x y z     in the equation (6), we get 

 

   2 2(2) 1
(22 2 3 )

10

1
(22 2 0.9 3 ( 2.29))

10

z x y  

     

 



      

1
((30.67)

10

3.067





 

Now put 
(2) (2) (2)0.9, 2.29, 3.067x y z     in the equation (4), we get 

          

(3) (2) (2)1
(9 2 )

10

1
(9 2 ( 2.29) 3.067)

10

x y z  

    

 

   

10.513

10

1.051





 

Now put 067.3,29.2,051.1 )2()2()3(  zyx  in the equation (5), we get 

        

(3) (3) (2)1
( 44 2 2 )

20

1
( 44 2 1.051 2 3.067)

20

y x z   

     

 

        

1
( 39.968)

20

1.99

 

 

 

Now put 067.3,99.1,051.1 )2()3()3(  zyx  in the equation (6), we get 

)3222(
10

1 )3()3()3( yxz   

      ))99.1(3051.1222(
10

1
  

    

1
(30.078)

10

3.007





 



Now Put 
(3) (3) (3)1.051, 1.99, 3.007x y z     in the equation (4), we get 

)29(
10

1 )3()3()4( zyx   

       

1
(9 2 ( 1.99) 3.007)

10

9.973

10

0.997

    





 

Now Put 007.3,99.1,997.0 )3()3()4(  zyx  in the equation (5), we get 

)2244(
20

1 )3()4()4( zxy   

        

1
( 44 2 0.997 2 3.007)

20

1
(39.98)

20

1.99

     



 

 

Now Put 007.3,99.1,997.0 )3()4()4(  zyx  in the equation (6), we get 

(4) 1
(22 2 3 )

10
z x y    

        
1

(22 2 0.997 3 ( 1.99))
10

       

        

1
(29.964)

10

2.99





 

Here 99.2,99.1,997.0 )4()4()4(  zyx . These values are sufficiently close to the above x(3), 

y(3), z(3)
  respectively. Hence the solutions of the given system of equations are 

0.997 1, 1.99 2, 2.99 3.x y z         



 

6.6 Summary 

 

Simultaneous linear equations provide a powerful and versatile mathematical framework for 

modeling, analyzing, and solving a wide range of real-world problems in diverse fields. Their 

importance lies in their applicability to understanding and optimizing complex systems and 

phenomena. Gaussian Elimination is a method in which the unknowns from the system of 

equations are eliminated successively such that system of equation is reduced to an upper 

triangular system from which the unknowns are determined by back substitution. Gauss-Seidel 

method is an iterative numerical technique used to solve a system of linear equations. This 

method is particularly useful for solving large systems of linear equations efficiently. 

 

6.7 Terminal Questions 

 

Q.1 Write the procedure for solving simultaneous linear equations by Gauss’s elimination 

method. 

Q.2. Explain the Gauss’ Seidel Method. 

Q.3. Solve the following system of equation by Gauss elimination method:  

102  zyx , 18323  zyx , 1694  zyx  

Q.4. Using Gauss elimination method to solve the following simultaneous equations:  

10321  xxx , 1722 321  xxx , 1723 321  xxx  

Q.5. Solve the following system of equation by Gauss Seidel method:  

85627  zyx , 722156  zyx , 11054  zyx  

Q.6. Using Gauss Seidel method to solve the following simultaneous equations: 



17220  zyx , 18203  zyx , 252032  zyx  

Q.7. Solve the following system of equations by Gauss-Seidel iteration method: 

342  zyx , 2223  zyx , 6 zyx  

 

Answer 

3. 5,9,7  zyx  

4. 5,3,2 321  xxx  

5. 92.1,57.3,43.2  zyx  

6. 1,1,1  zyx . 

7. 1 2 32, 1, 3.x x x     
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7.1 Introduction 

 

Numerical methods play a crucial role in various applications, particularly in determining finite 

differences, employing finite element techniques, and modeling equations and differential 

equations. Matrix algorithms, in particular, have garnered significant attention for solving 

engineering and industrial problems. Matrix computations serve as essential and versatile tools 

in a wide range of engineering applications, including image processing, control theory, network 

analysis, queuing theory, telecommunication, machine learning, data mining, data science, 

computational finance, and bioinformatics. 

In the realm of matrix calculations, methods such as LU factorization, Eigen decomposition, and 

Crout’s method are commonly employed for solving linear systems of equations and finding 

eigenvalues. Choleski’s method, on the other hand, is utilized for determining the inverse of a 

matrix. It is worth noting that Gauss elimination remains a fundamental technique for solving 

systems of linear equations. LU decomposition, or LU factorization, is a numerical method used 

to factorize a square matrix into the product of a lower triangular matrix (L) and an upper 

triangular matrix (U). This factorization is particularly useful for solving linear systems of 

equations and finding the inverse of a matrix.  

Crout's method is an iterative numerical technique used for solving systems of linear equations, 

and it is often applied in the context of LU decomposition. Crout's method is one of the variations 

of LU decomposition, and its implementation involves solving a system of linear equations using 

forward and backward substitutions. Like other LU decomposition methods, Crout's method is 

valuable for efficiently solving systems of equations and finding inverses of matrices in 

numerical computations.  

Choleski's method is widely used in various fields, including numerical analysis, statistics, and 

optimization, where symmetric positive definite matrices are prevalent. Its efficiency and 

stability make it a preferred choice for solving systems of linear equations involving such 

matrices. 

 



7.2       Objectives 

 

After reading this unit the learner should be able to understand about: 

 the LU Decomposition method or Triangular method 

 Procedure for Solving System of Equations by LU Decomposition Method 

 Crout’s method 

 Choleski’s method 

 

7.3    LU Decomposition Method or Triangular Method 

 

The LU decomposition is often employed to simplify the process of solving systems of linear 

equations and to enhance computational efficiency. LU decomposition is widely used in various 

numerical algorithms and applications, including solving linear systems, computing matrix 

inverses, and finding determinants. It is particularly advantageous for systems with multiple 

right-hand sides, as the LU decomposition can be reused for each system.  

LU decomposition is a foundational concept in numerical linear algebra, contributing to the 

development of efficient algorithms for solving matrix-related problems.  

According to LU decomposition method, every square matrix A can be expressed in the form of 

LU, where L is a lower triangular matrix and U is an upper triangular matrix, such that A = LU 

and provided that all the principal minors of A are non-singular  

i.e.,    11 0,a    

11 12

21 22

0,
a a

a a
  

https://en.wikipedia.org/wiki/LU_decomposition


11 12 13

21 22 23

31 32 33

0,

a a a

a a a

a a a

 and so on. 

 

7.4   Procedure for Solving System of Equations by LU Decomposition Method  

 

The LU decomposition method is better than the Gaussian elimination method, and it's procedure 

is similar to Gaussian elimination. However, LU decomposition works well only when the 

coefficient matrix can be broken down into a product of lower and upper triangular matrices. Let 

us consider the system of equations: 

11 1 12 2 13 3 1a x a x a x b    

21 1 22 2 23 3 2a x a x a x b    

31 1 32 2 33 3 3a x a x a x b    

The above given system of equations can be written as in matrix form: 

   .....(1)AX B  

Where 

11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

, ,

a a a x b

A a a a X x B b

a a a x b

     
       
     
          

 

Suppose    ....(2)A LU  



Where   

11 12 13

21 22 23

31 32 33

1 0 0

1 0 and 0

1 0 0

u u u

L l U u u

l l u

   
    
   
      

 

From the equation (2), we have 

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

1 0 0

1 0 0

1 0 0

a a a u u u

a a a l u u

a a a l l u

     
     
     
          

 

or 

11 12 13 11 12 13

21 22 23 21 11 21 12 22 21 13 23

31 32 33 31 11 31 12 32 22 31 13 32 23 33

a a a u u u

a a a l u l u u l u u

a a a l u l u l u l u l u u

   
     
   
        

 

Now comparing the above two matrices for determining the values of the elements of L and U, 

so we have 

  11 11 12 12 13 13, , .i u a u a u a    

  21 21
21 11 21 21

11 11

.
a a

ii l u a l
u a

     

  31 31
31 11 31 31

11 11

.
a a

iii l u a l
u a

     

  22 22
21 12 22 22 21

12

a u
iv l u u a l

u


     

21
22 22 21 12 22 12

11

.
a

u a l u a a
a

      



  21 13 23 23 23 23 21 13v l u u a u a l u      

21
23 23 13

11

.
a

u a a
a

    

  31
31 12 32 22 32 32 32 12

22 11

1 a
vi l u l u a l a a

u a

 
     

 
 

31
32 12

11
32

21
22 12

11

.

a
a a

a
l

a
a a

a

 
 

  
 

 
 

 

  31 13 32 23 33 33 33 33 31 13 32 23vii l u l u u a u a l u l u        

33 33 31 13 32 23u a l u l u     

31
32 12

1131 21
33 33 13 23 13

11 1121
22 12

11

.

a
a a

aa a
u a a a a

a aa
a a

a

 
 

       
    
 

 

Now put A LU  in the equation (1), so we have 

    ....(3)AX B LUX B    

Assume 

1

2

3

, where     Y= ....(4)

y

UX Y y

y

 
 
 
  

 



Now from the equations (3) and (4), we have 

....(5)LY B  

1 1

21 2 2

31 32 3 3

1 0 0

1 0

1

y b

l y b

l l y b

     
     
     
          

 

From the above expression, we get 

                                 

1 1

2 2 21 1

3 3 31 1 32 2

....(6)

y b

y b l b

y b l b l y

 


  
   

 

From the equations (4) and (6), we have 

....(7)UX Y  

11 12 13 1 1

22 23 2 2

33 3 3

0

0 0

u u u x y

u u x y

u x y

     
     
     
          

 

From the above expression, we get 

                                

3
3

33

2 23 3
2

22

1 12 2 13 3
3

11

....(8)

y
x

u

y u x
x

u

y u x u x
x

u


 




 

 

 


 



Hence LU decomposition can offer computational advantages over Gaussian elimination in 

certain scenarios. Once the LU decomposition is computed, it can be reused for solving multiple 

linear systems with different right-hand sides efficiently. This can result in significant time 

savings, especially when dealing with systems of equations with the same coefficient matrix and 

different constant vectors.  

LU decomposition is particularly relevant and beneficial when the coefficient matrix can be 

expressed as the product of lower and upper triangular matrices (i.e., A=LU) This condition is 

met in many practical applications, and when applicable, LU decomposition becomes a powerful 

tool for solving linear systems and related problems. 

 

Examples 

 

Example.1.  Solve  the following system of equations by LU decomposition method: 

  1 2 34 6 2 18,x x x    1 2 32 3 6,x x x   1 2 33 2 8.x x x    

Solution: Given that the system of equations are 

1 2 34 6 2 18,x x x     

1 2 32 3 6,x x x    

1 2 33 2 8.x x x    

The given system of equations can be written as in matrix form: 

....(1)AX B  



Where 

1

2

3

4 6 2 18

1 2 3 , , 6

3 1 2 8

x

A X x B

x

    
      
    
        

 

Consider   ....(2)A LU  

Where   

11 12 13

21 22 23

31 32 33

1 0 0

1 0 and 0

1 0 0

u u u

L l U u u

l l u

   
    
   
      

 

From equation (2), we have 

11 12 13

21 22 23

31 32 33

4 6 2 1 0 0

1 2 3 1 0 0

3 1 2 1 0 0

u u u

l u u

l l u

    
     
    
         

 

11 12 13

21 11 21 12 22 21 13 23

31 11 31 12 32 22 31 13 32 23 33

4 6 2

1 2 3

3 1 2

u u u

l u l u u l u u

l u l u l u l u l u u

  
     
  
        

 

For determining the values of elements of L and U, we comparing the above two matrices. So 

we have 

  11 12 134, 6, 2.i u u u    

  21 11 21

11

1 1
1 .

4
ii l u l

u
     

  31 11 31

11

3 3
3 .

4
iii l u l

u
     



  21 12 22 22 21 122 2iv l u u u l u      

22 21

1 1
2 6 2 6 .

6 2
u l       

  21 13 23 23 21 133 3v l u u u l u      

23

1 5
3 (2) .

4 2
u     

  31 12 32 22 32 22 31 121 1vi l u l u l u l u      

32

1 3
1 .6

1/ 2 4
l

 
   

 
  32 7.l    

  31 13 32 23 33 33 31 13 32 232 2vii l u l u u u l u l u        

33

3 5
2 (2) ( 7)

4 2
u      

33 18.u   

Thus the L and U are 

   

1 0 0 4 6 2

1/ 4 1 0 and 0 1/ 2 5 / 2

3 / 4 7 1 0 0 18

L U

   
    
   
       

 

Now putting A LU  in equation (1), we have 

  



....(3)AX B LUX B    

Consider   

1

2

3

, where     Y= ....(4)

y

UX Y y

y

 
 
 
  

 

Now the equations (3) and (4), we have 

....(5)LY B  

1

2

3

1 0 0 18

1/ 4 1 0 6

3 / 4 7 1 8

y

y

y

    
    
    
         

 

From the above expression, we obtain 

                                 

1

1 2

1 2 3

18

1
6 ....(6)

4

3
7 8

4

y

y y

y y y


 




  



   

 

Solving above exprression (6), we get  

  1 2 318, 3 / 2, 5.y y y    

From the equations (4) and (6), we have 

....(7)U X Y  



1 1

2 2

3 3

4 6 2

0 1/ 2 5 / 2

0 0 18

x y

x y

x y

    
     
    
         

 

From the above we get 

                                

1 2 3

2 3

3

4 6 2 18

1 5 3
....(8)

2 2 2

18 5

x x x

x x

x

   



  


 

 

Solving above expression (8), we obtain 

  1 2 3

35 29 5
, , .

18 18 18
x x x    

 

7.5  Crout’s Method 

 

Crout's method is an iterative numerical technique used for solving systems of linear equations, 

and it is often applied in the context of LU decomposition. Named after the mathematician 

Roland E. Crout, this method is a variation of LU decomposition that aims to factorize a square 

matrix A into the product of a lower triangular matrix L and an upper triangular matrix U.  

Crout’s method is similar to Gauss elimination method and LU decomposition method. Here we 

explain the Court’s method by assuming three system of equation: 

11 1 12 2 13 3 1a x a x a x b    

21 1 22 2 23 3 2a x a x a x b    



31 1 32 2 33 3 3a x a x a x b    

The above system of equation can be written as in matrix form: 

   ....(1)AX B  

Where 

11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

, ,

a a a x b

A a a a X x B b

a a a x b

     
       
     
          

 

The augmented matrix  A B  of equation (1) is  

                  
11 12 13 1

21 22 23 2

31 32 33 3

a a a b

A B a a a b

a a a b

 
 
 
  

    …..(2) 

Thus the augmented derived matrix  A B   is given as 

                 

11 12 13 1

21 22 23 2

31 32 33 3

a a a b

a a a b

a a a b

    
 

    
 

    
 

     …..(3) 

For determining   and   ij ia b   from equations (2) and (3), we have 

11 11 21 21 31 31, , .a a a a a a       

12
12

11

,
a

a
a

  13
13

11

,
a

a
a

  1
1

11

.
b

b
a

   



22 22 21 12 .a a a a     

32 32 31 12 .a a a a     

23 21 13
23

22

.
a a a

a
a

  


 

2 21 1
2

22

.
b a b

b
a

  


 

33 33 31 13 32 23 .a a a a a a        

3 31 1 32 2
3

33

.
b a b a b

b
a

     


 

Hence the solution of the above system of equation is  

3 3x b   

2 2 23 3x b a x    

1 1 12 2 13 3.x b a x a x      

 

Check your Progress 

 

1. What do you mean by LU Decomposition method? 

2. Explain the crout’s method. 

 

 



Examples 

 

Example.2. Apply Court’s method to solve 

  1 2 33 4 12,x x x    1 2 35 4 3 2,x x x   1 2 33 2 16.x x x    

Solution: Given that the system of equations are 

1 2 33 4 12,x x x     

1 2 35 4 3 2,x x x    

1 2 33 2 16.x x x    

The given system of equations can be written as in matrix form: 

.....(1)AX B  

Where 

1

2

3

1 3 4 12

5 4 3 , , 2

3 1 2 16

x

A X x B

x

     
       
    
        

 

The augmented matrix  /A B  is given as 

                 

11 12 13 1

21 22 23 2

31 32 33 3

1 3 4 12

5 4 3 2

3 1 2 16

a a a b

a a a b

a a a b

   
    
   
     

  …(2) 

Thus the augmented derived matrix  /A B   is given as 



                 

11 12 13 1

21 22 23 2

31 32 33 3

a a a b

a a a b

a a a b

    
 

    
 

    
 

     …(3) 

For determining   and   ij ia b   from equations (2) and (3), we have 

11 11 21 21 31 311, 5, 3.a a a a a a          

12
12

11

3
3.

1

a
a

a
       

13
13

11

4
4.

1

a
a

a
     

1
1

11

12
12.

1

b
b

a
     

22 22 21 12a a a a     

   
4 5( 3)

19.

  


 

32 32 31 12a a a a     

    
1 3( 3)

10.

  


 

23 21 13
23

22

a a a
a

a

  


 



   

3 5(4)

19

23
.

19

 


 

 

2 21 1
2

22

b a b
b

a

  


 

2 5(12)

19

58
.

19




 

 

33 33 31 13 32 23a a a a a a        

 

23
2 3(4) 10

19

40
.

19

 
    

 



 

3 31 1 32 2
3

33

b a b a b
b

a

     


 

 

58
16 3(12) 10

19

40 /19

5.

 
   

 



 

Hence the solution of the above system of equation is  

3 3 5x b    

2 2 23 3x b a x    



 
58 23

5
19 19

3

  



 

1 1 12 2 13 3x b a x a x      

 12 ( 3)(3) 4 5

1.

   


 

 

7.6  Choleski’s Method 

 

Choleski's method, named after the mathematician André-Louis Cholesky, is an algorithm used 

for the decomposition of a positive definite matrix into the product of a lower triangular matrix 

L and its transpose LT. This decomposition is a specialized form of the more general LU 

decomposition, tailored for symmetric and positive definite matrices. The Choleski 

decomposition is particularly useful for solving linear systems, calculating determinants, and 

generating samples from multivariate normal distributions. 

Choleski’s method is used to determine the inverse of a matrix provided that matrix is symmetric 

i.e., .A A   

Let us assume A L L   

or                

11 12 13 11 11 21 31

21 22 23 21 22 22 32

31 32 33 31 32 33 33

0 0

0 0

0 0

a a a l l l l

a a a l l l l

a a a l l l l

     
     
     
          

       …(1) 

Where L is a lower triangular matrix and L  is transpose of L (an upper triangular matrix).  

The inverse of A is  



              1 11 1 1 1A L L L L L L
       

             … (2)
 

To determine the inverse of A first we comparing both sides of equation (1) to finding the 

values of 11 21 22, , , ........l l l  Putting these value of 11 21 22, , , ........l l l  in L .   

Now to find 
1L  we have  

1L X LX I   
          …(3)

 

11 11

21 22 21 22

31 32 33 31 32 33

0 0 0 0 1 0 0

0 0 0 1 0

0 0 1

l x

l l x x

l l l x x x

     
     
     
         

 

Solving the above system we get the matrix 
1L and using equation (2), we get the inverse of 

the given matrix A. 

Examples 

 

Example.3. Determine the inverse of the following matrix using Choleski’s method: 

  

1 1 1

1 2 3 .

1 3 6

A

 
 
 
  

 

Solution: Given that the matrix 

1 1 1

1 2 3

1 3 6

A

 
 
 
  

 is symmetric so we use Choleski’s method 

to find inverse of the matrix. 



Let us assume A L L   

or                

11 11 21 31

21 22 22 32

31 32 33 33

1 1 1 0 0

1 2 3 0 0

1 3 6 0 0

l l l l

l l l l

l l l l

    
     
    
         

  ….(1) 

Comparing both sides, we get 

 
2

11 111 1.l l    

11 21 211 1.l l l    

11 31 311 1.l l l    

2 2
21 22 222 1.l l l     

21 31 22 32 323 2.l l l l l     

2 2 2
31 32 33 336 1.l l l l      

So we get the matrix L is 

1 0 0

1 1 0

1 2 1

L

 
 
 
  

 

Now to find 
1L  we have  

1 ....(2)L X LX I     



11

21 22

31 32 33

1 0 0 0 0 1 0 0

1 1 0 0 0 1 0

1 2 1 0 0 1

x

x x

x x x

    
    
    
        

 

Solving the above system we get  

 11 1.x   

11 21 210 1.x x x      

22 1.x   

11 21 31 312 0 1.x x x x      

22 32 322 0 2.x x x      

33 1.x   

Therefore the matrix 
1L  is 

1

1 0 0

1 1 0

1 2 1

L
 
  
 
   

 

The transpose of matrix 
1L  is 

 1

1 1 1

0 1 2

0 0 1

L
 

   
 
  

 



The inverse of A is  

              1 11 1 1 1A L L L L L L
         

     

1 1 1 1 0 0

0 1 2 1 1 0

0 0 1 1 2 1

   
     
   
       

 

    

3 3 1

3 5 2

1 2 1

 
   
 
   

. 

7.7  Summary 

The superiority of the LU decomposition method over the Gaussian elimination method is 

evident, and there exists a resemblance between LU decomposition and Gaussian elimination. 

The effectiveness of the LU decomposition method is contingent upon the coefficient matrix 

being representable as the product of lower and upper triangular matrices. LU decomposition 

offers advantages in terms of efficiency and reusability over Gaussian elimination, especially 

when dealing with multiple linear systems. Its relevance is contingent upon the factorization 

conditions A=LU which is satisfied in many real-world scenarios. Crout's method is valuable for 

efficiently solving systems of equations and finding inverses of matrices in numerical computations. The 

Choleski decomposition is particularly useful for solving linear systems, calculating 

determinants, and generating samples from multivariate normal distributions.Choleski's method 

is computationally efficient, requiring only half as many calculations as the LU decomposition 

since it exploits the symmetry of positive definite matrices. 

7.8 Terminal Questions 

 

Q.1. What do you mean by LU Decomposition method. 



Q.2. Explain Choleski’ method. 

Q.3. Solve the following system of equations using LU decomposition method: 

1 2 32 2,x x x  
 1 2 33 2 2,x x x   1 2 33 2 2.x x x  

 

Q.4. Solve the following system of equations using LU decomposition method: 

1 2 32 3 14,x x x  
 1 2 32 5 2 18,x x x   1 2 33 5 20.x x x  

 

Q.5. Apply Crout’s method to solve 

1 2 32 3 6,x x x  
 1 2 32 3 9,x x x   1 2 33 2 8.x x x  

 

Q.6. Apply Crout’s method to solve 

1 2 35 2 12,x x x   
 1 2 34 2 20,x x x    1 2 32 3 10 3.x x x  

 

Q.7. Applying Choleski’s method to find the inverse of the matrix 

  

1 2 3

2 8 5 .

3 5 6

A

 
 
 
    

Q.8. Applying Choleski’s method to find the inverse of the matrix 

  

1 2 6

2 5 15 .

6 15 46

A

 
 
 
    

ANSWERS 

Q.3.  1 2 31, 1, 1.x x x     



Q.4.  1 2 31, 2, 3.x x x    

Q.5. 1 2 3

35 29 5
, , .

18 18 18
x x x    

Q.6.  1 2 34, 3, 2.x x x     

Q.7. 

23 /13 3 /13 14 /13

3 /13 3 /13 1/13

14 /13 1/13 4 /13

  
  
 
    

 

Q.8.  

5 2 0

2 10 3

0 3 1
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Block-4 

Solving Algebraic and Transcendental Equations 

 

Many challenges in science and engineering can be expressed through equations, making the 

solution of equations a pivotal aspect in scientific and engineering domains. The significance of 

solving equations extends to various mathematical problems as well. In earlier units, we 

extensively explored the concept of numerical methods and the associated operators. In this 

block, our focus shifts to the task of determining solutions for algebraic and transcendental 

equations, commonly referred to as finding the roots of an equation. There are so many numerical 

methods for solving algebraic and transcendental equations. Some important methods are 

following: Bisection Method; Newton-Raphson Method; Regula Falsi Method and Secant 

Method. 

While mathematical methods readily handle linear, quadratic, cubic, and biquadratic equations, 

transcendental equations and those of higher degrees pose a more intricate challenge. The 

conventional mathematical approaches may not be as effective for these types of equations. 

Consequently, numerical methods such as the Bisection method, Regula falsi method, Secant 

method, and Newton Raphson’s method come into play to address and solve transcendental 

equations and equations of higher degrees. 

Numerical methods provide effective techniques for solving algebraic and transcendental 

equations when analytical solutions are challenging or impossible to obtain. Here, we'll explore 

some commonly used numerical methods for solving such equations: Bisection method, Regula 

Falsi method, Secant method and Newton-Raphson method. These numerical methods are 

essential for solving algebraic and transcendental equations encountered in various scientific, 

engineering, and mathematical applications. The choice of method depends on the specific 

characteristics of the equation and the desired level of precision. 

In the eighth unit, we shall discussed about the Bisection Method and Newton Raphson method 

and in the ninth unit we deal with Regula falsi method and secant method. 



UNIT-8: Numerical Method for solving Algebraic and Transcendental 

Equations-I 

 

Structure 

8.1 Introduction 

8.2 Objectives 

8.3  Polynomial 

8.4  Algebraic Equations  

8.5 Transcendental Equations 

8.6 Root of the Equation 

8.7  Bisection Method 

8.8 Procedure to find the real root by Bisection Method 

8.9         Newton Raphson Method  

8.10       Procedure to find the real root by Newton-Raphson Method 

8.11 Summary 

8.12  Terminal Questions 

 

  



8.1 Introduction 

 

Numerical methods offer powerful approaches to solve algebraic and transcendental equations, 

especially in cases where obtaining analytical solutions proves difficult or impractical. These 

techniques play a crucial role in addressing a wide range of scientific, engineering, and 

mathematical problems where precise solutions are essential but challenging to derive through 

traditional analytical methods. The Bisection Method is a simple yet effective numerical 

technique for finding the root of a real-valued function within a specified interval. This method 

is particularly useful when dealing with continuous functions where the root exists and changes 

sign over the chosen interval.  

The Newton-Raphson Method is an iterative numerical technique for finding the roots of a real-

valued function. Named after Sir Isaac Newton and Joseph Raphson, this method is particularly 

efficient for obtaining accurate approximations of roots, especially when the initial guess is close 

to the actual root. 

 

8.2       Objectives 

 

After reading this unit the learner should be able to understand about: 

 The Polynomial 

 Algebraic and Transcendental Equations 

 Bisection method and procedure to find the real root by Bisection method 

 Newton method and procedure to find the real root by Newton method 

 

 



8.3  Polynomial  

 

An expression of the form 

                    
2 3

0 1 2 3( ) ........................ n
nf x a a x a x a x a x       

where all a’s are constant provided that an0 and n is a positive integer, known as a polynomial 

in x of degree n. 

 

8.4  Algebraic Equations 

 

An expression of the form  

,0.....)( 1

2

2

1

10  



nn

nnn axaxaxaxaxf  a0 0  

where all naaa ,.......,, 10 are constants and n is a positive integer, known as an algebraic 

equation of degree n, in terms of x.  

Here 
6 5 4 3 34 3 9 3 6 0, 1 0x x x x x x x         are the examples of algebraic 

equation. 

 

8.5  Transcendental Equations  

 

If f(x) is an expression involving some functions such as trigonometric, exponential, logarithmic 

etc., then the equation 

 f(x) = 0        …. (1) 

is known as transcendental equation.  



Here 2
10cos 4sin 1 0; log 1 0; sinxx x x x x xe x        all are 

transcendental equations. 

 

8.6  Root of the Equation 

 

The value of x which satisfying the equation f(x) = 0 is known as the root of the equation. The 

roots of the linear, quadratic, cubic, or biquadratic equations are obtained by available methods, 

but for transcendental equation or higher degree equation cannot solved by these methods easily. 

So those types of equation can be solved by numerical methods such as Bisection, Secant, 

Newton-Raphson, Regula-Falsi method etc.  

Note: Every algebraic equation of degree n has only n roots real as well as imaginary. 

 

8.7  Bisection Method 

 

The Bisection Method is a fundamental tool in numerical analysis and serves as the basis for 

more advanced root-finding algorithms. Bisection method is used to find the root of an equation 

f(x) = 0 to the desired degree of accuracy. 

According to this method to find root of an equation first we check the given function f(x) is 

continuous in a closed interval [a, b] or not. If f(x) is not continuous in a closed interval [a, b] 

then Bisection method is failed. Also if f(x) is continuous in a closed interval [a, b] and does not 

cut the x-axis, then f(x) does not have a real root. 

 

8.8 Procedure to find the real root by Bisection Method 

 

The procedure to determine the real root by Bisection Method are as follows: 

Consider the given equation is  



f(x) = 0.       ….(1) 

Step-1:  First determine a closed interval [a, b] in which the function  f(x) is continuous and the 

values f(a) and f(b) are opposite sign.  

Step-2: If f(a) < 0 and f(b) > 0, then there exist one real root of the given equation (1) between 

a < x < b.  

Step-3: For the first approximation to get the root by bisecting the interval (a, b); we have  

1 .
2

a b
x


  

Step-4: Suppose if f(x1) = 0, then x1 is a required root of the equation (1) i.e., f(x) = 0.  

Otherwise the root will be either in the interval (a, x1) or in the interval (x1, b) according as f(x) 

is positive or negative.  

Step-5: Now bisect the interval as before and continue this process until we get the root of the 

given equation f(x) = 0 is found to a desired degree of accuracy. 

Case-1: If f(x1) > 0, so that the root lies between a and x1; then for second approximation we 

bisect the interval (a, x1);  

i.e., 1
2 .

2

a x
x


  

Case-2: If f(x2) < 0, so that the root lies between x1 and x2; then for third approximation we bisect 

the interval (x1, x2);       i.e.,  1 2
3 .

2

x x
x


  

Step-6: Continue this process, until we get the root of the given equation (1) to the desired 

accuracy. 

 



Check your Progress 

 

1. What do you mean by algebraic equation? 

2. What is transcendental equations. 

3. How to find the root of equation by Bisection method. 

 

Examples 

 

Example.1. Determine the real root of the equation x3– 4x+1 = 0 by Bisection method. 

Sol. It is given that f(x) = x3–4x+1 = 0. 

Here    f(1) = (1)3–4+1= –2 < 0  

and   f(2) = (2)3–4(2)+1 = 1 > 0. 

Therefore f(1) < 0 and  f(2) > 0 so at least one root of the given equation lies between 1 and 2.  

Using Bisection method, the first approximation is  

1

1 2
1.5.

2
x


   

Now we see that  

                   f(1.5) = (1.5)3–4(1.5)+1 =-1.625 < 0  

Therefore f(1.5) < 0 and  f(2) > 0 so the root lies between 1.5 and 2. 

For the second approximation is  

2

1.5 2
1.75.

2
x


   



Now we see that  

                   f(1.75) = (1.75)3–4(1.75)+1= –0.640625 < 0  

Therefore the root lies between 1.75 and 2. 

For the third approximation is  

3

1.75 2
1.875.

2
x


   

Now we see that  

                   f(1.875) = (1.875)3–4(1.875)+1 = 0.091796875 > 0  

Therefore the root lies between 1.75 and 1.875. 

For the fourth approximation is  

 
4

1.75 1.875
1.8125.

2
x


   

Now we see that  

                   f(1.8125) = (1.8125)3–4(1.8125)+1= –0.295654296875 < 0  

Therefore the root lies between 1.8125 and 1.875. 

For the fifth approximation is  

 
5

1.8125 1.875
1.84375.

2
x


   

Now we see that  

                   f(1.84375) = (1.84375)3–4(1.84375)+1= –0.107330322265 < 0  

Therefore the root lies between 1.84375 and 1.875. 



For the sixth approximation is  

 
6

1.84375 1.875
1.859375.

2
x


   

Now we see that  

                   f(1.859375) = (1.859375)3–4(1.859375)+1= –0.009128570556 < 0  

Therefore the root lies between 1.859375 and 1.875. 

For the seventh approximation is  

 
7

1.859375 1.875
1.8671875.

2
x


   

Now we see that  

                   f(1.8671875) = (1.8671875)3–4(1.8671875)+1= 0.0409922599792 > 0  

Therefore the root lies between 1.859375 and 1.8671875. 

For the eight approximation is  

 
8

1.859375 1.8671875
1.86328125.

2
x


   

Now we see that from above iterations,  

x1=1.5,     x2=1.75,    x3=1.875,    

x4=1.8125,             x5=1.84375,                         x6=1.859375,   

x7=1.8671875,       x8=1.86328125. 

The root of the given equation f(x) = x3–4x+1= 0 up-to two decimal places is 1.86, which is of 

desired accuracy. 



 

Example.2. Using Bisection method to determine the real root of the equation 

3 5 1 0.x x    

Solution: It is given that   3 5 1 0.f x x x    . 

Here  
3(2) 2 5 2 1 1f        

and  
3(3) 3 5 3 1 13f       

Therefore f(2) < 0 and  f(3) > 0 so at least one root of the given equation lies between 2 and 3.  

Using Bisection method, the first approximation is  

1

2 3
2.5.

2
x


   

Now we see that  

                   f(2.5) = (2.5)3–5(2.5)+1 = 4.125 > 0  

Therefore f(2) < 0 and  f(2.5) > 0 so the root lies between 2 and 2.5. 

For the second approximation is  

2

2 2.5
2.25.

2
x


   

Now we see that  

                   f(2.25) = (2.25)3–5(2.25)+1= 1.140625 > 0  

Therefore the root lies between 2 and 2.25. 

For the third approximation is  



3

2 2.25
2.125.

2
x


   

Now we see that  

                   f(2.125) = (2.125)3–5(2.125)+1= -0.029296875 < 0  

Therefore the root lies between 2.125 and 2.25. 

For the fourth approximation is  

 
4

2.125 2.25
2.1875

2
x


   

Now we see that  

                   f(2.1875) = (2.1875)3–5(2.1875)+1= 0.530029296875 > 0  

Therefore the root lies between 2.125 and 2.1875. 

For the fifth approximation is  

 
5

2.125 2.1875
2.15625.

2
x


   

Now we see that  

                   f(2.15625) = (2.15625)3–5(2.15625)+1= 0.2440490722656 > 0  

Therefore the root lies between 2.125 and 2.15625. 

For the sixth approximation is  

 
6

2.125 2.15625
2.140625.

2
x


   

Now we see that  



                   f(2.140625) = (2.140625)3–5(2.140625)+1= 0.105808280566 > 0  

Therefore the root lies between 2.125 and 2.140625. 

For the seventh approximation is  

 
7

2.125 2.140625
2.1328.

2
x


   

Now we see that  

                   f(2.1328) = (2.1328)3–5(2.1328)+1= 0.037757079552 > 0  

Therefore the root lies between 2.125 and 2.1328. 

For the eight approximation is  

 
8

2.125 2.1328
2.1289.

2
x


   

Now we see that  

                   f(2.1289) = (2.1289)3–5(2.1289)+1= 0.004132960569 > 0  

Therefore the root lies between 2.125 and 2.1289. 

For the ninth approximation is  

 
9

2.125 2.1298
2.12695.

2
x


   

Now we see that from above iterations,  

x1=2.5,    x2=2.25,   x3=2.125,         x4=2.1875,   

 x5=2.15625,               x6=2.140625,    x7=2.1328,   x8=2.1289,  

x9=2.12695. 



The root of the given equation f(x) = x3–5x+1= 0 up-to two decimal places is 2.12, which is of 

desired accuracy. 

 

8.9  Newton-Raphson Method 

 

The Newton-Raphson Method is widely used in various scientific and engineering applications 

for solving nonlinear equations and finding roots due to its speed of convergence when applicable 

conditions are met. The Newton-Raphson Method is an iterative numerical technique designed 

for approximating the roots of a real-valued function. This method, named after Sir Isaac Newton 

and Joseph Raphson, is particularly effective when seeking accurate solutions to Algebraic and 

Trancedental equations.  

Newton-Raphson Method is known for its rapid convergence, especially when the initial guess 

is close to the root and the function behaves well. However, it may exhibit convergence issues if 

the initial guess is far from the root or if the function possesses certain characteristics. It is a 

powerful tool widely utilized in scientific and engineering applications for solving nonlinear 

equations. 

 

8.10  Procedure to find a real root by Newton-Raphson Method 

 

Let us consider x = x0 be an approximate value of the roots of the equation f(x) = 0 which may 

be algebraic or transcendental and let x0 + h be the correct vale of the corresponding root where 

h be a real number sufficiently small. Then we have 

0)( 0  hxf        …..(1) 

The above equation (1) expanding by Taylor’s theorem, we have 

0.....)(
!3

)(
!2

)(
!1

)()( 0

3

0

2

000  xf
h

xf
h

xf
h

xfhxf  

Since h is very small, so neglecting the second and higher order terms, so we get 

    0 0( ) ( ) 0f x h f x    



 
)(

)(

0

0

xf

xf
h


  also 0)( 0  xf                                           …..(2) 

Thus from equations (1) and (2), the first approximation of the root is given by 

  
)(

)(

0

0
001

xf

xf
xhxx


  

Similarly, we taking x1 as initial approximation, to be the better approximation of the root x2 is 

obtained as 

  
1

2 1 0

1

( )
, ( ) 0

( )

f x
x x f x

f x
  


 

Proceeding in the same way, we get the better approximation of the root is given by  

  ....3,2,1,0,
)(

)(
1 


 n

xf

xf
xx

n

n
nn  

This is known as the Newton-Raphson formula which is very important for solving the algebraic 

equations and transcendental equations. 

 

Examples 

 

Example.3. Determine the real root of the equation 
2 4 2 0x x    using Newton-

Raphson’s method.  

Solution: The given equation is 
2 4 2 0x x   . 

Consider 
2( ) 4 2 0f x x x       

and          ( ) 2 4f x x      



 Now we have 

  
2(3) 3 4 3 2 1.f         

and  
2(4) 4 4 4 2 2.f       

Therefore, one real root of the given equation is lies between 3 and 4. 

Using Newton-Raphson’s formula, we have 

 1

( )

( )

n
n n

n

f x
x x

f x
  


 

                       

2 4 2

2 4

n n
n

n

x x
x

x

 
 


 

        

2 22 4 4 2

2 4

n n n n

n

x x x x

x

   



 

 

2

1

2

2 4

n
n

n

x
x

x






  where n= 0, 1, 2, 3, …..    …(1) 

First we take   x0 = 3 

Putting n = 0 in the equation (1), so we get the first approximation 

  

2

0
1

0

2

2 4

x
x

x





 

   
23 2

2 3 4




 
 

   
9 2

6 4





 



   
7

2
  

  3.5  

Again, putting n =1 in the equation (1), so we get second approximation 

 

2

1
2

1

2

2 4

x
x

x





 

    
2(3.5) 2

2 3.5 4




 
 

    
12.25 2

7 4





 

    
10.25

3
  

   3.41667  

Putting n =2 in the equation (1), so we get the third approximation 

       

2

2
3

2

2

2 4

x
x

x





 

2(3.41667) 2

2 (3.41667) 4




 
 

11.67363 2

6.83334 4





 

9.67363

2.83334
  

3.41421  

Putting n = 3 in the equation (1), so we get the fourth approximation 



3

3
4

3

2

2 4

x
x

x





 

2(3.41421) 2

2 3.41421 4




 
 

11.65683 2

6.82842 4





 

9.65683

2.82842
  

3.41421  

Here we see that x3 = x4. Hence the root of the given equation 
2 4 2 0x x    is 3.41421. 

 

Example.4. Using Newton-Raphson’s method to determine the real root of the equation 

3 5 1 0x x   . 

Solution: The given equation is 
3 5 1 0x x   . 

Consider  
3( ) 5 1 0f x x x     

and  
2( ) 3 5f x x    

Now we have 

  
3(2) 2 5 2 1 1f        

and  
3(3) 3 5 3 1 13f       

Therefore, one real root of the given equation is lies between 2 and 3. 

Using Newton-Raphson’s formula, we have 



1

( )

( )

n
n n

n

f x
x x

f x
  


 

            

3

2

5 1

3 5

n n
n

n

x x
x

x

 
 


 

        

3 3

2

3 5 5 1

3 5

n n n n

n

x x x x

x

   



 

3

1 2

2 1

3 5

n
n

n

x
x

x






  where n = 0, 1, 2, 3, ….    ..(1) 

First we take   x0 = 2 

Putting n = 0 in the equation (1), so we get the first approximation 

  

3

0
1 2

0

2 1

3 5

x
x

x





 

   
3

2

2(2) 1

3(2) 5





 

   
17

7
  

   2.42857.  

Again, putting n =1 in the equation (1), so we get second approximation 

  

3

1
2 2

1

2 1

3 5

x
x

x





 

    
3

2

2(2.42857) 1

3(2.42857) 5





 



    
29.64718

12.69386
  

    2.33555  

Putting n =2 in the equation (1), so we get the third approximation 

  

3

2
3 2

2

2 1

3 5

x
x

x





 

     
3

2

2(2.33555) 1

3(2.33555) 5





 

     
26.47989

11.36438
  

     2.33008  

Putting n = 3 in the equation (1), so we get the fourth approximation 

  

3

3
4 2

3

2 1

3 5

x
x

x





 

  
3

2

2(2.33008) 1

3(2.33008) 5





 

 
26.30128

11.28782
  

 2.33006  

Here we see that x3 = x4. Hence the root of the given equation 
3 5 1 0x x   is 2.3300. 

 

Example.5. Determine the cube root of 10 correct to six decimal places with the help of 

Newton-Raphson’s method. 



Solution: The given equation is 
3 10 0x   . 

Consider  010)( 3  xxf  

and  
2( ) 3f x x   

Now we have 

  
3(1) 1 10 9f       

  2102)2( 3 f   

and   17103)3( 3 f  

Therefore, one real root of the given equation is lies between 2 and 3. 

Using Newton-Raphson’s formula, we have 

       
1

( )

( )

n
n n

n

f x
x x

f x
  


 

3

2

10

3

n
n

n

x
x

x


   

3 3

2

3 10

3

n n

n

x x

x

 
  

      

3

1 2

2 10

3

n
n

n

x
x

x



  where n = 0, 1, 2, 3….    …(1) 

First we take   x0 = 2 

Putting n = 0 in the equation (1), so we get the first approximation 



  

3

0
1 2

0

2 10

3

x
x

x


  

     
3

2

2(2) 10

3(2)


  

     
26

12
  

     2.16667  

Again, putting n =1 in the equation (1), so we get the second approximation 

                              

3

1
2 2

1

2 10

3

x
x

x


  

3

2

2(2.16667) 10

3 (2.16667)





 

30.342686

14.083377
  

2.154504  

Putting n =2 in the equation (1), so we get the third approximation 

         

3

2
3 2

2

2 10

3

x
x

x


  

3

2

2.(2.154504) 10

3.(2.154504)


  

30.001930

13.925662
  

2.154435  



Putting n = 3 in the equation (1), so we get the fourth approximation 

          

3

3
4 2

3

2 10

3

x
x

x


  

               
3

2

2(2.154435) 10

3(2.154435)


  

30.000009

13.924771
  

2.154435  

Here we see that x3 = x4. Hence the root of the given equation 
3 10 0x    is 2.154435. 

Example.6. Determine the real root of tan x = 4x by using Newton-Raphson’s method. 

Solution. The given equation is tan 4 0x x  . 

Consider  04tan)(  xxxf  

and  
2( ) sec 4f x x    

Now we have 

  (0) 0f   

and   (1) 3.982f    

Therefore, one real root of the given equation is 0. 

Using Newton-Raphson’s formula, we have 

       
1

( )

( )

n
n n

n

f x
x x

f x
  


  



2

tan 4

sec 4

n n
n

n

x x
x

x


 


  

2

2

sec tan

sec 4

n n n

n

x x x

x





 ,     where n = 0, 1, 2, 3, ….  …(1) 

First we take   x0 = 2 

Putting n = 0 in the equation (1), so we get the first approximation 

                    

2

0 0 0
1 2

0

sec tan

sec 4

x x x
x

x





 

0.1 0

1 4





 

0  

Hence the root of the given equation tan 4 0 is 0.x x   

Example.7. Using Newton-Raphson’s method to determine the root of 3xe x  upto correct 

to four decimal places. 

Solution: The given equation is 3 .xe x  

Consider  03)(  xexf x
 

and  3)(  xexf  

Now we have 

  (0) 1f   

and             (1) 0.28f    

Therefore, one real root of the given equation is lies between 0 and 1. 



Using Newton-Raphson’s formula, we have 

  
1

( )

( )

n
n n
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f x
x x
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n x
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x
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 where n = 0, 1, 2, 3 …..    ..(1) 

First we take   x0 = 0 

Putting n = 0 in the equation (1), so we get the first approximation 

  
0

0

0
1

( 1)

3

x

x

e x
x

e





 

     
0

0

(0 1)

3

e

e





 

1

2





 

0.5  

Again, putting n =1 in the equation (1), so we get the second approximation 

        
1

1

1
2

( 1)

3

x

x

e x
x

e





 

0.5

0.5

(0.5 1)

3

e

e





 



0.82436

1.35127





 

0.61006  

Putting n =2 in the equation (1), so we get the third approximation 

         
2

2

2
3

( 1)

3

x

x

e x
x

e





 

0.61006

0.61006

(0.61006 1)

3

e

e





 

0.71770

1.15945





 

0.61900  

Putting n =3 in the equation (1), so we get the fourth approximation 

         
3

3

3
4

( 1)

3

x

x

e x
x

e





 

0.61900

0.61900

(0.61900 1)

3

e

e





 

0.71770

1.14293





 

0.61905  

Here we see that x3 = x4. Hence the root of the given equation xe x 3 is 0.6190.  

Example.8. Determine the real root of the equation 1cos3  xx by Newton-Raphson’s 

method. 

Solution: The given equation is 1cos3  xx . 



Consider  01cos3)(  xxxf  

and  ( ) 3 sinf x x    

Now we have 

  2)0( f  

and              (1) 3 cos 1 1 2 0.5403 1.4597f        

Therefore, one real root of the given equation is lies between 0 and 1. 

Using Newton-Raphson’s formula, we have 

  
1

( )

( )

n
n n

n

f x
x x

f x
  


  

        
3 cos 1

3 sin

n n
n

n

x x
x

x

 
 


  

       
3 sin 3 cos 1

3 sin

n n n n n

n

x x x x x

x

   



 

       
sin cos 1

3 sin

n n n

n

x x x

x

 



      …(1) 

First we take   x0 = 0 

Putting n = 0 in the equation (1), so we get the first approximation 

  0 0 0
1

0

sin cos 1

3 sin

x x x
x

x

 



 

      
0sin 0 cos0 1

3 sin 0

 



 



     
2

3
  

     0.6666  

Putting n = 1 in the equation (1), so we get the second approximation 

         1 1 1
2

1

sin cos 1

3 sin

x x x
x

x

 



 

(0.6666)sin(0.6666)cos(0.6666) 1

3 sin(0.6666)





 

   
0.6666 0.6183 0.7859 1

3 0.6183

  



 

0.4122 0.7859 1

3.6183

 
  

   
2.1481

3.6183
  

0.6074  

Putting n =2 in the equation (1), so we get the third approximation 

        2 2 2
3

2

sin cos 1

3 sin

x x x
x

x

 



 

(0.6074)sin(0.6074) cos(0.6074) 1

3 sin(0.6074)

 



 

  
0.6074 0.5707 0.8211 1

3 0.5707

  



 

0.3466 0.8211 1

3.5707

 
  



2.1677

3.5707
  

0.6071  

Putting n =3 in the equation (1), so we get the fourth approximation 

       3 3 3
4

3

sin cos 1

3 sin

x x x
x

x

 



 

(0.6071)sin(0.6071) cos(0.6071) 1

3 sin(0.6071)

 



 

0.6071 0.5704 0.8213 1

3 0.5704

  



 

0.3463 0.8213 1

3.5704

 
  

2.1676

3.5704
  

0.6071  

Here we see that x3 = x4. Hence the root of the given equation 01cos3  xx is 0.6071. 

8.11 Summary 

 

Bisection Method, another essential tool in numerical analysis, serves as a foundational 

technique for more advanced root-finding algorithms. Primarily used to locate the root of an 

equation f(x) = 0 with a desired degree of accuracy, the Bisection Method is a reliable approach 

applicable in various mathematical and computational contexts.  

Newton-Raphson Method stands out as a widely employed and powerful numerical technique in 

the realms of science and engineering. Specifically designed for approximating roots of real-

valued functions, this iterative method, named after Sir Isaac Newton and Joseph Raphson, is 



acclaimed for its rapid convergence under favorable conditions. It is a preferred choice in 

applications requiring accurate solutions to nonlinear equations. 

8.12 Terminal Questions 

 

Q.1. Explain the procedure for solving algebraic equation by Newton-Raphson’s method. 

Q.2. Write the procedure for solving algebraic equation by Bisection method. 

Q.3. Using Bisection method to find a real root of the equation ( ) 3 1 sin 0.f x x x     

Q.4. By using Newton-Raphson’s method, find the real root of the equation 0134  xx . 

Q.5. Using Newton-Raphson’s method. Find the square root of 12 correct to three places of 

decimal.  

Answer 

3.  0.39 

4.  1.967 

5.  3.4641. 
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9.1 Introduction 

 

Numerical methods are instrumental in addressing the challenges posed by both algebraic and 

transcendental equations when analytical solutions become difficult or impracticable. This 

collective set of methods constitutes a versatile toolkit, catering to a broad spectrum of algebraic 

and transcendental equations prevalent in scientific, engineering, and mathematical contexts. The 

selection of a specific method hinges on the distinctive features of the problem at hand, balancing 

the trade-off between precision and computational efficiency based on the desired outcome. 

Secant Method provides an effective approach for finding roots of real-valued functions, offering 

a good compromise between simplicity and convergence speed, especially in situations where 

derivatives are not readily available. 

The Regula-Falsi method is a numerical technique that merges the simplicity of the Bisection 

method with faster convergence, leading to quicker results in many cases. This method proves 

advantageous in approximating roots of real-valued functions within a specified interval. 

However, it is essential to note that the Regula-Falsi method may face convergence challenges 

under certain circumstances. Convergence issues may arise if the function being analyzed 

possesses specific characteristics or if the initial interval chosen for the method is not well-suited 

to the nature of the function. Careful consideration of these factors is crucial for the successful 

application of the Regula-Falsi method in root-finding problems. 

 

9.2       Objectives 

 

After reading this unit the learner should be able to understand about: 

 The Regula-Falsi Method with their solution procedure 

 The Secant Method and their problem 

 



9.3  Regula Falsi Method 

 

The Regula-Falsi method, also known as the False Position method, is an iterative numerical 

technique used for finding the root of a real-valued function within a given interval. The Regula-

Falsi method combines the simplicity of the Bisection method with faster convergence, often 

providing quicker results. However, it may encounter convergence issues if the function has 

certain characteristics or if the initial interval is poorly chosen. This method is the oldest method 

for finding the real root of the equation f(x) = 0.  

In this method we take two points x0 and x1 such that f(x0) and f(x1) are of opposite signs i.e., 

.0)()( 10 xfxf  The root must lie in between x0 and x1 since the graph y = f(x) crosses the x-axis 

between these two points. 

Now the equation of the chord joining the two points  )(, 00 xfxA  and  )(, 11 xfxB  is  

01

01

0

0 )()()(

xx

xfxf

xx

xfy









     ….(1) 

In this method the curve between the point  )(, 00 xfxA and  )(, 11 xfxB is replaced by the 

chord AB by joining the points A and B taking the point of intersection of the chord with the x-

axis as an approximation to the root which is given by putting y = 0 in the equation (1). Thus, we 

have 

)(
)()(

)(
0

01

01
02 xf

xfxf

xx
xx




  

If now )( 0xf and )( 2xf are of opposite signs, then the root lies between x0 and x2. Then replace 

the part of curve between the points ))(,( 00 xfxA and ))(,( 22 xfxC  by the chord joining these 

points and this chord intersect the x-axis then we get second approximation to the root which is 

given by 

)(
)()(

)(
0

02

02
03 xf

xfxf

xx
xx




  



The procedure is repeated till the root is found to desired accuracy. The Regula-Falsi method is 

a valuable tool for approximating roots of real-valued functions, striking a balance between 

computational efficiency and simplicity. 

 

Examples 

 

Example.1. Use the method of false position, find the real root of the equation 

0523  xx . 

Solution: The given equation is 0523  xx . 

Consider  052)( 3  xxxf  

Now we have 

  15222)2( 3 f  

and  165323)3( 3 f  

Therefore, one real root of the given equation is lies between 2 and 3. 

Taking 0 12 and 3x x   

0( ) (2) 1f x f     

and           
1( ) (3) 16f x f   

Using Regula-Falsi method, we have 

1 0
2 0 0

1 0

( )
( ) ( )

x x
x x f x

f x f x


 


 



3 2
2 ( 1)

16 ( 1)


  

 
 

       
1

2
17

   

35

17
  

2.0588  

Now we have 

  2( ) (2.0588)f x f  

3(2.0588) 2 (2.0588) 5     

   = 0.3910 

Therefore, one real root of the given equation is lies between 2.0588 and 3. 

Now we take 0 12.0588, 3x x   

0( ) (2.0588) 0.3910f x f     

and   16)3()( 1  fxf  

Using Regula-Falsi method, we have 

        1 0
3 0 0

1 0

( )
( ) ( )

x x
x x f x

f x f x


 


 

3 2.0588
2.0588 ( 0.3910)

16 ( 0.3910)


   

 
 

  
0.9412

2.0588 (0.3910)
16.391

    



2.0588 0.02245   

2.0812  

Now, we have  

3( ) (2.0812)f x f  

3(2.0812) 2 (2.0812) 5     

0.1479   

Therefore, one real root of the given equation is lies between 2.0812 and 3. 

Now we take 3,0812.2 10  xx  

  0( ) (2.0812) 0.1479f x f    

and   
1( ) (3) 16f x f   

Using Regula-Falsi method, we have 

        )(
)()(

0

01

01
04 xf

xfxf

xx
xx




  

  
3 2.0812

2.0812 ( 0.1479)
16 ( 0.1479)


   

 
 

0.9188
2.0812 (0.1479)

16.1479
    

  = 2.0812+0.0084 

= 2.0896 

Now, we have  



     4( ) (2.0896)f x f  

3(2.0896) 2 (2.0896) 5    

0.0551   

Therefore, one real root of the given equation is lies between 2.0896 and 3. 

Now we take 3,0896.2 10  xx  

  0( ) (2.0896) 0.0551f x f    

and  
1( ) (3) 16f x f   

Using Regula-Falsi method, we have 

          1 0
5 0 0

1 0

( )
( ) ( )

x x
x x f x

f x f x


 


 

3 2.0896
2.0896 ( 0.0551)

16 ( 0.0551)


  

 
 

  = 
0.9404

2.0896 0.0551
16.0551

   

2.0896 0.0031   

2.0927  

Now we have 

 
5( ) (2.0927)f x f  

3(2.0927) 2 (2.0927) 5     

0.0206   



Therefore, one real root of the given equation is lies between 2.0927 and 3. 

Now we take 3,0927.2 10  xx  

  0( ) (2.0927) 0.0206f x f    

and  
1( ) (3) 16f x f   

Using Regula-Falsi method, we have 

            1 0
6 0 0

1 0

( )
( ) ( )

x x
x x f x

f x f x


 


 

3 2.0927
2.0927 ( 0.0206)

16 ( 0.0206)


   

   

0.9073
2.0927 0.0206

16.02206
    

2.0927 0.0011   

2.0938  

Now, we have  

  
6( ) (2.0938)f x f  

3(2.0938) 2 (2.0938) 5     

0.0083   

Therefore, one real root of the given equation is lies between 2.0938 and 3. 

Now we take x0 = 2.0938, x1 = 3 

  0083.0)0938.2()( 0  fxf  



and  16)3()( 1  fxf  

Using Regula-Falsi method, we have 

         1 0
7 0 0

1 0

( )
( ) ( )

x x
x x f x

f x f x


  


 

3 2.0938
2.0938 ( 0.0083)

16 ( 0.0083)


   

 
 

  0083.0
0083.16

9062.0
0938.2   

  2.0938 0.00046   

2.0942  

Now, we have  

7( ) (2.0942)f x f  

3(2.0942) 2 (2.0942) 5     

0.0030   

Therefore, one real root of the given equation is lies between 2.0942 and 3. 

Now we take x0 = 2.0942, x1 = 3 

0( ) (2.0942) 0.0030f x f     

and           
1( ) (3) 16f x f   

Using Regula-Falsi method, we have 

  1 0
8 0 0

1 0

( )
( ) ( )

x x
x x f x

f x f x


 


 



  
3 2.0942

2.0942 ( 0.0030)
16 ( 0.0030)


   

 
 

                         
0.9052

2.0942 0.0030
16.0030

    

2.0942 0.00016   

2.0943  

Here x7 = x8. 

Hence the root of the given equation is 2.094 which is correct to three decimal places. 

Example.2. Find the real root of the equation 2xxe  correct upto three decimal places 

using Regula-Falsi method. 

Solution. The given equation is 2xxe . 

Consider  02)(  xxexf  

Now we have 

   220)0( f  

   
0.5(0.5) 0.5 2 1.1756f e     

   5903.0)7.0( f  

   2136.0)9.0( f  

Therefore, one real root of the given equation is lies between 0.7 and 0.9. 

Taking 9.0,7.0 10  xx  

0( ) (0.7) 0.5903f x f     



and    
1( ) (0.9) 0.2136f x f   

Using Regula-Falsi method, we have 

  )(
)()(

0

01

01
02 xf

xfxf

xx
xx 




  

       
0.9 0.7

0.7 ( 0.5903)
0.2136 ( 0.5903)


   

 
 

     
0.2

0.7 (0.5903)
0.8039

    

          8469.0  

Now, we have  

   2( ) (0.8469)f x f  

0.8469(0.8469)e 2   

0.0247   

Therefore, one real root of the given equation is lies between 0.8469 and 0.9. 

Now we take x0 = 0.8469, x1 = 0.9 

0( ) (0.8469) 0.0247f x f     

and        
1( ) (0.9) 0.2136f x f   

Using Regula-Falsi method, we have 

  

           1 0
3 0 0

1 0

( )
( ) ( )

x x
x x f x

f x f x


  


 



0.9 0.8469
0.07 (0.0247)

0.2136 ( 0.0247)


  

 
 

  
0.0531

0.7 0.0247
0.2383

    

0.8524  

Now, we have  

  
3( ) (0.8524)f x f  

0.8524(0.8524) 2e   

0.00089   

Therefore, one real root of the given equation is lies between 0.8524 and 0.9. 

Now we take x0 = 0.8524, x1 = 0.9 

0( ) (0.8524) 0.00089f x f     

and   
1( ) (0.9) 0.2136f x f   

Using Regula-Falsi method, we have 

1 0
4 0

1 0( ) ( )

x x
x x

f x f x


 


 

      
0.9 0.8524

0.8524 ( 0.00089)
0.2136 ( 0.00089)


   

 
 

         
0.0476

0.8524 (0.00089)
0.21449

    

      0.8526 . 

 



9.4  Secant Method 

 

The Secant Method is an iterative numerical technique utilized for approximating the root of a 

real-valued function. It is particularly useful for finding solutions to equations when the 

derivative of the function is either unknown or difficult to compute. The Secant Method shares 

similarities with the Newton-Raphson Method but does not require the computation of the 

derivative. While it may not converge as rapidly as Newton's method, it is versatile and 

applicable in cases where derivatives are challenging to obtain.  

Secant method is an improvement/extension of the Regula-Falsi method and according to this 

method no requirement of the condition f(x0). f(x1)<0; i.e., no condition for the interval (x0, x1) 

must contains the root.  

In this method the function y= f(x) graph is near to secant line in each iteration of the method.  If 

any stage of iteration the value of f(xn)= f(xn-1), then the secant method is fail.  

The secant formula for nth approximation is given by  

 1
1

1

( ); 1
( ) ( )

n n
n n n

n n

x x
x x f x n

f x f x







  


 

Note: Secant method is not necessarily for f(x0) and  f(x1) are of opposite sign. Also it is not 

necessary for the interval (x0, x1) must contain the root. 

Check your Progress 

 

1. What is the difference between regula falsi method and secant method.. 

2. Which one is better in between regula falsi method and secant method 

Examples 

 

Example.3. Find the real root of the equation x-e-x=0 by Secant Method, up-to three places 

of decimal. 



Sol. The given equation is 0xx e  . 

Consider  ( ) 0xf x x e    

Now we have 

  f(0) = –1< 0  

and    f(1) =1-e-1=0.6321> 0 

Therefore, atleast one root of the given equation is lies between 0 and 1. 

Taking x0 = 0, x1 =1, f(x0) = – 1 and f(x1) = 0.6321.  

Using Secant method, we have  

 1 0
2 1 1

1 0

( )
( ) ( )

x x
x x f x

f x f x


 


 

1 0
1 (0.6321)

0.6321 ( 1)


 

 
 

0.6321
1

1.6321
   

0.6127.  

Now, we have  

                    f(x2) = f(0.6127)  

    = (0.6127)-e-0.6127  

   = 0.6127-0.5419 

    =0.0708. 

Taking x1 =1, x2 =0.6127, f(x1) =0.6321 and f(x2) = 0.0708.  



Using Secant method, we have  

 2 1
3 2 2

2 1

( )
( ) ( )

x x
x x f x

f x f x


 


 

      0.6127 1
0.6127 (0.0708)

0.0708 0.6321


 


 

   0.6127 0.0488    

 0.5639.  

Now we have        

                f(x3) = f(0.5639)  

= (0.5639)-e-0.5639  

= 0.5639-0.5690  

= –0.0051. 

Now taking x2 =0.6127, x3 =0.5639,  f(x2) =0.0708 and f(x3) = –0.0051.  

Using Secant method, we have  

 3 2
4 3 3

3 2

( )
( ) ( )

x x
x x f x

f x f x


 



 

      0.5639 0.6127
0.5639 ( 0.0051)

0.0051 0.0708


  

 
 

       0.5639 0.0033   

      0.5672.  

Now we have        

                f(x4) = f(0.5672)  

= (0.5672)-e-0.5672  

= 0.5639-0.5671  



= 0.0001. 

Now taking x3 =0.5639, x4 =0.5672,  f(x3) =-0.0051 and f(x4) = 0.0001.  

Using Secant method, we have  

 4 3
5 4 4

4 3

( )
( ) ( )

x x
x x f x

f x f x


 


 

0.5672 0.5639
0.5672 (0.0001)

0.0001 ( 0.0051)


 

 
 

                   0.5672 0.00063   

             0.5670.  

Hence the root of the given equation ( ) 0xf x x e   up-to three decimal places is 0.567, 

which is of desired accuracy. 

 

Example.4. Find the real root of the equation cos 0xx xe   by Secant Method. 

Sol. The given equation is cos 0xx xe  . 

Consider  ( ) cos 0xf x x xe    

Now we have 

  
0

0( ) (0) cos(0) 0. 1 0f x f e      

and   
1

1( ) (1) cos(1) 1. 2.1780 0f x f e       

Therefore, atleast one root of the given equation is lies between 0 and 1. 

Taking x0 = 0, x1 =1, f(x0) = 1 and f(x1) = -2.1780.  

Using Secant method, we have  



 1 0
2 1 1

1 0

( )
( ) ( )

x x
x x f x

f x f x


 


 

1 0
1 ( 2.1780)

2.1780 1


  

 
 

2.1780
1

3.1780
   

0.3147.  

Now, we have  

                    f(x2) = f(0.3147)  

    
0.3147cos(0.3147) (0.3147)e   

    0.9509 0.4311   

   0.5198 . 

Taking x1 =1, x2 =0.3147, f(x1) = –2.1780 and f(x2) = 0.5198.  

Using Secant method, we have  

 2 1
3 2 2

2 1

( )
( ) ( )

x x
x x f x

f x f x


 


 

      0.3147 1
0.3147 (0.5198)

0.5198 ( 2.1780)


 

 
 

   0.3562
0.3147

2.6978
    

 0.4467.  

Now we have        



                    f(x3) = f(0.4467)  

    
0.4467cos(0.4467) (0.4467)e   

    0.9019 0.6983   

   0.2036 . 

Now taking x2 =0.3147, x3 =0.4467,  f(x2) =0.5198 and f(x3) = 0.2036.  

Using Secant method, we have  

 3 2
4 3 3

3 2

( )
( ) ( )

x x
x x f x

f x f x


 


 

      0.4467 0.3147
0.4467 (0.2036)

0.2036 0.5198


 

 
 

       0.0269
0.4467

0.3162
   

      0.5318.  

Now we have        

                    f(x4) = f(0.5318)  

    
0.5318cos(0.5318) (0.5318)e   

    0.8619 0.9051   

   0.0432  . 

Now taking x3 =0.4467, x4 =0.5318,  f(x3) =0.2036 and f(x4) = –0.0432.  

Using Secant method, we have  

 4 3
5 4 4

4 3

( )
( ) ( )

x x
x x f x

f x f x


 



 



0.5318 0.4467
0.5318 ( 0.0432)

0.0432 0.2036


  

 
 

                   0.0037
0.5318

0.2468
   

             0.5168.  

Now we have        

                    f(x5) = f(0.5168)  

    
0.5168cos(0.5168) (0.5168)e   

    0.8694 0.8665   

   0.0029 . 

Now taking x4 =0.5318, x5 =0.5168,  f(x4) =–0.0432 and f(x5) = 0.0029.  

Using Secant method, we have  

 5 4
6 5 5

5 4

( )
( ) ( )

x x
x x f x

f x f x


 


 

 

0.5168 0.5318
0.5168 (0.0029)

0.0029 0.0432


 

 
 

                   0.0000435
0.5168

0.0461
   

             0.5177.  

Now we have        

                    f(x6) = f(0.5177)  

    
0.5177cos(0.5177) (0.5177)e   

    0.8690 0.8688   

   0.0002 . 



Now taking x5 =0.5168, x6 =0.5177,  f(x5) =0.0029 and f(x6) = 0.0002.  

Using Secant method, we have  

 6 5
7 6 6

6 5

( )
( ) ( )

x x
x x f x

f x f x


 


 

0.5177 0.5168
0.5177 (0.0002)

0.0002 0.0029


 


 

                   0.5177 0.00006   

             0.5178.  

Hence the root of the given equation ( ) cos 0xf x x xe   up-to three decimal places is 

0.517, which is of desired accuracy. 

9.5 Summary 

 

The Regula-Falsi method, also recognized as the False Position method, is an iterative numerical 

approach utilized to determine the root of a real-valued function within a specified interval. 

Combining the simplicity of the Bisection method with accelerated convergence, the Regula-

Falsi method typically yields faster results. The Secant method represents an enhancement or 

extension of the Regula-Falsi method.  

Unlike the Regula-Falsi method, the Secant method eliminates the need for the condition f(x0) 

f(x1) < 0, meaning there is no requirement for the interval  (x0,  x1) to necessarily contain the root. 

It's worth noting that the Regula-Falsi method, being the oldest technique in the pursuit of real 

roots for the equation f(x) = 0, serves as the foundation for the Secant method. 

Secant method is not necessarily for f(x0) and  f(x1) are of opposite sign. Also it is not necessary 

for the interval (x0, x1) must contain the root. The secant formula for nth approximation is given 

by  

 1
1

1

( ); 1
( ) ( )

n n
n n n

n n

x x
x x f x n

f x f x







  


 



9.6 Terminal Questions 

 

Q.1. Explain the Regula-Falsi Method. 

Q.2. Write the formula of Secant Method. 

Q.3. Find a real root of the equation ,012log2  xx e using Regula-Falsi method correct to 

three decimal place. 

Q.4. Find real root of the following equation by using Regula-Falsi method: 03 xxe . 

Q.5. Using Secant method to find the real root of the equation ( ) cos 0xf x x xe    up-to 

four decimal places. 

 

Answer 

3. 3.6461   4. 1.046    5. 0.5177 

 

Suggested  Further Readings: 

1. Atkinson, K. and Han, W. Theoretical Numerical Analysis, Springer Science & Business 

Media, 2010. 

2. Jain, M.K., Iyengar, S.R.K and Jain, R.K.: Numerical Methods for Scientific and 

Engineering Computations, New Age International (P) Ltd. New Delhi, 2014. 

3. Sastry, S.S.: Introductory Methods of Numerical Analysis, UBS Publishers, 2012. 

4. Bradie, B. A friendly introduction to Numerical Analysis. Pearson Education, 2007. 

5. Gupta. R. S., Elements of Numerical Analysis, 2nd Edition, Cambridge University Press, 

2015. 

 

  



                                              
 

 

 

 

 

                                     
                  

             

 
 

  

Block  

  

5 Numerical Differentiation and Integration 

Unit- 10 

Numerical Differentiation-I 

 

Unit- 11 

Numerical Differentiation-II 

 

Unit- 12 

Numerical Integration 

 

Unit- 13 

Numerical Solution of Ordinary Differential Equations-I 

 

Unit- 14 

Numerical Solution of Ordinary Differential Equations-II 

 

 

 

 

Master of Science 

PGMM -104N 

Numerical Analysis  

U. P. Rajarshi Tandon   

Open University 



Block-5 

Numerical Differentiation And Integration 

Numerical differentiation is a computational approach used to estimate the derivative of a 

function at a given point, especially when an analytical expression for the derivative is not readily 

available or when dealing with discrete data points. There are several numerical methods for 

approximating derivatives, each with its own set of advantages and limitations. For higher-order 

derivatives or more complex cases, numerical differentiation can be extended using methods 

such as Richardson extrapolation or finite difference formulas. Numerical differentiation is 

particularly valuable in situations where obtaining the analytical derivative is challenging, and it 

finds applications in various fields such as physics, engineering, and data analysis.  

Numerical differentiation is a method used to estimate the derivative of a function at a specific 

point or over a range of values when an analytical expression for the derivative is not readily 

available. This approach is particularly useful in scenarios involving discrete data points or 

functions defined by complex algorithms. The choice between these methods often depends on 

the specific requirements of the problem and the trade-off between accuracy and computational 

efficiency. Derivatives using the forward and backward difference formulas are numerical 

methods to estimate the first derivative of a function at a specific point. These methods are 

particularly useful when an analytical expression for the derivative is not available or when 

dealing with discrete data points.   

In the 10th unit, we shall discuss about derivatives using forward difference formula, derivatives 

using backward difference formula. In unit eleventh we deals with derivatives using Stirling 

difference formula, derivatives using Newton’s divided difference formula.  In unit twelveth we 

shall discuss about general quadrature formula for equally spaced arguments, Trapezoidal rule, 

Simpson’s 1/3 rule, Simpson’s 3/8 rule.  Numerical solution of ordinary differential equation 

with Euler’s method, Euler’s modified method, Taylor Series method discussed in unit thirteen. 

In unit fourtheen we shall discussed the Picard’s method. Runge-Kutta method for fourth order, 

Milne’s predictor-corrector method.   



UNIT-10: Numerical Differentiation-I 

 

Structure 

10.1 Introduction 

10.2 Objectives 

10.3  Derivatives Using Forward Difference Formula 

10.4 Derivatives Using Backward Difference Formula 

10.5 Summary 

10.6  Terminal Questions 

 

  



10.1 Introduction 

 

Numerical differentiation is the process of obtaining the values of the derivative of a function 

from a set of numerical values of that function. Two common numerical differentiation methods 

are the Forward Difference Method and the Central Difference Method. The forward difference 

formula approximates the derivative by considering the difference between function values at a 

given point and a slightly displaced point in the positive x-direction. Similar to the forward 

difference formula, the backward difference formula estimates the derivative by computing the 

difference between function values at a given point and a slightly displaced point in the negative 

x -direction.  

If the arguments are uniformly spaced, the preferred choice is the Newton-Gregory forward 

formula when aiming to find the derivative of a function near the beginning. Conversely, the 

Newton-Gregory backward formula is employed when seeking the derivative at a point near the 

end. When the derivative at a point is situated close to the middle of the table, the Stirling 

difference formula is applied. For unevenly spaced data, go for Newton's divided difference 

formula.In the tenth unit, we will explore the topic of derivatives, specifically delving into the 

application of the forward difference formula and the backward difference formula. 

 

10.2       Objectives 

 

After reading this unit the learner should be able to understand about: 

 the derivatives using forward difference formula 

 the derivatives using backward difference formula 

 

  



10.3 Derivatives Using Forward Difference Formula   

 

 

The Newton-Gregory formula for numerical differentiation is employed to estimate the 

derivative of a function at a given point using equally spaced data points. It relies on interpolating 

a polynomial through these data points and then differentiating the polynomial to approximate 

the derivative. First differentiate the interpolating polynomial with respect to x to find the 

derivative approximation at the desired point. This will yield an expression for the derivative in 

terms of the function values and their respective forward differences.  

The Newton-Gregory formula for forward interpolation is  
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Differentiating both sides of equation (1) with respect to x, we get 
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From equation (2), we get   
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Using equations (3) and (4), we get    
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Put x = a in equation (2), we get  u = 0.    

At  x = a in the equation (5), we get 
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Now differentiating both sides of the equation (5) with respect to x, we get 
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At x = a, in the equation (6), we get 
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Proceeding in the same way, we get the third differentiations at the required points as
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10.4 Derivatives Using Backward Difference Formula   

 

The Newton-Gregory formula for backward interpolation is  
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Differentiating both sides of equation (1) with respect to x, we get 
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From equation (2), we get      
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Using equations (3) and (4), we get 
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Put x = xn in equation (2), we get  u = 0. 

At  x = xn in the equation (5), we get 
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Now differentiating both sides of the equation (5) with respect to x, we get 
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At  x = xn in the equation (6), we get 
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Proceeding in the same way, we get the third differentiation at the required point. 
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Check your Progress 

 

1. What do you mean by derivatives using forward difference method? 

2. Write the derivatives using backward difference formula. 

 

Examples 

 

Example.1. Determine the 

2

2
and of at 50

dy d y
y x

dx dx
  from the following table: 

x 50 51 52 53 54 55 56 

( )y f x  3.6840 3.7084 3.7325 3.7563 3.7798 3.8030 3.8259 

 

Solution: In this problem we find the value of 
2

2
and

dy d y

dx dx
 of at 50.y x   Here we see 

that x = 50 lies near the starting of the table therefore in this case we shall use Newton’s forward 

interpolation formula for derivtives. The Newton-Gregory forward interpolation formula for 

derivatives, we have  
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   ….(2) 

The difference table is as below: 

 

x 3/1xy   y 2y 3y 

50 

51 

52 

53 

54 

55 

56 

3.6840 

3.7084 

3.7325 

3.7563 

3.7798 

3.8030 

3.8259 

 

0.0244 

0.0241 

0.0238 

0.0235 

0.0232 

0.0229 

 

-0.0003 

-0.0003 

-0.0003 

-0.0003 

-0.0003 

 

 

 

0 

0 

0 

0 

 

Here a = 50, h =1 then from equation (1), we get  

50

1 1 1
0.0244 ( 0.0003) (0)

1 2 3x

dy

dx 

   
      

   
 

    = 0.0244+0.00015 

   = 0.02455.   

and also put a = 50, h =1 in the equation (2), we get 
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Hence the values of 

2

2
and of at 50

dy d y
y x

dx dx
 are 0.02455 and -0.0003 respectivey. 

 

Example.2. Determine the first and second derivatives of the functions f(x) at x = 1.1 from 

the following data: 

 

x 1.0 1.2 1.4 1.6 1.8 2.0 

f(x) 0 0.1280 0.5440 1.2960 2.4320 4.0000 

 

Solution: In this problem we find the value of 
2

2
and

dy d y

dx dx
 of   at 1.1.f x x   Here we 

see that x = 1.1 lies near the starting of the table therefore in this case we shall use Newton’s 

forward interpolation formula for derivtives. The Newton-Gregory forward interpolation 

formula is  
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The difference table is as below: 

 

x f(x) f(x) 2f(x) 3f(x) 4f(x) 

1.0 

1.2 

1.4 

1.6 

1.8 

2.0 

0 

0.1280 

0.5440 

1.2960 

2.4320 

4.0000 

 

0.1280 

0.4160 

0.7520 

1.1360 

1.5680 

 

0.2880 
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Differentiating both sides of equation (1) with respect to x, we get 
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From equation (2), we get 
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Put  x = 1.1 in the equation (2), we get u = 5(1.1 – 1)= 0.5. 



Put u=0.5 then from equation (5), we get 
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Now differentiating both sides of equation (3) with respect to x, we get 
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Put u =0.5 then from equation (6), we get 

(1.1) 25[0.2880 (0.5 1)(0.0480)]f      

   25[0.2880 0.024]   

   = 6.6 

6.6)1.1( f  

Hence the value of the first and second derivatives of the functions f(x) at x = 1.1 are 

0.63 and 6.6  respectively. 

 



Example.3. Determine the values of 
2

2
and at 2.03

dy d y
x

dx dx
  with the help of the 

following data:  

x 1.96 1.98 2.00 2.02 2.04 

y 0.7825 0.7739 0.7651 0.7563 0.7473 

 

Solution:  In this problem we find the value of 
2

2
and at 2.03

dy d y
x

dx dx
 . Here we see that 

x = 2.03 lies near the last of the table therefore in this case we shall use Newton’s backward 

interpolation formula for derivtives. The difference table is as below: 

 

x y y 2y 3y 4y 

1.96 

1.98 

2.00 

2.02 

2.04 

0.7825 

0.7739 

0.7651 

0.7563 

0.7473 

 

- 0.0086 

- 0.0088 

- 0.0088 

- 0.0090 

 

-0.0002 

0 

-0.0002 

 

 

0.0002 

- 0.0002 

 

 

- 0.0004 

 

Here xn = 2.04, h = 0.02 and x = 2.03 then we have 
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Now by the Newton’s backward interpolation formula for derivative, we have 
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Put u = -0.5 and h = 0.02 in the equation (2), we get 
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Again differentiating both sides of equation (2) with respect to x, we get 
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Put u = -0.5 and h = 0.02 in the equation (3), we get 
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Hence the values of  
2

2
and of at 2.03

dy d y
f x x

dx dx
 are -0.44875 and -1.05 

respectivey. 

 

Example.4. Find the value of (1.5) and (1.5)f f  from the following table: 

 

x 1.5 2.0 2.5 3.0 3.5 4.0 

f(x) 3.375 7.000 13.625 24.000 38.875 59.000 

 



Solution: : In this problem we find the value of (1.5) and (1.5).f f   Here we see that x = 1.5 

lies near the starting of the table therefore in this case we shall use Newton’s forward 

interpolation formula for derivtives. The difference table is as below: 

x f(x) f(x) 2f(x) 3f(x) 4f(x) 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

3.375 

7.000 

13.625 

24.000 

38.875 

59.000 

 

3.625 

6.625 

10.375 

14.875 

20.125 

 

3.000 

3.75 

4.5 

5.25 

 

 

 

0.75 

0.75 

0.75 

 

 

0 

0 

 

The Newton-Gregory forward interpolation formula for derivatives, we have  
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Here a = 1.5 and h =0.5 then from equation (1), we get  
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Put a = 1.5 and h = 0.5 in the equation (2), we get 
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9  

Hence the values of (1.5) and (1.5)f f  are 4.75 and 9 respectivey. 

 

Example.5. Given the following data: 

 

 0 10 20 30 40 

sin  0.000 0.1736 0.3420 0.5000 0.6428 

 



Find the value of cos  by numerical method when  = 100. 

Solution. In this problem we find the value of cos  when  = 100. Here we see that  = 100 lies 

near the starting of the table therefore in this case we shall use Newton’s forward interpolation 

formula for derivtives. The difference table is as below: 

 

 sin  f(x) 2f(x) 3f(x) 4f(x) 

0 

10 

20 

30 

40 

0.000 

0.1736 

0.3420 

0.5000 

0.6428 

 

0.1736 

0.1684 

0.1580 

0.1428 

 

- 0.0052 

- 0.0104 

- 0.0152 

 

 

- 0.0052 

- 0.0048 

 

 

0.0004 

 

The Newton-Gregory forward interpolation formula for derivatives, we have  
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Here 1745.010,10,sin)(  haxf   radian then from equation (1), we get  
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1 1 1
(cos ) 0.1684 (0.0104) ( 0.0048)
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1

0.1720
0.1745

   

        0.9856.  

Hence the values of cos  at  = 100 is 0.9856. 

 

10.5 Summary 

 

Numerical differentiation methods play a crucial role in situations where analytical derivatives 

are challenging to obtain, making them valuable tools in fields such as physics, engineering, and 

data analysis. The choice between forward and backward difference often depends on the 

direction of the data or the nature of the problem. While these methods are straightforward and 

easy to implement, it's essential to choose an appropriate step size ℎ to balance accuracy and 

numerical stability.  

In practice, the central difference method (using both forward and backward differences) is also 

commonly employed to improve accuracy by considering function values on both sides of the 

point of interest. 

 

10.6 Terminal Questions 

 

Q.1. Explain the numerical differentiation method for equal intervals. 

Q.2. Write the procedure for determine the Derivatives Using the Newton’s Backward Difference 

Formula. 

Q.3. Find the first, second and third derivatives of the function f(x) tabulated below, at the point 

x = 1.5. 

 



x 1.5 2.0 2.5 3.0 3.5 4.0 

f(x) 
3.375 7.000 13.625 24.000 38.875 59.000 

 

Q.4. Find (0) and (0)y y  from the following table: 

 

x 
0 1 2 3 4 5 

y 
4 8 15 7 6 2 

 

Q.5. Find the derivative of ( ) at 0.4f x x  from the following table: 

 

x 
0.1 0.2 0.3 0.4 

y=f(x) 
1.10517 1.22140 1.34986 1.49182 

 

Q.6. Find (1.1) and (1.1)f f  from the following table: 

 

x 
1 1.1 1.2 1.3 1.4 1.5 1.6 

y 
7.989 8.403 8.781 9.129 9.451 9.750 10.031 



 

 

Answer 

3. 4.75, 9, 6. 

4. – 27.9 and 117.67. 

5. 1.49133. 

6. 3.9435 and – 3.545. 

 

 

Suggested  Further Readings: 

1. Atkinson, K. and Han, W. Theoretical Numerical Analysis, Springer Science & Business 

Media, 2010. 

2. Jain, M.K., Iyengar, S.R.K and Jain, R.K.: Numerical Methods for Scientific and 

Engineering Computations, New Age International (P) Ltd. New Delhi, 2014. 

3. Sastry, S.S.: Introductory Methods of Numerical Analysis, UBS Publishers, 2012. 

4. Bradie, B. A friendly introduction to Numerical Analysis. Pearson Education, 2007. 

5. Gupta. R. S., Elements of Numerical Analysis, 2nd Edition, Cambridge University Press, 

2015. 

 

 

 

 

 

 



UNIT-11: Numerical Differentiation-II 
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11.5 Summary 

11.6  Terminal Questions 

 

  



11.1 Introduction 

 

Numerical differentiation serves as a method to approximate the derivative of a function either 

at a specific point or across a range of values. This approach proves valuable when an analytical 

expression for the derivative is not readily accessible or when working with discrete data points. 

The main objective is to provide an estimation of how quickly a function changes concerning its 

independent variable. The selection of a suitable method is contingent on considerations such as 

the desired level of accuracy, computational efficiency, and the inherent characteristics of the 

problem at hand. This technique finds widespread application in diverse scientific and 

engineering contexts, particularly when addressing experimental or discrete data scenarios.  

Newton's Divided Difference Formula is a mathematical method for constructing an 

interpolating polynomial for a set of given data points. It is particularly useful for approximating 

a function when only discrete data points are known. The formula is named after Sir Isaac 

Newton, who developed this method. Newton's Divided Difference Formula is a fundamental 

tool in numerical analysis, especially for constructing interpolating polynomials, and it is widely 

used in various applications, including numerical integration and differentiation. Moving on to 

the eleventh unit, our focus will shift towards derivatives, examining their computation through 

the Stirling difference formula and Newton's divided difference formula. 

 

11.2       Objectives 

 

After reading this unit the learner should be able to understand about: 

 the derivatives using Stirling Difference formula 

 the derivatives using Newton’s divided difference formula 

 

 



11.3       Derivatives Using Stirling Difference Formula 

 

The Stirling's finite difference formula is a method used for numerical differentiation, which 

approximates the derivative of a function using its function values at evenly spaced points. The 

formula can be derived from the finite difference approximation, and it's particularly useful when 

a high degree of accuracy is required. The Stirling’s difference formula is  
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Differentiating both sides of equation (1) with respect to x, we get 
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From equation (2), we get 



hdx

du 1
                        .... (4) 

Now from equation (2) and (4), we get 
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At 
0 , 0x x u   then from equation  (5), we get 
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Again differentiating equation (5) with respect to x, we get  
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At x = x0, u = 0 then from equation (6), we get 
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Proceeding in the same way, we get the successive differentiation at the required point. 

 

11.4       Derivatives Using Newton’s Divided Difference Formula 

 

Newton's divided difference formula is another method for numerical differentiation, which 

provides a polynomial approximation to the derivative of a function using its function values at 

distinct points. The formula is based on the concept of divided differences, which are a sequence 

of coefficients computed from the function values.  

The Newton’s divided difference formula is  

2

0 0 0 0 1 0( ) ( ) ( ) ( )( ) ( )y f x x x f x x x x x f x         

3

0 1 2 0( )( )( ) ( ) ...................x x x x x x f x                …..(1) 

Differentiating equation (1) with respect to x , we get 

  2

0 1 0 0( ) ( ) ( ) ( )
dy

f x x x x x f x
dx

         

   
3

1 2 0 2 0 1 0[( )( ) ( )( ) ( )( )] ( ) ..............x x x x x x x x x x x x f x                    …..(2) 

Put x = a in the equation (2) and we get the value of first derivative at x =a. 

Again differentiating equation (1) with respect to x , we get 

2
2 3

0 0 1 2 02
2 ( ) [2( ) 2( ) 2( )] ( ) ..........

d y
f x x x x x x x f x

dx
           

Put x = a in the equation (2) and we get the value of second derivative at x = a. 

 



Note: 

1. To determine the value of the derivatives of a function near the beginning of the arguments, 

Newton’s forward formula is employed. 

2. For derivatives required near the end of the arguments, then we use Newton’s backward 

formula. 

3. When the derivative is needed at the middle of the given arguments, the central difference 

formula is applied. 

4. Newton’s divided difference formula is employed when the arguments are not equally spaced. 

 

Check your Progress 

 

1. What do you mean by derivatives using stirling difference formula? 

2. Write the derivatives using newton’s divided difference formula. 

 

Examples 

 

Example.1. Determine the value of )93(f  from the following table: 

 

x 60 75 90 105 120 

f(x) 28.2 38.2 43.2 40.9 37.2 



 

Solution: Since 93 lies near the central point of the table therefore in this case we shall use 

Stirling difference formula for derivatives.  

The difference table is given by 

 

u x f(x) f(x) 2f(x) 3f(x) 4f(x) 

- 2 

-1 

0 

1 

2 

60 

75 

90 

105 

120 

28.2 

38.2 

43.2 

40.9 

37.2 

 

10.0 

5 

-2.3 

-3.7 

 

-5 

-7.3 

-1.4 

 

 

-2.3 

5.9 

 

 

8.2 

 

The Stirling’s difference formula for derivatives is  
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Putting these values in Stirling formula for first derivative (1), we get. 
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 )1257.026400.046.135.1(
15

1
  

(93) 0.3331.f     

Hence the value of (93)f   is -0.3331. 

 

Example.2. Determine the value of (0.6)f  and (0.6)f   from the following table: 

 



x 0.4 0.5 0.6 0.7 0.8 

f(x) 1.5836 1.7974 2.0442 2.3275 2.6510 

 

Solution: Since 0.6 lies near the central point of the table therefore in this case we shall use 

Stirling difference formula for derivatives. The difference table is given by 

 

u x f(x) f(x) 2f(x) 3f(x) 4f(x) 

- 2 

-1 

0 

1 

2 

0.4 

0.5 

0.6 

0.7 

0.8 

1.5836 

1.7974 

2.0442 

2.3275 

2.6510 

 

0.2138 

0.2468 

0.2833 

0.3235 

 

0.0330 

0.0365 

0.0402 

 

 

0.0035 

0.0037 

 

 

0.0002 

 

The Stirling’s difference formula for derivatives is  
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Here 
0 0.6, 0.6, 0.1.x x h     

Then we have            
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Putting these values in Stirling formula for first derivative (1), we get. 
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Again differentiating equation (1) with respect to x, we get  
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1 1
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 100 0.0365 0.000016   

 3.6484  

(0.6) 3.6484.f    

Hence the value of (0.6)f  and (0.6)f   are 2.6445 and 3.6484. 

 

Example.3. Determine the value of )6(f  from the following table: 

x 0 1 3 4 5 7 9 

f(x) 150 108 0 -54 -100 -144 -84 

 

Solution: In this case the values of the arguments are not equally spaced. So we will use the 

Newton’s divided difference formula. 

The Newton’s divided difference formula is  

2

0 0 0 0 1 0( ) ( ) ( ) ( )( ) ( )y f x x x f x x x x x f x         

3

0 1 2 0( )( )( ) ( ) ...................x x x x x x f x               …..(1) 

Differentiating equation (1) with respect to x , we get 

  2

0 1 0 0( ) ( ) ( ) ( )
dy

f x x x x x f x
dx

         



3

1 2 0 2 0 1 0[( )( ) ( )( ) ( )( )] ( ) ..............x x x x x x x x x x x x f x               …..(2) 

Here 0 1 2 3 4 5 66, 0, 1, 3, 4, 5, 7, 9x x x x x x x x        .  

The divided difference table is given below: 

 

x f(x)  f(x)  2f(x)  3f(x)  4f(x) 
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Putting above these values in the equation (2), we get 

   (6) 42 (6 1) (6 0) ( 4) (6 1) (6 3) (6 0)(6 3) (6 0)(6 1) 1f                    

         1)301815()4(1142   

23634442   

23)6( f . 

Hence the value of )6(f   is -23. 

Example.4. From the following table, determine the value of (10) :f   

 

x 3 5 11 27 34 

f(x) -13 23 899 17315 35606 

 

Solution: In this case the values of the arguments are not equally spaced. So we willl use here 

the Newton’s divided difference formula. 

The Newton’s divided difference formula is  

2

0 0 0 0 1 0( ) ( ) ( ) ( )( ) ( )y f x x x f x x x x x f x         

3

0 1 2 0( )( )( ) ( ) ...................x x x x x x f x                …..(1) 

Differentiating equation (1) with respect to x , we get 



  2

0 1 0 0( ) ( ) ( ) ( )
dy

f x x x x x f x
dx

         

   3

1 2 0 2 0 1 0[( )( ) ( )( ) ( )( )] ( ) ..............x x x x x x x x x x x x f x                    …..(2) 

Here 
0 1 2 3 410, 3, 5, 11, 27, 34x x x x x x      .  

The divided difference table is given below: 

 

x f(x)  f(x)  2f(x)  3f(x)  4f(x) 

3 

 

5 

 

11 

 

27 
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Putting above these values in the equation (2), we get 

 (10) 18 (10 5) (10 3) (16)f        



[(10 5)(10 11) (10 3)(10 11) (10 3)(10 5)] 1           

1]35)7()5[(161218   

2319218   

(10) 233.f    

Hence the value of (10)f   is 233. 

 

Example.5. From the following table, determine the value of (2.5) :f   

 

x 1.5 1.9 2.5 3.2 4.3 5.9 

f(x) 3.375 6.059 13.625 29.368 73.907 196.579 

 

Solution: In this case the values of the arguments are not equally spaced. So we will use here 

the Newton’s divided difference formula. 

The Newton’s divided difference formula is  

2

0 0 0 0 1 0( ) ( ) ( ) ( )( ) ( )y f x x x f x x x x x f x         

3

0 1 2 0( )( )( ) ( ) ...................x x x x x x f x                …..(1) 

Differentiating equation (1) with respect to x , we get 

  2

0 1 0 0( ) ( ) ( ) ( )
dy

f x x x x x f x
dx

         

   
3

1 2 0 2 0 1 0[( )( ) ( )( ) ( )( )] ( ) ..............x x x x x x x x x x x x f x                    …..(2) 



Here 
0 1 2 3 4 52.5, 1.5, 1.9, 2.5, 3.2, 4.3, 5.9.x x x x x x x        

The divided difference table is given below: 

 

x f(x)  f(x)  2f(x)  3f(x)  4f(x) 

1.5 

 

1.9 

 

2.5 

 

3.2 

 

4.3 

 

5.9 

3.375 

 

6.059 

 

13.625 

 

29.368 

 

73.907 

 

196.579 
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Putting above these values in the equation (2), we get 

 (2.5) 6.7 (2.5 1.9) (2.5 1.5) (5.90)f        

                 [(2.5 1.9)(2.5 2.5) (2.5 1.5)(2.5 1.9) (2.5 1.5)(2.5 2.5)] (1)           



6.71 9.44 0.6    

16.75  

(2.5) 16.75.f    

Hence the value of (2.5)f   is 16.75. 

 

11.5   Summary 

 

Newton's Divided Difference Formula holds a fundamental role in numerical analysis, primarily 

employed for the construction of interpolating polynomials. This method is extensively utilized 

in various applications, spanning numerical integration and differentiation. The essence of 

Newton's Divided Difference Formula lies in its mathematical approach to creating an 

interpolating polynomial based on a set of provided data points. This technique proves 

particularly valuable when tasked with approximating a function in situations where only discrete 

data points are available.  

If your data points are evenly spaced, use the Newton-Gregory forward formula for derivatives 

near the beginning and the backward formula for derivatives near the end. If the derivative is 

around the middle of your data, use the Stirling difference formula. For unevenly spaced data, 

go with Newton's divided difference formula. 

 

11.6   Terminal Questions 

 

Q.1. Explain the Newton’s divided difference formula. 

Q.2. When we use Stirling difference formula for derivaties. 

Q.3. Find )5(f  from the following table: 



 

x 0 2 3 4 7 9 

f(x) 
4 26 58 112 466 922 

 

Q.4. From )50.7(f   from the following table: 

 

x 7.47 7.48 7.49 7.50 7.51 7.52 7.53 

y=f(x) 
0.193 0.195 0.198 0.201 0.203 0.206 0.208 

 

Q.5. Find (0.6) and (0.6)f f  from the following table: 

 

x 0.4 0.5 0.6 0.7 0.8 

f(x) 
1.5836 1.7974 2.0442 2.3275 2.6510 

 

Q.6. Find (0.8)f  from the following table: 

 

x 6 7 9 12 

f(x) 
1.556 1.690 1.908 2.158 

 

Q.7. Find 
2

1
(1) for ( )

1
f f x

x
 


from the following table: 

 

x 1.0 1.1 1.2 1.3 1.4 

f(x) 
0.5 0.4524 0.4098 0.3717 0.3378 

 



 

Answer 

3. 84856 

4. 0.233 

5. 2.6445 and 3.64833 

6. 0.10848 

7. -0.5031. 

 

Suggested  Further Readings: 

1. Atkinson, K. and Han, W. Theoretical Numerical Analysis, Springer Science & Business 

Media, 2010. 

2. Jain, M.K., Iyengar, S.R.K and Jain, R.K.: Numerical Methods for Scientific and 

Engineering Computations, New Age International (P) Ltd. New Delhi, 2014. 

3. Sastry, S.S.: Introductory Methods of Numerical Analysis, UBS Publishers, 2012. 

4. Bradie, B. A friendly introduction to Numerical Analysis. Pearson Education, 2007. 

5. Gupta. R. S., Elements of Numerical Analysis, 2nd Edition, Cambridge University Press, 

2015. 
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12.1 Introduction 

 

Numerical integration is a technique used to approximate the definite integral of a function when 

an analytical solution is challenging or impossible to obtain. It involves dividing the integration 

interval into smaller subintervals and approximating the area under the curve within each 

subinterval. Various methods exist for numerical integration, and the choice often depends on 

the nature of the function and the desired level of accuracy.  

Numerical integration is valuable in cases where the antiderivative of a function is difficult to 

determine or when dealing with numerical data. It finds applications in various fields, including 

physics, engineering, finance, and computer science. The method chosen depends on factors such 

as the complexity of the function, the desired precision, and the computational resources 

available. Numerical integration is the process of obtaining the value of a definite integral from 

a set of numerical values of the integrand.  

The process to finding the value of the define integral I = 
b

a
dxxf )( of a function of a single 

variable, is called as numerical quadrature. If we apply this for function of two variables it is 

called mechanical cubature. 

 

12.2       Objectives 

 

After reading this unit the learner should be able to understand about: 

 the Quadrature formula 

 the trapezoidal rule and their problems 

 Simpson’s 1/3 and 3/8 Rule for solving integration 

 



12.3       Quadrature Formula 

 

A quadrature formula is a method for numerical integration, also known as quadrature, where 

we approximate the integral of a function by summing weighted function values at discrete points 

within the interval of integration. There are various types of quadrature formulas, such as the 

midpoint rule, trapezoidal rule, Simpson's rule, and Gaussian quadrature, among others. The 

problem of numerical integration is solved by first approximating the function f(x) by a 

interpolating polynomial an then integrating it between the desired limit. 

Thus   )()( xPxf n  
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This is the general quadrature formula. 

 

12.4       Trapezoidal Rule 

 

Trapezoidal Rule is a numerical method used for approximating definite integrals, especially 

when an analytical solution is challenging to obtain. It is based on dividing the integration 

interval into smaller subintervals and approximating the area under the curve using trapezoids. 



The Trapezoidal Rule is a straightforward method that provides reasonable accuracy, especially 

for functions with varying slopes. However, it may require more subintervals to achieve high 

precision compared to some other methods. The general quadrature formula is 
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Putting  n =1 in the general quadrature formula (1) and neglecting all the differences higher terms 

than first, we get  
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Similarly, we get    
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Adding all these above n integrals, we get 

0

0
0 1 2 3 1

1
( ) ( ) ( ................ )

2

x nh

n n
x

f x dx h y y y y y y




 
       

 
  



 0 1 2 3 1( ) 2( ................ )
2

n n

h
y y y y y y               ….(2) 

This formula (2) is known as Trapezoidal rule. Trapezoidal Rule is a practical and widely used 

numerical technique for solving the integration. It is suitable for approximating the definite 

integral of a function when analytical methods are impractical. 

 

Examples 

 

Example.1. Use Trapezoidal rule to evaluate 
1

0

3 dxx considering the five sub-intervals. 

Solution: Divide the interval [0, 1] into five sub parts in which each of width 

 2.0
5

01



h  

For computing the value of  the given function 3xy  at each points of sub-interval, are as 

following: 

x 0 0.2 0.4 0.6 0.8 1 

y =x3 0 0.008 0.064 0.216 0.512 1 

Using Trapezoidal rule, we have 

 
0

0
0 1 2 3 1( ) ( ) 2( ................ )

2

x nh

n n
x

h
f x dx y y y y y y



        

or  

   
1

3

0 5 1 2 3 4
0

2
2

h
x dx y y y y y y         



 =  
0.2

0 1 2(0.008 0.064 0.216 0.512)
2

        

 
0.2

[2 0.8 1]
2

    

 
0.2

2.6
2

  

0.26 . 

 

12.5      Simpson’s 1/3 Rule 

 

Simpson's Rule is a numerical method for approximating definite integrals, particularly useful 

when an analytical solution is challenging to obtain. This rule is an improvement over the 

Trapezoidal Rule and provides a more accurate estimation of the area under a curve. Simpson's 

Rule generally provides a more accurate result than the Trapezoidal Rule, and the error decreases 

significantly with each doubling of the number of subintervals.  

Simpson's Rule is more accurate for smooth and well-behaved functions, especially those that 

can be approximated well by quadratic polynomials. However, it requires an even number of 

subintervals, and the accuracy improvement may be modest for functions with rapidly changing 

slopes. 

The general quadrature formula is 
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Putting n = 2 in the general quadrature formula (1) and neglecting all the differences higher terms 

then second, we get 
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Adding all these above n integrals, we get 
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0

0 2 4 6 2

1 3 5 1

2 ..................
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3 4( ....................... )

x nh n

x
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                              ….. (2) 

This formula (2) is known as Simpson’s 
3

1
rule. 

Check your Progress 

 

1. What do you mean by trapezoidal rule? 



2. Write the simpson’s 1/3 formula. 

 

Examples 

 

Example.2. Find the value of 2log e
from ,

1

1

0 3

2

dx
x

x
 

using Simpson’s one-third rule, by 

dividing the range into four equal parts. Also solve the given integral with usual method 

and find the error. 

Solution: Divide the interval [0, 1] into four equal parts in which each of width  

25.0
4

01



h  

For computing the value of  the given function
2

3
( )

1

x
y f x

x
 


at each points of sub-interval, 

are as following: 

 

x 2x  3x  31 x  2

3
( )

1

x
y f x

x
 


 

0 

0.25 

0.50 

0.75 

1 

0 

0.0625 

0.2500 

0.5625 

1 

0 

0.015625 

0.12500 

0.421875 

1 

1 

1.015625 

1.12500 

1.421875 

2 

0 

0.061538 

0.222222 

0.395604 

0.500000 



 

Using Simpson’s one-third rule, we have  
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0

0 2 4 6 2

1 3 5 1

2 ..................
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3 4( ....................... )

x nh n n

x
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y y y y y yh
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or   

   
2

1

0 4 2 1 330
2 4

1 3

x h
dx y y y y y

x
      

 

0.25
[(0 0.5) 2(0.222222) 4(0.061538 0.395604)]

3
      

0.25
(2.773015)

3
  

0.231084 . 

Again we have 

    
2 2

1 1

3 30 0

1 3

1 3 1

x x
dx dx

x x


    

1
3

0

1
log(1 )

3
x     

1
log 2

3
  

  
1

(0.693147)
3

   

0.231049  

Therefore the error between usual method and numerical method is  



  0.231084 0.231049   

0.000034.  

 

Example.3. Use Simpson’s 1/3 rule, dividing the range into ten equal parts, to prove that  

3
1

20

log(1 )
0.1730.

1

x

x




  

Solution: Divide the interval [0, 1] into ten equal parts in which each of width 
1 0

0.1.
10

h


   

For computing the value of  the given function
3

2

log(1 )
( )

1

x
y f x

x


 


at each points of sub-

interval, are as following: 

x  2x  21 x  2log (1 )x  
2

2

1

)1log(

x

x




 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0 

0.01 

0.04 

0.09 

0.16 

0.25 

0.36 

0.49 

1.0 

1.01 

1.04 

1.09 

1.16 

1.25 

1.36 

1.49 

0 

0.009950 

0.039220 

0.086177 

0.14842 

0.223143 

0.307484 

0.398776 

0 

0.009851 

0.037712 

0.079062 

0.127948 

0.178514 

0.226091 

0.267634 



0.8 

0.9 

1.0 

0.64 

0.81 

1.0 

1.64 

1.81 

2.0 

0.494696 

0.593326 

0.693147 

0.301644 

0.327804 

0.346573 

Using Simpson’s one-third rule, we have  

2
1

0 10 2 4 6 8 1 3 5 7 920

log(1 )
[( ) 2( ) 4( )]

1 3

x h
dx y y y y y y y y y y y

x


          

  

0.1
[(0 0.346573) 2(0.037712 0.127948 0.226091 0.301644)

3
       

   4(0.009851 0.079062 0.178514 0.26634 0.327804)]      

0.1
(5.184839)

3
  

0.17282793.    

 

Example.4. Evaluate the integral
0.7

1/2

0.5

xx e dx

 using the Trapezoidal rule and Simpson’s 

1/3 rule. 

Solution: Divide the interval [0.5, 0.7] into four equal parts in which each of width 
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4

0.05

h






 

For computing the value of  the given function 1/2( ) xy f x x e  at each points of sub-interval, 

are as following: 

 



x  2/1x  xe  xexxf  2/1)(  

0.50 

0.55 

0.60 

0.65 

0.70 

0.707106 

0.741619 

0.774596 

0.806225 

0.836660 

0.606530 

0.576949 

0.548811 

0.522045 

0.496858 

0.428881 

0.427876 

0.425107 

0.420886 

0.415473 

 

Using Trapezoidal rule, we have 
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0.05

[(0.428881 0.415473) 2(0.427876 0.425107 0.420886)]
2

      

  
0.05

(3.392092)
2

   

0.0848023  

Using Simpson’s 
3

1
rule, we have 
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3
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0.05
[(0.428881 0.415473) 2(425107) 4(0.427876 0.420886)]

3
      

0.05
(5.089616)

3
  

0.0848269 . 

 

12.5      Simpson’s 3/8 Rule 

 

Simpson's Rule is a valuable method for numerical integration which is offering improved 

accuracy over simpler techniques, especially for functions with relatively smooth behavior.  

The general quadrature formula is 
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Putting n =3 in the general quadrature formula (1) and neglecting all differences higher then 

third, we get. 
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Adding all these above n integrals, we get 
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               ….. (2) 

This formula (2) is known as Simpson’s three-eight’s rule. 

 

Examples 

 

Example.5. Evaluate 
2/

0

sin


dxe x correct to four decimal places by Simpson’s one-third and 

three-eighth rule, dividing the interval 0,
2

 
 
 

into three equal parts. 

Solution: Divide the interval 0,
2

 
 
 

into three equal parts in which each of width 

 

 / 2 0

3

6

h









 



For computing the value of  the given function xey sin at each points of sub-interval, are as 

following: 

 

x 0 

6


 

3


 

2


 

xey sin  1 1.64872 2.45960 2.71828 

 

Using Simpson’s one-third rule, we have 
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0 3 2 1
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[( ) 2( ) 4( )]
3

x h
e dx y y y y



     

  = 
/ 6

[(1 2.71828) 2(2.45960) 4(1.64872)]
3


    

  (15.23236)
18


  

2.6596 .  

Using Simpson’s three-eighth rule, we have 
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sin
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3
[ 3( ) ]

8

x h
e dx y y y y



     

   
3

6
(1 2.71828) 3(1.65872 2.45960)
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  =
3

(16.04324)
48


  



3.1513 . 

 

Example.6. Evaluate the integral

1

0

,
1 2

dx

x
 using Simpson’s 1/3 rule and Simpson’s 3/8 

rule.                                                             

Sol. : Divide the interval [0, 1] into three equal parts in which each of width 

 

1 0

6

1

6

h






 

For computing the value of  the given function

1

0

,
1 2

dx

x
at each points of sub-interval, are as 

following: 

 

Using Simpson’s ,rule
3

1
we have 

1

0 6 2 4 1 3 5

0

( ) [( ) 2( ) 4( )]
3

h
f x dx y y y y y y y        

              

1
[(1 0.333333) 2(0.6 0.4285714) 4(0.75 0.5 0.375)]

18
        

              
1

1.33333 6.5 2.0571428
18

         

x 0 1/6 2/6 3/6 4/6 5/6 6/6=1 

f(x) 1 0.75 0.6 0.5 0.4285714 0.375 0.333333 



0.5494708.          

3
Using Simpson's  rule, we have

8
 

     
1

0 6 3 1 2 4 5

0

3
2 3

8

h
f x dx y y y y y y y          

                  
3

1 0.333333 2(0.5) 3 0.75 0.6 0.4285714 0.375
48

          

                
1

1.333333 1 6.4607142
16

    

               
1

(8.7940475)
16

  

  = 0.5496279. 

 

Example.7. Evaluate the integral  

6

0 21 x

dx
by using Trapezoidal, Simpson’s one-third and 

three-eighth rule. 

Solution. Divide the interval [0, 6] into six equal parts in which each of width 

 
6 0

6
h


  

1  

For computing the value of  the given function
21

1

x
y


 at each points of sub-interval, are as 

following: 

 



x  
2

1

1
y

x



 

0 

1 

2 

3 

4 

5 

6 

1 

0.5 

0.2 

0.1 

0.0588 

0.0385 

0.027 

 

Using Trapezoidal rule, we have 

6

0 6 1 2 3 4 520
[( ) 2( )]

1 2

dx h
y y y y y y y

x
      

  

1
[(1 0.027) 2(0.5 0.2 0.1 0.0588 0.0385)]

2
        

1
[2.8216]

2
   

1.4108   

Using Simpson’s one-third rule, we have 

6

0 6 2 4 1 3 520
[( ) 2( ) 4( )]

1 3

dx h
y y y y y y y

x
      

  



1
[(1 0.027) 2(0.2 0.0588) 4(0.5 0.1 0.0385)]

3
        

=
1

[1.027 2(0.2588) 4(0.6385)]
3

   

1
[4.0986]

3
  

1.3662 .   

Using Simpson’s three-eight rule, we have 

1

0 6 3 1 2 4 520

3
[( ) 2( ) 3( )]

1 8

dx h
y y y y y y y

x
      

  

   
3

[(1 0.027) 2(0.1) 3(0.5 0.2 0.0588 0.0385)]
8

        

  
3

(3.6189)
8

  

  1.3570 . 

 

Example.8. Calculate the approximate value of 
3

3

4dxx by using Trapezoidal rule, 

Simpson’s one-third and three eight rule, by dividing the range in six equal parts. 

Solution: Divide the interval [-3, 3] into six equal parts in which each of width 

 
3 ( 3)

6
h

 
  

 1  



For computing the value of  the given function 4y x at each points of sub-interval, are as 

following: 

 

x 3 2 1 0 1 2 3 

y=x4 81 16 1 0 1 16 81 

 

Using Trapezoidal rule, we have 

3
4

0 6 1 2 3 4 5
3

[( ) 2( )]
2

h
x dx y y y y y y y


        

1
[(81 81) 2(16 1 0 1 16)]

2
        

1
[162 68]

2
    

115   

Using Simpson’s one-third rule, we have 

        
3

4

0 6 2 4 1 2 3 5
3
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3

h
x dx y y y y y y y y


         

1
[(81 81) 2(1 1) 4(16 0 16)]

3
        

1
[162 2(2) 4(32)]

3
    



1
(294)

3
   

98   

Using Simpson’s three-eight rule, we have 

3
4

0 6 3 1 2 4 5
3

3
[( ) 2( ) 3( )]

8

h
x dx y y y y y y y


        

3
[(81 81) 2(0) 3(16 1 1 16)]

8
        

3
[162 3 34]

8
    

99  

The exact value of  

3 3
4 4

3 0
2x dx x dx


   

3
5

0

2
5

x 
  

 
 

52
(3)

5
  

 = 
2

243
5
  

97.2 .  

 

Example.9. Evaluate dxxe
2.5

4
log by Simpson’s one-third and three-eighth rule. 



Solution: Divide the interval [4, 5.2] into six equal parts in which each of width 

 
5.2 4

6
h


  

 0.2  

For computing the value of  the given function xxf elog)(  at each points of sub-interval, are 

as following: 

 

x 4 4.2 4.4 4.6 4.8 5.0 5.2 

f(x) 1.386294 1.435084 1.481604 1.526056 1.568615 1.609437 1.648658 

 

Using Simpson’s one-third rule, we have  

   
5.2

0 6 2 4 1 3 5
4

log [( ) 2( ) 4( )]
3

e

h
x dx y y y y y y y        

0.2
[(1.386294 1.648658) 2(1.481604 1.568615)

3
     

                    4(1.435284 1.526056 1.609437)]    

0.2
(27.417698)

3
  

1.827847  

Using Simpson’s three-eighth rule, we have 



    
5.2

0 6 3 1 2 4 5
4

3
log [( ) 2( ) 3( )]

8
e

h
xdx y y y y y y y        

          
3(0.2)

[(1.386294 1.648658) 2(1.526056)
8

    

   3(1.435284 1.481604 1.568615 1.609437)]     

    
0.6

(24.371294)
8

   

   1.827847.  

 

Example.10. Evaluate the integral 

1

2

0

1
 

1
dx

x
 using using Trapezoidal rule, Simpson’s one-

third and three eight rule, by dividing the range in six equal parts. Hence obtain the value 

of  in each case. 

Solution. For applying the trapezoidal rule, the interval must be divided into number of intervals 

to multiple of 1, for Simpson’s 1/3 rule, in number of multiple of 2, for Simpson 3/8 rule in 

number of multiple of 3. So when applying all the rules then number of intervals must be divided 

by 1, 2, 3 and 6. Let n=6 intervals then we have 
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1 2 3 4 5
0 1

6 6 6 6 6

11 1 11
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11 1 111 0 1 1
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yy
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Using Trapezoidal rule, we have 
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1

0

54321602
2

12

1

1

1
yyyyyyydx

x  

                        
      590160692307080909729702501

12

1
...... 

 

                         
78423950.

 

Using Simpson’s one-third rule, we have  

     
0

0 3 4 1 3

0

( ) 2 .... 4 ......
3

x nh

n

h
f x dx y y y y y y



         

 
     

0

0 6 3 4 1 3 52

0

1
2 4

31

x nh
h

dx y y y y y y y
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1
1 0.5 2 0.9 0.692307 4 0.97297 0.8 0.59016

18
        

 

                     785396330.  

Using Simpson’s three-eight rule, we have 

       
0

0 3 6 9 1 2 4 5 7 8

0

3
2 ... 3 .....

8

x nh

nf x dx h y y y y y y y y y y y



             
 

     
1

0 6 3 1 3 4 52

0

1 3
2 3

1 48
dx y y y y y y y

x
          

                 
     

1
1 0.5 2 0.8 3 0.97297 0.9 0.59016 0.692307 0.59016

16
           

     0.78539437
 



Using integration, we have 

 

1

1 1

02

0

1
tan

1
dx x

x

   
 

   1 1tan 1 – tan 0   

4


  

or            

1

2

0

1

1 4
dx

x





 

or            

1

2

0

1
.

1
dx

x
 


 

Using Trapezoidal rule,  = 4[0.7842395]=3.136958. 

Using Simpson’s 1/3 rule, we have =4[0.785396333]=3.141585332. 

Using Simpson’s 3/8 rule, we have =4[0.78394437]=3.14157748. 

 

12 Summary 

The Trapezoidal rule is 

 
0

0
0 1 2 1( ) ( ) 2( ........... )

2

x nh
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h
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The Simpson’s 1/3 rule is 

0

0
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n n n
x

h
f x dx y y y y y y y y y y



              

The Simpson’s 3/8 rule is 



0

0
0 3 6 3 1 2 4 5 1

3
( ) [( ) 2( ..... ) 3( ..... )]

8

x nh

n n n
x

h
f x dx y y y y y y y y y y



              

 

12 Terminal Questions 

 

Q.1. Write the formula for Trapezoidal rule. 

Q.2. Which method give the more approximate result in the following method: 

(i) Trapezoidal rule (ii) Simpson’s one third rule (iii) Simpson’s three-eighth rule. 

Q.3. Explain the Simpson’s 3/8 rule. 

Q.4. Evaluate  

1

0 21 x

dx
by using Simpson’s one-third and three-eighth rule. Hence obtain the 

approximate value of  in each case. 

Q.5. Evaluate  

10

2 1 x

dx
by dividing the range into eight equal parts by Simpson’s one-third rule. 

Q.6. Calculate an approximate value of the integral 
2/

0
sin

x

dxx  by (i) Trapezoidal rule (ii) 

Simpson’s one third rule (iii) Simpson’s three-eighth rule. 

 

Answer 

4. 0.785397 and 0.785395,  = 3.141588 

5. 1.29962 

6. 0.99795, 1.0006, 1.1003. 
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Engineering Computations, New Age International (P) Ltd. New Delhi, 2014. 

3. Sastry, S.S.: Introductory Methods of Numerical Analysis, UBS Publishers, 2012. 

4. Bradie, B. A friendly introduction to Numerical Analysis. Pearson Education, 2007. 

5. Gupta. R. S., Elements of Numerical Analysis, 2nd Edition, Cambridge University Press, 

2015. 

 

 

  



UNIT-13: Numerical Solution of Ordinary Differential Equations-I 
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13.3  Euler’s Method 
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13.5 Taylor’s Series Method 

13.6  Summary 

13.7  Terminal Questions 

 

  



13.1 Introduction 

The numerical solution of ordinary differential equations (ODEs) involves using computational 

methods to approximate the solutions of differential equations when explicit analytical solutions 

are not readily available or feasible. ODEs describe how a function changes with respect to an 

independent variable and find applications in various fields such as physics, engineering, 

biology, and economics.  

In this unit, we will discuss the important methods of solving ordinary differential equation of 

first order having numerical coefficients and given boundary or initial conditions 

0 0. ., ( , ) given ( )
dy

i e f x y y x y
dx

 
  

 
 numerically. These methods also useful to solve those 

types of problem related to first order differential equations which cannot be integrated 

analytically. For example,  
2 2 2.

dy
x y c

dx
     

Some important numerical methods for solving ordinary differential equations are Euler’s 

method; Euler’s Modified method; Taylor’s Series Method; Picard’s method of successive 

approximation; Runge-Kutta method and Milne’s predictor-corrector method. Here in this unit 

we discuss only Euler’s method; Euler’s Modified method and Taylor’s Series Method.  

 

13.2       Objectives 

 

After reading this unit the learner should be able to understand about: 

 The Euler’s  Method 

 The Euler’s modified Method 

 The Taylor Series method  

 



13.3       Euler’s Method 

 

Euler's Method is a simple and straightforward numerical technique used for approximating the 

solution of ordinary differential equations (ODEs) when an explicit analytical solution is either 

challenging or impossible to obtain. Developed by Leonhard Euler, this method is particularly 

suitable for introductory purposes and provides a basic understanding of numerical integration. 

Euler's Method is based on the idea of approximating the solution of an ODE by taking small 

steps along the curve, using the slope at each point to predict the next value.  

The method is easy to implement, making it a suitable choice for introductory courses in 

numerical methods. However, it may not provide accurate results for certain types of differential 

equations, especially those with rapid changes. This is simplest and oldest method was devised 

by Euler. It illustrates, the basic idea of those numerical methods which seeks to determine the 

change y in y corresponding to a small increase in the arguments x.  

Euler's Method serves as a foundation for more advanced numerical methods and is a valuable 

tool for gaining insight into the numerical solution of ordinary differential equations. 

Consider the differential equation 

   ),( yxf
dx

dy
y        ….(1) 

with initial condition y = y0 when 
0 0 0, . ., ( )x x i e y x y   

We wish to solve the equation (1), for the values of y at x = xi 

Where 
0 , 1,2,3,4,.....ix x ih i    

Now integrate the equation (1), we have 

  
0

1 0 ( , )
x

x
y y f x y dx    



Let 0 0 0 1( , ) ( , ) wheref x y f x y x x x    

Now we have 

  
1

0
1 0 0 0( , )

x

x
y y f x y dx    

      ),()( 00010 yxfxxy      ][ 01 xxh   

Similarly for ,21 xxx  we have 

  
2 1 1 1( , )y y h f x y   

Proceeding in the same way, we have finally 

          
1 ( , )n n n ny y h f x y    

Thus, starting from x0 when y = y0 we can construct a table of y for given steps of h in x.  

Euler's method is a simple numerical technique for solving ordinary differential equations 

(ODEs) that can be computationally inefficient for certain problems, especially when higher 

accuracy is required.  

Euler's method approximates the solution of an initial value problem by advancing the solution 

in small steps of size ℎ along the direction of the derivative. 

 

Examples 

 

Example.1. Given 
xy

xy

dx

dy




 with the initial condition y =1 when x = 0 find y for x = 0.1 

in four steps by Euler’s method. 

Solution: It is given that  



  
0 0( , ), 0, 1.

dy y x
f x y x y

dx y x


   


 

We have 
0.1

 0.025
4

h    

The Euler's formula is 

  1 ( , )n n n ny y h f x y         ….(1) 

Putting n = 0, 1,  2, 3, ……  in equation (1), we get 

         1 0 0 0( , )y y h f x y   

 0 0
0

0 0

y x
y h

y x


 


 

  

1 0
1 0.025

1 0

1.025

 
   

 



 

       025.11 y  

Again we have 

        2 1 1 1( , )y y h f x y   

1 1
1

1 1

y x
y h

y x


 


 

  
1.025 0.025

1.025 0.025
1.025 0.025

 
   

 
 

1
1.025 0.025

1.05
    

       0488.12 y  



Now we have 

             3 2 2 2( , )y y h f x y   

2 2
2

2 2

y x
y h

y x


 


 

   
1.0488 0.05

1.0488 0.025
1.0488 0.05

 
   

 
 

   
0988.1

0438.1
025.00488.1   

                   07152.13 y  

Now we have     

      4 3 3 3( , )y y h f x y   

3 3
3

3 3

y x
y h

y x


 


 

   
1.07152 0.075

1.07152 0.025
1.07152 0.075

 
   

 
 

         09324.14 y  

Hence the value of y at x = 0.1 for the differential equation 
xy

xy

dx

dy




  is 1.09324.  

Example 2. Using the Euler’s method to compute the y(0.5) for the differential equation 

2 2 with 1 when 0.
dy

y x y x
dx

     

Solution: It is given that 



  
2 2

0 0( , ), 0, 1.
dy

y x f x y x y
dx

      

And we have   1.0
5

5.0
h  

The Euler's formula is 

  
1 ( , )n n n ny y h f x y          ….(1) 

Putting n = 0, 1,  2, 3, ……  in equation (1), we get 

         1 0 0 0( , )y y h f x y   

  2 2

1 0 0 0( )y y h y x    

  2 21 (0.1) (1 0 )    

1 (0.1)1   

1.1  

Again we have 

        2 1 1 1( , )y y h f x y   

  
2 2

2 1 1 1( )y y h y x    

  2 21.1 (0.1)[(1.1) (0.1) ]    

1.1 (0.1)(1.21 0.01)    

  220.1     ][ 01 hxx   

Now we have 

  
3 2 2 2( , )y y h f x y   



   2 2

2 2 2( )y h y x    

         ])2.0()22.1)[(1.0(22.1 22     
2 1[ ]x x h   

1.22 (0.1)(1.4484)   

1.36484  

Now we have     4 3 3 3( , )y y h f x y   

        2 2

4 3 3 3( )y y h y x    

   ])3.0()36484.1)[(1.0(36484.1 22   

   1.36484 (0.1)(1.7728)   

1.54212  

Now we have       
5 4 4 4( , )y y h f x y   

2 2

4 4 4( )y h y x    

   2 21.54212 (0.1)[(1.54212) (0.4) ]    

1.7639  

Hence the value of y at x = 0.5 for the given differential equation 
2 2dy

y x
dx

   is 1.7639.

  

13.4       Euler’s Modified Method 

 

Euler's Modified Method, also known as the Improved Euler Method or Heun's Method, is an 

enhancement of the basic Euler's Method for approximating the solution of ordinary differential 

equations (ODEs). This modification seeks to improve the accuracy of the solution by 



incorporating a more sophisticated approach to predicting the next values. Similar to Euler's 

Method, Euler's Modified Method is based on the idea of approximating the solution of an ODE 

by taking small steps along the curve. However, it employs a more refined prediction step. While 

Euler's Modified Method requires an additional evaluation of the function to improve accuracy, 

it is still relatively straightforward to implement. It strikes a balance between simplicity and 

accuracy. 

The Euler Modified formula is 

 ....)2,1,0()],(),([
2

)(

11000

)1(

1 


nyxfyxf
h

yy
nn

   

This is the nth approximation of y1. For determining the initial value 
)0(

1y  we use the Euler’s 

method. 
(0)

1 0 0 0( , ).y y h f x y   

 

Check your Progress 

 

1. What do you mean by Euler’s method? 

2. Write the Euler’s modified method formula. 

 

Examples 

Example.3. Solve the differential equation 6.001)0(  xforywithyx
dx

dy
in the 

steps of 0.2; using Euler’s modified method. 

Solution: It is given that 

 2.01,0,),( 00  handyxyxyxf     …..(1) 



Using Euler’s method, we have 

  1 0 0 0( , )y y h f x y   

     1 (0.2)(0 1)    

      1.2  

Hence 
0

1 1 1.2y y  . 

The value of y1, thus determined is improved by Euler’s modified method. The Euler’s modified 

formula is 

 )],(),([
2

)(

11000

)1(

1

nn yxfyxf
h

yy 
     …..(2) 

Put n = 0 in the equation (2), we get 

     )],(),([
2

)0(

11000

)1(

1 yxfyxf
h

yy 
 

  
)]2.12.0()10[(

2

2.0
1   

  2295.12295.01   

Put n = 1 in the equation (2), we get 

      )],(),([
2

)1(

11000

)2(

1 yxfyxf
h

yy   

  
0.2

1 (0 1) (0.2 1.2295)
2
     
 

 

  =1+0.2309 

=1.2309 



Put n = 2 in the equation (2), we get  

      )],(),([
2

)2(

11000

)3(

1 yxfyxf
h

yy   

  )]2309.12.0()10[(
2

2.0
1   

  1 0.2309   

1.2309  

Hence we take 2309.11 y at x = 0.2. 

Now, we proceed to obtain y at x = 0.4. 

Using Euler’s method, we have 

        
2 1 1 1( , )y y h f x y   

  111 ( yxhy   

  )2309.12.0(2.02309.1   

  1.2309 0.2(1.30945)   

1.49279  

The value of ,2y thus determined is improved by Euler’s modified method. The Euler’s 

modified formula is 

 
( 1)

2 1 1 1 2 2[ ( , ) ( , )]
2

n nh
y y f x y f x y         …..(3) 

Put n = 0 in the equation (3), we get 



  )],(),([
2

)0(

22111

)1(

2 yxfyxf
h

yy   

  
0.2

1.2309 (0.2 1.2309) (0.4 1.49279)
2
     
 

 

1.52402  

Put n =1 in the equation (3), we get   

(2) (1)

2 1 1 1 2 2[ ( , ) ( , )]
2

h
y y f x y f x y    

  
0.2

1.2309 (0.2 1.2309) (0.4 1.52402)
2
     
 

 

1.525297  

Put n =2 in the equation (3), we get  

    
(3) (2)

2 1 1 1 2 2[ ( , ) ( , )]
2

h
y y f x y f x y    

  
0.2

1.2309 (0.2 1.2309) (0.4 1.525297)
2
     
 

 

1.52535  

Put n = 3 in the equation (3), we get  

(4) (3)

2 1 1 1 2 2[ ( , ) ( , )]
2

h
y y f x y f x y    

  
0.2

1.2309 (0.2 1.2309) (0.4 1.52535)
2
     
 

 

1.52535  



Thus   )4(

2

3

2 yy   

Here we take 
2 1.52535 at 0.4.y x   

Now we proceed to obtain y at  x = 0.6. 

Using Euler’s method, we have 

         3 2 2 2( , )y y h f x y   

2 2 2( )y h x y    

  1.52535 0.2(0.4 1.52535)    

1.85236 . 

The value of y3, thus determined is improved by Euler’s modified method. The Euler’s modified 

formula is 

 )],(),([
2

)(

33222

)1(

3

nn yxfyxf
h

yy 
     ….(4) 

Put n = 0 in the equation (4), we get 

       )],(),([
2

)0(

33222

)1(

3 yxfyxf
h

yy   

   
0.2

1.52535 90.4 1.52535) (0.6 1.85236)
2
     
 

 

1.88496  

Put n = 1 in the equation (4), we get 

  )],(),([
2

)1(

33222

)2(

3 yxfyxf
h

yy   



   
0.2

1.52535 (0.4 1.52535) (0.6 1.88496)
2
     
 

 

1.88615  

Put n =2 in the equation (4), we get 

  )],(),([
2

)3(

33222

)3(

3 yxfyxf
h

yy   

   
0.2

1.52535 (0.4 1.52535) (0.6 1.88615)
2
     
 

 

1.88619  

Put n = 3 in the equation (4), we get 

  )],(),([
2

)3(

33222

)4(

3 yxfyxf
h

yy   

   
0.2

1.52535 (0.4 1.52535) (0.6 1.88619)
2
     
 

 

1.88619  

Here (3) (4)

3 3y y . 

Thus we get 
3 1.88619 at 0.6.y x   

Hence the value of (0.2) 1.2309, (0.4) 1.52535, (0.6) 1.88619.y y y    

Example.4. Using the Euler’s modified method, compute y(0.1) correct to six decimal 

figures, where 
2 with (0) 0.94.

dy
x y y

dx
    

Solution: It is given that 

   2

0 0( , ) , 0, 0.94, 0.1.f x y x y x y h         …..(1) 



Using Euler’s method, we have 

  1 0 0 0( , )y y h f x y   

      2

0 0 0[ ]y h x y    

      0.94 (0.1)[0 0.94]     

     1.034  

Hence  
0

1 1.034.y   

The value of y1, thus determined is improved by Euler’s modified method. The Euler’s modified 

formula is 

 )],(),([
2

)(

11000

)1(

1

nn yxfyxf
h

yy 
     …..(2) 

Put n = 0 in the equation (2), we get 

     
(1) (0)

1 0 0 0 1 1[ ( , ) ( , )]
2

h
y y f x y f x y  

 

  
20.1

0.94 (0 0.94) ((0.1) 1.034)
2
        

1.0392  

Put n = 1 in the equation (2), we get 

      
(2) (1)

1 0 0 0 1 1[ ( , ) ( , )]
2

h
y y f x y f x y    

  
20.1

0.94 (0 0.94) ((0.1) (1.0392))
2
        

1.03946  



Put n = 2 in the equation (2), we get 

     
(3) (2)

1 0 0 0 1 1[ ( , ) ( , )]
2

h
y y f x y f x y    

20.1
0.94 (0 0.94) ((0.1) (1.03946))

2
        

1.039473  

Put n = 3 in the equation (2), we get 

 
(4) (3)

1 0 0 0 1 1[ ( , ) ( , )]
2

h
y y f x y f x y    

  
20.1

0.94 (0 0.94) ((0.1) (1.039473))
2
        

1.039473  

Here 
)4(

1

)3(

1 yy  . Therefore 1 1.039473.y   

Hence the value of (0.1) 1.039473.y   

 

13.5       Taylor’s Series Method 

 

Taylor's Series Method is a numerical technique used for approximating the solution of ordinary 

differential equations (ODEs) by representing the solution as a Taylor series expansion. This 

method provides a systematic way to obtain accurate numerical solutions by considering higher-

order derivatives of the function. Taylor's Series Method expands the solution of an ODE into a 

Taylor series around a given point. The series includes terms involving the function's values and 

its derivatives.  



The method requires the calculation of higher-order derivatives of the function at the chosen 

point a. These derivatives contribute terms to the series expansion. The accuracy of the 

approximation depends on the order of the Taylor series used. Higher-order series provide more 

accurate results, but they require more derivatives to be computed. 

Consider the differential equation 

( , )
dy

y f x y
dx

   with y(x0) = y0.  

The Taylor’s series method is  

                 
   

2 3

0 0

0 0 0 0 0( ) ........
2! 3!

x x x x
y x y x x y y y

 
         

Putting the values of x, x0, y0, y0
’, y0

’’, ………. in above equation and we get value of y(x). 

Taylor’s series method is derived in any order and values of y(x) are easily obtained. But this 

method take long time in computing higher derivatives. 

Taylor's Series Method is often implemented using computer software due to the need for 

multiple derivative evaluations. The series expansion is truncated at a certain order, and the terms 

are used to iteratively update the solution. 

Examples 

Example.5. Solve the differential equation 
dy

x y
dx

   with y(0)=1, by Taylor’s series 

method to compute y for  x=0.1.  

Solution: It is given that  

0 0,   0,   1.
dy

y x y x y
dx

           …(1) 

Here we find some derivatives and their values at x0=0,  y0 =1 are 



 

y x y  
 0 1y 

 

1y y  
 0 2y 

 

0y y  
 0 2y

 

y y 
 0 2y

 

 

The Taylor’s series method is  

 
     

2 3 4

0 0 0

0 0 0 0 0 0( ) ........
2! 3! 4!

x x x x x x
y x y x x y y y y

  
         

 

Putting the value of x0,  y0, 0 0 0 0, , , , ........y y y y    , we get 

 
 

 
 

 
 

 
2 3 4

0 0 0
( ) 1 0 .(1) 2 2 2 ........

2! 3! 4!

x x x
y x x

  
      

 

          

2 3 42 2 2
1 ........

2! 3! 4!

x x x
x     

 

Now put x=0.1 and taking up to fourth terms, we get 

     
2 3 42 2

(0.1) 1 0.1 0.1 0.1 0.1
6 24

y     
 

           
     

2 3 41 1
1 0.1 0.1 0.1 0.1

3 12
    

 



 
   

1 1
1 0.1 0.01 0.001 0.0001

3 12
    

 

 1 0.1 0.01 0.00033 0.0000083      

 1.1103383 . 

13 Summary 

 

Numerical solutions of ODEs play a crucial role in simulating dynamic systems and 

understanding their behavior. The choice of method depends on factors such as the nature of the 

problem, desired accuracy, stability, and computational efficiency. Euler's method is a simple 

and intuitive approach for solving ODEs, its efficiency and accuracy might be limited, especially 

for complex problems. For higher accuracy and faster convergence, more sophisticated 

numerical methods should be considered. 

The Euler’s method is 

1 ( , )n n n ny y h f x y    

The Euler’s modified method is  

....)2,1,0()],(),([
2

)(

11000

)1(

1 


nyxfyxf
h

yy
nn

 

The Taylor Series method is  

 
   

2 3

0 0

0 0 0 0 0( ) ........
2! 3!

x x x x
y x y x x y y y

 
         

 

13 Terminal Questions 

Q.1. Explain the Euler’s method. 



Q.2. Which method give the amore appropriate result in Euler’s method and Euler’s modified 

method. 

Q.3. Write the Taylor Series formula. 

Q.4. Use Euler’s method compute the value of y(0.04) for the differential equation y
dx

dy


with y =1 at x =0. 

Q.5. Using Euler’s modified method, compute y(2) in steps of 0.2 given that xy
dx

dy
 2

with y(1) =1. 

Q.6. Using Taylor’s series method to compute y(2.1) correct to 5 decimal places, where   

dy
x x y

dx
     with y(2)=2. 

 

Answer 

4. 6705.0   5. 0516.5)2( y   6. 2.00238125.  

 

Suggested  Further Readings: 

1. Atkinson, K. and Han, W. Theoretical Numerical Analysis, Springer Science & Business 

Media, 2010. 

2. Jain, M.K., Iyengar, S.R.K and Jain, R.K.: Numerical Methods for Scientific and 

Engineering Computations, New Age International (P) Ltd. New Delhi, 2014. 

3. Sastry, S.S.: Introductory Methods of Numerical Analysis, UBS Publishers, 2012. 

4. Bradie, B. A friendly introduction to Numerical Analysis. Pearson Education, 2007. 

5. Gupta. R. S., Elements of Numerical Analysis, 2nd Edition, Cambridge University Press, 

2015. 
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14.1 Introduction 

Numerical solutions of ordinary differential equations (ODEs) are essential for simulating 

dynamic systems and gaining insights into their behavior. The selection of a specific numerical 

method is influenced by various factors, each playing a crucial role in determining the most 

suitable approach for a given problem. Picard's Method, also known as the Picard Iteration or the 

Method of Successive Approximations, is an iterative numerical technique used for solving 

ordinary differential equations (ODEs), particularly initial value problems. Named after the 

French mathematician Émile Picard, this method involves constructing a sequence of successive 

approximations to converge towards the true solution. Indeed, the Runge-Kutta methods, and 

particularly the fourth-order Runge-Kutta method (RK4), are widely regarded as some of the 

most commonly used and versatile numerical techniques for solving ordinary differential 

equations (ODEs).  

The popularity of RK4 is attributed to its balance between accuracy and simplicity, making it 

suitable for a broad range of applications. Milne's Predictor-Corrector Method is a numerical 

technique used for solving ordinary differential equations (ODEs), particularly for initial value 

problems. It belongs to the family of predictor-corrector methods, where an initial prediction of 

the solution is refined iteratively to improve accuracy. 

Picard’s method of successive approximation; Runge-Kutta method and Milne’s predictor-

corrector methods are discussed in this unit. 

 

14.2       Objectives 

After reading this unit the learner should be able to understand about: 

 the Picard Method 

 the Runge-Kutta Method for fourth order 

 the Milne’s Predictor-Corrector Method  



14.3       Picard’s Method 

 

Picard's Method is based on the concept of iterative refinement. It begins with an initial guess 

for the solution and successively refines the approximation through a series of iterations. The 

method is implemented by performing iterative calculations using the recurrence relation until 

the desired level of accuracy is achieved. It often requires the solution of integral equations. Let 

us consider the differential equation 

  ),( yxf
dx

dy
y         ….(1) 

with the initial condition y = y0 for x = x0 i.e., y(x0) = y0. 

Integrating the differential equation (1), we get 

  
x

x
dxyxfyy

0

),(0       …(2) 

Equation (2) in which the unknown function y appears under the integral sign, is called an integral 

equation. In this method, the first approximation y(1) is obtained by replacing y by y0 in f(x, y) in 

right hand side of (2) and integrating with respect to x, we get 

i.e.,  
x

x
dxyxfyy

0

),( 00

)1(
      …(3) 

The second approximation y(2) is determined by replacing y by y(1) in f(x, y) in right hand side of 

(2) and integrating with respect to x, we get 

  
 

0

1(2)

0 ( , )
x

x
y y f x y dx        ….(4) 

The third approximation y(3) is determined by replacing y by y(2) in f(x, y) in right hand side of 

(3) and integrating with respect to x, we get 

  
 

0

2(3)

0 ( , )
x

x
y y f x y dx        ….(5) 



Proceeding in the same way we obtain (3) (4) 1, , ............., andn ny y y y where 

  
0

( ) ( 1)

0 ( , )
x

n n

x
y y f x y dx    

With   
0

)0( yy   

Repeat this steps till whenever upto the two value of y becomes same to the desired degree of 

accuracy. 

 

Examples 

 

Example.1. Use Picard’s method to solve for 0.1
dy

x y x
dx

   and 0.2 given that y=1 when 

x = 0.  

Solution: It is given that 

 
0 0( , ) and 0, 1f x y x y x y        ….(1) 

The first approximation is 

 
0

(1)

0 0( , )
x

x
y y f x y dx    

        
0

0 0( )
x

x
y x y dx    

        
0

1 ( 1)
x

x dx    

2

0

1
2

x

x
x

 
   

 
 



2

1
2

x
x    

The second approximation is 

 
0

(2) (1)

0 ( , )
x

x
y y f x y dx    

0

(1)

0 ( )
x

x
y x y dx    

  
2

0
1 1

2

x x
x x dx
  

      
  

  

2

0
1 2 1

2

x x
x dx

 
    

 
  

  
3

2

0

1
6

x

x
x x
 

    
 

 

3
21

6

x
x x     

  1
6

2
3

 xx
x

 

The third approximation is 

      
0

(3) (2)

0 ( , )
x

x
y y f x y dx    

0

(2)

0 ( )
x

x
y x y dx    

  

3
2

0
1 1

6

x x
x x x dx

 
      

 
  



4 3
2

0

1
24 3

x

x x
x x
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The fourth approximation is 
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x
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x

x
y x y dx    
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The fifth approximation is 
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When x =0.1, we have 

 (1) (2) (3) (4)

0 1, 0.905, 0.9098, 0.90967, 0.90967.y y y y y      

Hence 0.90967 at 0.1.y x   

When x = 0.2, we have  

(1) (2) (3) (4)

0 1, 0.82, 0.83867, 0.83740, 0.83746,y y y y y      83746.0)5( y . 

Hence 0.83746 at 0.2.y x   

 

Example.2. Apply Picard’s method to solve 
2yx

dx

dy
 given that when 

0 00, 0x y  up 

to third order of approximation. 

Solution. It is given that 

 2

0 0( , ) and 0, 0
dy

f x y x y x y
dx

         ….(1) 

The first approximation is 

 
0

(1)

0 0( , )
x

x
y y f x y dx    



0

2

0 0( )
x

x
y x y dx    

0
0 ( 0)
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x dx    
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x

x

 
  
 



  

The second approximation is 

                 
0

(2) (1)

0 ( , )
x

x
y y f x y dx    
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The third approximation is 
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14.4       Runge-Kutta Method For Fourth Order 

 

Runge-Kutta methods are a family of numerical techniques commonly used for solving ordinary 

differential equations (ODEs). These methods provide a systematic way to approximate the 

solution of ODEs with improved accuracy compared to simple methods like Euler's Method. The 

most widely used among them is the fourth-order Runge-Kutta method (RK4). This method is 

most commonly used method and most suitable when computation of higher derivatives is 

complicated. Runge-Kutta methods involve using weighted averages of function values at 

different points within each step to obtain more accurate approximations of the solution. 

Consider the following differential equation. 

 0 0( , ) with ( )
dy

f x y y x y
dx

   

Runge-Kutta method of order four is given by 

 hxxforkyy nn  01  



Where 

2 3
1 4

1 2 3 4
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6 2
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k kh
k k k

h
k k k k
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  4 0 0 3,k f x h y k h    

Runge-Kutta methods, particularly fourth-order Runge-Kutta method (RK4), are powerful tools 

in the numerical solver toolkit. Their combination of accuracy, versatility, and ease of 

implementation makes them a preferred choice for many applications where the computation of 

higher derivatives might be challenging or impractical. 

 

Check your Progress 

 

1. What do you mean by Picard’s method? 

2. Write the Runge Kutta method formula for fourth order. 

 

Examples 

 

Example.3. Use Runge-Kutta method to solve  for 1.2, 1.4, initially 1, 2.
dy

x x x y
dx

      



Solution: It is given that 

0 0( , ) , 1, 2.
dy

f x y xy x y
dx

     

Then we have  

 
0 0( , ) 1 2f x y    

   2  

Assume 0.2.h  Then we have 

         
1 0 0( , )k f x y  

2  

       
2 0 0 1,

2 2

h h
k f x y k

 
   

 
  

0 0 1
2 2

h h
x y k

  
    
  

 

0.2 0.2
1 2 2

2 2

  
     
  

 

 (1.1) (2.2)  

2.42  

       
3 0 0 2,

2 2

h h
k f x y k

 
   

 
 

0 0 2
2 2

h h
x y k

  
    
  

 



0.2 0.2
1 2 2.42

2 2

  
     
  

 

 (1.1)(2.242)  

2.4662  

       
2 0 0 3( , )k f x h y k h    

0 0 3( )( )x h y k h    

(1 0.2)(2 2.4662 0.2)     

 (1.2)(2.49324)  

2.9918  

Now we have 

 1 2 3 4[ 2( ) ]
6

h
k k k k k     

    
0.2

[2 2(2.42 2.4662) 2.9918]
6

     

 49214.0k  

Therefore we have 

  
1 0x x h   

1 0.2

1.2

 


 

and  
1 0y y k   

     2 0.49214   



    2.4921  

Hence (1.2) 2.4921.y    

Now for the second interval, we have 

 
1 11.2, 2.4921, ( , ) .x y f x y xy    

Now we have 

       
1 1 1 1( , )f x y x y  

1.2 2.4921   

2.99052  

Assume 0.2.h  Then we have 

                           
1 1 1( , )k f x y  

   2.99052  

                  
2 1 1 1,

2 2

h h
k f x y k

 
   

 
 

1 1 1
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h h
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9905.24921.2)1.02.1(  

  (1.3)(2.79105)  

3.6283  

        
3 1 1 2,
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h h
k f x y k

 
   

 
 



1 1 2
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2

2.0
6283.34921.2

2

2.0
2.1  

  (1.3)(2.8548)  

3.71143  

                      
4 1 1 3( , )k f x h y k h    

1 1 3( )( )x h y k h    

(1.2 0.2)(2.4921 3.71128 0.2)     

  (1.4)(3.2343)  

4.5281  

Now we have 

        1 2 3 4[( 2( ) ]
6

h
k k k k k     

  
0.2

[2.9905 2(3.6283 3.7114) 4.5281]
6

     

0.73992  

Therefore we have 

  
2 1x x h   

1.2 0.2   

1.4  



and  
2 1y y k   

     2.4921 0.73992   

    3.2330  

Hence 2321.3)4.1( y . 

Example.4. Solve the equation 
22xy

dx

dy
  with initial condition y(0) = 1 by Runge-Kutta’s 

method for x = 0.2 and 0.4 with h = 0.2. 

Solution: It is given that 

22xy
dx

dy
  

Then we have 

  2

0 0 0 0( , ) 2f x y x y   

  22(0) (1)   

 0  

Assume 0.2.h  Then we have 

  
1 0 0( , )k f x y  

                     0.  

        2 0 0 1,
2 2

h h
k f x y k
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0 0 12
2 2

h h
x y k

  
     

  
 



2
0.2 0.2

2 0 1 0
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                       3 0 0 2,
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h h
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0 0 22
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h h
x y k

  
     

  
 

     

2
0.2 0.2

2 0 1 ( 0.2)
2 2

  
       

  
 

     22(0.1)(0.98)   

      0.1920   

4 0 0 3( , )k f x h y k h    

     2

0 0 32( )( )x h y k h     

4 0 0 3( , )k f x h y k h    

     
2

0 0 32( )( )x h y k h     

    22(0 0.2)[1 ( 0.1920)(0.2)]      

   0.36986   

Now we have 

        1 2 3 4[( 2( ) ]
6

h
k k k k k     



)]36986.0())1920.0()2.0((20[
6

2.0
  

0.2
( 1.15386)

6
   

0.03846   

Therefore we have 

  
1 0x x h   

0 0.2

0.2

 


 

and  
1 0y y k   

     1 ( 0.03846)    

    0.96154  

Hence (0.2) 0.96154.y    

Now for the second interval, we have 

 
1 10.2, 0.9615x y  , 22),( xyyxf   

Now we have 

       2

1 1 1 1( , ) 2f x y x y   

22 (0.2) (0.9615)     

0.3697929.   

Assume 0.2.h  Then we have 



                         
1 1 1( , )k f x y  

                                     0.3697929.   

        2 1 1 2,
2 2

h h
k f x y k
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h h
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   2(0.3)(0.85473)   

0.51284   

       3 1 1 2,
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2(0.3)(0.82849)   

0.49709   

       
4 1 1 3( , )k f x h y k h    

2

1 1 32( )( )x h y k h     

2)2.0)49709.0(9615.0)(2.02.0(2   



2(0.4)(0.7431)   

0.59454   

Now we have 

        1 2 3 4[( 2( ) ]
6

h
k k k k k     

0.2
( 0.36979 2( 0.51284 0.49709) 0.59454)

6
       

0.099473   

Therefore we have 

  
2 1x x h   

0.2 0.2   

0.4  

and  
2 1y y k   

     0.9615 0.99473   

    0.86202  

Hence 86202.0)4.0( y . 

 

14.5       Milne’s Predictor-Corrector Method 

 

Milne's method combines both prediction and correction steps to iteratively refine the solution 

of an ODE. It uses a third-order Adams-Bashforth predictor and a fourth-order Adams-Moulton 

corrector.  Milne's Predictor-Corrector Method is a combination of third and fourth-order 



methods, providing higher accuracy compared to some lower-order methods. This contributes to 

improved numerical stability. If we solve the differential equation ),( yxf
dx

dy
 with 

00 )( yxy  by this method, we first obtain the approximate value of 
1ny by predictor formula 

and then improve this value by means of a corrector formula. 

The predictor formula is  

  1 3 2 1

4
(2 2 )

3
n n n n n

h
y y y y y   

       

The Corrector formula is 

  )4(
3

111

)1(

1 
 nnnnn yyy

h
yy  

which improve that predicted value. 

The method requires the calculation of predictor and corrector values at each step. While more 

involved than simpler methods, it is still relatively straightforward to implement. 

 

Examples 

 

Example.5. Compute (2),y if ( )y x is the solution of )(
2

1
yx

dx

dy
 assuming y(0) = 2,  

y(0.5) = 2.636,  y(1) = 3.595,  y(1.5)= 4.968. 

Solution. It is given that 

 
1

( , ) ( )
2

dy
f x y x y

dx
    

and the values assuming y(0) = 2,  y(0.5) = 2.636,  y(1) = 3.595,  y(1.5)= 4.968. 



 

00 x  20 y  
1)20(

2

1
0 y  

5.01 x  636.21 y  
568.1)636.25.0(

2

1
1 y  

2 1x   
2 3.595y   

2

1
(1.5 3.595) 2.297

2
y     

5.13 x  968.43 y  
234.3)968.45.1(

2

1
3 y  

 

Using the predictor formula, we have  

       4 0 1 2 3

4
[2 2 ]

3

h
y y y y y       

  ]234.322975.2568.12)[5.0(
3

4
2   

  
2

2 [7.3065)
3

   

6.871  

Now we have 

        4 4 4

1
( )

2
y x y    



1
(2 6.871)

2
   

4.4355  

Now using the corrector formula, we have 

 ]4[
3

43224 yyy
h

yy   

  
0.5

3.595 [2.2975 4 3.234 4.4355]
3

      

0.5
3.595 [19.669]

3
   

6.873166 6.8732   

Now we have 

        4 4 4

1
( )

2
y x y    

1
(2 6.8732)

2
   

4.4366  

Again using the Corrector formula, we have 

      ]4[
3

43224 yyy
h

yy   

]4366.4234.342975.2[
3

5.0
595.3   

0.5
3.595 [19.6701]

3
   



6.87335 6.8734   

Hence the value of 8734.6)2( y . 

 

Example.6. Solve initial value problem 
21 , (0) 1, 0.1 for 0.4

dy
xy y h x

dx
     by using 

Milne’s method when it is given. 

x 0.1 0.2 0.3 

y 1.105 1.223 1.355 

 

Solution:  

It is given that 

 
21 , (0) 1, 0.1 for 0.4

dy
xy y h x

dx
     . 

00 x  10 y  1101 2

0 y  

1.01 x  105.11 y  1221.1)105.1)(1.0(1 2

1 y  

2.02 x  223.12 y  2991.1)223.1)(2.0(1 2

2 y  

3.03 x  355.13 y  5508.1)355.1)(3.0(1 2

3 y  

 



Using the predictor formula, we have  

        4 0 1 2 3

4
[2 2 ]

3

h
y y y y y       

  ]5508.122991.11221.12[
3

)1.0(4
1 


  

  
0.4

1 [4.0467]
3

   

1.53956 1.539   

Now we have 

       
2

4 4 41y x y    

21 (0.4)(1.539)   

1.9474  

Now using the corrector formula, we have 

      ]4[
3

43224 yyy
h

yy   

  ]9474.15508.142991.1[
3

1.0
223.1   

  
0.1

1.223 [9.4497]
3

   

1.53799  

Now we have 

       
2

4 4 41y x y    



21 (0.4)(1.538)   

1.9461  

Again using the Corrector formula, we have 

           ]4[
3

43224 yyy
h

yy   

0.1
1.223 [1.2991 4 1.5508 1.9461]

3
      

0.1
1.223 [9.4497]

3
   

1.53799 1.538   

Hence the value of (0.4) 1.538.y   

 

14.6  Summary 

 

Numerical solution of ODEs involves a thoughtful consideration of the specific problem's 

characteristics, accuracy requirements, stability constraints, and computational efficiency. The 

choice of method should align with the unique features of the ODE and the goals of the 

simulation or analysis. 

 The Picard’s Method is  
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nn dxyxfyy
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)0( yy  . 

 The Runge-Kutta’s Method for fourth order is  
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The Milne’s Predictor-Corrector Method is 

 1 3 2 1

4
(2 2 )

3
n n n n n

h
y y y y y   

       and )4(
3

111

)1(

1 
 nnnnn yyy

h
yy  

 

14.7  Terminal Questions 

 

Q.1. Write the solution procedure of Picard’s method for solving ordinary differential equation. 

Q.2. Explain the Runge-Kutta’s method for fourth order. 

Q.3. What do you mean by Milne’s Predictor-Corrector Method. 

Q.4. Use Picard’s method to solve xy
dx

dy
 with y = 2 when x = 0 up to third order of approximation. 

Q.5. Solve the equation yx
dx

dy
 with initial condition y(0) =1 by Runge – Kutta’s rule from x = 0 to 

x = 0.4 with h = 0.1. 



Q.6. Use Milne’s method to solve yx
dx

dy
 with initial condition y(0) =1 from x = 0.20 to x = 0.30.  

 

Answer 

4. 22
2624

234
)3(  x

xxx
y  

5. (0.1) 1.1103, (0.2) 1.2428, (0.3) 1.3997, (0.4) 1.5836.y y y y     

6. 
0.20 0.30( ) 1.2428 and ( ) 1.3997.x xy y    
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