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Block-1

Calculus of Finite Differences

Numerical analysis holds significant importance in various domains such as Engineering,
Science, and Technology. It involves obtaining results in numerical form through computational
methods applied to given data. The foundation of numerical analysis lies in the calculus of finite
differences, a branch that addresses alterations in the dependent variable resulting from changes
in the independent variable. Finite differences can be computed in both forward and backward
directions, depending on whether values ahead or behind are used in the calculations. Finite
differences have various applications in numerical analysis, providing a versatile tool for

approximating derivatives, solving differential equations, and interpolating functions.

Finite differences are frequently used to approximate derivatives of a function. By expressing
derivatives as finite difference quotients, such as the forward difference or central difference,
numerical approximations can be obtained. This is particularly useful when dealing with
functions for which analytical derivatives are challenging to compute. Finite differences play a
crucial role in interpolation methods. Newton's divided difference interpolation formula relies
on finite differences to construct polynomial interpolants. This technique is used to estimate
values between known data points. Finite difference methods are employed to numerically solve
differential equations. Discretizing the differential equation using finite differences transforms
the problem into a system of algebraic equations, which can be solved using numerical
techniques like the Euler method, the Runge-Kutta method, or finite difference schemes for
partial differential equations. Finite differences are used in numerical methods for root finding,
such as Newton's method. The finite difference quotient helps approximate the derivative in the

iterative process of finding roots of equations.

In the first unit, we shall discussed the Finite differences, operators and relations between the
operators. A finite difference table is a systematic way of organizing finite differences at different
orders. It helps identify patterns and relationships in the data. In second unit we shall discuss the

fundamental theorem difference calculus, factorial function, properties of factorial function.
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1.1 Introduction

Numerical analysis plays a crucial role in Engineering, Science, and Technology by providing
numerical results through computational methods applied to given datasets. At its core,
numerical analysis relies on the principles of the calculus of finite differences, which explores
how changes in the independent variable lead to corresponding changes in the dependent
variable. The Calculus of Finite Differences constitutes a mathematical discipline concerned with
discrete quantities and the distinctions between successive values. Finite differences are used in
optimization algorithms, where gradients or partial derivatives are approximated numerically to

find extrema of functions.

Finite differences provide a powerful and intuitive approach to solving various numerical
problems, making them a fundamental tool in the field of numerical analysis. In contrast to
classical calculus, which revolves around continuous functions and limits, the calculus of finite
differences directs its attention to the discrete characteristics of data or functions defined at
specific points. In the present unit we shall discuss about the finite differences, forward
differences, backward differences, central differences, shift operators and relations between

operators.

A finite difference table is a systematic way of organizing finite differences at different orders.
It helps identify patterns and relationships in the data. Finite differences can be computed in both
forward and backward directions, depending on whether values ahead or behind are used in the
calculations. Finite differences find applications in diverse fields, including numerical analysis,
computer science, physics, engineering, and discrete mathematics. Finite differences are
employed in interpolation to estimate values between known points and extrapolation to predict
values beyond the given data points. Finite differences are used in error analysis of numerical
methods. Understanding the behavior of finite differences helps assess the accuracy and

convergence of numerical algorithms.



1.2 Objectives

After reading this unit the learner should be able to understand about the:

" Finite Differences

" Forward differences

. backward differences

. Central Differences

. Shift Operators E

. Relations between the operators

1.3 Finite Differences

Finite Differences refers to a mathematical concept that involves the computation of discrete
changes or differences between consecutive values of a function or sequence. Unlike traditional
calculus, which deals with continuous and infinitesimal changes, finite differences focus on the
specific, discrete variations in values at distinct points. Finite Differences is a numerical analysis

technique used to approximate derivatives, integrals, and other mathematical operations.

This method is particularly useful when dealing with functions or equations for which analytical
solutions are difficult to obtain. The basic idea behind finite differences is to approximate the

derivative of a function by considering the differences in function values at discrete points.

The concept of finite differences is particularly useful when dealing with discrete data sets or
functions defined at specific points, providing a practical and numerical approach to

understanding changes in values.

Let y = f(x) be a function of x, the value of independent variable x (xo, X1,......... , Xn) are called

arguments and corresponding values of dependent variable y (yo, Yi,.......... , Yn) are called



entries. To find the values of y and % , for some intermediate value of X, is based on principle
X

of finite difference.

1.4 Forward Differences

Consider the function

y = f(x) e (1)
where the function is not known only the data set are given.

The first forward differences is defined by

AY, =Y, —Y,, where h =1 is interval difference.
The differences Y, — VYo, Yo = Yireeerrieeeiinnnn. v ¥, — VY, are known as the first forward

differences of equation (1) and denoted by AY,, Ay, ,........... , AY,,_,, respectively, where A is

known as the forward difference operator.
Generally, the first forward differences is defined by

AY, = VY,.n — Yy, where h is interval difference.
or Af (x)= f (x+h)— f (x), where his interval difference.

The differences of the first forward differences are known as the second forward differences and
denoted by A’y,,A%Y,,.....etc.
Therefore, we have
A%y, = AlAY,]
= ALY, — Y, 1, where h =1 is interval difference.
= Ay, — Ay,

= (yz - y1)_(y1 - YO)



=Y, =2y +Yo -(2)
Similarly, we have
A%y, = ALYy, — V1]
= A)/2 - Ayl
=(Ys=Y2)— (Y2 — Y1)
=Y, -2y, +Y, ...(3)
Generally, we have
Ay, = Ay,., — Ay, , where h = 1is interval difference.
Forward Difference Table:
Argument| Entry First Second Third Fourth
X y=f(x) | Differences Differences Differences Differences
Ay A%y Ay A'y
Xo Yo Y1 — Yo =AY,
X, +h y, | Y:—vi=ay, Ay, =AY, =AY, Ay, — Ay, =&y,
xa2h |y | Vs Ya=AY | Ay, - Ay =A%y, Ay, - Ay, =AY, =8y =8,
X, +3h Y3 Vo= Ys =AYs | AYs =AY, =AY,
X, +4h Ys




Again, the differences of second forward differences are known as third forward differences and

denoted by A°y,, A%y, etc.

Thus we have Ny, =Ny, — Ny,
=(Y; -2y, +Y,)—-(Y,—2y,+Y,) [from equation (2) and (3)]
=Y, -3y, +3y, — ¥, and so on.

In general, the nth forward difference is given by

A"y =A""y . —A"y , where his interval difference.

1.5 Backward Differences

Consider the function

y =f(x) (D)
where the function is not known only the data set are given.

The differences Y, — Yo, Yo — Vs ceeeeereemennenn , Y, — Y, are known as the first backward
differences of equation (1) and denoted by VY,,VV,, . corrrranna... , VY, , respectively,

where v is known as the backward differences operator.

Generally, the first backward difference is defined by

VY, =Y, =Y., where h = 1 is interval difference.

or Vi (X) =f (X)— f (X—h) , where h is interval difference.

The differences of the first backward differences are known as second backward differences and

denoted by V?y,,V?y,,..... etc.

Therefore we have



VY, =V(VY,)
=V(y, —V,), where h =1 is interval difference.
=Vy, -V,
= (¥, = Y) = (%1 = Yo)
=Y, = 2Y+ Y,

Generally, we have

V?y, =Vy, —Vy, ., whereh=1isinterval difference.

Backward Differences Table:

Argument| Entry First Second Third Fourth
X y=f(x) | Differences Differences Differences Differences
vy Viy vy vty
Xq Yo
Xo_l_h yl yl_yO :vyl
Vy, =Vy, :VZY2 , , 5
v V7y, -V, =V7y
Yo Y1 Vyz 3 2 3
X, +2h Y, . , )
vY3_VY2:VZY3 VY= VY=V,
Ys— Y, = VY, VZY4_VZY3 =V3y4
X, +3h Y )
Vy, =Vy; =V,
Yi— Y3 = Vy4
X, +4h Yy

Again the differences of second backward differences are known as third backward differences

and denoted by V3y,, V3y,, ...... etc.

Thus we have



ngx = szx _szxfl
In general, the n™ backward differences is given by

\2 yx = vn7lyx _vnilyx—l

1.6 Central Differences

The differences Y, — Yo =6 Y12, Y2 = Y1 =06 Yg/p1ennee 'Y = Yot =6 Yoo are known as

central differences and s is known as central differences operator.

Similarly, we have
Najg —Nyyp = 52)’1
Nsjo — HNgp = 52)’2

6%y, —o6%y, =5°%y,,, and so on.

Central Difference Table:

Argument Entry First Second Third Fourth
X y = f(X) Differences | Differences | Differences | Differences
oy 5%y 5%y 5ty
X y
° ° @1/2 52
X Y1 Sy Vi 53Y3/2
3/2 ) 54y
X Y, Sy 5, 5% Y/, ?
5/2
Xq Y, 52y3
N
X Y




In generally, the central differences is given by

O0Y, = Yoz — Yen2» Where h is interval difference.

1.7 Shift Operator E

The shift (increment) operator E is defined as

EY, = ¥,., ,» Where h is the interval difference.

Ezyx = yx+2h

Enyx = y><+nh

Also the inverse operator E* is defined as
-1
E Yx = Yeiion)

=Y., Where h is the interval difference.

Check your Progress

1. What do you mean by Finite Differences?

2. Explain the forward and backward differences.
3. Define the central differences

4. What is shift operator?

1.8 Relations between the Operators

There are several relations between the operators. Some of the important relations are following:



(i) Toshowthat A=E-1 or E=A+1.

We know that AY, = Yein — Yx
=EBy, -V,
Ayx = (E _1) yx

Thus we have
A=E-1
or E=A+1.
(i) To show that V=1-E™* or E'=1-V.

We know that VY, =Y, = Yen
= yx - E_lyx
= (1_ E_l) Yx

Thus we have

or E'=1-V.
(ifi) Toshow that EV = VE = A.

We have EVy, =E(Y,— Y1)
= ny - ny—h
= yx+h - yx

EVy, =4y,

EV=A e (D)



Again we have VEy, =Vy, .,

= yx+h - yx
VEy, = Ay,

VE=A
Using equations (1) and (2), we have

EV=VE=A

(iv) Toshow that §=E"*-E™
We know that &Y, = Y,.n2 = Yynr2

=E"y, —E "y,
5y, =(E"”-E")y,
Thus we have
S=EY2_gY2

(v) To show that A=5E",

We know that Ay, = Y,., — Yy
= Ey, -y,
= (E-D)y,
= (EY? —EY?)EY?y,

Ay, = SEY?y,

. (2)



Thus we have
A=5EY.

(vi) Toshowthat ~ E =¢™.

We know that Ef (x) = f(x+h)

2
= f(x)+hf'(x)+ % F(X)+..... (Using Taylor’s Theorem)

- f(x)+th(x)+h?2|D2f(x)+....

h2
:(1+hD+ED2 ..... j f (X)

Ef (x) = e"df (x)
Thus we have

E:ehD

(vii) To show that (1+A)(1—V)=1.

We know that (1+ A)(L-V) f (x) = (1+ A)(f (X) - V¥ (X))
=1+ AT () - (F(x) = £ (x=h))]
=(1+A)f(x=h)

— Ef (x—h)

L+ A)L-V)F(X) = F(x)

Thus we have



A+A)A—V) =1.

Examples

Example.1. Show that A’ = E* —3E° +3E -1.
Solution: Using the definition of A, we have
Af (X) = f(x+h)— f(x)
and Ef (x)=f(x+h)
Therefore, we have
E"f(x)= f(x+nh)
NF(X)=A[f(x+h)— f(x)]
= f(x+2h)-2f(x+h)+ f(x)
and AN (x)=A[f(x+2h)—2f(x+h)+ f(X)]
= f(x+3h)-3f(x+2h)+3f (x+h) - f(x)
=E*f(X)—3E*f(X) +3Ef (x) - f ()
N f(x)=(E*-3E*+3E-1)f(x)

or AN =E®*-3E®+3E-1.



Example.2. Prove that A[log x] = log (1+ gj

Sol: Using the definition of A, we have

Af (x) = f(x+h)— f(x), where h is the interval difference.

Now we have A[log x]=log(x+h)—log x

(x+h)

=log

X

=log (1+D).
X

Example.3. Prove that Atan™5x = tanl( 52h J
1+25x“ +25xh

Sol: Using the definition of A, we have
Af (X)= f(x+h)— f(X), where h is the interval difference.

Now we have
Atan™5x = tan " 5(x + h) —tan' 5x

tan 5(x+h)—5x
1+5(x+h)5x

- 5h
1+25x(x+h)

= tan‘l( oh j
1+ 25x% +25xh




Example.4. Prove that VA =5% = (A—V).
Sol: We have VA f(x) = V [Af (x)]

= V[f(x+h)-f(x)]

=V f(x+h)- Vf(x)

= f(x+h) = f (x+ h—h)-[f (x)- F(x-h)]

= f (x+h) =2f (x)+ f (x=h) (1)
Now we have

5 f(x)=5[5f(x)]

=f(x+h)—2f (x)+f(x—h) .(2)
Now we have
(A =V) f(x)= Af (x)-VF (x)
=L F(x+h)=F () ]=[ F () = (x=h)]

= f(x+h)—2f(x)+f(x—h)



From equations (1), (2), (3), we have

VA =6% =(A-V).

2
Example.5. Prove that A = %52 +3, /1+ %.

Sol: We know that
5 — E1/2 _ E—1/2

Here we have

182 +8\/1_+_78_2=£(E1/2_E_1/2)2 + (E1/2_E—1/2)\/1+ (El/Z—E71/2)2
2 4 2 n

:1(E1/2 _E—1/2)2+ (Ellz_E—llz)\/4+E+El—2

2 4
1/2 172 Y
=1(E+E71—2)+(E“2 _g2 !E +4E )

1/2 -1/2
:%(E+ E*-2)+(E" —E-W)_(E +2E )

=%[(E +ET-2) +(E-EY)]
-3l(2e-2)]

:%[Z(E—l)]

—E-1



i
B

Example.6. Prove that Alog f (x) = Iog{1+ %}

Solution: Using the definition of A, we have

Alog f(x)=log f (x+h)—log f (X), where h is the interval difference.

f (x+h)
f(x)

L [EfFX
] 'Og[ (%) }

_an| @A) F(X) . Eo
_Iog{ (0 } [ E=1+A]

=log

tog] F00+AF ()
I TS

Af (X)
fx) |

=log [1+
Example.7. Evaluate the following
(i) A*(2€*), where h =1 (i) A[Sin(ax+b)]
Solution: Using the definition of A, we have

Af (X) = f(x+h)— f(x), where h is the interval difference.



() Wehave  A*(2e")=2A%(e")
2 a(e)
=2A(e"* —e*), where h = 1 is the interval difference.
_o(e e gt )
=2(e’ -2e+1)e’

=2(e—1)%¢".
(if) We have

A[sin(cx+d)] =sin(c(x+h)+d)—sin(cx+d)

=2cos(c(x+h)+2d +cx+djxsin(c(x+h)+2d —cx—d]

:Zcos(cx+d +@jsin@.
2 2

Example.8. Evaluate A(3X + e** +sin x).
Solution: Using the definition of A, we have

Af (x) = T (x+h) — f(X), where h is the interval difference.

ABX+e” +sin x) =[3(x + h) +e***™ L sin(x + h)]—[3x +e”* +sin X]

=3h +e*[(e*" —1) + 2cos

(x+h+x . X+h=x
sin 5

=3h+e?(e®" -1+ ZCO{X +g sin[g).



Example.9. Evaluate A[e* log 3x].

Solution: We know that

AL (X)g ()] = f (x+h)Ag(x) + g(x)Af (x)
Take f (x) =e?*, g(x) = log3x.
Then we have
A(e** log 3x) = e’ A log 3x + log 3x Ae**
=e*™*M[log 3(x + h) — log 3x] + log 3x.(e2**" —e?¥)

= g2+ (Iog @j +log3x.e*(e*" -1)
X

=e* {e”‘ log (1+ Ej +(e™ -1)log 3Xj|.
X

Example.10. Evaluate A"(e**"),h=1.

Solution. We know that

Af(x) = f(x+1) - f(X), where h = 1 is the interval difference.
Aeax+b — ea(x+1)+b _eax+b
— ea><+b (ea _1)

Again A% = A(Ae™*P)



= A[e**(e* —1)]

= (e* —1)Ae™*

= (e* —1)e*™(e* -1)

=(e® - 1)2 @b
Proceeding in the same way, we get

An (eax+b) — (ea _1)n eax+b

Example.11. Show that Ay, =V'y, .,

Solution: Wehave V'y  =@-E™)'y,,, [+ V=1-E7]

~ ( E —1jr y
E X+r
= (E _1)" Eir yx+r

—(E-1"y, [ A=E-]]

=A"y,.

Example.12. Evaluate Acos(2+3X).
Solution: Using the definition of A, we have

Af (x) = f(x+h)— f(X), where h is the interval difference.



We have
Acosh(2 +3x) = cosh(2+3(x+ h)) - cosh(2 + 3x)

2+3(x+h)+2+3x sin 2+3(x+h)—2-3x

=2sinh inh
2
= 25inh(2+3x+@jsinh@.
2 2
Az

Example.13. Find the value of (Ej x*, where h=1,

2 1\2
Solution: We have (AEJ X =[(E El) }x3 [. A=E-]

{E2+1—2E} ,

—[E+E-21]%
=(x+1)% +(x-1°-2x°

=x3+3x% +3x+1+ X —3x? +3x—1-2%°

=6X.

1.9 Summary

The first forward differences is defined by

AY, =Y, —Y,, where h =1 is interval difference.



The first backward difference is defined by

Vy, =Y, - VY, , where h is interval difference.

The differences Y, — Yo =0 Y121 Yo = Y1 =0 Yaas eenee Yo = Yna = O Yo are known as

central differences and ¢ is known as central differences operator.

The shift (increment) operator E is defined as

EY, = ¥,.n, Where h is the interval difference.

The inverse operator E™ is defined as E‘lyx = Yyioh)

Some of the important relations are following:

() A=E-1 or E=A+1 iy V=1-E* or E'=1-V.
(i) EV = VE = A. (iv) 6 =E"*-E™,
(V)A=5E", (vi)E=¢".

vii) L+A)(L-V) =1.

1.10 Terminal Questions

Q.1. What do you means by Finite Differences?

Q.2. Explain the shift operators.

Q.3. Write a short note on Central difference operators.
Q.4. Prove that A> =E* —2E +1.

Q.5. Evaluate the following:



(i) Afsinh (a-+bx)]
(i) Aftan ax]

(iii) A[cot2]

(iv) A(X+CO0sX)
) A(X* +e* +2)

(vi) A[e* logbx]

. X
(Vi) A{COSZX}

Q.6. Evaluate the following:

(i) A’ cos2x

(i) A*(ab™)

(iii) (AEZJ X°

5x +12 }

X? +5X+6

(iv) A{

Q.7. Evaluate the following:

(i) (A% + A=1)(X* +2x+1)
(i) (A+D(2A-1)(x* +2x+1)

(i) (E +2)(E +1)(2"*" + X)



(iv) (E* +3E+2)2"" +x

Q.8. Prove that if f(x)and g(X) are the function of x then
(i) ALf(x)+9(x)]=Af (X) +Ag(x)
(ii) Ala T (x)]=aAf (x)

(i)  ALT(X)g(x)]= f(X)Ag(X)+g(x+h)Af (x) = f(x+h)Ag(X)+ g(X)Af (X)

f (X)} _ 9(AT (X) = F (x)Ag(X)

N )
) [g(x) 9()g(x+h)

Answers

5. (i) 2sinh [chosh[a + b + bxj
2 2

sina

i
(i cosaxcosa(x+1)

(iii) —cosec2*"

(iv) h—2sin (x+§j3m(§j

(v) 2hx+h%*(e" -1)

(vi) ea‘x[eah Iog(l+ 2} +(e* -1 log bx}



h(2x +h)cosx + 2x?* sin hsin(2x + h)
cos(2x + 2h)cos2x

(vii)
6. (i) —4sin®hcos(2x +2h)

(ii) (b® —1)ab™

(iii) 6x

iv) 4 + 6
(X+2)(x+3)(x+4) (X+3)(x+4)(x+5)

(

7. (i) 5h? +2hx+2h=x*-2x-1
(i) 5h? +2hx+2h—x* —2x -1
(iii) h

(iv) h

Suggested Further Readings:

1. Atkinson, K. and Han, W. Theoretical Numerical Analysis, Springer Science & Business
Media, 2010.

2. Jain, M.K,, lyengar, S.R.K and Jain, R.K.: Numerical Methods for Scientific and
Engineering Computations, NewAge International (P) Ltd. New Delhi, 2014.

3. Sastry, S.S.: Introductory Methods of Numerical Analysis, UBS Publishers, 2012.

4. Bradie, B. A friendly introduction to Numerical Analysis. Pearson Education, 2007.

5. Gupta. R. S., Elements of Numerical Analysis, 2nd Edition, Cambridge University Press,
2015.
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2.2 Objectives
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2.4  Factorial Function

2.5  Properties of Factorial Function

2.6 Summary

2.7 Terminal Questions



2.1 Introduction

In the present unit we shall discuss the fundamental theorem difference calculus, factorial
function, properties of factorial function with examples. The Fundamental Theorem of Difference
Calculus is a principle in mathematics that provides a fundamental relationship between
summation and differencing operations. It is a counterpart to the Fundamental Theorem of
Calculus, which connects integration and differentiation. This fundamental theorem plays a
crucial role in discrete mathematics and is applicable in various areas, including numerical

analysis and computer science.

In numerical analysis, the factorial function often plays a role in various computations, especially
in problems involving combinatory, series expansion, and algorithms. In numerical algorithms,
factorials may appear in computations involving series expansions, especially in contexts where
precise numerical evaluation is required. When dealing with large factorials, it's important to
consider numerical precision and computational efficiency. For very large factorials, numerical
libraries or specialized algorithms may be employed to avoid overflow issues and enhance

computational performance.

2.2 Objectives

After studying this unit, the learner will be able to understand:

. the fundamental theorem on difference calculus
. the factorial function

. the properties of factorial functions



2.3 Fundamental Theorem of the Difference Calculus

The fundamental theorem of the difference calculus in numerical analysis is a principle that
establishes a connection between the process of differencing a sequence and the original

sequence itself. It plays a crucial role in understanding and manipulating discrete data.

This theorem is foundational in numerical analysis, especially in techniques involving finite
differences, interpolation, and the construction of numerical algorithms. It provides a theoretical
basis for understanding the relationship between cumulative sums and differencing in the discrete

domain. Let f(x) be a polynomial of n' degree in x, then the n" difference of f(x) is constant and

A () = 0.

Proof: Consider the n™ degree polynomial
f(X)=A, + AX+AX +...+ AX"
Where Ay, ALA e , A, all are constants and n is a positive integer.
Af(X) = f(x+h)— f(x)
=[A, +AX+h)+A (X+h)? +... A X+h)"]-[A + AX+AX +...+AX"]
= Ah+ A[(X+h)? = x*]+ A[(x+h)® = x*T+....+ A [(X+ h)" —x"]
= Ah+ A [X*+°C,xh + h? — x*]+ A [x3+3C,x*h+°C,x* + h® — x*] +...
+ A [X"+"C X" h+"C,x"?h? +...+"Ch" — x")
or Af (X) =B, + B,x+ B;X* +.....+B__ ;X" ? + nA hx"™* (D)
Where B,,B,,....ccc....... , B, ; all are constants.

Using equation (1), we see that the first difference of a polynomial of degree n is given a

polynomial of degree (n-1).
Again we have
A (X) = Af (X + h) — Af (X)

=B, +B,(X+h)+B;(x+h)? +.....+ B_,(X+h)"? + nA h(x +h)"*



—[B, + B,x+ Byx* +....+ B,_,X"? + nA hx" ]
= B,h+ B,[(x+h)* —x*]+B,[(x+ h)® — x*]+.....
+ B, [x+h)"? —x"?]1+nAh[(x+h)"" —x""]
= B,h+ B,[X® + °C,xh +h? —x*]+ B,[x® + °C,x*h
+3C,xh% +h® —x®*]+....+ B, [X"?+"?C,x"°h
+"?C,x"°h? +....+"?C__,h"? —x"?]
+NAh[X"+"*C,x"?h+""C,x"°h? +...+"'C, ,h" —x"]

or A?f(X) =C, +C;x+C,X* +.....+C_, X" ® +n(n—1h*A x"? —n(2)
where C,,C,, v, ,C,_,,C,_, are constants.

Using equation (2), we see that the second difference of a polynomial of degree n is again a

polynomial of degree (n-2).
Proceeding in the same way, we will get a zero degree polynomial for the nth difference i.e.,
A"fF(X)=n(n—D(n—2)......... 1 h"a,x"™"
=nt'h"a,.
Therefore the nth difference is constant.
Now we have
A" (X) = A[A™ f (X)]
=A[NTh"a,]

=0 [ AC =0]

Hence the n™" difference of f(x) is constant and A™ f (x) = 0.



2.4 Factorial Function

A product of the form X(x—h)(x—2h).......... (Xx—(n—=2)h) is known as factorial

function and denoted by x™.

We have
X™ = x(x=h)(x=2h).......... (x—(n=1)h)
If the interval of differencing is unity. Then we have

X = x(X=D(X=2)(X=3) e0cvevrre. (x—(n-1)).

Check your Progress

1. What do you mean by Fundamental theorem of the difference calculus?

2. Define the factorial function.

2.5Properties of Factorial Function

(i) To show that A"x™ =nlh" and A""'x™ =0.

Proof. By the definition of A, we have
AX™ = (x+ h)™ — x™
= (X+h)(x+h—=h)(x+h—-2h)....x+h—(n-1)h)
—X(x=h)(x=2h)....x = (n=1)h)
= (X +h)x(x=h)(x—=2h)....(x— (n—2h)h)
—X(x=h)(x=2h)....(x—(n—=2)h)(x—(n—-1)h)
= X(Xx—h)(x=2h)....x = (n=2)h)((x + h) = (x = (n=1)h)



=x"Ynh
=nhx"?

Again we have
APX™ = AAX"
= A[nhx"*]
= nhAx"™
= nh[(x+h)"* —x"*]
= nh[x + h)(x + h—h)(x + h—2h)....(x + h — (h — 2)h)
— X(x —h)(x = 2h)....(x — (n — 2)h]
= nh[(x + h)x(x — h)(x — 2h)....(x — (n — 3)h)
— X(x = h)(x = 2h)....(x — (n = 3)h)(x — (n — 2)h)]
= nhx(x—h)(x = 2h)....(x— (N =3)h)[x + h— (x— (N —2)h)]
=nhx"?(n—1)h
=n(n—1)h? x"?
Proceeding in the same way, we get
A"X™ =n(n-1)(n—2)...1h"x"™
=n!h"

Again we have



An+lx(n) ZA(Aan)

— A(nth")
=0.

(ii) To show that f(a+nh) = f(a) + "C,Af (a)+"C,A? f (@) +....+"C_ A" f (a)
Prof. We shall prove this by the method of mathematical induction.

We have Af(a)=f(a+h)-f(a)
f(a+h)=Af(a)+ f(a)= f(a)+Af (a) [It is true for n =1]
Again we have

Af(a+h) = f(a+2h)— f(a+h)

f(a+2h) = Af (a+h)+ f(a+h)

= A[Af () + T (@)]+Af (&) + T (a)
= f(a) + 2Af (a) + A’ f ()
f (a+2h) = f (a)+°C,Af (a) + A*f (a)
It is true for n =2.
Similarly, we have
f (a+3h) = Af (a+2h) + f(a+2h)

= A[f () + 2Af (8) + A2 f ()] + [ f (8) + 2Af (2) + A% f (Q)]

— f(a) + 3Af (a) + 3A%f (a) + A°f (a)



f(a+3h)=f (a)+3C1Af (a)+3C2A2 f(a)+ A f (a)
It is true for n =3.

Now Assume that it is true for n = k then we have
f(a+kh)=f(@)+ “CAf(@)+“C,f(@)+.cooeeunn.... +“C A f (a)
Now we shall show that this result is true for n=k +1.
Now we have
f(a+(k +1)h) = f (a+kh) + Af (a+kh)
=[f (@) + “C,Af (a) + “C,A* f (@) +..ce...... +*C A f ()]
+A[f (a) + “C,AT (@) + *C,A? f (@) +..verv.... +*C A f (a)]
= f (@) +[“C, + 1]Af (a) +[“C,+*C,]1A% f (a)
+H[*C, + *C,1AF (@) +.cevrenee + A f (Q).
f (a+(k +1h) = f (a)+“"'C.Af (a)+*"C,A* f (a)+*"'C, A’ f (a) +.....+A*"f (a).
Thus the result is true for n = k +1. [+ *C,+*C,,=""C, ]

Hence by the principle of mathematical induction it is true for all n, we have

f (a+nh) = f (a) + "C,Af (&) + "C,A*f (&) +..ccc....... +"C,A"f(a).

Examples

Example.1. Find the value of A®(1—x)(1—-2x)(1—3x), where h=1.



Solution: We have

f(x)=(1—x)(1-2x)(1—3x)
=1-6x+11x* - 6x°
This is the polynomial of degree 3 in x. Therefore we have
A f(x) = A(1-6x+11x* —6x°)
~0-6.0+11.0—6.3! [A"x™ =nih" and A°X® =3I]

=—36.

Example.2. Using the following forward difference table, determine the value of A*y(l).

Solution: The forward difference table for the given data is

X y="f(x) Ay APy Ay Aty
1 3

3
2 6 2




11

21

31

10

10

From the above forward difference table we see that the value of the

Example.3. Using the backward difference table, determine the value of V*y(5) from the

following data:

A'y(1) = -8.

X 1 2 4 5
y 1 4 18 28
Solution: The forward difference table for the given data is
X y="f(x) Vy Viy Viy vy
1 1
3
2 4
5 2




18

28

10

V*y(5) = 5.

From the above forward difference table we see that the value of the

27

1 2 3 4
3 8 18 45
Solution: The forward difference table for the given data is
y="f(x) Ay Ny Ay
f()=3
Af (1) =5
8 5
18 17

Example.4. Using the following forward difference table, determine the value of A®y(l).




45

From the above forward difference table we see that the value of the A°y(1) =12.

Example.5. Represent the function f(x)=x*-12x°+42x*-30x+9and its successive

differences into factorial notation.
Solution: The given function is
x* —12x° +42x* —=30x+9 = Ax) + Bx® +Cx® + Dx® + E
= AX(X—=1)(Xx—2)(x—3)+ Bx(x—1)(x—2)+Cx(x—-1) + Dx+E ..(D

Where A, B, C, D and E are constants. Now, we will find the value of these constants.
Putting x = 0 in equation (1), we get
= E=9
Again putting x = 1 in equation (1), we get

1-12+42-30+9=D+E
= D=1
Putting X = 2 in the equation (1), we get
16 -12x8+42x4-30x2+9=2C+2D+E
= C=13
Putting x = 3 in the equation (1), we get

81-12x27+42x9-30x3+9=6B+6C+3D+E



= B=-6

Equating the coefficient of x* on both sides, we get A =1. Putting the values of A, B, C, D, E in

equation (1), we get
f(x)=x"=12x> +42x* —30x +9
=x® —6x® +13x? +x¥ +9
Now we have
Af (x) = 4x® —18x@ 4+ 26x" +1
A f(x) =12x? —36x? + 26
A (x) = 24x" - 36
A F(X) = 24
A (x)=0
Hence f(x)=x“ —6x® +13x® +x® 49,

. . . . . ax+b
Example.6. Determine the function whose first difference is € .

Solution: Consider f (X) is the required function.

ax+b

Then we have Af (X) =e (D)

Let f(x) = Ae®*®

Therefore we have



Af (X) = A[Ae™*°]
— AAeaX+b
— A[ea(x+l)+b _eax+b]
= Ae™P[e? —1] . (2)

Comparing equations (1) and (2), we get

ax+b

€

a

Hence f(X)=

Example.7. Determine the function whose first difference is 9x* +11x +5.

Solution: Consider f(X) is the required function.
Then we have Af (X) =9x* +11Xx+5
Here first, we change Af (X) in the factorial notation.
Now we have
Ox%® +11x+5= Ax® + Bx® +C
= Ax(x-1)+Bx+C (D)

Putting x = 0 in equation (1), we get

C=5



Putting x =1 in equation (1), we get
9+11+5=B +C
= B=20
Comparing the term x? in equation (1), we get
A=9
Now putting the values of A, B and C in equation (1), we get
Af (x) = 9x® +20x® +5
Integrating, we get

9x® 20x®@
+
3

f(x)=
=3X(X-D(Xx—2) +10x(x—1) +5x+C,

Hence f(Xx)=3x>+x*+x+C,.

+5x® +C,. where C1 is constant of Integration.

Example.8. Determine the lowest degree polynomial which have taken the following values:

f(x) 0 3 8 15 24

35

Solution: The forward difference table is:




X f(x) Af (x) A (X) A £ (X)
0 0 3
1 3 5 2
0
2 8 7 2
0
3 15 9 2
0
4 24 11 2
5 35

We know that

f (a+nh) = f (a)+"C,Af ()+"C,A° f (a)+"C,A’ f (a) +

Putting a =0, h =1, n = x in equation (1), we get

f (x) = f (0) + *C,Af (0) + *C,A?*f (0) + *C,A°f (0) +

(D)

..... .2

Now putting the value of f (0), Af (0), A’ f (0) and A*f(0) in the equation (2) from the

above forward difference table, we get

f(X)=0+x.3+

X(x—1) o X(X—=1)(x—2)

f(X)=3x+x(x-1)

Hence f(x)=x*+2x.

3!

.0+0



Example.9. Evaluate A" [ax” + bX”'l].
Sol. We have A" [c’:\Xn + bX”_1]= A’ (aX")+A” (bx”‘l)
= aA" (x") +bA" (x™*)

=a(n!)+b.0

=a(n!).

Example.10. Given U, =1, u; =11,u, = 21,u, = 28 and u, =29, determine the value

of A*u,without forming difference table.
Solution: We know that
Ay, = (E-1)"u,
=(E*-"C,E*+ 'C,E* - "C,E+1)y,
= E*u, —4E®u, + 6E°u, — 4Eu, + U,
=u, —4u, +6u, —4u, +u,

=29-4x28+6x21-4x11+1

=29-112+126-44+1

=0.

Example.11. Show that u, =u,_, +Au,_, +A®U,__



Solution: We have

X

u —A"u,_. =u —A"E"u

_ 1 (E-AN[E"+E"*A+E™A’ +..+ Ay,
E’ (E—A)

=(E"+AE? + NE? +....+ A'E "),
=U_,+AU_, +A’U_,+...+ AU _

2
Hence u,=u, ,+Au, ,+AU

X X—

Example.12. Show that
@@ f(4)=TFTR)+AF(Q+A fQ)+AT(Q)
(b) f(4) = f(0)+4Af (0) +6A° f (—1) +10A° f (-1)
As for as third difference.
Solution: (a) We have
Af(3)=f(4)- (3

or  f(4)=f@)+Af3)

(- E=1+A)



= £(3) + AL (2) + AF (2)] [+ AF(2) = f(3)— f(2)]
= £(3)+AF(2) + A1 (2)
= £(3) + AF (2) + A[f (1) + Af ()] [+ AFQ) = f(2) - f@O]

f4)=f(3)+AF Q)+ AT+ AT ().

(b) We have

f(4) = f(-1+5)
= E%f(-1)
= (1+A)° f (=)
= (1+°C,A+°C, A +°C, A +°C, A" +°C.A) f (-1)
= f(=1) +5Af (<) +10A’f (-1) +10A%f (-1) taking up to 3rd difference
= [ (=) + Af (=1) + 4[AF (=1) + A’ f (=1)] + 6A* f (=1) + 10A° f (1)
=[(=1) + Af (=D)]+4[ f (=1) + Af (=1)] + 6A2f (~1) +10A°f (-1)

— (0) + 4Af (0) + 6A2 f (=1) + 10A° f (1)
[ Af(-1)=f(0)— f(-1)]

Hence f(4) = f(0)+4Af (0) + 6A” f (-1) +10A° f (-1)..



Example.13. Find the second degree polynomial which is passes through the points (0, 3),
(1,5), (2,9) and (3, 15).

Solution: The forward difference table is:

X f(x) Af (X) A f(X) A £ (X)

0 3
2

1 5 2
4 0

2 9 2
6

3 15

We know that
f (@a+nh) = f(a) + "CAf (a) + "C,A*f (a) + "C,A*f (@) +.......... +"C,A"f (a) (D

Puttinga =0, h =1, n = x in equation (1), we get

f(x) = f (0)+ "C,Af (0) + "C,A’ f (0) + *C,A*f (0) +.... (2

Now putting the value of f (0), Af (0), A’ f (0) and A*f(0)in equation (2) from the above

forward difference table, we get

F(x) =3+ x24 0D 5 XXED=2)
21 3l

=3+2X+X(x-1)

=3+2X+ X2 =X



Hence f(X)=x"+x+3.

Example.14. To show that A"u, =u,,,—"CU,., 1+ "CU, .\ » —eeerernee +(=D"u,
Solution: We have U, — "CU,., 1+ "CU,. 1 »—wrrrenen. +(-1)"u,
=(E"-"CLE""+"C,E"* —.......... +(=D")u,
=(E-1)"u,
=A"y..
Example.15. To show that
Uy +U; + U, +.oeet U, = "C Uy + "™MC,AUy + "CAUG F e +A"y,
Solution: We have
Ug +U; +U, +....+U, =Uy +EU, + E°Uy +.....+ E"U,
=(A+E+E®*+............ +E")u,
E™ -1
= H U, [Using the concept of sum of n term in G.P.]

(L+A)" -1
A

n+1

= i[1+”+1C1A+”+1C2A2+”*1C3A3 + .o A™C LA™ 1)U,



= i[”“ClAu0 +"C, AU +"TC AU

= ""Cu, + "C,Au, + ""C,A%u, +

Example.16. To show that

2 3 X X? X’ 2
U X+ U, X7+ U X e = |+ > AU, + AU+
1-x @-x) 1-x)

Solution: We have

2 3

X U, + X =AU, + ~ AU e,

1-x (1—x) @—x)

XX Epu X (E-ntu s

1-x ' (1-x)? Y-x)® '

( X x? x? j ( x? 2x°
= - + u, + -
1-x  (1-x)? @1-x°%) 7" @-x? @-x)°

n+lC An+luo]

n+1

and O<x<1.

+J Eu,



S(es) v (i) ()
= u, + > u, +-+ 3 U, +...eee
1-x\ (1—x) Q—x)“\1—x QA—x)°\1—x

X2 3

X 2 X 3
:m(l— X)u, + %) 1-x)u, ++m(1—x) Uy + v

= U X+ U, X2+ U X+ U X e,

Example.17. Prove that u,+"C,u X+"C,u, x* +....... +Uu,X
=1L+ X)"uy,+"C, A+ X)" " XAu, +"C, (L + X)"*x*A’u, +....+ X"A'u,

Solution: We have
@1+Xx)"u, + "C,(L+X)" " XAU, + "C, 1+ X)" P X°A%U, +.......+ X"A"U,

=@+ x)+xA)"u,

=1+ x1+A))"u,

= (1+ xE)"u,

= (I+"C XE+"C,X’E*+"C,x°E® +......+ X"E")u,

=U, + "CuX+ "C,X* + "Cu, X% + ... +X"u.

2.6 Summary




Let f(x) be a polynomial of n" degree in x, then the n difference of f(x) is constant and

A (x) = 0.

A product of the form X(Xx—h)(x—2h).......... (X—=(n—=2)h) is known as factorial function

and denoted by x™,

Properties of Factorial function:
(i) A"x™ =nth" and A""x™ =0.

(i) f(a+nh) = f(a) + "C,Af (a)+"C, A’ f (@) +....+"C A" f ()

2.7 Terminal Questions

Q.1. Explain the factorial function.

Q.2. State the fundamental theorem on difference calculus.

Q.3. Construct a forward difference table for the following data:

25

f(x)

32

Q4.1f f(0)=-3,f(Q) =6, f(2) =8, f(3) =12 prepare the forward difference table.



Q.5. Given f(0)=3,f(10)=12,f(2)=81,f(3)=200,f(4)=100 and f(5)=8. Using
the difference table and find the value of A° f (0).

Q.6. Given U, =3,u, =12,u, =81,u, =200,u, =100,u; =8, determine the value of A°u,without
forming difference table.

Q7. 1f f(0)=-3,f(1)=6, f(2)=8, f(3)=12and the third difference being constant,
determine the value of f (6).

Q.8. Represent the function f(x)=2x*-3x*+3x-10and its successive differences into
factorial notation.

Q.9. Determine the function whose first difference is x* +3x? +5x+12.

Q.10. Obtain the function whose first difference is:
(i) €’
(i) x(x-1)
(iii) a
(iv) x@? 45x
(v) sinx
(vi) 5°
Q.11. Prove that u,+*C,Au, +*C,A’U, +.....=u,+*C,A’u,_,+*C,A'U,_, +....

Q.12. Evaluate the following:

e
ne

(i) A"[sin (ax+b)]



(i) A (ax—1)(bx? —1)(cx® —1)

(iv) A"[ax" +bx""]

ANswers
5. 755
6. 755

7.126

8. 2x® +3x@ +2xW —10, 6x? +6xY +2, 12x¥Y 16, 12.

9. %XM) +2X(3) +§X(2) +12X(1) +C.

- X ae X(3) C
10. (i) @1 +C (ii) T+
3 2
(iiiyax+C (iv) €+7+C
1. N1,
(v) —Esmx (vi) ZS .
12. (i) (=1)"nt

X(X+D(X+ 2)....(x+n)



(ii) (ZSin Ejn sin [ax+ b+ n(a+ ”D
2 2

(iiii) 720 abc

(iv) a (n!).

Suggested Further Readings:

1. Atkinson, K. and Han, W. Theoretical Numerical Analysis, Springer Science & Business
Media, 2010.

2. Jain, M.K,, lyengar, S.R.K and Jain, R.K.: Numerical Methods for Scientific and
Engineering Computations, NewAge International (P) Ltd. New Delhi, 2014.

3. Sastry, S.S.: Introductory Methods of Numerical Analysis, UBS Publishers, 2012.

4. Bradie, B. A friendly introduction to Numerical Analysis. Pearson Education, 2007.

5. Gupta. R. S., Elements of Numerical Analysis, 2nd Edition, Cambridge University Press,
2015.
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Interpolation

Unit- 3

Newton’s Interpolation Formula with Equal Intervals

Unit- 4

Gauss’s and Stirling Interpolation formula for Equal Intervals
Unit- 5

Lagrange’s Interpolation Formula for Unequal Intervals




Block-2

Interpolation

Interpolation is a mathematical technique used to estimate values that fall between known,
measured, or observed data points. It involves constructing a function that passes through the
given data points, allowing the estimation of values at points within the range of the data.
Interpolation is particularly useful when you have discrete data points and need to estimate values
at other points within the dataset. Here are some key concepts and methods related to
interpolation: Linear Interpolation; Polynomial Interpolation; Lagrange’s Interpolation; Newton
Interpolation; Spline Interpolation; Bilinear and Bicubic Interpolation. Bilinear and bicubic
interpolation techniques used in image processing which estimate the pixel values between

known values in an image.

Interpolation is widely used in various fields such as computer graphics, image processing,
numerical analysis, and scientific computing. It provides a valuable tool for estimating values
within a dataset, making it easier to analyze and visualize data. Interpolation has numerous
applications across various fields: such as Computer Graphics; Geographic Information Systems;
Image Processing; Numerical Analysis; Signal Processing; Finance; Cartography; Physics and
Engineering; Machine Learning; Medical Imaging and Economics and Econometrics.
Interpolation is applied in economic modeling to estimate values between observed economic
data points. It helps in constructing economic indicators and forecasting. These applications
demonstrate the versatility of interpolation in various domains, where the need to estimate values

between known data points is a common requirement.

In the third unit, we shall discussed about determine one or two missing terms and Newton’s
forward and backward interpolation with equal intervals and in the fourth unit we deal with
Gauss’s and Stirling Interpolation formula for Equal Intervals. Lagrange’s Interpolation Formula

for Unequal Intervals is discussed in unit fifth.



UNIT-3: NEWTON’s INTERPOLATION FORMULA WITH EQUAL
INTERVALS

Structure

3.1 Introduction

3.2 Objectives

3.3 Tofind one missing term

3.4 To find two missing terms

3.5 Newton’s forward interpolation with equal intervals
3.6 Newton’s backward interpolation with equal intervals
3.7 Summary

3.8  Terminal Questions



3.1 Introduction

Interpolation is extensively used in computer graphics to generate smooth curves and surfaces.
Geographic Information Systems applications often involve interpolating values between known
geographic data points to generate continuous maps. In image processing, interpolation is used
to estimate pixel values between known values. Bilinear and bicubic interpolation are common
techniques for image resizing and enhancement. In numerical analysis, interpolation helps in

estimating values at intermediate points within a set of discrete data points.

In signal processing, interpolation is used to estimate values between discrete samples of a signal.
It plays a crucial role in applications like audio signal processing and telecommunications.
Interpolation is used in finance for pricing financial instruments and estimating key financial
metrics. It helps in modelling yield curves and estimating future cash flows. Cartographers use
interpolation to generate smooth contours and surfaces on maps. Elevation data and contour lines

are often interpolated to create realistic terrain representations.

Interpolation is employed in various scientific and engineering applications. It is used in finite
element analysis, simulation models, and experimental data analysis. In machine learning,
interpolation is used to fill in missing data points in datasets and also it can be applied to impute
missing values in features or labels during data pre-processing. Interpolation is used in medical
imaging to enhance image resolution and improve the quality of reconstructed images. It aids in

generating smoother transitions between pixel values.

In the third unit we shall discuss the method of finding the missing one and more terms, and
Newton’s forward and backward interpolation with equal intervals. Suppose y =f (X) be a
function of x and yo, y1,Y2, ...c.e...... , n are the values of the function f(x) at Xo, X1,X2, ..vvvuo. s,
Xn respectively, then the method to obtaining the value of f(x) at point x = x; which lie between
Xo and X, is called interpolation. Thus, interpolation is the technique of computing the value of
the function outside the given interval. If x= x; does not lie between Xo and x, then computing the
value of f(x) at this point is called the extrapolation. The study of interpolation depends on the

calculus of finite difference.



3.2 Objectives

After studying this unit the learner will be able to:

" understand how to find one missing term

" understand how to find two missing terms

" understand the Newton’s forward interpolation with equal intervals

. understand the Newton’s backward interpolation with equal intervals

3.3 To find one missing term

In numerical analysis, finding a missing term typically involves identifying a pattern or

relationship within a sequence of numbers. There are two method for finding one missing terms:

Method 1.

Consider one value of f(x) be missing from the given set of (n+1) values (i.e., n values are given)
of x, the values of x being equidistant. Suppose the unknown value be Y. Now construct the

difference table.

We can ensure y= f(x) to be a polynomial of degree (n—1) in X, since n values of y are given.

Therefore equating to zero the n'" difference to determine the value of x.

Method 2.

Consider one value of f(x) be missing from the given set of (n+1) values (i.e., n values are given)
of x, the values of x being equidistant. This means we can assume y = f(x) to be a polynomial of

degree (n-1) in x. So we have



A" f(x)= 0

or (E-1)" f(x)= 0

or {E"-"CiEM +"CL EM2- .. +(-D"IFf(X) =0

or  EMf(X) - "CiE™(X) + "CoE"ZE(X) - v +(-1)"f(x) =0

or  f(x+nh) - "Cif(x+ (n-1)h) +"Cof(x + (n-2)h) - - + (-1)" f(x) = 0 ..(1)

If x=xo is the first value of x then we put x = Xo in equation (1) and after solving we get the value

of Y i.e., missing term.

3.4 To find two missing term

To find missing terms in a sequence using a difference table, we look at the changes between the
consecutive terms. The table is made by finding the differences between neighboring terms,

showing patterns that help predict the missing ones.

Consider two value Y1 and Y3 of f(x) be missing from the given set of (n+2) values (i.e., n values
are given) of x, the values of x being equidistant. This means we can assume y = f(x) be a

polynomial of degree (n-1) in x. Therefore we have

A"f(x)=0
or f(x + nh) - "Caf(x+ (n-1) h) +"Caf(x + (n-2)h) - ---—- + (-1)" f(x) = 0 ..(2)
If X = xo is the first value of x then we put x = Xo, and x = X1 successively in equation (2).

Therefore we get two equation in terms of Y1 and Y». After solving these two equations we get

the value of Y1 and Y».



Check your Progress

1. What do you mean by the concept of solving one missing term?

2. Explain the procedure to find the two missing terms in the given data.

Examples

Example.1. Find the missing term from the following data:

y=f(x) yo=1 y1=8 ? y3 = 64 ya=125

Sol. Let y» be the missing term. Since there are 4 values of y are given. This means we can

assume y = f(x) to be a polynomial of three degree in x. So we have

A*y=0.
or (E-)*yx=0
or (E*—4E° +6E° —4E +1)y, =0
or Y xsan _4yx+3h + 6yx+2h _4yx+h Y= 0 (1)

Putting x = 0 and h =1 in equation (1), we get

y,—4y,+6y,-4y, +y,=0

or 125-4x64+6y,—4%x8+1=0



or 6y, =162
or y2=217.

Hence the missing term from the above data is 27.

Example.2. Given that uo = 230, u1 = 210, uz = 120, us = ----, u4 = 110. Determine the value

of us.

Solution. Consider the missing term uz = Y. The forward difference is

X Ux Auy A%ux Adux A'ux
0 230
-20
1 210 -70
-90 Y+40
2 120 Y-30 220 - 4Y
Y-120 260-3Y
3 Y 230 - 2Y
110-Y
4 110

Here four values of uy are given. This means we can assume uy to be a polynomial of three degree

in X. So we have
A4UX = 0
or 220-4Y =0

or Y =55,



Hence the missing term from the above data is 55.
Another method:

Since the four values of ux are given. Therefore, we can assume ux to be a polynomial of degree
3 in x. Therefore we have

A'u, =0
or (E-D*ux=0
or (E*—*Cy E3+ %C, E2-“C3 E+1) ux=0
or (E* ux— 4E3ux + 6Eux— 4Eux + ux=0
or Ux + 4h— 4Ux + 3n + BUx + 2h— 4Ux +h + Ux=0 ..(1)

Putting x= 0 and h=1 in equation (1), we get

u, —4u, +6u, —4u, +u, =0

or 110—-4Y +6x120—-4x210+230=0
or 220—-4Y =0
or Y =55.

Example.3. Estimate the missing term in the following:

y 2 4 8 - 32 64 128




Solution. Let Y be the missing terms. Since there are 6 values of y are given. Therefore, we can
assume y to be a polynomial of degree 5 in x. So we have

Ay=0
or (E-)®yx=0
or (E®*-°C,E°+ °C,E* -°C,E*+°*C,E*-°*C,E+ 1)y, =0
or Yeroh —0Ysesn T19Y,ian —20Y 130 +15Y,,0n —6Y,., + Y, =0 (1)

Putting x= 1 and h=1 in equation (1), we get

or 128 -x64+15x32-20Y +15x8-6x4+2=0
or 128 — 384 + 480 - 20Y +120-24 + 2=0
or 322 -20Y =0
y=32
20
=16.1

Example.4. Find the missing terms in the following table:

f(x) 1 8 - 64 - 216 343 512




Solution. Let Y1 and Y» are the missing terms. Here six values of f(x) are given. Therefore, we

can assume f(x) to be a polynomial of degree 5 in x.
So we have
ASf(x) = 0

or (E-N%f(x) =0
or (E°-°C,E°*+ °C,E* -°C,E®*+° C,E* -°C.E+1)f(X)=0
or f(x+6h)—6f(x+5h)+15f (x+4h)

—20f (x+3h)+15f (x+2h)—6f (x+h)+ f(X) =0 ..(D
Putting h =1 and x =1, and 2 successively in equation (1), we get

f(7)=6f(6)+15f (5)—20f (4)+15f(3) -6 f(2)+ f () =0

and f(9)—6f(7)+15f(6)—20f(5)+15f (4)—6f(3)+ f(2) =0

or 343—6x 216 +15Y, — 20x64+15Y, —6x8+1=0

and 512 —6x 343 —20Y, +15x 64— 6Y, +8=0

or 15Y; + 6Y1 = 2280 o (2)
and 20Y2 + 6Y1 = 2662 .(3)

Solving equations (1) and (2), we have
Y1=27

and Y» =125



Hence the missing terms are f(3) = 27 and f (5) = 125.

Example.5. Find the first term of the series whose second and subsequent terms are 8, 3, 0,

-1, 0.

Solution. The given data is

f(x) - 8 3 0 -1 0

Let f(0) be the missing terms. Here five values of f(x) are given. Therefore, we can assume f(x)

to be a polynomial of degree 4 in x. So we have

or

or

or

or

AS(x) = 0
(E-1)° f(x) = 0
(E® —5 C,E* + °C,E® —5C,E? +°C,E—°C.I)f(x) =0
E°f (x) —5E*f (x) +10E° f (x) —10E? f (x) + 5Ef (x) — f (x) =0, Since h=1

f(x+5)-5f(x+4)+10f(x+3)-10f(x+2)+5f(x+1) - f(x)=0 (D)

Putting x = 0 in the equation (1), we get

or

f(5)—5f(4)+10f(3)—-10f(2)+5f (1) — f(0) =0

0-5(-1)+10x0—-10x3+5x8— f (0) =0



or  f(0)=15.

Hence the missing term is f(0) = 15.

Example.6. Given that ug+ug = 1.9243, uy+u7 = 1.9590, uz + us = 1.9823, and usz + us = 1.9956.

Determine the value of ua.
Solution. The given values are
Uo+ug = 1.9243,
ur+uz = 1.9590,
Uz + Uus = 1.9823,
and uz + us = 1.9956.
Here 8 values of uy are given. Therefore we have
A8 u=0
or (E-NBu=0
or (E*-°CE’+ °C,E*-°C,E* +°C,E* - *C.,E® +°C,E* — °C,E +°C,l)u, =0
or E°u, —8E"u, +28E°u, —56E°u, +70E*u, —56E°u, +28E%, —8Eu, +u, =0 ....(1)
Putting x = 0 in the equation (1), we get

or ug —8u, + 28u, —56u, + 70u, —56u, + 28u, —8u, +u, =0
or (Ug +Uy)—8(u, +u,)+28(ug +u,) —56(ug +u,;)+70u, =0

or 1.9243 —5x1.9590 + 28 x1.9823 — 56 x1.9956 + 70u, =0



or 70us4 = 69.9969

or us = 0.9999.

Hence the value of us is 0.9999.

3.5 Newton’s forward Interpolation with equal intervals

Newton's forward interpolation is a numerical method used to find the values of a function at
points between the given data points. This method specifically applies when the intervals
between the data points are equal. It is also known as Newton-Gregory’s Formula for Forward

Interpolation with equal intervals.

Suppose y = f(x) is a function which assumes the values f(a), f(a+h), f(a + 2h), ........ ,f(a+nh)
forx=a,a+h,a+ 2h, .........., a + nh respectively where h is the difference of the arguments.
X a a+h a+2h | ... a+nh
y f(a) f(a+h) fa+2h) | ... f (a+ nh)

Consider f(x) is a polynomial in x of degree n. Therefore f(x) can be written as

f(x) =ap+ai(x-a)+ax (x—a)(x—a—-h)+as(x—a) (x—a—h) (x—a-2h)

+ . ta(x—a)(x—a-h)......... (x—a-(n-1)h) ....(1)
Where ao, ai, az, ......... ,., an are constants
Substituting the sequentially values x=a,a+h,a+2h, .............. , a + nh in equation (1), we

get

f(a) = ao



or ao = f(a)

Now we have
fa+h)y=ac+air(a+h-a)
or f(a + 2h) =ap + aih
N a = f(a+h)—a,
h
_f(a+h)—f(a)
h
_Af (a)
~  h
or :Af (a)
h

Again we have
fat2h) =ao + a1 (a+ 2h-a)+ a> (a + 2h-a) (a+ 2h—-a—h)
=ap + a12h - a2 2h.h
or 2h?a, = f(a + 2h) — 2ha;s — ao

o _ f@+2n-2(f@+h)—f@)-f(

or , e

_ f(a+2h)-2f(a+h)+f(a)
a 21h?

_ A*f(a)
~ 2IR?

Proceeding in the same way, we get



3th?
a = A" T (a)

nth"

Putting the values a,,a,,,,a;,.......... ,a, ,,a,into equation (1), we get
2

f(x)= f(a)+(x—a)m+(x—a)(x—a—h)A f(za)

h 2'h

3
fx—a)(x—a—h)(x—a—2m2 1@

31h°®

A"f(a)
nth"!

+(x—a)(x—a—h)(x—a—-2h)+...+(x—a—(n-21)h) . (2)
This is Newton-Gregory formula for forward interpolation putting x=a-+hu in the equation (2),

we get
u(u—

f (a+hu) = f (a) + UAF (a)+T1)A2 f(@)+.......+ U =DU ‘2:]';"(“ —(0=D) At (a)

This method is useful for estimating values between the given data points with equal intervals

when interpolating forward.

The accuracy of the interpolation depends on the degree of the interpolating polynomial and the

number of data points used in the interpolation.



3.6 Newton’s backward Interpolation with equal intervals

Newton backward interpolation is a numerical method used to find the values of a function at

points between the given data points, specifically when the intervals between the data points are

equal. This method is an extension of Newton's forward interpolation and is useful when you

need to interpolate backward from a given point. It is also known as Newton-Gregory’s Formula

for backward Interpolation with equal intervals.

Suppose y = f(x) is a function which assumes the value f(a), f(a+h), f(a+2h), ............. f(a + nh)

forx=a,a+h,a+ 2h,

, a + nh, respectively where h is the difference of arguments.

a+h

a+2h

a+nh

y f(a)

f(a+h)

f(a + 2h)

f(a+nh)

Consider f(x) is a polynomials in x of degree n. Therefore f(x) can be written as

f(X)=a,+a,(x—a—-nh)+a,(x—a—-nh)(x—a-(n-21)h)

+a,(x—a—-nh)(x—a—-(n-)h)(x—a—(n—-2h) +....

+a, (Xx—a—nh)(x—a—-(n-1)h)............

where ao, ai, ay,........., aare constants.

Substituting the sequentially values x=a+nh, a+(n+1)h, a + (n-2)4, .......

equation (3), we get

f (a+nh) =a,

(x—a-h)

...(3)

veevee., @+ hin the



= a, = f(a+nh)
Now we have
f(a+(n-Dh)=a,+a (a+(n—-1)h—a—nh)

or 8, = f(a+nh)—f(a+(n-21)h)

h
_ Vf(a+nh)
~ h
or o, — Vi (atnh)

h

Again we have

f(a+(n-2)h)=a,+a(a+(n—2)h—a—nh)
+a,(a+(n-2)h—a—-nh).(a+(n-2)h—a—-(n-1)h)

_ VZf(a+nh)

or a2 2|h2

Proceeding in the same way, we get

Q- V" f(a+nh)
" nth"

Putting the values a,,8,,8,,a3,.......... ,a, 4,4, into equation (3), we get



£(X) = f (a+nh)+ (x—a—n )—Vf(ah”h) +(x—a—nh)(x—a—(n— 1)h)—vzf(ah+“h)
V" f(a+nh)

+.....+ (X—a—nh)(x—a—(n-=21)h)......... (x—a—nh) PO

.4

This is the Newton-Gregory’s formula for backward interpolation putting x=a+nh+hu in

equation (4), we get

f (a+nh+hu)= f(a+nh)+uVf (a+nh)+ V2 f(a+nh)

u(u+1ld)
2!

e, LUUrDU+2). 0 AN =D Gng oy

n!

This method is useful for estimating values between the given data points with equal intervals
when interpolating backward.

The accuracy of the interpolation depends on the degree of the interpolating polynomial and the
number of data points used in the interpolation.

Examples

Example.7. Using the Newton formula to find the number of students who obtain less than

45 marks, from the following data:

Marks 30-40 40-50 50-60 60-70 70-80

No. of students 31 42 51 35 31

Solution. The difference table of the given data is:



Marks No. of students A f(x) A?f(x) A3f(X) A*(x)
Below 40 31
42
Below 50 73 9
51 -25
Below 60 124 -16 37
35 12
Below 70 159 -4
31
Below 80 190

Here a = 40, h = 10, x = 45.

Than we have

_45-40
10
= 0.5.

Using Newton forward interpolation formula, we have

u-—1)

f(x):f(a)+uAf(a)+u(2| A2 f(a)+

u(u—21(u-—-2)
3

From equation (1) and using above table, we have

f (45) = f (40) + 0.5AF (40) + wy f (40)

N (0.5)(0.5;'1)(0.5—2) A*f (40)
_(05)(05-1)(05-2)(0.5-3

4
. A* f (40)




=31+0.5(42) + wz—o.s) 9 + (0'5)(_0('55) (=1.5) (—25)

L (05)(05)(A5)(-25) 5y
24

=31+21-1.125-1.563 —-1.445

f(45) = 47.867.
Hence the approximately 47.867 students obtained less than 45 marks.

Example.8. Determine the values of y(0.25), y(0.62) and y(0.46) from the following data:

X: 0 0.2 0.4 0.6 0.8
y=f(x):]0.3989 | 0.3910 | 0.3683 | 0.3332 | 0.2897

Sol. As per discussed in the question for finding the value of y at x = 0.25 can be obtained by
using Newton forward interpolation formula. And for x = 0.46 and 0.62, the values of y can be
obtained by using Newton backward interpolation formula.

The forward difference table is

X y=f(x) Ay=Af(X) A%y A3y A%y
0 0.3989
-0.0079
0.2 0.3910 —0.0148
_0.0227 0.0024
0.4 0.3683 -0.0124 0.0016
~0.0351 0.0040
0.6 0.3332 -0.0084
—0.0435
0.8 0.2897




Herea=0,h=0.2, x=0.25.
Than we have

_x—a 0.25-0

= =1.25.
h 0.2

Using Newton forward interpolation formula, we have

f(x) = f(a) +uAf (a) +

u(u2 l)Azf( a) -+

u(u—-H(u-—-2)
3

From equation (1) and using above table, we have

1.25(1.25—1)(

y(0.25) = 0.3989 + 1.25 (- 0.0079) + —0.0148)

,1.25(1.25-1)(1.25-2) 1.25(1.25-1)(1.25-2)(1.25-3)

= (0.0024) + ” (0.0016)
=0.3989 —0.009875—0.00231255 —0.00009375 +0.000027343
=0.386646093
~ 0.3866 (Approximately).
Newton backward interpolation formula is
f (a+nh+hu) = f (a+nh)+uVvf (a+nh)+ —= u(u +1) V?f (a+nh)
Foereree, LAuH2)...... (u+n=1) V" f (a+nh) .2

n!



For x =0.46, we have

U= 0.46-0.8 _ 17 (3)

0.2

and for x =0.62, we have
0 =202-08_ 49 (4)

0.2

Using equations (2) and (3), we have
f(a+nh+hu)= y(x = 0.46)= 0.2897 + (—1.7)(—0.0435)

L(FL7)(-17+1) (-17)(-17+1)(-L.7+2)

6

(~0.0084) + (0.0040)

(—1.7)(-1.7+1)(-L.7+2)(-1.7+3)
24

—+

(0.0016)
— 0.2897 + 0.07395 — 0.004998 + 0.000238 + 0.000003094
y (0.46) = 0.358920940

~ 0.3589 (Approximately).

Using equations (2) and (4), we have

~-1.9)(-0.9 +1)(

y(0.62) = 0.2897+ (- 0.09)(— 0.0435) + ( —0.0084)

(-1.9)(-0.9+1)(0.9+2)
6
(~1.9)(-0.9+1)(-0.9+2)(-0.9+3)
' 24

+

(0.0040)

(0.0016)



=0.2897 +0.03915+ 0.00037 —0.000066 —0.00001386

y(0.62) = 0.32014814

~ 0.3291 ( Approximately).

Hence the approximately values of y(0.25), y(0.62) and y(0.46) are 0.3866, 0.3589 and 0.3291

respectively

Example.9. Using Newton’s forward and backward interpolation formulae’s, obtained the

value of f(1.6) from the following data:

X 1 1.4 1.8 2.2

f(x) 3.49 4.82 5.96 6.5

Solution: The forward difference table of the given data is:

X f(x) Af(X) AZf(x) A3f(X)
1 3.49

1.
14 4.82 33 -0.19

1.14 -0.41
1.8 5.96 -0.6

54

2.2 6.5 05

Herea=1,h=04,x=1.6.



Than we have u = 16-1_06 =1.5.
0.4 4

(@)

Using Newton forward interpolation formula, we have

f(X) = f (a) +UAf (a)+%&f(a)+

u(u _1;!(u—2) Af@)+..... (1)

From equation (1) and using above table, we have

f(1.6) = f (1) +1.5AF (D) + w A f Q)+ 1.5d.5 _;)(15 —2) A¢ @
=3.49+1.5x1.33+ 1'5;0'5 (-0.19) + 12 0'53: (£03) g 41)
=3.49+1.995-0.07125+0.025625

f(1.6) = 5.439375.
Now the backward difference table of the given data is:
X f(x) Vi(x) V2(x) V3H(x)
1 3.49
14 482 133 -0.19
-0.41
1.8 5.96 1.14 -0.6
2.2 6.5 0.54

Newton backward interpolation formula is



f(a+nh+hu)= f(a+nh)+uVvf (a+nh)+%vzf(a+nh)
: ...(2)

Luu+nU+2)...... (U+n_1)v”f(a+nh)

Foee
n!

where u= x—(a+nh)

h
Herex=1.6,a+nh=2.2,h=04.
Then we have

u:x—a+nh):1.6—2.2:—0.6:_1'5 .0)
h 0.4 0.4

Using equations (2) and (3), we have

f (1.6) = 6.5+ (—1.5)x0.54 + (_1'5)(_1'25' FDU+D 56

) (_1.5)(—1.5;1)(—1-5+ 2) (0.4

=6.5-0.81-0.225-0.025625

f(1.6) = 5.439375.

Example.10. The population of a town in the decennial census were as under:

Year X 1891 1901 1911 1921 1931

Population f(x) (In thousands) 46 66 81 93 101

Calculate the population for the year 1895 and 1925 with the help of Newton forward as

well as backward interpolation formula.



Solution: The difference table of the given data is as under:

X y = f(x) Af(X) A%f(X) A¥(X) AM(X)
1891 46
20
1901 66 -5
15 2
1911 81 -3 -3
12 -1
1921 93 -4
8
1931 101

Here a = 1891, h =10, x = 1895.
Than we have

,_1895-1801 4

=—=04.
10 10

Using Newton forward interpolation formula, we have

f (x) = f(Q) +UAF (a) +

u(u-23 A2f (a) + u(u—2H(u-—-2)
2! 3!

From equation (1) and using above table, we have

f (1895) = f (1891) + (0.4)Af (1891) +WA2 f (1892)

L0HOA-DO4-2) ooy (0HOA-DO4-2)(04-3)

4
a . A*f (1891)

=46+(0.4)x20+ —(0'4);0'6) (-5)+ (0'4)(0'3')(_1'6) (2)



N (0.4)(—0.6)51?1.6)(—2.6) 3

= 46+8+0.6+0.128+0.1248
f (1895) =54.8528.
Now for x=1925. We have a =1891, h = 10, x = 1925.

Than we have

yoX—-@a ~1925-1891

3.4. (2
h 10 @

Using equations (1) and (2), we have

f (1925) = f (1891) + (3.4)Af (1891) + (3'4)(;4_1) A?f (1892)

L (BHEA-DE4-2)
31
L BHBA-1(E4-2)(34-3)
41

3.4x24 «(=5)+ 3.4x24x1.4 )
21 3!
+34x24x14x0A(_$

41

A®f (1891)

A* f (1891)

=46+3.4x20+

=46+68—-20.4+3.808—-0.5712

f (1925) = 96.8368..

Now using the Newton Backward interpolation Formula. The backward difference table of the

given data is as under

X y=f(x) VIE(x) V2£(X) V3(x) V4(X)

1891 46




1901 66 20 -5
2
1911 81 15 -3 -3
-1
1921 93 12 -4
1931 101 8
Here (a+ nh) = 1931= b, h =10, x =1895.
Then we have
Ue 1895-1931
10
%
10
=-3.6 ...(3)
Newton backward interpolation formula is
u(u+d) _,
f(a+nh+hu)=f(a+nh)+uVf(a+nh)+ o V<f(a+nh)
o +”(U+1)(u+2)'l' """ UAN=1) Gn t (a+nh) e
n!
From equation (4) and using above table, we have
(-3.6)(-3.6+1) _,
f (1895) = f (1931) + (—3.6) x Vf (1931) + 2 V<1(1931)
N (—3.6)(—3.6;1)(—3.6 +2) V@ f (1931)
N (—3.6)(—3.6+1)(—3.6 +2)(—3.6 +3) v f (1931)

4



=101+ (-3.6) x8+%(—4)  (£36)(26)(-1.6) -1

3!
N (—3.6)(—2.6)(—1.6)(—0.6) (-3)
4
=101-28.8-18.72+2.496—-1.1232
f (1895) =54.8528..
Now for x=1925.
We have a+nh =1931, h =10, x = 1925.
Than we have
uoX= (ah+ nh)
1925-1931 -6 -0)
= e - 06
10 10
Using equations (4) and (5), we have
f (1925) = f (1931) + (—0.6)Vf (1931) + (_0'6)(50'6 D ya (1931)
N (—0.6)(—0.6;1)(—0.6 +2) v f (1931)
N (-0.6)(—0.6 +1)(—0.6 +2)(—0.6 +3) V4 (1931)

41

—101+(-0.6) ><8+(_0'6)2ﬂ(_ 2, (09090

N (0.6)(0.421(!1.4)(2-4) «(=3)

=101-4.8 + 0.48 + 0.056+ 0.1008



f (1925) = 96.8368.

Example.11. From the following table, determine the form of the function f(x):

f(x) 13 19 28 40 55

Solution: The forward difference table of the given data is:

X f(x) Af(X) A%(X) A%(X) A%(X)
0 13
6
1 19 3
9 0
2 28 3 0
12 0
3 40 3
15
4 55
Herea =0, h =1.

Than we have

x-0
Uu=——=x
1

Using Newton forward interpolation formula, we have



f (x) = f (a) + UAF (a) +%& f (a)+ 4 _1;(“ —2 (@) +...... (1)
From equation (1) and using above table, we have
f(x) = f (0)+ xAf (0)+¥A2 f(0) + X(X_l;(x_z) A% (0)+....

—13+ x(6) + XXV 3

21!

=13+6x+§x2—§x
2 2

Hence the function f(x) is gxz +g X+13.

3.7 Summary

In numerical analysis, discovering a missing term usually entails recognizing a pattern or

relationship within a sequence of numbers.

Consider one value of f(x) be missing from the given set of (n+1) values (i.e., n values are given)
of x, the values of x being equidistant. This means we can assume y = f(X) to be a polynomial of

degree (n-1) in x. Therefore, we have
A" f(x)=0 or (E-D" f(x)=0.
Newton forward interpolation formula is

u(u-1)
2!

f(x) = f(a) +UAf (a) + A? £ (a)+ U _1;(“_2) AF@)+......

X—a
where u =T.



Newton backward interpolation formula is

u(u-+1)

f (a+nh+hu) = f(a+nh)+uVf(a+nh)+ 20 VZ?f(a+nh)
N +”(“+1)(”+2)'; """ W+n=D gnt a4 nh)
ni
where u:x—(ah+nh)

3.8 Terminal Questions

Q.1. Write the Newton Forward and backward difference formula.

Q.2. From the following table to determine the values of
f(0.2), f(1.1), f(.9), f(2.2), f(2.9), f(3.8); suggest which method (either Newton
forward interpolation formula or Newton backward interpolation formula) is appropriate for

finding the f (0.2), f (1.1), f(1.9), f(2.1), f(2.9), f (3.8) values.

f(x) 2 5 15 22 42

Q.3. Determine the missing term in the following table:

f(x) 1 3 9 _ 81




Q.4. Determine the missing terms in the following table:

X 2.1 2.2 2.3 2.4 2.5 2.6
f(x) 0.135 - 0.111 0.100 - 0.082 0.024
Q.5. Determine the value of the area of the circle of diameter 82 from the following data:
D(Diameter) 80 85 90 95 100
A(Area) 5026 5674 6362 7088 7854
Q.6. From the following table, obtain the form of the function f(x):
X 3 5 7 9 11
f(x) 6 24 58 108 174
Q.7. Obtain the values of f(1.5) and f(7.5) from the following data:
X 1 2 3 4 5 6 7 8
y 1 8 27 64 125 216 343 512

Answer

3.31.

4. 0.123 and 0.090.




5. 5280.
6.2X°+7x+9

7.3.375,421.87.
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UNIT-4: Gauss’ and Stirling Interpolation Formula with Equal Intervals

Structure

4.1 Introduction

4.2 Objectives

4.3 Gauss’ Forward Interpolation Formula with Equal Intervals
4.4 Gauss’ Backward Interpolation Formula with Equal Intervals
4.5 Stirling Difference Formula

4.6 Summary

4.7 Terminal Questions



4.1 Introduction

Gauss' Interpolation Formula is a mathematical technique used to estimate values between
known data points in a sequence. It helps in predicting intermediate values within a set of given
data points. This method is especially useful when you want to approximate values between two
known points in a sequence or dataset. Gauss’ Forward Interpolation Formula is a numerical
method used for estimating values between known data points in a sequence or dataset.
Specifically, it is employed for forward interpolation, helping approximate values that come after
the known data points. This formula is particularly useful when the intervals between data points
are equal. In numerical analysis, Gauss’ Forward Interpolation Formula serves as a mathematical
tool for making predictions or approximations in situations where only specific data points are

available.

The Stirling interpolation Formula is a method used in numerical analysis for interpolation. It
allows for the estimation of values between known data points in a sequence or dataset. In
essence, this formula helps fill in the gaps between existing data points, providing a way to make

predictions or approximations within a given set of numerical values.

In this unit we shall discuss about the Gauss’ Forward interpolation formula with equal intervals,

Gauss’ Backward interpolation formula with equal intervals and Stirling difference formula.

4.2  Objectives

After reading this unit the learner should be able to understand about:

. Gauss’ Forward interpolation formula with equal intervals
. Gauss’ Backward interpolation formula with equal intervals

. Stirling Difference Formula



4.3 Gauss’ Forward Interpolation Formula with Equal Intervals

Gauss’ Forward Interpolation formula is a mathematical method for estimating intermediate
values within a set of known data points. It is particularly useful for approximating values

between two known points in a sequence.

The Gauss’s forward interpolation formula is

u(u-1) APy 4+ (u+DHu(u-1)

3
21 3! AV

Yu = Yo FUAY, +

L (u+hu (li“—l)(UI -2) Ay,

4.4 Gauss’ Backward Interpolation Formula with Equal Intervals

Gauss’ Backward Interpolation Formula is a numerical technique used to estimate values
between known data points in a sequence or dataset. It is particularly useful for interpolating
values when the intervals between data points are not equal. This formula allows for backward
interpolation, meaning it helps approximate values that precede the known data points in the

sequence.

In numerical analysis, Gauss’ Backward Interpolation Formula provides a mathematical tool for
making predictions or approximations in situations where only specific data points are available.

The Gauss’s backward interpolation formula is

Vo= Yo +udy, + 2D poy MDD oy

21 - 3!

N u+2)(u Ll)u(u -1) Ay,




4.5 Stirling Interpolation Formula

Stirling interpolation Formula is a mathematical tool in numerical analysis used for interpolation.
Specifically, it's employed to estimate values between known data points in a sequence or dataset.
This formula is part of the broader set of techniques for interpolating values and finding

intermediate points within a given dataset.

Stirling's interpolation Formula is employed for both forward and backward interpolation,
allowing for the approximation of values that precede or succeed the available data points. In
essence, this formula is a mathematical tool that aids in making predictions or approximations in
situations where only specific data points are known and a continuous estimate is needed. The
mean of Gauss’s forward interpolation formula and Gauss’s backward interpolation formula

gives Stirling’s interpolation formula. The Gauss’s forward interpolation formula is

u(u-1) ., (u+DHu(u-1) ,,
—or ATy, + 3l ATy,

(D)
+ (u+hu (u4|—1)(u —2) AY 5t i,

Y, = Yo TUAY, +

and the Gauss’s backward interpolation formula is

Y, =Y, +UAY ; + 2y (UZT 2 APy, + v +1):l;|(u = A2
! : .(2)
PUEDOIDUUD ey

The mean of equation (1) and (2) is

u Yo +Ay,)  u*

yu = y0+ 2!A2yfl
2 3 3 2 2
Lu-1 (A%y ,+A y_2)+u u” -1 Ay,
31 2 41
2 Y 5 5 2(u? — 2_922
L u 133(|u 2°) (A y_342rA y,) U’ 1;?1 2) Ay g



The equation (3) is known as the Stirling’s interpolation formula.

Check your Progress

1. Write the formula for Gauss’s forward and backward interpolation formula?

2. Write the formula for Stirling interpolation formula.

Examples

Example.1. Use Gauss’s Forward formula to find the value of f(25), from the following
data:

y =f(x) 14 32 35 40

Solution. Here h =4. Taking 24 as origin, i.e. a = 24. Now we have

x—a 25-24 1
u= = =

=—=0.25.
h 4 4
The difference table is:
X u Yu Ayy AZYU A3YU
20 -1 14
18
24 0 32 -15
3




28 1 35 5 2 17

32 2 40

The Gauss’s forward interpolation formula is

uu-1) ., (u+Du(u-1)  ,
Tz AVt A

(1)
+ (u+du (u4l—1)(u —2) AYY L F i,

Yu = Yo TUAY, +

From equation (1) and using above table, we have

=32+(0.25) < 3+ (0.25)(20I.25-1) (-15)+ (0.25+1)(oézl5)(o.25-1) a7

.625)(0.25-1) an

=32+(0.25) x 3+ (0'25)(5'25'1) (-15)+ 0-25+1)(O

=32+0.75+(-0.09375)(-15)+(-0.0390625)(17)
=32+0.75+1.40625-0.6640625

=33.4921875.

~ 33.49.

Hence the value of f(25) is 33.49.

Example.2. Use Gauss’s Backward formula to show that the value of

V12516 =111.8749301, from the following data:



X 12500 12510 12520 12530

111.803399 | 111.848111 | 111.892806 | 111.937483

y=f(x)=x

Solution. Here h = 10. Taking 12520 as origin, i.e. a = 12520. Now we have

,_X-a_12516-12520 —4 _

=—=-0.4.
h 10 10
The difference table is:
X u 108 f(x) 108Af(x) | 108A%f(x) | 108A3f(x)
12500 -2 111803399
44712
12510 -1 111848111 -17
44695 -1
12520 0 111892806 -18
44677
12530 1 111937483

The Gauss’s backward interpolation formula is

Y, =Y, TUAY , +

From equation (1) and using above table, we have

u(u+1)

21

A%y +

(uU+Du(u-2) Aly

31

41

N uU+2)(u+Du(u-21 Aty

-2

(1)



10° f (—0.4)=111892806+(-0.4) x (44695)+ ('0'4)(;"4““1) (-18)

. (-o.4+1)(-gi4)(-o.4-1) 1)

=111892806-17878+ %2(0'6) (18)- (0'6)(064)(1'4) (1)

=111892806-17878+2.16-0.056

=111874930.104

f (~0.4)=111.874930104

Hence the value of /12516 is 111.874930104.

Example.3. Use Stirling’s formula to obtain ys2 given that

X: 20 25 30 35 40 45
yzf(x): 14.035 | 13.674 | 13.257 | 12.734 | 12089 | 11.309

Solution. Here h =5. Taking 30 as origin, i.e. a = 30. Now we have

x—a 32-30
u= = =

0.4.
h 5
The difference table is:
X u Yu Ayy AZYU A3YU A4YU Asyu
20 -2 14.035
-0.361




25 -1 13.674 -0.399 | -0.038 | —0.104

30 0 13.275 | -0.541 | -0.142 | -0.038

40 2 12.089 | _p780 | -0.135

45 3 11.309

0.142

35 1 12.734 | _0645 | -0.104 | —0.031 | —0.069

-0.211

We know that the Stirling’s interpolation formula is

2
(Ay, +Ay.) | u?

B 2
Yo = Yo+ U 2 Z!Ayfl
2 3 3 2 2
N uu®-1) Ay, +A%y,) n u”(u” -1 Ay, +
3! 2 4t

From equation (1) and using above table, we have

_ ~ 2
~13.275+(0.4) ¢ 0'39920'541) ; (0'2“') (:0.142)

N (0.4)((0.4)*-1) (0.038-0.104] N (0.4)*((0.4)*-1) (0.142)
3l 2 4!

=13.275-0.188 — 0.01136 + 0.001848 — 0.0007952
=13.07669.
~13.077.

Hence the value of ys; is 13.077.

(L)



Example.4. Use Stirling formula to obtain yi2.2 from the following data:

X 10 11 12 13 14
10%yy 23967 28060 31788 35209 38368
Solution. Here h = 1. Taking 12 as origin, i.e. a = 12.
Now we have
U— X—a :12.2—12 _02.
h 1
The difference table is:
X u 10%yy 10°Ayy | 10°A?%y, | 10°A%y, | 10°A%y,
10 -2 23967
4093
11 -1 28060 — 365
3728 58
12 0 31788 - 307 -13
3421 45
13 1 35209 _ 262
3159
14 2 38368




We know that the Stirling’s interpolation formula is

(Ayo +Ay ) , U
2 21

LU D) (A%, +AYY,) P
31 2 41

Yo=Y, +U A%y,

(1)

From equation (1) and using above table, we have

2
_31788+(0.2) (3421;3728) ' (O'ZZI) (=307)

OO A 45, 1), OV OV

=31788 + 714.9 - 6.14 — 3.296 + 0.0208
= 32493.4848
~ 32493.49.

Hence the value of y12.2 is 32493.49.

Example.5. Use Stirling formula, to determine log 337.5 from the following data:

310

320

330

340

350

360

logiox

2.4913617

2.5051500

2.5185139

2.5314789

2.5440680

2.5563025

Solution: Here h =10. Taking 330 as origin, i.e. a = 330.




Now we have

yoX-a_ 337.5-330

=0.75.
h 10
The difference table is:
X u Yu Ay Ay Ay, Ay, Ay
310 | -2 | 2.4913617
0.0137883
320 | —1 | 2.5051500 —0.0004244
0.0133639 0.0000255
330 | o | 2.5185139 — 0.0003989 —0.0000025
0.0129650 0.0000230 0.0000008
340 | 1 | 2.5314789 — 0.0003759 —0.0000017
0.0128891 0.0000213
0.0122345
360 | 3 | 2.5563025
We know that the Stirling’s interpolation formula is
2
Vo = yo +ulD A U ey
2 2! 1)

+ u(uz _1) (Agyfl +A3y72) + uz(uz _1)

3!

2

41

From equation (1) and using above table, we have

= 25185139 +(0.75)

(0.0133639 +0.0129650) _ (0.75

2

2!

2
)" (~0.0003989)




, (0.75)((0.75)° 1) _ (0.0000255+0.0000230)

3! 2

‘4)(00000025)

L (075)°((0.75)
41

=2.52827374
~ 2.52827374.
Hence the value of logsas7s is 2.5282737.

Example.6. For the following data:

X: 0.10 0.15 0.20

0.25 0.30

y=f(x):]0.1003 | 0.1511 | 0.2026

0.2554 | 0.3093

Use suitable interpolation formula to calculate the values of y for:

(i) x = 0.14 (ii) x = 0.21 (iiii) x = 0.28.

Sol. The difference table is

X y = f(X) Ay A%y

A3y Ay

0.10 0.1003

0.15 0.1511 0.0508 0.0007

0.20 0.2026 0.0515 0.0013

0.25 0.2554 0.0528 0.0011

0.30 0.3093 0.0539

0.0006 -0.0008

-0.0002




(1) For x = 0.14, to determine the value of y(0.14) we use Newton Forward interpolation formula.
Here a = 0.10, h = 0.05, x = 0.14.
Than we have

x—a 0.14—0.10 0.04

= =0.8.
h 0.05 0.05

u=

Using Newton forward interpolation formula, we have

f(x) = f(a) +uAf (a) +

u(u-213 A2 £ (a) + u(u—-H(u-2)
2! 3

From equation (1) and using above table, we have

0.8 x

f (0.14) =0.1003 +0.8(0.0508) + (2'8_1) (0.0007)

0.8(0.8-1)(0.8-2) 0.0006 + 0.8(0.8-1)(0.8-2)(0.8-3)
3! | 41

s x (~0.0008)

=0.1003 +0.04064 + w(o.ooon

0.8 x(—0.2) x(~1.2)x(~2.2)

L 08x(-0.2)x(-1.2)

x0,0006 + x (~0.0008)
6 24
=0.1003 +0.04064 — % (0.0007)
. 0.8><(0.2) x(L2) 0 o006, 08 (0-2) >2< il.Z)x(Z.Z) < (0.0008)

= 0.1003+0.04064-0.00056+0.0000192+0.00001408

=0.100333328



(i1) Now to determine the value of y = (0.21), we use Stirling’s interpolation formula.

The difference table is:

X u y = f(x) Ay A%y A%y A%y

0.10 -2 0.1003

0.15 -1 0.1511 0.0508 0.0007

0.20 0 0.2026 0.0515 0.0013 0.0006 -0.0008

0.25 1 0.2554 0.0528 0.0011 -0.0002

0.30 2 0.3093 0.0539
Here h =0.05. Taking 0.20 as origin, i.e. a = 0.20.
Now we have

o X=a_ 0.21-0.20 _0.01 _ 02,
0.05 0.05
The Stirling’s difference formula is
2
Vo = yo +u et A Uy
2 3 3 20,2 _
+u(u DAy, +A y72)+u (Cllint Ay, F o, ..(2)

3!

2




From equation (2) and using above table, we have

=0.2026+ (0.2) x(0.0013)

(0.0528+0.0515j , 02
2

. (0.2)((0.2)? —1)(—0.0002 + o.oooej
31! 2
N (0.2)*((0.2)* —1)

—0.0008
2 < ( )

—0.2026+ (0.2)(0.05215) + 0'_§4x(o.0013)

. (02)(0.04-1) (0.04)(0.04-1)

x (~0.0008)

(0.0002) +

=0.2026+ 0.01043 + (0.02)x0.0013
+(~0.032) x (0.0002) + (~0.0096) x (— 0.0008)

= 0.2026+0.01043+0.000026—-0.0000064+0.00000768

=0.21305728.

(iii) For x = 0.28, to determine the value of y(0.28) we use Newton backward interpolation

formula.
Here (a+ hn) = 0.30=b, h =0.05, x =0.28.
Then we have

. 0.28-030 002

= =-0.4. ...(3
0.05 0.05 @

Newton backward interpolation formula is



f(a+nh+hu)= f(a+nh)+uVf (a+nh)+%vzf (a+nh)

N uu+)Uu+2)......(u+n-1)
n!

V" f (a+nh)

From equations (3), (4) and above table, we have

= 0.3093+ (—0.4) x 0.0539 + (_0'4)(70'4”) x(0.0011)
X (—0.4)(—0.4;1)(—0.4 2) 0.0002)
L (£04)(-04+1) (;?.4 £2)(0443) 0 oo
_ 0.3003-002156 - D) 60011
) (0.4)(066)(1.6) o 0_0002)_(0-4)(0-6)2 il-ﬁ)(z-ﬁ) + (-0.0008)

= 0.3093-0.02156 —0.12 x0.0011

+(0.64) x (0.0002) +(0.0416) x(0.0008)

=0.3093 - 0.02156-0.000132 +0.0000128+0.00003328

= 0.28765408.

Example.7. Given the following data:

(4



00

50

10°

15°

20°

25°

30°

f=tan0

0.00

0.0875

0.1763

0.2679

0.3640

0.4663

0.5774

Determine the value of tan 3°, tan16°, tan28° stating the appropriate formula used.

Sol. The difference table for given data is:

0° tan6 Af A’f A3f A Af ASf
0° 0
0.0875
5° 0.0875 0.0013
0.0888 0.0015
10° 0.1763 0.0028 0.0002
0.0916 0.0017 ~0.0002
15° 0.2679 0.0045 0 0.0011
0.0961 0.0017 0.0009
20° 0.364 0.0062 0.0009
0.1023 0.0026
25° 0.4663 0.0088
0.1111
30° 0.5774

For 6 = 3°, to determine the value of f(0) = tan 3°, we use Newton Forward interpolation formula.

Herea=0,h=5x=3.




Than we have

Using Newton forward interpolation formula, we have

f (x) = f (@) +uAf (a) + uU—1) 2 (@) + u(u _1)|(U —2)

2! 3

From equation (1) and using above table, we have

(0.6) (0.6-1)

tan3° = 0 + (0.6) (0.0875) + (0.0013) +

(0.6) (0.6-1)(0.6-2)

3!

, (0.6) (0.6-1)(0.6-2)(06-3)
41

(0.0002)

, (06) (0.6-1)(0.6-2)(0.6-3)(0.6-4)
51

(~0.0002)

, (06) (0.6-1)(0.6-2)(0.6-3)(0.6-4)(0.6-5)
6!

x(0.0011)

0.6) (-0.4)(~1.4)

=0+ 0.0525 + w (0.0013) + ( (0.0015)

. (06) (_0.4?2&_1.4)(_2.4) (0.0002)

N (0.6) (—0.4)(—1.4)(—-2.4)(-3.4) (~0.0002)
120

N (0.6) (-0.4)(—1.4)(—2.4)(-3.4)(—4.4) «(0.0011)
720

= 0+ 0.0525 — (0.12) (0.0013)+ (0.056) (0.0015)

(0.0015)



~ (0.0336) (0.0002) - (0.022848) (0.0002) —(0.0167552)x(0.0011)

=0+ 0.0525 - 0.00156 + 0.000084 — 0.00000672 - 0.0000045696 — 0.00001843072

=0.05099427968.

~0.0510.

Now to determine the value of of f(0) = tan 16°, we use Stirling’s interpolation formula.

The difference table is:

0° u tano Af A’f A3f A A ASf
0° -3 0
0.0875
5° -2 0.0875 0.0013
0.0888 0.0015
10° -1 0.1763 0.0028 0.0002
0.0916 0.0017 —0.0002
15° 0 0.2679 0.0045 0 0.0011
0.0961 0.0017 0.0009
20° 1 0.364 0.0062 0.0009
0.1023 0.0026
25° 2 0.4663 0.0088
0.1111
30° 3 0.5774

Here h =5. Taking 15 as origin, i.e. a = 15.

Now we have




The Stirling’s interpolation formula is

2
Ay, +A4y.,)  u”

Yo =Y +u 2!A2y_l
2 3 3 2 2
+u(u —1) (A%y_, +A y72)+u (u®-1) Ay,
3! 2 4!
2 2 2 5 5 2012 2 2
LU D=2 (AT ATY,) T D=2 6
51 2 6!
2)

From equation (2) and using above table, we have

0.0961+0.0916
2

2
tan 16° = 0.2679 +( 0.2 )[ }(0'2) (0.0045)
2!

+ XO

(0.2)] (0:2)" -1] ) {0.0017 +o.0017} . (0.2)°| (02" 1]
3 2 a1

—+

(02)° [ (0.2 -1][ (02)"-2*] {—o.oooz+o.ooog}

5! 2

(02)°[ (02)" 1] (02)" -2 )

6!

+

(0.0011)

= 0.2679 +( 0.2)(0.09385) +( 0.02 )(0.0045) + (~0.032)x (0.0017) + 0

+(0.006336)(0.00035) +(0.0002112)(0.0011)



= 0.2679 +0.01877 +0.00009 —-0.0000544 +0.0000022176 +0.00000023232

=0.2867080499.
~0.2867.

Now to determine the value of of f(0) = tan 28°, we use Newton backward interpolation formula.
Here (a+ hn) =30=D, h =5, x =28.

Then we have

—Z-_04. ..(3)

Newton backward interpolation formula is

f(a+nh+hu) = f(a+nh)+qu(a+nh)+%v2f(a+nh) N

b # AU 2 WA= G0 (a1 )
From equations (3), (4) and above table, we have
tan 28° = 0.5774+(~0.4)(0.1111) + (_0'4)(2_!0'4+1) (0.0088)

| (-04) (—0.4;1) (04+2) o
N (-0.4) (-0.4+1) (4—!0.4+2)(—O.4+3) 0.0000
N (—0.4) (—0.4+1) (—0.454—! 2)(—0.4—0—3)(—0.4—0—4) ><(0.0009)
N (—0.4) (—0.4+1) (—0.4+2)(—0.4+3)(—0.4+4)(—0.4+5) X(0.00ll)

6!



=0.5324

Example.8. Use the following data to calculate the values of y when x=1.1, x=1.7, x=1.9.

X: 1.00 1.2 1.4 1.6 1.8 2.0
y= f (X): 0.1120 |1 0.1125 |1 0.1243 | 0.1475 | 0.1623 | 0.1824
Sol. The forward difference table is
X y Ay A%y A3y Aty A%y
1.0 0.1120
0.0005
1.2 0.1125 0.0113
0.0118 0.0001
1.4 0.1243 0.0114 —0.0199
0.0232 -0.0198 0.0534
1.6 0.1475 —0.0084 0.0335
0.0148 0.0137
1.8 0.1623 0.0053
0.0201
2.0 0.1824

For x = 1.1, to determine the value of y(1.1) we use Newton Forward interpolation formula.
Herea=1,h=0.2,x=1.1.
Than we have

x—a 1.1-1 0.1
u= = = =

= =0.5.
h 0.2 0.2




Using Newton forward interpolation formula, we have

u(u-23
2!

f (x) = f(a) +UAF (a) +

A2f (a) + u(u—-2H(u-—-2)
3

From equation (1) and using above table, we have

y(1.1) = 0.1120 + (0.5) (0.0005) + (05) (2()"5_1) (0.0113)

. (0.5)(—03.?) (-25) (5,0001)+ (0-5)(—0-5)45'—1-5)(—2-5)(_0_0199)

+(0-5)(—0-5)(—1:)(—2-5)(‘3'5) (0.0534)

(05) (0.5-1)

y(1.1) = 0.1120 + (0.5) (0.0005) + (0.0113)

. (0.5)(-0.5) (-1.5) (0.0001) + (0.5)(-0.5)—1.5)—2.5) (~0.0199)
6 24

N (—0.25)(—~1.5)(— 2.5)(—3.5) (0.0534)
120

= 0.1120 + 0.00025 — (0.125)(0.0113) + (0.0625) (0.0001)

+ (0.0390625)(0.0199) +(0.02734375) (0.0534)

= 0.1120 + 0.00025 — 0.0014125 +0.00000625
+0.00077734375+0.00146015625

=0.1120 + (-14125x10-3) + 0.0000025+0.00077734+0.0014601

=0.11308125.

Now to determine the value of y = (1.7), we use Stirling’s interpolation formula.



Here h =0.2. Taking 1.6 as origin, i.e. a=1.6.

Now we have

U x—a 17-16 01

=—=0.5.
h 0.2 0.2
The difference table is:
X y u Ay A%y A%y Ay Ady
1.0 0.1120 -3
1.2 0.1125 -2 0.0005 0.0113
14 0.1243 1 0.0118 0.0114 0.0001 | -0.0199
1.6 0.1475 0 0.0232 | -0.0084 | —0.0198 | 0.0335 0.0534
1.8 0.1623 1 0.0148 0.0053 0.0137
2.0 0.1824 2 0.0201
The Stirling’s difference formula is
Ay, + A u?
y. = yo +u Ao y1)+gA2y_l
2 3 3 20,2
+u(u DAY, +AY,) LU (u -1 Aty
3! 2 41
2 2 2 5 5 20,2 2 2
LU D=2 (Y, ATy ,)  uT D=2 o
51 2 6!
.(2)

From equation (2) and using above table, we have




y(1.7) = 01475 + (0.5){0'014820'0232}

(05)

+ (—0.0084)+

(0.5)(0.25-1) [0.0137 - (—0.0198)}
3! 2

N (0.5)°(0.25-1)

. (0.0335)

= 0.1475 + (0.5)(0.019) —(0.125)(0.0084)

+(0.0625)(0.00305) + (0.0078125)(0.0335)

= 0.1475 + 0.0095 —0.00105 +0.000190625 + 0.00026171875

= 0.15640234375
~ 0.1564.

For x = 1.9, to determine the value of y(1.9) we use Newton backward interpolation formula.
Here (a+ hn) =2.0=b, h=0.2, x = 1.9.
Then we have

1.9-20 -0.1
u= =

= =-0.5. ...(3
0.2 0.2 ®)

Newton backward interpolation formula is

u(u+1)

2!
+u(u+1)(u+2) ....... (uU+n-1)
n!

f(a+nh+hu)= f(a+nh)+uVvf(a+nh)+ V2 f(a+nh)
...(4)

V" f(a+nh)

From equations (3), (4) and above table, we have



y(1.9) = 0.1824 +(—0.5)(0.0201) + %(—0.0053)

N (—0.5)(3(’)'.5)(1.5)(0_0137) N (—0.5)(0.?'(1.5)(2.5)(0_0335)

N (—0.5)(0.5)(;5)(2.5)(3.5) (0.0534)

— 0.1824 —(0.5)(0.0201) + W(0.00S3)

) (0.5)(06.55)(1.5) (00157) - (0.5)(0.5351.5)(2.5) (0.0335)

_(09)(05)(19)(29)(39) 4 45
120

= 0.1824 —0.01005 +0.0006625

—0.00085625 —0.00130859375—0.00146015625

= 0.1693875
~ 0.1694.

4.6 Summary

The Gauss’s forward interpolation formula is

u(uz!—l) A%y .+ (u +1);J!(u —1) NS
uU+Du(u—-D(u-—-2)
N 4!

Yu = Yo +TUAY, +

A'Y i,



and the Gauss’s backward interpolation formula is

Yo = Yo tUAY ; +

-2

u(u+1) AZy +(u +1Du(u—-1) Aty
21 - 3!

N uU+2)(u+Du(u-—-1)
41

The mean of Gauss’s forward interpolation formula and Gauss’s backward interpolation formula

gives Stirling’s interpolation formula. The Stirling’s interpolation formula is

2
Ay, +A4y.,)  u”

B 2
y, =Y, +U 5 2!A Y
2 3 3 2 2
+U(U —1) (A y_l"'A y_2)+u (u _1) A4y_2
3! 2 4!
2 2 2 5 5 2012 2 2
C —1)5(Iu -2°) (A nger o) U (u _16)|(u —2 )Aey_3+ .......

4.7 Terminal Questions

Q.1. Write the Gauss’s Interpolation Formula.
Q.2. What do you mean by Stirling Interpolation Formula.

Q.3. Use Gauss Forward Interpolation formula to find the value of (3.75), from the following data:

f(x) 24145 | 22.043 | 20.225 | 18.644 | 17.262 | 16.047

Q.4.. Use Gauss Forward Interpolation formula to obtain a polynomial of degree four which

takes the following values of the function f(x):



y=1(x)

Q.5. Use Gauss Backward Interpolation formula to obtain the values of the function f(x) at x=5.8:

y=1(x)

270

648

1330

2448

Q.6. Use Stirling Interpolation formula to obtain the values of the function f(x) at x = 0.41:

X 0.30 0.35 0.40 0.45 0.50
y=f (x) 0.1179 0.1368 0.1554 0.1736 0.1915
Answer
3. 19.407426.

4. f(x)= 2 x* —8x3+@ x%-56x+31
3 3

5. 1162.944.

6. 0.15907168.
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5.1 Introduction

Lagrange's Interpolation Formula for Unequal Intervals is a mathematical method used to
estimate the value of a function between known data points when the intervals between these
points are not equal. This interpolation formula is based on the Lagrange polynomial, which is a
polynomial that passes through given data points. This formula allows for the estimation of the
function’s value at any point within the given range, even if the intervals between the known data
points are irregular. It is a powerful tool in numerical analysis for approximating values in

situations where the data is unevenly distributed.

Lagrange's Interpolation Formula can be applied when the intervals between the known data
points are not uniform or equal. This makes it suitable for scenarios where data points are
irregularly spaced. The formula is used to construct a polynomial (Lagrange polynomial) that
passes through the given data points. This polynomial can then be used to approximate the

function's values at points within the range.

Lagrange's method is effective for estimating function values at points within the range covered
by the known data points. In this unit we shall discuss about Lagrange’s interpolation formyla

for unequal length and inverse lagrange’s interpolation formula for unequal length.

5.2  Objectives

After reading this unit the learner should be able to understand about

. the Lagrange’s Interpolation Formula for unequal intervals

. the Inverse Lagrange’s Interpolation Formula for unequal intervals



5.3 Lagrange’s Interpolation Formula for Unequal Intervals

Lagrange's Interpolation Formula is used when you have a set of data points with associated
function values, and estimate the value of the function at a point that falls within the range of
those data points. Lagrange's Interpolation Formula is beneficial in the some special situations

such as unequal intervals, polynomial interpolation and Interpolation within a range.

The general form of the Lagrange's Interpolation Formula is versatile and can be applied to
various contexts, providing a flexible tool for numerical analysis and approximation. Let us
consider yo, y1, Y2, ... ... ........., yn be the values of function y=f (x) corresponding to the arguments

X0y X1, X2, v v e , Xn Not necessarily equally spaced.

If the (n+1) values of the function f(x) are given then the (n+1)" difference is zero. Thus f(x) is

supposed to be polynomial in x of degree n.

We have
y(X) = F(X) = 8 (X=X ) (X=X, ) (X=X )ocorrrrrrrree (x=x,)
+ay (X=X ) (X=X ) (X = X3 )vvrrre (X=X,
8, (X = X ) (X = X )(X = Xa)-rrrrrrrrrnen (x—x,)
a3 (X = X ) (X=X, ) (X = Xy )rrerrrreereenen (X=X,
oo +a, (X=X ) (X=X ) (X = Xy )eorrvrrrrrrrnee (X=%,,) ...(1)

Where ao, ai, ay,....., an all are constants.

To determine the value of ag,

Putx =xoand Y=Y, inthe equation (1), we get



Yo =8 (X = X) (X5 =X;) (Xg = X5)eeevrereirrinnnns (X, —X,)

_ Yo
" (X — %) (X = Xp) (Xg = X )-wrrvvrrrrsrenee (X —X,)

= 8
Similarly to determine the value of ay,
Putx =xi1and y =Y, in the equation (1), we get

Y1 =804 = X) 04 =X )0 = Xg)evvininnn (% —X,

_ Vi
(4 =% )% = %) (X = Xg ). (X =X,

= a

Putx = x2and y =Y, in the equation (1), we get

Y, = ai(xz - XO)(XZ — X:L)(Xz — X3) ................ (X2 — Xn)
= a, = Ya
(X =X ) (Xy = X)Xy = X3)eeeeruverennnn (X, —X,)

Putx =xsand Yy =Y, in the equation (1), we get

Ys =8y (X5 — %) (X3 = X)) (X3 = X5 )evvrinnnnn. (X; —X,)
= a, = Y
(Xg =X )(Xg = X)) (Xg = X, ) evvrerrirennn. (X3 —X,)

Proceeding in this way, we get

Y
(X, = X ) (X, = X ) (X, = X5 )eeeiiiinnnne (X, —X,4)

n

Putting these values of az, ay, ...............,an in the equation (1), we get



3 XXX X)) (X = Xg )i (x=X,)
y(X) = (X) - (Xo - X:L)(XO - Xz)(xo - Xs) ----------------- (Xo - Xn)

+(x—x0)(x—x2)(x—x3) ............. (x—x,)
(Xl—XO)(Xl—XZ)(Xl—X3) --------- (Xl_xn)

N (X=X ) (X=X )(X = X5) evveeerennn (x—x,) y
(X, — X ) (X, — X ) (Xy — X3 )erveee. (x,—x) " °

(X=X )(X =X )(X = X5 ) ereeenne (X=x%,4)
(Xn - Xo)(xn - Xl)(Xn - Xz) -------- (Xn - Xn—l) "

.(2)

This equation (2) is known as the Lagrange’s interpolation formula for unequal intervals.

5.4 Inverse Lagrange’s Interpolation Formula for Unequal Intervals

The Inverse Lagrange’s Interpolation formula for unequal intervals is

x(y) = YY)V Yo)(Y = Yg)oonnnennnon (Y=¥o)
(Yo = YD) (Yo = Y2)(Yo = Ya)eereeennn (Yo-Yn)
L Y)Y Y)Y - Ya) =Ya) o
(V1= Yo) (Y1 = Y2 ) (Vi = Ya)eeeeennnne (Y1 -Ya)
Y)Y Y)Y - Y)-en (y-va)
(yz'yo)(yz'yl)(yz'y3) ---------- (yz'yn) ?
. VY)Y Y)Y Vo) Y-You)

(Yo = Yo) Vo = YD) (Yn = Ya)eenennn. (Yo~ Yoa)



Check your Progress

1. What do you mean by Lagrange interpolation formula for unequal interval?

2. Write the inverse Lagrange interpolation formula for unequal interval.

Examples

Example.l. Using Lagrange interpolation formula to find a cubic polynomial that

approximation the data given below

1 4 5
3 249 39

x : (@)
vV : pal

Also determine the value of (i) y(3) (ii) y(6) and (iii) y(12).
Sol. Itisgiventhatxo=0,x1=1, x2=4and x3=5. Alsoyo=4,y1 =3, y2 =24 and y3 = 39.

We know that the Lagrange’s Interpolation formula is

B (XXX X)) (X=X (X=X,
Yoo = 1= (% = X) (X = %, )(Xg = X3 )errerrrrrerrenn. (% — X, ho
+(x—x0)(x—x2)(x—x3) ............. (X=X,)

(% %)% = %) (% = K)o (g — %)

N (X=X )(X=X)(X =%, ) eereennn (X—X,.4)
(Xn - XO)(Xn - Xl)(Xn - XZ) """" (Xn - Xn—l) "

(X =x) (X =% ) (X=%)
(Xo _X1)(Xo _Xz)(xo — X3

(1)

r y(x) = Yo
° )



(X = %o JOX = %, X = X5)

+
(X1 — Xy )(X1 — X )(Xl - Xs)

Y1

+ (X_XOXX_Xl)(X_Xs) Y,
(Xz — X sz - XlXXZ - Xs)

(X = %o X =X XX = X5 )

+ Yy
(Xs - Xo)(xs - XlXXS - Xz) ?

_(x-1)(x-4)(x-5) (x-0)(x-4)(x-5)
~(0-)(0-2)(0-5) W 10)z-a) 15 ®

(x20)(x-1)(X-5) 5y, (X-0)(x-1)(x-2) 44

(4-0)(4-1)(4-5) (5-0)(5-1)(5-4)

_ 40x*—60x +80
20

+

y(X)=2x* —3x +4 ...(2)
(i) Put x =3 in the equation (2), we get
y(3)=13.
(ii) Put x = 6 in the equation (2), we get
y(6)=58.
(iii) Put x =12 in the equation (2), we get
y(12)=256.

Hence the values of y(3), y(6) and y(12) are 13, 58 and 256 respectively.



Example.2. Use Lagrange’s interpolation formula to find f(10), from the following data:

X: 5 6 9 11
y=f(x) 12 13 14 16

Sol. Itis given that Xo =5, x1 =6, X2 =9 and x3 = 11. Also yo =12, y1 =13, y. =14 and y3 = 16.

We know that the Lagrange’s Interpolation formula is

B XXX =X ) (X = Xg) i, (x=x.)
Y0 =)= (% = X) (X = X, )(Xg = Xg)everrrrrrrenne (X, —X.) o
N (X=X ) (X=X, )(X = Xg)eeevererenen. (X=x,)

(X=X ) (% —X)( — X5 ) (= X,)

(X = %) (X = X)(X = Xp)-orsreec (X = Xy )
' (X” N XO)(Xn B Xl)(Xn - X2) ........ (X — anl) Yn -.-(1)

(x=%) (Xx=%5 ). (X = X,,)

Xo =%, )(Xo —%;) —(%5 —X,)

or f(x): ( f(Xo)

(=) (=)= (x=,)
(Xl_XO)(Xl_XZ)""(Xl_ Xn)

f(x)+....

N N (X=X ) (X= %) (X=%;)eurrnne. (X—X,1) y
"""" (X, = %) (X = %) (Xy = X5 )eeveenn (%) =X, 1) (%)

¢ (10 (10-6) (10-9)(10-11) (10-5) (10-9) (10-11)
=56 061 2t (65) (6 9) (61

x13

(10-5)(10—-6)(10-11) 14 (1o0-5)(10-6)(10-9) 16
©@-5)0—6)(9-11) ' (@1-5)@1-6)21-9)

@0y, GO
BT Ty R V) Ty R




BB L, @O .
"@E2) T O e

13 35 16
=2 - 4= 4L =
3 3 3

=2-4.3333 + 11.6667+ 5.3333

Hence the value of f(10) is 14.6667.

Example.3. Use Lagrage’s formula inversely to find upto the two decimal places, the value

of x, when y =19, given the following

Sol. Using the Inverse Lagrange’s interpolation formula for unequal intervals is

x(y) = YYD =Yo )Y - Ya) oo Y-Yo)
(Yo = Y1) (Yo = Y2 ) (Yo = Ya)eeeeennn (Yo -Yn)
L VY)Y Y)Y - Ya)nnn Y-Y) o
(V1= Yo) (Vi = Yo ) (Vi - ¥Ya)eeeoonnn (Y1-Ya)
Y- Y)Y - Y)Y - Y5)eonnnenn. (Y-¥.) o
(Y2 - Yo) (Yo - Y)Yz = Ya)eoeenenn. (Y.-Y,) °
N (y'yo)(y'yl)(y'yz) ------------ (y'yn—l) X
(Yo = Yo) (Y = Y)Y = Yo)eeeenen (Yn-Yna)

Itis giventhatyo=0,y1=1,and y» =20. Also xo=0,x1 =1 and x2 = 2.



Put the above values in the equation (1), we get

_(19-1)(19-20) . (19-0)(19-20) . (19-0)(19-1) ,

X ="01)(0-20) (1-0)(1-20) " (20-0)(20-1)

19x (-1 x1 N 19x18 8
1><(—19) 20x19

=0+

=1+1.8
=2.8.

Hence the value of x(19) is 2.8.

Example.4. Use Lagrange’s interpolation formula to find the value of y when x = 2, from

the following table:

X 0 1

6 50 105

Solution: Here xo=0,x1=1,x2=3,x3=4

and Yo=b, y1 =6, y2 =50, y3 = 105.

We know that the Lagrange’s Interpolation formula is

(X=X X=X ) (X=X )i, (X—x.)
y() = (X = %) (X = X, ) (X = Xg)eerrerrrrennes (X, — X, Yo
+(x—x0)(x—x2)(x—x3) ............. (x—x,

(6 = %)% =X, ) (% =X )evrvrrnnn (X = X;)



N (X=X ) (X=X )(X = Xy)eeeerrrree (X—X,4)
(Xn - Xo)(xn - X1)(Xn - Xz) -------- (Xn - Xn—l)

Yn (1)

(X =% ) (X=X, )(X=X;) v+ (X = %o (X = X, X = %,) 1
(% =% ) (X =%, ) (% —%;) ~° (% = %6 )04 =%, ) = %)

or  y(x)=

. (X — Xxo XX — X (X — X3) (x = %o X = %, X — %5 )

+ y
(Xz - Xo)(xz - XlXXZ - Xs) Y2 (Xs - Xo)(xs - XlXXB - Xz) ’

Putting x = 2 in above expression, we get

y(2) = (2-1)(2-3)(2-4) <54 (2-0)(2—-3)(2—-4) <6 (2-0)(2-1)(2—-4) <50
(0-1)(0-3)(0—-4) 1-0@1-3)(1-4 (3-0)(3-1)(3—-4)
L 2-02-D2-3) ..
(4-0)(d-1(4-3)

b)) 2x(Dx(D) o 2x(D) o 2xAx(D) o
(1) x(=3)x(-4) 1x(-2)x(-3) 3x2x(-1) 4x3x1

10 100 105
=——+4+———

12 3 6

~ —-10+48+400-210
12

=19.
Hence the value of y(2) is 19.

Example.5. The value of x and y are given as below:




Find the value of y when x = 4.
Solution: Here xo=0,x1=1,x2=2,x3=5
and yo=2,y1=5,y2=7,y3=8.

We know that the Lagrange’s Interpolation formula is

y(X) = (X=X (X=X, ) (X = Xg)eevrverrririririinns (x=x.)
(X = X)) (X = X%)(Xg = X3 )evrererrvrrnnn. (% —X,)

+(x—x0)(x—x2)(x—x3) ............. (X—x,)
(X = %) (% = X5 ) (X = Xg ) (% =X;)

1

(=) (=) (x=%)
(Xo _)(1)()(0 _Xz)(xo _Xs) °

+ (X_XO)(X_XZ)(X_X3)

(Xl _XO)(Xl _XZ)(Xl _Xa) '

(% = %o (X = % (X = X5)

+ y
(Xz - Xo)(xz - XIXXZ - Xs) ’

or  Y(X)=

+ (X_ Xo)(x_ Xl)(x_ Xz)
(X5 = %o X5 =%, XX — X, )

Y3

Putting X = 4 in above expression, we get

0 (-D(E-2)(4-5) , (4-0)4-2)4-5)
(0-1)(0-2)(0-5) (1-0)A-2)1-5)

y(

L(4-0(4-D@E-5) . (4-0(4-D(E-2)
2-0)2-D2-5  (-0)(E-D(E-2)

(1)



3x2x(-1) 4x2x(-1) 4x3x(-1) 4x3x2
= X2+ x5+ X[+——x8
(=) x (-2)x(-5) Ix (1) x(-4) 2x1x(-3) 5x4x3
= E+ (-10) +14+E
10 5
~3+20+16
3)
39
5
y(4)=17.38.
Hence the value of y(4) is 7.8.
Example.6. Find the value of y at x = 5 from the following data:
X 1 3 4 8 10
y = f(x) 8 15 19 32 40

Solution: Here xo=1,x1=3,x2=4,x3=8, x4 =10

and yo=8, y1 =15, y> =19, y3 =32, ya = 40.

We know that the Lagrange’s Interpolation formula is

~ _(X=x)(X= %) (X = %5)
y(X) = f (X) - (XO - Xi)(XO - Xz)(xo - X3)

+ (X_ Xo)(x_ Xz)(x_ Xs)

(X_Xn)

(X1 - Xo)(X1 - Xz)(X1 - X3)

(4 —%,) "



(x Xo ) (X=X )(X=X5) e (X—X,4)

....... = (1
" (x — X ) (X, = X)) (X, = X5) e (x, — X, 1)y @

B (Xx=%) (X=X, )(x— x3) (X Xo X =% X = %)
or y(x)=1(x)= (%o =% ) (% =%, ) (X — 3) (X_XO)(Xl X, X%, x3)

N (X = %o J(X = X, XX — X3) (X = %o X = X, X = %,)

y
(Xz — X )(Xz - Xl)(xz X3) Y2 (X3 XO )(X3 Xl)(X3 Xz) :

Putting x = 5 in above expression, we get

y5) = E=IE-DHE-E-10) o (-1(E-4)5E-8)(5-10)
(1—3)(1—4)(1—8)(1—10) (3—1)(3—4)(3—-8)(3-10)

, (6-16-36-89)(6-10) o (-D6E-3(E-4)(6-10)
(4—1)(4—3)(4—8)(4—10) (8—1)(8—3)(8—4)(8—10)

. (6-DGE-36-46-8)
(10—1)(10—3)(10—4)(10—8)

_ 2x1x(=3)x(-H) e 4x1x(=3)x(-5) 15
()< (B)x(=Nx(-9)  2x(=1)x(-B)x(-7)

N 4x2x(—3)x(-b) <19+ 4x2x1x(-b) «32 4 4x2x1x(=3)

x40
3x1x (—4)x (-6) 7x5x4x(=2) IxTx6x2

_40 90+95 32 80

 40-9x90+95x21+32x9-80
B 63

_ 40-810+1995+ 28880
B 63




_ —930+2323
63

1433
63

=22.746031746031

y(5) = 22.75.

Hence the value of y(5) is 22.75.

Example.7. Apply Lagrange’s formula to find the cubic polynomial which includes the

following values of x and y.

Y0 = f(x) 1 1

Solution: Here xo =0,x1=1,Xx2=4,x3=6,and yo=1,y1=-1,y>=1,y3=-1.

We know that the Lagrange’s Interpolation formula is

B (XXX X) (X=X )i, (X=x,)
Y9 =109= (Xo N Xi)(XO - Xz)(xo N Xs) ----------------- (Xo — % &
+(x—x0)(x—x2)(x—x3) ............. (x—x,

(6 = %) 0% =X, ) (% = X )evrvrrnnn (X = X;)

(X=X ) (X=X ) (X = X5 )evvnee (X—X%,,)
" (Xn o Xo)(xn o X:L)(Xn o Xz) -------- (Xn - Xn—l) . -




(X=%) (X =%, ) (X —X5) y
(% =%) (% =% ) (X% = %)

+ (X_XO)(X_XZ)(X_X3)

y
(Xl - Xo)(xl - Xz)(xl - Xs) '

or  Y(X)=

+ (X_Xo)(x_ Xl)(x_xa) Y,
(Xz — X )(Xz - Xl)(xz - X3)

(X = X X =%, (X = %,)

(Xs — Xp )(X3 - Xl)(x3 - Xz)

+ Y3

F(x) = (x=D(x—4)(x—06) 1 (x—=0)(x—4)(x—6) < (~1)
(0-1)(0-4)(0-6) 1-0@Q@-4@1-6)
N (x=0)(x—D(x—6) 1 (x=0)(x—-D(x—4) «(~1)
(4-0)(4-1)(4-6) (6-0)(6—-1)(6—4)

= —i[x3 —11x* +34x —24] —i[x3 —10x? + 24x]
24 15

—i[x3 —7x? +6x]—i[x3 —5x%° +4x]
24 60

f(x):——x3+§x2—£x+l
6 3
Hence the cubic polynomial is f (X) = —% x> +gx2 —% X+1.

Example.8. Using Lagrange’s method to show that

Y, =0.05(y, + Ys)—0.3(y, + ¥5) +0.75(y, + Y,)



Solution: Here X, =0, X, =1, X, =2,X;=4,X, =5X. =6 and their corresponding values of

function are given by Yo, Y1, Y2, Y4, ysand Y.

We know that the Lagrange’s Interpolation formula is

B (XXX ) (X=X, (x=x,)
yx)=T(x)= (X = X) (X = X, )(Xg = X )errrrrrrrrrne (X, —X,) o
N (X=X ) (X=X, ) (X = Xg)erervrennn. (x=x,)

(% = %)% = X,) (% = X )ererne(X = %)

N (X=X )(X=X)(X =%, ) eereeennn (X—=X,.4)
(Xn - XO)(Xn - Xl)(Xn - XZ) """" (Xn - Xn—l) "

_ (x=D(x=2)(x=4)(x—5)(x-6) <y, + (x=0)(x=2)(x—=4)(x=5)(x—6)
*(0-1)(0-2)(0-4)(0-5)(0-6) ° (1-0)1-2)(1-4)(1-5)1-6)

N (x=0)(x-D(x—-4)(x-5)(x—6) Xy, + (x=0)(x=D(x=2)(x—5)(x—6)
(2-0)(2-1)(2-4)(2-5)(2-6) *° (4-0)(4-1)(4-2)(4-5)(4-6) "*

N (x=0)(x=1)(x—=2)(x—4)(x—-6) <V 4 (x=0)(x=1)(x-2)(x—4)(x-5)
(5-0)5-1)(5-2)5-4)(5-6) ° (6-0)(6-1)(6-2)(6-4)(6-5) °

To determine the value of y3, put x = 3 in above expression, we get

12, 18 .36 18 12
2407° 607 T 48 Y 6075 T 240 7

Y3
1 3 3
:%(yo +ye)_E(y1+Y5)+Z(y2 +Y4)

:0.05(y0 + ye) —0.3(y1 + y5) +0-75(y2 + y4)-



Example.9. Using Inverse Lagrange interpolation formula to find a cubic polynomial that

x : (@) u B 33 (&)

approximation the following data:
V- 1 2 4 o

Sol. ItisgiventhatXxo=0,x1=1, x2o=3andxz=6. Alsoyo=1,y1=2, yo=4and y3 =9. Using

the Inverse Lagrange’s interpolation formula for unequal intervals is

x(y) = YYD Y)Y = Yg)ovwrinnon (Y=¥a) o
(Yo = Y (Yo = Y2 ) (Yo = Ya)ereneene (Yo-Yn)
L Y)Y Y)Y - Ya)-on =Yo)
(Y1 = Yo)(Yr = Yo )Yy = Ya)eoeenenne (Y1-Yn)
L Y)Y Y)Y - Ya)-ooen (Y-Yo)
(yz'yo)(yz'y1)(y2'y3) ---------- (yz'yn) ?
. V- Y)Y - Y)Y - Yo ) Y-Yna)
(Yo = Yo ) (Vo = YO (Yn = Va2 )oeeeen (Yo~ You)

(D)

From equation (1), we get

-y -Y)Y-¥s) o (Y- Y)Y~ Yo)(Y - ¥s)

) e Y0 ) ¥ T -y -2 e va)
V-Y)y-y)y-ys) . (Y-Yo)(y-¥i)(Y-V¥,)
Yo - Yo ) (Yo - YYo= ¥3) (Yo Yo) (Yo=Y (Ys-¥o)
or

_y-2(y-4)(y-9)  (y-1)(y-4)(y-9)

M= wawe) O 2n@ae)




(3/-1)(3/-2)(3/-9)x3+(y-1)(y-2)(y-4)x

D@29 (9-(-2)(5-4)

6

(Y-H(y-4) -9 . -Dy-2)(y-9) , (v-H(y-2)(y-4)

T GE T T eee T e
_(-D(y-4)(y-9) _(y-D(y-2)(y-9 _3(y-1)(y-2)(y-4)
14 10 140

:(y_l){(y-4l):y-9)_(y-21)éy-9)+3(y-122(§y-4)}

~(y-1) y2—13y+36_y2—11y+18+3y2—18y+24
y 14 10 140

~(y-1) 10y* -130y +360 14y’ —154y+252 . 3y* -18y+24
-V 140 140 140

—y*+6y+132
—(y-1)d 22y ToL
(v ){ 140 }

—y® +7y?+126y —132
140

X(y) =

—y®+7y*+126y—-132
140 '

Hence the cubic polynomial is X(Y) =

5.9 Summary

Lagrange's Interpolation Formula is beneficial in the some special situations such as unequal

intervals, polynomial interpolation and interpolation within a range, and extrapolation.



The Lagrange’s Interpolation formula is

B XXX =X ) (X = Xg )i (x=x,)
y(x)=1(x)= (X = %) (X = %, ) (Xg = X3)ererrrrerrernn. (X, — X, Yo
(X=X )(X=X) (X = X3)cevrverrrnn (x—=x,)

(Xi_xo)(&_xz)(xi_xs) --------- (X1_Xn) '

N (X=X ) (X=X )(X = Xp)evererne (X—=X%.4)
(Xn - XO)(Xn - Xl)(xn - XZ) """" (Xn - Xn—l) "

The Inverse Lagrange’s Interpolation formula for unequal intervals is

x(y) = YYD = Y)Y - Ya) oo Y-Yo)
(Yo - Y1) (Yo = Y2) (Yo = Ya)eeeeennn (Yo -Yn)
L Y Y)Y Y)Y - Ya) e Y-Yo) o
(V1= Yo)(Ya= Yo )(Ya - Ya)eoronenn (Y1-Ya)
Y- Y)Y - Y)Y - ¥Y5)eonnnen. Y-¥.) o
(Y2 - Yo) (Yo - Y)Yz = Ya)eerenenn. (Y.-Ya) °
o (y'yo)(y'y1)(y'y2) ------------ (y_ynfl) X
(Yo = Yo) (Yo = YD) (Y = V2 )eeeeenns (Yn=Yoa)

5.10 Terminal Questions

Q.1. Write the Lagrange’s Interpolation Formula for unequal intervals.
Q.2. Write the Inverse Lagrange’s Interpolation Formula for unequal intervals.

Q.3. Use Lagrange’s interpolation formula to find f(35), from the following data:

X: 25 30 40 50
y=f (x) 52 67.3 84.1 94.4




Q.4. Find the value of y at x = 7 given that:

10

12

y =1(x)

7.5

10.25

15

16

18

21

Q.5. Using the Lagrange’s formula to find the polynomial which includes the following values

of xandy.

y =f(x)

11

18

27

Q.6. Using the Lagrange’s interpolation formula to determine the value f(5), from the following

data:
X 1 2 3 4 7
y =1(X) 2 4 8 16 128
Answer
3.77.41

4.15.7




5. y="f(X)=x*+2x+3.

6. 32.93.
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3 Solution of Linear Simultaneous Equations

Unit- 6

Solution of Linear Simultaneous Equations-I
Unit-7

Solution of Linear Simultaneous Equations-11




Block-3

Solution of inear Simultaneous Equations-I

Simultaneous linear equations are fundamental in various fields, including physics, engineering,
economics, and many other scientific disciplines. The choice of method for solving such systems
depends on the characteristics of the system, the size of the problem, and the efficiency of the
chosen algorithm. Simultaneous linear equations are of significant importance in various areas
of mathematics, science, engineering, and other fields. Simultaneous linear equations refer to a
system of multiple equations, each of which is a linear equation, all involving the same set of
variables. These systems are commonly represented in matrix form as AX=B, where A is the
coefficient matrix; X is the column vector of variables and B is the column vector of constants.
There are various methods to solve simultaneous linear equations, including: Matrix Methods
(Gauss Elination and LU Decomposition); Iterative methods (Jacobi Method and Gauss Seidel

Method); and Determinants and Cramer’s rule.

Simultaneous linear equations are mathematical model to describe the physical systems in
various disciplines such as physics and engineering. These equations provide a mathematical
representation of relationships between different variables in a system. In engineering,
simultaneous linear equations are crucial for solving problems related to circuit analysis,
structural analysis, control systems, and optimization. They help engineers analyze and design
systems efficiently. Economic models often involve systems of linear equations to represent
relationships among economic variables such as supply, demand, production, and consumption.

In finance, these equations are used for portfolio optimization and risk management.

In the sixth unit, we shall discussed about the simultaneous linear equations by Gauss
Elimination method and Gauss seidel Method. And in unit seventh we solved the simultaneous

linear equations by LU Decomposition method, Crout’s method and Choleski’s method.



UNIT-6: Solution of Linear Simultaneous Equations-I

Structure

6.1 Introduction

6.2 Objectives

6.3 Linear Equations

6.4 Gauss Elimination Method
6.5 Gauss Seidel Method

6.6 Summary

6.7 Terminal Questions



6.1 Introduction

Simultaneous linear equations occur in the field of science and engineering like as analysis of a
network under sinusoidal steady-state condition, determination of the output of a chemical plant
and finding the cost of reaction, the analysis of electronic circuits having a number of invariant
element etc. Gaussian Elimination is a fundamental method in solving linear systems and is used
in various applications, including solving systems of equations in engineering, physics, computer
science, and more. The Gauss-Seidel method is generally faster than the Gauss elimination
method for solving large systems of linear equations, especially when the coefficient matrix is

sparse.

However, it may not converge for all systems, and the convergence rate can be influenced by the
properties of the coefficient matrix. Some systems may require preconditioning or other methods
to improve convergence. We can solved the system of simultaneous linear equations by matrix

method or by Cramer’s rule. But for large system, these methods are failed.

In this unit we shall discuss some direct and iterative method of solutions: Gauss Elimination
Method and Gauss Seidel Method. The resulting matrix in row-echelon form will have a
triangular shape, and the solutions can be easily obtained through back substitution. If the system
is consistent and has a unique solution, the matrix will be in reduced row-echelon form, and each

variable will have a unigue value.

6.2  Objectives

After reading this unit the learner should be able to understand about:

. the linear equations and their structure in matrix form
. the Gauss Elimination Method with their solution procedure
. the Gauss Seidel Method with their solution procedure



6.3 Linear Equations

Consider the m first degree equations in n variables

a, X, +a,X, +. 3, X, =Dy
Ay Xy +8yX, +ora+8,,X, =D,

A Xy + A% F ot 8,,X, =D

A, A e a, | X b,
Ay Ay e A [ X2 | | Dy
(@ Ay e Ao | Xn | [ Om
ie., AX =B
T b,
XZ b2
where A=[aj], X=1| . | B = .
X, ] b,

Homogeneous System:
The above system of equations is said to be homogeneous if all the b (i=1, 2, ....... , M) are zero.
Non-homogeneous System:

If atleast one bi (i=1, 2, ....... , m) is not equal to zero then the above system of equations is called

as non-homogeneous system.

The solution of such types of equations can be obtained by



1. Determinant method
2. Matrix inversion method

3. Direct methods
(1) Gauss elimination method
(i1) Gauss-Jordan method
(iii) Triangularization method.
4. Indirect methods
() Tacobi iterative method
(i1) Gauss-Seidel iterative method
(iii) Relaxation method.

Here in this unit, we shall discuss only two important methods Gauss elimination method and

Gauss-Seidel method.

6.4 Gauss Elimination Method

Gaussian Elimination is a method used in linear algebra to solve systems of linear equations by
transforming the augmented matrix of the system reduced into row-echelon form. This process

simplifies the system and makes it easier to find the solutions.

In this method, the unknowns from the system of equations are eliminated successively such that
system of equation is reduced to an upper triangular system from which the unknowns are
determined by back substitution. We proceed a step-by-step explanation of the Gaussian

Elimination method as follows:

Consider the given system of equations are



()

A Xy + 8%, ot @, X, =0,

Step-I. First we eliminating x1 from the second, third, fourth, ........... nth equation. Consider

a
a11#0. The variable x1 eliminated from the second equation by subtracting a—”times the first
11

equation from the second equation, similarly we eliminate x; from third equation by subtracting

a
a—g’l times the first equation from the third equation, etc. Then we get the new system of equation
11

A% + X, +et X, =b
b,,X, +...... +b, x, =D,

b32).(2 +.. + b3an = b?; ..(2)

Step-I1. To eliminate x, from the third, fourth ..... nth equation. Consider b2o#0. The variable x.
eliminated from the third equation by subtracting b, times the second equation from the third
22

equation, similarly we eliminate x, from fourth equation by subtracting b,, times the second

22

equation from the fourth equation, etc. Then we get the new system of equation as

X +a,X, +aXge 8, X, =Dy

!

D, X, +0,%; + ..+ 0, X, =10y
!

cj‘sgx3 +on Gy X, = b‘3 0

Step-111. Proceeding in the same ways, eliminated xs in third step, and eliminate x4 in fourth step

and so on.



Therefore we get new the system of equation as

A X +a,X, +A3X50 e+ 8, X, = bl
D, X, + 05X+ + 0, X =Dy

2n“*n
CoaXg +ovvrnnt cs.nxn = l:.xs” (4
d. . X = bm‘m‘l.)'
To determine the value of unknown
Hence the value of x1 X2............. Xn are given by the system of equations (4) by back

substitution.

Check your Progress

1. What do you mean by Linear system of equation?

2. Explain the homogeneous and non-homogeneous system.

Examples

Example.1. Solve the following system of equations using Gauss’s elimination method:
2X+3y—2=5,4Xx+4y—-32=3, 2x—-3y+2z2=2

Solution: The give system of equations are
2Xx+3y—2=5 (1)
4x+4y—-3z=3 ..(2)

2x—3y+2z=2 ...(3)



First eliminating x from the equations (2) and (3), by subtracting 2 and 1 times of equation (1)

respectively, we get

2X+3y—z=5 (4
2y+z1=171 ...(5)
6y—-3z=3 ...(6)

Again eliminating y from the equation (6) with the help of equation (5). Equation (5) is subtracted

after multiplies by 3 from the equation (6), we get

2X+3y—2=5 ~..(7)
2y+z1=1 ...(8)
—-6z=-18 or z=3 ...(9)

Put the value of z into equation (8), we get
y=2

Now put the values of y and z into equation (7), we get
x=1

Hence the solutions of the given system of equations are

Example.2. Solve the following system of equations using Gauss’s elimination method:
X +X,+2% =4, 3X +X,-3%=-4, 2X —3X,—5%, =-5.

Solution: The give system of equations are



X, +X,+2%X, =4

(D
3% +X, —3%X, =4 ..(2)
2% —3X, —=5X; =5 ...(3)

First eliminating x. from the equations (2) and (3), by subtracting 3 and 2 times of equation (1)

respectively, we get

X +X,+2%X, =4 ...(4)
2X, +9X, =16 ...(5)
oX, +9x; =13 ...(6)

Again eliminating x2 from the equation (6) with the help of equation (5). Divided the equation

(5) by 2 and then this equation is subtracted after multiplies by 5 from equation (6), we get

X +X,+2%X;, =4 ~..(7)
x2+%x3:8 ...(8)
—2—27x3 =-27 or X; =2 ...(9)

Put the value of x3 into equation (8), we get

X, =8—§x2:—1

Now put the values of x2 and xz into equation (7), we get
X =4+1-4=1

Hence the solutions of the given system of equations are



X =1 Xx,=-1 X, =2.

Example.3. Solve the following simultaneous linear equations:
2X + 4%, + %, =3, 3X +2X, —2X,=—2, X, — X, +X; =6.
using Gauss’s elimination method.

Solution: The give system of equations can be written in the following order:

X =X, +%X =06 ~..(D)
2% +4X, + X, =3 ..(2)
3X, 42X, — 2%, =2 ...(3)

First eliminating x1 from equations (2) and (3) by subtracting 2 and 3 times of equation (1)

respectively, we get

X, =X, + %X, =6 (4
6X, —X; =-9 ...(5)
5X, —5%, =-20 ...(6)

Again eliminating x> from equation (6) with the help of equation (5). Divided equation (5) by 6
and then this equation is subtracted after multiplies by 5 from equation (6), we get.

X, =X, +%X; =6 ..(7)

X; =3 ...(9)



Put the value of x3 into equation (8), we get

X, =—96+3=_1

Now put the values of x2 and x3 into equation (7), we get

X =6-1+3=2
Hence the solutions of the given system of equations are

X =2, X,=-1 X =3.

Example.4. Solve the following system of simultaneous linear equations:

6x+3y+22=6, 6Xx+4y+3z=0, 20x+15y+12z=0.

by Gauss’s elimination method.

Solution: The give system of equations are

6Xx+3y+2z=06 (D)
6x+4y+3z=0 ...(2)
20x+15y+12z=0 ...(3)

First, divide the equation (1) by 6, we get
1 1
X+—y+—-z=1 ...(4
2Vt3 (4)

6x+4y+3z=0 ...(5)

20x+15y+12z=0 ...(6)



Now eliminating x from (5) and (6) equations by subtracting 6 and 20 times of equation (1)

respectively, we get

1 1
X+—y+=-2z=1 (7
LA (7)
y+z=-6 ...(8)
5y+%z:—20 ...(9)

Now eliminating y from equation (9) by subtracting 5 times of equation (8), we get

1 1
X+—y+-z=1 ...(10
2V+3 (10)
y+z=-6 ...(11)
1
§z=10 or z=30 ...(12)

Substitute the values of z into equation (11), we get
y=-6-30=-36

And again substitute the values of y and z into equation (10), we get

1 1
X=1-—(-36)—-=(80
2( ) 3( )
or Xx=9
Hence the solutions of the given system of equations are

Xx=9, y=-36, z=30.



6.5 Gauss Seidel Method

The Gauss-Seidel method is an iterative numerical technique used to solve a system of linear
equations. It is named after the mathematicians Carl Friedrich Gauss and Philipp Ludwig von

Seidel.
This method is particularly useful for solving large systems of linear equations efficiently.

Consider a system of n equation in n variables in which aji # 0

2n"*n
Ay Xy + 85Xy o+ 85, X, =05 ¢ (1)
A% +a,X +....+a,X, =b |
The above system of equation can be written as
1
X, =—[b, —a,X, =83 X5 a, X, |
&
1
X, = —[b, =8, % — 8, Xguueeiiinnn, a,, X, |
a22
1 L ...(2)
X, :a—[b3—a31x1—a32x2 .................. ag, X, |
1
Xy == b, =8, X — 8, Xy A n 1y 1 |
3
First we put the first approximations x®, x{", ........... , x® in the right hand side of first equation

of (2), we get

1
K0 = L[, 8~ a,x" ]

1



Now we put X, X, xP, ..., x" in the right hand side of second equation of (2), so we

get
X2 = L [bz —a, X —a, XY a2nxr(f)]
a22

Now again we put x?, x?, x%,........... , X" in the right hand side of third equation of (2), so we
get.

x? = [b —a, X? —a,X? . a, x®
Proceeding in the same way we put x?,x?, x{?,............ , X% in the last equation of (2), so we
get

(2) _ 1 (2) (2) (2)

X, = _I:bn AT T A a'n(n l)X :|

nn

Here the first stage of iteration is completed.

The whole process is repeated untill the values of x1, Xo, ............. , Xn are obtained upto the
desired accuracy level. Gauss-Seidel method is also known as a method of successive

displacement.

Examples

Example.5. Solve the following system of equations by Gauss-Seidel iteration method:
83x+11y—-4z=95, 7x+52y+132=104, 3x+8y+29z="71.
Solution. The given system of equations are

83x+11y—-4z=95 (D)



7x+52y +13z =104 (2

3x+8y+29z2="71 ...(3)

The above given equation can be written as in the iteration form:

1
X=—(95-11y +4z ...(4
83( y+4z) 4)
y= i (104 - 7x-13z2) (5)
=
z—i(71—3x—8y) (6)
29

Here first we taking the initial solution X® =0, y® =0,z® = 0and put these values in

the equation (4), we get

1
x? = = (95-11y® — 4z
83( y )

:i(95—ll><0+4><0)
83

%
83

=114

Now put X® =1.14,y® =0,z® = 0, in the equation (5), we get

y@ = L (104 —7x? —13z®
52

L (104-7x1.14-13%0)
52



~ 96.02

52

=185

Now put x? =1.14,y® =1.85,z% =0 in the equation (6), we get

1
z® = —(71-3x? —8y®
29( y™)

_ L1 (71-3x1.14-8x1.85)
29

52.78
29
~1.82

Now put x? =1.14,y® =1.85,7” =1.82 in the equation (4), we get

1
x® == (95-11y® +4z?
53! y )

= 8_13 (95-11x1.85+4x1.82)

81.93
83
~0.99

Now put x® =0.99,y® =1.85,7” =1.82 in the equation (5), we get

y® = i(104— 7x® -13z¢
52

:5—12(104—7><O.99—13><1.82)



7341

52
=1.41

Now put x® =0.99,y® =1.41,z” =1.82 in the equation (6), we get

1
70 = — (71-3x® _gy®
29( y™)

= 1 (71-3x0.99-8x1.41)
29

_ 56.75
29
~1.95

Now put x® =0.99,y® =1.44,2® =1.95 in the equation (5), we get

1
x® = —(95-11y® +47®
83( y )

:8—2(95—1l><1.41+4><1.95)

8729
83
~1.05

Now put x =1.05,y® =1.41,z% =1.95 in the equation (5), we get

1
@ == (104 -7x® -13z
yr =gl )

:é(104—7x1.05—13><1.95)

713
52
=1.37



Now put X =1.05,y® =1.37,2® =1.95 in the equation (6), we get

1
7 = —(71-3x" —8y®
29( y™)

_ L (71-3x1.05-8x1.37)
29

_ 56.89
29
=1.96

Here x® =1.05, y® =1.37, z) =1.96 . These values are sufficiently close to the above x®, y®,

z® respectively. Hence the solutions of the given system of equations are

x=1.05y=137, z=1.96.

Example.6. Solve the following system of equation by Gauss-Seidel iteration method

10x+2y+2=9, 2x+20y-2z=-44, —-2x+3y+10z =22

Solution: The give system of equations are

10x+2y+2=9 (D)
2x+20y -2z =-44 ...(2)
—-2X+3y+10z2=22 ...(3)

The above given equation can be written as in the iteration form:

1
X_E(9—2y—z) ...(4)



1
=—(-44-2x+2z2 ...(5
y 20( ) (5)

1
2=—(22+2Xx-3 ...(6
10( y) (6)

Here first we taking the initial solution X® =0, y® =0,z® = 0and put these values in

the equation (4), we get

1
x@ — = (9_2y® _;®
10( y )

1
== (9-2x0-0
10( x0-0)
9

10
=0.9

Now put x? =0.9,y® =0,z% =0 in the equation (5), we get

y@ = 2—10 (44 -2x? +2:M)

=i(—44—2><0.9+2><0)
20

458
20
=-2.29

Now put x? =0.9, y® =-2.29,7" =0 in the equation (6), we get

1
22 = = (22+2x1%) —3y®?
0" y™)

:%(22+2x0.9—3><(—2-29))



1

= —((30.67
10 ((30-67)

=3.067

Now put x® =0.9, y?® =-2.29,7®* =3.067 in the equation (4), we get

1
X(3) — 9-2 (2) _ Z(2)
—10( y )

1
=—(9-2x(-2.29)-3.067
1002 (=2.29) )

10513

10
=1.051

Now put x® =1.051, y® =-2.29, 7? =3.067 in the equation (5), we get

y® = % (—44-2x9 +279)

_ 2io(_44—2><1.051+2x3.067)

1

= —(-39.968
20" )

=-1.99

Now put x® =1.051, y® =-1.99, z¥ =3.067 in the equation (6), we get
2® = i(22 +2x® —3y®)
10

:%(22+2x1.051—3><(—1.99))

1

=—(30.078
10 )

=3.007



Now Put x® =1.051, y® =-1.99, 2 =3.007 in the equation (4), we get

1
X(4) — 9-2 3) _2(3)
—10( y )

1
= —(9-2x(-~1.99)-3.007
100~ 2x(-1.99) )

9.973
10
=0.997

Now Put X =0.997,y® =-1.99, z® =3.007 in the equation (5), we get
y@ :i(—44—2x‘4’ +229)
20

_ 2io(_44—2><o.997+2><3.007)

1

=-—(39.98
50 (3998)

=-1.99

Now Put x“ =0.997, y® =-1.99, z® =3.007 in the equation (6), we get

1
z® == (22+2x-3
10" y)

:%(22+2x0.997—3><(—1-99))

1

= —(29.964
10 )

=2.99

Here x =0.997,y® =-1.99, 2 = 2.99 . These values are sufficiently close to the above x®,

y®, 2 respectively. Hence the solutions of the given system of equations are

Xx=0997~1y=-199~-2,7=2.99=3.



6.6 Summary

Simultaneous linear equations provide a powerful and versatile mathematical framework for
modeling, analyzing, and solving a wide range of real-world problems in diverse fields. Their
importance lies in their applicability to understanding and optimizing complex systems and
phenomena. Gaussian Elimination is a method in which the unknowns from the system of
equations are eliminated successively such that system of equation is reduced to an upper
triangular system from which the unknowns are determined by back substitution. Gauss-Seidel
method is an iterative numerical technique used to solve a system of linear equations. This
method is particularly useful for solving large systems of linear equations efficiently.

6.7 Terminal Questions

Q.1 Write the procedure for solving simultaneous linear equations by Gauss’s elimination

method.

Q.2. Explain the Gauss’ Seidel Method.

Q.3. Solve the following system of equation by Gauss elimination method:
2Xx+y+z2=10, 3x+2y+3z2=18, x+4y+9z=16

Q.4. Using Gauss elimination method to solve the following simultaneous equations:
X, +X, + X3 =10, 2X, + X, +2X; =17, 3X; +2X, + X, =17

Q.5. Solve the following system of equation by Gauss Seidel method:
27X+6y—2=85, 6Xx+15y+22=72, x+y+54z2=110

Q.6. Using Gauss Seidel method to solve the following simultaneous equations:



20x+y—-2z=17, 3x+20y—z=-18, 2x—-3y+20z =25
Q.7. Solve the following system of equations by Gauss-Seidel iteration method:

2X+4y+2=3, 3X+2y-22=-2, X—-y+7=06

5. Xx=243,y=357,2=1.92
6. x=1Ly=-1,z=1.

7.% =2,% =1, %X =3.
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7.1 Introduction

Numerical methods play a crucial role in various applications, particularly in determining finite
differences, employing finite element techniques, and modeling equations and differential
equations. Matrix algorithms, in particular, have garnered significant attention for solving
engineering and industrial problems. Matrix computations serve as essential and versatile tools
in a wide range of engineering applications, including image processing, control theory, network
analysis, queuing theory, telecommunication, machine learning, data mining, data science,

computational finance, and bioinformatics.

In the realm of matrix calculations, methods such as LU factorization, Eigen decomposition, and
Crout’s method are commonly employed for solving linear systems of equations and finding
eigenvalues. Choleski’s method, on the other hand, is utilized for determining the inverse of a
matrix. It is worth noting that Gauss elimination remains a fundamental technique for solving
systems of linear equations. LU decomposition, or LU factorization, is a numerical method used
to factorize a square matrix into the product of a lower triangular matrix (L) and an upper
triangular matrix (U). This factorization is particularly useful for solving linear systems of

equations and finding the inverse of a matrix.

Crout's method is an iterative numerical technique used for solving systems of linear equations,
and it is often applied in the context of LU decomposition. Crout's method is one of the variations
of LU decomposition, and its implementation involves solving a system of linear equations using
forward and backward substitutions. Like other LU decomposition methods, Crout's method is
valuable for efficiently solving systems of equations and finding inverses of matrices in

numerical computations.

Choleski's method is widely used in various fields, including numerical analysis, statistics, and
optimization, where symmetric positive definite matrices are prevalent. Its efficiency and
stability make it a preferred choice for solving systems of linear equations involving such

matrices.



7.2  Objectives

After reading this unit the learner should be able to understand about:

" the LU Decomposition method or Triangular method
" Procedure for Solving System of Equations by LU Decomposition Method
. Crout’s method

= Choleski’s method

7.3 LU Decomposition Method or Triangular Method

The LU decomposition is often employed to simplify the process of solving systems of linear
equations and to enhance computational efficiency. LU decomposition is widely used in various
numerical algorithms and applications, including solving linear systems, computing matrix
inverses, and finding determinants. It is particularly advantageous for systems with multiple

right-hand sides, as the LU decomposition can be reused for each system.

LU decomposition is a foundational concept in numerical linear algebra, contributing to the

development of efficient algorithms for solving matrix-related problems.

According to LU decomposition method, every square matrix A can be expressed in the form of
LU, where L is a lower triangular matrix and U is an upper triangular matrix, such that A = LU
and provided that all the principal minors of A are non-singular

e, la,,|#0,
B A,
a21 a22


https://en.wikipedia.org/wiki/LU_decomposition

&1 & Y43

ay 8, %0, andsoon.
83 83 agg

7.4 Procedure for Solving System of Equations by LU Decomposition Method

The LU decomposition method is better than the Gaussian elimination method, and it's procedure
is similar to Gaussian elimination. However, LU decomposition works well only when the
coefficient matrix can be broken down into a product of lower and upper triangular matrices. Let

us consider the system of equations:
8y, X +a,X, + 83X = by
Q1% + 8y X, + 853X =D,
831X + 83X, + 833X =y

The above given system of equations can be written as in matrix form:

AX=8 . @
a:Ll a12 a13 Xl bl
Where A=|a,; 8, a8x|, X=[X| B=|b,
83 83 Agg X3 b,

Suppose A=LU ...(2)



0 U, Up  Ug
O and U=| 0 U, Uy
1 0 0 |y

1 0
Where L= 1

(8, a, az| [1 0 Offu; u, Uy
& 8y @y =l 1 0] 0 uy uy
| 831 83 Ay Iy I 10 0 gy
(&, a, a, Upy Upo U3
or Q1 8p Ay |=[luUy U, +uy |5Up5 +Upg
|8y 8y Ay | |yl gl +lUyy Lyl +lgUns +Ug,

Now comparing the above two matrices for determining the values of the elements of L and U,

so we have

(i) U =84, Up =235, Ujz=3d;.

HH a21 a21
ull all
a31 a3l
ull afl.l
- 8y —Up,
('V) l,,U;, +U,, =ay, - l,, = ¥
12

Uyy = 8y —lpylly, = ) — 22
= 22 = Ay — iy, =85 ——a,.

Ay



(V) |, U5 + Uy =8y — Ups = 8yg —l5yUyq

= Up=ay— A
23 7 723 a13'

Ay
1) Lyl + LU, = = | a, -2
(V') 31Upp 13Uy =ag, — 3= | Qp—
Uy, Ay
a
31
Az, — a, a,
— I, = :
ayq
Ay, — a,
A q

(V”) l51Uy5 + l35Ung +Ugy = 8 = Ugz = g3 — l3Up3 — l3Uns

— Ugz = Qg — lgyUy5 — 35U

Aay
a A3y alaiz a
= Ugz = 8gg — -85 — : (323 - Aalaj
Gt 9. _ @aﬂ Gl
22
&
Now put A= LU inthe equation (1), so we have
AX=B = LUX=B ..(3)
Y1
Assume UX =Y, where Y=|y, ....(4)

Y3



Now from the equations (3) and (4), we have

LY =B

;1 101V, b,
From the above expression, we get
=Dy

y, =b, —1,b,
Y3 =0y —lyb — 15, Y,

From the equations (4) and (6), we have

ux =Y

Uy, Uy Ug || X Y1
0 Uy Uypl|| X |=|Y,
0 0 uzu|l X Y3

From the above expression, we get

_ Yo —UysXg
Uy,

_ Y1~ UpXy —UsXg

Ugy

..(6)

(7)

(8



Hence LU decomposition can offer computational advantages over Gaussian elimination in
certain scenarios. Once the LU decomposition is computed, it can be reused for solving multiple
linear systems with different right-hand sides efficiently. This can result in significant time
savings, especially when dealing with systems of equations with the same coefficient matrix and

different constant vectors.

LU decomposition is particularly relevant and beneficial when the coefficient matrix can be
expressed as the product of lower and upper triangular matrices (i.e., A=LU) This condition is
met in many practical applications, and when applicable, LU decomposition becomes a powerful
tool for solving linear systems and related problems.

Examples

Example.1. Solve the following system of equations by LU decomposition method:
A%, +6X, +2X; =18, X +2X, +3X; =6, 3, + X, + 2X; =8.
Solution: Given that the system of equations are
4x, 46X, +2%; =18,
X, +2X, +3X; =6,
3% + X, + 2%, =8.

The given system of equations can be written as in matrix form:

AX =B (D)



4 6 2 X, 18
Where A=|1 2 3|, X=|X,|, B=|6
3 1 2 X3 8
Consider A=LU ...(2)
1 0 0 U, U, Up
Where L=|{l,, 1 0] and U=| 0 U, Uy
l,, 1, 1 0 0 uy

From equation (2), we have

(4 6 2] [1 0 Oluy U, Ugs
1 2 3|=|l, 1 0| 0 wu, U,
31 2| |1, 1, 10 0 u
6 2 Uy Upo U3
1 2 3=y Ly, +uy |)4Up5 + Uy
i 2] [ty gl #1555 lygUig +13Up5 + Ugg

For determining the values of elements of L and U, we comparing the above two matrices. So

we have

(i) u,=4, u,=6 u,=2

.. 1 1
) L.u,=1 — I, =—==.
( ) 21%11 21 ull 4
3 3
m) Il,u.=3 — l,, =—=—.
( ) 3111 31 ull 4



= U, =2-6Il,,=2-6 :%.

ol

(V) |, U5 + Uy =3 = Uys =3—1,,Uy4

1 5
= Up=3-—-(2)=-.
23 4() 5
(Vi) |31u12+|32u22 =1 - I32“22 :1_I31U12
1 3
l, =——|1->.6 = lp=-T.
32 1/2( 4 j %

(V”) l31Up5 + l5oUsg +Ugs =2 = Ugz = 2= l3Up5 — 35U

3 5
= U33=2—Z(2)—(—7)§

= Us; =18.

Thus the L and U are

1 0 0 4 6 2
L={1/4 1 0| and U=|0 1/2 5/2
3/14 -7 1 0O 0 18

Now putting A=LU in equation (1), we have



AX=B = LUX=B ..(3)

Consider

Y1
UX =Y, where Y=|y, ...(4)
Y3
Now the equations (3) and (4), we have
LY =B ..(5)

1 0 0y, [18
1/4 1 0l|y,|=|6
3/4 -7 1||vy,| |8

From the above expression, we obtain

y, =18

VT

1
Ny, =6 -(6)

3
ZY1_7Y2 + Y3 :8)
Solving above exprression (6), we get
y, =18, vy,=3/2, y,=5.

From the equations (4) and (6), we have

UX =Y (7)



4 6 2 | X Y,
0 1/2 512 % |=|Y,
0 0 18 || X Ys

From the above we get

4%, +6X, + 2%, =18]
1 5 3
— Xy +— Xy =— ...(8
277 27 2 ®)
18%; =5

Solving above expression (8), we obtain

x—§ x—g X >
118" "% 18" * 18’

7.5 Crout’s Method

Crout's method is an iterative numerical technique used for solving systems of linear equations,

and it is often applied in the context of LU decomposition. Named after the mathematician

Roland E. Crout, this method is a variation of LU decomposition that aims to factorize a square

matrix A into the product of a lower triangular matrix L and an upper triangular matrix U.

Crout’s method is similar to Gauss elimination method and LU decomposition method. Here we

explain the Court’s method by assuming three system of equation:
;X + 83X, +A3Xs =Dy

Ay X + 8y X, +8y3X; =D,



Qg% +Agy Xy + AgaXg =Dy

The above system of equation can be written as in matrix form:

aq
Where A=| a,,

a3 1

AX

a5
Ay,

a32

=B

a3

Ays |y
Agg

The augmented matrix [Af B] of equation (1) is

ET

A,

X

b,

[A:B]=|a, @&, ay; b,

A3

A3

Az3

b,

Thus the augmented derived matrix [A’f B'] is given as

For determining aij' and bi' from equations (2) and (3), we have

a:l.l, =,

r_ &g
aj_ T

©ay,

4 [ [ 4
a, a&, a; b |
! [ 14
Ay 8y b,
[ ! 4
agp a b |

4
dy; = Ay,
r_ g
Q3 =,
Qg

4
A3 = Ag;.

_ b
E e

)

(2

.(3)



’ /
b.’ :b2_a21b1
2 ;e
Ap

[ [ [ 14 !
Qg3 = Qg3 —dg) Q3 — Az Ays .

o' - B —ay b —a,b,
3 ’ -
A33

Hence the solution of the above system of equation is

Check your Progress

1. What do you mean by LU Decomposition method?

2. Explain the crout’s method.



Examples

Example.2. Apply Court’s method to solve
X —3X, +4%; =12, 5X, +4X, —3X; =2, 3%, + X, +2X%; =16.
Solution: Given that the system of equations are
X, —3X, +4X%; =12,
5% +4X, —3X; =2,
3% + X, +2X, =16.

The given system of equations can be written as in matrix form:

AX=B . @
1 -3 4 X, 12
Where A=|5 4 3|, X=|X,|, B=|2
3 1 2 X3 16

The augmented matrix [A/ B] is given as

a;, a, a3 b 1 3 4 12
a, &, a, b, |=|5 4 -3 2 (2)

A ap ay by [3 1 2 16

Thus the augmented derived matrix [A’ / B'] is given as



..3)

For determining aij' and bi' from equations (2) and (3), we have

! !/ !/
ayq :a11:1’ Ayy :a21:5’ As; :a31:3-

A, 3__
%2-—aﬂ 1 3
,_%24_4

A3 a, 1

;b 12

b =1 =""=12
a; 1

322' =38y — a21’a12'
=4-5(-3)
=19.

! !/ !
Az, =3az, —dg A,

=1-3(-3)
=10.

' '
a r_ a23 - a21 a13

a22



_—3-5(4)
19
23

_E'

b2’ — b2 _ azrllbll
a22
2-5(12)

19
58

o
[ ! 14 [ 14
Qg3 =83 — 83y 3 — g Ay

23
- 2—3(4)—10(—19j

_40
19
b;:z bs“aefty’_'aegtb,
a3

58
16— 3(12) —10(—19j

40/19

=5,

Hence the solution of the above system of equation is



_ !/ ! !
X =0 —a, X, —a; X

=12-(-3)(3)-4(5)
=1.

7.6 Choleski’s Method

Choleski's method, named after the mathematician André-Louis Cholesky, is an algorithm used
for the decomposition of a positive definite matrix into the product of a lower triangular matrix
L and its transpose LT. This decomposition is a specialized form of the more general LU
decomposition, tailored for symmetric and positive definite matrices. The Choleski
decomposition is particularly useful for solving linear systems, calculating determinants, and

generating samples from multivariate normal distributions.

Choleski’s method is used to determine the inverse of a matrix provided that matrix is symmetric

ie., A, = A
Let us assume A = I— L'

d; dp 843 L, 0 0k 1y gy

dy; Az dgg l, by 1] 0 0 g

Where L is a lower triangular matrix and L' is transpose of L (an upper triangular matrix).

The inverse of A'is



A—l :(L Lr)—l :( Lr)—l L—l :( L—l)' L—l o

To determine the inverse of A first we comparing both sides of equation (1) to finding the

values of I, g, losy . Putting these value of l;1, 1,1, 1o, eneeen. in L.

Now to find L we have

_1_ .
'=X = LX=| e

l, 0 OYx, 0 O 1 00
L, l,, O|x, X, 01]=/0 10
|31 |32 |33 X31 X32 X33 0 01

Solving the above system we get the matrix L_1 and using equation (2), we get the inverse of

the given matrix A.

Examples

Example.3. Determine the inverse of the following matrix using Choleski’s method:

>

Il
N
w N R
o w Kk

Solution: Given that the matrix A = is symmetric so we use Choleski’s method

B R e
w N R
o W Kk

to find inverse of the matrix.



!
Let us assume A = |— |—

11 1 L, O Ol L, Iy
or 1 2 3|=l,, I, 00 L, I
1 3 6 l,, |y, 15/ O |,

2,1 2_ _
bilgy +lpl, =3 = =2

2 2 2 _ —

So we get the matrix L is

1 00
L=1 1 O
1 2 1

Now to find L™ we have

L'=X = LX=I ..(2)

(D)



1 0 Oj|x, O O 1 00
1 1 0fXy X, 0|=/0 10
1 2 1 X3y X5 Xgg 0 O

|

Solving the above system we get

Therefore the matrix L is

1 0 O
Lt=-1 1 0
1 -2 1

The transpose of matrix L is

1 -1 1
(L—l)'zo 1 -2
00 1



The inverse of A is
At=(LLY = (L)L = (L) L

1 -1 11 0 O
=0 1 -2|-1 1 O
o 0 1)1 21

3 3 1
=-3 5 2
1 -2 1

7.7 Summary

The superiority of the LU decomposition method over the Gaussian elimination method is
evident, and there exists a resemblance between LU decomposition and Gaussian elimination.
The effectiveness of the LU decomposition method is contingent upon the coefficient matrix
being representable as the product of lower and upper triangular matrices. LU decomposition
offers advantages in terms of efficiency and reusability over Gaussian elimination, especially
when dealing with multiple linear systems. Its relevance is contingent upon the factorization
conditions A=LU which is satisfied in many real-world scenarios. Crout's method is valuable for
efficiently solving systems of equations and finding inverses of matrices in numerical computations. The
Choleski decomposition is particularly useful for solving linear systems, calculating
determinants, and generating samples from multivariate normal distributions.Choleski's method
is computationally efficient, requiring only half as many calculations as the LU decomposition

since it exploits the symmetry of positive definite matrices.

7.8 Terminal Questions

Q.1. What do you mean by LU Decomposition method.



Q.2. Explain Choleski’ method.

Q.3. Solve the following system of equations using LU decomposition method:
2X + X, + X3 =2, X, +3X, +2X3 =2, 3X + X, +2X; = 2.
Q.4. Solve the following system of equations using LU decomposition method:
X, +2X, +3X; =14, 2X +5X, +2X; =18, 3%, + X, +5X%; = 20.
Q.5. Apply Crout’s method to solve
X, +2X, +3X; =6, 2% +3X, + X3 =9, 3X + X, +2X; =8.
Q.6. Apply Crout’s method to solve

Q.7. Applying Choleski’s method to find the inverse of the matrix

1
A=|2
3

g1 00 N
o 01 W

Q.8. Applying Choleski’s method to find the inverse of the matrix

1 2 6
A=12 5 15|
6 15 46

ANSWERS

Q3. X, =1 x,=1 Xx3=-L



Q6. X =-4, X, =3, X3=2

-23/13 -3/13 14/13
Q7.| -3/13 3/13 -1/13
14/13 -1/13 -4/13

5 -2 0
Q8. |-2 10 -3
0 -3 1
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Block-4

Solving Algebraic and Transcendental Equations

Many challenges in science and engineering can be expressed through equations, making the
solution of equations a pivotal aspect in scientific and engineering domains. The significance of
solving equations extends to various mathematical problems as well. In earlier units, we
extensively explored the concept of numerical methods and the associated operators. In this
block, our focus shifts to the task of determining solutions for algebraic and transcendental
equations, commonly referred to as finding the roots of an equation. There are so many numerical
methods for solving algebraic and transcendental equations. Some important methods are
following: Bisection Method; Newton-Raphson Method; Regula Falsi Method and Secant
Method.

While mathematical methods readily handle linear, quadratic, cubic, and biquadratic equations,
transcendental equations and those of higher degrees pose a more intricate challenge. The
conventional mathematical approaches may not be as effective for these types of equations.
Consequently, numerical methods such as the Bisection method, Regula falsi method, Secant
method, and Newton Raphson’s method come into play to address and solve transcendental
equations and equations of higher degrees.

Numerical methods provide effective techniques for solving algebraic and transcendental
equations when analytical solutions are challenging or impossible to obtain. Here, we'll explore
some commonly used numerical methods for solving such equations: Bisection method, Regula
Falsi method, Secant method and Newton-Raphson method. These numerical methods are
essential for solving algebraic and transcendental equations encountered in various scientific,
engineering, and mathematical applications. The choice of method depends on the specific

characteristics of the equation and the desired level of precision.

In the eighth unit, we shall discussed about the Bisection Method and Newton Raphson method

and in the ninth unit we deal with Regula falsi method and secant method.



UNIT-8: Numerical Method for solving Algebraic and Transcendental

Equations-I
Structure
8.1 Introduction
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8.4 Algebraic Equations
8.5 Transcendental Equations
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8.7 Bisection Method

8.8 Procedure to find the real root by Bisection Method

8.9 Newton Raphson Method

8.10  Procedure to find the real root by Newton-Raphson Method
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8.1 Introduction

Numerical methods offer powerful approaches to solve algebraic and transcendental equations,
especially in cases where obtaining analytical solutions proves difficult or impractical. These
techniques play a crucial role in addressing a wide range of scientific, engineering, and
mathematical problems where precise solutions are essential but challenging to derive through
traditional analytical methods. The Bisection Method is a simple yet effective numerical
technique for finding the root of a real-valued function within a specified interval. This method
is particularly useful when dealing with continuous functions where the root exists and changes

sign over the chosen interval.

The Newton-Raphson Method is an iterative numerical technique for finding the roots of a real-
valued function. Named after Sir Isaac Newton and Joseph Raphson, this method is particularly
efficient for obtaining accurate approximations of roots, especially when the initial guess is close

to the actual root.

8.2  Objectives

After reading this unit the learner should be able to understand about:

. The Polynomial
. Algebraic and Transcendental Equations
. Bisection method and procedure to find the real root by Bisection method

. Newton method and procedure to find the real root by Newton method



8.3 Polynomial

An expression of the form
f(X)=a, +aX+a,X* + 83X + e, +a,X

where all a’s are constant provided that a,=0 and n is a positive integer, known as a polynomial

in x of degree n.

8.4  Algebraic Equations

An expression of the form
f(X)=a,x"+ax"" +a,x"? +....+a _,x+a, =0, a 20
where all a,,a,,....... ,a, are constants and n is a positive integer, known as an algebraic
equation of degree n, in terms of x.
Here 4x°+3x°+9x* +x*+3x—6=0, x> —x—1=0are the examples of algebraic

equation.

8.5 Transcendental Equations

If f(x) is an expression involving some functions such as trigonometric, exponential, logarithmic

etc., then the equation
fx)=0 c (D)

is known as transcendental equation.



N

Here cosx+4sinx+1=0; x°log,, X—X+1=0; xe¥*=sinx all are

transcendental equations.

8.6  Root of the Equation

The value of x which satisfying the equation f(x) = 0 is known as the root of the equation. The
roots of the linear, quadratic, cubic, or biquadratic equations are obtained by available methods,
but for transcendental equation or higher degree equation cannot solved by these methods easily.
So those types of equation can be solved by numerical methods such as Bisection, Secant,

Newton-Raphson, Regula-Falsi method etc.

Note: Every algebraic equation of degree n has only n roots real as well as imaginary.

8.7 Bisection Method

The Bisection Method is a fundamental tool in numerical analysis and serves as the basis for
more advanced root-finding algorithms. Bisection method is used to find the root of an equation

f(x) = 0 to the desired degree of accuracy.

According to this method to find root of an equation first we check the given function f(x) is
continuous in a closed interval [a, b] or not. If f(x) is not continuous in a closed interval [a, b]
then Bisection method is failed. Also if f(x) is continuous in a closed interval [a, b] and does not

cut the x-axis, then f(x) does not have a real root.

8.8  Procedure to find the real root by Bisection Method

The procedure to determine the real root by Bisection Method are as follows:

Consider the given equation is



f(x) = 0. (D)

Step-1: First determine a closed interval [a, b] in which the function f(x) is continuous and the
values f(a) and f(b) are opposite sign.

Step-2: If f(a) < 0 and f(b) > 0, then there exist one real root of the given equation (1) between

a<x<bhb.

Step-3: For the first approximation to get the root by bisecting the interval (a, b); we have

Step-4: Suppose if f(x1) = 0, then X1 is a required root of the equation (1) i.e., f(x) = 0.

Otherwise the root will be either in the interval (a, x1) or in the interval (x1, b) according as f(x)

is positive or negative.

Step-5: Now bisect the interval as before and continue this process until we get the root of the
given equation f(x) = 0 is found to a desired degree of accuracy.

Case-1: If f(x1) > 0, so that the root lies between a and x1; then for second approximation we

bisect the interval (a, x1);

a—+ X
5

e, X, =

Case-2: If f(x2) <0, so that the root lies between x1 and xz; then for third approximation we bisect

. . + X
the interval (x1, X2); i.e., X :X1 2,

3 2

Step-6: Continue this process, until we get the root of the given equation (1) to the desired

accuracy.



Check your Progress

1. What do you mean by algebraic equation?
2. What is transcendental equations.

3. How to find the root of equation by Bisection method.

Examples

Example.1. Determine the real root of the equation x*>- 4x+1 = 0 by Bisection method.
Sol. It is given that f(x) = x>-4x+1 = 0.

Here  f(1) = (1)*4+1=-2<0

and f(2)=(2)*4(2+1=1>0.

Therefore f(1) <0 and f(2) > 0 so at least one root of the given equation lies between 1 and 2.

Using Bisection method, the first approximation is

Now we see that
f(1.5) = (1.5)%-4(1.5)+1 =-1.625< 0
Therefore f(1.5) <0 and f(2) > 0 so the root lies between 1.5 and 2.

For the second approximation is

X, = 1'5; 2_175,




Now we see that

f(1.75) = (1.75)3-4(1.75)+1= —0.640625 < 0
Therefore the root lies between 1.75 and 2.
For the third approximation is

X, = 1'752+ 2 _1875.

Now we see that
f(1.875) = (1.875)°-4(1.875)+1 = 0.091796875 > 0
Therefore the root lies between 1.75 and 1.875.

For the fourth approximation is

LTS g

Now we see that
f(1.8125) = (1.8125)°-4(1.8125)+1= —0.295654296875 < 0
Therefore the root lies between 1.8125 and 1.875.

For the fifth approximation is

X, = 1.81252+1.875 _1.84375,

Now we see that
f(1.84375) = (1.84375)°-4(1.84375)+1= —0.107330322265 < 0

Therefore the root lies between 1.84375 and 1.875.



For the sixth approximation is

Xg = 1'843752+1'875 =1.859375.

Now we see that

f(1.859375) = (1.859375)%-4(1.859375)+1= —0.009128570556 < 0
Therefore the root lies between 1.859375 and 1.875.
For the seventh approximation is

. _1.850375+1.875

. > =1.8671875.

Now we see that
f(1.8671875) = (1.8671875)%-4(1.8671875)+1= 0.0409922599792 > 0
Therefore the root lies between 1.859375 and 1.8671875.

For the eight approximation is

X, = 1.859375 +21.8671875 _1.86328125.
Now we see that from above iterations,
X1=1.5, X2=1.75, x3=1.875,
X4=1.8125, x5=1.84375, X6=1.859375,
x7=1.8671875, Xg=1.86328125.

The root of the given equation f(x) = x*~4x+1= 0 up-to two decimal places is 1.86, which is of

desired accuracy.



Example.2. Using Bisection method to determine the real root of the equation

x® -5x+1=0.

Solution: It is given that f (X)=x>-5x+1=0.,
Here f(2)=2"-5x2+1=-1

and f(3)=3-5x3+1=13

Therefore f(2) <0 and f(3) > 0 so at least one root of the given equation lies between 2 and 3.

Using Bisection method, the first approximation is

Now we see that
f(2.5) = (2.5)°-5(2.5)+1 =4.125> 0
Therefore f(2) <0 and f(2.5) > 0 so the root lies between 2 and 2.5.

For the second approximation is

X, = 2+22'5 =2.25.

Now we see that
f(2.25) = (2.25)%-5(2.25)+1= 1.140625 > 0
Therefore the root lies between 2 and 2.25.

For the third approximation is



X, =2 +22'25 = 2.125.

Now we see that
f(2.125) = (2.125)%-5(2.125)+1= -0.029296875 < 0
Therefore the root lies between 2.125 and 2.25.

For the fourth approximation is

=222 2 1875

Now we see that
f(2.1875) = (2.1875)*-5(2.1875)+1= 0.530029296875 > 0
Therefore the root lies between 2.125 and 2.1875.

For the fifth approximation is

= 2125 +2 21875 _, 1coos

Now we see that
f(2.15625) = (2.15625)3-5(2.15625)+1= 0.2440490722656 > 0
Therefore the root lies between 2.125 and 2.15625.

For the sixth approximation is

X, = 2.125 +22.15625 _ 2140625,

Now we see that



f(2.140625) = (2.140625)3-5(2.140625)+1= 0.105808280566 > 0

Therefore the root lies between 2.125 and 2.140625.
For the seventh approximation is

= 2125+ ;.140625 91308

Now we see that

f(2.1328) = (2.1328)3-5(2.1328)+1= 0.037757079552 > 0
Therefore the root lies between 2.125 and 2.1328.
For the eight approximation is

2.125+2.1328

=2.1289.

Now we see that

f(2.1289) = (2.1289)3-5(2.1289)+1= 0.004132960569 > 0
Therefore the root lies between 2.125 and 2.1289.
For the ninth approximation is

| 2.125+2.1298
B 2

=2.12695.

Now we see that from above iterations,

X1=2.5, X2=2.25, X3=2.125,

Xs=2.15625, X6=2.140625, x7=2.1328,

X9=2.12695.

X4=2.1875,

Xs=2.1289,



The root of the given equation f(x) = xX>-5x+1= 0 up-to two decimal places is 2.12, which is of

desired accuracy.

8.9 Newton-Raphson Method

The Newton-Raphson Method is widely used in various scientific and engineering applications
for solving nonlinear equations and finding roots due to its speed of convergence when applicable
conditions are met. The Newton-Raphson Method is an iterative numerical technique designed
for approximating the roots of a real-valued function. This method, named after Sir Isaac Newton
and Joseph Raphson, is particularly effective when seeking accurate solutions to Algebraic and
Trancedental equations.

Newton-Raphson Method is known for its rapid convergence, especially when the initial guess
is close to the root and the function behaves well. However, it may exhibit convergence issues if
the initial guess is far from the root or if the function possesses certain characteristics. It is a
powerful tool widely utilized in scientific and engineering applications for solving nonlinear

equations.

8.10 Procedure to find a real root by Newton-Raphson Method

Let us consider x = xo be an approximate value of the roots of the equation f(x) = 0 which may
be algebraic or transcendental and let xo + h be the correct vale of the corresponding root where

h be a real number sufficiently small. Then we have

f(x,+h)=0 (D)
The above equation (1) expanding by Taylor’s theorem, we have
f(x +h)—f(x)+hf'(x)+h2f”(x)+h3f”’(x)+ =0
0 —_ 0 i 0 E 0 E 0] T reres —_—

Since h is very small, so neglecting the second and higher order terms, so we get

f(x,)+h f'(x,)=0



f (%) :
h=- f’(x(;) also f'(x,)#0 2)

Thus from equations (1) and (2), the first approximation of the root is given by

f (%)

X, =X, +h=x,— F(x)
0

Similarly, we taking xi as initial approximation, to be the better approximation of the root xz is

obtained as

_y 1) :
X, =X, (%)’ f'(x,) =0

Proceeding in the same way, we get the better approximation of the root is given by

oy o)
f(x,)

X

n=0,1 2, 3....

This is known as the Newton-Raphson formula which is very important for solving the algebraic

equations and transcendental equations.

Examples

Example.3. Determine the real root of the equation X°—4x+2=0 using Newton-

Raphson’s method.
Solution: The given equation is x> —4x+2=0.
Consider f(x)=x"-4x+2=0

and f'(x)=2x-4



Now we have
f(3)=32-4x3+2=-1.

and f(4)=4°-4x4+2=2.

Therefore, one real root of the given equation is lies between 3 and 4.

Using Newton-Raphson’s formula, we have

Xoir =%, _ﬁ
(%)
L X2 —4x +2
" 2x, -4
L 2XE—AX, - X 4K, -2
2x,—4
X2 -2
Xoy = wheren=0,1,2,3, .....
2x, —4
First we take Xo=3

Putting n = 0 in the equation (1), so we get the first approximation

X =2
to2x, -4

()



’
2

=3.5

Again, putting n =1 in the equation (1), so we get second approximation

=3.41667

Putting n =2 in the equation (1), so we get the third approximation

« = X —2
° 2x,—4

_ (3.41667)2 -2
2% (3.41667)—4

_ 11.67363—2
6.83334—4

 9.67363
2.83334

=3.41421

Putting n = 3 in the equation (1), so we get the fourth approximation



« - XS —2
to2x,—4

 (3.41421)* -2
2x3.41421—4

_ 11.65683—2
6.82842—4

_9.65683
~2.82842

=3.41421

Here we see that xs = x4. Hence the root of the given equation X* —4x+2=0 is 3.41421.

Example.4. Using Newton-Raphson’s method to determine the real root of the equation

x* —5x+1=0.
Solution: The given equation is x* —5x+1=0.
Consider f(x)=x*-5x+1=0
and f'(x)=3x*-5
Now we have
f(2)=2°-5x2+1=-1
and f(3)=3-5x3+1=13
Therefore, one real root of the given equation is lies between 2 and 3.

Using Newton-Raphson’s formula, we have



Xnsa = X, — ,
(%)
. X% —5x +1
" 3 -5
3% —5x, — X +5x, +1
3x*-5
2x3 +1
Ml = wheren=0,1,2,3, ....
3X° —5
First we take Xo=2

Putting n = 0 in the equation (1), so we get the first approximation

_ 2% +1
3xZ -5

22 +1
-~ 3(2)%-5

=2.42857.
Again, putting n =1 in the equation (1), so we get second approximation

2% +1
3x. -5

2

_ 2(2.42857)° +1
3(2.42857)* -5

()



29.64718
~ 12.69386

= 2.33555

Putting n =2 in the equation (1), so we get the third approximation

2% +1
° 3x2-5

_ 2(2.33555)° +1
3(2.33555)2 — 5

_ 26.47989
~ 11.36438

= 2.33008

Putting n = 3 in the equation (1), so we get the fourth approximation

_2x5+1
“ 3x2-5

_2(2.33008)° +1
3(2.33008)° -5

_ 26.30128
11.28782

= 2.33006

Here we see that Xz = x4. Hence the root of the given equation x° —5x+1=0is 2.3300.

Example.5. Determine the cube root of 10 correct to six decimal places with the help of

Newton-Raphson’s method.



Solution: The given equation is X*-10=0.

Consider f(x)=x*-10=0

and f’(x) =3x°
Now we have
f(1)=1°-10=-9
f(2)=2°-10=-2
and f(3)=3*-10=17

Therefore, one real root of the given equation is lies between 2 and 3.

Using Newton-Raphson’s formula, we have

X =% — f (Xn)
f'(x,)

2x3+10
n+1 = 3X2

n

wheren=0,1,2,3....

First we take Xo=2

Putting n = 0 in the equation (1), so we get the first approximation

(1)



_2x3+10
3x;

_ 2(2)*+10
 3(2)?

_26
12

=2.16667

Again, putting n =1 in the equation (1), so we get the second approximation

2%’ +10

_ 2(2.16667)° +10
3% (2.16667)?

_30.342686
 14.083377

=2.154504

Putting n =2 in the equation (1), so we get the third approximation

2x5 +10
5T
2

_2.(2.154504)° +10
3.(2.154504)*

~30.001930
13.925662

= 2.154435



Putting n = 3 in the equation (1), so we get the fourth approximation

2x; +10
X —

4 2
3X;

_2(2.154435)° +10
3(2.154435)?

_30.000009
©13.924771

=2.154435
Here we see that xs = x4. Hence the root of the given equation x° —10=0 is 2.154435,
Example.6. Determine the real root of tan x = 4x by using Newton-Raphson’s method.
Solution. The given equation is tanx—4x=0.

Consider f(x)=tanx—4x=0

and f'(x) =sec’ x—4
Now we have

f(0)=0
and f (1) =-3.982

Therefore, one real root of the given equation is 0.
Using Newton-Raphson’s formula, we have

ne1 = Xn f (Xn)
f'(x,)

X




tan x, —4x,
sec’ x, —4

n

2
_ X, 5eC’ X, —tanx,
sec’ x, —4

, wheren=0,1,2,3, .... ..(D)

First we take Xo =2

Putting n = 0 in the equation (1), so we get the first approximation

X, Sec’ X, —tan x,
sec” x, — 4

Hence the root of the given equation tan x—4x=0 is 0.

Example.7. Using Newton-Raphson’s method to determine the root of e* =3x upto correct

to four decimal places.
Solution: The given equation is * = 3x.

Consider f(x)=e"-3x=0

and f'(x)=e"-3
Now we have

f(0)=1
and f(1)=-0.28

Therefore, one real root of the given equation is lies between 0 and 1.



Using Newton-Raphson’s formula, we have

na = Xp — f(xn)
f'(x,)

X

Xn Xﬂ
_ X,e" —3x, —e™ +3x,
e -3

xn+l:$“_31), wheren=0,1,2,3 .....
eh —

First we take Xo=0
Putting n = 0 in the equation (1), so we get the first approximation

_ e (Xo _1)
e -3

=05
Again, putting n =1 in the equation (1), so we get the second approximation

D )
2 en-3

e”°(0.5-1)
= e0.5 _ 3

()



~ -0.82436
~1.35127

=0.61006

Putting n =2 in the equation (1), so we get the third approximation

e (x, —1)
= eX22—3

~ eP19%(0,61006 —1)

.61
061006 _ 3

_—0.71770
 _1.15945

=0.61900

Putting n =3 in the equation (1), so we get the fourth approximation

_ eP%1%(0,61900 1)

.61
061900 _ 3

_—0.71770
 -1.14293

=0.61905
Here we see that x3 = x4. Hence the root of the given equation ” = 3x is 0.6190.

Example.8. Determine the real root of the equation 3x = cosx +1 by Newton-Raphson’s

method.

Solution: The given equation is 3x = cosx +1.



Consider f(x)=3x—cosx-1=0

and f'(x) =3+sinx
Now we have
f(0)=-2
and f (1) =3-cos(1)~1=2-0.5403=1.4597

Therefore, one real root of the given equation is lies between 0 and 1.

Using Newton-Raphson’s formula, we have

net = X — f(Xn)
f'(x,)

3%, —cosx, —1
3+sinx,

n

_ 3%, + X, SIn X, —3X, +CoS X, +1
3+sinx,

X, sinx, +cosx, +1
3+sinx,

(D)

First we take Xo=0
Putting n = 0 in the equation (1), so we get the first approximation

%, Sin X, +Cos X, +1
3+sinx,

_ 0sin0+cos0+1
3+sin0




=0.6666

Putting n = 1 in the equation (1), so we get the second approximation

« — X, Sin X, +Ccos X, +1
? 3+sinx,

_ (0.6666)5in(0.6666) cos(0.6666) -+1
3 +5in(0.6666)

_ 0.6666x0.6183+0.7859+1
3+0.6183

0.4122+0.7859+1
3.6183

21481

~3.6183
=0.6074

Putting n =2 in the equation (1), so we get the third approximation

_ X, SinX, +C0osX, +1
’ 3+sinx,

_ (0.6074)sin(0.6074) +cos(0.6074) +1
3+sin(0.6074)

_ 0.6074x0.5707 +0.8211+1
a 3+0.5707

~0.3466+0.8211+1
3.5707




21677

35707
=0.6071
Putting n =3 in the equation (1), so we get the fourth approximation

_ X3SINX; +COSX; +1
3+sin X,

4

~(0.6071)sin(0.6071) + cos(0.6071) +1
3+sin(0.6071)

_0.6071x0.5704+0.8213+1
3+0.5704

~ 0.3463+0.8213+1
3.5704

21676

35704
=0.6071

Here we see that x3 = x4. Hence the root of the given equation 3x —cosx—-1=01is 0.6071.

8.11 Summary

Bisection Method, another essential tool in numerical analysis, serves as a foundational
technique for more advanced root-finding algorithms. Primarily used to locate the root of an
equation f(x) = 0 with a desired degree of accuracy, the Bisection Method is a reliable approach

applicable in various mathematical and computational contexts.

Newton-Raphson Method stands out as a widely employed and powerful numerical technique in
the realms of science and engineering. Specifically designed for approximating roots of real-

valued functions, this iterative method, named after Sir Isaac Newton and Joseph Raphson, is



acclaimed for its rapid convergence under favorable conditions. It is a preferred choice in

applications requiring accurate solutions to nonlinear equations.

8.12 Terminal Questions

Q.1. Explain the procedure for solving algebraic equation by Newton-Raphson’s method.

Q.2. Write the procedure for solving algebraic equation by Bisection method.

Q.3. Using Bisection method to find a real root of the equation f (X) =3x—+/1+sinx =0.

Q.4. By using Newton-Raphson’s method, find the real root of the equation x*—x-13=0.
Q.5. Using Newton-Raphson’s method. Find the square root of 12 correct to three places of

decimal.

Answer
3. 0.39
4, 1.967

5. 3.4641.

Suggested Further Readings:

1. Atkinson, K. and Han, W. Theoretical Numerical Analysis, Springer Science & Business
Media, 2010.

2. Jain, M.K,, lyengar, S.R.K and Jain, R.K.: Numerical Methods for Scientific and
Engineering Computations, NewAge International (P) Ltd. New Delhi, 2014.

3. Sastry, S.S.: Introductory Methods of Numerical Analysis, UBS Publishers, 2012.

4. Bradie, B. A friendly introduction to Numerical Analysis. Pearson Education, 2007.

5. Gupta. R. S., Elements of Numerical Analysis, 2nd Edition, Cambridge University Press,
2015.
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9.1 Introduction

Numerical methods are instrumental in addressing the challenges posed by both algebraic and
transcendental equations when analytical solutions become difficult or impracticable. This
collective set of methods constitutes a versatile toolkit, catering to a broad spectrum of algebraic
and transcendental equations prevalent in scientific, engineering, and mathematical contexts. The
selection of a specific method hinges on the distinctive features of the problem at hand, balancing
the trade-off between precision and computational efficiency based on the desired outcome.
Secant Method provides an effective approach for finding roots of real-valued functions, offering
a good compromise between simplicity and convergence speed, especially in situations where

derivatives are not readily available.

The Regula-Falsi method is a numerical technique that merges the simplicity of the Bisection
method with faster convergence, leading to quicker results in many cases. This method proves
advantageous in approximating roots of real-valued functions within a specified interval.
However, it is essential to note that the Regula-Falsi method may face convergence challenges
under certain circumstances. Convergence issues may arise if the function being analyzed
possesses specific characteristics or if the initial interval chosen for the method is not well-suited
to the nature of the function. Careful consideration of these factors is crucial for the successful

application of the Regula-Falsi method in root-finding problems.

9.2  Objectives

After reading this unit the learner should be able to understand about:

. The Regula-Falsi Method with their solution procedure

. The Secant Method and their problem



9.3 Regula Falsi Method

The Regula-Falsi method, also known as the False Position method, is an iterative numerical
technique used for finding the root of a real-valued function within a given interval. The Regula-
Falsi method combines the simplicity of the Bisection method with faster convergence, often
providing quicker results. However, it may encounter convergence issues if the function has
certain characteristics or if the initial interval is poorly chosen. This method is the oldest method
for finding the real root of the equation f(x) = 0.

In this method we take two points Xo and x1 such that f(xo) and f(x.) are of opposite signs i.e.,

f(x,) f(X;) <0. The root must lie in between xo and x1 since the graph y = f(x) crosses the x-axis
between these two points.

Now the equation of the chord joining the two points A[xo, f (xo)] and B[x,, f(x)] is

Y= (%) _ f(x)—f(x)
X — X, X, — X,

(1)

In this method the curve between the point A[XO, f (XO)]and B[xl, f(xl)]is replaced by the

chord AB by joining the points A and B taking the point of intersection of the chord with the x-
axis as an approximation to the root which is given by putting y = 0 in the equation (1). Thus, we

have

X, — X

X2 — XO _M f (XO)
f(x)—f(%)

If now f(X,)and f(x,)are of opposite signs, then the root lies between xo and x2. Then replace

the part of curve between the points A(X,, T (X,))and C(x,, f(x,)) by the chord joining these

points and this chord intersect the x-axis then we get second approximation to the root which is

given by

X3 =X~ b, %) f (%)
f(x,)— (%)



The procedure is repeated till the root is found to desired accuracy. The Regula-Falsi method is
a valuable tool for approximating roots of real-valued functions, striking a balance between

computational efficiency and simplicity.

Examples

Example.l. Use the method of false position, find the real root of the equation

x*-2x-5=0.
Solution: The given equation is X* —2x—5=0,
Consider f(x)=x*-2x-5=0
Now we have
f(2)=2°-2x2-5=-1
and f(3)=3°-2x3-5=16
Therefore, one real root of the given equation is lies between 2 and 3.
Taking X, =2 and X, =3
= f(%)=f(2)=-1
and f(x)=f(3)=16
Using Regula-Falsi method, we have

Xy =X e f (%)
f(x)— (%)



Now we have
f(x,) = f(2.0588)

= (2.0588)° —2x(2.0588) -5

=-0.3910
Therefore, one real root of the given equation is lies between 2.0588 and 3.
Now we take X, =2.0588, x, =3
=N f (x,) = f(2.0588) = —0.3910
and f(x)="1(3)=16
Using Regula-Falsi method, we have

X3 =X I . H f (Xo)
f(x)— (%)

_ 20588520988 (—0.3910)

16— (~0.3910)

_ 20588+ 29M2, 0.3010)
16.391



= 2.0588+0.02245
=2.0812
Now, we have
f(x,) = f(2.0812)
= (2.0812)% —2x(2.0812) -5
=-0.1479
Therefore, one real root of the given equation is lies between 2.0812 and 3.

Now we take X, =2.0812, x, =3
= f(x,) = f(2.0812) =-0.1479
and f(x)=f(3)=16

Using Regula-Falsi method, we have

X, — X
X, =X, T REETIR )= (%) f(X,)

_20812-—>-20812 (—0.1479)

16— (-0.1479)

208124 0.9188
16.1479

x(0.1479)

=2.0812+0.0084
=2.0896

Now, we have



f(x,) = f(2.0896)
= (2.0896)°2x (2.0896) — 5
=—-0.0551
Therefore, one real root of the given equation is lies between 2.0896 and 3.

Now we take X, =2.0896, X, =3
f(x,) = f(2.0896) =—-0.0551
and f(x)=f(3)=16

Using Regula-Falsi method, we have

_ _ X =X
AT R TeR R

20896 >-208% (—0.0551)
16— (—0.0551)

= 2.0896 + 0.9404 x0.0551
16.0551

=2.0896+0.0031
=2.0927

Now we have
f(x;) = (2.0927)
=(2.0927)° —2x(2.0927) -5

=—-0.0206



Therefore, one real root of the given equation is lies between 2.0927 and 3.

Now we take X, =2.0927,x, =3
f(x,) = f(2.0927) =-0.0206
and f(x)=f(3)=16

Using Regula-Falsi method, we have

Xg = XO_& f(xo)
f ()= (%)

20927329927 4 0206)

16— (—0.0206)

0.9073
16.02206

=2.0927 + x0.0206

=2.0927+0.0011
=2.0938
Now, we have
f(x,) = f(2.0938)
= (2.0938)% — 2% (2.0938) —5
=-0.0083
Therefore, one real root of the given equation is lies between 2.0938 and 3.

Now we take xo=2.0938, x1 =3

f(x,) = f(2.0938) =—0.0083



and f(x)="1(3)=16
Using Regula-Falsi method, we have

_ X

AT R ES R

_2003g__>—20938 (—0.0083)
16— (-0.0083)

=2.0938 + 0.9062 x0.0083
16.0083

= 2.0938+0.00046
=2.0942

Now, we have
f(x;) = f(2.0942)
=(2.0942)° —2x(2.0942) -5
=-0.0030

Therefore, one real root of the given equation is lies between 2.0942 and 3.

Now we take xo = 2.0942, x1 = 3

= f(x,) = f(2.0942) =-0.0030
and f(x)=f(3)=16

Using Regula-Falsi method, we have

5% f(x,)

T T )= F (%)



_2.0942 520942 x (—0.0030)

16 — (—0.0030)

0.9052
16.0030

=2.0942 + x0.0030

=2.0942+0.00016
=2.0943
Here x7 = Xs.

Hence the root of the given equation is 2.094 which is correct to three decimal places.

Example.2. Find the real root of the equation Xe* =2 correct upto three decimal places

using Regula-Falsi method.
Solution. The given equation is xe* =2.
Consider f(x)=xe*-2=0
Now we have
f(0)=0-2=-2
f(0.5) =0.5e"° -2 =-1.1756
f(0.7) =-0.5903
f(0.9) =0.2136
Therefore, one real root of the given equation is lies between 0.7 and 0.9.
Taking X, =0.7,x, =0.9

= f(x,) = f(0.7) =-0.5903



and  f(x)=f(0.9)=0.2136

Using Regula-Falsi method, we have

X, =X,
X, =X, ————2——x f(X
2 f(><1)—f(><o)X (%)
=0.7 0.9-0.7 x (—0.5903)

~0.2136—(~0.5903)

=0.7+ 0.2
0.8039

% (0.5903)

=0.8469

Now, we have
f(x,) = f(0.8469)
= (0.8469)e*** -2

=-0.0247
Therefore, one real root of the given equation is lies between 0.8469 and 0.9.

Now we take xo = 0.8469, x1 = 0.9

- f(x,) = f(0.8469) = —0.0247
and f(x)= f(0.9)=0.2136

Using Regula-Falsi method, we have

X3 =X, _&X f (%)
f(x)— (%)



=0.07 09-08469 (0.0247)

©0.2136—(~0.0247)

=0.7+ 00531 x0.0247
0.2383

=0.8524

Now, we have
f (x,) = f(0.8524)

= (0.8524) %% —2

=—0.00089
Therefore, one real root of the given equation is lies between 0.8524 and 0.9.
Now we take xo = 0.8524, x1 = 0.9
= f(x,) = £(0.8524) =-0.00089
and f(x) = (0.9)=0.2136
Using Regula-Falsi method, we have

X:X—&
TR0 - (%)

_0g524— 09708524 1 45059

0.2136—(—0.00089)

=0.8524 + 0.0476
0.21449

x (0.00089)

=0.8526.



9.4 Secant Method

The Secant Method is an iterative numerical technique utilized for approximating the root of a
real-valued function. It is particularly useful for finding solutions to equations when the
derivative of the function is either unknown or difficult to compute. The Secant Method shares
similarities with the Newton-Raphson Method but does not require the computation of the
derivative. While it may not converge as rapidly as Newton's method, it is versatile and

applicable in cases where derivatives are challenging to obtain.

Secant method is an improvement/extension of the Regula-Falsi method and according to this
method no requirement of the condition f(xo). f(x1)<O0; i.e., no condition for the interval (Xo, X1)

must contains the root.

In this method the function y= f(x) graph is near to secant line in each iteration of the method. If

any stage of iteration the value of f(xn)= f(xn-1), then the secant method is fail.

The secant formula for nth approximation is given by

X g =X, — (O = %) f(x,); n>1
f(Xn)_ f(Xn—l)

Note: Secant method is not necessarily for f(xo) and f(x1) are of opposite sign. Also it is not

necessary for the interval (Xo, X1) must contain the root.

Check your Progress

1. What is the difference between regula falsi method and secant method..

2. Which one is better in between regula falsi method and secant method

Examples

Example.3. Find the real root of the equation x-e*=0 by Secant Method, up-to three places

of decimal.



Sol. The given equation is x—e " =0.
Consider f(x)=x—-e"=0
Now we have
f(0)=-1<0
and f(1) =1-e1=0.6321> 0
Therefore, atleast one root of the given equation is lies between 0 and 1.
Taking xo =0, x1 =1, f(xo) =—1 and f(x1) = 0.6321.

Using Secant method, we have

Xy =X = (=) f(x)
F (%)= f(%)

:1—$(0.6321)
0.6321—(-1)

0.6321
1.6321

=0.6127.

Now, we have
f(x2) = £(0.6127)
= (0.6127)-06127
=0.6127-0.5419
=0.0708.

Taking x1 =1, X2 =0.6127, f(x1) =0.6321 and f(x2) = 0.0708.



Using Secant method, we have

—y _ (XZ_Xl) f(X)
R T CAES ¢ I

_0p127 - 06127-1 (0.0708)

0.0708 -0.6321

=0.6127 -0.0488
= 0.5639.

Now we have

f(xa) = f(0.5639)
= (0.5639)-60-563
= 0.5639-0.5690

=—-0.0051.

Now taking x2=0.6127, x3=0.5639, f(x2) =0.0708 and f(x3) = —0.0051.
Using Secant method, we have

_ (X3 —%;)
fo0)—f0g) 0

X, = Xg

_ 05639 0563906127 o 0y

—0.0051-0.0708

=0.5639 +0.0033
=0.5672.
Now we have
f(x4) = f(0.5672)
= (0.5672)-e0°¢7

=0.5639-0.5671



=0.0001.

Now taking x3=0.5639, x4=0.5672, f(x3) =-0.0051 and f(xs) = 0.0001.
Using Secant method, we have

Y (X4 =)
SR TCARTCA e

_ 05672 0:2672-0.5639 (0.0001)

0.0001—-(-0.0051)

=0.5672 —0.00063
=0.5670.

Hence the root of the given equation f(x)=x—e™ =0up-to three decimal places is 0.567,

which is of desired accuracy.

Example.4. Find the real root of the equation cos x — xe* =0 by Secant Method.
Sol. The given equation is cos X — xe* =0.
Consider f(x)=cosx—xe* =0
Now we have
f (x,) = f (0) =cos(0)-0.e° =1>0
and f(x)=f(@ =cos(1)—1.e' =-2.1780<0
Therefore, atleast one root of the given equation is lies between 0 and 1.

Taking Xo =0, x1 =1, f(Xo) = 1 and f(x1) = -2.1780.

Using Secant method, we have



Xp =% — (% =%)
fOxq)—f(%)

fF(x)

:1—i(—2.1780)
—2.1780-1

21780
3.1780

=0.3147.
Now, we have
f(x2) = f(0.3147)
= €0s(0.3147) — (0.3147) €'
=0.9509—0.4311
=0.5198.
Taking x1 =1, x2=0.3147, f(x1) = —2.1780 and f(x2) = 0.5198.

Using Secant method, we have

— _ (XZ_Xl)
X3 =X, f(XZ)— f(Xl) f(XZ)

P S AL s ST
0.5198 — (-2.1780)

0.3562

=0.3147 +
2.6978

= 0.4467.

Now we have



f(xs) = f(0.4467)
= c0s(0.4467) — (0.4467) e>***"
=0.9019-0.6983
=0.2036.

Now taking x2=0.3147, x3=0.4467, f(x2) =0.5198 and f(x3) = 0.2036.

Using Secant method, we have

Xy — X
Xy = X3 = (X =) f (%)
f(x3) = f(x;)
0.4467 —0.3147

—0.4467 — (0.2036)
—0.2036 —0.5198

0.0269

= 0.4467 + — 2>
0.3162

=0.5318.
Now we have

f(x4) = f(0.5318)
= 0s(0.5318) — (0.5318) ***
=0.8619—-0.9051
=-0.0432.
Now taking x3 =0.4467, x4=0.5318, f(xs) =0.2036 and f(x4) = -0.0432.

Using Secant method, we have

(X4 —%3)
)=o) )

Xs =X, —



_ 05318 231804467 (—0.0432)

—0.0432-0.2036

0.0037
0.2468

=0.5168.

=0.5318—-

Now we have

f(xs) = f(0.5168)
= c0s(0.5168) — (0.5168) e%°'®®
=0.8694 —0.8665
=0.0029.
Now taking x4=0.5318, x5=0.5168, f(x4) =-0.0432 and f(xs) = 0.0029.
Using Secant method, we have

v (% —%)
T )

_ 05165 _05168-085318 (00

0.0029 - (~0.0432)

_ 05168+ 0.0000435
0.0461
=0.5177.
Now we have

f(xe) = f(0.5177)
= c0s(0.5177) — (0.5177) e%>*""
=0.8690—0.8688

=0.0002.



Now taking xs =0.5168, X6 =0.5177, f(xs) =0.0029 and f(xs) = 0.0002.

Using Secant method, we have

X7 = Xg — (XG_XS) f (%)
f (%) — (%)

_ 0.5177 05177 -05168 () 0

0.0002 -0.0029

=0.5177+0.00006
=0.5178.

Hence the root of the given equation f(X) =cosx—xe* =0up-to three decimal places is

0.517, which is of desired accuracy.

9.5 Summary

The Regula-Falsi method, also recognized as the False Position method, is an iterative numerical
approach utilized to determine the root of a real-valued function within a specified interval.
Combining the simplicity of the Bisection method with accelerated convergence, the Regula-
Falsi method typically yields faster results. The Secant method represents an enhancement or

extension of the Regula-Falsi method.

Unlike the Regula-Falsi method, the Secant method eliminates the need for the condition f(Xo)
f(x1) <0, meaning there is no requirement for the interval (xo, X1) to necessarily contain the root.
It's worth noting that the Regula-Falsi method, being the oldest technique in the pursuit of real

roots for the equation f(x) = 0, serves as the foundation for the Secant method.

Secant method is not necessarily for f(xo) and f(x1) are of opposite sign. Also it is not necessary

for the interval (o, X1) must contain the root. The secant formula for nth approximation is given

by

X=X — (= %1) f(x);, n=>1
f (Xn) —f (Xn—l)




9.6 Terminal Questions

Q.1. Explain the Regula-Falsi Method.

Q.2. Write the formula of Secant Method.

Q.3. Find a real root of the equation x*—log, x—12 =0, using Regula-Falsi method correct to
three decimal place.

Q.4. Find real root of the following equation by using Regula-Falsi method: xe* —3=0.

Q.5. Using Secant method to find the real root of the equation f (x) = cosx — xe* =0 up-to

four decimal places.

Answer

3.3.6461 4.1.046 5.0.5177

Suggested Further Readings:

1. Atkinson, K. and Han, W. Theoretical Numerical Analysis, Springer Science & Business
Media, 2010.

2. Jain, M.K., lyengar, S.R.K and Jain, R.K.: Numerical Methods for Scientific and
Engineering Computations, NewAge International (P) Ltd. New Delhi, 2014.

3. Sastry, S.S.: Introductory Methods of Numerical Analysis, UBS Publishers, 2012.

4. Bradie, B. A friendly introduction to Numerical Analysis. Pearson Education, 2007.

5. Gupta. R. S., Elements of Numerical Analysis, 2nd Edition, Cambridge University Press,
2015.
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Block-5

Numerical Differentiation And Integration

Numerical differentiation is a computational approach used to estimate the derivative of a
function at a given point, especially when an analytical expression for the derivative is not readily
available or when dealing with discrete data points. There are several numerical methods for
approximating derivatives, each with its own set of advantages and limitations. For higher-order
derivatives or more complex cases, numerical differentiation can be extended using methods
such as Richardson extrapolation or finite difference formulas. Numerical differentiation is
particularly valuable in situations where obtaining the analytical derivative is challenging, and it

finds applications in various fields such as physics, engineering, and data analysis.

Numerical differentiation is a method used to estimate the derivative of a function at a specific
point or over a range of values when an analytical expression for the derivative is not readily
available. This approach is particularly useful in scenarios involving discrete data points or
functions defined by complex algorithms. The choice between these methods often depends on
the specific requirements of the problem and the trade-off between accuracy and computational
efficiency. Derivatives using the forward and backward difference formulas are numerical
methods to estimate the first derivative of a function at a specific point. These methods are
particularly useful when an analytical expression for the derivative is not available or when

dealing with discrete data points.

In the 10" unit, we shall discuss about derivatives using forward difference formula, derivatives
using backward difference formula. In unit eleventh we deals with derivatives using Stirling
difference formula, derivatives using Newton’s divided difference formula. In unit twelveth we
shall discuss about general quadrature formula for equally spaced arguments, Trapezoidal rule,
Simpson’s 1/3 rule, Simpson’s 3/8 rule. Numerical solution of ordinary differential equation
with Euler’s method, Euler’s modified method, Taylor Series method discussed in unit thirteen.
In unit fourtheen we shall discussed the Picard’s method. Runge-Kutta method for fourth order,

Milne’s predictor-corrector method.



UNIT-10: Numerical Differentiation-I
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10.1 Introduction

Numerical differentiation is the process of obtaining the values of the derivative of a function
from a set of numerical values of that function. Two common numerical differentiation methods
are the Forward Difference Method and the Central Difference Method. The forward difference
formula approximates the derivative by considering the difference between function values at a
given point and a slightly displaced point in the positive x-direction. Similar to the forward
difference formula, the backward difference formula estimates the derivative by computing the
difference between function values at a given point and a slightly displaced point in the negative

x -direction.

If the arguments are uniformly spaced, the preferred choice is the Newton-Gregory forward
formula when aiming to find the derivative of a function near the beginning. Conversely, the
Newton-Gregory backward formula is employed when seeking the derivative at a point near the
end. When the derivative at a point is situated close to the middle of the table, the Stirling
difference formula is applied. For unevenly spaced data, go for Newton's divided difference
formula.In the tenth unit, we will explore the topic of derivatives, specifically delving into the
application of the forward difference formula and the backward difference formula.

10.2  Objectives

After reading this unit the learner should be able to understand about:

o the derivatives using forward difference formula

o the derivatives using backward difference formula



10.3 Derivatives Using Forward Difference Formula

The Newton-Gregory formula for numerical differentiation is employed to estimate the
derivative of a function at a given point using equally spaced data points. It relies on interpolating
a polynomial through these data points and then differentiating the polynomial to approximate
the derivative. First differentiate the interpolating polynomial with respect to x to find the
derivative approximation at the desired point. This will yield an expression for the derivative in

terms of the function values and their respective forward differences.
The Newton-Gregory formula for forward interpolation is

f (a+hu) = f (a)+UuAf (aH%Azf(aHU(U _2.(u_2)

A*f (a)

N uu-Hu-2)....(u—(n-1)) A" (a)

n!
or
Y = U, + UAY, + u(u-=1) Ay, + uu —1;I(u =2) Ay H oo
e, LU _1)(“_22]"'"(”_(”_1)) Ay, (1)
where u Xz (2)

Differentiating both sides of equation (1) with respect to x, we get

u(u-—-121)

dy d 21

dx  dx Luu-—HUu-—2)(u-—3)
41

uu—21Y(u—2)

31 As)/o

A%y, +

d Yo +UAY, +

A*Yo F e,




3u°—-6u+2 .

(2u-1) .,
Ao T AT T Ay, 5
4u® —-18u®+22u—6 , dx 7
+ a0 ATYgoiiii
From equation (2), we get
du 1
a - F ...... (4)
Using equations (3) and (4), we get
(2u-1 ., 3u®—6u+2
dy 1|t AVt 5 A -
dx h| 4u®*-18u*+22u-6 ., | 7
+ ATY g
41 °
Put x =a inequation (2), we get u=0.
At x =a in the equation (5), we get
dy 1 1., 1. 1.,
— =—| Ay, ——AY, + =AY, ——A"Y, + .
(@) gLy, Loy, -Lay
Now differentiating both sides of the equation (5) with respect to x, we get
d?y 1] , 6U—6 4 12u? —36u+22 du
=—| A +—A —+ A e R —
dx> h| Yo' 3 Yo 41 Yo dx
1] 6u—6 1202 — 36U + 22
= A%y, + 3 A%y, + 2 Ay, + o, } ,,,,,, (6)

At x = a, in the equation (6), we get

d’y 1 11
[dxz jx_a =F[AZVO—A3yO +EA4yO .................... ]




Proceeding in the same way, we get the third differentiations at the required points as

d? 1 3
[dxgj :F[ASyO—EA‘lyO—!— .................... :|

10.4 Derivatives Using Backward Difference Formula

The Newton-Gregory formula for backward interpolation is

f (a+nh+hu) = f (a+nh)+uVf (a+nh)+%vzf(a+nh)

+u(u +1D(u+2)....... (u+n-1)

Frreerireeeans V" f(a+nh)
n!

or
Y =Y, +UVy, +u(u—,+l)V2yn L +132,(u 2 vy,

+ uu+Hu+2)u+3) VY A 1)

41
Where u= X _hX“ ...... (2)
Differentiating both sides of equation (1) with respect to x, we get
u(u+l _, ulu+HU+2) _;

gy d| Yo tUVYe T VI 2 Ve,

dx  dx LU+ (U +2)(u+3)

i VA A e,



2
Vyn+2u+1 3u +6u+2V3yn
21! 3!

4u® +18u® +22u+6 _ , dx
+ VoY 4

41 "

V2y, +

From equation (2), we get

du 1

—_—=— 4
dx h )
Using equations (3) and (4), we get

2u+1_, U +6U+2_,
—V
gy 1|Vt VT Yo
dx h| 4u®*+18u®+22u+6_,
+ VoY A

4 "

Put x = xn in equation (2), we get u =0.

At x =xn in the equation (5), we get

(ﬂj ZEI:Vyn+1V2yn—|——vgyn—|—lv4yn+ ........... :|
dx X=X, h

Now differentiating both sides of the equation (5) with respect to x, we get

dx?* h

Viy +

2 2
d’y _1 szn+6u+6 y. 12u +36u+22V“yn+ ............. du
3! 4! dx

2
1 {Vz 4+ GUBT 6 Viy + Lo +2|6u +22 VY H s } ...... (6)

At x =Xn in the equation (6), we get

d’y 1 11
[WLX =F[V2yn +V3y, +EV4yn +}

Proceeding in the same way, we get the third differentiation at the required point.



Check your Progress

1. What do you mean by derivatives using forward difference method?

2. Write the derivatives using backward difference formula.

Examples

d d?
Example.1. Determine the &Y and 2/

of y at Xx=50 from the following table:

dx

dx

50

51

52

53

54

55

56

y=1(

3.6840

3.7084

3.7325

3.7563

3.7798

3.8030

3.8259

2
Solution: In this problem we find the value of % and % of y at x =50. Here we see
X

X
that x = 50 lies near the starting of the table therefore in this case we shall use Newton’s forward
interpolation formula for derivtives. The Newton-Gregory forward interpolation formula for

derivatives, we have

d 1 1 1 1
(d_z(lsza:_|:Ayo_§A2yo+§A3yo—ZA4yO+ .......... :| (1)



d? y 1 11
[ij_a :F[Azy(’ — A%y, +EA4yO .................... ] .(2)
The difference table is as below:
X y = x!/3 Ay A%y A’y
50 3.6840
0.0244
51 3.7084 -0.0003
0.0241 0
52 3.7325 -0.0003
0.0238 0
53 3.7563 -0.0003
0.0235 0
54 3.7798 -0.0003
0.0232 0
55 3.8030 -0.0003
0.0229
56 3.8259

Here a = 50, h =1 then from equation (1), we get

(ﬂ) = }[0.0244 1 (—0.0003) + : (0)}
dX /s 1 2 3
=0.0244+0.00015
=0.02455.

and also put a =50, h =1 in the equation (2), we get




2

2
[UJ —-0.0003.
x=50

d d?
Hence the values of d—i and d—xﬁ/ of y at X =50are 0.02455 and -0.0003 respectivey.

Example.2. Determine the first and second derivatives of the functions f(x) at x = 1.1 from

the following data:

f(x) 0 0.1280 0.5440 1.2960 2.4320 4.0000

2
Solution: In this problem we find the value of % and ((j:l Z of f(X) at x=1.1. Here we
X X

see that x = 1.1 lies near the starting of the table therefore in this case we shall use Newton’s
forward interpolation formula for derivtives. The Newton-Gregory forward interpolation

formula is

u(u-1) A F (%) + u(u—L(u-2)
0 I

f(x) = f(X,)+UAF(X,)+ o 3



X=X, x-1

where u= = =5(x-1 ... (2
. 02 (x=1) (2)
The difference table is as below:
X f(x) Af(X) A%(X) A3f(X) AH(X)
1.0 0
0.1280
1.2 0.1280 0.2880
0.4160 0.0480
1.4 0.5440 0.3360 0
0.7520 0.480
1.6 1.2960 0.3840 0
1.1360 0.480
1.8 2.4320 0.4320
1.5680
2.0 4.0000

Differentiating both sides of equation (1) with respect to x, we get

ron 2u-1 , 3u?—-6u+2 du

f (x)_{Af (Xo) + 5 A f(xo)+TA f(Xg)+ e } dx .. (3)
From equation (2), we get
du
—=5 .. (4
dx @)
f’(x)=5[Af (x0)+2u2|_1A2f(xO)+3u_3$A3f(Xo)+ ------ } ... (5)

Put x = 1.1 in the equation (2), we get u =5(1.1 — 1)=0.5.



Put u=0.5 then from equation (5), we get

2(0.5) -1 3(0.5)2 —6(0.5) + 2

6

f/(x) = 5{0.128+ (0.2880) + (0.048)}

= 5[0.128 + 0 — 0.002]
=0.63
f'(1.1) = 0.63

Now differentiating both sides of equation (3) with respect to x, we get

f7(x) = 5[& f(x,) + 6“37 O A% (x,)...... } %
Z5(AF (%) + (U—DA  (X) + oo )(5) ( ‘;_‘)J(zsj
= 25( A% F (%) + (U=DA*f (Xo) +oorrrenes ) ... (6)

Put u =0.5 then from equation (6), we get
f ”7(1.1) = 25[0.2880 + (0.5 —1)(0.0480)]
= 25[0.2880 — 0.024]
=6.6
f"(1.1) = 6.6

Hence the value of the first and second derivatives of the functions f(x) at x = 1.1 are

0.63 and 6.6 respectively.



dy d?y

Example.3. Determine the values of dx and > at x=2.03 with the help of the
X X

following data:
X 1.96 1.98 2.00 2.02 2.04
y 0.7825 0.7739 0.7651 0.7563 0.7473

_ : : dy d?y
Solution: In this problem we find the value of dx and e, at x=2.03. Here we see that
X X

x = 2.03 lies near the last of the table therefore in this case we shall use Newton’s backward

interpolation formula for derivtives. The difference table is as below:

X y vy vy Viy vy

1.96 0.7825

-0.0086
1.08 0.7739 -0.0002

-0.0088 0.0002

0 - 0.0004

2.00 0.7651

-0.0088 - 0.0002

-0.0002

2.02 0.7563

-0.0090
2.04 0.7473

Here x, = 2.04, h = 0.02 and x = 2.03 then we have



_2.03-2.04
002

= 2—-0.5 (1)

Now by the Newton’s backward interpolation formula for derivative, we have

2u+1_, U +6Uu+2_,

....(2)
dx h 4u® +18u® +22u+6 _ ,
+ a0 Viy, +

Put u =-0.5and h = 0.02 in the equation (2), we get

2
q 1 2(—;j+1 3[—2) +6(—;j+2
[—yj = ——| —0.0090 + ———(-0.0002) + (—0.0002)
dx ), ,,s 0.02 2! 41

3 2
4(— lj + 18[— 1] + 22(— 1
2 2 2

j +6
2 (—0.0004)

1

= W[_ 0.0009 + 0+ 0.000008 +0.000017 ]

=—0.44875

Again differentiating both sides of equation (2) with respect to x, we get

..(3)

d? 1 6uU+6 12u? +36u + 22
(dlej:?[vzyn_k 3| V3yn_|_ 4| V4yn ............ i|



Put u=-0.5and h = 0.02 in the equation (3), we get

[

|

1

{
—0.0002 +

1

o!

dzyJ 1
dx* ) ... (0.02)?
12(
_|_
B 1
0.0004
=-1.05
2
d 3’} = -1.05
dX x=2.03
Hence the values of ﬂ
dx

respectivey.

and

24

d?y
dx?

of f(x) at x =2.03are -0.44875 and -1.05

j+1
N 2) (L0.0002)

2 1
- 2) + 36[— 2} + 22
x (—0.0004)

[-0.0002 —0.0001 —0.00012]

Example.4. Find the value of f’(1.5) and f~(.5) from the following table:

1.5

2.0

2.5

3.0

3.5

4.0

f(x)

3.375

7.000

13.625

24.000

38.875

59.000




Solution: : In this problem we find the value of f’(1.5) and f”(1.5). Here we see that x = 1.5

lies near the starting of the table therefore in this case we shall use Newton’s forward

interpolation formula for derivtives. The difference table is as below:

X f(x) Af(X) A%(X) A3f(x) AH(X)

1.5 3.375
3.625

2.0 7.000 3.000
6.625 0.75

2.5 13.625 3.75 0
10.375 0.75

3.0 24.000 4.5 0
14.875 0.75

3.5 38.875 5.25
20.125

4.0 59.000

The Newton-Gregory forward interpolation formula for derivatives, we have

dy 1 1., 1., 1., }

— =—|AY, — =AY, + =AY, ——A"Y, Ferrrnn

dxjx—a h[ Yo 5 Yo 3 Yo ) Yo .1
d%y 1 11

v l_a = F|:A2y0 — A%y, +EA4y° .................... } )

Here a = 1.5 and h =0.5 then from equation (1), we get

(ﬂj :i[3.625—1><3.000+l><(0.75)—0.......}
dx )., 05 2 3

or f/(L5)= é[3.625—1.5+0.25]



_ L x2.375
0.5

=4.75

Puta=1.5and h = 0.5 in the equation (2), we get

d? 1 11
[dxzj :F[Azyo_Asyo +EA“yO......]

2
d 2/ = 1 2[3.000—0.75+E.0......]
dx x=1.5 (0.5) 12

or £"(1.5) = —~_[3.000—0.75+ == 0]
(05) 25

2.2
.25

@)

f7(1.5) =

o

=9

Hence the values of f'(1.5) and f"(1.5)are 4.75 and 9 respectivey.

Example.5. Given the following data:

40

sin ©° 0.000 0.1736 0.3420 0.5000

0.6428




Find the value of cos 6° by numerical method when 6 = 10°,

Solution. In this problem we find the value of cos 6° when 0 = 10°. Here we see that 6 = 10° lies
near the starting of the table therefore in this case we shall use Newton’s forward interpolation

formula for derivtives. The difference table is as below:

0 sin 0° Af(X) A%(X) A%(X) A*(X)
0 0.000
0.1736
10 0.1736 - 0.0052
0.1684 - 0.0052
20 0.3420 -0.0104 0.0004
0.1580 -0.0048
30 0.5000 -0.0152
0.1428
40 0.6428

The Newton-Gregory forward interpolation formula for derivatives, we have

dy 1 1. 1.3 1.4 :|
-2 =—|AY, —=AY, + =AY, =AYy + s
(dxl:a h[ Yomg S ot oy R Y 0

Here f(X) =sin @, a =10, h =10" = 0.1745 radian then from equation (1), we get

dy 1 1., 1., 1, }
=L =2 Ay, A+ Ay, - =AY,
(dejm h{y(’ 2" o Tgt e Tyn Y

(cos®) = i[0.1684+%(0.0104) +%(—0.0048)}

0=10 10



= L x0.1720

0.1745

= 0.9856.

Hence the values of cos 0° at 6 = 10° is 0.9856.

10.5 Summary

Numerical differentiation methods play a crucial role in situations where analytical derivatives
are challenging to obtain, making them valuable tools in fields such as physics, engineering, and
data analysis. The choice between forward and backward difference often depends on the
direction of the data or the nature of the problem. While these methods are straightforward and
easy to implement, it's essential to choose an appropriate step size 4 to balance accuracy and
numerical stability.

In practice, the central difference method (using both forward and backward differences) is also
commonly employed to improve accuracy by considering function values on both sides of the

point of interest.

10.6 Terminal Questions

Q.1. Explain the numerical differentiation method for equal intervals.

Q.2. Write the procedure for determine the Derivatives Using the Newton’s Backward Difference

Formula.

Q.3. Find the first, second and third derivatives of the function f(x) tabulated below, at the point

x=15.



X 15 2.0 2.5 3.0 3.5 4.0
3.375 7.000 13.625 24.000 38.875 59.000
f(x)
Q.4. Find y'(0) and y"(0) from the following table:
0 1 2 3 4 5
X
4 8 15 7 6 2
y
Q.5. Find the derivative of f(X) at x =0.4 from the following table:
0.1 0.2 0.3 0.4
X
1.10517 1.22140 1.34986 1.49182
y=f(x)
Q.6. Find f'(1.1) and f"(1.1)from the following table:
1 11 1.2 1.3 14 15 1.6
X
7.989 8.403 8.781 9.129 9.451 9.750 10.031
y




Answer

3.4.75,9, 6.
4.—-27.9and 117.67.
5. 1.49133.

6. 3.9435 and — 3.545.
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11.5 Summary

11.6 Terminal Questions



11.1 Introduction

Numerical differentiation serves as a method to approximate the derivative of a function either
at a specific point or across a range of values. This approach proves valuable when an analytical
expression for the derivative is not readily accessible or when working with discrete data points.
The main objective is to provide an estimation of how quickly a function changes concerning its
independent variable. The selection of a suitable method is contingent on considerations such as
the desired level of accuracy, computational efficiency, and the inherent characteristics of the
problem at hand. This technique finds widespread application in diverse scientific and

engineering contexts, particularly when addressing experimental or discrete data scenarios.

Newton's Divided Difference Formula is a mathematical method for constructing an
interpolating polynomial for a set of given data points. It is particularly useful for approximating
a function when only discrete data points are known. The formula is named after Sir Isaac
Newton, who developed this method. Newton's Divided Difference Formula is a fundamental
tool in numerical analysis, especially for constructing interpolating polynomials, and it is widely
used in various applications, including numerical integration and differentiation. Moving on to
the eleventh unit, our focus will shift towards derivatives, examining their computation through

the Stirling difference formula and Newton's divided difference formula.

11.2  Objectives

After reading this unit the learner should be able to understand about:

. the derivatives using Stirling Difference formula

. the derivatives using Newton’s divided difference formula



11.3  Derivatives Using Stirling Difference Formula

The Stirling's finite difference formula is a method used for numerical differentiation, which
approximates the derivative of a function using its function values at evenly spaced points. The
formula can be derived from the finite difference approximation, and it's particularly useful when
a high degree of accuracy is required. The Stirling’s difference formula is

2
(Ayo +Ay.,) U™

2
2 2!A Yo

Yo =Yoo +U

Lue-D) (A'y ATy ,)  uRE-])

4
5 > a0 AY 5+,
2 Y 5 5 2012 2_92
+U(U —1)(U -2 ) (A y—s"'A y_2)+u (U —1)(U —2 )A6y73+ ....... (1)
Where u=>—2 or 22 -2
h h

Differentiating both sides of equation (1) with respect to x, we get

Ayo+Ay_lj u? .,
+u| =21 | A +
dy d Yo ( > Y.

21 3! 2
dx dx 20112
u(u® -1

uu? -1 [A‘*y1 +A%y, j

4
41 A Yot
_(ijLquy _|_3U2—l A3y,1+A3y72 -
2 -1 3l > N )
[4u3—2uj . -
A ol G I

From equation (2), we get



du_1
dx h

Now from equation (2) and (4), we get

(4

2 3 3 ]
(Ay0+Aylj+uA2y_l+3u 1( APy, + A%y,
dy 1 2 3! 2
—=— ... (5)
dx h N 4u® —2u Ay
T y72 ............
At x=x,, u=0 then from equation (5), we get
ﬂj 1| Ay, +AY, 1( Ay, +Ay, N
ax). . ~h — > & I R -
Again differentiating equation (5) with respect to x, we get
d?y 1| ., 6u( A’y +Ay , ) 12u*-2 ., du
ax? _F[A Y. +§[ > + 2 AY 5+ dx
Ay 6_U[A3yl+A3y2j |
1 - ! 2 d_u 1
b (1202-2) ., “dx h
+( 2 jA Y oot
_Azy Bu( Ay, +A%y, |
o3l 2 ©
b (1202-2) ,
+ T A"Y 5 F i,

At X = Xo, U = 0 then from equation (6), we get



dzy 1 2 1 4 :|
= — A ——A ..........
( dX2 jx_xo h2 l: y71 12 y72 "

Proceeding in the same way, we get the successive differentiation at the required point.

11.4  Derivatives Using Newton’s Divided Difference Formula

Newton's divided difference formula is another method for numerical differentiation, which
provides a polynomial approximation to the derivative of a function using its function values at
distinct points. The formula is based on the concept of divided differences, which are a sequence
of coefficients computed from the function values.

The Newton’s divided difference formula is
y = (%) + (X=X )AT (%,) + (X=X, ) (X = X ) A* T (X,)

+ (X=X )(X = X)X = X,) A% F (X)) +evererrrreriennns (D)

Differentiating equation (1) with respect to x , we get

%=Af(xo)+[(x—x1)+(x—xo)]A2f(xo)+

[(X—X) (X = X,) + (X=X J(X =X, ) + (X =X )(X = X ) A% f (X,) +-vovrrnnee. cn(2)
Put x = a in the equation (2) and we get the value of first derivative at x =a.

Again differentiating equation (1) with respect to x , we get

dy _ 247 T (Xy) +[2(X — Xg) +2(X — X,) +2(X — X, )]A® f (Xg) +enee.

X2

Put x = a in the equation (2) and we get the value of second derivative at x = a.



Note:

1. To determine the value of the derivatives of a function near the beginning of the arguments,
Newton’s forward formula is employed.

2. For derivatives required near the end of the arguments, then we use Newton’s backward
formula.

3. When the derivative is needed at the middle of the given arguments, the central difference
formula is applied.

4. Newton’s divided difference formula is employed when the arguments are not equally spaced.

Check your Progress

1. What do you mean by derivatives using stirling difference formula?

2. Write the derivatives using newton’s divided difference formula.

Examples

Example.1. Determine the value of f '(93) from the following table:

X 60 75 90 105 120

f(x) 28.2 38.2 43.2 40.9 37.2




Solution: Since 93 lies near the central point of the table therefore in this case we shall use

Stirling difference formula for derivatives.

The difference table is given by

u X f(x) Af(X) A%f(X) A¥(X) A*(X)
-2 60 28.2
10.0
-1 75 38.2 -5
5 2.3
0 90 43.2 -7.3 8.2
-2.3 5.9
1 105 40.9 -1.4
-3.7
2 120 37.2

The Stirling’s difference formula for derivatives is

(AYO+Ay—1j+UA2y +3u2 _1(ABY1+A3y2J
e — -1
dy _ 1 2 3! 2 (D)
dx h 4U3—2U 4
+ —a A"Y 5+,

Here x, =90, x=93, h=15.

Then we have



=0.2

Putting these values in Stirling formula for first derivative (1), we get.

(ﬂ) :i(w+(o_2)x(_7_3)+3(0.2)2—1((-2.3)+(5_9))
dX ), 150 2 3! 2

N 4(0.2)2 —2(0.2) 82}
41

fr03)= 1| 27 (146 3168 30716
15| 2 Ax2 A

_L[27 ) 46 3168 30716
15 2 12 24

= % (1.35—-1.46 —0.26400 —0.1257)

f'(93) = —0.3331.

Hence the value of f'(93) is-0.3331.

Example.2. Determine the value of f’(0.6) and f ~(0.6) from the following table:



0.5

0.6

0.7

0.8

f(x) 1.5836

1.7974

2.0442

2.3275

2.6510

Solution: Since 0.6 lies near the central point of the table therefore in this case we shall use

Stirling difference formula for derivatives. The difference table is given by

u X f(x) Af(X) A%(X) A¥(X) A*(X)
-2 0.4 1.5836
0.2138
-1 0.5 1.7974 0.0330
0.2468 0.0035
0 0.6 2.0442 0.0365 0.0002
0.2833 0.0037
1 0.7 2.3275 0.0402
0.3235
2 0.8 2.6510
The Stirling’s difference formula for derivatives is
B 2 3 3 ]
(Ayo ;Ayljﬂmzy_l N 3u3' 1[A Y, A y_zj
d 1 :
&y_= (1)

dx h [4u3—2u
_|_ —

i jA“y2 e




Here x, =0.6, x=0.6, h=0.1.

Then we have

Putting these values in Stirling formula for first derivative (1), we get.

0
2 3!

[dyj 1 [0.2468+0.2833+
x=0.6

3(0)? —1[0.0035 + 0.0037)
— = + +0
dx )06 (0.1)

2

£/(0.6) =

1 [0.2468+0.2833 1 [ 0.0035 + 0.0037)
(0.1) 2 6 2

= 10(0.26505— 0.0006)

= 2.6445

£'(0.6) = 2.6445.

Again differentiating equation (1) with respect to x, we get

3 3
2 Azy_l+%[A y_le y_zj
dy 1 :

—_ — R 2
dx* h? 12u>-2) , @
-+ T A y_2 B




1

£7(0.6) = 0D

[0.0365+O—i(0.0002)}
12

—100(0.0365 —0.000016)

=3.6484

f”7(0.6) = 3.6484.

Hence the value of f’(0.6)and f~(0.6) are 2.6445 and 3.6484.

Example.3. Determine the value of ¢ ‘() from the following table:

f(x) 150 108 0 -54 -100 -144 -84

Solution: In this case the values of the arguments are not equally spaced. So we will use the

Newton’s divided difference formula.

The Newton’s divided difference formula is
y = (%) + (X=X )AF (%) + (X=X ) (X = X ) A* f (X,)

(X=X ) (X=X ) (X=X, ) A F (X)) +eerereereerinnenes (D)

Differentiating equation (1) with respect to x , we get

%=Af(xo)+[(x—x1)+(x—xo)]A2f(xo)+



[(X=X)(X=X,) + (X=X )(X = X,) + (X =% ) (X=X )JA* f (x,) +

Here X=6,%X,=0, X, =1, X, =3, X; =4, X, =5, X, =7, X =9.

The divided difference table is given below:

X f(x) AF(X) A (X) A3H(X) A %(X)
0 150
108-150 _ ,,
1-0
1 108 -54+42
3-0
- 0+4
0-108 _ ., 0+4
3-1 4-0
3 0 -54+54
4-1 =1,
54-0 4-0_, -0
=>4 5-1
4 54 4-3 1-1
) ~46+54 _ 1o
—-100 +54 i
-100+54 _ 46 it 1-1_,
5 -100 5-4 9-3
—22+46_8
-4 13-8
~144+100 = =
——— =22 9-4
7 -144 -5
30+ 22
=13
9-5
-84+144
9 -84 9-7




Putting above these values in the equation (2), we get
f'(6)=—42+ {(6—1) +(6 —0)} (-4)+ {(6—1) +(6-3)+(6-0)(6—-3)+(6—-0)(6 —1)}1
=42 +11x (—4) + (15 +18 +30) x1
=—-42—-44 + 63 =-23
f'(6) = —23.

Hence the value of f(6) is -23.

Example.4. From the following table, determine the value of f'(10):

f(x) 13 23 899 17315 35606

Solution: In this case the values of the arguments are not equally spaced. So we willl use here

the Newton’s divided difference formula.

The Newton’s divided difference formula is
y = f (%) + (X=X )AF (%) + (X =%, ) (X = % ) A* f (X;)

+ (X=X ) (X = X)) (X = X,) A% F (X)) +Feverrerrrreriennns ()

Differentiating equation (1) with respect to x , we get



dy _

AF (%) +[(X—X,) + (X =% ) | A £ (%)) +

dx
[(X = %) (X = X,) + (X=X )(X =X, ) + (X =X )(X = X )TA® f (X,) +-vvrvenee. .(2)
Here x=10,%x, =3, X, =5, X, =11, X, =27, X, =34.
The divided difference table is given below:
X f(x) Af(X) APf(X) A3f(X) A H(X)
3 -13
23— (-13) _18
5-3
5 23 146 -18 _16
11-3
899—23:146 40—16_1
11 899 1026 —146 _ 40 i -0
27_-5 34-3
17315 —-899 _10% 69-40 .
27-11 34_5
27 | 17315 2613-1026 69
34-11
35606 —17315 9613
34-27
34 | 35606

Putting above these values in the equation (2), we get

f'(10) =18+ {(10—5) + (10— 3)} (16)



+[(10—5)(10—11) + (10 —3)(10 —11) + (10 —3)(10 — 5)] <1
=18+12x16 +[(-5) + (—7) +35] x1
=18+192 + 23
f’(10) = 233.

Hence the value of f’(10) is 233.

Example.5. From the following table, determine the value of f’(2.5):

f(x) 3.375 6.059 13.625 29.368 73.907 196.579

Solution: In this case the values of the arguments are not equally spaced. So we will use here

the Newton’s divided difference formula.

The Newton’s divided difference formula is
y = (%) +(X=%)AF (%) + (X=X )(X =X )A* f (X,)

+ (X=X ) (X=X ) (X = X) A% F (X)) +Fevererrrreriennns (D)
Differentiating equation (1) with respect to x , we get

dy _

" = Af (%) +[(X— %) + (X — %) | A% f (%) +

[(X—X)(X—X,) + (X=X, )(X = %5) + (X = % )(X = X)JA® F (Xg) +-vvvrvnene. ce(2)



Here x=2.5,x, =15, x, =1.9, x, =25, x,=3.2, X, =4.3, X, =5.9.

The divided difference table is given below:

x | f(x) Af(x) A %(X) A 3(X) A *(X)
15| 3.375
6.059-3.375 __,
1.9-15
19| 6.059 12617671 g4
25-15
13.625-6.059 _, 76-59
25-1.9 3015
25| 13.625 2249—1261_76 1-1 -0
32-19 43-15
29.368-13.625 __, 10-76 _,
32-25 23-19
3.2 | 29.368 40.49-22.49 -1
12,5 W 59-19
43-25 ~-L
73.907-29.368 _ . o 134-10
43-32 TR
43| 73.907 76.67—40.49:13.4
5.9-3.2
196.579-73.907 __..
59-4.3
5.9 | 196.579

Putting above these values in the equation (2), we get

f'(2.5) = 6.7 +{(2.5-1.9) + (2.5-1.5)} (5.90)

+[(2.5-1.9)(2.5—2.5) +(2.5—1.5)(2.5—1.9) + (2.5—1.5)(2.5— 2.5)] x (1)




=6.71+9.44+0.6
=16.75
f’(2.5) =16.75.

Hence the value of f’(2.5) is 16.75.

11.5 Summary

Newton's Divided Difference Formula holds a fundamental role in numerical analysis, primarily
employed for the construction of interpolating polynomials. This method is extensively utilized
in various applications, spanning numerical integration and differentiation. The essence of
Newton's Divided Difference Formula lies in its mathematical approach to creating an
interpolating polynomial based on a set of provided data points. This technique proves
particularly valuable when tasked with approximating a function in situations where only discrete

data points are available.

If your data points are evenly spaced, use the Newton-Gregory forward formula for derivatives
near the beginning and the backward formula for derivatives near the end. If the derivative is
around the middle of your data, use the Stirling difference formula. For unevenly spaced data,

go with Newton's divided difference formula.

11.6 Terminal Questions

Q.1. Explain the Newton’s divided difference formula.
Q.2. When we use Stirling difference formula for derivaties.

Q.3. Find £ ’(5) from the following table:



X 0 2 3 4 7 9
4 26 58 112 466 922
f(x)
Q.4. From f(7.50) from the following table:
X 7.47 7.48 7.49 7.50 7.51 7.53
0.193 | 0.195 | 0.198 0.201 0.203 0.206 0.208
y=f(x)
Q.5. Find f'(0.6) and f"(0.6)from the following table:
X 0.4 0.5 0.6 0.7 0.8
1.5836 1.7974 2.0442 2.3275 2.6510
f(x)
Q.6. Find f'(0.8) from the following table:
X 6 7 9 12
1.556 1.690 1.908 2.158
f(x)
Q.7.Find f'(2) for f(x)=1 > from the following table:
+X
X 1.0 1.1 1.2 1.3 14
0.5 0.4524 0.4098 0.3717 0.3378
f(x)




Answer

3. 84856

4.0.233

5. 2.6445 and 3.64833
6.0.10848

7.-0.5031.
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12.1 Introduction

Numerical integration is a technique used to approximate the definite integral of a function when
an analytical solution is challenging or impossible to obtain. It involves dividing the integration
interval into smaller subintervals and approximating the area under the curve within each
subinterval. Various methods exist for numerical integration, and the choice often depends on
the nature of the function and the desired level of accuracy.

Numerical integration is valuable in cases where the antiderivative of a function is difficult to
determine or when dealing with numerical data. It finds applications in various fields, including
physics, engineering, finance, and computer science. The method chosen depends on factors such
as the complexity of the function, the desired precision, and the computational resources
available. Numerical integration is the process of obtaining the value of a definite integral from

a set of numerical values of the integrand.

The process to finding the value of the define integral | = jbf (x)dx of a function of a single

variable, is called as numerical quadrature. If we apply this for function of two variables it is

called mechanical cubature.

12.2  Objectives

After reading this unit the learner should be able to understand about:

. the Quadrature formula
. the trapezoidal rule and their problems

. Simpson’s 1/3 and 3/8 Rule for solving integration



12.3  Quadrature Formula

A quadrature formula is a method for numerical integration, also known as quadrature, where
we approximate the integral of a function by summing weighted function values at discrete points
within the interval of integration. There are various types of quadrature formulas, such as the
midpoint rule, trapezoidal rule, Simpson's rule, and Gaussian quadrature, among others. The
problem of numerical integration is solved by first approximating the function f(x) by a

interpolating polynomial an then integrating it between the desired limit.
Thus f(x) =P, (X)

[T f0e0dx =] P,(dx.
Further suppose y = f (x) -

Let us consider the values Vor Yis Yoor Yoy ceeeeeeeeeannn A VASEPI VAR (o]

Xgy Xo +h, X, +2h, X, +3h,.......... , Xo +nh.

Let x, =a,x, =x,+h=a+h, x,=x,+2h=a+2h, ........ , X, =X, +nNh=a+nh=Db

Then we have
b Xo+nh
| =L f (X)dx = j f (X)dx

Using the Newton’s forward interpolation formula is



uu-Du-2)

u(u-1

Y= 100 = vy +uay, + XD ey, MUZDUZD oy
(D)

X — X
Wh u= 0

ere ™

dx

Then we have du:F = dx=hdu

Putting the above values in the equation (1), we get

n u(u—1 ulu—1DH@u-2
I=h_|-O [yo+uAyo+%A2yo+ ( ;I( )A3y0+ ...... } du

2 n3 n2 AZyO
”y°+—Ay°+[?‘7j 2!
=N n’ A’y
+(7—n3+n2j3—|°+ ....................... +upto(n+1) terms
B 2 n® n2 Azy T
ny, + —Ay, +| — —— 0
o Yot 5 o (3 2 ) 21
" feodx=hl K 2)
+(?—n3 +n2j 3?/0 F e, +upto(n+1) terms

This is the general quadrature formula.

124  Trapezoidal Rule

Trapezoidal Rule is a numerical method used for approximating definite integrals, especially
when an analytical solution is challenging to obtain. It is based on dividing the integration

interval into smaller subintervals and approximating the area under the curve using trapezoids.



The Trapezoidal Rule is a straightforward method that provides reasonable accuracy, especially

for functions with varying slopes. However, it may require more subintervals to achieve high

precision compared to some other methods. The general quadrature formula is

[ £ (odx=h

X 4 3
0 A
+(%—n3+n2j Yo o .

+upto(n+1) terms

(1)

Putting n =1 in the general quadrature formula (1) and neglecting all the differences higher terms

than first, we get

[ f oodx = h[yo +%AyOJ

1
= h[yo +E(Y1_ yo):|

:h(y0+yl)

2

Similarly, we get

J.X0+h2h f (X)dX —h (yl _|2_ y2)

J'Xo_mh f (X)dX _ h (yn—l + yn)

Xo+(n-1)h 2

Adding all these above n integrals, we get

Xo+nh 1
[, f0oodx= h[;(yo +Y) (i + Y, +Ys

F o



h
=§[(y0+yn)+2(y1+y2+y3+ ................ +Y,4)] .2

This formula (2) is known as Trapezoidal rule. Trapezoidal Rule is a practical and widely used
numerical technique for solving the integration. It is suitable for approximating the definite
integral of a function when analytical methods are impractical.

Examples

Example.1. Use Trapezoidal rule to evaluate j:x3 dxconsidering the five sub-intervals.
Solution: Divide the interval [0, 1] into five sub parts in which each of width

h:g:O.Z
5

For computing the value of the given functiony = x3at each points of sub-interval, are as

following:

y =x 0 0.008 0.064 0.216 0.512 1

Using Trapezoidal rule, we have

Xo+nh h
LO f(x)dx=§[(yo+yn)+2(y1+y2+y3+ ................ +Y,4)]

or

1 h
D509 200 v v )]



:0422[(0+1)+ 2(0.008+0.064 +0.216+0.512) |

=O—é2[2><0.8+1]

-22(26)

=0.26.

125 Simpson’s 1/3 Rule

Simpson's Rule is a numerical method for approximating definite integrals, particularly useful
when an analytical solution is challenging to obtain. This rule is an improvement over the
Trapezoidal Rule and provides a more accurate estimation of the area under a curve. Simpson's
Rule generally provides a more accurate result than the Trapezoidal Rule, and the error decreases

significantly with each doubling of the number of subintervals.

Simpson's Rule is more accurate for smooth and well-behaved functions, especially those that
can be approximated well by quadratic polynomials. However, it requires an even number of
subintervals, and the accuracy improvement may be modest for functions with rapidly changing

slopes.

The general quadrature formula is

Xo+nh
J, foodk=hl A%y (M)
+(Z—n3+n2j3—°+ .............. +upto(n+1) terms

Putting n = 2 in the general quadrature formula (1) and neglecting all the differences higher terms

then second, we get



%o+2h 27 2° 272\ A%y,
1
—h 2Y0+ 200, - Yo) + (Y.~ 25, + ) |
=h| 2y, +2y, -2y +ﬁ—gy +ﬁ
0 1 [¢] 3 3 1 3
h
=§(y0+4y1+y2)
Similarly
Xo+4h f d . h 4
[ TOOdX=ZLy; +4ys +y.]
(X)X = (Yo s+ A1+ Ya)
[oiopn F OO =2 (Yo p + 4y, +Y,
Adding all these above n integrals, we get
J-><O+nhf(x)dxzn[yo+2(y2+y4+y6+ .................. +Yos) }
%o S| HA(Y, + Yot Yo toeeerneeeeeniineen +Y. .)+Y,
:h{(yo+yn)+2(y2+y4+y6+ .................. +yn2)} o
| HA(Yy + Y+ Vot e, +Yoa)

. . 1
This formula (2) is known as Simpson’s —rule.

Check your Progress

1. What do you mean by trapezoidal rule?



2. Write the simpson’s 1/3 formula.

Examples

X2

1+ x3

Example.2. Find the value of log, 2from j: dx, using Simpson’s one-third rule, by

dividing the range into four equal parts. Also solve the given integral with usual method

and find the error.

Solution: Divide the interval [0, 1] into four equal parts in which each of width
h= 1-0 =0.25
4

X2

X3

For computing the value of the given functiony = f (x) = 1 at each points of sub-interval,

are as following:

X X2 X3 1+ x3 2
y="100= 1+x°
0 0 0 1 0
0.25 0.0625 0.015625 1.015625 0.061538
0.50 0.2500 0.12500 1.12500 0.222222
0.75 0.5625 0.421875 1.421875 0.395604
1 1 1 2 0.500000




Using Simpson’s one-third rule, we have

jxomhf(X)dxzn{(yo+yn)+2(y2+y4+y6+ .................. +yn_2)}
% 3| HA(Y, + Ys+ Ys F o +Yoi)
or

1 x2 h
Io 1+ x3 dng[(yo+y4)+2y2 +4(y1+y3):|

- % [(0-+0.5) +2(0.222222) +4(0.061538 +0.395604)]

= 0—;5 (2.773015)

=0.231084.

Again we have

2 2
(VY
0 1+X 3901+ X

1 T
=§[Iog(l+x )]O
1
==log?2
3 g

_ % «(0.693147)

=0.231049

Therefore the error between usual method and numerical method is



=0.231084 —0.231049

=0.000034.

Example.3. Use Simpson’s 1/3 rule, dividing the range into ten equal parts, to prove that

3
Ilw=0.1730.
0 1+Xx

1-0

Solution: Divide the interval [0, 1] into ten equal parts in which each of width h= ETS =0.1.

For computing the value of the given functiony = f (x) =

interval, are as following:

1+ X2

log(1+ x%)

at each points of sub-

X X2 1+ x? log (1+ x?) log(1+ x?)
1+ x°

0 0 1.0 0 0
0.1 0.01 1.01 0.009950 0.009851
0.2 0.04 1.04 0.039220 0.037712
0.3 0.09 1.09 0.086177 0.079062
0.4 0.16 1.16 0.14842 0.127948
0.5 0.25 1.25 0.223143 0.178514
0.6 0.36 1.36 0.307484 0.226091
0.7 0.49 1.49 0.398776 0.267634




0.8 0.64 1.64 0.494696 0.301644

0.9 0.81 1.81 0.593326 0.327804

1.0 1.0 2.0 0.693147 0.346573

Using Simpson’s one-third rule, we have

J~1 log(1+ x?)

h
0 1+ X2 dng[(yo+y10)+2(yz+y4+ye+y8)+4(y1+y3+y5+y7+y9)]

= 0—31 [(0+0.346573) +2(0.037712+0.127948 + 0.226091+ 0.301644)

+4(0.009851+ 0.079062 + 0.178514 + 0.26634 + 0.327804)]
- %1 (5.184839)

=0.17282793.

1/2

0.7
Example.4. Evaluate the integral IO ;X e *“dx using the Trapezoidal rule and Simpson’s

1/3 rule.
Solution: Divide the interval [0.5, 0.7] into four equal parts in which each of width
~0.7-05

4
=0.05

h

For computing the value of the given functiony = f (x) = x/?e *at each points of sub-interval,

are as following:



X xV2 e f(x)=x"%"

0.50 0.707106 0.606530 0.428881
0.55 0.741619 0.576949 0.427876
0.60 0.774596 0.548811 0.425107
0.65 0.806225 0.522045 0.420886
0.70 0.836660 0.496858 0.415473

Using Trapezoidal rule, we have

Xo+nh h
LO f(x)dx:E[(yo+yn)+2(y1+y2+y3+ ................ +VY,.1)

or

07 1o 4 h
J‘0_5 X e dXZE[(yO+y4)+2(y1+y2+y3)]

0.05

= [(0.428881+0.415473) +2(0.427876+0.425107 +0.420886)]

0.05

==~ (3392092)

=0.0848023

. 1
Using Simpson’s grule, we have




07 1 o h
.[0.5 X edx = g[(yo + y4) +2Y, +A’(Yl + y3)]

= —0'55 [(0.428881+0.415473) +2(425107) +4(0.427876 +0.420886)]

= 0—25 (5.089616)

=0.0848269.

125 Simpson’s 3/8 Rule

Simpson's Rule is a valuable method for numerical integration which is offering improved

accuracy over simpler techniques, especially for functions with relatively smooth behavior.

The general quadrature formula is

2 n3 n2 AZy
ny, +—Ay, +| ——— |[—2
J-x0+nh f( )d h yo yO ( 3 2 j 21
X)ax = (1
o n* 5 5 )A%Y, @
+| ——n"+n T+ .............. +upto(n+1) terms

Putting n =3 in the general quadrature formula (1) and neglecting all differences higher then

third, we get.
3 2 2 4 3
.[: " (x)dx = h[?»yo +%Ayo +[3——3—jﬂ+[3——33 +32j—A yo}

3 2 2! 4 3

9 9 3
:h[syo +E(Y1 - Yo) "‘Z(yz -2y +Y,) "‘g(ys -3y, +3y;, — yo):|

3h
= E[yo +3y, +3y, + y3]



Similarly

Xo+3h

Xo+6h 3h
oo FOOAX=2Ly: +3Y, +3y5 + o]

Xo+nh Sh
| FOQAX= " [Yna + 3V +3Yo + Vo]

Xo+(n-3)h
Adding all these above n integrals, we get

(Yo +¥n) +30Ys+ Yo + Yo+ Y5 + Y7+ Vg & Vig + Yoy v +Yos)

Xp+nh 3h
j f(x)dx ==
X 8

F2(Ys+ Yo+ Yo+ Yo+ +Y.3)

o (2)

This formula (2) is known as Simpson’s three-eight’s rule.

Examples

Example.5. Evaluate J‘O”/Zes"‘x dx correct to four decimal places by Simpson’s one-third and

three-eighth rule, dividing the interval (0, %} into three equal parts.

Solution: Divide the interval (0, %j into three equal parts in which each of width

h=(7z/2)—0
3

T
6



For computing the value of the given functiony =e®"*at each points of sub-interval, are as
following:

X 0 T /4
6 3 2
y =e " 1 1.64872 2.45960 2.71828

Using Simpson’s one-third rule, we have

J»O;;/Zesinx dx = g[(y0 +Y,)+2(Y,)+4(y,)]

= ”Tm[(1+ 2.71828) +2(2.45960) + 4(1.64872)]

=7 (15.23236)
18

=2.6596.

Using Simpson’s three-eighth rule, we have

2 G 3h
.[o e dXZ?[Y0+3(y1+yz)+y3]

i

=g [(1+2.71828) + 3(1.65872 + 2.45960) |

=37 (16.04324)
48



=3.1513.

1
. dx .
Example.6. Evaluate the integral Iﬁ , using Simpson’s 1/3 rule and Simpson’s 3/8
o 142X

rule.

Sol. : Divide the interval [0, 1] into three equal parts in which each of width

h-120
6
_1
6
¢ dx
For computing the value of the given functionj1 ™ at each points of sub-interval, are as
+
0
following:
X 0 1/6 2/6 3/6 4/6 5/6 6/6=1
f(x) 1 0.75 0.6 0.5 0.4285714 | 0.375 | 0.333333

Using Simpson’s % rule ,we have

I h

[ £ 000 =Z1(Yo + Yo) +2(Y2 + V) + 40y + Y5 + Y5l
0

:%[(H 0.333333) + 2(0.6 +0.4285714) + 4(0.75+0.5+0.375)]

= %[1.33333 +6.5 + 2.0571428]



=0.5494708.

Using Simpson's g rule, we have

1

3h
[ 00 =2[(Yo+¥e) +2Y5+ 3(Yi+ Yo +Yu+s)]

0

- 438[(1+ 0.333333)+2(0.5) + 3(0.75+0.6+0.4285714 +0.375) |

=%[1.333333 +1+6.4607142]

_ L (8.7940475)
16

=0.5496279.

: 6 dX .
Example.7. Evaluate the integral by using Trapezoidal, Simpson’s one-third and
b1 22 y g 1rap P

three-eighth rule.
Solution. Divide the interval [0, 6] into six equal parts in which each of width

h=6-0
6

. . . 1 . .
For computing the value of the given functiony = % at each points of sub-interval, are as
+ X

following:



X 1
Y=

0 1

1 0.5

2 0.2

3 0.1

4 0.0588

5 0.0385

6 0.027

Using Trapezoidal rule, we have

J‘G dx

h
0142 :E[(yo +Ye) +2(Y,+ Yo + Y3+ Ya+ Ys)]

= %[(l+ 0.027)+2(0.5+0.2+0.1+0.0588 +0.0385)]

= %[2.8216]

=1.4108

Using Simpson’s one-third rule, we have

J-G dx h
0

1+ %2 = g[(yo + y6)+2(y2 + y4) +4(y1 +Y;+ ys)]



= %[(l-i- 0.027) +2(0.2+0.0588) +4(0.5+0.1+0.0385)]

= % [1.027 +2(0.2588) + 4(0.6385)]

- %[4.0986]

=1.3662.

Using Simpson’s three-eight rule, we have

J'l dx 3

h
0 1452 = E[(yo + ye) + 2(y3) +3(y1 +Y,+Y,t+ y5)]

:g[(1+ 0.027) +2(0.1) +3(0.5+ 0.2+ 0.0588 + 0.0385)]

3
==(3.6189
3 ¢ )

=1.3570.

Example.8. Calculate the approximate value of f3 x*dx by using Trapezoidal rule,

Simpson’s one-third and three eight rule, by dividing the range in six equal parts.

Solution: Divide the interval [-3, 3] into six equal parts in which each of width

_3-(3
6

h



For computing the value of the given functiony = x*at each points of sub-interval, are as

following:

y=x* 81 16 1 0 1 16 81

Using Trapezoidal rule, we have

3 h
J:3 x*dx :E[(yo + y6)+ 2(y1 tY,+¥Y;tYy,+ ys)]
= %[(81+81) +2(16+1+0+1+16)]

- %[162 +68]

=115

Using Simpson’s one-third rule, we have

3 h
[ Xox =000+ Y) + 200, + V) + 40+ Y + Yo+ ¥s)]
=%[(81+81)+2(1+1)+4(16+O+16)]

- :—13[162 +2(2) +4(32)]



1

=98

Using Simpson’s three-eight rule, we have

3 3h
j_3 X*dx = 10+ ¥) +209) +3(% + Y, + Yo + o))
= g[(81+ 81)+2(0)+3(16+1+1+16)]

:2[162+3><34]

=99

The exact value of

fg x*dx = 2_[; x*dx

431
5 0

2 e
-@

= E><24f">
5

=97.2.

Example.9. Evaluate EZ log, xdx by Simpson’s one-third and three-eighth rule.



Solution: Divide the interval [4, 5.2] into six equal parts in which each of width

For computing the value of the given function f (x) = log, x at each points of sub-interval, are

as following:

f(x) | 1.386294 | 1.435084 | 1.481604 | 1.526056 | 1.568615 | 1.609437 | 1.648658

Using Simpson’s one-third rule, we have

52 h
J, Tog. xax=Z1(so + Vo) + 20y, + Yi) + 4, + Vs + ¥s)]

_ 0_32 [(1.386294 1 1.648658) + 2(1.481604 + 1.568615)
+4(1.435284 +1.526056 +1.609437)]
_ O_: (27.417698)

=1.827847

Using Simpson’s three-eighth rule, we have



52 3h
J, Tog. xabx =710 + ¥o) + 20%5) + 30 + Yo + Yo+ )]

= _3(%'2) [(1.386294 +1.648658) + 2 (1.526056)

+3(1.435284 +1.481604 +1.568615 +1.609437)]

- %6 x (24.371294)

=1.827847.

1
Example.10. Evaluate the integral j dx using using Trapezoidal rule, Simpson’s one-
0

1+ x?

third and three eight rule, by dividing the range in six equal parts. Hence obtain the value

of = in each case.

Solution. For applying the trapezoidal rule, the interval must be divided into number of intervals
to multiple of 1, for Simpson’s 1/3 rule, in number of multiple of 2, for Simpson 3/8 rule in
number of multiple of 3. So when applying all the rules then number of intervals must be divided

by 1, 2, 3 and 6. Let n=6 intervals then we have

h_b-a
n
1-0
G
1
6
X| %=0 xlzl XZ:E x3:§ x4:ﬂ x5:§ X =1
6 6 6 6 6
1 i:O.97297 i:O.9 i=0.8 L:0.0692307 L=0.59016 1
y mzl 1+ L 141 141 1+4 1+ 2 m_o‘r)
36 9 4 9 36
SE Y, Vs Y, 2 5




Using Trapezoidal rule, we have

Xo+nh

Xo

J' f(x) dng[(yo+yn)+2(y1+y2+ ........ +yn—l):|

o1 1
T ™ 12 (Yo +¥s)+2(y2+y 2 + Y5+ Yo+ ¥s)]
0

= %[(1+ 0.5)+2(0.97297 + 0.9 + 0.8)+ (0.692307 + 0.59016)]

= 0.7842395

Using Simpson’s one-third rule, we have

Xg+nh

j f(x)dx=g[(y0+yn)+2(y3+y4+....)+ 4(Y,+Ys+.) |

0

Xg+nh

0

] (1+—1><2)dx = 2[(yo+ye) 2V Ya) + 4Vt Y5+ Ys) ]

= %[(u 0.5)+2(0.9+0.692307)+4(0.97297 +0.8+0.59016) |

= 0.78539633

Using Simpson’s three-eight rule, we have

Xo+nh

|

0

1
1+X

3
_[ f(x)dx= gh[(yo+yn)+2(y3+y6+yg+...)+3(yl+y2+y4+y5+y7 + Y, )]

2

3
dx = EI:(YO"'ye) + 2(y3)+ 3(y1+y3+y4+y5)]

_ %[(u 0.5)+2(0.8) +3(0.97297 +0.9+0.59016 +0.692307 +0.59016) |

= 0.78539437



Using integration, we have

1
1
dx =|tan* x |}
;[1+ X i Js
= tan"'(1)- tan™(0)
_r
4
1
or j ! 5 ax=2
o 1+ X 4
1
or T= I L > dx.
o 1+ X

Using Trapezoidal rule, © = 4[0.7842395]=3.136958.

Using Simpson’s 1/3 rule, we have ©=4[0.785396333]=3.141585332.

Using Simpson’s 3/8 rule, we have 1=4[0.78394437]=3.14157748.

12 Summary

The Trapezoidal rule is

Xo+nh h
[, 09X =C{(Yo +Ya) +2(y+ Y, +..

The Simpson’s 1/3 rule is

The Simpson’s 3/8 rule is



12 Terminal Questions

Q.1. Write the formula for Trapezoidal rule.

Q.2. Which method give the more approximate result in the following method:
(1) Trapezoidal rule (ii) Simpson’s one third rule (iii) Simpson’s three-eighth rule.
Q.3. Explain the Simpson’s 3/8 rule.

1 dx
Q.4. Evaluate _[01 v
+

by using Simpson’s one-third and three-eighth rule. Hence obtain the

approximate value of &t in each case.

10 dx :
Q.5. Evaluate J-z 1—by dividing the range into eight equal parts by Simpson’s one-third rule.
+ X

Q.6. Calculate an approximate value of the integral J:/zsin xdx by (i) Trapezoidal rule (ii)

Simpson’s one third rule (iii) Simpson’s three-eighth rule.

Answer
4. 0.785397 and 0.785395, . = 3.141588
5.1.29962

6.0.99795, 1.0006, 1.1003.
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13.1 Introduction

The numerical solution of ordinary differential equations (ODES) involves using computational
methods to approximate the solutions of differential equations when explicit analytical solutions
are not readily available or feasible. ODEs describe how a function changes with respect to an
independent variable and find applications in various fields such as physics, engineering,

biology, and economics.

In this unit, we will discuss the important methods of solving ordinary differential equation of

first order having numerical coefficients and given boundary or initial conditions

[i.e., % = f(x,y) given y(x,) = yoj numerically. These methods also useful to solve those
X

types of problem related to first order differential equations which cannot be integrated

analytically. For example, % =X +y*—c%
X

Some important numerical methods for solving ordinary differential equations are Euler’s
method; Euler’s Modified method; Taylor’s Series Method; Picard’s method of successive
approximation; Runge-Kutta method and Milne’s predictor-corrector method. Here in this unit

we discuss only Euler’s method; Euler’s Modified method and Taylor’s Series Method.

13.2  Objectives

After reading this unit the learner should be able to understand about:

= The Euler’s Method
= The Euler’s modified Method

= The Taylor Series method



13.3 Euler’s Method

Euler's Method is a simple and straightforward numerical technique used for approximating the
solution of ordinary differential equations (ODEs) when an explicit analytical solution is either
challenging or impossible to obtain. Developed by Leonhard Euler, this method is particularly
suitable for introductory purposes and provides a basic understanding of numerical integration.
Euler's Method is based on the idea of approximating the solution of an ODE by taking small

steps along the curve, using the slope at each point to predict the next value.

The method is easy to implement, making it a suitable choice for introductory courses in
numerical methods. However, it may not provide accurate results for certain types of differential
equations, especially those with rapid changes. This is simplest and oldest method was devised
by Euler. It illustrates, the basic idea of those numerical methods which seeks to determine the

change Ay iny corresponding to a small increase in the arguments x.

Euler's Method serves as a foundation for more advanced numerical methods and is a valuable

tool for gaining insight into the numerical solution of ordinary differential equations.

Consider the differential equation

d
y,:d_y: f(xy) (D)
X

with initial condition y = yo when x=Xx,, i.e., y(X,) =Y,

We wish to solve the equation (1), for the values of y at x = x;

Where x; = x, +ih, i=1,2,3,4,.....

Now integrate the equation (1), we have

Vo=Yo+ [ f(xy)dx



Let F(X,y)=f(X,,Y,) Where X, <xX=<x

Now we have
Yi=Yo +L): f (Xo’ YO)dX

= Yo + (X% —X) F (X, ¥o) [ h=x —x%,]
Similarly for x, < x < x,, we have

Yo=Y +h 0 y1)
Proceeding in the same way, we have finally
Yo = ¥Ya +h F(X,,y,)
Thus, starting from xo when y = yo we can construct a table of y for given steps of h in x.

Euler's method is a simple numerical technique for solving ordinary differential equations
(ODEs) that can be computationally inefficient for certain problems, especially when higher

accuracy is required.

Euler's method approximates the solution of an initial value problem by advancing the solution

in small steps of size / along the direction of the derivative.

Examples

Example.1. Given dy _y—X

dx y+Xx

with the initial condition y =1 when x = 0 find y for x = 0.1
in four steps by Euler’s method.

Solution: It is given that



dy _y—X
dx y+Xx

Wehave h= 0741 =0.025

The Euler's formula is
Yo = Yo + N E(X, ¥5)
Puttingn=0,1, 2,3, ...... in equation (1), we get
Y1 =Yo +h (X ¥o)

_y +hYe %
Yo+ %o

=1+ 0.025(ﬁj
1+0

=1.025
y, =1.025
Again we have
Y, =Y +hi(x,y)

y1 — X1

=y, +h
YitX

:1.025+o.025[1'025_0'025)

1.025+0.025

~1.025+0.025% ——
1.05

y, =1.0488

=f(X,¥), % =0, y,=1

(1)



Now we have

Y; = y2+hf(x2,y2)

=y2+h yz_xz
Yo +%;

=1.0488+0.025(—1'0488+0'05 j

1.0488+0.05

1.0438
1.0988

=1.0488 + 0.025 x

y, =1.07152

Now we have

Y. = y3+hf(X3’y3)

=y3+h yS_X3
Y+ %5

=1.07152 + 0.025[1'07152_0'075j

1.07152+0.075

y, =1.09324

Hence the value of y at x = 0.1 for the differential equation dy _y=-x is 1.09324.
dx y+Xx
Example 2. Using the Euler’s method to compute the y(0.5) for the differential equation

ﬂ:yz—x2 with y=1 when x=0.

dx

Solution: It is given that



Q—y2—x2: f(x,y), X =0y, =1.

dx
And we have h= % =0.1
The Euler's formula is

You = Yo +h F(X,,¥,) (D)
Puttingn=0,1, 2,3, ...... in equation (1), we get

Y1 = Yo +hf(X, o)
i = Yo +h(¥s —%5)
=1+(0.2) (12 — 0?)
=1+(0.1)1
=11
Again we have
Y, =Y +hf(x,y)
Yo = Vi +h(y; =)
=1.1+(0.)[(L.1)* - (0.1)?]
=1.1+(0.1)(1.21—0.01)
=1.220 [ x, =%, +h]
Now we have

Ys :y2+hf(ley2)



=Y, +h(y; —%;)

=1.22 + (0.)[(1.22)? — (0.2)?] [c X, =% +h]
—1.22+(0.1) (1.4484)
=1.36484

Now we have Yy, =Y, +hf(xs,Y,)
Ya=Ys+h(y; —x})

=1.36484 + (0.1)[(1.36484)% — (0.3)°]
—1.36484 -+ (0.1)(1.7728)

=1.54212

Now we have Ys =Y, +hf(X,y,)

=y, +h(y; —x;)
=1.54212 + (0.1)[(1.54212) — (0.4)?]
=1.7639

. . : . d .
Hence the value of y at x = 0.5 for the given differential equation d—y = y? — X% is 1.7639.
X

134 Euler’s Modified Method

Euler's Modified Method, also known as the Improved Euler Method or Heun's Method, is an
enhancement of the basic Euler's Method for approximating the solution of ordinary differential

equations (ODEs). This modification seeks to improve the accuracy of the solution by



incorporating a more sophisticated approach to predicting the next values. Similar to Euler's
Method, Euler's Modified Method is based on the idea of approximating the solution of an ODE
by taking small steps along the curve. However, it employs a more refined prediction step. While
Euler's Modified Method requires an additional evaluation of the function to improve accuracy,
it is still relatively straightforward to implement. It strikes a balance between simplicity and

accuracy.

The Euler Modified formula is

n-+ h n
" = Yo + ST (%, ¥o) + T 00y (1=0,1 2...)

This is the nth approximation of y:. For determining the initial value yl( ) we use the Euler’s

method. v, ¥ =y, +hf(x,Y,).

Check your Progress

1. What do you mean by Euler’s method?

2. Write the Euler’s modified method formula.

Examples

Example.3. Solve the differential equation % =X+ \/M with y(0) =1for0< x <0.6in the
X

steps of 0.2; using Euler’s modified method.

Solution: It is given that

f(x,y)=x+\/m,x0:0, Yo =1and h=0.2 e



Using Euler’s method, we have

Y1ZYO+hf(Xo’YO)

=1+ (0.2)(0++1)
=1.2

Hence y, =y, =1.2.

The value of ys, thus determined is improved by Euler’s modified method. The Euler’s modified

formulais
(n+1) h (n)
Y1 :yo+§[f(xo'yo)+f(xliy1 )] (2)
Put n =0 in the equation (2), we get

h
yl(l) =Y +§[f(X01 YO)"‘ f(xli Y1(O))]

=1+0;22[(0+\/1)+(o.2+\/ﬁ)]

=1+0.2295 =1.2295

Put n =1 in the equation (2), we get
@ _ h 1)
Yi =Y +§[f(X0’ YO)"‘ f(xl’ Y1 )]

=1+O;22[(0+Ji)+(0.2+,/1.2295)]

=1+0.2309

=1.2309



Put n = 2 in the equation (2), we get

h
y1(3) =Y +§[f(X07 YO)+ f(Xp Y1(2))]

=1+ 0;22[(0+\/1) +(0.2++/1.2309)]

=1+0.2309

=1.2309
Hence we take y, —1.2309at x =0.2.
Now, we proceed to obtain y at x = 0.4.

Using Euler’s method, we have

y2=y1+hf(x1,y1)

:y1+h(x1+\/m

=1.2309 + 0.2(0.2 ++/1.2309)
=1.2309+0.2(1.30945)

=1.49279

The value of Y,,thus determined is improved by Euler’s modified method. The Euler’s

modified formula is
m _, N .
y2 —y1+§[f(X1,yl)+f(X2,y2)] (3)

Put n =0 in the equation (3), we get



h
yél) =Y, +§[f (X1' y1)+ f(X2’ yEO))]

~1. 2309+E[(o 2 +/1.2309) + (0.4+«/1.49279)]

=1.52402

Put n =1 in the equation (3), we get
2 _ h &
"= Y +§[f (X1’ Y1)+ f (Xz’ Y2 )]

=1. 2309+—[(o 2 ++/1.2309) + (0.4 + /1.52402 )]

=1.525297

Put n =2 in the equation (3), we get
@) _ h (2)
Yo' = y1+§[f (X11 y1)+ f(XZ, Y2 )]

=1. 2309+—[(o 2 ++/1.2309) + (0.4 ++/1.525297 )]

=1.52535

Put n = 3 in the equation (3), we get
(4) h ©)
Y2 —y1+§[f(x1,y1)+f(x2,y2 )]

=1 2309+%[(o 2 ++/1.2309) + (0.4+\/1.52535)]

=1.52535



Thus ys =y
Here we take y, =1.52535 at x=0.4.

Now we proceed to obtainy at x = 0.6.

Using Euler’s method, we have

y3:y2+hf(x2,y2)

=Y, +h(X2 +\/|y2|)

=1.52535+0.2(0.4 ++/1.52535)
=1.85236.

The value of ys, thus determined is improved by Euler’s modified method. The Euler’s modified
formula is

(n+1)

h n
Y3 ZY2+§[f(X21Y2)+f(X31Y§))] ()
Put n =0 in the equation (4), we get

h
yél) =Y, +§[f(X2, yz)+ f(x3,y§°))]

:1.52535+O—;[go.4+\/1.52535) + (0.6+\/1.85236)]

=1.88496

Put n = 1 in the equation (4), we get

h
y§2) =Y, +§[f(X21 yz)"‘ f(X31y§1))]



—1.52535+ 0422[(0.4+ J1.52535) + (0.6 + \/1.88496)]

=1.88615

Put n =2 in the equation (4), we get

h
yés) =Y, +§[f (Xz’ yz)"‘ f(X3, Y§3))]

_1.52535+ 22 [(o.4+ J1.52535) + (0.6 + \/1.88615)]

2
~1.88619

Put n = 3 in the equation (4), we get

h
ye(,4) =Y, +§[f (Xzi y2)+ f(X3, yés))]

:1.52535+O—;[(o.4+\/1.52535) +(0.6+\/1.88619)]

=1.88619
Here y® =y®.
Thus we get y,=1.88619 at x=0.6.
Hence the value of y(0.2) =1.2309, y(0.4) =1.52535, y(0.6) =1.886109.
Example.4. Using the Euler’s modified method, compute y(0.1) correct to six decimal

figures, where % =x"+y with y(0) =0.94.

Solution: It is given that

f(Xx,y)=x*+y, x,=0, y,=0.94, h=0.1. ()



Using Euler’s method, we have

Y. = YO‘l'hf(Xo’YO)
=Y+ h[Xg + yo]
=0.94+ (0.1)[0+0.94]

=1.034

Hence y, =1.034.

The value of ys, thus determined is improved by Euler’s modified method. The Euler’s modified

formula is
(n+1) _ h (n
Y1 —y0+§[f(x0,yo)+f(x1,y1 )] (2)
Put n =0 in the equation (2), we get
o _ h (0)
Yi'=Yo +§[f (Xo’ yo)"‘ f(X1’ Y1 )]

= o.94+0—'1[(0+o.94) +((0.1)° +1.034) |

2
=1.0392

Put n =1 in the equation (2), we get
@ _ h &)
Yi"=Yo +E[f (Xos Yo) + £04, ¥17)]

—0.94+ 21 (0+0.94)+ (0.0 + (1.0392) |

2

=1.03946



Put n = 2 in the equation (2), we get

h
yl(S) =Y +§[f (Xo’ yo)"’ f(xw y1(2))]

_ 0.94+°7'1[(0+o.94) +((0.1)° +(1.03946)) |

=1.039473

Put n = 3 in the equation (2), we get
) _ h €)
Yi'=Y% +§[f (Xo’ YO)"‘ f (Xl’ Y1 )]

_ o_g4+07'1[(0+o.94) +((0.1+(1.039473) |

=1.039473
Here Yy =y Therefore y, =1.039473.

Hence the value of y(0.1) =1.039473.

13.5  Taylor’s Series Method

Taylor's Series Method is a numerical technique used for approximating the solution of ordinary

differential equations (ODESs) by representing the solution as a Taylor series expansion. This

method provides a systematic way to obtain accurate numerical solutions by considering higher-

order derivatives of the function. Taylor's Series Method expands the solution of an ODE into a

Taylor series around a given point. The series includes terms involving the function's values and

its derivatives.



The method requires the calculation of higher-order derivatives of the function at the chosen
point a. These derivatives contribute terms to the series expansion. The accuracy of the
approximation depends on the order of the Taylor series used. Higher-order series provide more
accurate results, but they require more derivatives to be computed.

Consider the differential equation

d )
y' = Gy _ f (X, y) with y(xo) = Yo,
dx

The Taylor’s series method is

(X_X0)2 y”_|_(X_X0)3 14

> 0 ar Yo e

Y(X) = Yo +(X =%, ) Yo +

Putting the values of X, Xo, Yo, Yo, Yo » «evvven... in above equation and we get value of y(X).
Taylor’s series method is derived in any order and values of y(x) are easily obtained. But this

method take long time in computing higher derivatives.

Taylor's Series Method is often implemented using computer software due to the need for
multiple derivative evaluations. The series expansion is truncated at a certain order, and the terms

are used to iteratively update the solution.

Examples

. . . d .
Example.5. Solve the differential equation d_y = X+ Y with y(0)=1, by Taylor’s series
X

method to compute y for x=0.1.

Solution: It is given that

. d
y =d—i=X+y, X =0, y,=1. (1)

Here we find some derivatives and their values at Xo=0, yo=1 are



y'=x+y Yo =1

y' =1+y’ Yo =2
y"I — o+ y" yg’: 2
y”VI — yV" yg”: 2

The Taylor’s series method is

(X_ XO )3 " (X_ XO )4 "

3! Yot 41 Yo'

(x——xo)2

2!

Y(X) = Yo +(X=%,) Yo + Yo +

Putting the value of Xo, Yo, Y5, Yo, Yo Yoo «eeeen- , We get

y(x)=1+(x—0).(1)+%(2)+%(2)+%(2)+ ........

2x*> 2x®  2x*
+22 4 +
3! 41

=1+Xx+

Now put x=0.1 and taking up to fourth terms, we get

2

ﬂ(0.1)4

y(0.1) =1+0.1+(0.1)° +§(o.1)3 N

1 3 1 4
=1+0.1+(0.1 24z 0.1 —(0.1
+ +( )—+3( ) +12( )



=1+0.1+ 0.01+%(o.001)+%(0.0001)

=1+0.1+0.01+0.00033+ 0.0000083

—1.1103383

13 Summary

Numerical solutions of ODEs play a crucial role in simulating dynamic systems and
understanding their behavior. The choice of method depends on factors such as the nature of the
problem, desired accuracy, stability, and computational efficiency. Euler's method is a simple
and intuitive approach for solving ODEs, its efficiency and accuracy might be limited, especially
for complex problems. For higher accuracy and faster convergence, more sophisticated

numerical methods should be considered.
The Euler’s method is
yn+1 = yn + h f (Xn’ yn)

The Euler’s modified method is

n-+: h n
y," =, 5L (X0 Yo) + T (xq, y,;™)] (n=0,1,2..)
The Taylor Series method is

(X_XO )3 m

TR

(x—xo)2

2!

Y(X) = Yo +(X=%) Yo + Yo +

13 Terminal Questions

Q.1. Explain the Euler’s method.



Q.2. Which method give the amore appropriate result in Euler’s method and Euler’s modified

method.

Q.3. Write the Taylor Series formula.

: . . d
Q.4. Use Euler’s method compute the value of y(0.04) for the differential equation d—y =-Yy
X

withy =1 at x =0.

. . d
Q.5. Using Euler’s modified method, compute y(2) in steps of 0.2 given that d—y =2+ /Xy
X
with y(1) =1.

Q.6. Using Taylor’s series method to compute y(2.1) correct to 5 decimal places, where

d :
x—y =X—-Y withy(2)=2.
dx
Answer
4. —0.6705 5. y(2) =5.0516 6. 2.00238125.

Suggested Further Readings:

1. Atkinson, K. and Han, W. Theoretical Numerical Analysis, Springer Science & Business
Media, 2010.

2. Jain, M.K., lyengar, S.R.K and Jain, R.K.: Numerical Methods for Scientific and
Engineering Computations, NewAge International (P) Ltd. New Delhi, 2014.

3. Sastry, S.S.: Introductory Methods of Numerical Analysis, UBS Publishers, 2012.

4. Bradie, B. A friendly introduction to Numerical Analysis. Pearson Education, 2007.

5. Gupta. R. S., Elements of Numerical Analysis, 2nd Edition, Cambridge University Press,
2015.
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14.1 Introduction

Numerical solutions of ordinary differential equations (ODEs) are essential for simulating
dynamic systems and gaining insights into their behavior. The selection of a specific numerical
method is influenced by various factors, each playing a crucial role in determining the most
suitable approach for a given problem. Picard's Method, also known as the Picard Iteration or the
Method of Successive Approximations, is an iterative numerical technique used for solving
ordinary differential equations (ODEs), particularly initial value problems. Named after the
French mathematician Emile Picard, this method involves constructing a sequence of successive
approximations to converge towards the true solution. Indeed, the Runge-Kutta methods, and
particularly the fourth-order Runge-Kutta method (RK4), are widely regarded as some of the
most commonly used and versatile numerical techniques for solving ordinary differential
equations (ODEs).

The popularity of RK4 is attributed to its balance between accuracy and simplicity, making it
suitable for a broad range of applications. Milne's Predictor-Corrector Method is a numerical
technique used for solving ordinary differential equations (ODEs), particularly for initial value
problems. It belongs to the family of predictor-corrector methods, where an initial prediction of

the solution is refined iteratively to improve accuracy.

Picard’s method of successive approximation; Runge-Kutta method and Milne’s predictor-

corrector methods are discussed in this unit.

14.2  Objectives

After reading this unit the learner should be able to understand about:

= the Picard Method
= the Runge-Kutta Method for fourth order

= the Milne’s Predictor-Corrector Method



14.3 Picard’s Method

Picard's Method is based on the concept of iterative refinement. It begins with an initial guess
for the solution and successively refines the approximation through a series of iterations. The
method is implemented by performing iterative calculations using the recurrence relation until
the desired level of accuracy is achieved. It often requires the solution of integral equations. Let

us consider the differential equation

d
y'=d—y= f(X,Y) (D)
X

with the initial condition y = yo for X = Xo 1.€., y(Xo) = Yo.

Integrating the differential equation (1), we get

Y=o+, f(xy)dx )

Equation (2) in which the unknown function y appears under the integral sign, is called an integral
equation. In this method, the first approximation y® is obtained by replacing y by yo in f(x, y) in
right hand side of (2) and integrating with respect to x, we get

ie. y® =y, +on f(x,y,)dx ..3)

The second approximation y is determined by replacing y by y® in f(x, y) in right hand side of

(2) and integrating with respect to x, we get
y® =y, +LO f(x, y)dx ()

The third approximation y® is determined by replacing y by y® in f(x, y) in right hand side of

(3) and integrating with respect to x, we get

@ _ X (2
YO =yo+ [ f0xy?)dx (5)



Proceeding in the same way we obtain y®, y™® ... , y" ™ and y"where

(n _ X (n-1)
Y =Yoo+ [ (% yT )

With y@ =y,

Repeat this steps till whenever upto the two value of y becomes same to the desired degree of

accuracy.

Examples

d :
Example.1. Use Picard’s method to solve d—y =x-Yy for x=0.1 and 0.2 given that y=1 when
X
x=0.
Solution: It is given that

f(x,y)=x—y and x,=0,y, =1 (D)

The first approximation is
YO =yo+ [ T(x yo)dx
= Yo+ [ (X o)X

:1+j:(x—1) dx



2
:X——x+l
2

The second approximation is

y(2) =y, +IX f(x, y(l))dx
%

= Yo+ [ (x=y®)dx

:1+J.Ox{x—(x—22—x+lﬂdx

— X X x4l
6
The third approximation is

y@ =y, +J'X f(x, y@)dx
Xo
= Yo+ [ (x—y®)dx

3
:1+j (x+x——x2+x—1jdx
0 6



The fourth approximation is

y(4) =y, +IX f(x, y(3))dx
Xo

= Yo+, (x—y®)dx

—14( (___3+x2—x+1ndx
jdx

4 3
:1+I ox— 24X x2 g
0 24 3

5 4 3 X
X X X
:1+{x2 ——+————x}

120 12 3 |
5 4 3

S XX X e
120 12 3

The fifth approximation is

y(5) =Y, +J'X f (X, y(‘”)dx
X

= Yo+ [ (x—y®)dx

x* x®
_1+I ———+———+X"—X+1] |dX
120 12 3



XG X5 X4 3
= T 4 xP—x+1
720 60 12 3

When x =0.1, we have
Yo =1, y® =0.905, y*® =0.9098, y*® =0.90967, y = 0.90967.
Hence y =0.90967 at x=0.1.
When x = 0.2, we have
Y, =1, y® =0.82, y® =0.83867, y*® =0.83740, y*¥ =0.83746, y® =0.83746 .

Hence y=0.83746 at x=0.2.

d .
Example.2. Apply Picard’s method to solve d_y = X + y?given that when X =0, y,=0up
X
to third order of approximation.

Solution. It is given that

dy _ _ 2 _ _

d—_f(x,y)_x+y and x,=0,y,=0 ...(D
X

The first approximation is

Y9 = Yo+ [ f(x yo)ox



= Yo+ [ (x+yg)dx
=0+j0 (X +0)dx

£

X2
2

The second approximation is

y(2) =Y, _|_J'X f(x, y(l))dx
X0

= Yo+ [, (x+ (y®)?)dx

=0+J':)(x+[x?2j2}dx

The third approximation is

y(3) =Y, +JX f(x, y(Z))dX
X



= v, +L0 [x+y@)2]dx
. 2 532
:O+j x+| 4 2| Jax
0 2 20
X X4 XlO X7
:I X+—+ +— |dx
0 4 400 20

x2 x5 X8 1t X
=l —+—=+—+
(2 20 160 4400}

0

X2 X X8 Xll
—t—t— :
2 20 160 4400

5

144  Runge-Kutta Method For Fourth Order

Runge-Kutta methods are a family of numerical techniques commonly used for solving ordinary
differential equations (ODEs). These methods provide a systematic way to approximate the
solution of ODEs with improved accuracy compared to simple methods like Euler's Method. The
most widely used among them is the fourth-order Runge-Kutta method (RK4). This method is
most commonly used method and most suitable when computation of higher derivatives is
complicated. Runge-Kutta methods involve using weighted averages of function values at
different points within each step to obtain more accurate approximations of the solution.

Consider the following differential equation.

d .
d_i = f(x,y) with y(x)=Y,

Runge-Kutta method of order four is given by

You =Y, +k for x=x,+h



k =D|:kl+M+ k4:|

Where 6 2

h
= E[kl + 2(k2 + ka) + k4]

Where k, = f(%,,Y,)

h

h
k2 = f(XO +§,y0+k1§j

h h
f(x0+§,yo +k2§j

k, = f (X, +h,y, +ksh)

k3

Runge-Kutta methods, particularly fourth-order Runge-Kutta method (RK4), are powerful tools
in the numerical solver toolkit. Their combination of accuracy, versatility, and ease of
implementation makes them a preferred choice for many applications where the computation of

higher derivatives might be challenging or impractical.

Check your Progress

1. What do you mean by Picard’s method?

2. Write the Runge Kutta method formula for fourth order.

Examples

Example.3. Use Runge-Kutta method to solve % =x for x=1.2,1.4, initially x=1,y=2.
X



Solution: It is given that

f(x,y) =%=W, X =1y, =2.
Then we have
f (X, Yy) =1x2
=2
Assume h=0.2. Then we have
K, =T(X,Yo)

=2

h h
k2 = f(xo +E,y0+k1§j

(oot
(e

=(1.1)(2.2)
=242
h h
k3 = f(Xo +E,y0+k2§j

—x+D +kD
- 0 2 yo 22



= (1+ %j(z—F 2.42x%j
2 2

= (1.1)(2.242)
—2.4662

k, = f (X, +h, y, +kh)
= (%, +h)(Y, +ksh)
= (1+0.2)(2+2.4662x0.2)
= (1.2)(2.49324)
~2.9918

Now we have

=2l + 20 + ko) +K,]

_ %[Z+ 2(2.42 4 2.4662) + 2.9918]

k =0.49214
Therefore we have
X =X, +h

=1+0.2
=12

and y, =y,+k

=2+0.49214



= 2.4921
Hence y(1.2) =2.4921.
Now for the second interval, we have

x =12, y, =2.4921, f(X,y)=Xy.

Now we have
O y) =Xy
=1.2x2.4921
= 2.99052

Assume h=0.2. Then we have

k1: f(xl’yl)

=2.99052

h h
k2 = f(x1+5,y1+k1§j

(gl

=12+ O.l)(2.4921 + 2.9905 x O—ZZJ

= (1.3)(2.79105)

=3.6283

h h
k3: f(x1+5,yl+k25j



= +h +k h
=l % > Y1 25
0.2

= (1.2 + 0;;)(2.4921 +3.6283 x 7)

=(1.3)(2.8548)
=3.71143
k, = f(x +h,y,+kh)
= (%, +h)(y, +k;h)
= (1.2+0.2)(2.4921+3.71128x0.2)

= (1.4)(3.2343)

=45281
Now we have
h
k= E[(kl +2(k, +k;)+k,]

= %2[2.9905+2(3.6283+3.7114) +4.5281]

=0.73992
Therefore we have
X, =X +h
=1.2+0.2

=14



and y,=vy,+k
=2.4921+0.73992
=3.2330

Hence y(1.4) =3.2321.

Example.4. Solve the equation ? = -2xy* with initial condition y(0) = 1 by Runge-Kutta’s
X

method for x = 0.2 and 0.4 with h =0.2.

Solution: It is given that

2

dy _

-2
dx Y

Then we have
f (%, Yo) = 2%, Y5
=-2(0)(D)°
=0
Assume h=0.2. Then we have

kl = f(xo’ yo)



2
:_4Q+Q?XLHMQEJ
2 2

=-2(0.1)()

=-0.2

h h
k3= f(XO'i‘E’yo"'kZEj

:_2[x0 +g)(yo +k, gjz
:_2(0+0;22](1+(—0-2)><0—é2j2

=—-2(0.1)(0.98)?
—-0.1920
k, = f (X, +h, Y, +ksh)
=—2(%, +h)(¥, +k;h)*
k, = f (X, +h,y,+ksh)
=—2(%, +h)(¥, +k;h)?
= —2(0+0.2)[1+(—0.1920)(0.2)]

=-0.36986

Now we have

K = %[(k1 +2(k, + k) +Kk,]



= 0_62 [0+2((~0.2) + (~0.1920)) + (~0.36986)]

= 0—62 (~1.15386)

=-0.03846
Therefore we have
X, =X, +h

=0+0.2
=0.2

and y,=y,+k
=1+ (—0.03846)
=0.96154
Hence y(0.2) =0.96154.
Now for the second interval, we have
x, =0.2, y, =0.9615, f(x,y)=-2xy’
Now we have
f (4, y1) =—2% Y7
= —2x(0.2) x (0.9615)?
=—-0.3697929.

Assume h=0.2. Then we have



k1: f(xl’yl)

=—0.3697929.

h h
kzzf(xl+§,yl+k2§j

h h\’
- x+3)(n3)
2
= —2(0.2 + 04;](0.9615 + (— 0.36979 x O—ZZD

= —2(0.3)(0.85473)

=-0.51284

h h
k3: f(x1+§,y1+k25j

h hY’
L (R
2
= —2(0.2 + %)(0.9615 + (— 0.51284 x O—ZZD

— —2(0.3)(0.82849)
=-0.49709

k, = f(x +h,y, +k;h)
= —2(x, +h)(y, +k;h)?

= —2(0.2 +0.2)(0.9615 + (~0.49709) x 0.2)°



= —2(0.4)(0.7431)
=-0.59454

Now we have

k= g[(k1 +2(k, +k;)+Kk,]

_ O_: (~0.36979+ 2(~0.51284 — 0.49709) — 0.59454)

=-0.099473
Therefore we have
X, =% +h

=0.2+0.2

=0.4
and y,=vy,+k

=0.9615-0.99473

=0.86202

Hence y(0.4) = 0.86202 .

14.5 Milne’s Predictor-Corrector Method

Milne's method combines both prediction and correction steps to iteratively refine the solution
of an ODE. It uses a third-order Adams-Bashforth predictor and a fourth-order Adams-Moulton

corrector. Milne's Predictor-Corrector Method is a combination of third and fourth-order



methods, providing higher accuracy compared to some lower-order methods. This contributes to
improved numerical stability. If we solve the differential equation %=f(x, y) with
X

y(x,) = Y, by this method, we first obtain the approximate value of y, , by predictor formula

and then improve this value by means of a corrector formula.

The predictor formula is
4h ’ ! !
yn+l = yn—3 + ? (Zyn—z - yn—l + 2yn)
The Corrector formula is
o _ h ' ' '
yn+l - yn—l + g(yn—l + 4yn + yn+1)

which improve that predicted value.

The method requires the calculation of predictor and corrector values at each step. While more

involved than simpler methods, it is still relatively straightforward to implement.

Examples

Example.5. Compute y(2), if y(x) is the solution of % :%(x+ y) assuming y(0) = 2,
y(0.5) = 2.636, y(1) =3.595, y(1.5)=4.968.

Solution. It is given that

d 1
f (x, y)=d—§=§(x+y)

and the values assuming y(0) = 2, y(0.5) = 2.636, y(1) = 3.595, y(1.5)=4.968.



X, =0 Yo =2 y,=1(0+2)=1
2
x, =0.5 y, =2.636 y = %(o,5+ 2.636) =1.568
x, =1 y, =3.595 Y, = % (L5+3.595) = 2.297
X; =15 ys =4.968 Y, = %(1.5 +4.968) = 3.234

Using the predictor formula, we have
4h ’ ’ ’
Ya=Yo +?[2y1 -y, + 2y3]

- 2+%(0.5)[2><1.568 —2.2975 + 2x 3.234]

- 2+§[7.3065)

=6.871

Now we have

, 1
Y4 :E(X4+y4)



=%(2+6.871)

=4.4355

Now using the corrector formula, we have

h ! ! !
Yo=Y2 +§[y2 +4y3 + y4]
0.5
=3505+[2.2975 + 43234+ 4.4355]

- 3.595+0—;[19.669]

=6.873166 ~ 6.8732

Now we have
, 1
Yo = E(le + y4)

=%(2+6.8732)

=4.4366

Again using the Corrector formula, we have

h ! ! !
Yo=Y2 +§[Y2 +4y3 + Y4]
0.5
= 3,505+ >[2.2075 + 43,234 + 4.4366]

= 3.595+0—;[19.6701]



=6.87335~6.8734

Hence the value of y(2) = 6.8734 .

Example.6. Solve initial value problem % =1+xy?,y(0)=1,h=0.1 for x=0.4by using
X

Milne’s method when it is given.

X 0.1 0.2 0.3
y 1.105 1.223 1.355
Solution:
It is given that
dy 2 _ _ _
d——1+xy ,¥Y(0)=1,h=0.1for x=0.4.
X
X, =0 Yy, =1 Yo =1+0x1* =1
x, =0.1 y, =1.105 y! =1+ (0.1)(1.105)? =1.1221
x, =0.2 y, =1.223 y, =1+ (0.2)(1.223)% =1.2991
x, =0.3 y, =1.355 y. =1+ (0.3)(1.355)2 =1.5508




Using the predictor formula, we have

4h 14 14 14
Yo=Y +?[2yl -Y, +2y3]
=1+ @[2 x1.1221 —1.2991 + 2 x1.5508]

=1+ 0—;'[4.0467]

=1.53956 ~1.539

Now we have
Vi =1+%Y;
=1+ (0.4)(1.539)?
=1.9474

Now using the corrector formula, we have
h ’ ’ ’
Yo=Y +§[Y2 +4y; + y4]

=1.223 + O—51[1.2991 +4x1.5508 +1.9474]

=1.223+0—él[9.4497]

=1.53799

Now we have

y:l =1+ X4yj



—1+(0.4)(1.538)2
—1.9461

Again using the Corrector formula, we have
h ! ! !
Ya=Y> +§[y2 +4y,; + y4]
0.1
=1.223+?[1.2991+4><1.5508+1.9461]

=1.223+ %1[9.4497]

=1.53799 =1.538

Hence the value of y(0.4) =1.538.

14.6 Summary

Numerical solution of ODEs involves a thoughtful consideration of the specific problem's
characteristics, accuracy requirements, stability constraints, and computational efficiency. The
choice of method should align with the unique features of the ODE and the goals of the

simulation or analysis.

The Picard’s Method is
(n _ X n-1 : 0
y - yO +L f(X’ y )dX with y( ) — Yo -

The Runge-Kutta’s Method for fourth order is

You =Y, +kK for x=x,+h



Then k :g|:kl+w+k4}zg[kl+2(kz +k,)+k,]

Where k, = f(X,,Y,)

h

h
k2 = f(xo +E,y0+k1§)

h h
k3 = f[xo +E,y0+k2§j

k, = f (X, +h,y, +k;h)

The Milne’s Predictor-Corrector Method is

4h ! ’ ’ h ! ’ !
Yni = Yns +? (2yn—2 — Yot 2yn) and yr(i-zl =Yt 5 (yn—l + 4yn + yn+l)

14.7 Terminal Questions

Q.1. Write the solution procedure of Picard’s method for solving ordinary differential equation.

Q.2. Explain the Runge-Kutta’s method for fourth order.

Q.3. What do you mean by Milne’s Predictor-Corrector Method.

d
Q.4. Use Picard’s method to solve d_y =Y — Xwithy =2 when x =0 up to third order of approximation.
X

d
Q.5. Solve the equation d_y = X + Y with initial condition y(0) =1 by Runge — Kutta’s rule from x = 0 to
X

x = 0.4 with h=0.1.



d
Q.6. Use Milne’s method to solve d_y = X+ Y with initial condition y(0) =1 from x = 0.20 to x = 0.30.
X

Answer

5. y(0.1) =1.1103, y(0.2) =1.2428, y(0.3) =1.3997, y(0.4) =1.5836.

6. (Y)y020 =1.2428 and (Y),_o5 =1.3997.
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