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Blocks & Units Introduction

The present SLM on Econometrics consists of fourteen units with three blocks.

The Block - 1 —Linear Model and its generalizations, is the first block, which is

divided into five units.

The Unit - 1 — Linear Regression Models, is the first unit of present self-learning
material, which describes Linear regression model, Assumptions, estimation of parameters by
least squares and maximum likelihood methods. LOGIT, PROBIT, TOBIT and multinomial

choice models, passion regression models.

The Unit — 2 - Multicollinearity, deals with  Multicollinearity, problem of

multicollinearity, consequences and solutions, regression, and LASSO estimators.

The Unit — 3 - Estimation of Parameters and Prediction deals with Testing of
hypotheses and confidence estimation for regression coefficients, R? and adjusted R?, point

and interval predictors.

The Unit — 4 - Model with qualitative independent variables deals with Models with
dummy independent variables, discreet and limited dependent variables. Use of dummy
variables, model with non-spherical disturbances, estimation of parametric by generalized

equation.

The Unit - 5 - Non-Spherical Disturbances, seemingly unrelated regression
equations (SURE) model and its estimation, Panel data models, estimation in random effect

and fixed effect models.

The Block — 2 - Simultaneous Equations Models and Forecasting, is the second

block, which is divided into five units.

The Unit — 6 - Structural and reduced form of the model and identification problem,
deals with the Simultaneous equations model, concept of structural and reduced forms,

problem of identification, rank and order conditions of identifiability.



The Unit — 7 - Estimators in Simultaneous Equation Models — I, deals with the
Limited and full information estimators, indirect least squares estimators, two stage least

squares estimators, three stage least squares estimators and k class estimator.

The Unit — 8 - Estimators in Simultaneous Equation Models — I, deals with the
Limited information maximum likelihood estimation, full information maximum likelihood

estimation, prediction, and simultaneous confidence interval.

The Unit - 9 - Forecasting, deals with the Forecasting, exponential and adaptive

smoothing methods, periodogram and correlogram analysis.

The Unit — 10 - Instrumental Variable Estimation, deals with the Review of GLM,
analysis of GLM and generalized leased square estimation, Instrumental variables,

estimation, consistency properties, asymptotic variance of instrumental variable estimators.

The Block - 3 — Advance Econometrics, is the third block, which is divided into four

units.

The Unit — 11 - Autoregressive Process, deals with the Moving average (MA), Auto
regressive (AR), ARMA and ARMA models, Box-Jenkins models, estimation of ARIMA

model parameters, auto covariance and auto correlation function.

The Unit — 12 - Vector Autoregressive Process, deals with the Multivariate time
series process and their properties, vector autoregressive (VAR), Vector moving average

(VMA) and vector autoregressive moving average (VARMA) process.

The Unit — 13- Granger Causality, deals with the Granger causality, instantaneous
Granger causality and feedback, characterization of casual relations in bivariate models,

Granger causality tests, Haugh-Pierce test, Hsiao test.

The Unit — 14- Cointegration, deals with the Cointegration, Granger representation

theorem, Bivariate cointegration and cointegration tests in static model.

At the end of every block/unit the summary, self assessment questions and further

readings are given.
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Block & Units Introduction

The present SLM on Econometrics consists of fourteen units with three blocks.

The Block - 1 —Linear Model and its generalizations, is the first block, which is

divided into five units.

The Unit - 1 — Linear Regression Models, is the first unit of present self-learning
material, which describes Linear regression model, Assumptions, estimation of parameters by
least squares and maximum likelihood methods. LOGIT, PROBIT, TOBIT and multinomial

choice models, passion regression models.

The Unit — 2 - Multicollinearity, deals with  Multicollinearity, problem of

multicollinearity, consequences and solutions, regression, and LASSO estimators.

The Unit — 3 - Estimation of Parameters and Prediction deals with Testing of
hypotheses and confidence estimation for regression coefficients, R? and adjusted R?, point

and interval predictors.

The Unit — 4 - Model with qualitative independent variables deals with Models with
dummy independent variables, discreet and limited dependent variables. Use of dummy
variables, model with non-spherical disturbances, estimation of parametric by generalized

equation.

The Unit - 5 - Non-Spherical Disturbances, seemingly unrelated regression
equations (SURE) model and its estimation, Panel data models, estimation in random effect

and fixed effect models.

At the end of every unit the summary, self-assessment questions and further readings

are given.



Blocks and Units Introduction
Block 1: Linear Model and its generalizations
Unit 1: Linear regression models:

Linear regression model. Assumptions, estimation of parameters by least squares and

maximum likelihood methods.
Unit 2: Multicollinearity:

Multicollinearity, problem of multicollinearity, consequences and solutions,

regression and LASSO estimators.
Unit 3: Estimation of parameters and prediction

Testing of hypotheses and confidence estimation for regression coefficients, R? and

adjusted R?, point and interval predictors.
Unit 4: Model with qualitative independent variables:

Models with dummy independent variables, discreet and limited dependent variables.
Use of dummy variables, LOGIT, PROBIT, TOBIT and multinomial choice models, Poisson

regression models.
Unit 5: Non-spherical disturbances

Model with non-spherical disturbances, estimation of parametric by generalized
equation., Seemingly unrelated regression equations (SURE) model and its estimation, Panel

data models, estimation in random effect and fixed effect models.



UNIT 1 LINEAR REGRESSION MODELS
Structure
1.1 Introduction

1.1.1 How econometrics analysis proceeds?
1.2 Objectives
1.3 Multiple Regression Model

1.3.1 Assumptions

1.3.2 Estimation of parameters by least square
1.3.2.1 Ordinary least square (OLS) estimator of B

1.3.2.2 Ordinary least square (OLS) estimator of T
1.4 Best Linear Unbiased Estimator (BLUE) property of b: Gauss Markov Theorem

1.4.1 Alternative form of Gauss-Markov Theorem
2
1.4.2 Maximum Likelihood Estimators of & and %«

2
1.4.3 Distribution of b and
1.4.4 Cramer-Rao lower bound
1.4.5 Large sample properties

1.11 Self-Assessment Exercise



1.12 Summary

1.16 References

1.17 Further Readings
1.1 Introduction

Econometrics may be defined as the application of statistical and mathematical
methods to the analysis of economic data. Aims to give empirical content to economic
relations for testing economic theories, forecasting, decision making, and policy evaluation.
Econometrics may be considered as the combination of Economic Theory, Mathematical

Economics and Statistics.

For example, the microeconomic theory states that the demand of a commodity is
expected to increase as the price of that commodity decreases, provided the other things
remain constant. How much the demand will go up or down because of certain change in the
price of the commodity? Econometrician Job is to provide empirical content to the economic

theory.

e Mathematical Economics, Economic Statistics and Econometrics:
Mathematical Economics

Mathematical economics involves the application of mathematical methods to
represent theories and analyze problems in economics. It uses mathematical symbols and

equations to model economic phenomena and relationships.

Economic Models are simplified mathematical representations of economic processes.
An economic model describes the relationships between different economic variables and is
used to explain how economies function or predict future economic behaviors. For example,

supply and demand models, cost functions, and utility maximization problems.

Economic Statistics



Economic statistics focuses on the collection, processing, and presentation of
economic data. It provides the quantitative basis for economic analysis, aiding in the

visualization and understanding of economic trends and patterns.

Data Collection: Gathering data from various sources such as surveys, censuses, and

administrative records.

Data Processing: Cleaning and organizing raw data to make it suitable for analysis.

This includes handling missing values, correcting errors, and standardizing formats.

Data Presentation: Displaying data in an accessible format, often using charts,

diagrams, tables, and graphs to facilitate interpretation and decision-making.
Econometrics

Econometrics combines economic theory, mathematical economics, and economic
statistics to empirically test economic theories and quantify economic relationships. It uses

statistical methods to estimate and test hypotheses about economic models.

Mathematical economics expresses economic theory in mathematical form.
The mathematical description of relationship between different economic variables (causes

and effects) describing the behavior of an economy is called an economic model.

Obijective of the econometrician is to put economic model in such a form that allows

empirical testing and empirical verification of economic theory.
1.1.1 How Econometric Analysis Proceeds?
Steps involved
e Statement of Economic Theory or Hypothesis
e Specification of Mathematical Model

e Specification of Statistical or Econometric Model



Collection of data on relevant variables

Estimation of parameters of chosen econometric model
Tests of the hypothesis derived from the model
Forecasting or Prediction

Statement of Economic Theory or Hypothesis:

Law of demand states that as the price of a commodity increases, the demand

decreases provided the other things held constant.

Specification of Mathematical Model:

An inverse relationship exists between the price and demand. It does not tell the

precise form of the relationship. For this purpose, we must express the statement in

mathematical form.

(1)

4. Quantity demanded, P: Price.

We can write

q=p1+ B0, <0

orqg=Apf: B <0
)

In both relationships, 9 has an inverse relationship with . Economic theory does not

provide much information about the functional form of the relationship. For this purpose, we

require statistical tools.

Specification of Statistical or Econometric Model:



Economic relationships are usually stochastic in nature. There are variables, other

than main dominant variable P+ affecting 4. Let * be a random variable including the effect

of all other variables. We can write (1) as

q=B1+pFp+upB, <0
(©)
% is called the random error term or disturbance term. Equation (3) is a statistical model or

econometric model.

Econometric Model may have more than one equation. For example, consider the
following model:

Wage Equation: W = @y + a,U + a,P + uy,
Price Equation: P = Sy + 1 W + 2R + f3M + u,

W = Rate of change in money Wage}
P = Rate of change in prices

Variables explained.U = % Unemployment rate,

M = Supply of money; R = Rate of change in cost of capital

Collection of data on relevant variables:
Three types of data usually available

Time series data: Time series data is collected over a time period. For example, data

on unemployment rate of a country for 10 consecutive years.

Cross-section data: Cross section data is collected on one or more variables at a
single point of time. For example, data on unemployment rate of 20 countries at a particular
time point.
Pooled or Panel data: Panel data is the combination of time series and cross section data. For

example, data on unemployment rate of 20 countries for 10 consecutive years.

Estimation of parameters:



Law of demand states that £z < 0. Statistics provide us methods to estimate the

parameters based on given observations on P and 4.

Tests of the hypothesis derived from the model:

Does the estimated model support the economic theory? For instance, is B2 <09
Forecasting or Prediction:

Estimated demand function can be used to predict the value of demand for a specific

value of price.
Econometrics Applications

Econometrics is a powerful tool used across various fields to analyze and interpret
data, uncover relationships between variables, and make informed predictions. It is widely
applied in domains such as business, economics, government, and finance to analyze
relationships between variables, test hypotheses, and make predictions. Its ability to
transform data into actionable insights makes it an invaluable tool for strategic planning,

policy evaluation, risk management, and more.
Here are some of the key applications:
1. Business

Strategic Planning: Econometric models help businesses forecast future sales,
determine optimal pricing strategies, and allocate resources efficiently.

Investment Decisions: Firms use econometric analysis to assess the potential returns

on investments, analyze market trends, and make data-driven investment choices.

Marketing and Advertising: Econometrics helps in evaluating the effectiveness of
advertising campaigns, understanding consumer behavior, and optimizing marketing

strategies.

Budgeting and Revenue Forecasting: Companies employ econometric techniques to

predict future revenues and plan budgets accordingly.



2. Economics

Macroeconomic Analysis: Economists use econometrics to study economic growth,
inflation, unemployment, and other macroeconomic variables. This helps in understanding

the broader economic environment and policy impacts.

Microeconomic Analysis: Econometrics is used to analyze individual and firm

behavior, market structures, and the effects of regulations on industries.
3. Government and Policy Organizations

Policy Evaluation: Governments use econometric models to evaluate the impact of

policies such as tax changes, subsidies, and social programs on the economy and society.

Economic Forecasting: Econometric models help in predicting economic indicators
like GDP growth, inflation rates, and employment trends, aiding in policy formulation and

planning.
4. Central Banks

Monetary Policy: Central banks utilize econometrics to analyze the effects of interest
rates, money supply, and other monetary policies on the economy. This helps in maintaining
economic stability and achieving policy targets.

Financial Stability: Econometrics assists in assessing the health of financial systems,

identifying potential risks, and devising strategies to mitigate financial crises.
5. Financial Services

Risk Management: Financial institutions use econometric models to measure and

manage risks associated with investments, loans, and market fluctuations.

Asset Pricing: Econometrics is employed to develop models for pricing financial

assets and derivatives, helping in investment decision-making and portfolio management.

6. Economic Consulting Firms



Economic Impact Studies: Consulting firms use econometrics to conduct studies on
the economic impact of projects, policies, and market changes, providing valuable insights

for clients.

Market Analysis: Firms analyze market trends, consumer behavior, and competitive

dynamics to offer strategic advice to businesses and governments.

The core of econometrics lies in analyzing causal relationships between variables and
making predictions based on empirical data.

Explanatory and response variables

An explanatory variable is the expected cause, and it explains the results.
A response variable is the expected effect, and it responds to changes in explanatory

variables.

Example: Researcher has five brands of coffee and believes that different brands used
to make a cup of coffee affect hyperactivity differently. The explanatory variable is coffee

brand. The response variable is hyperactivity level.
Exogeneous and Endogenous Variables

Exogenous variable is determined outside the model and is imposed on the model. An

exogenous change is a change in an exogenous variable.

Endogenous variable is the variable whose measure is determined by the model. An
endogenous change is a change in an endogenous variable in response to an exogenous
change that is imposed upon the model. An endogenous random variable is correlated with

the error term while an exogenous variable is not.

Example: Amount of wheat produced may depend on weather variables, farmer skill,
pests, price of seeds, price of diesel etc.

These are exogenous to crop production. The amount of wheat produced is an

endogenous variable. Are other variables exogeneous? If we consider the entire system, then



insects depend upon weather variable, price of seeds depend upon "price of diesel”. Hence

these are endogenous variables.
1.2 Objectives
After completing this Block, students should have developed a clear understanding of:
e Regression analysis relevant for analysing economic data.
e The fundamental concepts of econometrics.
e Multiple Linear Regression Model
1.3 Multiple Linear Regression Model

Simple regression model involves a dependent and one independent variable. In
Multiple Regression Model, the study or dependent variable depends on more than one

explanatory or independent variables.
Focus of Attention:
Our main emphasis is on studying
(i) What is causing variation in dependent variable?
(if) Which variables are mainly responsible for variation in dependent variable?
Examples:

(i) Scientists might be interested in observing the effect of different amounts of fertilizer,

different levels of irrigation, different types of soil on crop yield.

(i) Selling price of a house depends upon its location, House area, House has sea facing

or not, Number of bedrooms, Number of bathrooms, how old the house is, etc.

Let ¥ be a dependent variable, and *1*2--»*k are k independent or explanatory

variables.

We assume



E(y) = x1B1 + x5 + -+ xSy

(4)

ory =x;0; +x:0, + -+ x5 +u

Usually, *1 = 1 to allow for the intercept term.

Here

u

()

is the random error or disturbance term and gives the difference between

actual value of dependent variable and its expected value or its value predicted by the

multiple regression.

B Bz s Bx are unknown (constants) regression coefficients

JE(y)
ﬁj = )

)

gives the rate of change in y with respect to x;

In (4), if we change ™ by one unit, i.e., to ™ + 1, then E() changes by amount B

Interpretation of regression coefficient as Elasticity

In economics and engineering applications, Elasticity is measured as a percentage

change/response. For instance, the price elasticity of demand of a commodity is the

percentage change in quantity of demand resulting from unit change in price.

For example, if a 10% increase in price of petroleum results in a 2 percent decrease in

demand, then price elasticity is .02/.10 = 0.2. Corresponding regression coefficient is -0.2. If

20% increase in price of mango results in 40% decrease in its demand, then its price elasticity

is 0.4/0.2=2.0. Corresponding regression coefficient -2.0.

Model Setup: Consider the set of ™ observations on dependent and independent

variables arranged in the following table:

Sample

no.

Dependent Variable

k

variables

independent




1 Yq X11 X12 - X1k

2 Y2 Xz1 Xz22 - Xo2g

n ¥n Xn1 Xnz - Xng

. jth - th _
Xy observation on /™ yenendent variable,

1.3.1 Assumptions
We consider the following assumptions for the multiple

Assumption 1:

The following linear relationship exists between ¥ and X S

Y= 1’11,51 + 1’12,57_ + et xlkﬁ,} +uy

Y2 = xzuﬁl + xzzﬁz +ot xf + U

y

7
n

= xnlﬁl + xnzﬁz + et xnkﬁ;{ + Uy

u oy Uy are the dlStllI‘baﬂCES or error terms.

1"
Let us write
N X1 B1 Uy
j
V2 . B2 Uz
y= E Ixj:(:);ﬁ_ y U= E
Xnj
n k Un

Then, using these vector notations, we can write (6) as

y=x1p1+ -+ 1B +u
()

i=12, .., mj=12..

(6)



Further, we write

X111 - X1
X:(xl...xk):( : * :
Xn1 " Xnk

Then, in matrix notations, we can write (6) as

v=Xf+u
(8)

Usually, the first column of X consists of all elements equal to 1 to allow for the

intercept term. Thus X1 = =Xp = 1,and
1 x5 0 X

X = 1 X22 - x:g,!g
1 X — Xnk

Assumption 2:
E(u))=0Vi=12,..,n

orE(u) =0
©)

Assumption 3:
E(w)=02Vi=12,..,n
E(ujups)=0vi=1i

or

E(uu’) = oll,
(10)

r
Thus, %15 have same variance and pairwise uncorrelated. The disturbances are said to

r
be homoscedastic if all the % have the same variances.



Assumption 4:

Rank of ¥ =P(X) jsk (=),
Thus *1----*& are linearly independent.

Note: |If P(X)<k'some of the linear combinations of ﬁl""Hfo'say,

APy + o+ 4B = X'B can be estimated unbiasedly but all such linear combinations cannot
be estimated unbiasedly.

Assumption 5:

X' is a non-stochastic matrix. Even if £ is stochastic, it is uncorrelated with ¥, i.e.,

E(X'u)=0

Using assumptions 2 and 5, we have

E(y) =XB
or E(_’}’I') = xilﬁl + .X'I'zﬁz + v x”{ﬁ;{ Vi = 1,2, )

Assumption 6:
Sometimes we assume that ¥ follows a normal distribution.

—~ 2
We may combine assumptions 2,3 and 6 as % ~ V(0. ouln),
Assumption 7:

Sometimes, for studying the asymptotic properties such as consistency of the

estimator of B , We assume that



y XX\
plim () =€

exists and ¢ is a non-stochastic and positive definite matrix with finite elements.

1.3.2 Estimation of parameters by least squares
1.3.2.1 Ordinary Least Squares (OLS) Estimator of B

Let B be estimated by b= (by, ., bi)"

In method of least squares, b

is obtained by minimizing the residual sum of squares
S =210 — xiby — xppby — o — xycby)? = (v — Xb)'(y — Xb)

The resulting estimator is called the ordinary least squares (OLS) estimator.

Result 1.3.1: When X is of full column rank, the OLS estimator of Bis given by
b=(XX)"1X"y.

Proof: We can write S as

S=y'y—2bX'y+bX'Xb
=b'X'Xb—-2bX'X(X'X) X'y +yX(X'X) X'y +y'y—yXX X)Xy
=b-X'X)XyXXb—-XX)Xy)+v (11)
where

v = }r’}r —}J"X(X’X)_IX:}T
— }r: M}r
M =1, — X(X'X)"1X’

where

In (11), S is minimum when the term



(b — (X'X)71X'y) ‘X' X(b — (X'X)"1X'y)
(12)

is minimum.

c,c’X'Xe=0 and c’X'Xe=0 if

For any P * 1 vector f =0 For showing this, let

X

us write @ = X€_Since X is of full column rank, & = %€ is zero if and only if € = 9. Hence

c'X'Xe=d'd=0 jrc=0 1hys X' X j5 positive definite and the minimum value of (12) is

zero. This value is attained for

b=(XX)"1X'y
(13)

Alternative Derivation: We have
S=y'y—2bX'y+b'X'Xb

S iyt 2xXb =0
ab y =

=b=(XX) Xy

Further

d%s

abay XX

r _ U —1yrr.,
Since X X is positive definite, S is minimum for 2 = (X’X) "X’y W

b is known as the ordinary least squares (OLS) estimator of B

Result 1.3.2: The OLS estimator b is an unbiased estimator ofﬁ.

b

Proof: We can write ~ as

b=(X'X)"X'y = (X'X)"1X'(XB + 1)
=B+ (X'X) 1 X'u



Taking expectation and observing that

E[(X’X)~! X'u] = 0 (assumption 5),

we have
For ? = X"X)7X'Y the error sum of squares is

v=e'e=(y—Xb)'(y—Xb)=y'My

1.3.2.2 Ordinary Least Squares (OLS) Estimator of let
Let us write

v=(y—Xb)'(y — Xb) = y'My

We also observe that

v = }r’}r — b X'Xh = }r’}r — b’X’y’

2
Result 1.3.3: An unbiased estimator of %u is

Proof: OLS residual vector is given by
e=y—Xb=My

M=1,-XXX)"1x’

where IS a symmetric, idempotent matrix and MX =0 Hence

e =My =Mu 1p,q
ee=u"Mu=v

Further



tr(M) =(n—k)

Taking expectation, we get

E(v) = E(u'Mu)
= tr[E (uu'M)]
= g2tr(M)
=og2(n—k)

Hence

E(s?) = 65.

Result 1.3.4: The variance covariance matrix of b is given by
E(b—pB)b—pB) =oz(X"X)71,

Proof: We have

b—f=XX)1Xu

Hence

Eb-B)b—-B)=XX)TXEuu)X(X'X)?
=0 (X'X)"' !

b

Since ? is a linear function of ¥, it is said to be a linear unbiased estimator of rG.

1.4 Best Linear Unbiased Estimator (BLUE) Property of b: Gauss Markov
Theorem

Result 1.4.1: Let A= (1 &) gng 4B = 4By + -+ Acbic Then AP s a Best
Linear Unbiased Estimator (BLUE) of A'B in the sense that (1) it is an unbiased estimator of

A'B (i) for any linear unbiased estimator @Y of #'#, Var(Xb) =Var(a'y) v



Proof: We assume that % is of full column rank, i.e., rank(X) = k. Then

(i) EQXD) = XE(b) = ¥B,¥ .

(ii) Let @'Y be any other unbiased estimator of AP then,

E(ad'y) =dXB =1
=>l=Xa

V(A'h) = a2X (X' X)) 1A
V(a'y) —V(Ab) = c2ad'(I —X(X'X)"1X")a = 0%a’'Ma

MM = M, writing 6 = Ma o nave

Since
Via'y) —V(A'b) =c26'6§=0

or Via'y) =zV(A'b)R

If % = 1 and all other elements of 4 are zero, then 48 = Pi_ Thus #'P = b1 js BLUE

of ﬁl’. In this sense, b is a BLUE of ﬁ.

1.4.1 Alternative form of Gauss-Markov Theorem

Result 1.4.2: Let # = €Y pe any linear unbiased estimator of £ Where Cisak xn

matrix and V(B)=E(B—-B)(B- ﬁ):. Then v(B)-vd) is positive semi definite.
Proof: We write

C=&X)X' +D

'X)7'X'y + Dy
(X'X)"'X'u+ DXB + Du

+/_\

=5



E(B)=B+DXB=B=DX=0
Hence
V(B) = E(X'X)1X"u + Dw)((X' X)"1X'u + Du)’

=oZ(X'X)"' +0ZDD’
=V (b) +o2DD’
Therefore
V(B)—Vv(b) = a2DD’

which is positive semi-definitem

2
1.4.2 Maximum Likelihood Estimators of B and Cu

~ 2 . A . 2
Result 1.4.3: If ¥~N(0,0y fn), then maximum likelihood estimators of & and %% are

v
b=(X'X)"'X'ys} = —

u~N(0,02

Proof: Since IH), the likelihood function is given by

1@.o0 = | ()
j=1

1 1,
= a®XP|—53 Z U;
(2nodz | 2%ie

1 1 }
= —exp —_ w1
(2n02) 204

1

P —— =
(2ma)™/?

1
Xp |~ 553 0 — XBY & = XP)|

Since the log transformation is monotonic, the maximization of likelihood function is

equivalent to the maximization of log likelihood function.

Further



InL(B,02) =

307 (7~ KBy~ XP).

Hence
dlnL(B,a2) )
B ZJI%ZX(}_X'G)_O
dInL (S, g; ) n .
ao_u — 20—1{ 2( 2 2(} Xﬁ) (} Xﬁ) 0

7] =2 2 ] ~2
Let £ and 64 genote the MLEs of 7 @0 74 respectively. Then, we obtain £ @nd i
by solving

1

257 X (v —Xf) =0
n 1 o ! =
= +W(}’—Xﬁ) (yv—xB)=0
This gives
f=&X)Xy=b
=7 1 1]
u :E(}T_Xb) (.}T_Xb)
—k
:E:n 5‘2
n n
Further
3*InL(B,c?)
BB |yeyaos:
. a2 InL(ﬁ
&T% (O—TI)Z ,8 IJ‘(TZ ""‘2
n 1
=———(y—Xb)'(y—Xb
n n

254 g4
2 O—II O—T{



o d°InL(B,02)
" 28%  9Boo?

'8 b. 0-2 "“2

1
=~ X'(y—Xb) = 0.

u

The Hessian matrix of log likelihood is

H(B,00)g=po2=53

3*InL(B,02)d*InL(B,c?)

dpop’ dpday
*InL(B,62)3*InL (B,03)
dazop 0%(02)? Bmboi=53
1
— XX 0
— Oy
0 n
26%

_ 2 _
= b,

=2
The Hessian matrix is negative definite for B — Y%u_ This ensures that the

likelihood function is maximized at these values.
Note: The MLE of B is the same as OLS estimator b.

G2 . . . g2 . F2. .
u s not an unbiased estimator of “u. The bias of “u is given by

k
E[JII — JII] - ﬂ'“

2
1.4.3 Distributions of b and ¥

' 2
b~N(Ba2(X'X) ), v= (Z=)~7"(n—k)
Result 1.4.4: 1If “~N(0,0iIn) then (Broy (Jﬁ) ' :
Further 2 @nd v g0 independently distributed.

Proof: We can write

b=XX)"X'y=p+Cu



— r —1 v
Wherec = (X'X)"x'.

Since ¥~N(0,071,), Cu~N(0,05CC") £rther

cc' = (X' x)"! b~N(BaZ(X'X)™1)

. Hence

LIV | _ U —1 yrf
Further €€ = WMu \yhere M = In = X(X"X) "X s o idempotent matrix. The rank

rank(M) =tr(M) = n— k.

Hence  — ¥ eigenvalues of M are 1 and remaining k eigen values are 0. Thus, there

exists an orthogonal matrix P such that

P'MP = diag(1, ...,1,0,...,0) = A (say)

— r

w = u .
Let Ty . Then W~N(O, L), Therefore, the elements of W» - €+ W1, Wa, ..., Wn

are iid standard normal variates. Hence

n—k

1
v=—u'Mu=wAw= wj-z ~y?(n — k).

a.
u =1

For proving that 2 @147 are independently distributed, we have

E(b — B)(Mu)’
= (X'X)"'X'E(uu" )M
— 62(X'X)"1X'M = 0

Hence ?andMu a0 uncorrelated and both follow normal distribution. Thus,

1, 1 '
v=su Mu :J_E(MH) (Mu) i

bandMu 5 independently distributed. Further, S a

b and v

function of M. Hence, are independently distributedm

We observe that



4 ’
Oy e'e

1.4.4 Cramer-Rao lower bound
We observed that

[3%21InL (B,03)
apap’ | oy

[3%21InL (B,03)
9%(ai)?

L x5 —xp)
O—T{

—FE|—
[Zcr{f

n 1 5

= ———nNa
4 2] 7
20'“ Oy

n

o 4
20,

62 InL(B,c2)
- 9BdsZ

_E [—%X’(y —Xﬁ)} —0

u

2
Cramer-Rao lower bound for the variance of unbiased estimators of (8,0:) is



gZX'X)t 0
(B, o™t = [-E{H(B, 0D} = 0 20y

n

Cramer-Rao lower bound is attained for the variance-covariance matrix of b but not for

. 2
variance of 5.
1.4.5 Large Sample Properties
Consistency of the Least Squares Estimator:

We assume that

@ ()i =1mie, sequence of iid random variables

(XX
(ii) plim ( " )—Q

n—+co

exists and is a non-stochastic, positive definite matrix with finite elements.

2
Result 1.4.5: (i) The OLS estimator b is a consistent estimator of ﬁ, (i) * isa

. . 2
consistent estimator of “u.

Proof: We can write

-1

b=pg+ (%X’X) (%X’u)

Now

n n
X
—Xu=—=) x;u;=— ) wy =w
n n YT J

j=1

j=1

where Wi = 5% Hence

plimb = B + Q !plim(w)

Further



E(Wj ‘X) = XJ'E(“} |X) =0

This implies that E(w)=0 Again, variance covariance matrix of Wis
Var(w|X) = E(ww'|X)

0’5 1
% (tx)
n \n

so that

al 1
Var(w) = —E (—X’X)

T n
Hence

T—o0 T1—0o0 n

2 1
lim Var(w) = lim {EE (HX’X)}

1 . 7
) lim(-X'X ) . . . . lim|—)=0
Since P (n ) ¢ is a finite positive definite matrix and n-m(") , We

lim Var(w) = 0.
have n—e

Hence plim (%X’ u) = 0 implying that plim b = §5.
N . g2
(if) We can write ® as

2 _ [
s =—u'Mu
n—=k

-1

n 1 1 1 1
= [— u'u — (—IL’X) (—X’X) (—X’u)l
n—kin n n n

Now, as * = @:1/(n = K) =1 cyrher

1 1 1
plim (—IL’X) (—X’X) (—X’u) =0.
n n n

and




im () =piim (3 o
plim { —u'u | = plim | — j=1uj

.LJ,-Z G=1,..,n)

- 1 .. . 2
Since are iid with common mean “u,

. 1, 2
plim (; u u) = g;.

Hence PLim(s?) = aii

Obviously, asymptotic variance covariance matrix of b
1 _1
n.plim (crtf‘ (HX’X) ) =no2Q!

Further

1 -1
plim (5'2 (HX’X) ) =ag2Q7L.

Thus, an estimator of the asymptotic variance covariance matrix of bigs ‘XX )_1.
1.5 Self-Assessment Exercise

Discuss the role and applications of econometrics.

What is the general form of the linear regression model?

Why is linear regression considered a fundamental statistical tool?

. What are the main assumptions of the linear regression model?

How does the assumption of linearity influence the model's application?

Why is it important to check for homoscedasticity in a regression model?

What is the objective of the Ordinary Least Squares (OLS) method in linear

regression?



10.

11.

12.

13.

14.

15.

16.

17.

18.

How are the regression coefficients estimated using the OLS method?

How does MLE differ from OLS in terms of methodology and assumptions?

What assumptions are made about the error term (e\epsilone) when using MLE?
How is the likelihood function maximized to estimate regression parameters?
Under what conditions would OLS and MLE provide identical parameter estimates?
When is MLE preferred over OLS in regression modeling?

What are the practical implications if the assumptions of linear regression are

violated?

How would you interpret the regression coefficients in a multiple linear regression

model?
Define a multiple linear regression model and give its assumptions.

Derive the least squares estimator of coefficients vector in a linear regression model

and show that it is unbiased.
State and prove the Gauss Markov theorem.
1.6 Summary

This unit provides a detailed exploration of regression modeling techniques, focusing

on multiple linear regression. It begins with an in-depth study of the linear regression

model,

covering:

Model Structure: Establishing a linear relationship between a dependent variable and

multiple independent variables.
Assumptions:
o Linearity of the relationship between yyy and predictors.

o Independence of observations.



o Homoscedasticity (constant variance of errors).

o Normality of residuals.

o Absence of multicollinearity among predictors.
3. Parameter Estimation Methods:

Least Squares (OLS): Minimizes the sum of squared residuals to derive parameter

estimates.

Maximum Likelihood Estimation (MLE): Optimizes the likelihood of the observed
data, providing flexible parameter estimates under normality assumptions.
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1.1 Introduction

Multicollinearity in regression analysis refers to the situation where two or more
predictor variables in a model are highly correlated. This correlation can lead to unreliable
estimates of the coefficients, reduced statistical power, interpretation difficulties, and
instability of model coefficients. It occurs when predictor variables contain redundant
information about the response variable, complicating the accurate estimation of their effects.
Addressing multicollinearity is crucial for improving the robustness and reliability of

regression models.
Key Points about Multicollinearity:
1. Identification:

e Variance Inflation Factor (VIF): A common metric used to detect multicollinearity.
VIF values greater than 10 (some sources use a threshold of 5) indicate significant

multicollinearity.

e Correlation Matrix: By examining the correlation coefficients between pairs of
predictor variables. High absolute values (close to 1 or -1) suggest multicollinearity.

e Condition Index: Values above 30 indicate strong multicollinearity.
2. Problems Caused:
¢ Unstable Estimates: Coefficients become very sensitive to changes in the model.

e Reduced Precision: Confidence intervals for coefficients can become very wide.



e Misleading Significance Tests: The p-values for predictors can be misleading,

showing some predictors as non-significant when they contribute to the model.

3. Solutions:

e Removing Predictors: Eliminating one or more correlated predictors can help reduce

multicollinearity.

e Combining Predictors: Creating composite variables or using techniques like principal

component analysis (PCA) to combine correlated variables into a single predictor.

e Regularization Techniques: Methods like Ridge Regression (L2 regularization) and
Lasso Regression (L1 regularization) can help manage multicollinearity by adding
penalties to the size of the coefficients.

Multicollinearity does not affect the predictive accuracy of the model per se, but it
affects the interpretability and stability of the model coefficients. Techniques such as
variance inflation factor (VIF) and principal component analysis (PCA) can be used to detect

and mitigate multicollinearity in regression analysis.
1.2 Objectives
After completing this course, there should be a clear understanding of:
e Multicollinearity
e Its problem, consequences, and solution
e LASSO Estimator
1.3 Multicollinearity

The multicollinearity exists when two or more explanatory variables have high
correlation. The high correlation means one predictor variable can be used to predict the
other. This creates unnecessary information, adversely affecting the results in a regression

model. Some examples of multicollinear predictors are:

(i) aperson’s height and weight,



(i) age and sales price of a car,
(iii) years in university teaching jobs and annual salary.
Let us write

v=Xf+u
1)

where Y X1, X:nXk; w:nX1;

and E(u) = 0; E(uu') = al,.

X

One of the assumptions is that the matrix < is of full column rank, i.e., pX) =k

When pX) < k, we face the problem of (exact) multicollinearity.

What are the implications of exact multicollinearity?

Let *1: -+ *k pe the columns of X.
Exact Multicollinearity

In case of exact multicollinearity, there exists a relation of the form

€1y + + X = 0. \yhere €1+ Ck are the constants, not all equal to 0.

A linear parametric function W'F = WiB1+ =+ WiBi is estimable iff W' can be
expressed as a linear combination of rows of %, i.e., p(X" w) = p(X"). |n other words, if

belongs to the row space of X, then W'F is estimable.

If above condition of estimability is satisfied then a BLUE of W B is W'D" where D

is a solution of X Xb" = X"y.

Equivalently ¥ # is estimable iff pX'X w)=pX'X) je W can be expressed as a

linear combination of rows or columns of XX.



Result 1.3.1: The linear parametric function W'B s estimable iff w can be expressed

as a linear combination of the eigen vectors of XX corresponding to non-zero eigen values of

X'X

Proof: Suppose P is an orthogonal matrix consists of orthonormal eigen vectors of

X'X, 50 that PP = I,

Let us write X2 = Z We have

P'X'XP =Z2'Z = diag(Ay, .., ),

where A1 -4 are eigen values of XX
We can write the equation (1) as

y=XPP'f+u=2Z0+u

where 0 = F'B 1§ P(X) =] <k Then k —J columns of Z = %P are zero. Without
loss of generality, we assume that last k=] columns of Z are zero and then last ¥ —/

components of g disappear from the model.

61

Hence +1% cannot be estimated. In other words, 01 or any linear

combination of them can be estimated from the model. Then we have

w'B=w'PP'S = (P'w)'d
(2)

Hence, we can estimate ¥ B it last & —J components of P'W are zero. This gives the

required resultm

Let P be a normalized eigen vector corresponding to non-zero eigen value A of XX,

r — ! I, * #®
so that X XP = AP Then P'B s estimable and its BLUE is PP . Where b" is a solution of
X'Xb* = X'y



We have

p'X'v=p'X'Xb" = }lp’b’",

Var(p'X'y) = o2p’X'Xp = Ac2p'p = Ac’.
Hence

T

¥ & 1 r ¥
Var(p'b*) = A—ZVar(p X'y)=—>

P
©)

If Prand Pz gre eigen vectors corresponding to two non-zero eigen values 442 of
X'X , then

3 #* 1 I T r T
Cov(pib*,ptb*) = HCm?(plX v, 05X y)
142

2
u

" A

2
Oy

= mﬂz pipz = 0. (4)

piX' Xp;

Let W'F be an estimable linear parametric function. Then
w = Elpl + e + Sfp_f
where,

1‘51, e s 1‘5_’; are constants and

p; is eigen vector corresponding to non zero eigen value 4; Then

7 512
Var(w'b*) = a2 Z n (5)
L

i=1

Thus, precision of ¥ 2" depends upon %%, 5 and 4.



Comparatively precise estimates can be obtained in the directions of eigen vectors of

i I
XX corresponding to large eigen values. An estimable linear parametric function W B will

be comparatively estimated with less precision if w, as written in (5), has large weights Oy

attached to small eigen values A

1.3.1 Case of near Multicollinearity
Let us suppose that #(X'X) =k

L — K
Then all linear parametric functions * B = Qu=16:2)'F gre estimable and BLUE is
w'b = (XL, S:P:),b.Where b=(XX)1Xy.
Then

Var(w'b) = ociw'(X'X) 1w

!
In the case of near multicollinearity " B is estimated with less precision if w has large

weights attached to small eigen values.
1.3.2 Sources of Multicollinearity
Data-based multicollinearity

1) Poorly designed experiments: If only a subspace of regressors have been sampled,

k

i.e., there are ™ regressors but sample is collected from a lower dimensional space.

2) Insufficient data: If number of observations is less than the number of regressors,
then collecting more data can resolve the issue but this is not possible in all the cases. For

example, gene expression data.



3) Variables may be highly correlated while collecting data from purely observational

studies.
Structural multicollinearity

1) Constraints on the model or in the population: when two or more regressors are

related with some kind of linear relationship.

2) Model specification: if range of * is small, including x? in the model may cause

multicollinearity.

3) An over defined model: if in a model there are more regressors than number of
observations. OLS estimator cannot be obtained. This problem is often faced in gene

expression data. Then one of the usual approaches is to eliminate some of the regressors.

For variables selection we cannot apply test of significance for regression coefficients
as it involves OLS estimator. Then the question arises “How to select regressors to

eliminate?”
Some other Causes of multicollinearity

1) Incorrectly using Dummy variables is also a cause of multicollinearity. For

example, if we add a dummy variable for every category.

2) Including a regressor, which is a combination of two other regressors can also
cause the problem of multicollinearity. For example, interest rates of various terms to
maturity influence amount of fixed investment. But various terms interest rates are usually

highly correlated.
1.3.3 Consequences of Multicollinearity

1) Let us consider a model with two explanatory variables in deviation form

(observations are deviations from mean):
Vi = ﬁlxli + ﬁZ-XZI' + H.I';II = 1,2, I

We also assume that the observations are scaled to unit length.



—_ T . )
Let 12 = Zj=1%1%21 pe the correlation coefficient between X and X2 Ty gnd T2y

be the correlation coefficients of ¥ with X1 and 2 respectively.

Then

X'X:( 1 3’12)
iz 1

The OLS estimator of B= (B B is a solution of
SR

riz 1 /\by/  \l2y
Now

(xX'x)™t =

(. )
1—ri\—1z 1

Then, the OLS estimator of 8= (Br B2) js

_(by__ 1 1 —3’12) "1y
b= (bz) 11— r122 (—rlz 1 (rZJf)

Ty — T2ty T2y —Ti2hy

orb, =

' b2=

. a2
1—-15 1—-15

The covariance matrix of b is

Var(b) =— 052 ( 1 —3’12)

“Tiz ATz 1

(7)

(6)

The strong multicollinearity between X1 and X2 results in "12 close to 1 or -1. This

leads to

(i) Large variances and covariances between the OLS estimators of regression

coefficients.

(if) The regression coefficients are large in magnitude.



2) Let us write the model in the following canonical form:

yv=Z0+u

where Z'Z=A= df'ag(}‘ll, 'Ak).

The OLS estimator of g is
8=A"1Z"y

- 1
Then 6; = Iz;y

1

2 2

~ o ~ o
Var(6) == E(6?) = 67 +—
L L

(E(67) » 67)

The small % results in estimates large in magnitude and large

variance.
Main consequences of presence of multicollinearity are
1. For exact multicollinearity, OLS estimators cannot be defined.

2. Leads to estimators with large variances and covariances and hence imprecise

estimators of regression coefficients.

3. Since variances of individual coefficients are large, in testing significance of
regression parameters, the null hypothesis of insignificant regression parameter is often

accepted.

4. Even when the coefficients are jointly significant and R is high, the individual

coefficients are insignificant.

5. Because of large variances of coefficients estimates, the confidence intervals tend

to be much wider.

6. It leads to estimates which are large in magnitude and often having wrong signs.



7. OLS estimators and their variances become very sensitive to small changes in data.

Thus, results are not very robust.
1.3.4 Detection of Multicollinearity
The measures are:

(i) Condition number and condition index:

1

ANz
Let x(X) = (E)
8
where,

A1 maximum eigen value of 4,

A minimum eigen value of "'1, and

k(X is a measure of sensitivity of ? to changes in ¥ Y 0T X'X_

If the condition number is around 5 to 10, then it shows weak dependence. If

condition number is around 30 to 100 then it shows strong relations.
(if) Multicollinearity Index:

Multicollinearity index (mci) is defined as

MCI = ¥ (“”f)z

J=1\%
9)
1f MCT = Lt indicates high multicollinearity, and
if MCI > Z it indicates little or no multicollinearity.

(i) Variance Decomposition Proportions:



Let us write the Spectral decomposition of X'X a5

k
X'X :ZRiPiP:{-
i=1

Kk
1 r
xR =) —p
i=1

Here pi is the [**diagonal element of p; 24

2.
t yr, % be the [*"diagonal element of (X' X) 1,
e i

L so that
k
2
Var(h,) = o Z &
s A
i=1
Define,
pTﬁ
bu = : 7 (10)
k Py
J=1 4

where @1 is the proportion of Var (b, ) associated with 4

Table: Variance Decomposition Proportions

Eigen Var(b,) Var(bs) Vai(by)
Values

Al (pll ¢21 (Jt'kl




}12 ¢12 ¢22 (Jt'kZ

Ak (plk (pz.fi (Jt'kk

Here, sum of diagonal elements is 1.

Two or more large values of P in a row indicate that multicollinearity is adversely

affecting the precision of estimate of the associated coefficient.

(iv) Variance Inflation Factor (VIF):

z . . - ith -
Let B, is the multiple correlation coefficient between /  regressor and the remaining

k—1 regressors. Then VIF is defined as

(11)

th
i) If VIF is close to 1, it means there is no correlation between / predictor and

remaining predictors.
ii) VIF exceeding 4 warrant further investigation.
iii) VIFs exceeding 10 are signs of serious multicollinearity.

1.3.5 Solutions to Multicollinearity Problem

Suppose X'X has a small root % corresponding to eigen vector P. An additional

l

observation ¥n+1 is taken corresponding to Xn+1 = L-P where U is a scalar. The model for

complete set of observations is



Then X*'X*p = (X' X 4+ xpu1 %2 )p = X' X + Ppplp = A+ P)p

PR 2
where, P is the eigen vector of XX corresponding to the eigen value A+,

Choosing an additional observation in the direction of P can improve the precision of

estimator.
Some other methods to overcome multicollinearity problem:
Exact Linear Constraint:

It leads to restricted regression estimator. The restrictions imposed presumably
describe some physical constraint on the variables involved and are the product of a theory
relating the variables. One effect of using exact parameter restrictions is to reduce the
sampling variability of the estimators, a desirable end given multicollinear data. The
imposition of binding constraints, even if incorrect, may reduce the mean square error of the
estimator although incorrect restrictions produce biased parameter estimators. Exact linear
restrictions may be employed in case of both extreme and near-extreme multicollinearity.
Exact restrictions "work™ by reducing the dimensionality of the parameter space, one

dimension for each independent linear constraint.
Stochastic Linear Restrictions:

Here, you get mixed regression estimator. It arises from prior statistical information,
usually in the form of previous estimates of parameters that are also included in a current

model
Linear Inequality restrictions:

Linear inequality restrictions can indeed be useful in addressing multicollinearity in

regression analysis. By imposing linear inequality restrictions on the coefficients of the



regression model, we can restrict the possible values that the coefficients can take. This
restriction can potentially reduce the variance of the estimates and improve the precision of
estimation, especially in cases of moderate to high multicollinearity. In cases of extreme
multicollinearity, where predictors are nearly perfectly correlated, even imposing linear
inequality restrictions may not resolve the problem. The estimates of the coefficients can
become highly unstable and may not yield meaningful results regardless of the restrictions

imposed.
1.4 Principal Component Regression

Principal Component Regression (PCR) is a technique that combines Principal
Component Analysis (PCA) and linear regression. It is used when there are high levels of
multicollinearity among the predictors in a regression model, leading to unstable estimates of
regression coefficients.

Let us consider the model ¥ = X¥B + 1 gyppose £ = (1, P 15 (k X K) atrix of

orthogonal eigen vectors of XX

z; = Xp; Zfzr = A A

.th ‘th
is the ' principal component. Then , where i is the ' largest

eigen value of XX

Z =XP = (zy, ., 2p) isn X k mapriy of principal components.

We can rewrite the model as

y=XPP'B+u=Z0+u; (6 =P'f)
(13)

1.4.1 Steps for obtaining the principal component estimator

(i) Delete some of the principal components #:° corresponding to small eigen values.
(ii) Partition £ = X (P1 P,) = (Z1 Z3)

where,



Z1 pe the matrix of principal components to be retained.
Z2 e the Matrix of principal components to be deleted.

and £1 and 42 are orthogonal to each other.
Then the model (13) become

v=2,0,+2Z,0;, +u
(14)

. — ! —lgzr,, - - . 2 ! -1
(iiii) OLS estimator of 91 s 1 = (Z121)7°Z1¥ \ith covariance matrix %« (Z121) ™"

Omitting the components of Z2 means setting 62 =0 Hence the principal component

estimator of B is

~

ﬁ:P]_él:Pé*,

where & = (01 ')

The principal component estimator has lower variance than OLS estimator but biased

Pzez :C'

unless the restriction is satisfied.

1.4.2 How to select number of principal components to be omitted?
Visual Examination

The principal component matrix is of the same size as the original data matrix.
However, fewer principal components are usually needed because many of them might not be
meaningful. Examining the amount of variance explained by each new principal component
vector is helpful in achieving this. For this purpose, one can use scree plot. Scree plot shows

the eigenvalues in decreasing order.



Let 21 =42 = 2 Ag g the eigen values in decreasing order. We plot Ay against

J =12,k Then select the index of the last component before the plot flattens.

Variance explained criteria:

Let 24 =422 =4 Then the trace of covariance matrix with / components
. a2 k_j,'l._l . . . . .
deleted is equal to " “~i=1 "7 Percentage reduction in trace of covariance matrix obtainable

from using a least squares estimator with / independent linear restrictions is:

K -1
v, — i=k—j+1
I ko a-1

i=1""

X 100%;] = 1,2, ..., k;

where "7 is the benchmark function of principal component regression. This is the

variance of the component which we have retained.

The total % variation that is explained by the first k=] loadings is

Tl A
k R—l

i=1""

* 100%;

We may select / so that, say, the above percentage explained variation is greater than
80%

1.5 Ordinary Ridge Regression (ORR) Estimator



Ordinary Ridge Regression (ORR), often simply referred to as Ridge Regression, is a

technique used in linear regression to mitigate the problem of multicollinearity among

predictor variables. It extends the ordinary least squares (OLS) method by adding a

regularization term to the regression objective function.

(15)

(16)

The Ordinary Ridge Regression is given by
b(c)=X'X+c)X'y; c=0

b

For € = D, we get the OLS estimator . We have

E(b'b) =B'B +oitr(X'X)™' > B'B +%

I'=1.;{_i_

- - - i
where A= minimum eigen value of X nd,

% rX'x) =3k 1<
a

1

.:{;(_

For small AR’, squared length of OLS estimator is much larger than squared length of

coefficients vector 5. The squared length of ORR estimator in less than that of OLS

estimator.

Result 1.5.1: The bias and MSE of ORR estimator 2" (¢) are given by

Elb*(c)—Bl=—cX'X +cI)™ 1B
and

E[b*(c) — BIb*(e) — BY

—g2(X'X+ec) XXX X+ec) P +A2X'X+c) BB (X' X +cl) L.

Proof: We consider that,

bB'(c)=X'X+c) X'y

= (X'X + cI)"1X'Xb



= (X'X+c)NX'X +cl —chb
=b—c(X'X +cI) b
or

E(b*(c)) =B —c(X'X +c)™1p

or, the bias of b*(e) i

E(b*(c))—B=—c(X'X +cD)7'p
(17)

again, we have
b*(c) —E(b*(0)) = (X' X +cD'X'X(b — B)
or

[b*(c) — E(b*(©)][p*(c) — E(b*(©))]
= (X'X+cDXXb-B)b-BXXX'X +c)™Y)

Taking expectation on both sides, we get

E[b*(c) — E(b*(e)][b* () — E(b* ()]
= E[(X'X + D)X X(b — B)(b — B) X' X(X'X + cI)™1)]
=o2(X'X + )" X'X(X'X +cD)?
=V (b*(e)).

Then the MSE of 2" (€) js
MSE [b*(c)] = V(b* (c)) + Bias[b*(c)] Bias [b*(c)]’

=oZ(X'X+c)X'X(X'X +cI)7?
XX+ )RR (XX 4 c)™™ (18)



Result 1.5.2: The mean squared error of ORR estimator is given by
S
Elb"(c) = BV (b (@) — Bl = 0F ) =iy +c3B (XX + )2,
— (4 +¢)

Proof: The mean square error of ORR estimator is obtained by taking the trace of

mean square error of b*(e), From equation (18);

E[b*(c) — B]'[b*(c) — B]
—trle2(X’'X +c) X'XX'X +e) P+ 2(X'X + )R (X' X +cl) 1]

=trle2(X'X +cI) ' X'X(X'X + ) ]+ 32 (X' X + )72
Kk

_ 2 A; 2 "(X'X I)_Z ]

= dy . 1m+c ﬁ +c ,8
1=

How to select c?

The estimation of ridge regression estimator depends upon the value of c¢. Various
approaches have been suggested in the literature to determine the value of c. The value of ¢

can be chosen on the bias of criteria like
e the stability of estimators with respect to c.
e reasonable signs.
e the magnitude of residual sum of squares etc.
We consider here the determination of ¢ by the inspection of ridge trace.
Ridge Trace

Choosing an appropriate value for c is one of the main difficulties in using ridge
regression. The inventors of ridge regression, Hoerl and Kennard (1970), recommended

utilising a diagram known as the ridge trace. The ridge regression coefficients as a function of

€ are displayed in this graphic. The analyst selects a value for € for which the regression



coefficients have stabilised when seeing the ridge trace. For modest values of €, the

regression coefficients frequently fluctuate greatly before stabilising. Select the minimum

value of € resulting in the least amount of bias, beyond which the regression coefficients
appear to stay constant.

Ridge Trace is a two-dimensional plot of b; () and residual sum of squares against c.
Select that value of ¢ for which the estimated coefficients stabilize with increasing c.

Figure: Univariate ridge trace and VIF trace plots for the coefficients

Ridge Trace Plot
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From the above two graphs we observe that:



1) As € increases the coefficients shrink toward 0.
2) VIF decreases rapidly as € gets bigger than 0.
3) The VIF values begin to change slowly as € increases.

4) We choose the smallest value of € where the regression coefficients become stable in

the ridge trace and the VIF values become sufficiently small.

Some operational choices of € are

1) Hoerl, Kennard and Baldwin (1975):

- ks?
Cyrp — b
oG XbY(y —XD)
n—=k

2) Lawless and Wang (1976):

_ ks?
LW = pixixb

1.6 Generalized Ridge Regression Estimator

Generalized Ridge Regression (GRR) is an extension of the classical Ridge
Regression method, which is used to handle multicollinearity and improve the stability of
regression estimates when there are correlated predictors in a linear regression model. Like
Ridge Regression, the goal of GRR is to stabilize the parameter estimates by shrinking them

towards zero, especially when multicollinearity is present.
Consider the model in canonical form
y=Z0+u

Z'Z = diag(Aq, ..., Ax) = A (say)

Let € = diag(cy, .. cx)- Then GRR estimator of @ is defined as



B =(A+0C)Zy=(A+C)1A8
where
Z'y=Z'Z(Z’Z)Z'y = AB,8 is the OLS estimator ofﬁ'.

ith éﬁ H H
The * component of Y% is given by

Ai
Ajte;

éﬁ!;‘ = é:‘

(19)

Result 1.6.1: the expressions for bias and MSE of Or, are given by

o~ Cy
E[SRI' _'91] == _171- -;CI- EI'

~ 2 AoZ +cto?

&

The MSE of %®i is minimum when = %

Proof: We have,

= Eloed =057

This is the expression for Bias of the O,

Now, for the expression of MSE of eﬁi, let

A

- A
_?'li‘l'ci(ei —6,)+——06,— 6,

?"i+ci




2

" 2 A - Ci
E[0r; 0] = E [?ai-l-lci (8 -6, N -ii Ciei]

?"i ~ 2 Cj 2 ?'Li ~ Cj
o et GO R Pl I P OB | Pt

. +C'
2 N c2

= E®-0) + 62

(A + ¢)? ( ' I) * i +c)*
= 4 0_1214_ i B

Ri+c)?d G+
_ hiog +¢76f (20)

(A + ¢;)?

Differentiate equation (20) with respect to €i and equate it to zero gives

o (E[6x; — &)

ﬂci

4+ e)?(2607) — (Wod + cf00)2. (A + )
- A +¢)* B

= U\l + Ci)(ciﬂf) — U\iﬁ-ﬁ + CIZE'IZ) =0

Thus the MSE of % is minimum when © &,

1.7 Shrinkage Estimator

A shrinkage estimator in statistics is a method that combines information from a

sample with some form of prior knowledge or assumptions to produce more stable and



sometimes more accurate estimates of parameters or predictions. In the context of regression
analysis, particularly when dealing with multicollinearity or high-dimensional data, shrinkage

estimators like penalized regression and stein-rule estimators are commonly used.

For the problem of multicollinearity, the selection of a subset of variables (among a
large number of variables) are required. In the variable selection procedure variables are
either retained or discarded. Variable selection procedure often leads to high variance and

prediction error so it does not work well.

The other method which are considered for variable selection is Shrinkage Methods,
which is more continuous and do not suffer as much from high variability. Here we consider

some shrinkage methods for estimating the regression.
1.7.1 Penalized Regression Estimators

A penalized regression estimator, also known as regularized regression, refers to a
class of regression techniques that introduce a penalty term into the ordinary least squares
(OLS) objective function. These penalties are designed to Shrink the estimators by imposing
a penalty on their size, thereby mitigating issues like multicollinearity and overfitting. The
two main types of penalized regression estimators are: Ridge Regression and LASSO (Least

Absolute Shrinkage and Selection Operator) Regression.

Sparsity: Large number of predictors recorded but a relatively small number

(proportion) of strong effects. This corresponds to sparsity.

Bias-Variance Trade-off
General regression relationship: ¥ = fG) +u

Let f(x) be the regression prediction The effectiveness of prediction is measured
- 2
through squared error of prediction [y =71 Then
- 2
MSE = E[y — f(x)]

= E[{ly — ()} — {f () — FO)]
= [Bias{f))]” + Var[f ()] + o2



This shows that
(i) the estimators having lower bias have higher variance.
(ii) the estimators having lower variance have higher bias.

In terms of higher bias there is a trade-off between bias and variance then tune the

estimator and find the best possible trade-off.
1.7.1.1 Ridge Regression

In ridge regression, a penalty term proportional to the sum of the squares of the
coefficients is added to the OLS objective function. The ridge penalty is parameterized by a
tuning parameter, which controls the amount of shrinkage applied to the coefficients. Ridge
regression is effective in reducing the impact of multicollinearity by shrinking the

coefficients of correlated predictors towards each other.

Ridge estimator is obtained by minimizing the penalized residual sum of squares
RSS(c) = (v —XB)' (v — XB) + c X}, B}

= —XB)(y—XB) +cB’'B

(21)
Eﬁidge = argmin{RSS(c)}
Thus, B
Equivalently
,@mdge = arg.énin(y — XB) (y — XB) subject to Ej-{zl ﬁjz =)
(22)

There is a one-to-one correspondence between (21) and (22). Differentiating RSS(c)

with respect to B and substituting it equal to zero leads to

Priage = X' X+ cl,) X'y



The solution adds a positive constant in the diagonal elements of X'X The term € is

the Penalty parameter controlling the amount of shrinkage.

Consider singular value decomposition of X:

X=UDV'Uisnxk matrix

V is k X k orthogonal matrix

D =diag(d,,...,dy); d; = -+ = d,, are the singular values of X

Xis singular if any one of the 7 is zero.

X(X'X)"x' =uDv'(VDU'UDV') VDU’ = UU’
Then
Xb=XX'X)"X'y

= UU’}J

where, U'Y is Co-ordinates of ¥ with respect to the orthonormal basis U.

Further

Xﬁmdge = X(X'X +cli) ' X'y
=UD(D? +cl,,) DUy

k dZ
— Z Uj 5 —— (d2 o) uj} (u,J, jt" column of U) (23)
j=1

The ridge regression shrinks the co-ordinates of y with respect to the orthonormal
2
_I

basis U by the factor ‘7t Greater shrinkage is applied to co-ordinates corresponding to

2 = .
smaller values of di' =4

A

j U =1..k) are the eigen values of X'X



1.7.1.2 Least Absolute Shrinkage and Selection Operator (LASSO)

In LASSO regression, a penalty term proportional to the sum of the absolute values of
the coefficients is added to the OLS objective function. LASSO can shrink some coefficients

exactly to zero, performing automatic variable selection and providing sparse solutions.
The LASSO estimator is defined as
Biasso = arg;’nin{(y —XB)'(y—Xp)+ CZ?:l‘ﬁj |}

(24)

We have,

Ridge Estimator is with L2 ~Penalty anq | ASSO estimator is with L1 — penalty.
Equivalently

Brasso = arg;nin(y — XB)' (y — XB) subject tonf:l 1Bl =6
(25)

LASSO solution is a quadratic programming.

1F 9 is larger than 8o = Zj=115; |, Brasso is equivalent to b 10 s equal to 00/2  the
amount of shrinkage is 50%. It makes some of the coefficients zero.

Choice of regularization parameter c

K-fold cross validation:

K

Data are randomly split in K groups. Model constructed for -1 groups and

. th .. ) .
validated on X group. Sum of predictive errors for each model is an estimate of squared

prediction error.

We select that value of € for which estimate of squared prediction error is minimum.



NOTE: Both ridge regression and lasso regression are forms of penalized regression

that offer different trade-offs between bias and variance:

e Ridge regression generally reduces variance more effectively than LASSO but does

not perform variable selection.

e LASSO can perform both variable selection and shrinkage but may have higher bias

in estimation compared to ridge regression.

The choice between ridge regression and LASSO (or a combination known as elastic
net) depends on the specific characteristics of the data, including the presence of
multicollinearity, the desired interpretability of the model, and the importance of variable
selection in the analysis. These techniques are widely used in machine learning and statistical
modeling to improve the performance and interpretability of regression models, especially

when dealing with high-dimensional data or correlated predictors.
1.8 Self-Assessment Exercise
1. Discuss the problem of multicollinearity and its various consequences.
2. Give various measures of multicollinearity.

3. Describe the method of principal components to overcome the

multicollinearity problem.

4. Describe the ordinary ridge regression (ORR) estimator to overcome the

multicollinearity problem.

5. How can we obtain characterizing scalar of ordinary ridge regression estimator

using ridge trace?

6. Gie interpretations of ridge regression estimator and LASSO as penalized

regression estimators.

7. Describe the ordinary ridge regression (ORR) estimator to overcome the
problem of multicollinearity and derive its bias and MSE. Discuss various

methods for selecting the characterizing scalar in ORR estimator.



1.9 Summary

Multicollinearity is a common issue in regression analysis where predictor variables
exhibit high correlations among themselves. It leads to to inflated standard errors of OLS
estimators of regression coefficients and ambiguous interpretation of the relationships
between predictors and the dependent variable. We have discussed the consequences of
multicollinearity, which include unreliable coefficient estimates, difficulty in interpreting
variable importance, and potential for misleading conclusions. Different measures such as
Variance Inflation Factors (VIF) can be used to detect and address highly correlated

predictors.

We have explored several strategies to overcome multicollinearity, such as increasing
sample size, careful variable selection, using regularization techniques like Ridge regression

and LASSO, applying Principal Component regression.
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3.1. Introduction

This unit focuses on advanced techniques in multiple linear regression analysis,
designed to refine estimation methods, test model assumptions, and enhance interpretability
and prediction accuracy. By integrating statistical tools with theoretical insights, this unit
equips learners to handle complex regression scenarios with confidence. The key topics

covered include:
Restricted Regression Estimation in Multiple Linear Regression Models

Explore how to incorporate constraints on regression coefficients to improve model

estimation and reflect specific theoretical or practical considerations.
Tests for Linear Restrictions

Learn hypothesis testing techniques to evaluate whether specific linear relationships

among coefficients hold, providing insights into model structure and variable importance.
Model in Deviation Form

Understand how re-expressing a model in deviation form (mean-centered variables)

simplifies interpretation and calculation, particularly in the presence of interaction terms.
Analysis of Variance (ANOVA) in Regression

Examine how ANOVA techniques decompose variability in regression models,
offering a deeper understanding of the contribution of explanatory variables.

R-Square and Adjusted R-Squar

Gain proficiency in assessing the goodness-of-fit of a regression model, balancing the

trade-off between explanatory power and model complexity.

Interval Estimation of Regression Coefficients



Learn how to calculate confidence intervals for regression coefficients, providing a

measure of the precision and reliability of the estimates.
Point and Interval Prediction

Develop skills to make accurate predictions from regression models, including
specific value forecasts (point predictions) and range-based predictions (interval predictions)

with confidence levels.

By the end of this unit, learners will have a comprehensive understanding of these
advanced regression topics, enabling them to evaluate and enhance regression models

effectively for robust analysis and decision-making.

3.2.  Objective

After completing this Block, students should have developed a clear understanding of:
o Estimation under Linear Restrictions
o Tests of Linear Hypothesis

° Model in Deviation Form and ANOVA

. 2 A 2
o Performance of a regression model: R* and adjusted R
. Confidence interval estimation
. Point and Interval Prediction

3.3.  Estimation under Linear Restrictions
Example:
Cobb-Douglas production function

Y = ALP1KB:



logY = logA + BylogL + B5logK + u

Y: Total production, L: abour input, K: Capital input

Assumption of constant returns to scale means that doubling the usage of capital K

and labor L will also double output Y

This implies that Pith=1

i.e.

2Y = A(2L)P1(2K)Fz = (2)F1*hzy
= 2 = (2)F1h:

Diminishing returns to scale means output increases in lesser proportion than increase

in factor inputs.

This implies that Bith <1

Increasing returns to scale means output increases in bigger proportion than increase

in factor inputs.

This implies that Bith>1

Sometimes we have prior information about the regression coefficients in the form of

linear constraints binding the coefficients.
Such prior information may be available from
(a) Some theoretical considerations.
(b) Past experience.
(c) Empirical investigations.
(d) Some extraneous sources etc.

Forms of linear restrictions:



(i) Exact linear restrictions. i.e. PrthB =1

(ii) Stochastic linear restrictions. i.e. 1 B2 +v =1; visarandom variable

(iii)Inequality restrictions. i.e. Prt B <1
B1+B.>1
We are interested in:

(i) Estimation under set of exact linear restrictions (point estimation or confidence

set/interval estimation)

(ii) Test of set of linear restrictions

Let us consider a set of q (<k) linearly independent restrictions on B

Ry1f1+ - +Ryfr =1

RgBr+ + RuPr =14

Define

Ry; -+ Ry !
R:(E 5):qu,r:(:):qxl
Ry = Ry Tq

Then the set of linear restrictions can be written as

R =7
The rank of matrix R is q (<k).

We require the method of Lagrange multiplier, which is defined as follows:

For minimizing (or maximizing) a function fB) subject to the restriction 9(B) = 0

we define a Lagrangian function



h(B, A = f(B) — 2g(B)

and then minimizing (or maximizing) h(B, 1),

Ais the Lagrange’s multiplier.

3.3.1. Restricted Least Squares Estimation:

We estimate P utilizing sample information

y=XB+u

and prior information
R =7 (3.1)

Result 3.3.: The restricted regression estimator obtained by minimizing the residual

sum of squares
v —XB)' (v — XB)

subject to the restriction RE =r1is
bp=b+ (X'X)R'(R(X'X)"'R)™1(r —Rb) (3.2)
Proof: Consider the Lagrange’s function

SB.A) = —XB)(y —XB)— 24 (RB — 1)

Differentiating with respect to B and ’1, we obtain

SEB.A _ 2X'XB —2X'y —2R'A=0 (3.3)
ap

as(B, A)
51 =RBE-r=0 (3.4)

Writing the resulting solution for B asbr . from (3-3) we get

bp=X'X)"1(X'y+R'AD)=b+ X X)IR'A (3.5)



From (3.5), substituting br in (3.4), we get

Rby —7r=0=1=(R(XX)R)1(r — Rb)

so that

br=b+ (X'X)'R'(R(X'X)"R")"1(r — RD)

Hence the result followsm

3.3.2. Properties of hﬂ;

Q) br gatisfies Linear Restrictions: We have

Rbg =Rb+RX'X) " 'R'(RX'X)"*R) *(r—Rb) =7

Hence P& satisfies the linear restrictions (3.2).
(if) Unbiasedness: We have
E(bg) =EMB) + X’X)"'R'"(RX’X)"'R")E(r — RD)
=B+ X'X)T'R'(R(X'X)™'R")*(r —Rp)
When the restriction F =T is correct, E(bz) = B and D= is an unbiased estimator of £.
However, if ' — RE=v+ 0, then & is a biased estimator and its bias is given by
E(br — ) = (X'X)'R'(R(X'X)'R") "'y
(iii))MSE Matrix: Let us write
C=XX)R{R(X'X)"'R"}1
The MSE Matrix of 2= 1s given by

E(bg —B)(bg —B) =E[b — B+ C(r —RD)][b — B+ C(r — RD)’

=E[{Ux—CR)(b—B)+ Cr —RB}I x {(x —CR)(b — B) + C(r — RB)}Y]



=E[(Iy = CR)(b — B)(b — B)' (I — CR)'] + E[C(r —RB)(b — B)' (1) — CR)']
+E[C(r — RB)(r —RB)'C'] + E[(x — CR)(b — B)(b — B)' (I — CR)']

=05l — CR)(X'X)"' (I, —R'C")+ C(r —RB)(r — RB)'C’
We observe that

CRIXX)'R'C'=CRX'X) '=XX)"'RC' = X'X)'R{RX'X) 'R'}VIR(X'X) !
So that
(I, —CRYX'X) (I, —R'CH=X'X) "' = (X'X)'R{R(X'X)R'}'R(X'X)~!

Hence

E(bg — B)(br — B)'
= o [(X'X) 7 = (XX TR{R(X'X)TR'IR(X X) 7]
+(X'X)'R'(R(X'X)R) Y r —RB)(r —RBY (R(X'X)'R)T'R(X'X)~!

When the restrictions RE =7 are correct, the variance-covariance matrix of bg is
E(bg —B)(bg — B) =cZ[(X' X)) — (X’ X)'R{RX'X)"'R'}IR(X"X) 7]

3.3.3. Maximum Likelihood Estimator under Exact Restrictions:

Let uwN(O.Jffn). The LF is given by

16,09 = (os) exp [_ 1 {(y ~XB)(y —xg)H

2 2
2no;; 2 lFr

We maximize the following log of LF combined with the Lagrange’s multiplier term:

InL(B,02,A) = —glnaﬁ _Ziz (v—XB)Y(ly—XB)+X(RB—1)

Partially differentiating InL(B, 04, 2) \ith respect to B i and 4, substituting the

2 3 =2
derivatives equal to zero and denoting the MLE of B @1d 0u g5 Brand iz respectively, we
have



dlnL(B, ok A 1 .
° g;a“ ) =——(X'XBr —X'y) + 2R'A=0
B=Broi=ilp  Cur
dlnL(B, ok A .
. g;a“ ) =2(Rfzr—1)=0
B=Br.oi =05a

2 =2 =
aa“ B=Fr.02 :'&3R Our OuR

dlnL(B,a%4) 2n 2(}'—XER)’(}’—XER)
_ N A — 0.

Solving these normal equations, we get

_[R&X)R'TA(r — Rb)

52
Oy

By

Br=b+ (X'X)"R'[R(X'X)"R’']"(r — Rb) = by

~2 (y — Xbg)'(y — Xbg)

() =
uR n

The Hessian matrix of second order partial derivatives is positive definite at
— 2 _— =2
B = Br 0i = Gir_The restricted least squares and restricted maximum likelihood estimators

2
of B are the same whereas for Yu, the two estimators are different.

3.4.  Tests of Linear Hypothesis

Suppose we want to test the null hypothesis Ho:
RyiBr+ " +RyBy =711 Ry + + Ry = 14

against Hl: not H{]

or Ho:RB =1 RE#1

against Hy:

Ry; = Ry "
R:(E 5):q><k, r:(:):qxl
Ry Rge Tq

Cobb-Douglas production function



logY = o + BilogL + B:logK, By = logA
Y: Total production, L: L abour input, K: Capital input
Assumption of constant returns to scale implies that

Ho: b1+ B2 =1 e take

Bo
ﬁz(ﬁl)f?:(ﬂ 1 1),r=1, g=1
B2

RE=r=p+p=1

Examples:

(i) Significance of a Regression Coefficient:

_ . ) -th
q =1, andR: 1 X K yecor with all elements equal to zero except the © element

which is 1.

Thus R =(00 ..010 ..0)

Further ™ = Bio. Then, we get the hypothesis Bi = bio,

T =0

For" = 0, we get the hypothesis Py

(ii) Significance of Complete Regression:

q=k—1,

r=(00 ... 0):(k —1)x1

01 0
r=19 9 . ?)=0 1L
oo - 1

Then the hypothesis becomes



B\ (0
(: ):() orfy =F3 = =P =
Br 0

We are not interested in the hypothesis p =0 as it is corresponding to the intercept

term and taking p =0 means additional assumption that mean level is also zero. We are

mainly interested in the significance of entire regression not in the mean level of Y.

(iii)Equality of Two Coefficients:

g=1,r=0

R=(00 ..010 ..—1 ..0)(1ati place and -1 at j* place)

This leads to the hypothesis Bi=F

3.4.1. Likelihood Ratio Test for Set of Linear Hypothesis:

We assume that ¥~V (0, oy In). The Likelihood Function is

b =

L(B,af)z( ! ) ex

2mo? 2 a?

pl_}{fy —XB)'(y —Xﬁ)H

The likelihood ratio test statistic for testing 710* BB =T against H1: RE # 1

I maxL (B, o2)
'R ™ maxL (8,02|RB = 1)

2 — — U —1lyr.,
Now MaxL (B,0%) occurs when £ = b = XX X"y 4
1
0—5 = 65 = E(y —Xb)’(_}’ _Xb)

For these values

1
maxL (8,02 :( ) exp[

52
2way

1 {(y —Xb) (v —me

=32
2 04



n
p

- (2 “5) p[

Further ™axL (8, 0IRB = 1) 5ccurs when B = D= and
O—I%: uR :_(} XbR (.} XbR

For these values

n

maxL (8,02|RB = r) = ( 1 )z e?:pl‘%{(y —Xbﬁz;(_} —XbR)H

Zmruﬁ GiR

n
1 2 [ n
2m62,) TPl 2

Hence

}-1% ZSI%R:(}T_XE)R),(}T_X'&R)
LR g2 (v — Xb)' (y — Xb)

Further
(J’ - Xbﬁ)’(}’ - Xbﬁ)

= [y — Xb— X(X'X)"'R'{R(X'X)"R'}"1(r — RB)]'[v — Xb
— X(X'X)"'R'{R(X'X)"*R'}"(r — RD)]

v (y —Xb)'X(X'X)'R{R(X'X)"'R'}'(r—Rb)=0
Therefore

(y — Xbg)'(y — Xbg) = (y — Xb)'(y — Xb) + (r — Rb)' (R(X'X)"R")"1(r — Rb)

Therefore
2= RYREDRY - RY

LR (v — Xb)'(y — Xb)



(i)

Distribution of test statistic

since 2N (A (X" X)™), \we have
Rb~N(RB c2R(X'X)"R")

Under Ho RE~N(r, GER(X'X)™*R").

Hence under Ho

Qu = — (r — RbY (RCY'X) R} — RD)~1*(0)

i

Further
1 r 1 ] 2
Q=—=e'e==@—-Xb)'(y —Xb)~y*(n—k),
Cr'l!{ Cr'l!{

independently of b , and hence, independently of Q.

Therefore, under Ho

Qs (r —Rb)'{R(X'X)"'R'}"'(r —Rb)

Fcal = Q = [ “’F(Q-n - k)

¢ HO cal > Fla; g,n — k).

We rejec when F

F(a;q,n — k). tapulated value of F'(@ ™ — k) 4t @ |evel of significance.

Significance of a Reqgression Coefficient:

gq=1,R=(00 ...010 ..0), r =By,
Hypothesis Ho: B; = Pio, against Hy: f; = B,

Rb—1 = b; — B



(i)

R(X,X)_]'R: = Cjj

th . U -1
€u: b diagonal element of (x"X)

(bi - rgio)z

Cij

(Rb—7r){R(X'X)"'R'} Y (Rb—1) =

(b; — Bi0)*/cis
g2

F. = ~F(1,n — k)(under Hyp)

Hence, under Ho

bi - ﬁio

8./ Cii

~t(n —k)

We reject the null hypothesis® Ho: Bi = Bio at & jeye| of significance if

b:’ — 61‘0

8./ Cii

> tla;n—k)

Testing Significance of Complete Regression:

g=k—1,r=(00 ... 0),

R=(0 Iy)
Rb—r= b{z}

RX'X)R: (k-1 x (k-1

_ : )1
sub matrix formed by last k=1 rows and columns in (x'X)

X=(l, Xz)



Write

wo = 1)

Then
( n LX) )(311 ,1') B (1 0 )
Xl XX\ 1 A 0 Ixy
. -1
= A= (X(»AXw)

Thus F-statistic becomes

bi2)'X)'AX )by  ESS
(k—1)

(k—1)
F= ee ~ " RSS
(n—k) (n—k)
In terms of R?
_(n—k) R?
~(k—1)(1-R?)

3.5. Model in Deviation Form and ANOVA
The OLS Regression equation is
y=Xb+e (3.6)

Let us define
1 I
A = In — (H) En‘{n

bz X 1 yector with all elements equal to 1.

( Ll =n)

CXXX'X)1=1)

1 r
(- L)



nx1l

For any vector y

1., _
Ly = y
Further

Ay =y —yl,

Hence 4Y gives the observation vector ¥ as deviation from mean. Further 4 is a

symmetric idempotent matrix.

1 r
= ()}

1 I
= En _Hinlnln

=I,—-1,=0, (I,;l,=n)
X'e =0,

Ae =e

[ X

The first column of X matrix is . Partition % matrix as

X= [‘En X{E]]-

Here X 180k = 1) hairiv of observations on all explanatory variables, except

first column corresponding to intercept term. We have
1 _ o
EInX{z] = (X3 . Xy)
Further, Y/ = 2, k

n
_ 1
X; = EZ X;; is the mean of j™ explanatory variable
i=1

Then, we can write (3.6) as



y=1ULb +Xzby +e (3.7)

where

b
b =( . )
b(z)

biis the intercept term and b is(k—1x 1)

vector of slope coefficients. Pre

multiplying (3.7) by 4, and observing that A1» = 0,4¢ =€ \ye obtain
Ay = AX»bp) t e (3.8)
Since X'e = 0 implies that X{,)e = 0, we have
XAy = XEZ}AX{Z}E’{E}(AX{Z}),A}’ = (AX{z}):(AX(z})b{z} (3.9)
Here 4Y is ¥ vector as deviation from mean and “%@ is the matrix of explanatory

variables as deviation from mean.

Equation (3.9) s a set of normal equations in terms of deviations, whose solution
leads to OLS estimators of slope coefficients, i.e., b,

Pre multiplying

v =Lb +Xbg +e

1p
by n ™ leads to

b,
y=b, + (X, ...Xk)( i )
br

Ol‘bl :_}_’_bzfz — e = bk‘?k

3.5.1. Analysis of VVariance

We have



v'Ay = (Ay)'(Ay)
= (AX@)b) + ) (AX(p)bez) + €)
= bEZ}XEZ}AX{Z}b{Z} + 3:3

2
]'JI J — n F. — _]' - _
y Ay EFl(}i }) denotes the Total Sum of Squares (TSS) having (m—Dyy,
b X@A%X@P@) js the Explained Sum of Squares (ESS) having 8 — 1 d 1.

e'e is the Residual Sum of Squares (RSS) having (" — %) g f.
Hence TSS=ESS+RSS
Sum of squares and corresponding d.f. are additive.

Analysis of Variance (ANOVA) Table

S.S. d.f. M.S.S. F ratio

ESS k—1 ESS/(k — 1) ESS/(k—1)
RSS/(n—k)

RSS n—k RSS/(n—k)

TSS n—1

2 2
3.6. Performance of a regression model: R* and adjusted R
The error sum of squares is

e'e =(y—Xb)'(y—Xb)

2
In two variables simple linear regression, the model is good if " (square of

correlation coefficient) is high. Here



RZ ESS . RSS
 TSS TSS

2
R is the coefficient of determination or square of multiple correlation coefficient.
It gives the proportion of variation in the dependent variable that is explained by the
independent variables. Further

0=R?’=1

2000 ey : 201 & .
If °~ 0.t indicates the poor fit of the model. Further, R® %~ 1 indicates the best fit of the

Suppose R = C"95, then it indicates that 95% of the variation in y is explained by
the explanatory variables. In simple words, the model is 95% good. Similarly, we can

R

2 2
interpret any other value of R* petween 0 and 1. Thus, indicates the adequacy of fitted

2
model. Whenever we add an explanatory variable to the model, the value of R always

RZ . . .
gives a misleading

increases. In case the included variable is irrelevant, the increase in
picture. We may also face the problem of multicollinearity if too many irrelevant variables
2 s A

or @dj R

are included. Keeping in view this problem, adjusted Rz, denoted as R is used.

The adjusted R? is defined as

RSS
52 _n—k
R?=1-Ss
n—1
n—1 RSS
_ o _ D2 2 _ _ _
=1 (n—k)(l R%) (R 1 TSS)

RSS/(n — k): Unbiased estimator of variance of residual e

TSS/(n — 1): Unbiased estimator of variance of y

2
If adding a variable produces a too small reduction in (1=R*) g compensate for the

D 2 D 2
increase in (M —1)/(m—k) R% may decrease. A problem with & is that it may take
negative value, which is difficult to interpret. For instance, suppose,
k=5 n=15 R?=0.16, then



_ 15 —
R?=1-
15 —

1
5 (1—-0.16) =—-0.176

2
Some limitations of &

(i) For model with intercept term

2
pz_q 2= = %)
_ a2
iy —7)

For model without intercept term

2
X0y -9)

RZ=1
Xiyy

2 . . : T
R” for model without intercept term (regression forced through origin) is usually

R

2 2
greater than R” for model with intercept term. However, ** of two different linear models

cannot be compared.

R

.\ R2. . 2
(i) R” is sensitive to extreme values, so & lacks robustness.

(iii) Suppose we have following two alternative models:

(H) Vi = ,81 +62XI'2 4+ 4 6.?Xik + HI',F: = 1,2, L,
(b) logy; =y, +V2Xiz + =+ yiXix + v
Then coefficients of determination for the two models are

Z?::['[J’a'_j;i]'z

2 _ 1 _
Rl =1 E?:f()"a'_?}z

: For model (a)

2 _ 4 _ Ziti(logyi—logy:)*®
R;=1 ST (logyi o557 : For model (b)

RZ RZ ;
Then “*1 and 2 are not comparable. If we define



P (y;—antilogz) ,  ——
RS =1 =S 4= logy:

2 2 . . .
then X1 and &3 provide a better option for the comparison of two models.

3.6.1. Relation between F-ratio for testing the significance of the regression and

Coefficient of Determination:

For testing Ho: P2 = B3 == Px =0 the F-test statistic is
_ ESS/(k —1)
~ RSS/(n— k)

2
Further R is

RZ—1 RSS

N TSS
Hence
n—k R?

F= —
k—11—R?
RZ=0=F=0,

RP=1=>F=w
In fact, F is a monotone increasing function of RZ.
3.7. Confidence interval estimation
Confidence interval for the individual regression coefficient:
Consider the model
vy =XB +u;u~N(0,a2l,)

Then wa(ﬁ- Jt% (X:X)_l)_

.. — ith . r -1 L ) 2 L
Let 57 = I diagonal element of X' X) ™" Then % ~N (B, 9ic;)

1
2 T far Ty
s _n—k(} Xb) (y — Xb)



(1 —a)100% confidence interval is obtained as

b. — 8.
Pl—ta ‘ijiﬁjita l

S n—k = F —n—-K
2 5°Cy; 2

=1—aP [bj — t%.n—k’ [ste;; = B; = b + t%.n—k fszc”-]
= 1 — a. Confidence Interval is (bj- — t%.n—k [s%c;y, by + t%.n—k [s? cH)

3.7.1. Joint Confidence Set for all the Coefficients:

We have

(b-B)X'X(h —p)

k
RS ~F(k,n—k)
n—=k
=P (b _ﬁ)le(b A < F,(k,n —k)l =1—a.
ks

Then (1 —@)100% joint confidence set for B is

b—B)YX'X(b—
{,8:( BYX'X(b—p)

el < E, (k,n —k}}.

3.8.  Point and Interval Prediction

Prediction or Forecasting When X variables are Uncertain Model:



yv=Xf+u

17 = (Lx27 X7 ): Tre value of the explanatory variable for the forecast period f

r = (1 %27 %y ): Estimated values of the explanatory variables for the forecast
period f

The true value of *7 is given by
Vr = X8+ up

The point prediction is

b= (X'X)"1X'y :0LS Estimator of § (E(uu') = 62l,)
Forecast error is
e =Yr —Vr
= up + x5 — ;b
= U — (f}.b — f}iﬁ) — X8+ xp
= u, — 2;(b — B) — (% — x;)
We assume that

Q) E (ff )= %1, i.e., forecaster makes unbiased forecasts of the * values.
E (f;,(b —§))=0

(i) Covariance between *7 and OLS estimator b is zero, i.e.,

Then E(ef) = E[uf — %:(b—B) — ﬁ’(ff — xf)] = 0.

Thus ¥r = %P is an unbiased forecast of 7.



i E(97) = E(%b) = x7f8 = E(yy)

LetV(%) = E [(ff —xp) (%, — xf),]'
The variance of forecast error is given by
E(ef) = o},
= Efuy — 276 = ) = B (3, — %))
= E[uZ + )b — B)b — B2, + B' (% — x,) (27 — x7) B (3.10)
The cross-product terms have expectation zero. i.e.
Elu, 24(b— )] =0
E[u; B'(%, —x;)] =0
E[2;(b — BB’ (2, —x;)] =0

Now
E(uf) = o? (3.11)

E[2;(b — B)(b — B)' %] = E[tr (b —B)(b — B)' %%}

= o {2 (0 X) x4+ tr[ (X X))V (34)]) (3.12) ( E(%r%7) = V(%) +xx))
BE(%; —x7) (3, —x7) B = BV (%,)B (3.13)

Utilizing (3.10), (3.11), (3.12), (3.13), we obtain

crn cr“{l—l-xf(X’X) xf—l—tr[(X’X) 1V(xf)]}—|—,8 V(xf)ﬁ

If X7 = 7, i.e., T is exactly known, so that V(%) = 0 then



E(e}?) =a2{1+ x}i(X’X)_le}.

) ) 2
An unbiased estimator of “x is

1
2 _ , (v —
54 = k(} Xb) (v — Xb).

Result 3.8.1.: If an unbiased estimator of V(ff), say V(ff) is available, then an

2
. : o5, .
unbiased estimator of *7is given by

of

62, =s7[1+ 5 (x 0% ]+ or {0V (5} + bV (7,)b (3.14).

2

Proof: The expression for 7t is

o}, = oi{l + (X' X) ", + o[ (X X)WV (3]} + BV (%) B. (3.15)
2 2

An unbiased estimator of “u is 5. Further

E(%%}) = xpx; + V(%)

Hence, an unbiased estimator of 77 + V(xf) is “7*7 so that an unbiased estimator

(X' X) Ty + e[ (X X) TV (%,)]
(X X) %, (3.16)
Further
E{bv(z,)b} = E {er (v(z,)bb'))
= tr{V(z,)E(bb")}

= a2tr{V(x,) X' X))} + BV (%,)B.



I o~
Thus, an unbiased estimator ofﬁ V(xf)'@ is
BV (%e)b — s2er {V () (31} (3.17)
Combining (3.15), (3.16), and (3.17), we obtain the result (3.14)m

When *7 is exactly known,

32[1 + x}(X’X)_le].

Prediction for the Model with Non-spherical disturbances

* In the linear model with non-spherical disturbances, the disturbances have

interdependence.

* The pattern of sample residuals contain information which is useful in

prediction of post-sample observations.
* This information can be utilized to obtain the best linear unbiased predictor.
* This leads to the gain in efficiency over the usual expected value estimator.

Best Linear Unbiased Prediction

Consider the model

v=XB+uw; E(w) =0, E(uu’) = aq.

Consider the problem of predicting 7 for given *7 (k X1) for the forecast period /. Let

be the disturbance term for the forecast period so that
Vr = X8+ g, E(u) =0, E(uﬁ) = g2
E(uf u) = gZww:n X 1 vector of correlations between ur and elements of u

Result 3.8.2.: The best linear unbiased predictor (BLUP) of ¥f is



Jr=X'b=x/f+ w0 (y—XB).

B = X071 )7H07Y: gL s estimator of B,

Proof: Let ¢ X 1) pe a vector and 77 = €'Y is the linear predictor of 7.

For the BLUP, we obtain € ¥ such that

of = E(c'y )’ is minimum subject to E(c'y —y)=0

Nowp =c'y =c'XB + c'uc'y —y; =c'Xp + c'u— x}ﬁ —ur oy = x}ﬁ —ug)
E(c'y =) = ¢'Xp—x;f =0 requires that

X'ec=x; (3.18)

Further, using (3.18), we have
2 _ Ele'v . 2
o = E(c'y =)
2
= E(C’u — uf)
2
= E(c'u)®* + E(uf) — EE(ILfc’u)
= g2c'Qc+ 02 — 20ic'w
=g2(1 —2c'w +c'Qc

3.9.  Self-Assessment Exercise

1. Explain the concept of restricted regression estimation. Why might it be useful in

a multiple linear regression model?

2. Given a regression model Y =Po+ biXy+ BoXo + % impose the restriction

Br1=2p; and derive the restricted estimator.



3.10.

3. What is the null hypothesis in a test for linear restrictions? Provide an example.

4. For the model ¥ = Bo + B1Xy + B2Xz + U et the restriction A1t 52 =1 sing
the F-test. Describe the steps and interpret the results.

5. Rewrite the regression model ¥ =Bo+PBiX1+ 52Xz 1 iy deviation form.
Explain how this transformation can simplify computations.

6. Discuss the test for a set of linear hypotheses in a linear regression model. How
can we test (i) the significance of complete regression, (ii) the significance of a
single coefficient? Derive the bias and MSE matrix of restricted regression
estimator when linear restrictions are not correct.

7. Explain how ANOVA is used in the context of regression analysis.

8. For a given regression model, decompose the total sum of squares (SST) into
explained sum of squares (SSR) and residual sum of squares (SSE). Verify that
SST=SSR+SSE.

2
9. Write the linear model in deviation form and give the ANOVA. Define R* and
2
adjusted R* and discuss their merits/demerits.

10. Describe the difference between point prediction and interval prediction. When
would you use each?

11. Obtain an unbiased forecast for value of dependent variable of out of sample
forecast period. Derive the variance of the forecast.

Summary

This unit delves into advanced methods in multiple linear regression analysis,

focusing on enhancing model estimation, testing hypotheses, and improving predictive

capabilities. Topics include restricted regression estimation, enabling the incorporation of

constraints to align models with theoretical or practical considerations, and tests for linear



restrictions to evaluate specific coefficient relationships. The unit introduces the deviation
form of regression models, simplifying computations and improving interpretability.
Measures of model fit, including R-square and adjusted R-square, are discussed alongside the
application of Analysis of VVariance (ANOVA) in regression to dissect variability. Techniques
for interval estimation of regression coefficients and both point and interval predictions are
also covered, equipping learners to construct robust and insightful regression models. This
unit provides the analytical tools necessary for advanced regression modeling, emphasizing
precision, reliability, and applicability in diverse contexts.
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4.1. Introduction

In econometrics and statistical modeling, data often include categorical variables that
need special treatment when used in regression models. These variables, referred to as
**dummy variables**, are essential tools to represent qualitative characteristics, enabling the
inclusion of such data in quantitative models. Additionally, models may involve discrete or
limited dependent variables, which require specific techniques to ensure accurate estimation

and interpretation.

A dummy variable is a numerical variable used in regression analysis to represent
subgroups or categories within the data. Typically coded as 0 or 1, dummy variables capture

the presence or absence of a particular attribute.
For example, a variable for gender might be coded as:
- 1 for "Male"
- 0 for "Female™

Dummy variables allow models to include qualitative factors, enabling analysis of

their effects on the dependent variable.
Dummy variables serve various purposes in regression modeling:
(i) Capturing group effects: They differentiate between categories (e.g., urban vs. rural).

(ii) Interaction effects: Allow investigation of whether the impact of one variable differs

across groups.
(iii)Structural changes: Model changes over time or across different periods.
A dependent variable may not always be continuous. Instead, it might be:

(i) Discrete: Taking on a limited number of distinct values (e.g., binary outcomes like

llyesll or "nO").



(ii) Limited: Subject to boundary constraints (e.g., censored or truncated data).
Examples:
(1) Binary outcomes: Whether a student passes or fails (1 = pass, 0 = fail).

(i1) Ordered outcomes: Satisfaction ratings (e.g., 1 = dissatisfied, 2 = neutral, 3 =
satisfied).

(iii)Count data: Number of accidents on a road in a year.

To appropriately handle Dummy and Limited Variables, specialized models are
employed. The Logit and Probit Models address the limitations of LPM by modeling
probabilities in a nonlinear fashion. The Tobit Models are used for censored dependent
variables, combining regression with a limit-dependent component. The Multinomial and

Ordered Models extend the analysis to categorical outcomes with more than two categories.

In brief, the integration of dummy variables and the modeling of discrete or limited
dependent variables expands the applicability of regression analysis to diverse datasets. By
transforming qualitative attributes into quantitative forms and tailoring methods to specific

data characteristics, these tools ensure robust, interpretable, and actionable results.
4.2 Objectives

The chapter aims to equip readers with a comprehensive understanding of the
conceptual foundations, practical applications, and analytical techniques involved in
modeling with dummy variables and discrete or limited dependent variables. The specific

objectives are:
e To explain the purpose and importance of dummy variables in regression models.

e To learn how dummy variables, represent categorical or qualitative data in

quantitative analysis.

e To understand the creation, interpretation, and use of dummy variables in different

scenarios, such as group comparisons, seasonal effects, and policy evaluation.



e To introduce the characteristics and challenges of discrete and limited dependent

variables, such as binary, ordered, or count data.

e To explain the limitations of standard regression models when applied to such
dependent variables.

e To familiarize readers with specific models designed for discrete and limited

dependent variables, including logit, probit, and Tobit models.

e To demonstrate the formulation and estimation of models incorporating dummy

variables and non-continuous dependent variables.
e Toillustrate how to interpret coefficients and marginal effects in these models.

e To emphasize the importance of diagnostic checks and goodness-of-fit measures in

evaluating model performance.

e To provide examples of how dummy variables can be used to analyze qualitative

factors like gender, location, or policy interventions.

e To showecase the use of discrete and limited dependent variable models in various

domains, including economics, health, marketing, and social sciences.
e To highlight the role of such models in decision-making and prediction.

e To identify common pitfalls in the use of dummy variables, such as multicollinearity

and omitted variable bias.

e To discuss challenges in modeling discrete outcomes, such as sample size

requirements and model misspecification.
e To offer strategies for addressing these challenges and improving model robustness.
4.3. Models with Dummy Explanatory Variables

Dummy Variables are defined for some unusual variables like seasonal variables,
qualitative variables etc. These variables usually take values 1 or 0 to indicate the absence or

presence of some categorical effect/qualitative characteristic.



Seasonal Dummies:

Example 4.3.1: Suppose the dependent variable ' is rainfall. We have quarterly data

on rainfall. Apart from other variables, rainfall depends upon different quarters also. How to
accommodate different quarters in the model?

For t = 1234 e define a quarterly dummy variable as follows:
Q. :[ 1, if t'" observation is from ith quarter
it 0, otherwise

For four quarters of each year these dummies are

Q,0,0;0,1000010000100001

Let Xt be the vector of other explanatory variables at time . Then, the model may be
written as

y, = a1Q,, + @Qy + a3Qs, + asQ, + B+ u;

Xt should not contain a column of ones, otherwise QuetQp T Q310 =1 would

imply that the data matrix is perfectly collinear with four seasonal dummies and then data

matrix is not of full column rank- The model has four intercept terms corresponding to four

seasons, i.e., 41 @2, 43, &g

An alternative formulation is
y.=m + ]VgQgt + ]VgQgt + ]V4Q4t + x;ﬁ + Ut
Here V2 = %2 — @1, V3 = @3 — @Yy = @4 — Ay

One may be interested in the hypothesis of the  form

H:a1=a2 :Cfg =a4=ﬂorH:}’2 :'}’3 :'}’4:{)

Qualitative Variables: Qualitative variables like education level, cast, sex etc. may be
represented by dummy variables.

(4.1)

(4.2)



Example 4.3.2.: Income = f(Cast, Sex,education level, age)

Consider three cast groups
(i)  General (GC) denoted by dummy variable Cl,
(i)  OBC denoted by 2,
(iiiy  SC/ST denoted by 3.

Dummy variables €1, €2, €3 @T€ gefined as

C. — {l,ff personis from GC
Lo 0, otherwise

1,if personis from OBC

C, = {
2 0, otherwise

Ca— {l,if personis from SC/ST
3T 0, otherwise

Similarly, corresponding to two categories of sex (male, female), we define two

dummy variables, say S152,

literacy level has four categories (i) illiterate, (ii) below graduation, (iii) graduate, (iv)

E1, E2, B3, Ea for each category. In

above graduation. We define four dummy variables, say
case of one dummy variable either we do not include the constant term or if we include the
constant term, we drop one of the dummy variables. For two dummy variables, sum of first

set minus the sum of second set is & [(S1+5)-(Ci+G+G) = 0].

Thus
(i) Either drop the constant term and one of the dummy variables from one set.

(i) Alternatively, retain the constant term and drop one of the dummy variables from

each set.

This rule also appears for three or more dummy variables.



Example 4.3.3.: Suppose the two dummy variables are Sex (S) and Category (C).

Then we formulate the model as
y,=a1S1+axS;+y,Ci+y,00+ X B+ uy
or alternatively
y,=ar+ Si+v,C1+y,C0+xB+u
4.4. Model with Limited Dependent Variable

Discrete and limited dependent variables are types of outcomes in statistical
modelling that differ from continuous variables in how they are measured and modelled.

Discrete Dependent Variable:

A discrete dependent variable is one that can only take on a finite number of values or

a countable number of values.

Examples: include binary outcomes (yes/no, 0/1), counts of events (number of
accidents in a month), or categorical outcomes with a limited number of categories (like

low/medium/high).

These variables are usually modelled using logistic regression (for binary outcomes)
or Poisson regression (for count data).

Limited Dependent Variable:

Limited dependent variables are those that are restricted in some way, often in terms
of their range or distribution. This could mean variables that are bounded (like proportions
that range from 0 to 1), censored (where observations are not fully observed beyond a certain

point), or truncated (where data points beyond a certain threshold are missing).

Examples include wages (which cannot be negative), percentages (which are bounded
between 0 and 100), or survival times (where the observation is censored if the event of

interest has not occurred by the end of the study).



Techniques used for modelling limited dependent variables include Tobit models (for

censored or truncated data), logit and probit models (for bounded outcomes).

4.4.1. Differences between Discrete dependent variables and limited dependent

variables:

(i) Nature of Values: Discrete dependent variables take on distinct, separate values, while

limited dependent variables are restricted in terms of their range or distribution.

(it) Modelling Approaches: Both types often require specialized modelling techniques
beyond ordinary least squares regression used for continuous variables. Logistic
regression, Poisson regression, Tobit models, and others are tailored to handle the

characteristics of these variables

(iii)Application: Discrete dependent variables are common in binary and categorical
outcomes, whereas limited dependent variables are encountered when dealing

with bounded, censored, or truncated data.

4.5 Uses of dummy variables

First, we define the Dichotomous, and Polychotomous Variables.

Dichotomous, binary, or dummy variables usually take on a value 1 or 0 depending

upon which of two possible results occur.

Example: Suppose Yi is the tolerance of an insect to a particular insecticide. Since

Yi is unobservable, it may be replaced by a dummy variable defined as

y, = [ 1, if i"insect dies
! 0, otherwise

Another example is

y = [1, if fthperson is employed in a week
! 0, otherwise

Polychotomous variables, also known as categorical variables or multinomial

variables, are variables that can take on more than two distinct categories or levels. Unlike



binary (dichotomous) variables that have only two categories (e.g., yes/no, true/false),

polychotomous variables have multiple categories.

Example:
1 if fthperson is in poor health
Y, =12, ifith person is in fair health
3 if it personis in excellent health

Some other examples of polychotomous variables include:

Colour of a Car: Red, Blue, Green, etc.

Education Level: High School, Bachelor's Degree, Master's Degree, PhD, etc.

Type of Employment: Full-time, Part-time, Self-employed, Unemployed, etc.

First, we consider models for Dichotomous variables. Approaches for such models are
1. Linear probability Model (L P M)

2. Logit Model

3. Probit Model

Models with single explanatory variable:

First, we consider different models for the case when we have just one explanatory

variable.

Linear Probability Model

Consider the model
v, =B+ B tu; i=12,..., n
Here

y = [ 1, if iinsect dies
o, otherwise



Xi: Amount of insecticide used

Model (4-3) expresses a dichotomous dependent variable ¥ as a linear function of the

explanatory variable *:. Such models are called LPM.
Let E(u;) = 0,Vi, then
E(x;) = By + Bax; (4.4)
Let Pi =P(y; =1),1-p; =P(y; = O)_
Then
E(y;) =pi = b1+ B2xy
Since 0=<p;, =1, itimplied that 0 < E(y;) = 1_

Estimation of LPM: Difficulties in applying OLS

1. Normality: We observe that % = Y1 — 51— B2x;
Therefore
(18, —Bx if y, = Lwith probability p,
= —B, — B,x; if y. = 0with probability 1 — p,

Thus, % does not follow a normal distribution. However, in applying OLS normality

of “1 is not required.

2. Heteroscedasticity: Let

E(ui uj) = 0,Vi # j.Var(u;) = E(u?)
= (1 — By — Box)?’p;i + (=1 — B2x)* (L —py)

=1 —-p)p+pi (1 —p)



= E(x;)[1— E(x;)]

o, (45)

Thus, w;s are pegeroscedastic, Dividing both sides of (+:3) by V*i gives

Y, 1 X; i
= B, +p + (4.6)
Jwio o Jwe TR o wy
2
E( ‘i) =1 ,

Since W™ , we can apply OLS to model (4:6) Since W:'S are unknown we

adopt the following two step procedure:
et (4.3) P

Step 1: Using OLS to model , obtain *1,

Then estimate Wi by Wi = ¥:(1 — 3),

Step 2: Transform the data by dividing by Vi, and run OLS to the transformed data.

Step 3: However, there is no guarantee that i , the estimate of £ (xi), lies between O
and 1. We may take ¥i = 0if OLS estimate is less than 0 and ¥: = L if OLS estimate is
greater than 1.

Logit Model

. . Lh

Suppose * is the income of ©  person

. [1, if it person owns a house

y, = .

0, otherwise
Logit model for the above house ownership example is
1
p;‘ = E[xi] = (4?)

1+expexp[—(B, + B,x)]

or



_ 1
p: = 1te=
e’
T 1+ en

where Zt = B1 + B2 A —% < 21 < % Dy ranges from 0 to 1. Since P has a non-

linear relationship with *t and ﬁl-ﬁz, we cannot directly use OLS.

Now

1 e %
L=n 1_1-|-.9:‘z=' - 1+ e
or
1 —pipi = e
or

L; =loglog (1 _pip )

1
=P+ B2 X =z

p;’
1-p,

Li is known as the LOGIT.

Probit Model

We consider the family house ownership example. Let the decision of the i family

to own a house depends upon a utility Ii and

I; :ﬁl +r82xz'

——: 0dds ratio in favour of event that insect diesL; =log log (

(4.8)



* th
Let It be the critical or threshold level of the utility index for the®  family and

if i > It the family own a house. It is also unobservable.

Assume that I; follows a normal distribution with the same mean and variance Vi
Then i = Py, = 1)

= P[Ii* < I]
1 f!' tZ
= — e 2 dt
V2 J

1 BitB2X; 42
= — e 2 dt
V2 J-_m

= F(By + B2X1)
So that
L,=F'(p)

= 1+ Bax;

1
F s the inverse of normal cdf. T is known as the normal equivalent deviate (ned).

Since 1t < 0 whenever Pi < 0.5 , we add 5 to the ned and get the PROBIT.
Probit =1;+ 5

We write S (b — (XrX)_ery)r Xx (b — (XrX)_ery) +v

I; = ﬁl +p82xz' +u;

For estimating rGl, 52, we proceed as follows:

A mn;

Step 1: Estimate Pt by P



Step 2: Obtain F2 () = I by using the normal table.
Step 3: Use Ii or if required convert them need into Probit by adding 5 and use Probit

T B ey
as the dependent variable in (b_(XX) Xy) XX(b_(XX) Xy).

Step 4: Apply GLS for estimating P : Pz

. - 2 .
Notice that the slope coefficient B2 and B will remain the same whether we use ned

or PROBIT as the dependent variable and only the intercept term By will change.

General case of k Explanatory Variables:

Now we consider the general case, when there are k explanatory variables.

Formulating a probability model

Let X be @ k X 1 yector of explanatory variables, and

(1 if unit owna character C
Y=o, if unit doesnot own C

P(x)=F(x'B),P(y=0)=1—-F(x'B)
F() is the link function lying between 0 and 1. Then
E(y|x) = F(x'B)

Linear Probability Model:

One possibility is to retain linear regression
F(x'B)=x'f

Thus
y=xB+(y—EW[x)) =x'f +u



Then
Var(ulx) =(1—x'B)*P(x)+ ('B?(1—P)) = B —x'B)

I
Then, the disturbances “ * are heteroscedastic and we can apply GLS. However, there

is no guarantee that the predicted value £ =11%) =x'F |ies petween 0 and 1

or Varulx) jg non-negative. Thus, linear probability models are not frequently used.

Some requirements for a probability model are as follows:
e Fix'B) =1
(ii) F(x'B) =1
(iiiy F¥'B) =0

Any continuous probability distribution satisfies these conditions and can be used as a

link function.
Most frequently used models are

LOGIT Model:

exp exp (x'B)

F(x'B) = 1 texpexp (x'B) = A('B)
PROBIT Model:

x'B q z2
Fix'B)=¢®('B) = B Eexp (—?) dz

Some other models are

Weibull model:

F(x'B) =exp [—exp (—x'B) ]

Log-log Model:



F(x'B) =1 —exp[— exp (x'B)]

The LOGIT model is based on Logistic distribution whereas the PROBIT model is

based on normal distribution.

Two distributions are similar in nature except in tail region. The Logistic distribution
has much heavier tails. For intermediate values of X & (between -1.2 to 1.2) two distributions
give almost similar probabilities. When X'B i extremely small, logistic distribution gives
larger probabilities toY = . It gives smaller probabilities toY = O when* P is extremely
large. If the observations have very few responses =1 very few non-

responses = G), two models give different predictions.

Reqgression for probability model:

Let
E(x)=Fx'B)

The marginal effect is

% F() = f(xB)B

ax X)= X

The density function corresponding to F(o) is
(0 = 2F

fl) =5, F(0)

For LOGIT Model, the marginal effect is given by
a r r

5 EC) = ABIL —A'B)IB

For PROBIT Model, the marginal effect is

d
—E() = ¢ )



Here () denotes the pdf of a standard normal distribution. Further, for both the

arginal Ef fect

models, the m s depends on *.

4.5.1 LOGIT model

Let Yr~Yn be observations on binary response variable, and

X (1=1,..,n) are k X 1 yectors of observations on input variables. We take
F(IB) = PGy = 1)

__expep (1[p)
1 +exp exp (xf3)

= Pi

= A(x]B) = A; (say)

It ensures that 0 = PO = 1) =1 qpe

_ Pi R,
L, =Inln (1—39:) =x;f

Estimation for grouped data:

If out of Vi observations corresponding to X, ™ times ¥ 5 1 Then estimate Pt by

~ _
pz’ - NE'
so that

o~

- D, '
Li=Inln (1 —Eﬁ;-) =x8 +y

For large N;,

1

V - R —
ar (u;) Nip:(1—p;)

Take



or

L'=Xp+u (4.9)

Applying OLS to (4.9), we can estimate B

Estimation in Binary Choice Models

Let ¥ = 0u )" be the observation vector on binary response variable and

X =00 X)) js XK magrix of observations on input variables. We can write the

likelihood function as

Liy,X) =L
=[ [rcipren - rapr—
i=1
Then, log likelihood function is

L = ) InF iB) + (L= y) In In[1 — FGB]}
i=1

Write

. dF,
F,=F(x;B).f, = e
Then

or



;{Fi(fifp'i) o 1)_CiFi}xI- =0

For LOGIT model Fi = 4u.fi = A:(1 = 4,),

=(1-4),

i L -1 . '
F, F(1-F)

Hence
—mL ZU‘ A)x; = 0

If first element of % is 1, it implies that

n n n
D—4) =0=) y = 4
i=1 i=1 i=1

Thus, average of predicted probabilities is equal to proportion of ones in the sample.

If we view (v —4:) as residuals, then sum of residuals is zero.

The matrix of second derivatives

82

zﬂﬁﬂﬁ'mL

a n
= aﬁ,Z(}’: — A x;

T
= _Z A; (1 — Ax;x;
i=1

The Hessian matrix 7 does not involve i and is negative definite. Thus, log

likelihood is globally concave and Newton method converges to maximum and provides the

maximum likelihood estimator of #.



Measures of Goodness of fit:

Some of the measures of goodness of fit are

Pearson Goodness of fit Statistic

n

Z }’E zp}
!ip‘\; 1 p;)

i=1

Deviance Statistic

n
Y, n =y,
=2 r.log lo ( i)—l— n; —v. )loglo (%)l
;[Jz 9log |55 (n; —y,) log log n(1=7)

Under the null hypothesis that the LOGIT model fits the data, both of the statistic

follows X°(m—k —1)
4.5.2. PROBIT Model
LetY: be a latent variable such that
v, = x;ﬁ + u;
We observe dummy variable Y in place of Vi such that

, _{1. if y: >0
Yi = 0, otherwise

Assume that 4~V (0,0i10) Fyrther Zi = 9u Wi~N(0,1) Tpen
Py, =1) =P(y; > 0)

= P(u; > —x;f5)

= P(z; > —a; 'x]B),

=1—2(—a;'x|B)



= (=o' x{B)P(y; = 1)
=1- (_Ut:lxxfﬁ)

Let Y1r - Yn he M observations. Then the likelihood function is
L - qa(l )y 1 qb(l ,)T"’"
(B'J“)_D[ O__Hxirg] [ _ O__Hxiﬁ

1
L(B, u) s a function of ("u ) Thus, we cannot estimate B oy separately. However,
1
=8)

we can estimate (

Without loss of generality, we take “u — 1 The log likelihood function is

InL = Z In [1—<¢(x/8)] + Z Ine(x/B)

:y;=0 :y;=1

Then likelihood equation is

%m: \ —¢>I Z ¢

i:y;=0 Lyg=

Let us write 9t = 2¥t — 1 e utilize the result that
1—-2®x/p) =¢(—x/p)

Then

o ¢lax] ﬁ) B
il = (g p) ™ Z’“‘_O

where



¢(q.x.8)

l lqb{qixir&)
Further

32
"= apop

mn

InL = Z —A; (A; + x{B)x; x|

i=1

We observe that when ¥t = 1
Elu < ’ﬁ]—r‘ﬁ :_$@
u=xpl= _mz G P
T ep

= —Ax;f+1E[u=x/f]

 ¢(iB)
)

= 1
Hence
Var(us B'x;) —1= -4 +x/) <0
as
Var(u < f'x) < Var(u) = 1.
Similarly, for Yi =0,

Var(u= B'x;) —1= -4 +x/8) <0

(4.10)



(4.10)

Hence, H given in , is negative definite. Here also Newton’s method leads to

maximum of the log likelihood.
4.5.3. Censored or Truncated Data

Suppose we do not observe values above or below a certain magnitude, due to a

censoring or truncation mechanism.

Example:

e SEBI intervenes to stop trading in stock market if it falls or goes above certain levels.
e Company paying no Dividend until its earnings reach some threshold value.
e A pesticide affects the insect once its dose reaches a threshold level.

e Estimate the relationship between hours worked by a labor and characteristics such as
age, education, sex, family status. For unemployed, data on the number of hours they
would have worked, in case employed, are not available but their age, education, sex

and family status are available.

e Suppose 100 researchers have applied for a grant out of which only 30 have received
the grant. To model amount of grant received using number of publications, amount
received in past grants, quality of proposal measured on a scale, amount received
cannot be negative and for those not received grant, observations on other variables

are available.
45.4. TOBIT Model

TOBIT model was developed by James Tobin in 1958 to overcome the problem of

. !
zero-inflated data. By zero-inflated, we mean, many zero cells in data matrix (here Yt 5).

Example: Let Y denotes a person’s desire to own a car, which is unobservable. In
LOGIT and PROBIT models, we define a dummy variable

1, if ith person purchases a car
Y, =

. - .th
0, if i" person does not purchase a car



In TOBIT model

. * .~ .th
y = price of car y, if i'" person purchases a car
i rth
0, if i'" person doesnot purchase a car

Hence, Yiis a censored variable.

: ith . .
Let i be the income of © person in the sample. Then the model is
v, =B, +Byxitu;i=12,..,n

v, = =B, +Byxi+uw,if y; > 00, ify:=0

The model is called a censored regression model. Let Y bea dependent variable with

y; = x,f+u (i=12,..,n); u,~N(0,a2)Vi.
Then ¥ is observed using censoring
y, ={,if y' >00,if y' <0
We can write the model in terms of i as
y, = (Cl.x;-ﬁ + ;)
Obviously
P(y; =0) = P(y; = —x/B) =P(y; <x{f3)

Maximum Likelihood Estimation:

For an observation Vi =~ D, the contribution to the likelihood function is



1 ( 10— xi’ﬁ)z)
——expexp|—5————
x:’ﬁ)v‘?nau pexp 2 o4

o
Cr'[{

N exp exp (_1(}? _ xi,ﬁ)z)
V2moy, 2 og

U; x; x!
P(y; =0) :P(—‘g — "8) :1—qb( “G)
O—TI O—II O—TI

P(y; > 00y ly; > 0) =@ (

JII

2

1 1 [}’- — xz',ﬁ)

expex —_ =t
V2re, PP\ T2T o2

is the pdf of a truncated normal distribution.

The likelihood function is

x;'B 1 1(; _xi:ﬁ)z
L= 1_[ ll B qb( O )lID{, Vo, P (_5 of )

L:y;=0

Log likelihood is

2
_ x;'B 1 [}’E- - xz'rﬁ) 1
InL = _”Zoln [1 qﬁ’( - )l + “}Z}O{( > P +In In N

The MLE can be obtained by maximizing " w.r.t. f» o,

Some other estimation procedures are:
1) Symmetrically trimmed least squares method
2) Censored least absolute deviation (CLAD) method.

(1) Symmetrically trimmed least squares method

v =XB+uy ={y,if y, >0o0rif uy,>—x/B0,if y <0orifu <—x/B



The OLS estimator is inconsistent because of asymmetry in the distribution of the
error term around 0, as the observations corresponding to * = —X:F are omitted. Now

observations corresponding to % = XiB (or ¥t = 2%:F) are also truncated (trimmed) and we
take

y, = {y: Z.x’;-,GD] B, is true value of f§

The distribution of ¥ becomes symmetric and OLS estimator becomes consistent.

Equivalently we define
u; = {uz-, —x;-,GD]
and replace % with % = {us, xiBo} i %iBo > O Delete the observation otherwise.

The true value of the coefficient 5o would satisfy the normal equation
n

D 1(xB, > 0)[{y, 2x1By} Jx; = 0.

i=1

The normal equation is obtained by minimizing

2

=Y [ (Goexs)] + D100 200 {(5)
i=1 i=1

Algorithm to obtain a consistent estimator ofJi

2

—[(0, x;8) ]2}

(i) Compute the initial estimate b, say OLS, on the original data.

(i) Compute predicted value Vi , set observation to missing. If Yi = 2%,

setVi = 2x;b,
(iii)Run OLS to these altered data.

(iv)Use this 2 in the original data and repeat until B stabilizes.



(2) Censored Least Absolute Deviation Method

In this method the estimator of £ is obtained by minimizing the sum of absolute

deviations
n * '
!'=l|y;' - x:’ﬁl_
The procedure is the same as that of symmetrically trimmed estimator.

Multinomial Choice Models

Let ¥ be the result of a single decision among more than 2 alternatives. For Unordered
choice set such as categories or qualitative choices, we use multinomial LOGIT, or
conditional LOGIT models. For ordered choice set (rankings), the models for ordered data
include ordered PROBIT model.

Example (Unordered): In Occupational field, let ¥ be 0 for labor, 1 Professional, 2

White collar, 3 Blue collar (workers in a division of manufacturers) and * include the

education, parent’s income, etc.

Example (Ordered): Opinions of a survey are coded () as, say, 1 for “strongly

disagree”, 2 “disagree”, 3 “neutral”, 4 “agree”, 5 “strongly agree” (rankings). Further,

* include the monthly income, education level, caste group, etc.

Random Utility Models

Example: A car consumer decided to choose one of two cars A and B which are

nearly identical except the car B has enhanced safety features and costs Rs 20,000 more.
Marginal utility derived from car B is Rs 20,000.

If 10,000 consumers preferred car B to car A, consumers overall

¢ 10,000 x Rs 20,000 = Rs 20

receive crore worth of incremental utility from the safety

features of car B.



Utility is derived from the consumer's belief that they are likely to have fewer accidents due

to the added safety features.

U... . ith . ] m .
g.  Utility for® customer if he makes choice/ among ™ possible

utilities U = 1.2, - m)

Customer makes the choice/ if U/ is maximum. Statistical model for utility is driven
byP(UU- > U, V)’ +j

Linear utility model:

U.. = n_ N -
g = My Ty links the agent utility to factors that can be observed.

4.5.5. Multinomial Logit Model

Explanatory variables contain only individual characteristics
n!'j = r;ﬁj
Here * is individual characteristics constant across all the alternativesf .

Estimated equations assign a set of probabilities to '™ classes with observed

characteristics *1.
Model to define the probabilities for different classes is

!
exi'ngj

P(y; =jlx;) =———,
(JI .-Iirl I) thzlex;ﬁk

G=1,..mi=1,..,n) (4.11)

For a vector €, if Be =B + €, then the probabilities computed in (4.11) remain same

as all the terms involving € will drop out. Sum of all the probabilities is one. Only

(m —1) parameters are needed to define ™ probabilities. Thus, we can write

%ifi

ﬂ UZZ,...,J’TI)
1 +EI=23 L

Pz’j = P[.}TJ- :j|.1';') =



! —, (setf, =0)

Py=——"——
1+3Xm, e%h

Odds ratio of alternatives j and I:

ex:'ﬁ’ I
Py _ Ly e*F
Py e*ib
TiL, et

— i (B;=BD) I (i)

il
= x;(ﬁj - rGI)

The odds ratio of alternatives/ and ! does not depend on any other alternative.
Let;

d. — [1, if alternative j is chosen by individual i
v 0, otherwise

Log likelihood is

T m
InL — ZZdU InP (v, = J)
i=1 =1

Derivative of log likelihood is

d

n
7 InL = Z(dU —P)x,  Vi=1,..,m

2
Second derivative matrix has ™ ¥ X K plocks

2

n
N D P (b =
o5 ZP” 1G=D =Pt ={g e e



The Hessian matrix does not involve %4 and Newton’s method can be applied to
obtain MLEs.

The main weaknesses of Newton’s method is that it has too many parameters.

Multinomial LOGIT model:

Ny = Z:‘j}".

Zy: Characteristics of the choice/ and individual *.

Zy= (x if w,; )X y include variables specific to individuals as well as choices
w; include characteristics of individuals ¢ame for all choices

Model:

!

P(y; =) =Py = PZ;y = Ziy] = m

' ' '
EX!-j,G+w!-rI exa'jﬁ

OrPU - m X B+wia - m X8
Ek:le i i Ek:le i

Piis independent of individual specific effects.

Probability ratio is

P“ ’
U _ p(Xy—Xa) B
Py

Probability ratio is independence from irrelevant alternatives (11A), i.e., it does not
depend on alternatives other than/ and L.

We can write the log likelihood just like the multinomial Logit model.

4.5.6. Poisson Regression Model



Poisson regression is indeed a type of generalized linear model (GLM) specifically

designed for modeling count data. It assumes that the response variable Y follows a Poisson
distribution, which is suitable for modeling non-negative integer outcomes such as counts of
events. The objective of the model is to develop a relationship between observed counts and

potentially useful regressors.
Example: 1. Defects in a unit of manufacturing products
2. errors in software
3. counts of pollutants in environment

Assume that response variable Y is a count such that observations are ¥ = 0112 -

Probability model for count data is Poisson distribution:
B_Ftﬂy

Fy) = -y =012, ..; u> 0.

’
7l

For Poisson distribution
E(y)=pand V(y) = u
Both mean and variance are equal to parameter #.

Poisson Regression Model

Let

v, =E(y)+e; i=12..n

We assume, expected value of observed response can be written as
E(y) =

and there is a function g called link function that relates or links mean response with

linear predictor.

.g(ﬂi) = o + B1xiy + -+ Brxix



r
Where' X = (1- Xi1, X432, "'lx!.i()

so the relationship between mean response and linear predictor is

mi=9g7"(xB)

Several link functions are used with Poisson distribution one of them is identity link
wi=g(n) =xp

When this link function is used

E(y)=m=9"'(x;p) =x;B

Another popular link with Poisson distribution is log link.

g(u) =n () = xiB

= E()=p =gt (xip) =eXF

Log-link is particularly attractive for Poisson distribution because it ensures that all
predicted values for response variable will be non-negative. For estimation of parameters

method of maximum likelihood is used (approach like logistic regression).

i=12,..

Let Ve '™ is a random sample of n observation.

Likelihood function is

Iy,B) = ﬁﬁ(y{')
i=1
Syetip
B De }’:'T

_ (n?zl i i )B_ IHYTH
- l_-[lnzl(yi )




Log likelihood function
L(y,B) =log 1(y,B) =Z}ﬁ- n (n,) —Zﬂi —Zln ()
i=1 i=1 i=1

Where' Ky = g_l (xzﬁ}

Once the link function is specified, we maximize log-likelihood to find MLE’s.
Iteratively reweighted least squares (IRLS) can be used following an approach similar to

logistics regression.

For Poisson distribution if #: = e'iP- i.e. if the link is log-link then

L(y,B) :Zn:}’: (x;8) —anﬂ'x;'g —Zn:fn )
i=1 =1 i=1

I:
dL i i ©p
— =) yvx;— ) eifx
3;‘3 i=1 E

i=1

mn

= Z (}’i - gx;'g) Xi

i=1

T
= Z(}’i — W) X,
i=1

Equating to zero vector we get maximum likelihood score equations

n
Z[yi _luz') =0

i=1

= X’(y —‘u:) =0

where. = (g by ity)

n T — —
If intercept is included in the model, then I (v —m) =0,



10.

11.

12.

13.

14.

4.6. Self-Assessment Exercise

Discuss the limitations of the linear probability model. Can it be applied to all binary

dependent variables? Why or why not?

How do the Tobit and Probit models differ in their handling of limited dependent

variables?

Evaluate the implications of selecting an inappropriate model for discrete or limited

dependent variables in terms of prediction accuracy and interpretation.

What are dummy variables, and how are they created from categorical data?
Define limited dependent variables and provide examples.

Why is a standard OLS regression inappropriate for limited dependent variables?

Discuss the key challenges in modeling limited dependent variables and suggest

solutions.

Describe the differences between binary, ordered, and count data as limited dependent

variables.
What is the primary purpose of the logit and probit models?

Describe Logit and Probit models. Compare the logit and probit models in terms of

assumptions, computation, and use cases.
How do we estimate the parameters of logit and probit models?
Explain the difference between censoring and truncation in data with examples.

Describe the practical implications of ignoring censoring or truncation in data

analysis.

What is the Tobit model, and when should it be used? Explain how the Tobit model

differs from standard linear regression.



15. What are the assumptions underlying the Tobit model? How do we estimate the

parameters of the model?

16. What is the multinomial logit model, and how does it differ from the standard logit

model? When is it appropriate to use a multinomial logit model?

17. What type of dependent variable is suitable for analysis using a Poisson regression

model?

18. Discuss the assumptions of the Poisson regression model. How do we estimate its

parameters?
4.7. Summary

This unit offers a comprehensive overview model with dummy explanatory variable
and limited dependent variables. The discussion then extends to specialized models for non-
normal response variables. These include logistic (LOGIT) and probit (PROBIT) models for
binary outcomes, TOBIT models for censored data, and Poisson regression for count data.
Each model is analyzed in terms of its objectives, underlying assumptions, and parameter

estimation techniques.
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5.1. Introduction

1. Model with Nonspherical Disturbances

This unit covers the models with nonspherical disturbances, seemingly unrelated regression

model, panel data model.

In econometrics, nonspherical disturbances refer to a situation where the error terms
(disturbances) in a regression model are not independently and identically distributed (i.i.d.)
and may exhibit heteroskedasticity or autocorrelation. Such violations of the classical
assumptions can lead to inefficient and biased estimators, if standard ordinary least squares
(OLS) is used.

To address nonspherical disturbances:

e Generalized Least Squares (GLS) or Feasible GLS (FGLS) methods are often
employed.

e GLS transforms the model to ensure the error terms become i.i.d., improving the

efficiency of the estimates.

The seemingly unrelated regression (SUR) model is used when multiple regression
equations are estimated simultaneously, and the error terms across equations are correlated.
While the equations may appear unrelated in terms of their regressors, the correlation of their

disturbances creates interdependence.



Key Features of the SUR model are

e SUR is more efficient than estimating the equations separately, especially if the error

terms are highly correlated.

e It is particularly useful in applications like demand systems or sectoral economic

models.
o Estimation is typically done using GLS or Maximum Likelihood Estimation (MLE).

A panel data model combines cross-sectional and time-series data, observing the same units
(individuals, firms, countries) over multiple time periods. Panel data models help capture

dynamics across time while accounting for individual heterogeneity.
Key Variants: of panel data models are

1. Pooled OLS Model: Ignores individual or time-specific effects and pools all

observations, assuming homogeneity.

2. Fixed Effects (FE) Model: Accounts for unobserved individual-specific

characteristics that are constant over time.

3. Random Effects (RE) Model: Assumes individual-specific effects are randomly

distributed and uncorrelated with regressors.
Advantages:
o Controls for unobserved heterogeneity.
« Enables analysis of time-invariant and time-variant factors.

« Improves estimation efficiency by utilizing both cross-sectional and temporal

dimensions.

5.2. Objectives

After completing this Block, students should have developed a clear understanding of:



e Model with non-spherical disturbances and estimation of parametric by generalized

equation.
e Seemingly unrelated regression equations (SURE) model and its estimation.
e Panel data models.

Estimation in random effect and fixed effect models

5.3. Model with non-spherical disturbances

The Model is
yv=Xf+u

Assumption of Spherical Disturbances is E(uu') = ouly,

This assumption may be violated in many practical applications

= Heteroskedastic disturbances = Y@ ()is different for different 'S

= Cross-observation correlations=> E(uy) # 0 fori =+

= Cluster effects = Observations come in groups having correlations within group, but

not across groups.

Suppose the Spherical disturbances are non-spherical then assumption s
E(uu) =V =ciQ (say).

where

V and £ are Positive definite, symmetric matrices.
For non-spherical disturbances, we refer to model as generalized linear model.

2
o, Q

Note: We write covariance matrix in the form so that if we set 2 = I we get classical

model with £ @) = &l



Special cases

(i)  Heteroscedasticity: Disturbances are said to be heteroscedastic when they have

different variances.

th

Suppose ™ observations are in 9 groups with i observations in ' group, so that
n=2Y9 n, . . T .
i=1""1_ The disturbance variance varies in difference groups. The model is
Y1 Xy iy
};2 _ Xz 5+ Hiz
Tg nxl XQ nxk Itg nxl
where Yiiu X L Xjing X kw1 (1 =12, .., g).

Further,
E(wu)) = 651, E(wu), )= 0Vi={

We can write the model as

yv=Xf+u
with
WUy UgUy ... Uglly oily, 0 0
E(uu’) = E uz:u’l uzlué uzlué _ v = 'D i:rzzlfnz 0
uglu’l uglué . Uglg 0 0 . O lIng

(if) Autocorrelated Disturbances: Autocorrelation is usually observed for time series data.

The disturbances usually have common variance but autocorrelated.

Suppose E(utz) =ogiVt=1,..,nand E(uu;) = o2p;, Vi = 0. Then



1 P1 e Pn-1
: 1 -
E(uu') = 030 = o} pl ! ﬁni ’

n-1 Pn-2 - 1

Suppose Yt follows an AR(1) process

Uy = pUs_1 T+ &

- - - - 'r - -
where ¥ is the autoregressive coefficient and €t < are iid random errors with

E(e?) = 0Z; E(gep) =0Vt # t’. Then

E(upuey;) = o2p'vVet=1,...,ni=1

1 I . p"lt
0= p 1 pnl—Z
Jﬁnl—l pnl—z 1

Some other examples of models with non-spherical disturbances

(1)  Model with Autoregressive Conditional Heteroscedastic (ARCH) or Generalized
ARCH (GARCH) disturbances.

(i) Panel data models.
(iii) Models having spatial autocorrelation

Finite Sample Properties of OLS Estimator for Generalized Linear Model:

Result 5.1: For the model with non-spherical disturbances
(1)  The OLS estimator b is unbiased

(i)  The variance-covariance matrix of bis

E(b—p)b - p) = (X' X)) xax(x'x)~



(iii) 1f ¥~N(0,080) then
b~N(B, 2(X' X)X X(X' X))
Proof: We can write the OLS estimator as
b=XX)"Xy=p+XX)"1Xu
E(u|X) = 0’

(i) As long as
E(b)=p VB
Thus, b is still unbiased for £.
(ii) Variance-Covariance matrix of bis
E(b— )b —pB) =E[(X'X) " X uu'X (X' X)™']
= (X’X)"1X'E(uu)X(X'X) 1
= aZ(XX)TIXOX(xX'X)"t
(i) Since
b=pf+Xx)"1xy,

U and #~N(0,050)

is a linear function of , we have

b~N(B, 2 (X'X) 1x0x(X'X)"H)m

b is the linear unbiased estimator of ﬁ.

Consistency of OLS estimator for General Linear Model




Result 5.2¢ If plim (%X’X) = @ and plim (%X’QX)

then the OLS estimator b is a consistent estimator of rG.

Proof: We have

, T2 ! (1
plim(b) = f + plim (HX‘X) plim (H X’u) = B + Q 'plim (HX’M)
Further

o () o
plim - X'u | =
Hence
plim(b) = B.

Further

plimE(b — )b — B) = & p lim[(X'X)" 1 (X'QX) (X' X)™1]

~Zptin|(ex)” (Crax) (bxx) ] <o

is a consistent estimator of fa

-1

Hence b

Generalized Least Squares (GLS) Estimator:

Qs positive definite, T3 nonsingular matrix T such tha

Since
We write
Ty =TXpB+Tu

ory' =X"f+u’

whereY =Ty, X" =TXand u" =Tu

(TQT =1,

are finite positive definite matrices,

(5.1)



Then

Euw)=ETuuw'T)=T(c2 VT = ZTAT' = &l,.

I _ _1
Further T T = Q .

The GLS estimator of # is obtained by minimizing
S =G =X —XP)

= (y = XBYT'T(y — XB)

= (y — XB)YQ (y — XB)

Notice that the OLS estimator is obtained by minimizing S=0b-XB)ly _X'G), whereas

*

GLS estimator is obtained by minimizing 57,
Result 5.3: The GLS estimator of # is
=0 1x)x 0ty (5.2)
Further

()  GLS estimator B is an unbiased estimator of 8.

(i) Variance-covariance matrix of Fis
E(B-B)(B-B) =c2(x i)™

Proof: The transformed model (3-1) satisfies the assumption of spherical disturbances
Ewu) = ailn  por obtaining the GLS estimator, we have to minimize

ST=0"=XP'0" =X je. wehaveto apply OLS to (31D,

Applying OLS to (5'1), we have the following estimator for b.



E — Xﬂ:’Xx:)— 1X=|:y,=|:
= (X'T'TX) x'T'Ty
= (X'N71X)"1x'0ty,

which leads to (5'2).

(1) For proving unbiasedness of S, we write
B =X 1X)IX QX + u]
=B+ X'071X)X' 0
Hence
E(B)=8, VB
(i) Again
E(B-B)(B—-B) =@ X)X 0 E(uu) 071X (X' 0 1x)
= o (X' Q7 X))

Generalized Gauss Markov Theorem:

Result 5.4:

Let 2= Qu s M) gng AP =P+ Ay ey VB s 2 Best Linear Unbiased
Estimator (BLUE) of B in the sense that (i) it is an unbiased estimator of P‘JB, (i) for any

linear unbiased estimator @Y of ', Var(X'B)<Var(a'y)gyp o1 B

Proof: We observe that

(i) E(X8) =2E(B) =4B VB



(i) We write @ Y = a'y’,witha” =T""a. Further
E(a’'y)=a"'X*B=XBVE=>a"'X" =X
Var(a*'y*) = Uua*’a*l"ar(ﬂ’ﬁ) = g2 (XX ) A=k’ X (X' X)X
Hence

Var(a*'y*) —Var(Xf) = oZa”’ (I, — X*(X*'X*)"1X*)a* = OM

¢ PLm (%X’"’X”’) = plim (%X’ﬂ—lx) _ o

Result 5.5: is a finite positive definite matrix

then B is a consistent estimator of '8.

Proof: The result can be easily verified as B is obtained by applying OLS to model (5.1).

Maximum Likelihood Estimation

~ 2 . . . . 2
Result 5.6: If ¥ N(O-“uﬂ), the maximum likelihood estimators of £ and oy are,

respectively, given by

. 1 . .
Bur = X'Q7IX)"X'Q7 Yy, 6%, = (y —Xﬁ)ﬂ_l(y—Xﬁ).

n

u~N(0,0:0Q). The

Proof: log likelihood function is given by

1
20}

1
Il = =ZIn(2n) = ZInof —=— (v = XYLy — XB) — 5 In|0)]

1
20}

1
= —ZIn(@m) —F o} —5 = (" —X'BY (" —X'B) —3nlol

a 1 Y T
Then @IHLZG_E(X y' —X"X'£)=0

X X =0



Substituting these derivatives equal to zero, we obtain the following ML estimators of

B and .
Bar = (X' X)Xy
— (XJQ—IX)—lxlﬂ—l},'
=2 1 * * BY [ * 5
OmL :E(}’ _Xﬁ) (}’ —X FG)
1 - .
=—(y-xp)a(y-xp)m

ML estimator of B is the same as the GLS estimator ﬁ. Further

n
E(G3) = TUEBMS(U.E;L) = —505

Feasible Generalized Least Squares Estimator

In practice Qg usually unknown. Suppose it is a function of a a1 ynknown parameter

s

)

vector 0, so that we can write Q=0Q(6) Suppose a consistent estimator ¥ of 0 is available.

Then we estimate Q by 0= Q(B).

A feasible generalized least squares (FGLS) estimator of B is given by
f=(xax) xnty

5.4. Seemingly unrelated regression equations (SURE) model and its estimation

> Multiple regression model describes the behavior of a particular study variable using a

set of explanatory variables.

» For explaining the whole economic system, the model may involve a set of multiple
regression equations with each equation explaining a particular economic

phenomenon.



» Should different equations be treated separately for estimation purpose?

> Equations may be seemingly unrelated with each other structurally but linked through

some statistical interaction among them.

» The interaction is through the correlation between random error terms of different

equations.

> Is it possible to improve the estimators based on individual equations by developing

estimators based on the entire system of equations?
» How to estimate the entire system of equations?

SUR Models
= Jointness of equations is through the covariance matrix of the associated disturbances

= Jointness provide additional information over and above the information available

with the individual equations.

Example : Objective is to estimate demand relationships for a particular commodity for

several households.
Price and income data are the exogeneous variables.

One may expect jointness of demand equations for different households through their error

covariances.

Example: While studying consumption pattern of a country with 20 states, each state has a
consumption equation. Different equations may involve different variables and apparently
look unrelated. Consumption pattern of different states may have some kind of statistical
interdependence. Correlation may exist between the error terms associated with the
equations. The equations are apparently or ‘“seemingly” unrelated regressions but not

independent relationships.

Example: Capital Asset Pricing Model (CAPM)

th
CAPM of finance evolves as a way to measure the systematic risk. For the ' security



Ri—Rp=a + B (Rmt - th) + Ut

_ th :
Ryt = Expected return on © " security

Rt = Risk free rate

Rint ~Expected return of the market

Bi = Beta of the security (a measure of systematic risk of a security or portfolio compared to

the market as a whole).

Rme = Ryt = Equity market premium

"it: Disturbances

CAPM describes the relationship between systematic risk and expected return for security.
Risk-free rate accounts for the time value of money.

Other components of CAPM formula account for the investor taking on additional risk.

Beta is a measure of how much risk the investment will add to a portfolio that looks like the

market.
If a stock has beta greater than one, stock is riskier than the market.
If a stock has a beta of less than one, it will reduce the risk of a portfolio.

The information about the return of a security to exceed risk free rate by a given amount will

provide the information about the excess return of some other securities.
Disturbances are then obviously correlated across securities.

Estimating the securities jointly may provide better estimates than the estimates based on

individual equations.

Example: Investment Model




Consider two IT companies; say Tata consultancy Services (TCS) and Infosys. Let
N1:25x1 \sector of observations on investment by TCS
V1:251 \sgctor of observations on stock market value of TCS

K1: 2551 v/ector of observations on year capital stock of TCS

N2,V2 K2: Corresponding 251 \ectors of observations for Infosys

[:25x1

Ny = By1l + B12Vy + 13K, + uy: Model for TCSN,
= [l + B2:V5 + [23K5 + uy: Model for Infosys

We assume that

E(uyuj) = 011135; E(uauy) = 033155

I=(11.. 1)’:25A<1Vect0r

Let us write

y1 =Ny Xy = [ Vi K1]: 2553 avrix

v2 = Ny X, =[1 V; K;]:2553

B11 Ba1
B = (512);32 = (ﬁzz)
B13 Ba3

matrix

Then
yi =X1B; tuy: Model for TCS}
vy = Xof; +uy:  Model for Infosys

Applying least squares to two equations separately, we get the estimators of P1 and Bz as



by = (X1 X)) Xy by = (X3X,) 71Xy,

Two firms are working in the same branch of industry and investments (or errors) of two

- . - p— ] ! p—
models may be correlated, i.e., E(uyiug) = 012 Vior EQuuz) = 015005

Reason for such a correlation

The state of economy whose effect is felt through %1 204%2 js [ikely to have similar effects

on each of the firm.

“Is it possible to pool the two equations and estimate P1 and Bz more efficiently taking into

account the correlation between them?”

5.4.2. Two Equations Seemingly Unrelated Regression (SUR) Model

Consider the following two equations SUR model:

yi=X.61 + “1}

5.3
2 = Xafz +uy (53)

Y1 ¥2: 41 yectors of observations on dependent variable

X1 (nky), Xo (nk2):Matrices of observations on explanatory variables

iy = (”11. Uiz, ..., n'ln),

_ ,} : Disturbances Vector
> = (Usq, Usz, v, Uap)

E(“’lt) =0= E(“rzt). Vit= 1,2, ceey I1
E(ui,) =0y, Ed) =0y ¥Vt=1,..,n

E(“‘ltu‘zt) - ﬂ—lzvt - ]_, eeny 1L
In matrix notations, we can write the conditions as

E(u;) =E(u,) =0



E(If'%l) E(“-l}“lz) E(“l}“ln)

E(uquy) = = 0411,

E(ujpuyy) E(ugpugy) - E(!erm)

E(uyu;) = o931,

E(u,u3) = o151,
We can combine the two equations (53) a5
yv=X6+u

where

V1
7= 2nx 1;
Y (}’2) n !

_ (X1 0
x_(O Xz).2n><(k1+k2)

Uy .
U= (u ):Zn X 1; Disturbances vector
2

b= (gl) : (ky + k3) X 1 Vector of regression coefficients
2

V1 _ Xl 0 ) (,81) Uy
(}12) - ( 0 Xz ,82 + (Hz)
yi=Xif1tu, y2=X3p; tu,

Then
" Uy Uy ulué) _ (Unfn 0121’") _ _
E(ud’) =E (uzu’l Uy U os11, 0321, IQ L=V (say)
® denotes the Kronecker product operator
_ {011 O12
= (021 ﬂ'zz)

The GLS estimator of 8 is



B=XVvix)x'vly

={X'CT R LXTIX'CECT @ Lyy

Covariance matrix of B is

E(B-B)(B—-B) = xVIx)l = (X' (T @ [)X}?

z

is usually unknown. For estimating JS, we proceed as follows:

i. Apply OLS to each equation in (5:3), Obtain the OLS residuals

e; = [I, — X; (X1 X)X Iy
ey = [In _Xz(XéX2)_lXé]y'2

ii. Estimate % ( = 1-‘Z)by

iii. Estimate 912 = 921 py

r
e e;

12 — 1 — Sz21

(n— k)2 (n — k)2

r
e e;

n —max(ky, ky) — 521

or §12 =

iv. Obtain

-1
f_l _ (511 512) _ (Sll 512)

S21 S22 sl g22

v. The feasible GLS estimator of (3 is
- ~ -1 ~
F=X'C'@L)X} XE'QL)y

Kronecker Product:



A= ((au)):m X

n .
matrix

B = ((5): P X 4 agrix

apB a;B -+ a,B
ARB = a?lB azz:B azl:,tB .mp X nq
amB ampB - ampB matrix

Algebra of Kronecker Products
Result 5.8: We have

(i) (A®B)(C®D) = ACKBD (ii) (A®B) = (A'®B’)

From (i), we observe that for square matrices
(A'®B1)(A®B) = (A*AQB™'B) = I,®1I, = I,

Hence (A®B)™" = (A®B),

SUR Model: General Case of M Equations

yi =X1p +uy

Yu = Xy By +uy

E(u,) =0; E(u,u,) =%, Vvm=1,... M
Vit X L X X ks Btk X L wppin X 1

Let

A(mxm)andB(p X p)



X, 0 0
0 X 0
X = H E
0 0 - Xy

r8.1 iy
ﬁ:(:) u=(5>
Bu Upg

Then the model can be expressed as
y=XB+u

E(u) =0;
E(uu’) = IZ®I,

The GLS estimator of # is

B =X (E®L)X}X (E7'®L)y
LetoY:(i, )" element of 71

Expending the Kronecker product, we obtain

M .
Z_ O'IJX;_}’J-
cUX X, o2XiX, e o™MXXyN\ | o
F; a?1X.X,  o%XiX, e oMXIXy Z » 0% X3y,
: : - : j=

M -
j=1

Result 5.9: When 4/ = 0vi=j, the GLS estimator of B reduces to the OLS estimator

(5.4)

oM XX, oMXx,X, -.oMMXy X,

b,
o= ()
by , Where bm = (X;nXm)_lx;n}’m-



.. ] ] II p— _1 Ij p— ] ]
Proof: If % = 0V i#J theno® = oy and o =0 Vi #j. onca (5 4) becomes

oKX, 0 e 0 s oelixly, b
' Ty 1
g = 0 ﬂ'zzgng O 0'224?’2}2 — ( ! );bm
= = " MM g ’ b
0 0 R €99 67, oMM X v M
— (X;nXm)_lX;nym.
Result 5.10: When X1 = =" = XM, the GLS estimator becomes the OLS estimator.
Proof: Let X1 = = Xy = Z, so that
Z ... 0
X = ( " i) =1,®ZThen X' (T 1QI,)X
0 - Z
= (I,®Z)(ZRI1,),RZ) =2 1®Z'ZX' (Z71QI,)y
= (Z7'®2Z")y

V1 by
Thusf = (271®2' 2} (27'®2)y = {1M®(z*z)‘1z’}( 5 ) = ( 5 ) b
Y
=(Z'2)"Z'y,

Hence the result follows.

Z nknown: Feasible Generalized L east Squares

(i) Use of unrestricted residuals for Estimating z

Let X be the total number of distinct explanatory variables out of K1 Ku variables in the

full model £ be ™ X K™ ohservation matrix of these variables Regress each of the M study

(nx1)

variables on the column of Z and obtain residual vectors

i, =y, —Z(Z'Z)"Z'y; =Hzv;;i=12,...,.M

where Hz =In — Z(Z'2)7Z".



Obtain

- r

1 -
— r —
Sy = Wty = Vi Hzy;

. 5 =11ls;; ] ] ] . g3
and construct the matrix (( ”)). Since Xi is a submatrix of Z, we can write %1 — ZJi

where /i is a (K X ki) selection matrix. Then

HZXI[ = XI' - Z(ZIZ)_IZ,XI' - XI' _Z_,II - Cl
Thus
yiHzy; = (BIX! + uDHz (X 8; + v ) = w/Hzw;.

Hence

*

n—K

1 _ 1 - n
E(SU-) = HE(H;HZHJ,-) :Ecrij-tr(h'z) = ( )crU-orE(mSU) = 0y;.

Thus, an unbiased estimator of “%/ is

. n

1 r
“h-K' f

Li'
The FGLS estimator of B is
f={x(Een)x} x'(3718L,)y

(if) Use of restricted residuals for Estimating z

Regress i °1 &1 for each equation, ¥ = L2 M and obtain the OLS residual vector
ﬁ'f = [I - Xi (X;XI)_IX:]}’I = HX;‘.}II"

A consistent estimator of “J is obtained as



where
Hy =1-X; (X:{Xi)_lxiﬁxj

. -1
=1-%(%%) "%

SofZ

Using $1j 3 consistent estimator can be constructed. Further

E (}TI-'HX!. HXJ.yJ,-) = gy tr (HX!. HXJ.)

= 0y [n —ky — k; + tr(X X)X X; (}gg})"l}gxi]

o o
u; i

- [n— k= Ky + e %)%, (x0%,) 7 XX

is an unbiased estimator of 1.

5.4.3. Maximum Likelihood Estimation

t=1,..,n)

th
For obtaining MLE, consider ' observation ( on each of M dependent variables

and corresponding regressors. Arranging these observations horizontally, we can write the

model as
(12 e va)e = [x{) Oy o ommpg) + (g uy ouyy)s
or

Y=XT'+U
Here *t is the set of X different explanatory variables.

x;'is trowof X* (n x K*),

YimxMUnxM



: . th , .
IT" has one column for each equation and & €OMMN i has number of zeros in it each one

imposing exclusion restriction.

For example, let

vi=ay+ Bi1x; + fraxs gy,
= az + Payxz + faz x5t uy

th
Then, corresponding to the T observation

a a;
Bin O

[vi ¥21: =[1 x1 x5 x3]¢ Bz Pas + [u; uzl;
0 B2

Log of joint normal density of M disturbances is

M 1 1,
logL, = —?log(ﬁln) — ElogIEI ~3 u, L,

Log likelihood is

mn

logL = — ™ 0e2r) — M loglz| — - 31
ogl = ——-log(2m) — > log 2 r=1ut U

— —;[M log(2m) + log|Z| + tr(Z71W)] {W - ((W‘J))' M’?J"} (5:5)

: Zn
- — “’ti H.t'
n t=1 J

Now

logL=0=X"27U=0

ENG
a
S5 logL=0=Z ' Z W)L =0 (5.6)

We have utilized the following results:



orEw) L dr@ETW)
az gz 1
d log|z|

= -z lwz!
az
1 9|Z]

Tzl oz

1
= = [z/z!

= E_l

d 14
tr(Z7iW) =—

_ =7y —1 _VETT!
T nan,tr((y XYy —x'm"))

2,
=—=x"'z7U
n

From (5.6), given slope parameters, the MLE of ZisW. Replacing z by W in (5.5), the

concentrated-log likelihood is

logL, = —; [M log(2m) + log|W| + M]

Thus

- 1
= Ming - log |W . . ..
P ing 3 log W] subject to exclusion restrictions.

R

2
Goodness of fit measure is defined as

a'0ta

RP=1—— - -
i=1 ZJf=1 gt [E?zl(}’:'t —}’i)(}’jt - yj)]

M

=1 ————
tr(£715,,)

B is FGLS estimator of B

)
I
o1
®
:S"--c



1 TL
yYi= HZ;:lyu

5. (; {)th $-1
¢7:(L, )" element of 2

Syy = ((SU))-
1 T
Sij = Hztzl(.}’:r - }_’:)(}ﬁt _fj)

5.5. Panel data models

Three types of data sets:
(i) Time series data,
(ii) Cross section data,

(i) Longitudinal or Panel data: Data that contains observations on different cross sections

across time.

If the same people or states or countries, sampled in the cross section, are then re-sampled at

different time points, we get longitudinal or panel data set.

> Panel data contains observations collected at a regular frequency, chronologically and

observations across a collection of individuals.

» Longitudinal/ Panel data sets are very common in Economics, Medical and

Biostatistical studies.

» Becoming popular due to the widespread use of the computer making it easy to

organize, produce and analyze such data.

Examples:

= Annual data on unemployment rates, GDP, % of people living below the poverty line
for 28 states of India over 2011-2020.

= Quarterly sales of Cars (small hatchbacks) of different brands over several quarters.



= Currency values of developing countries at regular intervals during last ten years.
= Daily closing prices of different stocks of IT sector for the past one year.

5.5.1. Benefits of Panel Data

U More accurate inference of model parameters

Panel data provide more informative data, more variability, less collinearity, more degrees of

freedom and more efficiency.

Provide a large number of data points, increasing the degrees of freedom and reducing the
multicollinearity in explanatory variables. Thus lead to more efficient estimates.

Example:

Obijective is to model yearly demand of car of Kia Motors in a city using explanatory

variables such as peoples income, city size etc.
Time series data on a particular city may not have enough data points

If we fit model for panel data collected from different cities, the sample size increases. Data

involves more heterogeneity, leading to more efficient estimates.
One has to assume that the same relationship holds for different cities.

If predictions for an individual are based on short time series, using panel data increases the
sample information and the accuracy of predictions if behavior of individuals are similar

conditional on certain variables.

U Greater capacity for capturing the complexity of human behavior than a single

Cross-section or time series data

Able to identify and measure effects that are not detectable using only cross section or time

series data.

Able to address important questions which can not be answered using only time series or

cross section data.



Example:

While analyzing labor force participation cross-section data of women, an observed
participation rate of, say, 50% implies that each women in a homogeneous population has
50% chance of being (spends 50% of her life) in the labor force.

It does not address the issue that whether the women is working or not in the past, which may
be a good predictor of labor force participation. This kind of issues can be addressed if we

analyze panel data.

Example:

Evaluating the effects of legalizing in a state A on marijuana smoking behavior by comparing

the differences between A and other states that were still non-legalized.

The panel data would allow the possibility of observing the before- and affect effects on
individuals of legalization as well as providing the possibility of isolating the effects of

treatment from other factors affecting the outcome.
O Better understanding of dynamics of adjustment
A single time series model cannot provide good estimates of dynamic coefficients.

For instance, in distributed lag model
k

_}’t - Z ,Gj'xt_j + Ht;t - 1, ,N
j=0

Z.Xt_l

Xt is close to *t-1 or — Xt-2, Thus data are nearly multicollinear.

The panel data reduces multicollinearity using inter individual differences in * values.
U Able to overcome the bias arising from Omitted Variables

If omitted variables are correlated with included explanatory variables, it may lead to
correlation between these variables and disturbances. Panel data controls the impact of

omitted variables leading to individual or time heterogeneity.



Consider

Vir = & -I—ﬁxl-t ‘I‘}’Zit + Ilit;fl = 1, ...,N;t = 1, ,T

If Zit is omitted, it makes the OLS estimators of @ 214 B piased. However, in panel data, we

may get rid of this problem.

For instance, if Zit = Zi ¥t

, we may fit the model for first differences
Vit — Yie-1 = B — xp6-1) + (e — wi6-1)

If Zit = Zt Vi then we may transform the model as

Vie = Ve = B(xie — ) + (g — W)
O Overcome the problem of measurement error

Measurement error leads to under identification of the model.

The availability of multiple observations in panel data allows to make transformation in the

model to make it identifiable.

O Providing micro foundations for aggregate data analysis and overcome the problem

of biases arising from aggregation

If micro units are heterogeneous in nature, the time series properties of macro data based on

aggregate information may be misleading.

With panel data having time series observations on individuals, investigation of homogeneity

versus heterogeneity is possible.
U More accurate predictions for individual outcomes

Pooling leads to improved predictions in comparison to generating predictions of individual

outcomes using the data on the individuals.

If individual behaviors are similar conditional on explanatory variables, panel data provides

the possibility of learning an individual’s behavior by observing the behavior of others.



O Availability of panel data simplifies computation and inference. Also Allows to
construct and test more complicated behavioral models than purely cross-section or

time series data.

In nonstationary time series, the large sample approximations for the distribution of least

squares or several other statistic is not normal.

For panel data, one can use central limit theorem across the cross-section to derive the

limiting distribution of several statistic and to prove asymptotic normality.

5.5.2. Limitations of Panel Data Model:

O Design and Data collection

Include problems of coverage (incomplete account of the population of interest),
nonresponse, recall (respondent not remembering correctly), frequency of interviewing, time-

in-sample bias etc.
U Distortions of measurement errors

Faulty responses due to unclear questions, memory errors, deliberate distortion of responses
(e.g. prestige bias), inappropriate informants, mis recording of responses and interviewer

effects.
O Selectivity problem

Self-Selectivity: Labor refuse to work as offered wage is lower than reservation wage (lowest

wage rate at which a worker would be willing to accept a job). We can observe other
variables but not wages of such people. If we don’t take data on such people, we get

truncated sample.

Nonresponse: Usually occurs at the initial waves of panel. In surveys some of the questions

may remain unanswered or complete nonresponse may occur.

Attrition: Nonresponse may occur in cross-sectional studies in the subsequent waves of the

panel.

U Short time-series dimension



Micro panels involve annual data covering a short time span for each individual. Usually the

asymptotic arguments rely crucially on the number of individuals tending to infinity.
U Cross-section dependence

Macro panels on countries or regions with long time series that do not account for cross-

country dependence may lead to misleading inference.

5.5.3. Heterogeneity across individuals and time:

Different individuals may be influenced by different factors leading to heterogeneity across

individuals.

Assumption that ¥ is generated from probability distribution FO18), with € constant for all

individuals is not valid if some significant factors are left out from the model specification.

We characterize the distribution of Yt as f (it [%uz, i)
1 Ot s decomposed into B, Yit then B are called structural parameters.
Yit vary across individuals and time and called incidental parameters.

If Yit are random variables, the model is called random effects model. If Yit are fixed

unknown constants, it is called fixed effects model.

Consider following models with single explanatory variable
Model with no heterogeneity (& = @ Bi =B Vi) jg

Vie =@+ Bxp Fuy;i =1, ,N;t=1,...,T

Model with heterogeneity in intercept (B: = B Vi),

Vie =a; +Bxp+uy;i =1, ,N;t=1,...,T

Model with heterogeneity in intercept and slope coefficient

Vir = 4 ‘l‘ﬁixit + Ilit;f = 1, ...,N;t = 1, ,T



Balanced panels: Same number of observations on each cross-section unit.
(i=12.. N;t=12 ..T)

Unbalanced panels: Unequal number of observations on each cross-section unit.
(i=12..,N;t=12 ..,T)

We consider the case of balanced panels only.

For , We get cross-section observations. For N , We get time series observations.

In panel data estimation methods, we consider the case when N>1gngT>1,

5.6. Estimation in random effect and fixed effect models

5.6.1. Fixed effects model with more than two time periods:

Consider the model

Vie =a+ X+ +m (0 =12,..,T)

and E(X;:u;) = 0.

As N increases, number of parameters (u;s) also increases.

We cannot estimate g;'s consistently but we can estimate other parameters

consistently.

We write the model as

v=alyr + X +Du+n

D = Iy®ly is a set of N dummy variables.

We regress y on D and obtain OLS residuals @py.

Then regress X on D to get OLS residuals @pX.



Running regression between OLS residuals @,y and @Qp X, the estimator of § is obtained

as
Bw = (X' QpX)™*X'Qpy

This is the within estimator. The estimator is also called least squares dummy variable

(LSDV) estimator.
Any transformation that deletes the fixed effect produces a fixed effects estimator.

For instance, pre multiplying a T x1 vector by a T (T — 1) matrix

-1 1 0 0

o -1 1 0
F = :

0 0 0 0

0 0 0 1

produces a (T — 1) x 1 vector of first differences.

If we pre multiply the model by F, we get rid of fixed effect and then we can consistently

estimate 5 by applying OLS.

Again

Vi =XiB+ i+

The model in deviation form is

Vie = V. = Kie = X IB + (e —112)

which satisfies the orthogonality condition. OLS can be applied to produce consistent

estimators.

First differences or differencing from person-specific means produce consistent (and

unbiased) estimators of f3.

5.6.2. Steps to Implement fixed effects estimator are:

—=Transform all the variable by subtracting person-specific means



—=Run OLS on transformed variables

The matrix of standard errors of fixed effects estimators is

o7 (X' QpX) ™!

The estimator of o7 is bp = %, where 1y, is within OLS residual.
Testing for Fixed Effects

We assume X" p; = 0

For testing Hy: iy = p, = ++» = py_; = 0, we apply Chow test and obtain

Restricted regression SS (RRSS) by using pooled model.
Unrestricted regression SS (URSS) by using within estimator.
The test statistic is

_ (RRSS —URSS)/(N —1)
- URSS/(NT —N —K)

~F(N — 1,N(T — 1) — K) under H,,.
5.6.3. Random Effects Model:
Random effect model is given by

Vie =a+ X +uy
where

Ue = My + 7t
Here y; is uncorrelated with X;.

We assume that

E(m) =0, E(n’) = 62ly, E(u;) =0, E(up;) =0V i # j, E(u}) = o2ly, E(un;) = 0



Hence

2 2 2
o5 —I—cr# 0}

E(uyw) = aflr + ojlrly = : : = X (say)

2 2 2
0} oy + 0y

where l; isa T X 1 vector with all elements 1.

Hence  E(uu') =Iy®LX = 1 (say)

Using the result

1
(A + aa’)_l = A_l —mzﬂ_—laa’ﬂ_l

We have

11 1-62
271 = (o2l + o2lply) = ?lIT ——m;l
n

Thus

1 1
11 1-6 o2 2 a? \2 1
3= [ (0 )]0 = () = (2) 0 =707 + 0
S R (ag+ra§ Toz) 'OB =T 1 F

FGLS estimator of # = We need to estimate o;; and o;;.

5.6.4. Random effects as a combination of within and between estimators:
Consider the i*" equation
Vi =Xif+

Then

T

1, 1 _

?ET}’:‘ = ?Z Yit = Vi
i=1

Similarly, we define X

Define a NT x N matrix D of N dummy variables



: : :IN®!IT
00 .. I

P, = D(D'D)™1D'": NT xNT symmetric, idempotent matrix

Pre multiplying the model by P, transforms the data into the means and the model

becomes

Ppy = PpXp + error

Applying OLS to above model, we get the estimator

Bz = (X'PpX) ' X' Ppy

This estimator is called the between estimator or Wald estimator.
The between estimator is consistent but not efficient.

If T is large, this estimator is robust to measurement errors in X variables, provided

orthogonality condition u; uncorrelated with X;; is satisfies for the correct data.

The information thrown away by the between estimator can be used to construct

following within estimator

LetQp = Iyr — Pp = Iyr — D(D'D)"1D’,

Qp: Symmetric idempotent matrix

Pre multiplying by @, we obtain

Qpy = @QpXB + Qpu

Qpv: Residual when we run regression between y and dummy variables D
@pX: Residual when we run regression between X and D

Thus, pre multiplying by @Qp transforms the data into residuals from auxiliary

regressions of all the variables on a complete set of individual specific constants.



Predicted value from such a regression is the individual specific means. Thus, residuals

are deviations from personal specific means.
1 ;17’1.11:r

Cy=y-—7Un@J)y=y—| :

nlr

Pre multiplying the model by @, and applying OLS leads to the within estimator

Bw = (X' QX)X Qpy

Estimator [ is obtained by running OLS on the following equation:

Vie — Vi, = Kie — X + it

The estimator is called the within estimator because it uses only variation within each

cross-section unit.

The estimator is consistent but not efficient as it uses N unnecessary extra variables. We

can write pooled OLS estimator as weighted sum of between and within estimators:
B=&X)Xy=&X) X Py + X Qpy]
= (X' X)X PpX)Bs + (X' X)X Qo X)Bw

Where 5 = (X' PpX)"H(X'Ppy), Bw = (X' QpX)"H(X'Qpy)

The pooled OLS estimator is consistent but inefficient as it does not incorporate
information about heteroscedasticity resulting from repeated observations from same

cross section units.

2 2 2
5.6.5. Estimation of 0 gl’*Ldﬁl*:

of and g2

2
Estimators of 77 H based on standard ANOVA are

62 = ———— @,
M NT-NEK-N WTW.



“w Residuals from the within regression
“B: Residuals from the between regression

PN A
Degrees of freedom for Yww js

NT—(NK—N)=N(T-K-1)

-th . _ T &
as the ' equation has X explanatory variables, but V¢ = L1 NV Ziz1fwie =0 These

estimators are consistent estimators of corresponding variances. Then

5.6.6. Steps for estimating random effects panel data model:

i.  Compute within and between estimators

~2
ii.  Compute corresponding residuals and use residuals to estimate variance terms ~7 and

=2
0'#.

iii.  Obtain

iv.  Run OLS between transformed variables y and X where
Vit = Yie — . + 07, ; Xip = Xie — Xi + 0K,

5.6.7. GLS Estimation:




Consider the model
v=alyr +Xp+u, u=Du+n
Where

D =1Iy®l,Qp =Iyr —Pp,Pp, =D(D'D)™'D' = Z®]r

11
It :ffr :?ETIT-

Jp:TXT 1

with all elements

_ 1 1 ,
Jr = ﬁfw = ﬁfwfw?

We consider

Within Model:

Qpy = QpXB + Qpn (5.7)

Between model:

VT (7. —7.) = VT(X, — X ) +VT (@, — @), Vi (5.8)
For each ’5, equation is repeated T times. So, we multiply by 'ﬁ. We can write (5.8) as

(Pp — Jur)y = (Po — Jur)XB + (Pp — Jur)u (5.9)
Var(Qpu) =Var(Qpn) = 0;Qp

Var[(Pp — Jyr)ul = o (Pp — Jur)

of =Tof =To; +0o

Combining (5.7) and (5.9), we get



((PD ?D;r:f?)}’) N ((PD ?D,gr)x) h+ ((PD ?D}.:TT)“)
( QDE‘L )
Covariance matrix of *(Fo —Jnr)u/ jg

(0" st o)
0 Ulz(PD — Jnr)

Applying GLS to (5'9), we obtain

-1
- 1 1 _ 1 1 _
Bers = [_2 X'QpX +—=X'(Pp —fNT)Xl X [—2 X'Qpy +—=X"(Pp — Inr)y

= [Wyy + 6%Bxx]}[Wxy + 62By,]

= Wy B + Wallgw

where
Wyx = X:QDX-
Wy, = X'Qpy

Byx = X'(Pp — Jar)X,

By, = X'(Pp — Jyr)y

Wy = [Wyx + 0% Byx] ' Wiy

W, = [Wyx + 0°Byx] 10°Byy = [ — W, (Wi + W, =1)
Ewr = WX_XlWXy

BBW = BE,%BXy

a2 = =0_ B .
For " and P6LS reduces to the OLS estimator



bors = Wy Wy, = (X'QpX)™1X'Qpy

5.7.

5.8.

19.

20.

21.

22.

23.

24,

25.

26.

27.

Self-Assessment Exercise

Explain the concept of nonspherical disturbances and why they pose a challenge in

econometric modelling.

What are the key differences between heteroskedasticity and autocorrelation in the

context of regression analysis?

Explain the purpose of Generalized Least Squares (GLS) and how it improves upon

Ordinary Least Squares (OLS) in the presence of nonspherical disturbances.

How does the Seemingly Unrelated Regression (SUR) model improve efficiency in

estimation? Provide a real-world example.

Compare and contrast the Fixed Effects (FE) and Random Effects (RE) models in

panel data analysis.

Describe a scenario where panel data models are more suitable than cross-sectional or

time-series models.

A researcher is analysing two interrelated equations for household spending on food

1) and clothing (Y2), where the error terms of the two equations are correlated.
Explain how a SUR model can be used in this situation, and outline the steps for

estimation.

Given panel data on the annual income of individuals across 10 years, propose a
suitable econometric model to examine the impact of education and experience on

income. Justify your choice and discuss how to handle unobserved heterogeneity.

Suppose a dataset exhibits heteroskedasticity in the error terms. Show how GLS can
be applied to transform the model and estimate the parameters efficiently.

Summary



This unit introduces three advanced econometric models commonly used in analyzing
complex economic relationships. The focus is on addressing limitations of basic regression
models, particularly in cases involving nonspherical disturbances, interrelated systems, or

combined cross-sectional and time-series data.
1. Models with Nonspherical Disturbances

o Explores situations where the assumptions of homoscedasticity and no autocorrelation

in error terms are violated.

o Discusses techniques such as Generalized Least Squares (GLS) and Feasible GLS
(FGLS) for addressing these issues.

o Applications: Time-series models with serial correlation, cross-sectional models with

heteroskedasticity.
2. Seemingly Unrelated Regression (SUR) Models

o Focuses on systems of multiple regression equations with correlated error terms

across equations.
« Highlights efficiency gains from jointly estimating the equations using GLS or MLE.

o Applications: Sectoral studies, consumption patterns, or interdependent economic

models.
3. Panel Data Models
« Combines cross-sectional and time-series data to analyze entities over time.
o Introduces key estimation techniques including:
I.  Pooled OLS for simplicity.
Ii.  Fixed Effects (FE) for controlling unobserved, entity-specific characteristics.

iii. Random Effects (RE) for cases where individual effects are random and

uncorrelated with regressors.
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Block & Units Introduction

The present SLM on Econometrics consists of fourteen units with three blocks.

The Block — 2 - Simultaneous Equations Models and Forecasting, is the second

block, which is divided into five units.

The Unit - 6 - Structural and reduced form of the model and identification problem,
deals with the Simultaneous equations model, concept of structural and reduced forms,

problem of identification, rank and order conditions of identifiability.

The Unit — 7 - Estimators in Simultaneous Equation Models — I, deals with the
Limited and full information estimators, indirect least squares estimators, two stage least

squares estimators, three stage least squares estimators and k class estimator.

The Unit — 8 - Estimators in Simultaneous Equation Models — I, deals with the
Limited information maximum likelihood estimation, full information maximum likelihood

estimation, prediction, and simultaneous confidence interval.

The Unit - 9 - Forecasting, deals with the Forecasting, exponential and adaptive

smoothing methods, periodogram and correlogram analysis.

The Unit — 10 - Instrumental Variable Estimation, deals with the Review of GLM,
analysis of GLM and generalized leased square estimation, Instrumental variables,

estimation, consistency properties, asymptotic variance of instrumental variable estimators.

At the end of every unit the summary, self-assessment questions and further readings

are given.



UNIT 6 STRUCTURAL AND REDUCED FORM OF THE MODEL AND
IDENTIFICATION PROBLEM

Structure
6.1 Introduction
6.2 Objectives
6.3 Simultaneous equation model: Introduction
6.3.1 Simultaneous equation models
6.3.1.1 Endogenous variables or jointly determined variables
6.3.1.2 Exogenous variables
6.4 Explaining estimation procedures using example
6.4.1 Instrumental variable (I V) estimation
6.4.2 Indirect least squares (ILS)
6.4.3 Two-stage least squares estimation (2SLS)
6.5 General form of the Simultaneous Equation model
6.6 Identification Problem
6.6.1 Structural form of the model
6.6.2 Identification problem and likelihood function
6.6.3 Condition for Identification
6.6.4 Identification from Reduced form
6.7 Self-Assessment Exercise
6.8 Summary
6.9 References
6.10 Further Readings

6.1 Introduction

In econometrics, models are typically categorized into structural and reduced-form models

based on their complexity and the relationships they describe:

1. Structural Models: These models explicitly specify the relationships between variables
based on economic theory. They are grounded in economic principles and attempt to capture
the underlying mechanisms driving economic phenomena. Structural models often involve a

system of equations that describe how different variables interact. They aim to uncover causal



relationships and are typically used for policy analysis and theoretical exploration. For
examples include models of consumer behavior, investment decisions, production functions,

etc.

2. Reduced-Form Models: These models focus on describing the statistical relationships
between variables without explicit reference to underlying economic theory. Reduced-form
models are derived from structural models and emphasize empirical relationships rather than
theoretical foundations. They are commonly used for empirical analysis, forecasting, and to
test specific hypotheses. For example, regression models where variables are regressed

against each other without a clear theoretical model.

In econometrics, the identification problem refers to the ability to uniquely determine the
parameters of a model based on the available data. It arises when the model does not have
enough information to estimate all the parameters separately and unambiguously.
Identifiability is crucial because, without it, the estimates of model parameters can be biased,
inconsistent, or even meaningless. The identification problem in econometrics underscores
the importance of careful model specification and appropriate estimation techniques to ensure
that the estimated parameters are reliable and meaningful for analysis and policy-making.

6.2 Objectives
After completing this course, there should be a clear understanding of:
e Simultaneous equations model
e Concept of structural and reduced forms
e Problem of identification
¢ Rank and order conditions of identifiability
6.3 Simultaneous Equations Model: Introduction

A simultaneous equations model (SEM) is a type of econometric model that consists of
multiple equations where each equation depends on the endogenous variables (variables that

are determined within the model) of the other equations. This interdependence distinguishes



simultaneous equations model from single-equation model, such as simple regression models.

The main features of the simultaneous equations model are:

1. Endogeneity: Variables in a simultaneous equations model are endogenous, meaning
they are jointly determined within the model rather than being exogenously given.

2. System of Equations: In a system of equations (SEM), each equation represents a

relationship between variables.

Example: In a basic economic model, you might have equations for demand and supply that
interact to determine equilibrium price and quantity.

3. Simultaneity Bias: Simultaneous equations models can suffer from simultaneity bias,
where the estimation of coefficients in one equation is biased due to endogeneity with
respect to variables in other equations. Special techniques like instrumental variables
or two-stage least squares are often used to address simultaneity bias.

4. ldentification Issues: ldentification refers to the ability to separately estimate the
parameters of the model equations. Simultaneous equations models require careful

consideration of identification to ensure reliable estimation.

Linear regression model involves a single equation which explains a dependent
variable @) in terms of a set of independent or explanatory variables (x'S) and then the

relationship is unidirectional, i.e.,* S explainY butY do not explain* §. This is called one
way causality. In many economic theories, we usually built upon a system of relationships

and in this kind of relationship we normally find variables which determine each other.

Example: In microeconomic theory for a particular commodity, there is a demand equation
and a supply equation both involving price and the phenomenon is explained by the system of
demand-supply equations. The price and quantity are interdependent and determined by the

interaction of demand-supply equations.
6.3.1 Simultaneous equation models

Model is in the form of a set of linear simultaneous equations. The system is jointly

determined by the set of equations in the system. A particular equation explaining a



dependent variable may involve the dependent variables of other equations among the
explanatory variables. When a relationship is a part of a system, some of the explanatory
variables are stochastic and correlated with the disturbances. The assumption that the
explanatory variable and disturbance are uncorrelated is not satisfied leading to inconsistent
OLS.

How to overcome this problem and estimate the model?
1) Variables Classification in Single Equation Linear Model
I.  Dependent Variable
ii.  Independent Variables
2) Variables Classification in Simultaneous Equations Model
I.  Endogenous variables
ii.  Exogenous variables
6.3.1.1 Endogenous variables or jointly determined variables

The variables, which are explained by the functioning of system, are known as endogenous
variables. The values are determined by the simultaneous interaction of the relations in the
model. Endogenous variables are those variables that are determined within the model itself,
rather than being exogenously given. These variables are typically the main variables of

interest whose values are simultaneously determined by the equations in the model.

Example: In an economic system, price and quantity in a market might be endogenous
variables since the equilibrium price and quantity are determined by the interaction of supply

and demand equations.

Thus, endogenous variables in a simultaneous equations model are the variables whose
values are determined by the interactions and relationships specified within the model itself,
making them central to the analysis of the system's behaviour and outcomes.

6.3.1.2 Exogenous variables



Exogenous variables provide explanations for the endogenous variables. The values are
determined from outside the model. These variables help is explaining the variations in
endogenous variables and influence the endogenous variables but are not influenced by them.
Exogenous variables are independent variables in the model whose values are not determined
by the relationships specified within the model. They are external to the system being
modeled and are often considered as constants or variables whose values are given from

outside the model.

Example: In economic models, exogenous variables could include factors such as
government policies, external shocks to the economy (like changes in international prices), or
other variables that are assumed to be outside the control of the model and whose values are

taken as given.
6.3.1.3 Predetermined variables

Exogenous variables and lagged endogenous variables form predetermined variables. Since
exogenous variables are predetermined, so they are independent of disturbance term in the
model. These variables satisfy the assumption that explanatory variables satisfy in the usual

regression model.
6.3.2 Reduced Form

o Economic model involving several endogenous variables in each equation is called

the structural form of the model.

o If we transform the structural form so that each equation has one endogenous variable
as a function of only exogenous and lagged endogenous variables, the new form is

called the reduced form.

o The structural form cannot be estimated using least squares as it includes endogenous

variables on its right-hand side.

In econometrics, the reduced form of a model refers to an equation that expresses the
endogenous variables (variables influenced by the model's parameters) solely in terms of
exogenous variables (variables not influenced by the model's parameters) and error terms. In

econometrics, reducing the model to its reduced form is useful for understanding the



relationships between variables without directly dealing with the complexities of the
underlying structural model. It simplifies analysis and interpretation, especially in cases
where the structural form involves multiple equations or complex interactions. The reduced
form of a model typically refers to a simplified version that retains essential elements while
omitting less significant details. In economics, for instance, it often involves eliminating
endogenous variables by expressing them in terms of exogenous variables. This
simplification aids in analysis and understanding by focusing on the core relationships within
the model. The reduced form can be estimated by least squares.

Example: Let us consider the following wage and price function

Wage Equation: Wy, = ay + a, Uy + a; P + uyy, }

Price Equation: Py = By + B1W; + B2Re + B My + uy, )

where,

W; = Rate of change in money wage

P, = Rate of change in prices } : both are Endogenous Variables.

U; = % Unemployment rate, M; = Supply of money
R; = Rate of change in cost of capital

Uys, Usp = Stochastic disturbances

Wand P opq jointly dependent and may be correlated with the stochastic disturbance terms.

Reduces Form: We can write
Wy = ag +a Up + ay(Bo + B1We + BoRe + BaMp + upe) +uyy
or

Wy = myg +my1Up + o Ry +1043M; + vy



ag + azf ay

Ty, = a5, s = @z .
1—af 1—af
I Uyp + ol
- a2 By
Similarly

Py = Mo + o U + o3 Ry + 3 My + vyt

. :!30 + apfy = a4
20 1—af;’ 2T — a3y
BB

2 1—ayfy’ 21— axfy’
v :ﬁlult + Uy

2t 1—ayp,

Is it possible to estimate the reduced form coefficients and then with the help of those

estimates, estimate the structural form coefficients?

Here, we discuss some examples to explain different problems that arise in the analysis of a

simultaneous equation model.
Example: Consider the following consumption function with a national income identity:

(i) Ci=a+pY; +u; }

(i) Y.=C+Ze @)

where, C = aggregate consumption expenditure; Y= national income
Z = non-consumption expenditure; u = disturbance term

The model determines the consumption expenditure and the national income, which are
jointly dependent or endogenous variables. The model contains a (i) behavioral equation and
(i) equilibrium condition. The equilibrium conditions have no disturbance term and are
exact. Non-consumption expenditure is determined outside the model, which makes it

exogeneous variable. We assume



i u~N©O,0:L) where * = (U1, u) gng

Z and U gre jndependent.

Solving (2) for C and Y, we get the reduced form

=2+t 2+

t_l—ﬁ 1_ﬁt Vi )
a 1

Ytzl_ﬁ+1_ﬁzt+vt

where

Now

1
plim (EZ tht)
or1 a 1
ST YL

1
— i [ — § 2
= plim (n vf )

2
Oy

“a-pr T

OLS estimates of %5 obtained from (2) would be inconsistent. So, we require some

alternative estimation procedures.
6.4 Explaining estimation procedures using example

Selecting a model should be based on strong theoretical justification rather than just
convenience of statistical estimation. Each model should be evaluated independently,
considering the random fluctuations that may be present. It is not possible to apply OLS
directly; instead, strategies for handling the estimation issue must be developed. There are



several other estimation techniques available, however some of them could need a lot of

work. Some methods are:
6.4.1 Instrumental variable (I V) estimation

Let Z be uncorrelated with u and correlated with Y. Applying IV estimator using Z as the IV

leads to

apy = C— by ¥
:E(Ct—f)(zt —Z) :ECtZt (4)
2 — ?)(Zt — Z_) XVt

v

Wherect :Ct—{f,}’t :Yt_?' zt:Zt _Z

Using (4), we have

Z CiZp = Z (:l"%ﬁzt+vt) Zs
= %Z th + Z ViZt

1
Snae= 3 (g
1 2
= 1_ﬁZzt —l—thzt

Hence

. 12 ‘ B
plim (H ctzt) = ﬂmﬂ,
. 12 ' 2
m,, = plim (H zt)

1 1
plim (EZ ytzt) = ﬂmzz.

Thus



plim(by,) = B

1
plim(ay ) = plim [HZ(Ct - bIVYt)]
1
= plim [~ o = by — )Y, + )]
=a
6.4.2 Indirect least squares (ILS)

Apply OLS to reduced form equations, which satisfy the conditions under which OLS

estimators are consistent and BLUE.

a B
T1-B T 1-5
. a
_1—ﬁ+1—ﬁ

Ct

Zt + vy
(5)
Y

2 CrZt . .
: consistent estimator of

B
2] -5

X VeZt . .
: consistent estimator of

L
Tz 1-5

Hence the estimator ofﬁ is the ratio
b _Ectzt ._E}’tzt
ILS Zztg : E th

_ X CtZ4
X VeZy

In ILS, reduced form coefficients are estimated by OLS and then structural coefficients are

estimated by an appropriate transformation of the estimates of reduced form coefficients.
6.4.3 Two-stage least squares estimation (2SLS)

We first regress y on the exogenous variable. Writing second eq. in (3) in deviation form we

have



Ve = 52t + V¢, o= ﬂ (6)
Apply OLS to (6)
5= X ViZ:

Xzt

Hence, an estimated value of ¥t is

Ve = Szt
_ XYVt Z: 2
Xz )"
LViZ;
:(5+ 7%z, 7
t
Then
Ve Z
Zj?tut:é'zztut +Z“’tzt2:27;tgt
Since,
i (- ) i (L) -
plim\— ) zeug | =plim{— ) ztve ] =0,
we have

im (5 9e) =0
plim - Veug | = 0.
We write the first eq. of (2) as

C =a+ Y+ [u + B(Y; — 7,)] (8)

Since Yt has zero correlation (in limit) with *t and (Yt B Yt),Ythas zero correlation with the

combined disturbance term (% + B(Ye = ¥2)] o (8).



Applying OLS to (8) gives the following 2SLS estimate of B, which is a consistent estimator:

b B X
25LS = v oz
X

_ Szctzt
- 523 z2

B 2 CeZy
LVeZy

In this example
by = byrs = bags.
The reason is that both the equations are just identified.

6.5 General form of the Simultaneous Equation model

Let us consider a model containing M structural equations.

B11vie + -+ Bin¥ure T ¥11%1e + o+ VigXge = Use

Ba1yie + o+ Ban¥ue +va1Xae + o+ VarXge = Uat (t =1,.... n) (9)

Ba1yie + - BumVue + VarXar + o0+ Vg Xge = Unge

where,
Yit. - Yut : Observations on endogenous variables

*1t, -2 Xkt: Observations on predetermined (exogenous and lagged endogenous) variables
Biis -, Bt Yir, - Yix * Regression coefficients

Uit disturbance term

In equation (9) some of the £'S and V'S are zero otherwise all the equation in the model look

alike and no equation could be identified.

We can write the model in matrix form as



By +Txg=u; t=1,..,n (10)

(ﬁlt ﬁm) (?’.11 ?"}K)
B = E "- E ’ — : ..' :
DGMI ﬁMM Yar1 - ¥YME

Vit X1t Ut
Ve = ' , Xy = H , Uy = '
Yue XKkt Ut

Suppose Bis nonsingular. The reduced form of the model is
ve =llx; +v,t=1,..,0n (11)

where [1 = —B7T', v, = B_lut_

Note:

Structural form relations: The interaction between endogenous and predetermined variables

taking place inside the model.

Reduced form relation: It express as jointly dependent (endogenous) variables as linear

combination of predetermined variables.
6.6 Identification Problem

In econometrics, the identification problem refers to the ability to uniquely determine the
parameters of a model based on the available data. It arises when the model does not have
enough information to estimate all the parameters separately and unambiguously.
Identifiability is crucial because without it, the estimates of model parameters can be biased,

inconsistent, or even meaningless.

The identification problem is whether the estimates of the structural parameters of the model
can be obtained from the estimates of the reduced form coefficients?

It has three possibilities:

(1) Unique estimates of the structural parameters of a particular equation can be obtained. The

equation is said to be exactly (or fully or just) identified.



(if) More than one estimates of the structural parameters can be obtained. The equation is said

to be over identified.

(iii) It is not possible to estimate of the structural parameters by using the estimates of the
reduced form coefficients. The equation is said to be un-identified or under identified.

Example: Under identified

Consider the demand supply model,

Demand Function (DF): Qf = ay + a1 Py + uy; ay <0 (12)

Supply Function (SF): Qf = o + 1P +uy; 1 =0 (13)

Equilibrium Condition (EC): Qf = Q;f (14)
& = quantity demanded, Qf = quantity supplied, t = time

By EC

ayg+ a Py +uy = By + BiPr + st

This gives the equilibrium price,

Pt = ?1'0 + T?t (15)
where
. — Bo—ao
[/ ]
a;—p
Uy — Usp
V=
a;—p

Substituting Pt in DF or SF gives the equilibrium quantity
Qr =1y + wy (16)

where



B a1 fo—aof

m; =
ay—p
. = iUz — Bruge
= =
ay—p1

Equations (15) & (16) are reduced form equations.
Using (15) and (16) we can estimate "© and 7y

We cannot estimate four structural parameters (“ﬂ-ﬁﬂ'al-ﬁl) from the estimates of two

reduced form coefficients.

Multiplying DF (12) by A and SF (13) by (1-A), (0<A<I) and adding we get,

Q¢ = Yo t 1P + Wi (17)
where

Yo = agd + Bo(1 — Ny, =a A+ B (1— 1)
w = Augy + (1 — Auy,

Equation (17) involves the regression of Q¢ and Fr-
It is observationally equivalent or indistinguishable from (12) and (13).

For a given set of data on (Qt- Pt) we are unable to say which one of these models we are
fitting.

Example: Just or exact identification

D.F: Qtd :a{] +a'1Pt ‘I‘ﬂlet‘l‘ H’lt' (al = D,ﬁ“z ::’0) (18)
SF: QF = By + B1Pr + 1y, (B = 0) (19)
It: income of a consumer

Using the equilibrium condition Qf = Qts, we get equilibrium price and equilibrium quantity



Pt = Iy + ﬂ.—lft + Vi (2-0)

Qt = my + 13l + wy (21)
where
S Bo—ao S s
[ ' 1 — '
a;—p a;—p
v — Ugzr — Ugg S a1 fo—aofy
t— " 5 M=
a;—p a;—p
. = a1
3 — — ]
a;—p
. = iUz — Bruge
= =
a;—p

We can obtain OLS estimates of ™o, ®1 T2 T3

We cannot get the unique solutions for five structural parameters (“0-“1-“2-60”81).

However
fo=my—— g, f1 =—.

SF can be identified but DF remains unidentified.

Multiplying (20) by‘;L and (21) by (1 =4 ang adding gives

Qt=vo+tvi P +yz 1l +5 (22)
where

Yo = apd + o(1 = 2),

Yi=ad+ Bi(1-2),

Y2 = Az, g = Augy + (1 — Duge

(22) is distinguishable from SF but indistinguishable from DF.



Consider

DF:QE:aﬂ-i_alpt‘l_azft-i_ult(al ‘::Cl,az ::’Cl) (23)
SF:Qf = Bo+ By Pe + PPy +upe (B >0,5, <0) (24)

Pt-17 price lagged one period which is a predetermined variable at time t.

Equilibrium price and demand are

Pt = Iy ‘l‘ﬂ'l It-l-?rth_l ‘I"I?t (25)
Qt:ng +n—41t +?I5 Pt—l +Wt (26)
where
Yk N S
0 ay— By’ ' ay— B’
. = B> S 180 — agfy
2 a; — By : a,— B
T — — azf, e — a3,
* 45] —51' > a; — By
v — Uge—Uqt W — ayupe—Puye
‘ a; — fy o a; — By

Q8+ (1 —-DQf
=Aag+a; P+ ay Iy +uy) + (A — DBy + 1 Pr + F2Pry +uyy)

=Yo + V1Pt +v2lt +Vabi-1 + & (27)
where

Yo = @A + (1 — 4),
y1=a;A+ (1 - 2),
Y2 = Aay,

ya =1 — DB,

g =Aup + (1 — ADu,.



Then equation (27) is distinguishable from both the DF (23) and SF (24). Both the DF and SF

are just identifiable.
Example: Over identification

D.FQtd = Oy + alpt + azft + ﬂngt + Uit (“1 < 0, Oy, 03 = 0) (28)
SF:Qf = Bo+ B1Pe + B2Pr_q +uze; (B1 > 0,6, < 0) (29)

Rt \Wealth of the consumer

Equilibrium price and quantity are obtained as

Pt = Ty + n—lft + R—ZRt-l_n—SPt—l + V¢ (30)
Qt :?1'4 ‘l‘TTSIt‘l‘?TGRt‘I‘?T?Pt_l ‘I‘Wt (31)
where
S Bo — ag = ay
° a; — By o 45] _ﬁl'
T — — s Ta — B
2 a; — By : 45] _ﬁl'
= 180 — agfy = — az
* a— B > a; — By
o= — azfy S a1 3>
¢ a; — By’ ! a; — By
v — Uge—Uqt W — ayuye—Pruy;
‘ a; — fy o a; — By

DF and SF have seven structural parameters. There are eight reduced form coefficients to
estimate them. Hence unique solutions for all the structural parameters are not possible. For

instance,

This is the case of Over Identification. DF & SF both are distinguishable.



Let us summarize the above possibilities:
(i) Under identifiable or unidentified:

The estimation of parameters is not at all possible in this case. No enough estimates are
available for structural parameters. If more than one theory is consistent with the same data,

the theories are observationally equivalent in the sense that we cannot distinguish them.
(ii) Exactly identifiable:

The estimation of parameters is possible in this case. The relationship between the reduced
form coefficients and structural parameters is one to one. Thus, the OLSE of reduced form

coefficients lead to unique estimates of structural coefficients.
(iii) Over identifiable:

The estimation of parameters in this case is possible. The OLS estimator of reduced form
coefficients leads to multiple estimates of structural coefficients.

Notice that the identification problem is not the sampling problem. We can not overcome this

problem by increasing the sample size.
In the reduced form

Vi :th‘l-'!?t,t == 1.---“;

=-B7T

I1 r

we can consistently estimate ** using OLS. If Bis known, we can simply estimate * using the

relation I = —BII,

Our problem come to the estimation of B This makes sense because if £ is known, we can

write BYt = Z¢ (say) and apply OLS to
Zy = —l—'xt + Uy

and estimate r



We can put the identification problem as:

We can observe the reduced form and must be able to deduce the structural form from the
reduced form. If more than one structural form leads to the same reduced form and we are not

sure which structure we are estimating. Thus, we cannot estimate the structure.

6.6.1 Structural form of the model

Consider the structural form of the model

Model S: By, + T'x; =u; t =1,..,n (32)
where,

B:-M x M, "M x K,

up: M x 1, Ve M X1, xp K x1

N(0,Z) The reduced form of the model is

and %5 jid following
Ve = xe + vy (33)
Here

In=-B71T, vy = B 1,

and

] = _ -1 ;_1
V'S are iid following NV (0, Q) with O = B™IXB"

Further

E(u:) =0,
E(usuy) =Z,E(upu)) =0Vt # L

E(v,) =0,

E(vev{) = Q,E(vyv]) =0Vt = L.



Now, we can conclude the following points:

(1) We can consistently estimate n using OLS.

r =

—BIT This makes sense because

+ Ut and estimate !

2 15 is known, we can estimate
if B

using the relation
is known, we can write Yt = Zt (say) and apply OLS to %t = Tt
(3) The problem come to the estimation of B. For this, we must be able to deduce the
structural form from the reduced form. If more than one structural form led to the same

reduced form, then we are not sure which structure we are estimating.
6.6.2 Identification Problem and Likelihood Function

The identification problem is directly related to the likelihood function. If a model is not
identified, the likelihood function does not have a unique maximum because multiple
parameter values produce the same likelihood. Therefore, for a model to be estimable (using
MLE or other methods), it must be identified, meaning the likelihood function should have a

unique maximum at the true parameter values.

Consider the joint pdf of Y given *t is

p(yelxe) = p(vy)
du;

dv,
= p(u;)|det(B)|

= p(ug)

where |det(B)| denotes the absolute value of determinant of B.

Notice that,
u; = By,

duy

— =8B
dv,

where,



= |det(B)| is the Jacobean of the transformation.

‘But
vy
The likelihood function corresponding to Sis given by

L =p(y1, ¥z, -, Ynlxy, %2, ., x0)
T
= 1_[ p(yelxe)
t=1
n
= |det(B)|"Hp(ut). (34)
t=1

Applying a nonsingular linear transformation on structural equations (32) with a nonsingular

matrix D

we get

DBy; + DI'x; = Du;

Writing

B* =DB,T" = DI',u{ = Du,,

we obtain

Model S*:B 'y + I'x; = uf, t =1,...,n (35)
and

E(uju;") = DID' = I (say)

The reduced form for® s also (33). i-€.

vy = Hx; + v
Thus

S: (B, T, X) is the true structure and

S*:(B*,T'*,Z") is the structure after nonsingular transformation.



Both the structures have the same reduced form. Statistically we cannot distinguish them and

both are observationally equivalent.

we find ? 0t 1x8) with S as follows:

p(yelxe)
du;

dv,
= p(u;)|det(B").

= plu;)

Also
‘=D
ui = Du,

du;
N

du,

Thus

(e |xe)
d1

_ O,
= p() [5. 5| Idet ()

= p(uc)ldet(D™)||det( DB)
= p(u;)ldet(B)I.

The LF corresponding to STis

TL
L' = |det( B*)|" Hp(u;:)
t=1

du,
*
duy

— Idet(DO)["det(B)" | | pw)
t=1

n

= det(D")["|det(B)I" | | pCu) 1der(D )

t=1

= L.



Both the structural formsS andS have the same LF. LF forms the basis of statistical
analysis, bothS and® ™ have same implications. One cannot identify whether the LF

corresponds toSandS . So, we are unable to distinguish whether we are estimating true

S ST

structure 2 or transformed structure In this sense, bothS and S are observationally

equivalent.
Remark:

1. A parameter is said to be identifiable within the model if the parameter has the same

value for all equivalent structures contained in the model.

2. A structural equation is identifiable if all the parameters in structural equation are

identifiable.

For a given structure, we can find many observationally equivalent structures by non-singular

linear transformation. Then the presence and/or absence of certain variables help in the

identifiability. So, a priori restrictions on B andT may help in the identification of
parameters. These a priori restrictions may arise from various sources like economic theory.
For the identification of an equation, some of the variables must be excluded from the
equation which are present elsewhere in the model. This is known as exclusion (of variables)

criterion or zero restriction criterion.
6.6.3 Condition for Identification
1. Order condition:

“A necessary condition for an equation to be identified is that it must exclude at least M-1

endogenous and predetermined variables.”
e If it excludes exactly M-1 variables, the equation is just identified.
e If it excludes more than M-1 variables, it is over identified.

“Equivalently for an equation to be identified, the number of predetermined variables
excluded from the equation must not be less than the number of endogenous variables

included in that equation less one.”



Let
k: Number of predetermined variables included in the equation

" Number of endogenous variables included in that equation.

Then it must exclude at least M-1 endogenous and predetermined variables which results
in(K—kK)+M-m)=M—-1
Equivalently, if ¥ —k=m—1.

Thus

Number of predetermined variables excluded from the equation = Number of endogenous

variables included in that equation less one.

This gives

o 1K —k=m—1 he equation is just identified.

o 1fK —k>m—1 hen the equation is over identified.
Example 1:
Let

DF Qt = lﬁfﬂ + alpt + H'lt
SF Q: = Bo + B1Pr + uy;

Here,

Number of endogenous variables (M) = 2

Number of predetermined variables (K)=1

1=1

Each of these equations must exclude M- variables. Since this does not hold for any

of two equations, neither equation is identified.



Example 2:
Let

DF Qt = dy + alpt‘l‘azft + Uit
SF Q: = Bo + B1P: + uye

HereM = 2K =2 gF s just identified as it excludes™ —1= lvariable but DF is

unidentified.
Example 3:
Let

DF Qt = dy + alpt‘l‘azft + Uit

SF Q: = Bo + B1Pr + BoPr_y + uy:

M=2K

Here =3, Since each equation excludes exactly M-1= 1variab|e, both DF and

SF are just identified.
Example 4:
Let

DF Qt =y + “1Pt+“zft+“3Rt + Uqy

SF Q: = Bo + B1Pr + BoPr_y + uy:

Hore M =2K =4

1, It, Rt, Pr—1. predetermined variables
DF excludes ™ =1 = Lvariables, so it is just identified and

2(>M —

SF excludes 1=1 variables, thus it is over identified.



2. Rank condition of identifiability:

The Order condition is the necessary but not sufficient condition for the identification of an
equation. An equation may be unidentified even if the order condition is satisfied. The Rank
condition stated below is the sufficient condition for the identification of an equation.

“In a simultaneous equations model containing M equations in M endogenous variables, an
equation is identified if and only if there exist at least one non-zero determinant of order (M-
1) from the coefficients of endogenous and predetermined variables excluded from that

particular equation but included in the other equations of the model”.

Note: The rank condition states whether the equation is identified or not. From the order
condition we know whether the equation is just or over identified.

Example 1:

() y1t — Bro — B12¥ae — Bia¥ae — Y11X1e = Uy;
(i0) ¥ar — Bao — B23Var — Y21 X1t — Y2aXar = Uat
(iti) y3t — Bao — P31Vt — V31X1r — YazXze = Uze
((v)yae — Bao — BarYie — BazYar — VazXae = Uar

M=4K M—-1=3

Here, =4 from each equation, variables are excluded. Hence by order

condition each of these equations is just identified.

To check the rank condition, write the system in the tabular form

eq. no. 1 N Y2 Y3 Ya X1 X2 X3
i —B1o 1 —B12 —Biz 0 —yu 0 0
i —B20 0 1 —B2z 0 —ya1 Va2 0
il —B30 —Ba1 0 1 0 —vya1 —Va 0

1

i —Bag  —Bs1  —Paz 0 0 0 —Vaa

Then, strike out the columns corresponding to nonzero coefficients of the first equation. Also,
strike out the coefficients of the row in which the first equation appears.

1 1




eq. no. 1 N Y2 Y3 Ya X1 X2 X3

i —B1o 1 —B12 —Biz 0 —yu 0 0

i —B20 0 1 —B2z 0 —ya1 Va2 0

i —B30 —Ba1 0 1 0 —vya1 —Va 0
v —Bag =By —Puy 0 1 0 0 —VYaz

The remaining entries will give the following matrix:

0 —va 0
A=10 -—y3 0

1 0 —Va3

By rank condition, the first equation is identified if there exist a determinant of order M-1=3

Al =0

formed from the entries of A. Since , ho non-zero determinant of order 3 exists.

Hence the equation is unidentified.
For the eq. (ii)
1 0 0

A= [—ﬁsl 0 0 ]

—Bs1 1 —Va3
Again, no nonzero determinant of order 3 exists and eq. (ii) is under identified.
For the eq. (iii)

—B1z 0 0
A= 1 0 0

—Bsz 1 Va3

Al =0 g eg. (iii) is unidentified.

For the Eq. (iv), 4l # 0, thus we have a3 * 3

identified.

non zero matrix. Hence equation (iv) is

Example 2: (¥'s are endogenous, * © are exogenous)
() y1e + BizVar + V11X = Uge

(1) ¥2¢ + Bo1yie + VaoXae + Ya3Xze = Upt



Order condition: M=2, K=3

In equation (i) m=2, k=1. Hence K-k=2>m-1=1, so that the first equation is over identified.
In the equation (i) m=2, k=2. Hence K-k=1=m-1=1, so the equation (ii) is just identified.
Rank condition:

Eq.(i) A =[¥V2z V23]

We can form a nonzero determinant from A of order M-1=1. So, the equation (i) is (over)
identified.

Eor Ea. (iD) 4 = [y11]

So, equation (ii) is also (just) identified.

Example 3: Keynesian model of income determination

Let us consider the following Keynesian model
Consumption function (CF):Cy = 1 + B2Y: — B3T: + uyq;
Investment function (IF):I; = ay + a,Yi—; + Uyt

Taxation function (TF): Ty = yo + y1Y: + ua;

Income identity (I1):¥; = C; + I, + G;

where, C: consumption, I: investment, T: taxes, - Income, & Government expenditure
and

Cy, I, Ty, Y- endogenous variables

Gy, Y;_,: predetermined variables

This model includes an income identity. The identities do not raise any identification problem

as the coefficients are known.



Here, M=4, K=3
Order condition:
CF: m=3, k=1, K-k=2, m-1=2, just identified
IF: m=1, k=2, K-k=1, m-1=0 over identified
TF: m=2, k=1, K-k=2, m-1=1 over identified
Rank Condition

eqqno. C I, T ) G Y, 1
CF 1 0 B = 0 0 —f
IF 0 1 0 0 0 —a; —aq
TF 0 0 1 —-y; O 0 —Yo
11 -1 -1 0 1 -1 0 0

For CF:

CF:
We cannot form a nonzero determinant of order M-1=3. Thus, CF is unidentified.
For IF:

[ 1 Bs =B, 0 ]
A=|l0 1 -y, ©
IF

-1 0 1 -1

1 B —B

0 1 —y|=14+y1f:—pF=0

-1 0 1 . So, IF is identified.
For TF:

-1 -1 -1 0



1 0 0
0 1 0|=-1+0
-1 -1 -1 . So, TF is identified.

So, according to order conditions, first equation is just identified and the second and third is
over identified. But, from rank condition first equation is unidentified, so our result is the first
equation is unidentified. From rank condition second and third equation is identified, if we
combine it with the order condition the results, we get is second and third equation is over
identified.

3. Determination of Rank condition:

Let us consider the following model,

Model: Byt +T'xg =u; t=1,..,n (36)
where,

B:MxM, I''MXK, u:MxI1, vi:Mx1, xp:K X1

or Az, =u; A= (B I),z; = (}t) (37)

Xt
We consider the identification of first equation.
Suppose the first structural equation is

G112y = Uy (38)

@1 is the first row of A. The element of ¥t have some linear restrictions. The most common

restrictions are exclusion restrictions.
Suppose a priori restrictions are expressed as

a;2=0 (39)

where, @ is (M+K)*R matrix of R restrictions on elements of #1-



In addition to restrictions (39), we have restrictions on %1 arising from the relation between

structural and reduced form coefficients

B+ =0o0or AW=0 (40)

w=(p,)
where, Ix

Thus, restrictions on %1 are

a W =0 (41)
Combining (39) and (41), we get

a, (W ¢]=0 (42)
@1 has M+K unknowns. Further (W #1s of order (M+K)x(K+R).

Hence (42) has (K+R) equations in (M+K) unknowns.
The first element of %1is 1 (ﬁll = 1) Hence to determine “1uniquely, the condition is
plw #]1=M+K - 1, so it is the case of Exact identification.

if PW 21> M+K—1, o get more than one solution for *1-j.e., the equation is over
identified.

The rank condition cannot hold if W ] does not have at IeastM +K -1 columns. Thus,

a necessary condition for rank condition to satisfy is
K+R=M+K-1
orR=M-1

The necessary order condition for exclusion restrictions is



“The no. of variables excluded from the equation should be greater than or equal to no. of

equations in the model less 1. i.e.

K-KkK+M-m=M-1

orK—k=m-1

Result:

LetA =B T) Then

p(® W) =p(AP)+K (43)

Proof: The model is

By + Txy = u;

The relation between structural parameters and reduced form parameters is given by

BII+T =0
orAW =0,

w=(i,)

For the first equation the restriction due to relation between structural and reduced form

parameters is
a,W =20 (44)
We can write

A=(B TI)
=B, -1

wowi=(G )0 5)

*1
X =
For any (M+K)x1 non-null vector (xz)



! I 1_[ ! ! r
X X =x1x +xx, =x'x>0

I I1

0
Thus (_H’ Ih’) is positive definite and thus non-singular. Further

‘0 Iy

=|B| %0

(B’ 0

0 IK) is also non-singular.

It follows that (4" Wln+xxa+x i also non-singular.

Hence, we can write @ as

d=(A W) (Sl)

S2
= A'S, + WS,
where 31 is MxR and 52 is KxR,
Since AW=0, we have AP = AA'Sy
AA s a MxM positive definite matrix, and hence non-singular so that P (A®) = p(S1),
Thus p(AA’) = :G(A’) =M

Also

(@ W)= W) (ﬁ; I?{)

So that

p(@ W)

= p(AD) + K



Hence, we get the required resultm

Remark: The above result leads to the following equivalent rank condition for identification:
An equation is identified if

p(AD) =M — 1.

Example: let us consider the model of the form

Vie + BizVae + ¥11%1e = gt

Vot + Ba1Y1e + V22Xt +¥23X3r = Uyt

Now

_ ( 1 Bz Y11 Y12 VlS)
A=
P21 1 ya21 Y22 Va3

For the first equation

S

I
oo oo
oo oo

1% =0 yives the restrictions Y12 = 0,713 = 0 Now

At:D:(G “)
Y2z Va3

Then P(A®) = 1(= M —1) g4 the equation is identified.

For the second equation

=
Il
cor~oo



@2% = 0 yjves the restrictions 2t = 9 Now

40=(3..)

Then P(A®) = 1(= M —1) 3nq the equation is identified.
1.6.4 Identification from Reduced form

Order condition is same as that for structural form:
(K—k)=m-1

Rank Condition from the reduced form: We have

p(A®) = p(B(Iyy, —®) = p((yy — D)

Thus, rank condition is

p((ly —M®) =M—1.

Rank Condition for Exclusive Restrictions:

“An equation containing m endogenous variables is identified if and only if it is possible to

construct a non-zero determinant of order ™™ —1 from the reduced form coefficients of

exogenous (predetermined) variables excluded from that particular equation.”

Steps:

1. Strike out the rows corresponding to endogenous variables excluded from that particular

equation being examined for identifiability.

2. Strike out columns referring to exogenous variables included in the structural form

excluded from the equation.

3. We are left with the reduced form coefficients excluded from the structural equation.

4. If the order of largest non-zero determinant is m-1, the equation is identified. If it is less

than m-1, equation is un identified.



Example:

Consider the given Model:

v =3y, —2x; +x;

V2 = Vs +x3tu;

Y3 =¥1— Y2 —2x3+u3

The reduced form of the above model is

vy —4x; —2x; +3x3+ 1,

Vo = 2X1— X3 + X3+ 15

V3 = 2x; — x5+ Vg

Equation (i) (m=2): Table of reduced form coefficients

X1 X2 X3

Excluded endogenous variables: ¥3 (delete 3™ row)

Included exogenous variables: *1'*2 (delete 1% & 2" columns).

3
Table of n’s of excluded exogenous variables and included endogenous variables is (1) We

can form a nonzero determinant of order 1(=m-1), the equation is just identified.

For equation (ii) (m=2)



X1 X2 X3
y1 4 -2 3
y2 2 -1 1
Y3 2 -1 0

Excluded endogenous variables: ¥1 (delete 1% row)

Included exogenous variables: *3 (delete 3™ column)
Table of m’s of excluded exogenous variables and included endogenous variables is
.y

2 — 1/ Highest order non-zero determinant is of order 1. The equation is identified. By
order condition verify that equation is over identified.

For the third equation (jii): ™ = 3m —1=2
Table of mn’s of excluded exogenous variables and included endogenous variables is

4 -2
(2 —1
2 —1/, Highest order non-zero determinant is of order 1. The equation is unidentified.

1.7 Self-Assessment Exercise

1. Write general form of simultaneous equations model and, using the likelihood
function of the model, explain the problem of identification. Deduce rank and order

conditions for identification.

2. Examine the identifiability of each of the equations in the following simultaneous

equations model.

Vit = Qg + @1Va¢ + Xy + Uy

Vat = bg + byyie-1 + Uz



3. For the following simultaneous equation model check the identifiability of both the

equations.

Demand Model: @ = @ + @1 Py + azInCe + uy,
supply Model: Q¢ = Bo + BiPr + B2Pe_y + 1y

D _ 5
Equilibrium: @& = Q¢

Here Yt and Pt are endogeneous variables.

4. Verify if the second equation of following simultaneous equations model is exactly

identified, unidentified or over identified:

Vit = Qg + a1V + azxqe + azxy + uye
Vat = bo + b1y1e—1 + baxpr + b3yay + uy:

Var = Cp +€1V1¢ +CaXgp + Uz

5. For the simultaneous equations model involving M equations and K predetermined

II
W_[IK

variables By+I'x=uy, if [1=BI", A=[B T, , and the first column of A,

al"f-’:()

say au follows R restrictions of the form . Then prove that

rank(® W) =rank(A®) + K
6. With an example, elaborate the identification of reduced form equations.

6.8 Summary

This unit delves into simultaneous equations models, which are used to analyze systems of
interdependent relationships among multiple variables. It begins by introducing the concept
of simultaneity in econometric modelling, distinguishing these models from single-equation
frameworks. The unit explores the identification problem, emphasizing the conditions under
which structural parameters can be uniquely determined, with a focus on rank and order

conditions.



After the completion of this unit, you will be able to understand the concept of Simultaneous

equations model and structural and reduced forms of the model. Also, you have a clear

understanding of problem of identification, rank, and order conditions of identifiability
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7.1 Introduction

In simultaneous equations models (SEMs), multiple interdependent relationships are
modeled, making ordinary least squares (OLS) estimation biased and inconsistent due to
endogeneity issues. To address this, several specialized estimators are used:

1. Two-Stage Least Squares (2SLS)

2. Three-Stage Least Squares (3SLS)

3. Full Information Maximum Likelihood (FIML)

4. Limited Information Maximum Likelihood (LIML)
5. Instrumental Variables (I\V) Estimator
6.Generalized Method of Moments (GMM)

Each of these estimators has its strengths and is chosen based on the specific characteristics
of the SEM, the availability of instruments, and the degree of correlation among the errors in

different equations.

Limited and full information estimators are two broad categories of estimation techniques
used in the context of simultaneous equations models (SEMs). The choice between them
depends on the level of information utilized in the estimation process.

1. Limited Information Estimators

Limited information estimators focus on estimating a single equation within the system
without explicitly considering the entire system of equations. These estimators use

information only from the specific equation being estimated, not from the full system.

a. Two-Stage Least Squares (2SLS): 2SLS is the most common limited information
estimator. It is used when there is endogeneity in the equation being estimated, meaning some

regressors are correlated with the error term.



b. Limited Information Maximum Likelihood (LIML): LIML is another limited information
estimator that estimates parameters by maximizing the likelihood function, considering only

the information available in a single equation.
2. Full Information Estimators

Full information estimators, on the other hand, consider the entire system of equations
simultaneously. They make use of all available information in the system, leading to

potentially more efficient estimates.

a. Three-Stage Least Squares (3SLS): 3SLS is a full information estimator that extends 2SLS
by considering the contemporaneous correlation of errors across the different equations in the

system.

b. Full Information Maximum Likelihood (FIML): FIML estimates all parameters of the
SEM simultaneously by maximizing the likelihood function for the entire system.

The choice between limited and full information estimators depends on the specific context,
the complexity of the system, the reliability of the model specification, and the goals of the

analysis.

Indirect Least Squares (ILS) is an estimation technique used in the context of simultaneous
equations models (SEMs), particularly in overidentified systems. The key idea behind ILS is
to transform the simultaneous equations system into a reduced form, estimate the parameters

of this reduced form, and then use these estimates to infer the structural parameters.

Indirect Least Squares is a method that first estimates the reduced form of a simultaneous
equations model and then uses these estimates to infer the structural parameters. It is a useful
technique under specific conditions, particularly when the model is overidentified and the

reduced form is straightforward to estimate.
7.2 Objective
After going through this unit, you should be able to acquire the knowledge of

e Limited and full information estimators



e Indirect least squares estimators

e Two stage least squares estimators

e Three stage least squares estimators and k class estimator.
7.3 Recursive or Triangular Models

The OLS approach is inappropriate for the estimation of an equation in a system of
simultaneous equations model due to the correlation between the endogenous explanatory
variable(s) and the stochastic disturbance component. When incorrectly applied, the
estimators exhibit not only bias (in small samples) but also inconsistent behaviour, meaning
that the bias persists regardless of sample size. Nonetheless, there is one instance in which
OLS—even in the context of simultaneous equations—can be used effectively. This is the
situation with the causal, triangular, or recursive models. Example: Consider the three

equations model,

Yit = Yio T V11X1e T VizXae T s

Vat = V20 +tB21V1e + V21X1r + V2o Xar + Uzt

Vat = Yao+P31V1e+B32V2e +V31%1e + VazXar + us;

where, ¥'S and XS are endogenous and exogenous variables,

We assume that

E(uy) = E(up;) = E(uze) = 0;

cov (e, Uy ) = cov(yg, uz;) = covluy:,us;) = 0.

that is, there is no correlation between the same-period disturbances in distinct equations.

This is the assumption of zero contemporaneous correlation.

The matrix formed by the coefficients of the endogenous variables is the following triangular

matrix:



1 0 0
EAR
_BSI _BSZ 1

Such models are called recursive or triangular models.

Now consider the first equation of the equation model, Equation (i) has only exogenous

variables on RHS as explanatory variable, which are uncorrelated with *1t- Thus OLS can be

applied.

Next consider the second equation of the model, Equation (ii) contains endogenous variable
Y1t as an explanatory variable. *1t, which effects Y1t is uncorrelated with “2¢t, implying that

cov(yir tae) = 0 Thys all the explanatory variables are uncorrelated with “2t and OLS can

be used.

Now consider Equation (iii) of the equation model,

Cov(ysr, use) = Cov(yar,uat) = 0 o) 5 can be applied.

Here Y1 effects Y2 but Y2 does not affect’t and Y1 Y2 influence Y3 but ¥3 does not
influence Y1 and Y2,

So, in the Recursive systems or model OLS can be applied to each equation separately.

An illustration of a recursive system would be the wage and price determination model

presented below:

Price equation: £t T Y10 + ¥1aWe—1 T V12Re + Viale = use
Wage equation: W + v20 + VaaUr + P21 P = uy;

where P = rate of change of price per unit of employee

W = rate of change of wage per employee

R = rate of change of price of capital



L = rate of change of labor productivity
U = unemployment rate, %

We can write the model as

1
Wiy
( 1 0)(&)4_ (Tm Y11 Y1z Y2 O ) R n (un)
fa1 1/ \W; Yzo 0 0 0 vy Lt U
¢
U,

(6 )
where, Bar 1 is Triangular matrix.

7.3.1 General Form of Recursive or Triangular Model

Let us consider the Model: BYt +I'x¢ =u; t=1,..,n

If B is upper (or lower) triangular, then the system of equations is called triangular or

recursive.

The model is of the form
Vit = (xt) + U

Var = G2 V1, Xp) + Ut

Ve = I Vits oo, Y100 Xe) + Upge
g (ylt- s Yi=1ts xt) = Bj1yie + o+ Bjj-1 V-1t + Tx¢
Determination of variables is recursive in the sense that:

(i) Y1 affects ¥z but ¥2 does not affect Y1/

(ii) Y1 and Y2 affect V2 but V3 does not affect Y1and ¥2



and so on.

1 0 e 0
1 e 0
B = 1821 : . )
and M1 Buz -+ 1/ Matrix of coefficients of endogenous variables is a lower

triangular matrix.
So, we can apply OLS to each equation separately.
7.4 Limited and Full Information Estimation

In limited information Estimation only the information specific to the equation under
investigation is utilized in the estimation process. Limited information estimators are
econometric tools used in situations where the available data or information is incomplete or
limited. It is commonly used in empirical research, especially in fields like labor economics,
industrial organization, and macroeconomics, where endogeneity is a concern, and the full
system of equations is not always identifiable or estimable. When dealing with incomplete
data or endogeneity issues, providing a way to obtain consistent and potentially more

efficient estimates compared to traditional methods like OLS this method is used.
The Estimation Procedures are

(i) Indirect Least Squares (ILS),

(ii) Two Stage Least Squares (2SLS),

(iii)Limited Information Maximum Likelihood (LIML).

Whereas, in full Information Estimation information present in other equations and the fact
that the structural disturbances of various equations may be correlated is utilized in the
estimation process. Full information estimators are econometric techniques used to estimate
parameters in a model where all the equations and the relationships between them are
considered simultaneously. These estimators are particularly relevant in the context of
systems of simultaneous equations, where multiple interdependent equations need to be

estimated together rather than separately. They offer more efficient estimates compared to



limited information methods but require careful model specification and are computationally

demanding.
This Estimation Procedures includes
(i) Three Stage Least Squares (3SLS),
(i1) Full Information Maximum Likelihood (FIML)
7.4.1 Estimation of a just Identified Equation: Indirect Least Squares (ILS)

The process of estimating the structural coefficients for a just or exactly identified structural
equation using the OLS estimates of the reduced-form coefficients is called the indirect least
squares (ILS) method, and the resulting estimates are called the indirect least squares

estimates.
The following three steps are involved in ILS:

Step 1: Obtain reduced form equations. These reduced-form equations are derived from the
structural equations in such a way that the only endogenous variable in each equation is the
dependent variable, which depends only on the stochastic error term(s) and the predefined

(exogenous or lagged endogenous) variables.

Step 2: Obtain OLS estimates of reduced form coefficients. We treat each of the reduced-
form equations separately using OLS. Because the explanatory variables in these equations
are predetermined and hence uncorrelated with the stochastic disturbances, this operation is

allowed. Thus, consistent estimations are achieved.

Step 3: Since the equation is just identified, there is one to one correspondence between the
structural and reduced form coefficients. Obtain the estimates of structural coefficients form

the estimated reduced form coefficients.

Example: Let us consider the demand and supply model:

Demand Function: ¢t = @o + @1 Py + @z Xy +uy; (1)

Supply Function: @t = Bo + B1Pr + Uz (i)



where,

Q: Quantity, (Endogenous)
P:Price, (Endogenous)

X:Income

Assume that P is endogenous variable and X is exogeneous variable. As we know that, the

supply function is exactly identified whereas the demand function is not identified.
Rearranging the term of the equation (i) and (ii), we obtain the reduced form equations:
Pt = Ty +?1—1Xt +1?t

Qt = my + 13X +wy

f
where, ™  are reduced form parameter and

S Bo — ap
° a, — By
a;
M, = — )
' a; — By
. = a1 B0 — @of
2 a,— B
e — — asfy
: a; — B’

It is important to note that every reduced-form equation only has one endogenous variable,

the dependent variable, and that it depends only on the exogenous variable X (income) and its
stochastic disturbances. Therefore, OLS may be used to estimate the parameters of the

previous reduced-form equations. These OLS estimates of 70, 1,72, 73 gre

_ x P Xt
DX

=,

sz_ﬁ—lﬁ

=5



3= Y xZ
i, = Q — 715X,
=X —X,
pe =P.— P,
q:=Q:—Q

ILS estimators of Bo and B are

ﬁa = Jip —!317?0-
n s

Note that DF is unidentified and cannot be estimated.
General Form:
Consider the general structural model at time t:

By, +T'xp=u;t=1.2,...,n.

Vi
Y={:
yi) XM o - -
where, n’ matrix of observations on endogenous variables.

r

r

X1
X = ( ) nxK
*n matrix of observations on predetermined variables.

ug
v - ( :
/- XM parrix of disturbances.

We may write (1) as

1)



YB'+XI''=U )

Suppose we are interested in estimating the first equation is

yi=Yif+X1y+u,(3)

and E(uy) = 0,E(uquy) = o111,

where, ¥1: ™ X 1 yector of observations on endogenous variable in the equation

Yi:n X (m —1) magrix of observations on other (™ —1) endogenous variable in the
equation

X1:1m XK matrix of observations on ¥ predetermined variable in the equation

u1: 1 X 1 yector of disturbances

Reduced form of model (2) (YB'+XTI'"=U) g

Y =XI'+V,
M=-B"r'v=UB"! (4)

Applying OLS to (4) gives the following estimator of Ir'.
m=XxXx)ixy®)

We can write equation (3) as

(}’1 i 5 Xy Xz) 0 =u (6)

Y2 and X gre matrices of observations on endogenous and predetermined variables excluded

from the equation.

The relation between the structural and reduced form parameters is



B’ =T (7)

The relation for the coefficients of the structural equation (3) is

Then ILS estimator can be obtained by solving

X'X)X'Y (—lb) =(5)

0

or
1 [
XXXy ¥ Y) (—b)=(0)

or
(X'X) "Xy, — (X'X)"1X'Y,b = (S)

or

X'V,b+X'X (g) = X'y,

Writing X = (X1 X2) e have

X\ib+X{X,c=X{n

X;Yib+ XX 0= Xv

We get unique solutions for b and c if the condition for exact identification is satisfied.
Let

§=0B" yv)zi; =M% X))

Then ILS estimator of 9 is given by



a b _

d = =(X'Z) X'y 8
())=rz0 ey ®

7.4.2 Instrumental Variable Estimator

Applying the instrumental variable (IVV) method to one system equation at a time is a single
equation method. It works well with over-identified models. The instrumental variables (IV)
method is a statistical technique used in econometrics and other social sciences to estimate
causal relationships when a model has endogenous explanatory variables—variables that are
correlated with the error term, leading to biased and inconsistent estimates. The IV method is
particularly useful in situations where controlled experiments are not possible, and it helps in

obtaining consistent estimators of the causal effects despite the presence of endogeneity.
For instance, we can write the equation

n="f+Xiy+wu

as

yi =216 +uy, (9)

where

Zy = (Yl Xl)- )

I
——
= ™
—

Let W bean X (m+ k) matrix such that
plim(n~*W’Z,) = Z,,;:a finite nonsingular matrix,
plimn™*W'u) =0

plim(n~*W'W) = Zyy: a positive definite matrix

Then IV estimator of g is

de = (W:Z]_)_ 1W:_}’1.



dIV

Here, is consistent and its asymptotic covariance matrix is

Asy Var(dy)

a
= f plim(n™tW'Z,) "t W' W) (n~1z, W)

11 e—1 -1
- 7 E'WZEPVIVEZ'W'
A consistent estimator of Y11js

S11 = %0’1 —Zydy)' (v, — Zydpy).
Generalized Least Squares Estimator:

Pre multiplying equation (9) by X' leads to
Xyvi=XZ,6+X (10)

Applying OLS to (10) gives the ILS estimator
§=X'Z) X y,.

The covariance matrix of X ¥1 js 011X X,

Applying GLS to (10), we obtain

§=(ZX(X' X)X Z) 2 X (X' X)Xy, (11)
where,

ZinmX(m—1+k), andX:n X K
For ZIX (X' X)X Zy:(m — 14+ k) X (m — 1+ k) g e nonsingular, necessary condition is

m—1+4k=K

or order condition of identification is



m—1<=<K-—k

ZiX (m—1+k)x(m—1+k) g

For just identified case is of order

§=(ZIXX' X)X Z) T ZX (X X)Ly,
= (X' Z) XX (Z,X) 12X (X' X)Ly,
= (X'Z,)" X'y, = 6.

Overidentified equation

An equation is over-identified when there are more instruments (independent variables)
available than the number of endogenous variables that need to be estimated. In other words,
the system has more information than necessary to identify the parameters of interest. when a
model is over-identified, the extra information provided by the additional instruments should

be leveraged carefully to ensure the robustness of the estimates.

If we consider the relations between structural and reduced form parameters and solve it then
it leads to more than one solution for structural parameters. So, if we apply here Indirect least
square procedure, we are getting more than one estimator and ILS is not unique. Hence, ILS
cannot be used. For getting a unique estimator the alternative estimation procedure is Two

Stage Last Squares.
7.4.3 Estimation of an over identified Equation: Two Stage Least Squares (2SLS)

It is a popular method used to estimate the parameters of an over-identified equation in
econometrics. It is particularly useful when dealing with models where some of the
explanatory variables (endogenous variables) are correlated with the error term, which
violates the assumptions of ordinary least squares (OLS) regression. The idea behind 2SLS is
to replace the endogenous variables with their instrumented versions, which are uncorrelated
with the error term. This eliminates the bias that would occur if the endogenous variables

were used directly. Let us take an example for better understanding of this method.

Example: consider the following model



Income function (IF)i}’lt = Bro+ Br1Var +¥1aXae + V12 Xar +uge

Money-supply function (M-SF): Y2t = Bzo + B21y1: + Uzt
where,

y; = income

endogenous variable
vy, = stock of money} &

, and

X, = investment expendeture

exogenous variable
X, = government expendeture} g

The money supply equation is overidentified while the income equation is under-identified,
as can be seen by applying the order condition of identification. Apart from altering the
model specifications, there isn't much that can be done about the income equation. ILS might

not be able to estimate the overidentified money supply function because there are two

estimates of Bzt So, we can apply the method of 2SLS for estimating M-SF.

Method involves the following steps:

Step 1: Regress Y1on all the predetermined variables in the system, here X1 and XZ, and

obtain

Vie = fig + 1 Xye + 72X

Then

Vit = Vit + e ;e + OLS residual

Step 2: M-SF can be written as

Va2 = Bao + B21(F1r +e) + Uz = Pap + B21V1e + (Barer + uze)

= Bao + B21V1e +up 5 (U Parer + uye)

V1t is uncorrelated with %t =P21€ + Uze



Apply OLS to this equation for obtaining 2SLS estimates of P20 and Pa1.
7.4.4 Two Stage Least Squares as generalized classical linear (GCL) method

The generalized classical linear method in econometrics refers to the Generalized Least
Squares (GLS) technique, which is an extension of the ordinary least squares (OLS) method.
While OLS assumes that the errors (or residuals) in the regression model are homoscedastic
(i.e., they have constant variance) and uncorrelated, these assumptions are often violated in
real-world data. When this happens, OLS estimates can become inefficient, leading to biased
standard errors and misleading statistical inferences. The generalized least squares estimator

8 may be interpreted as a 2SLS estimator.

For estimating the equation
n="f+Xiy+wu (12)

9
with K-k>m-1, the 2SLS estimator of (7" can be obtained by solving the equations

(Y{ Y —-Wn Y{Xl) (b) _ ((Yl - Vl)’}ﬁ)
X;_Yl X;_Xl [ X;_.}Tl

Here
v, =11, —X(X’X)_lX’]Yl
=Y, -1

Y, = X(X'X)"Xx'y,

XV =xi(v, —vyp)

Notice that X V1 =0 = X1V, = 0,X5V, = 0.
7.4.4.1 Derivation of 2-SLS estimator

Let us write



Y=[ ¥ ¥l
X =[x X
yiinx 1,

Yirmxm-—1,

Yorn XM —m,
XllnXk,
Xz:HXK_k

The reduced form is

Y=XI"+V

Applying OLS to reduced form, the predicted value of Y is
V=XX'X)"X'Y = PY,

— ' —1 v
where, P=XX'X)X g an idempotent matrix.

ThenY,; = PY;

Replacing Y by Yiin equation (12), we obtain
yvi =V + Xy + (uy — Vi)
Applying OLS to this equation, we obtain 2SLS estimator
P 5, -1 o
(b) _ (Y]_Yl Y]_Xl) (Ylyll)
¢ X\, XiX, Xy

! ! - 1 ! -1 i — !
or (b) _ GlX(X X)Xy, Yle) (le(x X)) x yl)
c X(X'X)TX'Y, XX, X1

Notice that



XXX X)X =X
= X X(X' X)X = X]
= X X(X' X)X X, = X\ X,

Then

(b) B (Y{X(X’X)‘lX’Yl Y{Xl)_l (YIX(X’X)"lx’yl)
c X XXy Xivn

We can write (12) as

Vi :Zla + Uy,

=1V, X, 6= (ﬁ)

where
Then
dasis = (i)

= [Z,X(X' X)X Z] 7 Z X (X X)Xy,
7.4.4.2 Interpretation of 2-SLS as an IV Estimator
Let us consider,
W: Matrix of instrumental variables.
The IV estimator of 0 is

dy = (W'Z) W'y,

e

_ o ! —1 v
Ifwesetw_(y1 Xl),whereyl_X(XX) XYl,then
w'z,

?1’)
= YV, X
() =

= ZIX(X' X)X Z, Wy



_ (?{}’1)
Xivi
= Z X (X' X)71X" y,.
Then, the IV estimator dry reduces to the 2SLS estimator.
7.4.4.3 Consistency of 2SLS Estimator

Result 1: Suppose, as ™ ~

plim(n~'Y]X) = Zy x:a finite matrix,
plim(n~'X'X) = Zyy:a finite matrix
plim(n™'X'uy) = 0

Then 2SLS estimator is a consistent estimator.

Proof: Let us write

W :21
= [X(X'X)7'X"Y, X4]
:PZ]_,

P = X(X'X)"'X':1dempotant, symmetric matrix

Thus, we have
N O
dasps = (3121) AR

=4d+ (fifl)_lfiacl



dZSLS -6

= (212,) 2

plim(d,s6 — &)
N AR
= plmn 141 plim - iUy

Now

1
i (- 2)
plim \ -2
(i)
Iy, x

=Lz, x (say)

lim = 2,2
plim —Z1Z,

. (1., 1o, . 1.,

= plim (;ZIX) (plr.m ;X X) plim (;X Zl)
= Ezlx Eﬁr Ele

(1 B
plim (;Zlul ) =0
Hence

plim(dasps —8) =0

-1

J11 -1
. . . . _ . — Xy yE53 X
The asymptotic variance-covariance matrix of (@2sts =) js (22,5522, )

Therefore, as ™™ —~ “°, the asymptotic variance-covariance matrix of (das15 — &) tends to 0.

Hence the result followsm
A consistent estimator of the asymptotic variance covariance matrix is given by

s (ZIXX' X)Xz



where

R (yy—¥yb=X; ) (y1—¥3b—Xy )
11 n * Consistent estimator of 711

For exactly identified equations (K-k=m-1),

[Z,X(X' X)X Z, ) Z X (X' X)X
= (X'Z) X' X(Z %) Zi X (X' X)X
— (X:Z:L)—lxx

So that

dZSLS

_ [Z/X(X' X)X Z, ] Z X (X' X) 71X v,

= (X'Z)7 X'y,
Hence and 2SLS estimator coincides with ILS estimator when equation is just identified.
Example: Let us take again the example of demand and supply function

DF Qt = dy + a:lPt-I-crzft-I-argRt + Uy

SF Qt = Bo + B1Pr + B2Pr—y + uy
Q, P.: Endogeneous variables, M = 2
11 It’ Rt’

P—1: predetermined variables X = 4

DF is just identified, SF is over identified
2SLS Estimation:
(i) Run OLS for

Pt = Iy + ﬂ'lft + Hth + rrgPt_l + Uy

Y

and obtain OLS estimators ‘0 1,12, ﬁ3.



(ii) The predicted value of Pt is
lﬁt = ﬁ—ﬂ + ﬁ—lft + ﬁ—th + ﬁ—SPt—l
(iii) For estimating the demand function run OLS for

Q; = ag + ay Pita,l+asR, + (uge + a,9;)

(Tt = Pt = Ft) and obtain 2SLS estimators of %o @1, @2, @3,

(iv) For estimating supply function run OLS for
Q¢ = Bo + B1P: + BrPe_y + (uz + B17¢)
Interpretation

(1) In over identified equations, ILS provides multiple estimates of parameters whereas,

2SLS provides only one estimate per parameter. So, it is unique.
(2) 2SLS requires total number of predetermined variables in the system.
(3) This method can also be applied to exactly identified equations.
(4) 2SLS provides a consistent estimator.
7.5 Family of k-class Estimators

In econometrics, K-class estimators are a family of estimators used for estimating the
parameters of a structural equation in the presence of endogeneity, which occurs when an
explanatory variable is correlated with the error term. The K-class estimators were introduced
by Henri Theil in 1958 and are a generalization of the instrumental variable (V) estimator.
K-class estimators are primarily used to address the issue of endogeneity by generalizing the

way instruments are used in estimation.

The family of k-class estimators is defined as

P -1 -~
a V'Y, — kV'V, Y'X; Y, —kV!
51(!!():( 141 "1 1 I.) ( L I)yi

XY, XiX; X; (13)



Fork = 0,6:(k) reqyces to ordinary least squares estimator.

For k=1,6(k) reduces to 2SLS estimator.

If value of ¥ is the smallest root of the equation

W; —AW| =0,

then 8, (k) reduces to LIML estimator.

A Family of IV Estimators

Consider system of structural equations

v=Z+u

The instrumental variable (V) estimator is defined a
S = (W' D)W’y

w: matrix of instruments of the same dimension and rank as Z. Further

1
o (L) =,
plim | —W'u

1
pfim (EW:Z) = EH-"Z

Zwz = non singular

Then
plim &,

1 - 1
= (plim HW’Z) plim ;W’(Zé' + u)

=4



pfim (SIV - 5)(5'”; — 5):

1 1
= Hzﬁrﬂ.pﬁm [HW’ CR L)W

-1
EZW’

S s a consistent estimator and the asymptotic distribution of ﬁ(aﬁ’ N 5) is normal with

1
) A nlim|[-W(ER LOW|ZL
mean vector 0 and covariance matrix wzP [n EQ I ] w

— U =1, . . —
For OLS estimator dops = (2'2)7Z Y the matrix of IV isW =2

1
. im|-Z'u}+0 . . .
Since prm (n “) , the OLS estimator is inconsistent.

For 2SLS estimator

dasts
=[Z{IQ@XX'X)X'}Z]'Z I @ X(X'X)"1X']y,
W =Z'{IQX(X'X)"1X'}

And
plim (% W’u) = 0.
Thus, 2SLS is consistent.

For 3SLS estimator

dasps = [Z' (f_l ® P)Z]_IZ’ [f‘l ® P]}’.

w =2'(£1Q®P)
so that
plim G W’u) = 0.

Thus, 3SLS is consistent.



7.6 Self-Assessment Exercise

1. Write the reduced form of the following simultaneous equations model and obtain the

indirect and two stage least squares estimators..
Yie = Qo+ Q1Yo + Xy + Uy,
Yar = bg + by yie—1 + Uy,

2. For the following simultaneous equation model describe the method of indirect least

squares with the help of this example.

Demand Model: @F = @ + @1 Py + azInCe + uy,
Supply Model: ¢ = Bo + B1Pe + B2Pry + s
Equilibrium: @ = Q¢

Here @t and t are endogeneous variables.

3. For the general form of simultaneous equations model, derive the indirect least squares of
estimator and two stage least squares estimator. Under what conditions two-stage least

squares estimator and indirect least squares estimators are identical?
7.7 Summary

This unit focuses on the estimation techniques for simultaneous equations models, which are
essential in analysing systems where variables are interdependent. It begins with a review of
the structural and reduced forms of these models, highlighting the challenges posed by

simultaneity and endogeneity.

Key estimation methods are explored, including Indirect Least Squares (ILS), Two-Stage
Least Squares (2SLS), Each method is explained in terms of its underlying assumptions,
steps, and applicability to specific scenarios. Comparative analyses of these techniques are

provided, focusing on their efficiency, consistency, and limitations.



This unit makes imparts knowledge about the concept of Estimators in simultaneous equation
models. Additionally, it covers the concept of limited and full information estimators, indirect
least squares estimators, two stage least squares estimators, three stage least squares
estimators and k class estimator in depth.
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UNIT 8 ESTIMATION IN SIMULTANEOUS EQUATION MODELS
8.1 Introduction
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8.3 Limited Information Maximum Likelihood (LIML) Estimators
8.3.1 Pagan’s (1979) Procedure for obtaining LIML Estimator
8.4 Full information method
8.5 Full Information Maximum Likelihood (FIML) Estimation
8.6 Prediction and Simultaneous confidence interval
8.7 Self-Assessment Exercise
8.8 Summary
8.9 References
8.10 Further Readings
8.1 Introduction

Simultaneous equations models (SEMSs) are used in econometrics and statistics to represent
systems where multiple dependent variables influence each other simultaneously. These
models are common in economics, where variables like supply and demand are determined
together. In SEMs, endogenous variables are those determined within the system by the
equations themselves. Exogenous variables are determined outside the system and treated as
given. Before estimation, it's essential to check if the model is identifiable, meaning that there
is a unique solution for the parameters of the model. A model is exactly identified if the
number of independent equations equals the number of parameters. It is over-identified if

there are more independent equations than parameters, and under-identified if there are fewer.

Estimates the entire system of equations simultaneously and is efficient but computationally
intensive are called Full Information Maximum Likelihood (FIML)



Limited Information Maximum Likelihood (LIML) is similar to 2SLS but generally provides

more efficient estimates in small samples.

Simultaneous equations models are powerful tools but require careful consideration of the

underlying assumptions and the methods used for estimation.

Prediction and simultaneous confidence intervals are used to quantify uncertainty when
predicting outcomes in models, particularly when multiple parameters or equations are

involved, as in simultaneous equations models (SEMs).

8.2 Objective

After completing this course, students should have developed a clear understanding of:
e Limited information maximum likelihood estimation
e Full information maximum likelihood estimation
e Prediction and simultaneous confidence interval.

8.3 Limited Information Maximum Likelihood (LIML) Estimators

An approach for estimating a single equation in a linear simultaneous equations model that
maximises the likelihood function while adhering to the structure's constraints. When the
errors are regularly distributed, the LIML estimator performs better than single equation

estimators.

An alternative to the ILS and 2SLS approaches is the Limited Information Maximum
Likelihood (LIML). However, the 2SLS is more frequently used because to its computational

complexity. Furthermore, the LIML requires rigorous and challenging derivation.

th
Let us suppose that we write the*  equation as

vi=YiBi+Xyitw;i=12,..,M(1)
ory; = ZI'SI' + Ui, U ""N(G- CrI'I'IH) (2)

LIML estimator is obtained by maximizing the LF derived from the stochastic elements of

single equation (2).



Here

i X1,
YVi:nx (m; — 1),
Xiinxk;
Bi:(m; — 1) x1,
Yirky X 1,

Zinx (m; +k; — 1)
_ (). _
51' = .(nli‘i‘ki 1)>< 1
Yi
B;=(—1 p; 0),I;=(; 0) have(m; —1) + k; unknown elements

We write the equations of (1) jointly as

v=Z+u (3)
where
N T
}r:(:)' 2 = : :2 ] 5:(5)_ H_:( )
Yum 0 0 ZlM Sy Upp

M
Z:nM x E (m; — 1+ k;),
i=1

M
5:2 (mi—l-l-ki)Xl
i=1

v and u are of ordernM x 1

The likelihood function is



16, Z.1v.)

mimn

_mn 1 1
=@ 7L @ LIZIL " exp | =5 (0 — 2.6 (2. @ [) 7 (3 — 2.6.)

where,
v, = vec(y; ¥;)inm; x 1,
I.:m; X m; submatrix of X related to structural errors of y,

Z.:Submatrix of Z involving Z, ..., Z,

§.:Subvector of § involving &, ..., 6,

th
We maximize the LF subject to identification restriction of the® equation, it leads to the
LIML estimator.

LIML estimator is efficient among the single equation estimators under the assumption of

normality of disturbances.
8.3.1 Pagan’s (1979) Procedure for obtaining LIML Estimator

Pagan (1979) proposed an alternative formulation of limited information maximum
likelihood (LIML) estimation in terms of an iterated Seemingly Unrelated Regression (SUR)
procedure, based on the fact that the limited information (LI) specification of a standard
simultaneous equation system can be expressed as a triangle model. Pagan also obtained an
expression for the connection between LIML and two stage least squares (2SLS) estimates in

finite samples by using this method.
Let us consider the model

Vi = Z;6; + u;(4)

Reduced form equation for Y

Y, = XTI, + V,



Reduced form equation for ¥t in vector form

Yr = (Ik!-—l ® X)mg + vz (5)

where,
VAR (Yi Xi).
vg = vec(Y;),

My = T?EC(HI' ),

v; = vec(V;)

We can write (4) and (5) jointly as
Vi Z; 0 O; U;
(}’R) - ('D i1 ®X) (n;) +(T?R) (6)

Suppose the covariance matrix between a component of ¢ and that of V® is

(% %)
with

11 :
(& 9 =€ %)
Then

a = (O—ii - L}I:ﬂ_lqj)_ll
[ _(Jﬂ - LPIQ—ILP)—IQ—ILP'
D =01+ (6, — WO W) I gyl

From (6), we obtain the estimator



(ff{iLIML)
ML
(ZNa®)Z; ZI(c ®X\ | (Z(a®I,) Z.(c' ®X)\ (Vi
_((c:@}{')zi D®X’X) x( c®X DRX )(yn)

Hence

dizar = 03 QZ; Py; +aQZPy; + QZ;(c' @ P)yg
Q = (0,;'Z/PZ, + aZ|PZ;)™,

P=XX'X)"tx’,

P=1,-X(X'X)"x"

[N

If we write 21 = (Y X)W, =2, -

A", then

Q' =0;'Z{Z; + aW'W;

so that

iz = dizses — (j;ji)_lF(j;ji)_ljé}’i + QQEI{P}’;( + QEI{ (¢’ @ Py
which gives a relationship between 2SLS and LIML estimators.

8.4 Full Information Methods

ILS, 2SLS and LIML estimators are limited information estimators in the sense that in
estimation of any structural equation, all other structural equations in the model have not
been considered. In full information estimator’s other equations and the fact that the
structural disturbances of various equations may be correlated is utilized in the estimation
process. In principal information on complete system would yield estimators with improved

efficiency properties.

th
Letthe! equation be

vi=Yp+Xy,tu;i=12,...M (7)



Z, =, X),6; = (ﬁ:

Writing ?’i), we have

_}’I' - ZI'EI[ + H.I'; 1. - 1,2, ,M (8)

The 2SLS estimator of 6 is

dipsis = [Z X (X' X)X E]1Z X (X' X)X y;
Now

X'y, =XZ6 +Xu;i=12,.,M (9)

Staking the M equations, we can write (9) as

(o)

X’;}’M

_ G}.{ZIX’{;Z :.: 8 (SEI)JF(XIEHI) (10)
A A

or,

Uy ®@X D)y =Uy ®X)ZS+ Uy @ X' u (11)

where,

M
Z:nM x E (m; — 1+ k;),
i=1

M
5:2 (my— 1+ k) x 1
i=1

Euu] = o1,

Euui = oyl,



Z= ((UU))MX M

(X’u1>
X'uy/ jq
CrllX:X ﬂ'lzX,X v GIMX:X
UZIX:X Usz,X e UZMX:X

The covariance matrix of

—IRXX
UMIX:X GMZX'X '"UMMX:X

Applying GLS to (11), we obtain the 3SLS estimator

SSSLS
=20y @X)YCZT'Q@XX) ™ N1y ®Xx)Z]?!
XZ(Uy@X)YCZETR XX DUy @X )y

— 2R XX X)X X Z[ZT @ X (X' X)X ]y (12)
gij

A consistent estimator of “% is given by

_ (}’1‘ _Zidi.ZSLS),(}}' — Z; dj.ZSLS‘)
n

d12515* 95| § estimator of %

In *iJ, in place of ™ we may divide by

[T

1
(n—m;—k;+1)z (n —m; —k; + 1)
A feasible 3SLS estimator is

bas1s = [Z{STT QXX X)X X Z[STTQXW X)Xy (13)

where § = ((SU-)).

=0Vi=*]

Result 1: 1f 94 . then 3SLS reduces to 2SLS
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Hence

Z{ZTR XX X)Xz

oVZIXX' X)X Zy - 0
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O3515 = E E
0 O'MMZ;_Q'X(X’X)_IX'ZM
a1 ZIX (X X)Xy, 612515

X : = :

oMM X (X X)X vy Op 2515

Hence the result followsm

Comparison of 2SLS and 3SLS Estimators:



* 3SLS is asymptotically more efficient than 2SLS estimator.

* 3SLS requires a much-detailed specification for the equation system than 2SLS estimator

does.

* 3SLS requires all variables in the equations to be estimated and all predetermined variables

of the system.

 If some equation of the system is mis specified, this affects the 2SLS estimator of that

equation, but not those of other equations.

» For 3SLS, estimates of all equations of the system are affected by any such

misspecification.
* For applying 3SLS, all equations of the system must be identified.
8.5 Full Information Maximum Likelihood (FIML) Estimation

Full Information Maximum Likelihood (FIML) Estimation is a statistical method used in
econometrics to estimate the parameters of a model, particularly when dealing with
incomplete data or systems of simultaneous equations. This approach leverages all available
information in the model to maximize the likelihood function and produce estimates that are
consistent and efficient.

FIML is especially useful in the context of simultaneous equations models, where multiple
equations are estimated together. Each equation typically has a dependent variable that is also
an independent variable in another equation. By estimating all equations jointly, FIML
accounts for the interdependencies and correlations between the error terms of the equations.
In SEM, FIML handles both measurement and structural components simultaneously, making
it a preferred method when dealing with complex data structures. For example; Suppose you
have a system of equations where you want to model the relationship between different
economic variables like income, consumption, and investment. If these variables influence
each other, using FIML allows you to estimate the entire system at once, taking into account

the potential feedback loops and correlations between the error terms in each equation.

Consider the model



y=Z6+u; u~N(0O,ZQ I,)
and the pdf of ¥

fw) = (Zn)_?lz ® Inl_% exp [—éu’(E &1, u

For estimating § = (67 - 551)’, the LF is

Mn 1
16,21y, 2) = 2m) ™2 £ @ LI ZIBI" x exp |2 (v = Z6) (27 @ L) (v — Z6)
Ignoring the constant term, the log LF is

nl(6,Zly,2) = ——miZ| + nin|B| — - (y — Z6)'(Z~ IL)y—Z2
Inl(8,Zly,Z) = =2 In|Z| + nin|B| — (v — Z6) &7 @ I,)(y — Z6)

Maximizing the log likelihood subject to the restrictions on parameters I B, Z jeads to FIML

estimators of parameters.
8.6 Prediction and Simultaneous confidence interval

In econometrics, prediction and simultaneous confidence intervals are tools used to assess the
uncertainty around predicted values and parameter estimates, respectively. Both are important
for understanding the range within which the true values of parameters or predictions are

likely to lie, given a certain level of confidence.
1. Prediction Intervals

A prediction interval provides a range within which a single future observation is expected to

fall, with a specified level of confidence (e.g., 95%).
2. Simultaneous Confidence Intervals

Simultaneous confidence intervals are used to provide a range of values for multiple
parameter estimates (or predictions) simultaneously, while controlling the overall error rate.
They ensure that the true values of all parameters fall within their respective intervals with a

certain overall confidence level.



In econometrics, when making inferences about multiple coefficients (e.g., in a regression
model), using individual confidence intervals for each coefficient might not be appropriate if
you want to control the overall confidence level for all coefficients together. Simultaneous
confidence intervals address this issue by providing intervals that account for the joint

distribution of the estimates.
Application:

1. Prediction Intervals: Useful when forecasting future values, such as predicting GDP, stock

returns, etc., with a specified range of uncertainty.

2. Simultaneous Confidence Intervals: Crucial when making inferences about multiple
parameters, such as when analyzing the effects of multiple explanatory variables on an

outcome, while maintaining overall control of the Type I error rate.

Both types of intervals are important tools in econometrics for providing a fuller picture of

uncertainty in model estimates and predictions.
8.7 Self-Assessment Exercise

1. What are the advantages and disadvantages of three stage least squares over two-stage least

squares estimator.

2. Give the justification of two-stage least squares estimator as an instrumental variable

estimator.
3. Explain the difference between limited information and full information estimators.

4. Explain the three-stage least squares estimator. Under what conditions it reduces to the two

stage least squares estimator.
8.8 Summary

This unit provides an in-depth exploration of advanced estimation methods for simultaneous
equations models, focusing on Three-Stage Least Squares (3SLS), Limited Information
Maximum Likelihood (LIML), and Full Information Maximum Likelihood (FIML)
estimators. The unit begins by outlining the challenges of estimation in systems of



interdependent equations, such as endogeneity and simultaneity, and emphasizes the

importance of choosing appropriate estimation techniques.

Three-Stage Least Squares (3SLS) is introduced as an extension of Two-Stage Least Squares
(2SLS), combining system-wide efficiency with the ability to handle correlation across
equations. The unit explains the derivation and application of 3SLS, highlighting its

advantages and limitations in practical settings.

Limited Information Maximum Likelihood (LIML) is presented as a single-equation
estimation method that addresses the identification problem while maintaining asymptotic
efficiency. The discussion covers its assumptions, estimation steps, and scenarios where
LIML is preferable to 2SLS.

Finally, Full Information Maximum Likelihood (FIML) is explored as a comprehensive
system-wide estimator that simultaneously considers all equations in a model. The unit
examines FIML’s advantages in terms of efficiency and consistency, as well as its sensitivity

to specification errors.
The unit also explains the prediction in simultaneous equations model.
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9.1 Introduction

Forecasting in econometrics involves predicting future values of economic variables using
statistical models based on historical data. This is a crucial activity in economics, finance,
and related fields where future trends need to be anticipated for decision-making, policy

formulation, and planning.

Time series forecasting is widely used in various fields like finance, economics, weather
forecasting, and inventory management. The unique aspect of time series data is that
observations are time-ordered, and this temporal structure must be accounted for in the

analysis. The main application of forecasting is in different areas, like

e Macroeconomic Policy: Predicting GDP growth, inflation, unemployment rates, etc.,

to guide monetary and fiscal policy.

e Financial Markets: Forecasting stock prices, interest rates, exchange rates, and other

financial indicators.

e Corporate Planning: Demand forecasting, sales prediction, and inventory

management.

e Supply Chain Management: Demand forecasting and inventory management.

Weather Forecasting: Predicting temperatures, rainfall, and other climatic conditions.

Forecasting combines economic theory, statistical analysis, and historical data to provide
insights into future economic conditions, making it a powerful tool in both public policy and

business strategy.

Exponential and adaptive smoothing processes are important techniques in time series
forecasting, especially when the goal is to make predictions based on data that may exhibit
trends, seasonality, or other patterns. Both methods emphasize the use of recent observations
while giving progressively less weight to older data. Exponential smoothing methods forecast
the future by applying exponentially decreasing weights to past observations. Simple
exponential smoothing is used for series without trend or seasonality, while Holt-Winters

exponential smoothing is used for series with trend and seasonality.



9.2 Objectives

After completing this unit, students should have developed a clear understanding of:
e [Forecasting
e Exponential and adaptive smoothing methods
e Periodogram and correlogram analysis.

9.3 Exponential and Adoptive Smoothing Method

Exponential smoothing is a time series forecasting method where past observations are
weighted using exponentially decreasing factors. This means more recent observations have a
higher influence on the forecast, making it responsive to changes in the data. It gives more
weight to recent observations and is suited for stable series with clear patterns. Adaptive
smoothing adjusts the smoothing parameters dynamically based on the data, unlike the
traditional exponential smoothing where the smoothing constant is fixed. It adjusts to changes
in the data patterns over time, making it ideal for more volatile series. Both methods are
valuable tools in forecasting, depending on the characteristics of the data and the specific

forecasting needs.
9.3.1 Exponentially weighted moving average (EWMA)

Exponentially Weighted Moving Averages (EWMA)* is a technique used in time series
analysis and data smoothing. It is a class of procedures for smoothing discrete time series. It
assigns exponentially decreasing weights to older observations, giving more importance to
recent data points. This makes it particularly useful in situations where the most recent data is
more relevant, such as in financial analysis, quality control, and forecasting. It also applied

in signal processing as low-pass filters to remove high-frequency noise.

The simple moving average uses equal weights and exponential smoothing uses
exponentially decreasing weights over time. It does not require any minimum number of

observations before starting exponential smoothing (unlike simple smoothing)



The EWMA series needs to start with an initial value, which can be the first observation, or it

can be set to the mean of the first few observations. Let Yt: Ve;t = 0.1} e 3 given time

series and Yo is the initial value of y;

We define a new time series 5t that is a smoothed version of Yt.
So = VoS¢ = ay: + (1 —a)s;—;

where, @ is the smoothing factor, © <@ <1,
e The smoothing parameter & controls how quickly the weights decrease for older

observations.

e A higher ¢ (close to 1) gives more weight to recent observations, making the EWMA

more responsive to recent changes.

e A lower % (close to 0) smooths the data more, making the EWMA less sensitive to

recent changes. The smaller the weight ¢, the less influence each point has on the

smoothed time series.

This formulation is also known as Brown'’s simple exponential smoothing.
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9.3.1.1 Brown’s simple exponential smoothing

Brown's Simple Exponential Smoothing (SES) is a forecasting technique that assigns

exponentially decreasing weights to past observations. The method is particularly useful for
data that does not exhibit a clear trend or seasonality. Here, St is the smoothed statistic and it

is the simple weighted average of ¥t and the previous smoothed statistic St-1,

Higher values of & give more weight to recent observations. Its larger values reduce

the level of smoothing and give greater weight to recent changes in the data.

e Lower values of ® smooth the data more heavily, giving more weight to older

observations.

e 9 closer to zero have a greater smoothing effect and are less responsive to recent
changes

e Itis useful for short-term forecasting where data is relatively stationary.

£ =1 the resulting series is t — Yt; which is the original time series.

9.3.1.2 Adoptive Forecasting Using EWMA

Forecast is constructed using exponentially weighted average of past observations.
Obviously, more recent values to have greater influence on the forecast and influence of past
data decreases exponentially. Adoptive forecasting using Exponentially Weighted Moving
Averages (EWMA) is a method used in time series forecasting where more recent data points
are given exponentially more weight than older data points. This makes the forecast more

adaptive to recent changes, which can be particularly useful in environments where patterns

shift over time. In adaptive forecasting, the smoothing factor ¢ may be adjusted dynamically
based on the performance of the forecast. For instance, if the forecast error increases, the

model might increase * to give more weight to recent data, making the forecast more
responsive to changes. This method is quite simple, computational efficiency, ease of
adjusting to changes in the process being forecast with reasonable accuracy. It allows to

determine influence of recent observation on forecast value.



Let Y1 Y2, > Vn pe the n observed time series values and we assume that there is neither

cyclic variation nor pronounced trend.

The exponential smoothing equation is:
Ver1 = ayy + (1 — @),

where,

Yt: Forecasted value at time t,

. Smoothing constant, (0 <@ < 1),

The initial forecast value ¥t is unknown.

Set the first estimate Y1 = Y1, this implies that, the initial value ¥1 will have an unreasonably
large effect on early forecasts. Use the average of the first few (10 or more) observations for
the initial smoothed value.

We can write

Vis1 — Wt

=(1— Gf)@t - }’t)
= (1 - ae;

where, € = (#¢ — ¥¢) is the forecast error at time t
By recursive substitution

Ver1 = ayy + (1 —a)y;

=ay; + (1 —a)lay;—; + (1 — a)P-4]

=ay; + (1 —a)ay;_; + (1 — a)?Pp_,



=ay; +a(l—a)y—y ++all —a) "ty

The forecast equation becomes
t—1

Ver1 = aZ(l - Gf)j}’t—j
j=0

where, Ve+1 is the weighted moving average of all past observations.

The series of weights decline toward zero in an exponential fashion. As we go back in the

series, each value has a smaller weight in terms of its effect on the forecast.

Notice that, “ near zero allow the distant past observations to have a large influence and ¢
near one allow the past observations to have a negligible influence.

9.3.1.3 How to select %2

In this section we consider some methods for measuring the accuracy of forecast value.
Measuring the accuracy of forecast method:

1: Mean absolute percentage error (MAPE)

It is defined as:

T
1 |€t|
MAPE = — -
n P Vi

X 100%,

where e; = (¥, — v;).
Note that lower the MAPE the better is the forecast.

o MAPE below 10% jnjies highly accurate forecast.

o MAPE between 11% — 20%

implies good forecast.

o MAPE between 21% — 50% jnjies reasonable forecast.



MAPE above 50% jmpies inaccurate forecast

2: MSE (Mean square error) and RMSE (Root mean square error)

It is defined as:
_ 1 mn 2
RMSE =+ MSE

The MSE or RMSE can be used as criterion for selecting smoothing constant %. Assign

values from 0.1 to 0.99 to @ and select the value with smallest MSE or RMSE.
9.3.1.4 Double exponential smoothing (Holt’s Method)

The Holt method, also known as double exponential smoothing, is an extension of simple
exponential smoothing. It is used for forecasting time series data that exhibits both a linear
trend and no seasonal pattern. it is also called Holt’s trend corrected or second-order
exponential smoothing. This method introduces a term to take care of trend present in the
time series and is capable of capturing increase or decrease in linear trend. It is useful when
the data shows a linear trend over time. If the data also exhibits seasonality, the Holt-Winters
method, which extends the Holt method to include seasonal components, may be more
appropriate.

Steps: Let £ = 0; So = Yo,

Initial value 2o = Y1 — Yo or

_Yn o
n

bg : based on the assumption of linear trend

|ft>0

s = ayy + (1-a)(se—y +be_y)
by = B(s¢=s¢-1) + (A= FIbe_4



where,

St= Smoothed statistic

@= smoothing factor of data; O<a<l

b= pest estimate of trend at time ¢

P = trend smoothing factor; 0 <A <1

For forecasting beyond 't
Verx = 5t + kb
9.3.1.5 Brown's linear exponential smoothing (LES) or double exponential smoothing

Brown's linear exponential smoothing, also known as Brown's double exponential smoothing,
is a forecasting method similar to Holt’s method but with a key difference in how the trend is
handled. It is a simpler method primarily used for time series that exhibit a linear trend but
without seasonality. Brown’s method uses a double application of exponential smoothing to
handle the trend, effectively applying exponential smoothing twice to the data series. It
involves two different smoothed series that are centered at different points in time. This
forecasting formula is based on an extrapolation of a line through the two centers.

Steps: Let

%= Y055 =%

ss =ay; + (1 —a)s{_,
sy =as;+ (1 —a)s{’,
Virr = ap + kb

where,

@t : Estimated level at time t



ay = 2s{ — s

be: Estimated trend at time t

(14

gl — gl
(st - s

bt:l

Brown’s method simplifies the estimation of trend compared to Holt’s method by not
requiring a separate smoothing parameter for the trend. It achieves this by smoothing the data

twice. This method is best suited for time series data with a linear trend but no seasonality.

Brown's method is computationally simpler than Holt's, which can make it appealing for
certain applications, but it may not be as flexible if the data requires more nuanced trend

modelling.
9.3.1.6 Triple exponential smoothing (Holt-Winters Smoothing)

Holt-Winters smoothing is a time series forecasting technique that extends exponential
smoothing to capture seasonality. It is particularly useful for data that exhibits both a trend
and seasonal patterns. The method comes in three forms:

1. Additive Model: Used when the seasonal variation is roughly constant over time.

2. Multiplicative Model: Used when the seasonal variation increases or decreases

proportionally with the level of the series.

3. Damped Model: Applies a damping factor to the trend to make it less pronounced

over time.

Holt-Winters is widely used in fields like finance, economics, and inventory management for
predicting future values based on historical time series data, especially when the data shows
clear seasonal patterns. This model is used when time series has both trend and seasonal

components.

Let

e} Sequence of observations beginning at t=0.



L: Length of the cycle of seasonal change.

N: Number of complete cycles.
Two cases of seasonality:

Seasonality is (i) Multiplicative, (ii) Additive

1 |2 N
O R o Ye(w-1)+1 C10
2 vz |Vp+z | Yo(v-1)+2 €20
L v |y "t | VLN Cro
Ay |4z Ay

N
1N Ye(-n+i
Cio = Ez %; i =1,...,L:Initial estimates of seasonal indices
— J
j=1

L
1
A= EZ Yi(j-1)+i:J = 1, .., N : Average values of y's in the j-th cycle
i=1

Initial trend estimate b :

L 1 Ut

1 (}’L+1 —Y V42 — M2 Yar —}’L)

We denote

St= smoothed statistic

®= smoothing factor of data; 0<a<l



be— best estimate of a trend at time ©

B = trend smoothing factor; 0<p<1

€t= sequence of seasonal correction factor at time t

Y= seasonal change smoothing factor; 9 <7 < 1.

Triple exponential smoothing formulas for Multiplicative Seasonality:
So = Yo

s = a2+ (1 —a)(s;—y +b;_y)

Ct-L
by = B(sg — s¢—1) + (1 — By,
Cr = T"JSL: + (1 —=y)e—;

-~

VYi+k = (St + kbt)ct—L+1+{k—1}mod L

where, a and n are positive numbers. Further, a modulo n (a mod n) is the remainder of

division of a by n.

Triple exponential smoothing formula for additive seasonality:
So = Yo

se =a(e —ce—p) + (1 —a)(se—y + bey)

by = B(st — s¢-1) + (1 — B)be_4

ce =y — St — b))+ (1 —y)ery

Vesk =S¢ + by + ¢t 1414 (k-1)moar

9.4 Numerical Examples



We apply different exponential smoothing techniques to Google stock dataset with 1000
observations available in R-package. The dataset is divided in two groups, first 950

observations (training set) for exponential smoothing, and remaining 50 observations (test
set) for checking the accuracy of forecasts.

Simple Exponential Smoothing: A flatlined estimate is projected by simple exponential
smoothing. The procedure is not capturing the trend present in the data.

Forecasts from Simple exponential smoothing
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Holt Method takes care of trend. Best possible values of alpha and beta selected
automatically.

Foracasts from Holt's method
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RMSE

gamma's impact on
forecast emrers

gamma = () 21 minmizes RMSE

9.4 Periodogram and Correlogram Analysis

Periodogram and correlogram analyses are techniques used in time series analysis to
understand the frequency and autocorrelation properties of a dataset. Both are
essential tools for identifying periodic patterns, trends, and the structure of the time

series.

A periodogram is a tool used to estimate the spectral density of a time series. It
provides a way to identify the dominant frequencies (or cycles) present in the data.
The spectral density function reveals how the variance of the time series is distributed
across different frequencies. The periodogram is computed by taking the Fourier
transform of the time series data, which decomposes the data into its constituent

frequencies.

Peaks in the periodogram indicate dominant frequencies in the time series. These are
the frequencies at which the time series has significant periodic components. For
example, if you see a peak at a frequency corresponding to one year, this suggests an

annual cycle in the data.

A correlogram is a graphical representation of the autocorrelation function (ACF) of
a time series. It shows the correlation of the time series with its own lagged values
over different time lags. The correlogram shows the autocorrelation coefficients
plotted against the lag. The significant autocorrelations at specific lags indicate that

the time series has memory, meaning past values have an influence on future values.



A slowly decaying correlogram suggests a trend, while a cyclical pattern in the

correlogram suggests seasonality or periodicity.

Focus:

The periodogram focuses on the frequency domain, identifying cycles and periodic
patterns in the data.

The correlogram focuses on the time domain, showing how the data at one time point

relates to data at other time points (lags).
Usage:

Use the periodogram when you are interested in identifying specific cycles or

frequencies in your data.

Use the correlogram when you want to understand the persistence of patterns over

time and the time lags at which the series is correlated with itself.

Interpretation:
A periodogram is interpreted by identifying peaks at specific frequencies.

A correlogram is interpreted by identifying significant autocorrelations at specific
lags.

The Periodogram Analysis is ideal for detecting and understanding the frequency
components within a time series whereas, the Correlogram Analysis is best for
examining the autocorrelation structure and understanding the time-domain

relationships within the data.
9.5.1 Periodogram Analysis

Consider a time series from which trend and seasonal effects have been eliminated.
Let e (t =12, .., 1) renrecents the residual series. We want to know whether %

contains a harmonic term with period #. Consider the quantities



2% 2mt
A= —Z u; cos— (1)
n
t=1
And
T
B — ZZ _ 2mt 2
= 2, u; sin .

where n is the number of terms in the series. Let us write

R; = A*+ B?

(3)

2
Ry is known as the intensity corresponding to the trial period ¥.

Let us consider a simple model, according to which "t is composed of two

components, one periodic with period 4 and amplitude a and the other an irregular

component, say bt Thus

. 2mt
U = asin—

) + b,

(4)

The second component is assumed to be uncorrelated with the first or similar periodic

terms.
Now,
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= %Z{sin(a — B) + sin(a + )t}

a | sinn (a ;ﬁ)sin(n +1) (a ;'G) sinn sin(n + 1)
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Remembering that

— _ sin% _ n—1
Zsm(cr—l—ﬁt): 5 sm(cr—l— 2 ,8)

t=0 sins
2

For large n, the second term is always small; the first term will also be small unless B

tends to %, i.e. unless ¥, the trial period, approaches the true period 4. Since

sin @

0

—»las@ -0

We have, if B tends to @ then

. (a=pB) ;. (a=Pp)
A:asin(n-l-l)(a_ﬁ) Smnaz /Smaz

X
2 T @=p) | @=p
2 2
— asin(n + 1) (@ ; A (5)
Similarly,
B — acos(n +1)(a;,8) as f§ — a (6)
and is small otherwise, so that
R& - a’whenff - a 7

i.e.when# — ’1, and is small otherwise.



We now take several trial periods # around the true period ’1, which may be guessed
by plotting the data on a graph paper, and calculate Ry in each case. Finally, we draw
a graph plotting Ry against #. The diagram is called a periodogram, is a simple
device for finding the true cyclical period 4'in a time series by equating it to that

2
value of # for which Ry attains a maximum.

Similarly, if the cyclical component is composed of several periodic terms, say with

Ay, Az, Ag, RE . . . . - .
120 Sk T will remain small unless the trial period # coincides with one

periods
of the true periods, in which case it attains a local maximum with value equal to the

square of the amplitude of the periodic term concerned.

9.5.2 Correlogram

An autocorrelation (") of order k is the correlation between %t @7 Ut+i From the

original "t series n-k pairs of values are obtained with a lag of period k.
Thus,

cov (u; ,Upyy)
T

¥ (var (up) var (ues )2
1 n—k 1 n—k n—k
n—k th:l Up Up 4 — 7(},1 —k)? Zt:l Ly Zt:l Ut 4

_ ; (8)
bt — o e )} b e it vt — e (Bt )}

[T

Obviously, we have o — landrp =1y

The diagram obtained by plotting "* against k on graph paper and joining the points,
each to the next, is called a correlogram. Theoretically, it can be demonstrated that

the correlogram takes on significantly diverse forms in various scenarios.

(a) Correlogram of Moving Average:



When oscillatory movement is generated by an m-point simple moving average of a

E(I)) = 0,cov (I, I,/) = 0 and var (I;) = o*

random component It \where , We also

know that

k
__ =
1 - fork =m (9)
0 fork >m

Pr =

Pk being the theoretical value of the serial correlation of order k.

Thus, the correlogram would be a straight line starting at (0,1) and ending at (m,0)

and thereafter the correlogram would coincide with the k-axis. If the oscillations were

generated by an m-point weighted moving average with weights @1 @2: > @m the
correlogram would oscillate between the points (0, 1) and (m,0) and thereafter would
coincide with the k-axis.

m-—1
Yt aage
= m 2
Pr =1
0 fork = m

fork =m

(b) Correlogram of oscillatory movement:

When the oscillatory movement is generated by the sum of a number of cyclical
components represented by the sum of a number of harmonic terms with periods

A1 Az, it can be shown that Px would also be the sum of a number of harmonic

terms, not necessarily with same periods. If we take

2wt
U = asinT + I, (10)

E(usussy) = E(Asin0t + 1) (AsinBt + k + I, )

A2 -
= o sin 8t sinft + k
t=1



. 7 TE)
=— cosBk —cos 02t + k
2n s

3 A? ok A? cosf(k +n+ 1)sinnf
2 cos 2n sin®
AZ

—»E(:osﬂk asmn — o

= B cos 9k1 say.

Similarly,

AZ
E(u?) = > + var (I;) = C, say.

So that
B
P = Ecosﬂk (1D)

Hence the correlogram would be a strictly periodic sinusoidal curve. In this case, the
correlogram will take a sinusoidal form, which will not degenerate to the k-axis after

some fixed point and will not be damped.
(c) Correlogram of autoregressive series:

Let us consider autoregressive equation of the first and second orders. For the

equation of the first order, viz. “e+1 = He + Its1 called Markov’s process
E(ur(upsq — pup)) = E(ug.Ippq) =0

gives

E(ue tpyy) = pE(uf

so that

pL=H



again

E{u; ey — PUtpyi-1)} = E{utp. I14i3 =0
gives

E(uewpyy) — pE(up-upyp 1) =0

so that

Pr — HpPx—1 =0

or

Pr = HPr—1
= ¥ pq
= p¥ (12)

The correlogram would therefore now take on an exponential shape. Since # needs to
be smaller than 1 to prevent the time series from expanding to infinity, the curve
would begin at (0,1), decrease quickly from there, and asymptotically gravitate

towards the k-axis.

For the equation of second order, viz.

Upyq = auy + bup_y + Ipyy

called Yule’s process, we have

Uy = Qup—; + bup_; +1;

Multiplying both sides by *t—& and taking expectations, we have
Pr —apx—1 — bpp—2=10

The general solution of the above difference equation is given by

P = A1q¥ + Axqk (13)



A4z being found from the initial conditions and 91:92 are the roots of the equation

2 _
q° —aq — b =0 e characteristic equation of the process.

2
Case 1: ¢ +4b > D, roots are real

A1, 42 gre found as follows

Po=1=A4;+4;

p1=apy+bp_y =a+bp

_ a
TP T

Again,

p1 = A1q; + Azq;
=A;1q9;+ (1—-A4))q;

=A1(q:—q2) +q»

so that
- q
1 _ ) 42
qd1—qz
g1+ 42
_(1"“?1@'2 qz)
g1 —qz
fh(l—fi’%)

N 1+ fi‘l‘i‘z)(‘h - QZ)
and

Azzl_.:ql

_ q2(1— fi’%)
(1+q192)(q1 —q2)

2
Case2: @ 140 <0 ro0ts are imaginary.



Let us write
q, = p(cosf + isinf) and q; = p(cosf — isinf)

pr = p¥{A;(cosf +isinfB)* + A,(cosf —isinB)¥}

= p*{A* cos 6k + B* sin 6k}
where

A = A+ A,

and

B* =i(A;+ A,)

Fork=0 py,=1=4"

k=1 p, =p(cosf + B*sinf)

1
k=-1 p_,= E(COSB — B*sinf)

Since
P1=P-1
a2
gt 1-p .cosﬁ
1+ p? sinf
1—p?
= W.Cotﬂ
= coty
Giving
in(fk +
pr = p*{cosBk + coty sin Ok} = p~ % (14)

In case 1 the correlogram starts at (0,1) and becomes asymptotic to the k-axis.



10.

11.

14.

15.

16.

In case 2 correlogram will be oscillatory.

A correlogram is a powerful tool to detect patterns and dependencies in time series

data, helping analysts choose the right models and validate their assumptions.
9.6 Self-Assessment Exercise
Define forecasting and explain its importance in decision-making processes.

Explain the concept of forecast accuracy and discuss common measures used to
evaluate it (e.g., MSE, MAE, MAPE).

What is exponential smoothing, and how does it differ from simple moving averages?

Describe the concept of a smoothing constant in exponential smoothing. How does its

value affect the forecast?
Explain the difference between single, double, and triple exponential smoothing.

What is adaptive smoothing? How does it address limitations of traditional

exponential smoothing methods?

What is a periodogram, and how is it used in time-series analysis?

Describe the steps involved in constructing a periodogram for a given time series.
Define a correlogram and explain its role in time-series analysis.

How is the autocorrelation function (ACF) calculated, and what information does it

provide?

Compare and contrast the correlogram with the periodogram in analysing time-series
data.

9.7 Summary

This unit provides a comprehensive overview of forecasting methods used to predict

future values based on historical data. The unit begins by introducing the



fundamental principles of forecasting and the importance of accurate predictions in

decision-making across various domains.

A significant focus is placed on smoothing techniques, including exponential
smoothing methods and adaptive smoothing methods. These approaches are
explained in terms of their objectives, assumptions, and practical implementation for
trend and seasonal components. The unit highlights the advantages of smoothing

methods in handling time-series data with varying levels of volatility.

In addition to smoothing techniques, the unit explores frequency-domain analysis
methods, such as the periodogram, for identifying dominant cycles in time-series
data. The correlogram is introduced as a tool for analyzing autocorrelation, providing
insights into the lag structures of data and guiding the selection of appropriate

forecasting models.

By integrating these techniques, the unit equips learners with the tools to develop
robust forecasts and assess the underlying patterns in time-series data, enabling

informed decision-making in complex environments.
9.8 References

Kendall, M.G. (1976). Time Series, 2nd Ed., Charles Griffin and Co Ltd., London and
High Wycombe.

Chatfield, C. (1980). The Analysis of Time Series —An Introduction, Chapman & Hall.

Mukhopadhyay, P. (2011). Applied Statistics, 2nd Ed., Revised reprint, Books and
Allied

1.9 Further Readings

Goon, A. M., Gupta, M. K. and Dasgupta, B. (2003). Fundamentals of Statistics, 6"
Ed., Vol 11 Revised, Enlarged.



Gupta, S.C. and Kapoor, V.K. (2014). Fundamentals of Mathematical Statistics, 11"
Ed., Sultan Chand and Sons.

Montgomery, D. C. and Johnson, L. A. (1967). Forecasting and Time Series Analysis,
1st Ed. McGraw-Hill, New York.



UNIT 10 STRUCTURAL AND REDUCED FORM OF THE MODEL AND
IDENTIFICATION PROBLEM

Structure
10.1 Introduction
10.2  Objectives
10.3  Generalized Linear Model
10.4  Instrumental variables
10.4.1 Instrumental variable (I V) estimation
10.4.2 Interpretation of 1V Estimator as a Two Stage Least Squares Estimator
10.4.3 Choice of Instrumental Variables
10.4.4 Measurement Error Model
10.4.5 Choice of instrument
10.5 Self-Assessment Exercise
10.6 Summary
10.7 References
10.8 Further Readings
10.1 Introduction

A Generalized Linear Model (GLM) is a flexible framework for modeling relationships
between a response variable and one or more predictor variables. It generalizes traditional
linear regression by allowing the response variable to have distributions other than a normal

distribution. GLMs consist of three main components:



1. Random Component
2. Systematic Component
3. Link Function

Instrumental Variables (V) is a critical concept in econometrics used to address the problem
of endogeneity in regression models. Endogeneity occurs when an explanatory variable is
correlated with the error term, which can lead to biased and inconsistent parameter estimates.
This typically arises from omitted variable bias, measurement error, or reverse causality. It is
a powerful tool in econometrics for addressing endogeneity and obtaining unbiased parameter
estimates. Understanding and applying IV methods correctly are crucial for drawing valid
conclusions from econometric models. The selection of valid instruments is critical

researchers must carefully justify their choices to ensure the robustness of their findings.
10.2 Objectives
After completing this course, there should be a clear understanding of:
e Review and analysis of GLM
e Generalized least square estimation
e Instrumental variables
10.3 Generalized Linear Model
Generalized Linear Model (GLM): Detailed Analysis

A Generalized Linear Model (GLM) is a flexible generalization of ordinary linear regression
that allows for the response variable (dependent variable) to have a non-normal distribution.
It is particularly useful when the assumptions of linear regression, such as normality of

residuals and homoscedasticity, do not hold.
GLM expands the framework of linear models by allowing for:

e Non-Normal Response Distributions (e.g., binomial, Poisson).



e Non-Constant Variance of Residuals.
e Link Functions that relate the linear predictor to the mean of the distribution.
Key Components of a GLM

1. Random Component: Specifies the probability distribution of the response variable.

Common distributions include:
e Normal distribution (for continuous outcomes with constant variance).
e Binomial distribution (for binary or proportion data).
e Poisson distribution (for count data).
e Gamma distribution (for positive continuous data with non-constant variance).

2. Systematic Component: The systematic component of a GLM is a linear combination of

the explanatory variables (predictors). It is expressed as:
n=2Xp

where, X is the matrix of predictor variables,
B is the vector of coefficients, and

'is the linear predictor (a linear function of the predictors).

3. Link Function: Transforms the expected value of the response variable to the linear
predictor. Instead of assuming that the mean of the response is directly modeled as a linear

function of the predictors. The link function relates the expected value of the response

variable, E(Y), to the linear predictor. Common link functions include:
e Identity link: g = p (used in linear regression)

9w =log (=

e Logit link: 1—#) (used in logistic regression for binary outcomes)



e Log link: g () = log(w) (used in Poisson regression for count data)

1

. ) =- . : :

e Inverse link: 9 # (used in Gamma regression for skewed continuous data)
The choice of the link function depends on the nature of the response variable.
General Framework of GLM

GLM is defined by the following:
e Response variable Y comes from an exponential family distribution.
Linear predictor 1 = XF.

o Link function 9 that connects the mean of the response to the linear predictor: \(

gw)=Xp
Steps in GLM Analysis
1. Specify the Model:

e Choose the appropriate probability distribution for the response variable (e.g.,

binomial for binary, Poisson for counts).

e Define the systematic component (linear predictor) that includes the independent

variables.

e Select the correct link function that fits the nature of the response.

2. Fit the Model:

e The parameters B are typically estimated using Maximum Likelihood Estimation
(MLE). This approach maximizes the likelihood function (or equivalently, minimizes
the negative log-likelihood).

e The MLE estimation process involves iteratively finding the best fit of the parameters

using algorithms such as Iteratively Reweighted Least Squares (IRLS).



3. Assess Model Fit: Goodness-of-fit measures and diagnostic plots can be used to evaluate

how well the model fits the data. Common measures include:

e Deviance: A generalization of the residual sum of squares for GLM. It compares the
likelihood of the fitted model with that of a saturated model (a model that perfectly
fits the data).

e Akaike Information Criterion (AIC): A metric that penalizes model complexity and

helps select among different models.

2
o Pseudo: An extension of the B~ statistic used in linear models, applicable to GLM.

4. Hypothesis Testing and Inference: Hypothesis tests are used to assess the significance of

individual predictors:
e Wald Test: Tests whether a single coefficient is significantly different from zero.
e Likelihood Ratio Test (LRT): Compares the goodness-of-fit of nested models.

e Score Test (also called Lagrange Multiplier test): Tests for significance without
fitting the full model.

e Confidence intervals for the estimated coefficients can also be computed to provide

insight into the uncertainty of the estimates.

5. Model Validation: Residual analysis is crucial in checking the assumptions of the model.

Common diagnostic tools include:

e Deviance residuals: Measure the difference between the observed and predicted

values.
e Pearson residuals: Standardized residuals that help assess model fit.

e Leverage and Cook's Distance: To detect influential data points that may unduly
affect the model.

Common GLM Applications



Some common types of GLMs and their applications include:
e Linear Regression (Normal distribution, identity link): For continuous outcomes.

e Logistic Regression (Binomial distribution, logit link): For binary outcomes, often

used in classification tasks.

e Poisson Regression (Poisson distribution, log link): For count data, such as the

number of occurrences in a fixed interval.

e Gamma Regression (Gamma distribution, inverse link): For positively skewed

continuous data, such as response times or wait times.
Example: Logistic Regression as a GLM
Problem: Predict whether a patient has a disease based on age and smoking status.
Response Variable: Disease status (0 = no disease, 1 = disease).
Predictor Variables: Age and smoking status (1 = smoker, 0 = non-smoker).
Model:

Using a logistic regression (GLM with binomial distribution and logit link):

log (1%#) = fo + f1{Age} + B,{Smoking Status}

Here, the coefficients P1 and Az indicate how age and smoking status affect the probability of
having the disease.
Advantages of GLM

e Flexibility: Allows modeling of different types of data (binary, count, continuous).

e Unified Framework: GLM provides a general framework for a variety of models.

e Interpretability: Coefficients in GLMs still retain interpretability similar to linear

regression.



Limitations of GLM

e Assumption of Linearity: Even though the link function provides flexibility, the
linear predictor assumes a linear relationship between the transformed mean and

predictors.

e Complexity in Model Fit: Estimation using MLE may be computationally intensive,

especially for large datasets or complicated models.

In conclusion, GLMs offer a powerful extension to linear models, accommodating a wider
variety of data types and distributions. Their flexibility in handling non-normal responses and

complex data structures makes them invaluable in modern statistical modeling.
10.4 Instrumental variables

Instrumental Variables (IV) is a statistical technique used primarily in econometrics and
causal inference to address issues of endogeneity in regression models. Endogeneity arises
when an independent variable is correlated with the error term in a regression equation,
leading to biased and inconsistent estimates of the causal effect of the independent variable
on the dependent variable. For example: Suppose you want to estimate the effect of education
on earnings, but education is endogenous because higher earnings might motivate individuals

to pursue more education.

Instrument: One might use the distance to the nearest college as an instrument. The idea is
that those living closer to colleges may be more likely to obtain higher education, but the

distance itself does not directly influence earnings.

Consider the model
Vv = Xﬁ + i, (1)
where,

y:n X 1 vector of observations on dependent variable
X:n X k matrix of observations on k independent variable

u:n X 1,vector of disturbances with u~(0, o21I,,).



One of the basic assumptions is either X is non stochastic or even if stochastic, E(X'u) =0

Suppose E(Xu) =0 (X and u

correlated), then
E(B) =B+ E[X'X)"1X'u] = B.

g plim (nX'u)#0 (X and u

Further, i correlated in limit), then

plim(b — )
=plim[(n™1X'X) 1 (n"1X"uw)] = B.

b

Hence ~ is a biased and inconsistent estimator of '8.

Example: Let us consider the Measurement Error Model.

Suppose,

V=PBo+Xp

where,

Observed study variable is ymx1)
Explanatory variable is X (nx 1), and

¥ be observed with additive measurement error
y=vV+u

Let * be the vector of observed (proxy) values of the explanatory variables related to the true

~

xby
x=x+v

We can write the model as



v=0F+X6+u

X=X+
We assume that

E(u) = 0,
E(uu’) = oI,
E(v) =0,
E(vv') = wl,,
E(vu') = 0.

Then we obtain

y=BotBix+w

where, W = (0 = vB1) js the composite disturbance term.

Then

E(x'w)

= E[x"(u — vB;)]
= —E[x"vf]

= —E[(& +v)'vp]
= —E(w'v)B, =0

Thus, * and W are correlated. If we apply OLS to estimate parameters of the model
y=FBo+pix+w

then the resulting estimator will be biased and inconsistent.

Example: Let us consider Autoregressive Model:

Consider the following autoregressive model

Yt :Gf‘l‘ﬁyt_l +Ht;f: 2,...,]’1



where, e

In deviation form

The OLS estimator of B is
E _ E?:z Ve¥Vi-1
E?:z }’rz—l

T
Zt=2 Ut V-1

n 2
t=2Y-1

=B+

Then

E(8)

o UV
:,G-I-E( tnz t;t 1 + B

t=2 t-1

and Yt-1 = Ye-1 = Vinvolves ¥ and ¥ contains

is correlated with *t, and

Y,_

1 js Explanatory variable and uncorrelated with .

Y; U

in it, which is correlated with

However, the estimator of B is consistent as

plimp

Cov(Vp_y,up)
Var(Y:_;) -

Example: Consider the Demand Supply Model

Q; = a + BP; + u; (Demand Equation)

Q: =y + 8P; + v; (Supply Equation)

where,



@;: Quantity,

P;:Price
Is Pt correlated with %t (Vt)?

Now, we get Pt and @t by solving these two equations.

y—a v — U

—ad v, —Ou
0, = By — n B — t.
) B—6
Hence, £t is correlated with both Ut and v

10.4.1 Instrumental variables (IV) Estimation

An instrumental variable Z is an additional variable used to estimate the causal effect of

variable Xon Y.

Instrumental Variables is a set of variables which are correlated with the explanatory
variables in the model but uncorrelated with the composite disturbances, at least

asymptotically, to ensure consistency.
Case I: Number of instrumental variables is equal to the number of explanatory variables.

Letheanxk k

matrix of observations on * instrumental variables 142> > Zk sych that

(i) plim(n~1Z'u) = 0.

Y T —17ryy —
(i) plim(n™*Z"X) = Zzx 5 a finite nonsingular matrix of full rank.

N T —lgr7y —
(iti) plim(n™"2"Z) = Zzz i 4 finite nonsingular matrix.

If some of X variables are uncorrelated with % then these can be used to form some of the

columns of Z. Pre-multiplying the model (1) by Z’, we obtain



Z'y=Z'Xp +Z'u
or

nZ'yv=m1ZX)+ 12w

Then,

plim(n=1Z'y) = plim(n~1Z'X)f + plim(n=1Z'u).

Hence

B =plimnZ'X) Uplim(n1Z'y) — plim(n 1Z'u)]

= ZZ_}}EZ}F

Replacing Zzy and Zzx by corresponding sample cross moments

respectively, we obtain

bIV = (Z,X)_lz:y'

11, 11
n -Zy and ™ Z'X

(2)

Result 1: The IV estimator P is a consistent estimator of S. The asymptotic variance-

covariance matrix of 21 is given by

plim (bw - ﬁ)(bw —}59:

2
Oy

= — I xZ,2L
o ZZx%zz Xz

Proof: We have

byy
=(Z'X)71Z'(XB + u)
=B+ (Z'X) 7'

Hence

plim (by,) = B + plim[(n1Z' X)(n"1Z'u)]

=B +2z5.0=0

3



The asymptotic variance-covariance matrix of brv s given by

AsyVar(by) = n plim[(n 12’ X)) 1 (n 1 Z’E(uu)Z)(n" X' Z2) 1]

2 —_— —_—
:%(pﬁm (n‘lz’X)) lplim (n‘lz”Z)(pIim (n‘lX’Z)) .

2
_ CU -1 -1
~ Lzxlzzixz

n— oo

We observe that as , the asymptotic variance covariance matrix of b tends to 0.

Thus, b is a consistent estimator of A+ Hence the result followsm
Case Il: Number of instrumental variables is more than the number of explanatory variables:

Let Z bean X L atrix of observations on !> ¥) variables such that

. . -1 —_
(@ plim(n™1Z'X) = 2zx: Finite matrix of full rank

y : —1gry _
(i) plim(n™"Z"u) = 0 o in limit Z is uncorrelated with Y.
(ii)plimn~1Z2'Z) = £,

Consider the model

y=XB+u

Pre multiplying the model by z' gives

Z:_}T :Z:Xﬁ-i_ Z:IL (4)

) . T
Then covariance matrix of Z ¥ is 9uZ 4

Applying GLS to (4), we get the IV estimator for B.

b”; = (X:PZX)_IX,Pz}T;
where P, = Z(Z'Z)"1Z’M



Result 2: The IV estimator 2iv is a consistent estimator of 2. Its asymptotic variance-

covariance matrix is

2
a
AsyVar(by,) = f (ZxzZ72Zzx) 7"

Proof: We have

b.i'V = (X:PZX)_]'X,P‘?.}’
— B + (X' PZX) "X’ Pyu

Hence,

plim(by — B)

= (plim (n X' PZX))_lpIim (n~1X'Pyu)
~ -1
— (piim(n‘lX’Z)(pIim (n‘lz’Z)) lplim (n‘lz”X))
x plim (n_lX’Z)(pIim (n~ 1Z’Z))_1plim (n~1Z'u)
=0
The asymptotic variance-covariance matrix of b is obtained as

AsyVar(byy,) = plim[(X'PZX) X' P, E(uu')P; X (X' PZX) 1]
af . -1y -1
=— (plzm (n™1Xx PZX))

_ % {plim(n™1X' Z)plim(n~1Z'Z) plim(n~1Z2'X)} 1

n
aij -1 -1
= n (Exz E:zz EZX)

bIV

As T 7 % asymptotic variance covariance matrix tends to zero. Thus is an unbiased and

consistent estimator of [

10.4.2 Interpretation of IV Estimator as a Two Stage Least Squares Estimator



The Instrumental Variables (IV) estimator is often implemented using the Two-Stage Least
Squares (2SLS) method. This approach is particularly useful when addressing endogeneity
issues in regression models. The IV estimator can be understood as a systematic way of
dealing with endogeneity through 2SLS, which employs instrumental variables to extract the
causal effect of an endogenous regressor on an outcome variable by addressing the
correlation with the error term. The two stages highlight the separation of the estimation

process into isolating the endogenous variable and then estimating the relationship of interest.

The IV estimator can be implemented using the 2SLS approach, involving two stages:

Stage 1: Consider the regression between XandZ
X=ZB+W

The OLS estimator of B is

B=(z'2)y'z'X

Obtain a matrix of fitted values for X

X=zZ'z2)y7'x
= PzX
P,=Z(Z'2) 7

Stage 2: Run regression between ¥ and X0 get the two-stage least squares estimator

oy =1
bysrs = (X’X) X'y
— (X’PZX)_]-X’PZ}J

= bIV

We obtain X = £2X and then run regression between ¥ and X

IV technique allows the use of only that part of the variation in the predictorX that is not
related with unobservable factors affecting both predictor and outcome.



This method allows to estimate the causal relationship between the outcome () and the

predictor (X). The instrumental variable Z affects ¥ only through its effect on X

Suppose we want to investigate the relationship between depression (X) and smoking o),
Lack of job opportunities (Z) could lead to depression, but it is only associated with smoking

through its association with depression. It is not direct correlated with smoking. Z can be

used as an instrumental variable.
10.4.3 Choice of Instrumental Variables

We cannot use the actual data to find Instrumental Variables. One has to rely on knowledge

about the model’s structure and the (economic) theory behind the experiment.

(i) Z should not be affected by other variables in the system (Cov(Z,u) = 0)

(ii) Z should correlate with X, (Cov(Z,X) # 0)
(ili)Weak correlations lead to misleading estimates for parameters and standard errors.

Some of the X variables are uncorrelated with % and used in instrument. Partition X 204 Z 55

X:[Xl Xz].
Z:[Xl Zz]

where,

Xyin X1 (r < k), yncorrelated with “.

Xarn X (k=7) correlated with %,
Zz:n X (1 =1) jnstrumental variables
Then

4? - [Xl 22],



Here

X1* Instruments for themselves, and
X, = Z(Z'Z)"'Z' X,: Remaining regressors
How many instrumental variables to use?

k(1

Minimum number is = k) Asymptotic efficiency increases with L but finite sample bias

also increases. If | = ™ then

P, =Z(Z'2) 7
—zzZ 277
— In

Then

by = (X'X)"1X'y

— b (OLS estimator),

which is biased.

th _
Thenthe ™ moment of IV estimator exists if ™ <!~k +1 Thus for ! = ¥ even the mean

does not exist. With one more instrument, mean exists but variance does not.
10.4.4 Measurement Error Model

A measurement error model is particularly valuable for addressing bias that arises from
inaccuracies in observable variables, especially in regression analysis. When there is
measurement error in the independent variables, traditional regression techniques may

produce biased and inconsistent estimates.
Causes behind Measurement Errors

e Taste, education, etc. are not measurable and some dummy variables are defined and

observed.



e Some quantitative variables are observed with measurement error. For example, age is

generally reported in complete years. Income reported in multiples of hundred.

e Some unobservable variable represented by some closely related proxy variable. For

example, the level of education is measured by the number of years of schooling.

e Some qualitative variables measured by closely related quantitative variable. For

example, intelligence is measured by intelligence quotient (1Q) scores.

In all the examples, the variables are observed with some error. The difference between the

observed and true values of the variable is called as measurement error or errors-in-variables.

Disturbance term is defined as the influence of various explanatory variables that have not
been included is the relation and Measurement errors is defined as the imperfect measure of

true variables.

True relationship between observed study variable ymx1) ang explanatory variables

X(nx k).

y=2Xp

Let ¥ be observed with additive measurement error
y=V+u

Let X be the matrix of observed (proxy) values of the explanatory variables related to the true

Alternatively, we can write the model as
y=Xf+u (5)



We assume that

E(u) = 0,E(uu’) = al,
E(\W)=0,EWV'V) =1,
E(V'u) = 0.

Combining (5) and (6) we obtain

yv=Xf+w

w = (u = VB s called the composite disturbance term.

In model (7)

E(X'w) =E[X' (u—-Vp)]
= —E[X'V]
= —E (X +Vv)'vg]

— _E(V'V)B£0

Thus X and % are correlated.

Result 3: The OLS estimator b is biased estimator of ﬁ.

Proof: We can write the OLS estimator of £ as
b=(X'X)"1Xx"y

= (X'X) ' X'[XB +w]

=B+ XX)X'(w—-Vp)

Hence

()



E(b—B)
= (X'X)"MEWX'uw) — E(X'V)B]
= —(X’X)TLE(V'V)B
Hence OLS estimator b is biased. The reason is the correlation between the data matrix % and
the composite disturbance term (¢ —VE).
Large sample properties of OLS Estimator
We assume that
(@) The measurement errors Vin X are uncorrelated in limit with X, ie.,
1 ~
lim(-XV)=0
prm (n ) . Hence,

plim(n 1X'X)
= plim (n™ (X + V) (X +v))

=X+
where
1. .
X = plim (—X’X),
n
N =pli (IV’V)
= plim |~ ,

(b) plim (%X-’u) = 0, plim (%EHH) —0

Result 4: The OLS estimator b is inconsistent estimator of B

Proof: Utilizing assumptions (a) and (b), we get



im (L17)
plim -
1, '
= plim (H (X + V) V)
=N
Therefore

plim(b — B) = plim[(X'X)"'X'u — (X'X)"1X'Vp]

= plim [(%X’X)_l %X’u — (%X’X)_l (%X’V) ﬁ}

— (pﬁm (%X’X))_l {piim (%X’ u) — plim (%X’V),G}
=—Z+2) N +0

Thus, b is an inconsistent estimator of ﬁ-

Here residual sum of squares = XB)( —XB) = —=VB)Yw—=VE) jnyolves F. Thus,

IS not obtained by minimizing it.
Example: Consider

Vi=PFo+ Fi1x,i=12,...,n
where,

Vi =¥t

=X +v.

Define

0 vy
0 vy

— —
I ta
= =
B
Il
=ttt =
2 T Bt
[
-
|
=

Xn vy,



We assume

T
. (1 z '\
plim ~ 2| =h

i=1

n
1
plim (;Z(z— —mZ) p

i=1

Then
o
L. = plim (EX X)
n
1 .
N o
n L
= plim n 1;1
IO, 1.,
DRIIR
=1 =1
o o2t 2)
C\u af+pt)
Now

0 0).

QO = pli (1V’V)—
- pim (2u)=(3 ¢

plim(b — ) = —(Zy, + ﬂ)_lﬂﬁ

plim (g? : g?)
() e o)

e ()

w

w+a§‘u'8
B

w

0 +w



Both bo, by are Biased and inconsistent. Measurement error in X affects the estimator of

intercept term also.

Different Forms of Measurement Errors:
Consider the model

Fi=Po+ PiXni =12 ..,n

Vi =¥ty

x; =X +v; .

The three forms of measurement error models:

- - \!
(i) Functional Form: when *t € are unknown constants.

~

!
(i) Structural Form: when *: ¥ are iid random variables, say, with mean #x and

=0

. 2 2 . .
variance %x . For 9« , it reduces to functional form.

(iii)Ultrastructural Form: when *1 S are independently distributed random variables

2
with different means, say #x: and variance ?*. Both functional form and structural

form are special cases of this form.
Instrumental variables (1V) Estimation

Lethenxf I

matrix of observations on * instrumental variables such that

(i) Pim(Z'X) = Zzx. Finite matrix of full rank

(i) Plim (n™'Z'w) =0 o in limit Z is uncorrelated with u
(iii)pﬁm (nZ'V)=0

(iV)E‘éX =Zyz = plim(n 1X'Z)

Consider the model:



y=Xf+w, w=(u—-Vg)

Pre multiplying the model by z' gives

Z:y :Z:Xﬁ +Z:W (8)

! 2 r -1
Then the variance-covariance matrix of Z ¥ is 94 (Z'Z)™" Applying GLS to (8), we get the

IV estimator for 3:

by = (X'PZX)"1X'P,y; P, = Z(Z'Z)"1Z".

Result 5: The IV estimator P is a consistent estimator of p. The asymptotic variance-

covariance matrix of by is

2
a
AsyVar(by) = f (EXZEEZI EZX)_I ©)

Proof: We have
b”; = (X:PZX)_IX,Pz}T
=B+ (X'PZX) X' Pyw

plim(by, — ) = plim{(X' PZX) X' Pyw}

=plim(n X' P X) " *(n X' Pu—n"1X' P, VB)
=0

AsyVar(by)
= plim{(X' P,X) X' Z(Z'Z) 'E(Z'ww'Z)(Z'Z) 1 Z' X (X' P,X) 1}

of
= plimn *X'PX) !

UT% -1 -1
- ? (Exzzzz zzx) '

which tends to zero as * ~ ©H

10.4.5 Choice of instrument



Consider measurement error model with one explanatory variable:

Vi = Bo+ Bix; +wy,

w; =u; — v, i =12, ..,n.
(1) Wald’s method.

Arrange Xiin ascending or descending order and find median. Define

7z _{ 1 ifX; = median
! 7 |1 if X; < median

and,

X’ = ( 1 " 1 )I
Xy ot Xy
1 e 1

7 - )
1 "t Zp

I IJ' . t I . . i
Let two groups of X5 andYis (i) ¥ group of *i below the median and (i) 2 group of
*15 above the median. where,
%, ¥ are means of Xi§ and y;s respectively and

= I st
X1, Y1 means for 1 group,

T nd
X2,¥2: means for 2 group

n nx
Z'X = n__ _
('D E(xz _xl))

ny
Z: ] — }‘I _ _
Y (E (72 — 1 ))



Thus

Y2 — V1
biy = (- )

Xy — Xy
bmv’ =y — blwi’

The estimators are consistent but have large sampling variance.

(ii) Bartlett’s method:

n
3

Divide observations into three groups after arranging in increasing or decreasing order, say

sized groups.

1 ifX; isin upper group
Z; =4 0 ifX; is in middle group
—1 if X; isin lower group

's and x;’

Discard the observations in the middle group and means of S in bottom group is

s and x;'s i top group is 3 X3,

Y1, %1 and means of Vi
Then

Vs — W
biv == !
X3 — X%

bmv’ =y — blwi’-



Then the estimators are consistent.
(iii) Durbin’s method.

! ' _
Rank XS U =L 1) | ot 75 be the rank of X4/ we take 20 = 17,

Then, if we have one explanatory variable

Yie1Z: vy — )

b — _ ]
W e Z,Ge — %)

bmv =y — blﬂf—’:’-

For more than one explanatory variable, one may choose the instrument as the rank of that
variable. The estimator uses more information and expected to perform better than other

grouping methods.

In general, the instrumental variable estimators may have fairly large standard errors in
comparison to ordinary least square estimators which is the price paid for inconsistency.

However, inconsistent estimators have little appeal.
10.5 Self-Assessment Exercise
1. What are the key components of a Generalized Linear Model (GLM)?

2. Explain the role of the link function in a GLM. Provide examples of commonly used

link functions.

3. Discuss how GLMs extend ordinary linear regression to handle non-normal response

variables.
6. What is the primary objective of Generalized Least Squares (GLS) estimation?

7. Explain how GLS addresses issues of heteroscedasticity and autocorrelation in

regression analysis.

8. What are the key assumptions underlying GLS estimation?



9. Discuss a scenario where GLS would provide more efficient estimates than Ordinary
Least Squares (OLS).

11. What is endogeneity, and why does it pose a problem in regression analysis?
12. Define instrumental variables and explain the criteria for a valid instrument.

13. Outline the steps involved in Two-Stage Least Squares (2SLS) estimation using

instrumental variables.
16. Explain the concept of consistency in the context of estimators.
17. Under what conditions is an instrumental variable estimator consistent?
18. Why does the use of invalid instruments lead to inconsistent estimates?

19. How does instrument relevance and exogeneity ensure the consistency of IV

estimators?
20. Derive the asymptotic variance of IV estimators.
10.6 Summary

By completing this unit, you will gain an understanding of the following concepts in

econometrics:

Generalized Linear Model (GLM): A GLM is an extension of traditional linear regression
that allows for response variables to have error distributions other than the normal
distribution. We observe that GLMs consist of three main components: a random component
specifying the distribution of the response variable (e.g., Poisson, binomial), a systematic
component that includes a linear predictor, and a link function that connects the mean of the
response variable to the linear predictor. GLMs are useful for modelling various types of

data, including count data, binary outcomes, and other non-normally distributed variables.

Instrumental Variables (IV): Instrumental variables are used in regression models to address
endogeneity issues, which occur when explanatory variables are correlated with the error
term, potentially leading to biased and inconsistent estimates. An instrumental variable must

satisfy two key conditions: it must be correlated with the endogenous explanatory variable



(relevance condition) and uncorrelated with the error term (exogeneity condition). Common
applications of 1Vs include addressing omitted variable bias, simultaneity, and measurement

error.

Estimation of Instrumental Variables: The most common method for estimating models with
instrumental variables is Two-Stage Least Squares (2SLS). In 2SLS, the first stage involves
regressing the endogenous variables on the instruments to obtain predicted values, and the

second stage regresses the dependent variable on these predicted values.

Consistency Properties of Instrumental Variables Estimators: Instrumental variable estimators
are consistent if the instruments are valid, meaning they meet the relevance and exogeneity
conditions. Consistency implies that as the sample size grows, the IV estimator converges to

the true value of the parameter.

5. Asymptotic Variance of Instrumental Variable Estimators: The asymptotic variance of an
IV estimator is the variance of the estimator as the sample size approaches infinity.
Understanding the asymptotic variance is important for constructing confidence intervals and
conducting hypothesis tests in 1V regression. IV estimators generally have larger asymptotic
variance compared to ordinary least squares (OLS) estimators, reflecting the uncertainty

added by the use of instruments to address endogeneity.
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Block & Units Introduction

The present SLM on Econometrics consists of fourteen units with three blocks.

The Block - 3 — Advance Econometrics, is the third block, which is divided into four

units.

The Unit — 11 - Autoregressive Process, deals with the Moving average (MA), Auto
regressive (AR), ARMA and ARMA models, Box-Jenkins models, estimation of ARIMA

model parameters, auto covariance and auto correlation function.

The Unit — 12 - Vector Autoregressive Process, deals with the Multivariate time
series process and their properties, vector autoregressive (VAR), Vector moving average

(VMA) and vector autoregressive moving average (VARMA) process.

The Unit — 13- Granger Causality, deals with the Granger causality, instantaneous
Granger causality and feedback, characterization of casual relations in bivariate models,

Granger causality tests, Haugh-Pierce test, Hsiao test.

The Unit — 14- Cointegration, deals with the Cointegration, Granger representation

theorem, Bivariate cointegration and cointegration tests in static model.

At the end of every block/unit the summary, self-assessment questions and further

readings are given.



UNIT 11 AUTOREGRESSIVE PROCESS
11.1  Introduction
11.2  Objectives
11.3  Simultaneous equation model: Introduction
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11.3.1.1 Endogenous variables or Jointly determined variables
11.3.1.2 Exogenous variables
11.4 Alternative Estimation Procedure
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11.4.2 Indirect least squares (ILS)
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11.7 Self-Assessment Exercise
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11.9 References
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11.1 Introduction

An autoregressive (AR) process is a type of statistical model used for analyzing and
forecasting time series data. In an autoregressive model, the current value of a time series is
expressed as a linear combination of its past values and a stochastic error term. Before

proceeding further, we need to know the following terms.

Stochastic Process: A stochastic process is a family of random variables Y (©):teT} \yhere

T denotes the time points at which the process is defined. For a particular f‘-:T, let be the set

S Y(t) is a random variable

of all possible values of 40} Where, - is called the state space.

taking value in State space S, Usually we denote random variable by IS continuous

and by Yeif T is discrete.

{Y(t): teT}

e Stochastic Process evolves in time according to probabilistic laws and

provide a probability model for the analysis of time series.
e The infinite set of all possible time series is called the ensemble.
e Every member of ensemble is a particular realization

An observed time series is a particular realization of infinite set of time series, which might
have been observed. The objective is the evaluation of the statistical properties of the

probability model, which generated the observed time series.

teT}

Descriptive Measures: Describing Marginal behavior of Yo at a particular time point

t
Mean function: #(t) = E(¥:)
Variance function: @ (®) = E[Y; —u(0)]?

Measure of extent of dependence between Y: and Ye+x

e Autocovariance function (ACVF):



Yie(t) = Cov(Yy, YVigp) = E[{V; — p() HY;qp — pu(t + k)3
¥, (£) = a?(2).

e Auto correlation function (ACF) of lag k:

yi(t)

pr(t) = po () =1

[o2(t)ad(t+k)]2
Suppose

plt) =puvie,oi(t) =civie Yk (£) = yx: depends only onlagk {1,

ACF: p =%

4]

ACF satisfies the following properties:

(i)  For astationary process Px = P-k,
(ii) ol =1

(iii) Non uniqueness: A stationary normal process is completely determined by its mean,
variance and ACF. It is always possible to obtain several non-normal processes with same
ACF.

The ACF of purely random process or Gaussian white noise is given by

_{1ifk=0
Pk =10if k=0

Result: Let ¥t} be a time series with E(Y) = p. Then ACE Pk is the value of a which

minimizes

E[(Y,—p) —a(Yi—g — #)]2.



Sample ACF and ACVF of lag k: Let Y1-Y2:-»n: observed timeseries form (n-1) pairs
e ¥2), (2 ¥2)s s -1, ) then Sample autocorrelation coefficient (or serial
autocorrelation coefficient) of lag one is

_ Yo (e P ) et i)
ry = 1

[Pt e -F )2 TR (ve—¥(2)) ]2

= _i n—1., . —i n T
where Y T no L= Ve Vi) = 5 Xt Ve

_ 1
Let” — ;E?zlyt.
Since Y ¥ Y@y ¥ ¥

1 _ _ 1 _ 1
;E?ﬂl(yr - }’(1})2 R~ EE?:: o — }’{z})z = ;E?ﬂ(}’t - }?)2

-1 _ - s
ry 1s usually approximated by r, = - ii:’l?;n y}(;yp;}zy}
- t=1\¥t ™

1

For largen, ™ — * ™ ™and " can be approximated as

_ L0t G -9)
E?:l{y!‘ _37} 2

ry

Sample ACF of lag k: Let (n-k) pairs is O Vier 1), 02 Vier2)s s Unies ¥n) | then

1 _ _ _ 1oy - _
. Z?:lk(yt - }’) (}’t+k - }’) ~ ;E?:f(}’t - }’)(}’Hk - }’)

C, = ——
k n—

n—ke., = =
Sample ACF oflagk: 1, = Zf:’;f é}{y;;;‘ Y _ Z—;‘
t=1\¥t ™ 0

Correlogram: The graph of "* against K is called the correlogram. The autocorrelation

function plays an important role in model identification.

Another tool, which is used in model identification, is partial autocorrelation function.



Partial Autocorrelation Function (PACF): The PACF of order k, say %, is the partial

correlation coefficient between 't and Yt-x conditional on intermediate values of the process.

> 9 js the autocorrelation between Yt and Ye-x removing the linear dependence of
Yt and Yt—k on Yt—l' 'Yt—ﬁH‘l.
kY : : : Y, .o ¥, Y,

>t - Least squares residual of linear regression between “t and *t—1» -2 "t—k+1-

(k-1)
> ©.t 1 Least squares residual of linear regression between Yek and Ye-1 -0 Yemer,

_ _ LD (kD)
Then PACF %k is the correlation between t and “*t

Expression for PACF:

Since the process is (variance) stationary, Ye's have constant variance ¥ . We assume that

JJE; =1 Write ZUD = (Vg ., Yeogaa) .

We have
E(Y:2%Y) = E((Yiey, ) Yegs) ) = (P10 Pe-1) = @7 (say),
E(YexZ% V) = EWem (Vemt, o, Yemer)) = (P10 P1) = 0¥ (say)
, ) 1 "t Pr-2
E (sz-ﬂsz’-l} )=E oy Y = =
Yiks1 Pr—2 1

pP¥-1) (say).
Here

pl—1 — ((p|i_j-|))r|i_j-| = (i,j)™" element of (P{k_l})_l

k-1)" oyl (k-1 _ _
QE: }(PU‘ 1}) Qi }:E?’:ll jf:llrli—jlpk—ipk—j



= XA X ey =k =i = k—))
= k=D (pk-1)) T g (k-1)

k-1)' —y L (k-1 —1)’ oy (ke
oD (pk-D) ¥ = o1 (Pk-1) ")

(k—-1)

e, (k—-1)

where, : Least squares residual of linear regression between Y: and £

(k-1)
For obtaining €t we minimize

2
n = E(Yt _ aIZ[k—l]) =1+ &,P{k_l}& _ za:Q{k—l}

M _ 5plk-1), _ 9, (k-1) _
e = 2P a— 2¢ =0

= q = (Pr-D) " gle-D),
Hence
- ' -1
et[k 1) _ Y, — a'7k-1) — Y, — Q{k—l} (P{k—l}) zk-1)

(&-1)

Similarly, we obtain the least squares residual =t  of linear regression of Y-k on

k—1 k-1) PR S
g(: ) =Y, —Q,E ) (P{:e 1}) 7(k-1)

(k-1) (k-1)
Then variances of t and "=t  are given by

E(et(:z—l})z _ (Yt _ Q[k—l]’(P[k—l])_lz{k’—l})z

=1 — ok=0'(pUD) T ple-D) = E(ef.’;_”)z

(k—1) (k—1)
Covariance between ©t and "=t s

7(k-1)

as



E (et{k_l}ef.j:_l],) _F [(Yt _ Q(k—l}’(p(k—l})—lz{k—l}) (Yt—k

-’ —n L (k-1
= pp — 0V (PkD) kY

Hence the PACF of order ¥ is given by

_ . . A -1 k=1
_ pr—otk v (ptkm1) ol

a;, = = .
k 1_Q(Ir—1j|’,[:Ptk—1j|) 1Q(Ir—1j|

B Qik—l},(P{k—l})_lz{k—l}),]

Purely Random Process or Random Shocks: A purely random process, often modeled as a

white noise process, consists of a sequence of uncorrelated random variables with a constant

mean and variance. Each observation in the time series is independent of the others. It is

included the following points:
Q A discrete process {us;t €T}

variables (it € T}

U The process has constant mean and variance and y(k)=0 for al

O Itis also refereed as shocks.

is called a purely random process if the random

are a sequence of iid random variables.

1 k=xL£2, ...

Q Itis also called white noise, as its spectrum is like that of white light.

O A purely random process is useful as constituents of other complicated processes.

Gaussian White Noise Process or Gaussian Random Shocks: A process (ue;t € T} i called

a Gaussian White Noise Process if the random variables {4t

L €T} are a sequence of iid

—~ 2 i —~ 2
random variables with %~V (0,0, Yt \ye denote it by Ut GWN(0, ay).




Stationary Process:
Why is Stationarity important?

» To ensure that the probabilistic mechanism which has generated the time series do not

change over time.
» The way process changes is predictable.
> It becomes possible to make predictions based on stationary processes.
» It makes the process much easier to model and investigate.
» An important concept for developing several inference and analytical tools.

Definition: A time series is said to be strongly or strictly stationary if the joint distribution of

Yt .,Ytn_H{Vn,tl,tz,...,tn,al’ldk

v Yt s the same as the joint distribution of Vet

Thus, if F(ts+078) genotes the joint pdf of Tt Yeu then the condition for strong

stationarity is
f(}’t1+k- -}’tn+k) = f(}’tl- -}’tn) Vn,ty,ty, .ty k

_ 2(+) — ~2
O For n=1 the distribution of ¥t is the same for all ¢ so that #(£) =y and %Y (t) = oy vt

Q For n=2, writing 1 = t:t2 = t T ¥ the joint distribution of Yt 314 Yt+x depends only

on lag k. Thus, the ACVF ¥ (&:% + %) genends only on the lag ¥

Y.t +k) =y, = E[Y; —p(©OHVeu — (e + k) ACVF at lag k

Autocorrelation between Yt and Ye+k:

Pr = ;—R:Autocorrelation function (ACF)
o

Mean Stationary: A process is mean stationary if E(Y) =pVv £

_ 2 _ 2
Variance Stationary: A process is variance stationary if E(Yy—p)® = oy v t



Covariance Stationary: A process is covariance stationary if Cov(Ye, Vo) = 3 VLK

Second Order Stationarity or Weak Stationarity: A time series is second order stationary (or

weakly stationary) if its mean and variance are constant and ACVF depends only on the lag.

We can conclude that

» Strict stationarity implies second order stationarity but its converse is not always true.

> When joint distribution of Ye+v - Yoo s multivariate normal for all n, the second

order stationarity implies strict stationarity.
The ACF of the purely random process is given by

_{1 if k=0
Pk =10 if k=0

A purely random process is second order stationary as well as strictly stationary.

ACF of the purely random process

Example: Let X~Poisson distribution P(u) g {ust=12,..} 5 4 sequence of

2
identically independently random variables with mean 0 and variance “u. We define a

c(Vat=12,.

proces -3 as

Yt =X+ Ilt;t = 1,2,



— 2 _ —
Then ED) =107, = 1 y(0) = pV Lk Lonee the process is second order stationary. The

process is strictly stationary also.

t=12, ..}

Example: Define the process ¥ as

Y, =X,

P = 2
(uit =12,...}. Purely random process (0 i)

Mean, variance, ACVF:
E(Y,) =0, of, =taf, y(t,t +k) =to]

1
plt,t+ k)= i!
ACF: (4102

The process is mean stationary but not second order stationary.
Example: Consider the process
V; = ACos(wt + @); @~U(0,m)
Then

A pm 24 .. .
E(Y,) = ;_fﬂ Cos(wt + @)dp = —?Sm(mt): Function of t
The process is not mean stationary.

G 1fe~u02m) E(Y) =0 ang the process is mean stationary.
(i) Isthe process second order stationary?

If 4 is a rv with mean 0, the process becomes mean stationary

Ergodic Process: Let us consider an example first

Ex: Consider a process (Yt =12 ..}, Vi=p+X+u



{ue;t = L2 ... }: Gayssian white noise process GWN(0,1)

X~ Bernoulli distribution with pmf

~if x=-11

0; elsewhere

P&)Z{

— 2 _
Then EM) =mop, =2

For ¥ = 12,.. ACVF of the process is
Y = E[(Ve—)(YVeyr — )] = E[(X + up)) (X +upy )] = 1

1
ACF: Px =3 7k

O The process is stationary and achieves statistical equilibrium.
O The process revolves around -1 or 1 depending upon the initial value of X.

Thus, this statistical equilibrium state is not unique.

1
= =1 Ve

(1, Y2, ¥n}: observed time series, > n is unbiasedly estimated by Y.

But JFconverges to "1+ K. if the initial value of Xis-1and to 1 T 4 if the initial value of X
is 1. Process gets stuck away from the data generating process mean leading to inconsistent

estimator. P¥ is constant and does not diminish as ¥ ~ . Which implies that the strength of

dependence on first observation remains intact with increasing t. We can’t estimate

consistently using a single realization.
Why ergodicity matters?
U Stationarity ensures statistical equilibrium but not its uniqueness.

U Ergodicity, along with stationarity, ensures that such an equilibrium is unique.



U Ergodicity tells us that a single long time series becomes representative of the whole
data-generating process, just like a large iid sample becomes representative of the

whole population or distribution.

U The properties of ergodic process can be investigated on the basis of a single long

enough observed time series.

O Ergodic processes forget the past in long run (“far apart” terms are distributed

independently of each other).

Definition: A process Y5t €T} s said to satisfy ergodic property with respect to a bounded
1

—Nn T
function f if for the realization t;t = 1.2, -3 the sample average = t-1f () converges
almost everywhere as n — .
i 1 T
If the process is stationary then EUF (Y1 = 1Yt pence w2t f () converges to #- A

time series has to be stationary in order to be ergodic.
O Ergodicity is not just characteristic of the process.

U The way the experiment is conducted to collect the observed time series also effects

the ergodicity of the time series.

O While conducting a study about the air pollution, suppose the data is collected daily

on level of nitrogen dioxide in air at a particular time.

U On the first day, the time of measuring nitrogen dioxide level randomly and then,

daily the data is collected at the same time.
O Inference drawn will be severely affected by the timing selected on the first day.

U The resulting time series won’t satisfy ergodic property.

Definition. A covariance-stationary process, et € T}, is called (linearly) deterministic if

P yelye-1,Ye-2 -1 = 22 por a stationary, deterministic process it €T}

Q Yt can be predicted correctly using the entire past Yt-1:Yt-2 -



U One-step ahead prediction error is zero

QO It does not mean that ¥t is non-random.
Backward shift operator: Backward shift operator B is defined as
By: = y_4; Bk}’t = V- (k =12, ...).

Purely nondeterministic process: If all deterministic components of a time series have been

subtracted in advance, it is a purely nondeterministic process.

Example: Suppose et € T3 i defined by

v, = Acos(t) + Bsin(t)

A and B are independently distributed standard normal random variables.
Then

Vi + vi_» = A{Cos(t) + Cos(t — 2)} + B{Sin(t) + Sin(t — 2)}

= A{2Cos(t — 1)Cos(1)} + B{2Sin(t — 1)Cos(1)}

= 2Cos(1){ACos(t — 1) + BSin(t — 1)}

sin{2)

= 2Cos(1)y;_4, = sin() V-1

Hence

sin(2)
Ye = Sin{l}}’t—l — Vt-2.

sin(2)
P[}’t|}’t—1-}’t—2- ] = m}’t—l —Vt—2 =M

ve;t € T} s a deterministic process.

, _ Tk _ N9~
Example: Consider the process Ye =Xj1 By COS(MtJFﬁJ)’ﬁJ U(0,2m)



Then Yt F Y, = Ej‘.’zl RJ-{Cos(mt + 1?}) + Cos(w(t —2)+ 1?})}

= 2Cos(w) Ejle R-Cos(wj (t—1)+ 1?)-)
= 2Cos(w)yt 1

or
y: = 2Cos(@)yi—1 — Vi—2

Plyelyi—1,¥t-2, .1 = 2Cos(@)yi—1 — Ye—2 = V¢

where, V55t € T3 js 3 deterministic process.

Example: Let

y, = A+ Bt; A~N(0,1), B~N(0,1).

Then

Vi-1=A+B(t—1)

Vi-2=A+B(t—2)

=2yt —Vt—2 = A+ Bt =y

Ve = 2Vt—1 — Vi-2

P(yelye-1,-) =2Vt 1 = Ye-2 = Wt

where, 6t € T} is 3 deterministic process.

The Moving average (MA), Auto regressive (AR), ARMA and ARMA models are widely
used in forecasting, econometrics, and various fields of data analysis, particularly for time

series data.
e MA: Focuses on the relationship with past error terms.

¢ AR: Focuses on the relationship with past values in the series.



e ARMA: Combines AR and MA components for stationary data.

e ARIMA: Extends ARMA to handle non-stationary data by incorporating differencing.
11.2 Objectives
After completing this course, there should be a clear understanding of:

e Simultaneous equations model

e Concept of structural and reduced forms

e Problem of identification

e Rank and order conditions of identifiability
11.3 Moving average (MA) Model

The Moving Average (MA) Model is a type of time series forecasting model that is used to
analyze and predict future values based on past data. It is particularly useful in scenarios

where the underlying time series data exhibit patterns, trends, or seasonal behaviors.

e An MA(g) model specifies that the current value of the time series is a linear

combination of the previous "q" white noise error terms.
e It captures the effect of past shocks over a specified number of periods (q).

e The model is called "moving average" because each forecasted value is influenced by

a moving window of error terms.

e MA models are typically stationary, meaning their statistical properties do not change

over time. This is a crucial condition for many time series analyses.

e Limitations: MA models are not suitable for time series with a trend or seasonality
unless differencing or seasonal adjustments are applied first. They can only capture

linear relationships, meaning non-linear patterns may not be effectively modeled.



The MA model is a foundational tool in time series analysis, and when combined with other
models (like AR), it can provide robust forecasting capabilities. Understanding its mechanics

and implications is essential for effective time series forecasting in various domains.

Now, the question is How ¥ has evolved?

Let us consider,

Y1, Y2, -, Ve-1: Time series observations up to time t-1

U1 Uz, - Ue-1- Random shocks up to time t-1 and

Ut: Random shocks at time t
There are three possibilities:

(1)  Process has memory of random noise component of where it was (random noise

corresponding to past values of y) but no memory of where it (y) was.

(i) Process has memory of where it (past values of y) was but no memory of random

noise corresponding to past values of y.

(iii)  Process has memory of where it (past values of y) was but as well as memory of

random noise corresponding to past values of y.

Moving Average Process: A process et €T s called a moving average process of order
4 if
Ve =t us+0iuey +0u 5+ o+ Gpup g (1)
u;'s - u G 0y, 6z, =, 6,
We scale “t = so that coefficient of “t, say “?, is 1. where, 9 is the constants

2
which may be positive or negative and (61, 62, ---6g, 1, o) be the (q + 2) parameters 1

e
process is denoted by MA(qQ) process. MA(q) process represents ¥t against current and

previous error shocks “t and a constant p (long-term mean). The process can be written as



Ve — 1= Z;.I:O 0 up_;j withy =1

which is the moving average of white noise {u;t €T} So, we have

> Process does not have memory of exactly where it was (past values of )

> It does have memory of random noise component of where it was (random noise

corresponding to past values of ).

MA(q) process can be written as:

Ye=p+ EELQ 6 us—;

Mean of the process: E(y)=mn

2 _ 2 _ 2 q 2
] . ai=E|y, — =a t g
Variance of Ye: Y Lye — 4l uLg=0"4q

MA(1) Process: For g=1

process

Let Yt =HFtu + B .

e = 0.05,6, = 0.7,n = 500

The variance of the process:

0% = vo = 03(1+62)

ACVF:

¥1=E Q¢ + 01u_1) (uey + 01up_5) = 6,07,
Y2 = EQu + 610 ) 2 + 611, 3) =0

Ye=0Vk>1

Obviously Y-k =Yk V k.

(6o =1)

Simulated data from MA(1)




ACF of MA(1) process is

6y, ..,
oo =Y _avepy S R=1

Yo 0 ifk>1

ACF of MA(L) Process, b1 = 07,61 = =07

A

00 02 04 08 O 10
A A A

-1 1

EilL]

MA(2) Process: For q=2

Ve = tu + 60,0 g + Gup s
Variance of the process:

o5 = Yo = 05(1 +6f +63).
ACVF:

y1=0,(1+06)0;

¥, = 0,02y, =0V k =3

Hence, ACF is given by

0,(1+6,)

leﬂrk =1
Pe=4_% _ _
{1+9§+922)'f0rk 2

OvVk=3



rn, — q . ,
MA(q) Process: Ye = H +ZJ‘=0 EJI “rt_J,

o2=vyo=(1+6+62+ -+ 06202 =al _?:n 67

— a g,
ACVF of MA(q) Process: Ve =uA X o0t

Ve = E[(ut + O g + 0+ Bqut_q)(uﬁk + 0 upspeq + o BquH;‘,_q)]
—k .
(6 + 0,641 + =+ + Og_0q )0 = o E;-I:g 00+ if k=1,,q
= 0 ifk=>gq
Y-k L_f k<0
Ye=p+ EELQ 6 us—;

ACF of MA(q) Process:

a—k
Oy +010p 41 ++0,_8;  Lj_g 0jOk+]

O = % = (1+67+63+--+62) —  X_o67 ifk=12--q
0 ifk=zqg+1

ACF of MA(q) process vanishes for kzq+1

Example: MA(1) process

Let,

Ve = O(Buy;

where, @(B) = (1 +6,B)

Yo=02(14+63); y1=020;y, =0V k> 1.

Example: Obtain ACF using auto covariance generating function for MA(2) process:
Ve = 0(B)ur \yhere @(B) = (1 +6,B + 6,B2)

Yo= (1 +67 +07)ay;

i =01+ 8)0f;



Y2 :820}%.}";{ =0V Ek=3.
MA(2) process:

vy =10 +up + 0.6up—; + 0.2u; 5

0.6(140.2) 0.2

ACE P1 = Qros?+022)

Plots of ACF of MA(2) Process

M M v

0 M M

2
Random Walk: Let {40t € T3 pe the purely random process with mean 0 and variance “u.

A random walk process et € T} i defined as
Ve =+ Vgt U 2)

tth

Let Yo =0 By recursive substitution, after steps, model (2) can be written as

- t : .
Ve =t + X g It appears that the process has linear trend. The process is said to have

stochastic trend.

Then' E(.}Tt) = ty; Var(yt) = tﬂ—t%

Since mean and variance of ¥t depend on t, the process is non stationary. The economic time

series behaving like a random walk. For ex; Share prices, real exchange rate, GDP etc.

H=0 H=0.1



11.4 Auto regressive (AR) Model

Autoregressive (AR) models are a class of statistical models used for analyzing and

forecasting time series data. In an autoregressive model, the current value of a time series is

expressed as a linear combination of its previous values plus a stochastic (random) error term.

Constructed by regressing current value of variable on past values.
Uses regression of the variable against itself. Thus, it is termed as autoregression.

AR models generally assume that the time series is stationary, meaning its statistical
properties (mean, variance) do not change over time. If the series is not stationary,
techniques like differencing or transformation might be necessary to stabilize its

properties.

Predicts future behavior based on past behavior. Used for forecasting when there is

correlation between the current and the preceding values.

AR models are widely used in economic forecasting, signal processing, and other
fields where time-dependent data needs to be analyzed. They serve well in the context

of univariate time series, especially when past values hold predictive power.

The parameters of the AR model can be estimated using methods like the least

squares method or maximum likelihood estimation.

Autoregressive models are foundational tools in time series analysis, allowing statisticians

and data scientists to model and forecast trends based on historical data. Understanding their

structure and when to apply them is crucial for effective time series forecasting.



An autoregressive process of order p (AR(p) process) is defined as

Ve = P1Ve-1H Dye2 + o+ Ppyep 6+ 3)

. . 2
Let eit € T3 pe 5 purely random process with (0 )

where,
b1, P2, Dp, 6, o2 :Parameters of AR(p) process
If E(y))=EWi1) =E@;p) == E(}’t—p) = ,u’ we have

p=EQ) =¢u+dop+-+dpu+8

o &
—H= {l_¢l_¢2_"'_¢p)

AR(1) Process: p=1

Ve = P1Ve-1+6 +u
Given that Yt-1, ¥t pecomes independent of Yt-2:Yt=3.-- This is called the Markovian
property and the process is also called Markov process.

)

Mean of the process: K= 1)

Simulated data from AR(1) process

§=0,61=07 n=5000

N



If we take & = 0, so that # = 9. Assume that the process is variance stationary. Then,
Yo =Var(y) =Var(y,) = - = g3 vt

Then

oy = El¢1ye-1 + u;]?

Elu;yi—1] = 0, (y:_, depends only on u;_q. Up_5....)

2 9u
Vil 10
ACVF and ACF:
107
Y1 = E(}’r}’t—l) = @1¥0 = 1_1:2-
1

Further

E(}’t_kut) = D, Vk = 1,.2-,

Ye = E[ytyt—k] = E[(¢1}’t—1 + “t)yt—k] = @P1¥Vr-1 = P1P1Yk2 = ‘f’%?k—z ==

k_=
k _ ®ion
(pl]V{J - 1—¢'i

ACF of the AR(1) process:

¥k _ ok
Pr = — = @1.
Yo

Since 191 < 1 Px declines geometrically.

ACF of the AR(1) process: Yt = 0-6¥e-1 +

ACF: p,, = (0.6)*
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Example: Let us consider AR(2) process with 6 =0 50 the model is

Ve =@1Ve1 t PaVe 2+ ug
We have

Yo :E(}’tz)

=E{(¢p1yt—1 + P2Vi—2 + Uy} = Py + Poy2 +0i

Y1 =¢1Yo + d2v1

Y2 = ¢1¥1 + P2vo-

Hence, we obtain

Rt
Y1 = -6, Yo

Y2 = (1?312 + ‘352)?’0-

1-¢, o

1+¢o (1-¢2)2-03

Yo =

Example: AR(2) process
(1 — 0.5B — 0.06B%)y, = u;
or (1 — 0.6B)(1 + 0.1B)y; = u;.

Then

o = a,(0.6)% + a,(—0.1)F.

(E (uzye) = o)



17 1-¢,  1-05 , we have for k=01

For AR(2) process, ”0 = 1 and
1=a;+ay; 0.12 = 0.6a; — 0.1a,

11 24

) = —,d =
Hence ' 35’ 2 135,

_u k3 2% g1k
pi = 35 (0.6)% + —(=0.DF.

3

ACF of the process:

Note: For MA processes the correlogram vanishes after a certain point and for AR process it

declines but never vanishes.
11.4.1 Yule-walker Equations

The Yule-Walker equations are a set of equations that relate the autocovariance function of a
stationary time series to the parameters of an autoregressive (AR) model. These equations are
particularly useful in the field of time series analysis for estimating the parameters of an AR
process from sample data. This equation is fundamental in time series analysis, bridging the
gap between the statistical properties of time series data and the mathematical representation

of autoregressive models.

Let us consider the AR(p) process and the model is

Ve =P1Vic1 + PaVe2 F PaVea + o+ GpVep + U

Multiplying by Yt-* and taking expectation, we obtain

Elv:ye—x]l = 1EVe—1Ve—i] + P2EDe2ye il + -+ ¢'pE[yt—pyt—k] + E[ueye—] (4)
Substituting © = 012, P in (4)

E[yf] = ¢1Elye—1ve] + ¢2E[ve o] + o + (i’pE[}’t—p}’t] + E[usy: ]

Elyeye—1] = ¢1EVvE_ 1] + @2Eve—ayeq] + -+ ¢pE[}’t—p}’t—1] + Efurye ]

Elytye—a] = p1Eve—1ve—2] + @2EvA] + - + ¢pE[}’t—p}’t—2] + Elugy: 5]



E[yeve-p] = $1E[e-1ve-p] + 92E[ye-ave-p] + =+ $pE [ ] + Eueye ] (5)
We observe that

Elyrue] = E[(@1Ve-1 + P2¥e—2 + baVe-z + - + Pp¥e—p + uJue| = E[uf] = o
Elviyue] =0Vk =12, ..,p

Hence, set of equations (5) reduces to

Yo = @1¥1+ G2ya + o+ dpyp + 04
Y1 =@1Yo t b2y + -+ dpYp-1

Yp = @1Vp-1 T P2¥p—2 + -+ dp¥o (6)

Dividing each of P T 1 equations of (6) by Y gives the following P equations:
aij
Po = 1p1+ P2pp 0+ Gppp + -
P1=¢100 + 201+ + dppp1
(7

Pp = P1Pp—1 T P2Pp—2 + T dppo

Here Po = 1. The equations in (7) jointly determine the P values of ACF and called Yule-

Walker equations.

Let us write

Pp) = (ﬁl P2 "‘ﬁp):} ¢ = (¢1 o) "‘(ﬁp):;



1 Pr - Pp-1

—| P 1 Pp-2
P(p}_ :1 ’, :p

Pp-1 Pp-2 ' 1
We can write Yule-Walker equations as
r o
1=ppé+- Pw) =Pm ¢
Partial autocorrelation function for AR processes:

PACEF of order k, %k, is the Correlation coefficient between ¥t and Yt+x after eliminating the

effect of Ye+1, —» Ye+k—1, @xk s obtained by solving

Ieay = Vi, (8)
with

@ = (Qers ooy Q)5 Ve = 1y oY)

Yo ¥i - ¥Yi-1
= ’:}’1 T{E ’:.Vk—z

?’;«:—1 Yi-2 l?’u
So, we can write (8) as
Yo Y1 Vr-1

Q1 ¥1
¢! Yo Yi-2 ():()
: A Y

T.;:—l ¥Ye-2 " Yo 9)

Dividing each row of (9) by ¥(®) we obtain

1 P - Pr—1 Qxy 01
: " : a p
Pr-1 Pr-2 ' 1 e ¥ (10)

And the equations are



a;x +byy+ecz=d,;

ax +byy +cz=d,

azx + by + c3z = d3

Solution for 2:

ay by dy
az bz di
_lag by dg
zZ= a; by ¢
az bz ¢z
az bz c3
Hence,
1 P1.  P1
P1 1 Pz
a — P.li(—l Pl—z .'IS‘.R:
KKk 1 P1 . Pk-1
P1 1 Pk—z
Pk-1 Pk-2z 1

Example: Consider the AR(1) process and the model is

Ve = @1Ve-1 + Ut
ACF: Px = ¢1

PACF; @11 = P
Hence,
P1 é1

1 py)\ (@ P o, £ o, sl
(o )@ = @) e ==t -0

(11)



Ay

1 Py Py
SR ¢

g1 pk2 .. gk
1 ¢y @F '
¢y 1 ¢I'j1{_2

—0(k=2)

!

AR(1) Process we can conclude that

> Markov Property: Given Yt-1:Yt becomes independent of Yt=2Yt=3...

> akk:GVk:_}z

supports this Markovian property.

Note: In general, for AR(p) process, PACF of order higher than p are zero.

11.5 Autoregressive Moving Average (ARMA) Model

The Autoregressive Moving Average (ARMA) model is a popular statistical tool used for

analyzing and forecasting time series data. It combines two components: autoregression (AR)

and moving average (MA).

The AR part of the model uses the dependency between an observation and several

lagged observations (previous data points).

The MA part models the error of the series as a linear combination of error terms (also

known as shocks) from previous time points.

ARMA models are widely used in various fields such as finance, economics, and

environmental science for time series forecasting and analysis.

Non-stationary data must be transformed through differencing or other means before
fitting an ARMA model.

ARMA models assume linear relationships and may not perform well if the

underlying process is nonlinear.



The ARMA model is a foundational method in time series analysis that can be used to

understand and forecast time-dependent data effectively, as long as its assumptions are

satisfied.

Mixed Autoregressive-Moving Average (ARMA) Process of order v, q)

It is denoted by ARMA(P,4)_ The model contains P autoregressive and ¢ moving average

terms. The process is defined as

Ve =0+ ¢1 ¥ 1+ P2y 2+ bpVe—p + U + Brup 1+ Ooup 5+ IEql'ﬂt—q

E(y;)=pVvt

Taking expectation of (12), we have

p=¢ipt+opt st tpputd=p=

)

For © = 0 s also zero.

In terms of backward shift operator “B”:

8

1-¢p1—p2—¢p3——¢p

(1—¢;B— ¢,B%--—¢,BP )y =6+ (1+6,B + 6,82+ 6,89 )u,

Let
®(B) = (1~ ¢1B — $,B* -+ — ¢, BY)
0(B) = (1+6,B + 6,B% -+ 6,B9).

Then (13) can be represented as

@®(B)y; =6 +0(B)u;

Wold Representation for ARMA process

(12)

(13)

(14)



The infinite lag polynomial of the Wold decomposition can be approximated by the ratio of

two finite-lag polynomials:

v(E) =22
(15)
where ©(B) s a polynomial of order g in backward shift operator B and ®(B) j5 4

polynomial of order p in B.
ARMA Representation
O Approximates the dynamic of any purely nondeterministic weakly stationary process.

O Describes a weakly stationary process in terms of two polynomials, one for AR and
the other for MA.

O Higher order AR or MA processes with large number of parameters can be

approximated with lower order ARMA processes with lesser number of parameters.

ARMA(LI) process:

Consider ARMA(1,1) process with 6=0

Ve = @1Ve-1 +ue +01upy (16)
The variance of the process is given by

Yo = E(}’tz)

=El¢1ye-1 +us + 00 4]

= Elopfyl, +uwf +07ui_; +2¢1ye—que + 2160,y qup— g + 260,01, 4] (17)

Simulated sample from ARMA(L,1) process with #1 = 0-6, 6, =05



Notice that

Elye—yu]l = 0= E[upuy 4]

Elye—1us—1] = E[($1ye—2 + w1 + 61w 2)up 4] = 0.
Therefore, (17) reduces to

Yo = ®iyo +of + 0{a] + 20,107

_ op(1487+28,¢4)
T Yo T T e
Further
Y1 = E[}’tyt— 1]

=E[(¢1ye-1 +ue +01ue1)ye—1]
= (¢1yo + 0105

o (p1+8,+0187+0,07)
cn= (1-6D)

_ o5 (1 +61)(1+¢161)
(1-¢3)

¥z = E[}’tyt—z] = E[(¢1J’t—1 +u + 311&—1}%—2] = ¢1¥1

Yie = Eeve—x] = E[(@1ye-1 +ue + O )yl = d1¥i-1; (k= 3)

ACF of ARMA(1,1) process:

(18)

(19)

(20)

(21)

(22)



_1n_ (8146)0+6,8,)
1 v (1+67+2¢,6;)

For"‘22

— Ak—1

_ ¥ V-1 _ _ 42 _
P =_—=¢1 = Q1Pk-1 = P1Pk—2="" =P
Yo Yo

_ (@146:)(1+¢464) — ak—-1, .
L™ (1+02+2¢,0,) ' P = @i pk=2

The following is observed:

i 1§91 10 >0 ¢,>0, px >0 Vk
jij. $1+60, <0 ¢, >0 p <0OVk

ii. |
iv. #1701 <0 1 <0 P ogcillates with P < O

v.Vk=2p decays exponentially in magnitude.

f®1+6, >0 ¢y <0, pg oscillates with p; > 0

P1

ACF of ARMA(L,1) Process ¥t = ®Ve-1 + ue + 01—y

$=096=05

o6 o8 10
L .
o

04
1
o

£2 00 02 04 06 08 110
X 1 " 1 1 L 1

i ¢=056=09

(23)

(24)
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ACVF and ACF of ARMA(®, ) process:
D(B )}’t = 0(B )Ht

If the process is stationary, we can write

a(R) oo i o0
Variance:

Yo = U}% = E(}’tz)
= E[yt{((plyt—l + ¢oyi—z 0+ ¢’p}’r—p)+(ut + 0wy +0up 50 + Equt—q)}]

=1 Eveye-1) + @2Eeye o) + -+ ‘f)pE(}’t}’t—p) + E(veus) + 61E(yeup—q) + - +
BqE(ytut_q)

We have

E(yup—y) = E[(Ej,-”:c, lpjut—_}')ut—.i] =oq, V1=10,1,..,q

E(yeye-1) = E(EloWjue—; oWyt yr—) = E(ZSL iy uf;) = 08 T, ¥
Hence yo = of[Z_ X7, ¢yt + o + L, 6, Y]

ACVF:

Y = EQreyve—i)

= E[(¢’1}’ 1t Py F PpYe—p T up + Oup g +Oup 50 + ﬁqut—q)yt—k]



Forl Ekiq

Yie = D1¥k—1 T P2Vi—2 + o+ Pp¥u—p + 05 Orho + Opp1Py + )
=Y Ve +oi X O (6, =0VI=q+1)

Fork:_}(?‘l‘l

Yie = @1Vi-1 + PaVi—2 + -+ DpVi—p = X Pi¥e—

Hence, for k=zgq+1

P = @P1Pp—1+ -+ DppPr—p-

For K = @ + 1 ACF behaves like that of an AR(p) process.
11.6 Stationarity and Invertibility of the Processes

In time series analysis, stationarity and invertibility are critical concepts that help in
understanding the properties of time series models, particularly in the context of

autoregressive moving average (ARMA) models.

Stationarity refers to the property of a time series that its statistical properties do not change
over time. A stationary time series has constant mean, variance, and covariance across

different time periods.

Invertibility is a property related to the moving average (MA) component of an ARMA
model. A time series model is said to be invertible if its MA representation can be expressed

as an AR representation.
Stationarity of a Process
Consider AR(1) process:
Ve =1y Hup

Using successive substitution, we can write the process as



Ve = @iVeoy F U = IV F U+ Prup g + Piupp + o+ T MUy
1121l <1 457 =% e have

Ve = U + piup g + ‘f’% Up_g + o,

if |¢1l = 1, the process explodes to infinity.

0(B) = X2, 6,8/

Theorem: For the general linear process to be stationary, the series must

IBI=1 i e., on or within the unit circle.

converge for
(Proof is beyond the scope of this book)

For MA(q) process, ACVF is
¥e = 0—5[93{ + 6,041+ + Bq—keq]-
which is a function of k only and is independent of t. So, we can conclude that

U A process is stationary if it can be written as a moving average process of finite or

0(B) = X, 6;B B|<1

infinite order with converging for

O No conditions are required for MA process to be stationary
Invertibility
To illustrate the motivation behind invertibility, consider MA(1) model

ye = (1 = 0B)u; u,~N(0,03). (6, = —0)

Expressing ¢ in terms of Yt

Ve = =0y 1 — 0%y 5 — = 0%y Hup — 0"y
1F 161 < 1 a5 k= we obtain AR process of infinite order

Ve = =0y — 0%y, 5 — -t u; (¢ =—607)



1§ 161> 1 v depends upon Yt-1:Yt-2 - with increasing weights. We avoid this situation and

assume that 191 <1 we say that the series is invertible if this condition is satisfied.

Theorem (without proof): The general linear process is invertible if weights 7 Js (BJ' 's) are

— -1
such that #(B) = [0(B)] converges on or within the unit circle B/=1,

Condition for the Stationarity of an AR(p) Process

(1— 1B — ;B> — = ¢,BP )y = uy, 25)
P(B)ye = ur (26)
where,

#(B) = (1— ¢4B — p,B2 — - — $,BP). @7

Transfer function for AR(p) process is 0(B) =[# (B)]_l.

#(B) =0

Theorem: For the Stationarity of AR(p) process, roots of the equation must be

greater than 1 in magnitude.

Proof: For stationarity o(B) = [#(@B)]™ must converge for B = L et 9192 ""951
be the roots of the equation

(1—¢,B—¢,B>—--— ¢,BP) =0. (28)

Then we can write

(1-¢;B— ¢,B%>—--— ¢,BP) =[I"_,(1 — g;B).

We can write (assuming all roots to be distinctive)

— K;
0B) =II_,(1—gB) " =X . (29)



Hence, for convergence of O(B) for all 1Bl = 1, lgil <1Vi=12 .0 Thjs implies that

-1 -1 -1
for stationarity, for all the roots 91 92 » - 9p"

g7 > 1vi=12 .., pH

Example: Consider AR(1) process (1 = @1B)y: = us.

— — 41 -1
The root of (1 ~®1B) =04g B =91 Tpe process is stationary whenever 71> 1 o

P, < 1_

Example: AR(2) process (1—¢1B—¢2B?)ye =ur- gt 91592 be the roots of
(1—-¢,B—¢;B*)=0.

We can write the process as
(1-9,:B)A - g:B)y: =u,

For stationarity | 91! < 11921 <1,

Further
¢P1=91 T 92,92 = —09192

Suppose 9192 is a conjugate pair A1 = A(cos2mw t isin2Mw)  Thep

¢, =9, +9, = 2ACos(2nw),

b2 = —g19, = —A%, ‘-J\Fith—%{m{é,{]{ﬂ{l

The conditions on A and ¢ are required to ensure | 91| < L1g21 <1

Stationarity of ARMA (P, @) process:
Let us write the model as

P(B)y: = O(B)uy



#(B) = 1— ¢,B — ¢,B — - — ¢, B?,

@(B) =1+60,B + 6,B* + -+ 6,B1.
Process is stationary whenever roots of #(B) =0 lie outside the unit circle.

Example: Consider the ARMA(1,1) process
Ve = @¥e-1 + ur +0upy

1-¢B=0 sB=¢

-1
Root of the model is i . So, the process is stationary whenever

lpl <1

Invertibility Conditions

O The process is invertible if it can be written as an autoregressive process (of finite or

infinite order).
U No conditions are required for Autoregressive processes to be invertible.
Consider the MA(q) process with pu=0:

Ve =u + 0w g + 005+ + Opu g = 0(Buy

E(B) is a finite polynomial. So, no condition required on the parameters for stationarity.

@(B)=0

Theorem: For invertibility of MA(q) process, roots of equation must be greater

than 1 in magnitude.

hi h3t, ... kot

Proof: Let us suppose that q roots of the MA(Q)

2 —
orocess (1+6,B +6,B*+-+6,B7) = 0.

Write (1 +61B +62B% + -+ 6,B9) =IL (1 — h;B).

n, #(B)=[0B)N" =1IL,1 - B " =X, 1—?1-3'

The



3 >1vi=12 ..,q.

We can easily verify that the process is invertible if ‘hi So,

ARMA (p,q) ®(B) = 0 g

e For the stationarity of an process all roots of the equation

greater than 1 in magnitude.

e(B) =0

e For the Invertibility of ARMA (b, @) process, roots of the equation must be

greater than 1 in magnitude.

11.7 Estimation of parameters
Suppose Y1 Y2, - ¥n pe the observed time series, and

Y= i T 7
Sample mean= "~ n2it=1 Ve

1 - — —
Sample ACF= % ~ e et O = ) Qe — )

1 g - -
A ;E?:lk(}’t — Vs — )

where, €0 Sample variance

ample ACF oflag kis r :C—k;kzl,z,...
Thes ¥ 8 e

Empirical Version of Yule-Walker Equations for AR(p) Processes

Let the model is:
Ve =p+P1Vio1 +PaViz o H dpVep + U
Then the Yule-Walker equations become

P1=¢1p0 + 201+ F PpPp1

Pp = P1Pp—1 T P2Pp—2 + T dppo



Again let b1, 2.7 Py g the estimators of P P2 P, Replacing Px by & (x py k)

and P« by P leads to empirical version of these equations then we get
n= &11‘”{1 + ézfﬂl + et %prp—l

m = élrp—l + ézlrp—z ot ép To

or

Co = &101 + et épcp
c; =¢ic0++ Ppopy

Cp = (,‘Slcp_ll—l— S (;Bp Co
11.7.1 Estimation of parameters for AR Process
Let us consider the AR(1) process. The model is
Ve =+ @1y Huy
Method of Moments:

Compare parameters by corresponding sample estimates. Solve empirical Yule-Walker

I Py =~ F 2
equations for ®'S. Let us consider that the 4> P1, 9ic are the Moment Estimators of A P19,

For estimating M

Y=+, V== (1-¢,)7

and Yule Walker Equations for AR(2) is
Yo = ¢1¥1 +05v1 = 1Yo

Replacing parameters by estimators

co = P10+ 6501 = g

Hence we get



o~ C . o~
¢’1:C_::3’1- ‘55:(1_‘?%)%

Method of Least squares:

Let A 91 be the least square estimators of 1% 1 then minimizing S i.e. residual sum of

squares, we get
S=X(y — i~ 1yi1)”
=2[Gr =7 = ¢1 e — D) = {i— (1 - 3T}
= nco + ndZco — 2ndyc; +nfii — (1 - $,)7Y
— nco($2 — 2¢,11) + nco + nfii — (1 — ¢,)¥)°
S =nco($2 — 2411y + 12 — 1) + nco +nffi— (1— ¢,)7)°

= nco(dy —11)" +neo(d — r2) +nfii — (1 — ¢,)7)

S is minimum when
p=(1-¢,)¥

-~ [

b1 === 1

Alternatively, we can minimize > ~ (e —a- élyt‘l)zusing differentiation.
Estimation of parameters for AR(2) Process:

The model of AR(2) process is, Yt = H T @1Ve-1 T +2Ve—2 + 1

Method of Moments:

The empirical Yule-Walker equations is



j‘”1:$1 +$2V1F2:$1T1 +$2

P T P
= ¢ = 12 ; P2 = 17 and
an

Y=n+ %1? + ézy
=a=Y1—-¢,—¢3)
= Least Squares estimators ~ Method of moments estimators

Estimation of Parameters of AR(p) process:

The model for AR(p) process is

Ve =p+ P1Veo1 T PaVez + F dpVep U

Let ®1%2" Pp e the estimators of parameters P12 Py,

The empirical version of Yule-Walker equations is
n= &11‘”{1 + ézfﬂl + et %prp—l
m = élrp—l + ézlrp—z ot ép To
By solving these equations, the estimators 1 2, by can be obtain.
Estimate # by
fi = ?(1 _$1 - 62 —'"—ép)-

From the above we can conclude that

» Method of moments estimators are very close to least squares estimators.

(30)

31)

(32)

> If roots of the AR polynomial are close to unit circle, this method will give estimates

which are far from actual parameter values.



» The estimates based on Yule Walker equations can be used as initial values for

running numerical optimization method for calculating MLE.

Suppose we write

n
Wm:(’);$:(515r"5ﬂ;

1

p
o 1 v rp_l

R =( ’ oo ) = ((ru—ﬂ))
p—1 Tp-—2 = To

2
In the first Yule-Walker equation, replacing parameter ¢ and o by their estimators, we

obtain

7 iy ~7 _ T ~2
Co = P10y + o+ ey + 0y = cpp'r(p) + Gy

or
Gz =co(1—¢'rep)- (33)
If € =~ O then the matrix Rw) i nonsingular and

¢ = Rir(p) = by (say). (34)

Maximum likelihood estimation:

Let Y = (1.2, %) Since AR process has Markovian structure, the joint density of the

data is

FOle, D) = f(y1,v2, s Yl 03) X Ty f O 1Ve-1, s Veps b, 02)

Ignoring initial p terms ¥ Y2 =Y | F becomes

fO1$.00) < T pis Fe|Yeo1, o Vemps @, )

We can write



Ve =P1Vi-1 + PaVea o+ GpVep + U
= z{p +u;

where,

zZi = (yt_l, ...,yt_p);t =p+1,..,n and

Z:p % (n — p) matrix with rows z;

x = (}’p+1- ----}’n)li (n—p)x1

Then LF is

fOlze, p00) < T pis f(elze, ¢, 00)

if w~N(©,00), the LF conditional on the initial values is multivariate normal
Nn_p(x‘ZtI),UzIn_p).

MLE’s of ® and % are

¢ =(Z'2)Z'x

Gt = #(x —72¢) (x—2¢)

For an unbiased estimator, we use

1
- n—2p

(x—2$) (x — 2)

5.2
Result (without proof): When n is large

—~

. ai __ o~ ) 1
¢~Asymptotic N (qbn—yo P{pﬁ). ¢pp~Asymptotic N (O, ;) ,Vh > p,
and 31%_’0-1%_

11.7.2 Estimating parameters of Moving Average Processes



Does method of moments work to fit MA processes?

Example: Let the model for MA(1) process is
Ve = Uy — Oup_q, (35)
We have

Yo =0i(1+6%), v, = —oi6.

Hence,
¥ 2]

Replacing Yo @14 Y1 by their sample estimates €0 @14 €1 and & by & we obtain

Cléz + C{]é + cy = 0.

o

The solution for g is

h=—L0y (C—")Z —1
- 261_ 261 ’

(36)

If one of the two solutions in (3) give invertible process, select that value as an estimate of g,

o 1f% =1 c1=04 " e two solutions are 0 =—0.5,-2 process is invertible for

9 = —0.5, we use it as estimate of .

o~

o £ =1 €1=05 han 61 =1 process is not invertible for ¢ = —1,

2
6=—"21if1-(2
° If Cp = 2(.'1’ we have 2cy T (261) (37)
e Hence |€| =1 and the process is not invertible.

Fitting MA and mixed ARMA models require numerical optimization techniques.



Estimation of Moving Average Processes using Innovation Algorithm:

Let fitted MA(m) model is

Ve = U + O ttp—q + 0+ Opmlle — s

where, (¥m3: White noise process (0 Vm)

the innovation estimate of MA parameter is

o~

Onm—r = v;l[cm_k —ij;& ém.m—jék.k—jvj]-k =0,...m—1 and

— m—1g2
Vm = Cp — Ej:{] LC’arn.m—_}"!"rj

Hannan-Rissanen Algorithm for Fitting ARMA(p,q) Process:
Take & =0
Ve =d Ve PaVe 2o F Ve s+ A+ Gpyep tup + R Bq“t—q

Steps of Algorithm:

Step 1: Fit a high order AR(m) model using Yule-Walker equations. Choose m=maximum

integer at which ACF (or PACF) is significant. The estimated coefficients be

o~

(61,0 6m)

.

Estimate t by "t = Yt — GmiVe-1 = — PmmVe-m; t=m+1, .0

Step 2: Regress Yt OVerVi-u = Vep B, B—q F=(0"¢") can pe estimated by

minimizing
" " 2
S(p) = E?:mﬂ(}’t — 1V — = PpVe—p — 01ty — - — ﬁq“t—q) with respect to 4.
G _ r -1
LS estimator oer: g=2'2) Z’Xn,

Xy = (ym+1- -.}Tn)'J



Ym Ym-1 - Ym-p+1 Upy Up—1 - ﬁm—q+1

7= }’nE+1 ’]:n ym—lp+2 Upnsr Wy - Upm—g+2

Yn—1 Yn-2 n-p ﬁn—l ﬁn—z ﬁn—q
where, z2 (N —m) X (p +q)

it js computed for £ = M + L, 1. Tape e = 0 gor 1<y,

2 _ (Xn=2B) (Xn-2B)

Estimated error variance: “ n-m

Step 3: Repeat step 1 with ARMA model, obtain new set of residuals and carry out step 2.
Repeat these steps unless reduction in error variance becomes insignificant. For obtaining the
MLE’s of the parameters of ARMA models, iterative optimization procedures like

innovations algorithm are required.
11.7 Self-Assessment Exercise

Example: Consider the process

Ve = Ej‘-’z 1 B; Cos(mj t+ 1‘}}.)

. _ 2 : .
@) If R} are iid rv’s following N(Q©,o ), then the process is mean stationary. Is the process

variance stationary?

(i) If v NU(D'E}T), then the process is mean stationary.

— . ~ 2
Example: Process with linear trend: Yt = @ + Bt +ue; u WN(0, o).

Is the process (i) mean stationary, (ii) variance stationary?

Example: The PACF for AR(2) process vanishes for all k=3
1.8 Summary

This chapter contain the concept of the autoregressive process, which have models and

techniques form the backbone of time series analysis The choice of model depends on the



characteristics of the dataset, particularly whether it is stationary or non-stationary. Box-
Jenkins methodology helps streamline the process of model selection and validation.
Understanding autocovariance and autocorrelation is essential for diagnosing model fit and
performance. This encapsulates the essential elements and principles that govern the AR,
MA, ARMA, ARIMA, and Box-Jenkins models and their related concepts.
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12.1 Introduction

Christopher Sims is often credited with pioneering the VAR model in the 1980s. Sims
introduced VAR models as an alternative to the large-scale simultaneous equation models
commonly used in econometrics. He argued that structural models imposed too many
restrictions and often led to biased results due to unverified assumptions. VAR models, in

contrast, treat all variables symmetrically without requiring prior causal ordering.

Building on univariate AR models, Christopher Sims expanded autoregressive modeling to
handle multiple time series in Vector Autoregressive (VAR) models. VAR models became
essential for analyzing the relationships among multiple interdependent time series. In
finance, AR processes were further adapted by Robert Engle with the development of ARCH
(Autoregressive Conditional Heteroskedasticity) and later GARCH models, to handle

volatility clustering in time series. Sims applied VAR models to study how different



economic indicators interact dynamically. For example, he used VARs to analyze the
relationships between GDP, interest rates, inflation, and other key economic variables. This

made VAR a popular tool for economic forecasting and policy analysis.

A Vector Autoregressive (VAR) process is a statistical model used to capture the linear
interdependencies among multiple time series. A VAR model consists of a system of
equations where each variable is expressed as a linear combination of its own past values and
the past values of all other variables in the model. This makes VAR suitable for capturing
dynamic interdependencies among multiple time series. It is particularly useful in
econometrics and time series analysis, where the relationships between different variables

need to be examined simultaneously. The main features of this process are:

1. Multiple Time Series: VAR models treat each time series in a system symmetrically. This
differs from single-equation models, where only one variable is typically treated as

endogenous, allowing VARs to capture complex, bidirectional relationships among variables.

2. Stationarity: This is a crucial aspect because if the time series are non-stationary, spurious
relationships might appear, leading to misleading interpretations. Stationarity can sometimes
be addressed by transforming the series (e.g., differencing), but when variables are non-
stationary and cointegrated, adjustments or alternative models (like the Vector Error
Correction Model, or VECM) might be required.

3. Estimation via OLS: OLS estimation for each equation in a VAR model is simple and
computationally efficient since each equation can be treated separately. However, the
independence of equations might introduce inefficiency when the errors are correlated across
equations, so some methods might incorporate more sophisticated estimation techniques to

address this.

4. Applications: VAR models are extensively used in econometrics to explore dynamic
interdependencies, forecast future values, and simulate policy impacts. Impulse response
functions and variance decomposition are two common tools derived from VARSs to analyze

how shocks in one variable propagate through the system.

A big advantage of VAR process is its flexibility. Unlike structural models, VARs do not

require specifying a strict causal order among variables, which can be advantageous in



exploratory research or in complex systems where theoretical guidance on causal order is

limited.
Main limitations of VAR processes are the following:

1. Data Requirements: VAR models can require a large amount of data, especially as the

number of variables and lags increases.

2. Complexity: As the number of variables and lags increases, the model can become

complex and may lead to overfitting.

3. Interpretability: While VAR models can capture relationships, the interpretation of

coefficients may not be straightforward, particularly if the variables are cointegrated.

The Vector Autoregressive process is a versatile tool in time series analysis, allowing
researchers and practitioners to model and analyze the relationships among multiple time-
dependent variables. It is essential to ensure assumptions like stationarity are met for the

model to yield reliable results.
12.2 Objectives
After completing this unit, there should be a clear understanding of:
e Multivariate time series process and their properties
e Vector autoregressive (VAR)
e Vector moving average (VMA)
e Vector autoregressive moving average (VARMA) process
12.3 Multivariate Time Series Process

Multivariate time series analysis involves the study of more than one time-dependent variable
simultaneously. It allows for the examination of how multiple variables interact over time,
and how they may influence each other. Multivariate Time Series is a collection of time
series data where multiple variables are recorded over the same time intervals. For example,

stock prices of several companies over time. On the other hand, vector autoregression (VAR)



is a common model used in multivariate time series analysis. It generalizes the univariate
autoregressive model by allowing for multiple interdependent time series, where the current

value of each series depends on its own past values and on past values of other series.

Multivariate processes/Vector processes emerges when several related time series processes
are observed simultaneously over time. One may be interested in investigating the cross
relationships between the series. The objectives for jointly analyzing and modeling the series

§
» To understand the dynamic relationships over time among the series

» To improve accuracy of forecasts for individual series by utilizing the additional

information available from the related series.
Here are some key properties:
1. Stationarity

» Weak Stationarity: The mean and variance are constant over time, and the

covariance between variables depends only on the lag between them.

» Strict Stationarity: The joint distribution of any collection of observations is

invariant to shifts in time.
2. Correlation and Covariance

» Cross-Correlation: Measures the correlation between different time series at

different lags, capturing the lead-lag relationships.

» Covariance Matrix: Represents the covariance between multiple series, providing

insight into how series move together.
3. Causality

» Granger Causality: Tests whether one time series can predict another, implying a
directional relationship between the variables.



» Transfer Function Models: Capture the influence of one variable on another using

input-output relationships.
4. Seasonality

» Seasonal patterns may exist in one or more of the time series, requiring adjustments

or specific seasonal modeling techniques.
5. Trends

» Long-term trends may be present in individual series or across the multivariate set,
requiring differencing or detrending.

6. Asymptotic Properties

> Behavior of estimators as the sample size approaches infinity, which affects the

reliability of conclusions drawn from the data.
7. Homoscedasticity vs. Heteroscedasticity
» Homoscedasticity: Constant variance across time.

> Heteroscedasticity: Variance changes over time, which can complicate modeling

and forecasting.
8. Multicollinearity

» Occurs when two or more time series are highly correlated, complicating the

estimation and interpretation of relationships.
9. Integration

> A time series is said to be *integrated* of order d (I(d)) if it becomes stationary after
differencing d times. Multivariate frameworks might include considerations for

cointegration.

10. Dependence Structures



» Some series might be conditionally dependent based on the values of other series,

requiring copula approaches or vector autoregressions.
11. Modeling Frameworks

» Vector Autoregression (VAR): A common model for multivariate time series that

captures the linear interdependencies among multiple time series.

» Vector Autoregressive Moving Average (VARMA) and VARIMA: Extensions that

incorporate moving averages and integrated processes.
» State Space Models: Useful for handling latent variables and nonlinear relationships.
12. Forecasting Techniques

a) Various approaches such as dynamic factor models, Bayesian methods, and machine

learning techniques to predict future observations based on historical data.
13. Conditional Expectations

b) Multivariate processes often involve the computation of conditional expectations to

understand how one series might change given the values of others.
14. Error Structures

c) The error terms in multivariate models may be correlated, indicating that shocks to

one series can affect others.

Understanding these properties helps in the selection and application of appropriate models

for analysis and forecasting in multivariate time series contexts.
The techniques using for this are:

1. Vector Moving Average (VMA): Used to model the influence of current and past

innovations on multiple time series.

2. Dynamic Factor Models: Simplifies the analysis by assuming that multiple series can be
driven by a few unobservable latent factors.



3. State Space Models: This framework is useful for handling multivariate time series with

unobserved components, giving flexibility in how data is structured and modeled.

4. Bayesian Approaches: Bayesian methods help to incorporate prior knowledge and manage

uncertainties in parameter estimation.

5. Longitudinal Data Analysis: Often used in multivariate time series to investigate

relationships over time in different subjects or groups.

Vector autoregressive moving average (VARMA) time series models have been developed
keeping these objectives in mind. Vector processes are of considerable interest in several
fields like:

Economics: One may be interested in simultaneous behavior of interest rate, inflation, money
supply, unemployment etc. Focus may be on simultaneous study of time series of GDP,
percentage of people below the poverty line, unemployment rate, female-headed household,

crime, average income, minimum wages etc.

Environmental sciences and Agriculture: Joint study of time series observations of maximum
and minimum temperatures, rainfall, atmospheric humidity, wind speed and direction, etc.

and the total production of wheat.

Health and Environment related studies: Joint study of air pollution level, number of asthma
patients visiting the hospitals, number of registered cars in a city, monitoring and analyzing

multiple health indicators or biomarkers simultaneously, etc.

Multivariate time series processes represent a rich area of study, with numerous applications
across fields. By considering multiple time-dependent variables together, analysts can gain
insights into complex interactions and improve predictive accuracy. Understanding the

fundamental properties and techniques is essential for effective modeling and analysis.
12.3.1 Vector Autoregressive Moving Average (VARMA) Process

The Vector Autoregressive Moving Average (VARMA) process is a multivariate time series
model that combines the characteristics of both Vector Autoregressive (VAR) and Vector

Moving Average (VMA) processes. It is used to capture the linear interdependencies among



multiple time series variables. A VARMA(p, q) model integrates both the autoregressive and

moving average components.

In this process we assume that the error terms are typically assumed to be normally
distributed and uncorrelated with each other and Stationarity is another critical assumption;

the time series should exhibit constant mean and variance over time.
Wold’s infinite MA representation of Stationary processes is
Vi —p= Ejiu Wi

Suppose ¥(B)

can be expressed (at least approximately) as
¥(B) ~ ©(B)~'0(B),

where,

®(B) =1—-®,B — ®,;B* —:: — ®,BP: Matrix polynomial
©(B) =1+0;B +0;B? + -+ + 0,B%: Matrix Polynomial

and,

®@;;j =1, ...,p:k X k autoregressive coefficients matrices
©;;j =1, ..., p: k X k moving average coefficients matrices

Yt:kX]_

Uk X 1 yector of white noise with

E(u;) =0,
E(usu;) =X

It leads to the following vector autoregressive moving average process of order
(p,q) (VARMA(p, q) process)

Suppose,



Q(B)(Y; —p) = O(B)u,

or
p q
Vi=6+ ZCDJ,-Yt_J,- + u, —I—Z O;u;—;
j=1 j=1
where,
§=(1-@; -0y ——D,)u

The Process Mean is

-1
E¥)=p=(1-0,—0,—--—D,) &
Stationarity and Invertibility of the process:

The process is invertible then it can be represented as a convergent vector autoregressive
process of infinite order.

Let

Yt = 5 +ZHth_J + “’t
j=1

or

M(B)Y; = & + u; ZHH} | < o
j=1

B8) =1+ ) mB
=1

]
=0(B) 'o(B)

The process is stationary if it can be represented as a convergent vector moving average

process of infinite order



Yi=u+u —I-Z‘Pj-ut_j
j=1

orY; = p+¥(Blu;

[+ ¢]
Dlel<e
j=1

Y(B) =1 +i W, BJ
j=1
= ®(B)"1e(B)
Let |41 denotes the determinant of a matrix A, and @4 (4) denoted adjoint of A Then
A7 = det(4) 7! adj(A).
We can write
®(2) 1 = det(0(2)) " @ (2),
where,
@®*(z) = adj ({D(z))
Now, we can write the process as

Y, =+ det(®(®)) @ (B)O(B)u;

) -1
®(2)8(2) js 4 polynomial of finite order in Z. The process is stationary if {det(0(2)} ~

det(cb(z))

lz| <1 : : TP RTS SR
convergent for . Further, is a polynomial of degree P in Z. If >1 ' 5P

det({b(z)) =0

are roots of , then

det(®(2) = (1 ~ £ ~ §2) .. (1~ §,2)

-1 -1 -1
and (4e(@@)} " convergent Y12l <1 if roots $7% 80 i outside the unit circle.



The process is invertible if we can write the process as an autoregressive process of infinite

order. Along the similar lines as we proved the condition for stationarity, it can be shown that

det(0(B)) = 0, say,ny, 12, -

the process is invertible if all roots of ~Ma_|ie outside the unit

circle.

In VARMA@"?), let “* = 9. The model becomes

@(B)Y, = 0(B)y, (1)

Let & = k1 + K2 and we partition Yo ®(B),0(B), gng Ut g

-G
®,,(B) q}lz(B))'

mw):t%dm ®,,(B)

0,,(B) @12(3))
02:(B) ©2,(B)/

o(B) = (
Then (1) can be written as
{Dll(B)Ylt = @11(3)H1t

@, (B)th = —‘Dzl(B)Ylt + 03, (B)Hzt
Then it a6 said to cause Y2t but Y2t do not cause Yit.

where, Yit denotes the exogenous variables.

Then, the model referred to as an ARMAX model (X stands for exogenous). Suppose Yzt

denotes the vector of output variables and Yit denotes the vector of input (exogenous)

variables.



Future values of the process Y1t are influenced by its own past, not by the past of Y2t and

future values of the process Y2t are influenced by both Yit ang Yzt

VARMA(p,

Again, consider the ) process for forecasting. Let

@®(B)Y; =6 + 0(B)u,

or
p q
;=0 —I—Z DQ; YV ; +u + Z 0;us—;
j=1 J=1
where
®(B) = (I, — ®,B — - — ®,BP)

@(B) = (I + ©,B + -+ 0,B9)
The process is said to be

det(®(B)) =0

a) Stationary if roots of lie outside the unit circle.

det(0(B)) = 0

b) Invertible if roots of lie outside the unit circle.

The VARMA model is a powerful tool for modelling multivariate time series data, allowing
for richer interpretations of the relationships between multiple time series. Proper use and
understanding of this model can lead to insights in various domains, particularly in analysing

complex systems where multiple interrelated factors are at play.
12.3.2 Vector Moving Average Processes of order q

Vector Moving Average (VMA) processes are a generalization of univariate moving average
processes for multidimensional data. While a univariate moving average (MA) process
models a single time series, a vector moving average process allows for modelling multiple

time series simultaneously, capturing potential interactions and dependencies between them.

Let us assume the model,



q
Yi=u+u —I—Z Qjus;
j=1
= pu+ O(B)u;

where,

©(B) =1+ 0,B +0,B* + -+ 0,B1

Now, consider the Vector MA(L) processi.e.  — 0,
By recursive substitution
YVi=u +0u

= up + 0;(Y—y — 052;;)

=u; +0,Y; ; — 0%y, ,

= Glyt—l + @%Yt_z + e+ GJ]]_ Yt—j' + Uy + (_81)‘}-+1 H’t—j—l

= Glyt—l + @%Yt_z + e + Uy

J_, -
The above process is a VAR() process provided 01— 0,asj — .

f O1

This requires that the eigenvalues o are all less than 1 in modulus, i.e.,

det(ly + 6,2) # 0 for |zl = 1. Notice that, if 1~ ¥4 are eigen values of &1, then

q
det(fk + '@12) :H (1 + TJ'Z).

j=1

The autocovariance matrix of the process is



I'() = E(YY;4y)

+0,20); ifl=0
—1x0); ifl=1
0, ifl=2

Again, consider the Vector MA(q) process

¥; = 0(B)u;

The process is invertible, if it can be written as
O(B) Y, =u,

or

Yt _Z Hth—_} - “‘t'
j=1

e(z) =11, —Zl’ljzf
j=1

[+ ¢]
Dl <
j=1

For invertibility
det(@(z)) = det(Ik + 0,z 4+ @qzq) +0,Vi|z| <1

det(-:EI (z)) =

Thus, roots of 0 lie outside the unit circle.

Now define ;s in terms of @J"S:

We have

(Ie+ @1z + -+ 0,29) | I, — Z 0z | =1
j=1



Comparing the coefficients of different powers of Z we obtain the following recursive

relations for VS

M, =0, ; =0, -Y_ 0,I_;;j=23,..

@, =0Vj>gq Iy =—I,]; =0V <0
Covariance Matrices of Vector M4(@) processes:
We have

EY)=p=0

I'(l) = Cov (Y, Yiyy)

= E(YtY§+:)

q q !
=FE4| us + Z 01 Upyp T+ Z Uy ;

q q
z +Z 0,Z6; = Z 0,20/;if I=10
j=1 j=0

q-I q-l
ro) + Z 0,26],, = Z 0,£6,;if l=1,..,q
j=1 Jj=0

0;if l=q+1

Example: Consider bivariate MA(1) process:
Ylt) _(Uat 0.6 0.4 (Uit-1)

(th B (Hzt) Bl (—0.3 0.8) (Hzt—l) ’
(201

L= (1 4)

det (0.6 — A 0.4

=10 .
Roots of —0.3 0-8—3) are 07 £IWO0.11 \ith absolute value 0.6. Hence

process is invertible. Further



ro=(% (¢ DS )

1.84 1.28
(1.28 2.26)

=, ) o)

=(32 29)

r(l) =0vl=>2

V= (1'{?4 2.[;,6)

Autocorrelation matrix

1.6 02,1
0) =V v
p(0) 2(2.2 2.9) ?

1.28
1

1
(1.84 x 2.26)2

1.28
1

1
(1.84 x 2.26)2

o) = V2 (1.6 0.2) o
| |

22 29
Vector Moving Average processes provide a powerful tool for modelling and understanding
relationships in multivariate time series data. They allow researchers and practitioners to

analyse complex dynamics that exist in various fields. Proper specification and estimation of

VMA models are crucial for accurate analysis and forecasting.

12.3.3 Vector Autoregressive Process VAR(p)

The Vector Autoregressive (VAR) process is a statistical model used to capture the linear
interdependencies among multiple time series. In a VAR model, each variable in the system
is modeled as a linear function of past values of itself and past values of all the other

variables in the system.



A vector autoregression of order p, VAR (p), can be described as

Yt =4 + q}l Yt—l + {Dz Yt_z +...+¢pyt_p + Uy (2)

@, =

where, 1. P) is a k-dimensional square matrices;

Let ¥t be a k-dimensional vector of residuals (vector of purely random processes) at time t

and g is a vector of constant terms.
We can write (2) as

{D(B)Yt =4 +Ilt, (3)
®(B) = I, -®;B- ®,B>~ ... -d,BP,
Now, VtandVvVI= 0

Elu] = 0,
Elusu] = Z,,

Elusui,]= 0

This system is stable if and only if all included variables are weakly stationary, i.e., if all

roots of the characteristic equation of the lag polynomial are outside the unit circle. Hence

det (I, - ®1z- @z~ .. ~®,zP) # Ofor|z| = 1 @)

We can write (2) as
Yr—w) = @Yoy —p) + 02 (Vi —p) + ---‘I“CDp(Yt—p — ) +u;
Where

5= @)y,
or

g =aI)§ =),



Under this condition, system (3) has the MA representation
Y, = @ 1(B)§ + 0 H(Bu,
= p+u +WYup +WYoup, + 0o
= u+ ¥Y(B)u,,
with
¥(B) = i ¥, BJ
j=0

= d1(B),

Notice that

OB = [+ @y + -+ Ou
= @ (I )p

The autocovariance matrices are defined as:

I, = E[(Ve- )Yy - )]

Set & = 0 g0 that # = 0, Due to (2), it holds that

I,(D) = E[V;Y{y,]

= O, E[V,Y] 1] + OEV Y, o1+ .+ QLE[V Y, + E[ue Yy, ]
This leads to the equations determining the autocovariance matrices for
LA)=®,L,(1—-1)+ &,I,U—-2)+ ... + L, —p),

I,(0) = ®,5,(—1) + ©,I,(=2) + .. + ®,L,(—p) + E,

=@, [,(1) + @,0,(2)' +...+ @,L,(p) +I,

=12, ..

|p.

(®)



Thus Yule-Walker Equations for VAR(p)

process are
L, = ¢,L,(-1) +@,L,(-2) + .. + ®,L,(—p) +Z,

I,(1) = ©,5,(0) + ,0,(-1) + ... + ©,5(-(p - 1)

L) = &L, -1+ @00 —2)+ .. + ©,L,0)
¥ij 0= @n™ element of Fy(E) = Cov(Vs, YI’.t+I)_
Since

Yy (D =y (=DV i1,

we have

I,() =T,(=D"

The individual correlation coefficients is

Yij (D

v Yii (O)yj_}' (G)

Autocorrelation matrices are given by

pii (D) = Vi =12 . k.

1 1
py (D) = VI,V ,

where
1
- - 0 0
v ?’11(‘3)
1
1 B 0 _ 0
V2= v 'P’zz(ﬂ)
o o i
2, T’kk(ﬂ)-



Consider VAR(1) Process:

Yt = {DYt—l + U,

E(“t“é) = Iy
Then, by recursive substitution
Y = up + up_q + Pup_, 4+ {Djut_j + CDJ""'lYt_j-_l

A,

Let 4P pe the eigen values of © (or @)

As T = 2P =0 404 we can write the process as a MA process of infinite order and the

process is stationary (stable).
r(o) = E{v;¥{}
= {Dry(l) + 2y

Iy(1) = E{V:Yi44}

=TI, (0)®’
= [,(0) = ®Z, @’ + I,
r,(1) = I, (0)®’

LD = E(Y:YZy)
= E{V;(®PVisy—1 +up4)'}
= Fy(l — 1)@’

pl
=T, 1= 1.

A= diag(.ll.

Let 'AP) be the matrix of eigen values of ®" and ¥ be a lower triangular

r_ -1
nonsingular matrix such that ®* = PAP™" Then

o' =paAlp!



Hence
— Ip—-1

Iy(D) =T, (0)PA'P
Further

1 11 1
py (1) =V 72l (0)V 2V2PA'PTIV 2

1 1
= p, (0)VZPA'P™V 2
Hence for vector AR(1) model, the correlations will exhibit a mixture of damped
exponentials and damped harmonics depending upon whether the roots are real or complex.
Example: consider the VAR (1) model as

Y10=08Y ;1 —04Y5, 1 T up,
Y30 =—-02Y;, 1 +0.6Y5: 3 +uy,

We can write the model as the following AR process
Y. — ¥y u

( 1.t) _ ( 0.8 0.4)( 1t 1) +( 1.t)
Yz,t —0.2 0.6 Yg,t_l Uz ¢

with

1.00 0.70
E“:(O.?O 1.49)'

To check whether the system is stable, we calculate roots

1— 0.8z 0.4z
det(fz—cbz):‘ oz e ]=0

This gives roots #1 = 1,22 =25 gjince one of the roots is 1, the model is not stable.

Example: let us consider the VAR (1) model



V. —0.4\ (Y1 .
(2) = Co o) () + Gi)

n G o)

The roots of

|1 — 0.2z 0.4z
0.2z 1— 0.6z

| — 0

are 52 £ V3) and both roots are larger than one in modulus. Thus, the system is stable.
Variance-covariance matrix:

I,(0) = @, (0)®’ + I,

Iy (1) =T, (0)0’

For obtaining the variances ¥11(0) ang ¥22(0) for Y1 and Yz as well as their covariance
¥12(0)(= ¥21(0),) we solve the following linear equation system:

0.96 y;,(0) + 0.16 y;5,(0)- 0.16 y,(0) = 1.00

0.08 ¥1,(0) + 0.72 ¥;,(0) + 0.12y,,(0) = 0.50

—0.16y,,(0) + 0.48 ¥;,(0) + 0.64 y,,(0) = 1.00

Solving which, we obtain

¥1,(0) = 1.485,y,,(0) = —1.057,y,,(0) = 2.132.

Thus, the instantaneous correlation between Yiand Y2 is -0.594.

Forecasting using VAR(p) models:

The forecasts for VAR processes are obtained as:



Ye(1) = E¢[Yisi]
= 5 + {D]_Yt + {DZYt—l + + {Dth_p+1

Ve(2) =64+ 0,7 (1) + DY + ... + DY pyy
and so on.

Alternatively, for the MA representation, we get
Vi(1) = p+ Wou + WYoup_ | + -

Since

Yiei = p ey +Wue +Youp—y + 00,

we have the forecast error as

Yoy — V(1) = upyy

The autoregressive representation is used to generate forecasts and MA representation is used
for calculating the corresponding forecast errors.

The VAR model is a powerful tool for understanding and predicting the dynamics of

multivariate time series data.
12.4 Self-Assessment Exercise
1. What distinguishes multivariate time series from univariate time series?
2. Explain the concept of stationarity in the context of multivariate time series processes.

3. Define and differentiate between weak stationarity and strong stationarity in

multivariate time series.
4. What is the role of cross-correlation in analysing multivariate time series data?

5. What is a Vector Autoregressive (VAR) model, and how is it mathematically

represented?



6. Describe the conditions for stability in a VAR model.
7. What are the limitations of VAR models, and how can they be addressed in practice?

8. What is a Vector Moving Average (VMA) model, and how is it represented

mathematically?

9. Compare VMA models to univariate Moving Average (MA) models in terms of

complexity and interpretation.

10. What is a Vector Autoregressive Moving Average (VARMA) model, and how does it
generalize VAR and VMA models?

11. Discuss the conditions for stationarity and invertibility in a VARMA model.
12. What are the advantages of using VARMA models over VAR or VMA models alone?
12.5 Summary

In multivariate time series analysis, understanding the interdependencies among multiple
variables is essential, especially in fields like economics, finance, and engineering. This unit
discusses the three primary models addressing these relationships: Vector Autoregressive
(VAR), Vector Moving Average (VMA), and Vector Autoregressive Moving Average
(VARMA) processes.

The VAR process models each variable as a function of its own past values and the past
values of other variables, making it highly suitable for analyzing interconnected time series.
The VMA process models each variable based on past shocks across variables, focusing on
the effect of these shocks over time. Lastly, the VARMA process combines both
autoregressive and moving average components, offering a more comprehensive approach to
capture complex dependencies among variables. These models allow for dynamic forecasting
and policy analysis, providing insights into how variables interact over time. We also discuss
the stationarity and invertibility conditions for these models. Together, VAR, VMA, and
VARMA processes serve as essential tools for multivariate time series modeling, and
decision-making in various applications. After the completion of this unit, you have a clear

concept of Multivariate time series process. And also you will be able to understand the



different multivariate time series processes like; vector autoregressive (VAR), Vector moving

average (VMA) and vector autoregressive moving average (VARMA) process
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13.1 Introduction

Granger causality is a statistical hypothesis test used to determine whether one time series can
predict another time series. The concept was developed by the economist Clive Granger, who
won the Nobel Prize in 2003 for his work in time series analysis. The key points are:

1. Causality vs. Correlation: Granger causality does not imply true causation in the
philosophical sense. It simply indicates that past values of one variable can provide

information about future values of another variable.

2. Time Series Data: The technique is typically applied to time series data, which means the

data points are collected or recorded at multiple time intervals.

3. Statistical Test: To determine whether one series Granger-causes another, you can use
regression models. If the lagged values of time series X contribute significantly to predicting
time series Y, then X is said to Granger-cause Y.

4. Lag Length: The analysis typically involves choosing the number of lags to include in the
model. This can be determined using information criteria such as Akaike Information

Criterion (AIC) or Bayesian Information Criterion (BIC).

5. Assumptions: Stationarity: The time series should be stationary, meaning that its statistical
properties such as mean and variance are constant over time. If not, transformations (like

differencing) may be required.

Granger causality tests are a powerful tool for exploring predictive relationships in time
series. Careful consideration of assumptions, testing procedures, and result interpretations is
essential for drawing meaningful insights from such analyses. Granger causality tests are
statistical methods used to determine whether one time series can predict another time series

based on their past values.
13.2 Objectives
After completing this unit, there should be a clear understanding of:

e Granger causality



e Instantaneous Granger causality and feedback
e Characterization of casual relations in bivariate models
e Granger causality tests

13.3 Granger Causality

Granger causality is a powerful tool for exploring predictive relationships in time series data,
but it should be used with caution and in conjunction with other methods and analyses to gain

a comprehensive understanding of the dynamic relationships between variables.

Suppose we have more than one time series. The question is whether data generating
processes of these time series are independent of each other or dependent on each other. If

yes, then the dynamic mechanism of dependence.
Steps to Perform Granger Causality Test:
1. Preprocess Data: Ensure your data is stationary.

2. Choose the Lag Length: Use statistical criteria to determine how many lags of time series

X to include when predicting Y.

3. Fit Models: Fit both a restricted model (only Y's own lags) and an unrestricted model (Y's

own lags plus X's lags).

4. Conduct Hypothesis Test: Perform an F-test to compare the two models. The null

hypothesis is that X does not Granger-cause Y.
5. Interpret Results:

e If you reject the null hypothesis, it suggests that past values of X provide statistically

significant information about future values of Y.
e If you fail to reject, it suggests that X does not help predict Y.

Limitations of the test:



1. Not True Causality: Just because one variable Granger-causes another does not mean there

is a direct cause-and-effect relationship.

2. Omitted Variable Bias: If a confounding variable affects both time series, the results may

be misleading.

3. Sensitivity to Specification: The results can be sensitive to the choice of lags and model

specification.
Application of the test:

Granger causality is widely used in various fields, including economics, finance,
neuroscience, and other areas that deal with time series data to analyze relationships between

variables, forecast future movements, and inform decision-making.
The two major challenges of test are:

1. Correlation does not imply causality. It is important but difficult task to distinguishing

between these two.

2. The causal relationship among variables might disappear when the previously ignored

common causes are considered.
The two basic assumptions of the test are:
1. The future cannot cause the past. The past causes the present or future.

2. A cause contains unique information about an effect not available elsewhere.

Definition: A variable * is causal to variable y if * could be interpreted as a cause to y or y as

effect of *.

Let It be the total information set available at time t. This information set includes, above all,

the two-timeseries * and y.

Let Xt = (Xt Xe-1 - Xe-k - }: Set of all current and past values of X



Yt = (Vt» Ye-1-Ye-k - }: Set of all current and past values of ¥ and
2r. . .
a*(): variance of the corresponding forecast error.

Then *¢ is said not to Granger cause Yt if for any h>0,

Let FOt+nlle) = F(vesnlls — %¢)

Let F denotes the conditional distribution and ¢ ~ Xtis all the information except Xt Thus Xt

is said not to Granger cause 't if Xt does not help to predict future ¥ The whole distribution
F is generally difficult to handle empirically and we turn to conditional expectation and

variance.

Definition: * is (simply) Granger causal to ¥ if and only if the application of an optimal

linear prediction function leads to

02 (Ves1lls) < 0% (yesq Iy — %),

i.e., if current and past values of * are used future values of ¥ can be predicted better.
13.3.1 Instantaneous Granger Causality

Instantaneous Granger Causality is a concept in time series analysis that involves assessing
whether one time series can predict another, specifically in the context of their simultaneous
relationships. Traditionally, Granger causality tests determine if past values of one variable
can predict future values of another. However, instantaneous Granger causality extends this
by examining whether the current values of one time series can provide predictive
information about the current values of another. This evaluates whether the current value of
one time series affects the current value of another, alongside the historical values. It

recognizes that some influences may act immediately rather than unfolding over time.

Instantaneous Granger causality is a useful tool in understanding the immediate
interdependencies between time series data. While it offers powerful insights, researchers
should critically evaluate their results, considering potential confounding factors and the

limitations inherent in statistical testing.



Here, * is instantaneously Granger causal to ¥ if and only if the application of an optimal

linear prediction function leads to

02 (Vs e xp1 ) < 02 (Vesa 1)

i.e., the future value of ¥» Yt+1, can be predicted with a smaller forecast error variance, if the

future value of *» *t+1 are used in addition to the current and past values of *.

13.3.2 Feedback

There is feedback between * and ¥ if* is causal to ¥ and ¥ is causal to *. There are eight

different, exclusive possibilities of causal relations between two time series:
(i) X and ¥ are independent; ¥ L ¥) or (x,¥)

(ii) There is only instantaneous causality: (x-y)

(iii) * is causal to ¥, without instantaneous causality: (x =)

(iv) ¥ is causal to *, without instantaneous causality: (x =)

(v) ¥ is causal to ¥, with instantaneous causality: (x=y)

(vi) ¥ is causal to *, with instantaneous causality: (x=y)

(vii) There is feedback without instantaneous causality: (x < y)

(viii) There is feedback with instantaneous causality: (x =y)

Now. consider the Bivariate AR(1)Process

(=0 862D+ ()

Four possible causal directions between x and y are:



1. Feedback

o o v, Hy= (P 92)

¢’21 ¢’22
2. Independence,

0
Hll x 1 v, Hl = (¢11 )

0 o2

H :(‘f’n ¢12)
3. Hy X7V ¥y »x 2 0 ¢

P11 0)

-y*Lx*“fﬁ:@n 2

4. Ha:
Now for Two-stage testing procedure

1. Test Hy (null) against Ho, H2 against Ho, and Hs against Ho.

2. If necessary, test Hi against Ho, and Hi against Ha.

Equivalent definition
For an r-dimension stationary process, Yt, there exists a canonical MA representation
Yt = H + LP(L)Ht

= '-l +kaiut_l' . Lpﬂ = I]“
i=1

Let LYt =Yt-1 is the Lag operator (same as backward shift operator “B”) and Tyl is the

(j, k)™ element of % Then

I. A necessary and sufficient condition for variable K not Granger-cause variable Iis

that e =0Vi=12, .

ii.  If the process is invertible, then



Yt =4§ + H(L)Yt_i + Uy

Iy, is

Yir
(}’n)
Y3t

Then

Z LY ; + u,
i=1

the (j, k)" element of I,

If there are only two variables, or two-group of variables, J and k, then a necessary

and sufficient condition for variable X not to Granger-cause variable J is that
My =0,Vi=12-"

For a VAR(1) process with dimension equal or greater than 3, Mjies = 0, fori=1,
2,--+,1s sufficient for non-causality at h = 1 but it is insufficient for non-causality at h >
1.

Variable ¥ might affect variable J in two or more period in the future via the effect

through other variables. For example, in the AR model

04 0 0 Yit-1 Ut
= (0.2 0.1 0.2) (J’zr—l) + (“n)
0 03 03/ \Vit Uzt

y1 =Py
Y2 = {Dz}’a
and

o

04 0 0 0.16 0 0
02 01 0.2 .@2:(0.1{) 0.07 0.08

0 03 03 0.06 0.12 0.15

Observe that



Y3 is not influenced by yi11 but influenced by yos.
Causality is defined for all lags h > 0 and not just for h = 1.

Causality for a particular h is neither necessary nor sufficient for some other lag. Then, it is

important to understand the causal mechanisms by which Yesare produced.
Two main tasks in causal inference:

(a) Defining the Set of Hypothesis or counterfactuals that based on some economic

theory.

(b) Identifying causal models from data which require estimation and hypothesis testing
theory.

13.4 Causal analysis using Bivariate VAR and Bivariate MA representations

Causal analysis using Bivariate Vector Autoregression (VAR) and Bivariate Moving Average

(MA) models involves understanding how two time series interact over time.

In a Bivariate VAR model, each of the two-time series is modeled as a linear function of their

own past values and the past values of the other series.

In a Bivariate MA model, the current value of a series is expressed as a linear combination of

past error terms from both series.

Causal interpretation requires careful consideration of the data structure, stationarity, and
potential confounding variables. The presence of endogeneity or omitted variable bias can
complicate causal claims. While both approaches offer valuable insights into bivariate time
series data, VAR is typically favored for causal analysis due to its explicit modeling of

dynamic interactions, whereas MA is more about understanding the influence of shocks.

Let the AR representation of the processes is
Yt
A(L) (xt)

@ an®)\
=(o 0 w20) G =6) )



A(L)

where, is a matrix polynomial.
a;x (L) = Z ajk.iﬂ; k=12
i=0

@y ; is the coefficient of B' in Ay, (L).
To normalize the system,we take @y, = @229 = L.

aj(L) = 0 if all their coefficients, “/* are zero.

Also, %t-a0d V¢ a6 the white noise which might be correlated with each other.
Then *t does not Granger-cause 't if #12 L) =0 ¢ @12: =0 Vi =1,2-~

The instantaneous causality exists iff “ 224V are contemporaneously correlated. Then in this

case forecast error of ¥ is reduced if current value of * is included in the forecast regression

implying that either 120 ¥ 0 0T @210 # 0.

Now, let us consider the MA representation of the process
Yt Up_q

(xt) = B(L) (vt—l)

_(B1i(L) By (L)) Up_y s

- (rGZI(L) ,822 (L) (Ut—l) + (Ut) (2)

B(L) k=12,..

Here, is a Matrix polynomial with elements By (L), J,

Further
B =) Bl

ﬁn.o = !5’22.0 =1

For the identifiability of the model



512.0 = !321.0 =0

The *t does not Granger-cause 't if
B12 (L)=0
or

r8121 :O,VL — 1, 2,'”
Now

a1 (L) a;5(L)

(ﬁn(L) ﬁu(L)) _(%1@) anm)‘l

B21(L)  Bz2(L)

= pawy =22
_ap(l)
frall) =~ 55

a4 (L)

Baa(L) = O
azq (L)

B2 (L) = — )

and

n(L) = ay;(L)az, (L) — a(L)ay; (L)
Then

B12(L) =0
= a,(L) =0,

B21(L) =0
= ay,(L) =0

Hence *t does not Granger-cause Yt if ¥ ¢ = 1 2.+,



B12(L) =0
or Bi2: = '3'

The hypothesis that all cross-lags coefficients are zero can be tested using F test for testing
significance of coefficients.

13.4.1 Characterizing Causal Relations using Residuals of individual Univariate

Processes of * and y

Using Wold representation, we express (v} and {x;} by two separate MA processes of

infinite order. Consider that,

v: =¥V (La;
xp =Wy (L)bt} 3

and

Wi (L) = Z Wy, L
=0

We can write (3) as

() =voo(3)

where,

(¥4 (L) 0
LP(L)_( 1B lez(L))

Further



(i):wﬁw@TT@%E)
- vHw ()
() i) 6)
where,

H(L) =¥(L)'B(L)

Hence

() = v ()

v ()

t

-nw) ()

Now
(L

mﬂm=§i$uk=Lz
Ji

Thus

a;,(L) =0

= [12(L) =0

= n2(L) =0

Hence *t does not Granger-cause ¢ if ¥ ¢
n12(L) =0
or

Mazi = 0.



The cross covariance between @ and bt jg

Yan(k) = E(asbe_y)
= E[(n11 (L)ue + 912 (L) ve) (121 Ly + n22 (L) vy )]

= E[ny1(L)ue.npq (Lue_i] + E 21 (L) we_g. 112 (L) ve] + E[ny1 (L) ug. oz (L) vy ]
+ E 112 (L) ve. 022 (Lve ]

Assuming no instantaneous causality, % and V¢' are uncorrelated ¥ & t'. Hence
Yar(k) = Elny1 (L we. npy (D ue ] + Elng2 (L) ve. 122 (L) ve_ ]

When (¢ 7‘*3"), M2(L) = 0 gng @ = Ma(Lur U gng @ gre white noise, thus both the

representations of V't

Ve = B(Luy,
Ve =¥ (L)a;

imply that 11(L) =1 Hence @ = Ue,
Thus, Vk

Yab(k) = Elus.mpq (L) uy_ ]
=0

Hence, cross correlation
pap(k) =0V k
Similarly, when o+ x)
Pap(k) =0V k.

When & L)

F"ab(k) =0Vk.



13.5 Causality Tests

Causality tests are statistical methods used to determine whether one variable influence or
causes changes in another variable. Establishing causation is more complex than correlation,

as correlation does not imply causation.

Granger causality tests are a statistical hypothesis test used to determine whether one time
series can predict another. It is based on the premise that if a variable (X) Granger-causes
another variable (Y), then past values of (X) should contain information that helps to predict
future values of (Y).

13.5.1 The Direct Granger Procedure (Thomas SARGENT, 1976)

The Direct Granger Procedure, introduced by Thomas Sargent in 1976, is a statistical method
used primarily for testing and estimating causal relationships in time series data. It builds on
the concept of Granger causality, which posits that if a time series (X) Granger-causes
another time series (Y), then past values of (X) contain information that helps predict ()

beyond the information contained in past values of (YY) alone.

The Direct Granger Procedure is widely used in various fields, such as economics, finance,
and social sciences, to understand complex relationships among time-dependent variables,

assess shock transmission, and inform policy decisions.
Let ¢} (e} be the two stationary time series.

Test for simple causality from * to ¥ is equivalent to examining whether the lagged values of

* in the regression of ¥ on lagged values of * and Y significantly reduce the error variance.

Consider the models

ky

Ml:y; = ap + Z ajfl}’t_;g +u; t=12,...,n
k=1
Ky Ko

M2:y, = ap+ Z af vep + Z af, e Yus; t=12,...,n

k=1 k=kq



We estimate both the models using least squares with ko =1

The Granger causality index is defined as

32
GCI = log (,\Zl
052

52 52 . . :
where %u1 and Zuz are estimated error variances of models M1 and M2 respectively.

Lol 2k
Ho:op; = af; = =05, =0

Testing the null hypothesis, is equivalent to testing

Ho: Trye model is M1 against

H,:True model is M2

Let

RS51= Residual sum of squares for the fitted model M1.

RS53= Residual sum of squares for the fitted model M2.

For testing the significance of difference between these variances, the Fisher F-statistic is

RSS, — RSS,
ks
RSS,
n—hy, —k; —1

F =

Here, o is the hypothesis that X does not cause Y. Under o, statistic F follows the F-

F(kz, n _kl_

distribution with k2 = 1) Interchanging * and ¥ in M1 and M2, a simple

causal relation from ¥ to * can be tested. If the null hypothesis is rejected in both directions,

we conclude that there is a feedback relation. For testing instantaneous causality, set

— . 0 .
ko =0, in M2 and test Ho: %12 = 0 using € test.
Shortcomings:

The results are strongly dependent on the number of lags of the explanatory variable k2,



There is a trade-off that the more lagged values we include, the better the influence of this

variable can be captured but the power of the test decreases as more lagged values are

included. Use different values of X2 (and Ji‘:1) to inspect the sensitivity of the results to the

number of lagged variables.

Note: Use different information criteria (AIC, BIC) to select k2 (and kl).

Sargent's contribution through the Direct Granger Procedure significantly advanced the
framework for analysing dynamic relationships in time series, allowing researchers to derive

insights about causality and influence among multiple variables.
13.5.2 The Haugh-Pierce Test

The Haugh-Pierce test is a statistical method used for assessing Granger causality in time
series data. It is specifically designed to test whether one time series can predict another,
extending the classic Granger causality framework. The method extends traditional Granger
causality tests by allowing for non-linear relationships between the variables. Unlike standard

tests, it can account for situations where the relationship may not be strictly linear.

The Haugh-Pierce test is useful in various fields, including economics, finance, and social
sciences, where understanding interdependencies and predictive relationships among time

series is critical.

The steps for the Haugh-Pierce test are as fllows:

1. Fita univariate ARMA models for X¢h el t =1.2,,m
2. Obtain estimated residuals, say, {be}and {a:}

3. Obtain the cross correlations between {7} 21d (A} say Pan(F)

4. Use Box-Pierce Q statistic (or the Box-Ljung Q statistic) to test the null hypothesis
that the estimated residuals are white noise. If hypothesis not accepted, calculate the

following statistic:



k2
s=n) " p3H
kzkl

Ho: pap (k) = 055 oy kwithkl = k < k2, S

Under the null hypothesis is asymptotically

x? distributed with (k2= k1 +1) g5

5. Check for k1 < 0gng k2 > D, whether there is any causal relation. If this hypothesis

k]_:]. kz:zlln

can be rejected, causal relation from * ¥ ¥ can be checked for and

kl = -1 k2 = —1

the reverse direction, for , it can be checked whether there

yvitox

is a simple causal relation from . It can be tested by using Pav (0) whether there

exists an instantaneous relation.

The Haugh-Pierce test adds depth to traditional Granger causality analysis by accommodating
non-linear relationships, making it a powerful tool for researchers analysing time-dependent
data.

13.5.3 Hsiao Procedure

The Hsiao procedure is a method used for testing Granger causality in time series analysis.
Developed by Hsiao (1981), it is particularly useful for examining the causal relationships
between two or more time series variables. It determines the lag lengths and then estimate

parameters. The procedure is divided into six steps:

(i) Optimal lag length K1 of univariate AR process of ¥ is determined.

k5 of x

(ii)) Fixing K1, the optimal lag length is determined.

(iiii)Given X2 optimal lag length of ¥, X1, is again determined.

(iv) If the value of the information criterion in the third step is smaller than that of the first

step, * has a significant impact on Y. Otherwise, the univariate representation of y is

used. This gives a preliminary model for y.



(v) Steps (i) to (iv) are repeated by exchanging the variables * and Y. We get a

(preliminary) model for *.

(vi)Estimate the two specified models simultaneously taking into account the correlation

between their residuals.

The Hsiao procedure captures the simple causal relations between the two variables. The
instantaneous relation is reflected by the correlation between the residuals. The Hsiao
procedure is a valuable tool for researchers looking to establish causal relationships in time
series data. Its systematic approach helps in identifying whether one variable can be used to
predict another, which is essential in fields like econometrics, finance, and social sciences.

13.5.4 Direct Granger Procedure for Testing the Causality of More than two Time

Series

The Direct Granger Causality procedure for testing the causal relationships among more than
two time series is an extension of the classical Granger causality test, which is originally
designed for two time series. The Haugh-Pierce test uses cross correlations between two time
series and cannot be applied for more than two series. We can apply direct Granger procedure

for more than two series.

Let{Zeh J = Loomismg, e Estimating equation can be extended to

_ ki k k2 k m kjtz ok .
vi=ao+ Xl afi vkt X 0 Yok + XL Xyl Bz tun t =12, ..,n

k
where, B . Coefficients corresponding to additional variables.

After determining ki, ky, ks, ke

m+2 - estimate the model using least squares. Using F-test,
we can test hypothesis such as whether different coefficients of * variables are significantly
different from 0 or not. It can be tested if there exists a simple causal relation from * ¥ or

feedback. The significance of coefficients of other time series %1% can also be tested by using
the F-test.



The Direct Granger causality procedure allows researchers to explore complex
interrelationships among multiple time series. While powerful, it is essential to interpret the
results within the context of the data and consider potential confounding variables. Further
techniques, such as Structural VAR (SVAR), may be employed for more nuanced causal

analysis.
13.5.5 Systems with more than two variables

Granger causality is a statistical hypothesis test for determining whether one time series can
predict another time series. While the classic Granger causality test is generally applied to

pairs of time series, it can certainly be extended to systems with more than two variables.

If there are more than two time series then the question arises here is that; Are the inferences

drawn from Bivariate Tests misleading?
Then,

e Instantaneous relations detected with the direct Granger procedure or Haugh-Pierce
test using bivariate tests are only preliminary. Definite evidence about whether these
relations are real or spurious can be drawn in a complete model using additional

information.

e |If third variables are ignored, conclusion regarding feedback relation might be

spurious.

e Inclusion of other relevant variables might reduce it to a one sided relation.

e If the relation between * and ¥ is only one-sided in the bivariate model, there are no

third variables which are Granger causal to * and Y.

While causality tests provide valuable insights, interpreting the results requires careful
consideration of context, methodology, and assumptions underlying each test. Employing a

combination of methods often strengthens causal inferences.

13.6 Self-Assessment Exercise



1.

2.

Vit .5 0 071[Yit-1
k’zt] = [ 1 .1 . 3] k’zr—l
'3t 0 .2 .31V3t—

3.

11.

12.

16.

17.

21.

What is Granger causality, and how does it differ from traditional causality in time-

series analysis?

Giving the underlying assumptions, explain Granger’s causality. Discuss the concept

of causality with the help of following example:

Uit] [Vio 1
+ l“-zt k’zu‘ = [0
30 0

Uzt
Define error correction representation of a bivariate VAR process. How it helps in

testing long term and short-term relationship between two nonstationary time series?

How does Granger causality account for the directionality of causation in time-series

data?

Define instantaneous Granger causality and explain how it differs from standard

Granger causality.
What is feedback in the context of causality analysis, and how can it be identified?

Discuss the implications of finding bidirectional causality in a bivariate time-series

model.
How can instantaneous Granger causality be detected using statistical methods?
Explain how causal relations are characterized in bivariate time-series models.

Why is it important to assess the stationarity of time series before testing for Granger

causality?
What are the key steps involved in performing a Granger causality test?

What are the assumptions underlying Granger causality tests, and how can violations
affect results?

What is the Haugh-Pierce test, and how does it relate to Granger causality? Explain

the role of residual cross-correlation functions in the Haugh-Pierce test.



22. Discuss the advantages and limitations of the Haugh-Pierce test in identifying

causality.
13.7 Summary

This unit explores the concept of causality in time-series analysis, with a focus on Granger
causality and its extensions. Granger causality is introduced as a statistical framework for
determining whether one time series can predict another, distinguishing between correlation
and predictive causation. The unit also examines instantaneous Granger causality, where
causal relationships may occur without time lag, and feedback, a bidirectional causality

between variables.

The characterization of causal relationships in bivariate models is discussed, including how
lag structures and model specifications influence causality interpretation. Emphasis is placed
on practical techniques for testing Granger causality, including the Granger causality test, the
Haugh-Pierce test for identifying cross-correlation between residuals, and Hsiao's test, which

combines Granger causality with model selection procedures for improved robustness.
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14.1 Introduction

Causal analysis for nonstationary processes:

Causality tests are based upon the assumption that the underlying processes

Xt is stationary.

The existence of unit root might make the traditional asymptotic inference invalid.

Cointegration is a statistical concept used in time series analysis to establish whether two or

more non-stationary series share a common long-term relationship. In simpler terms, even if

the individual time series are not stationary (i.e., they have trends or seasonality), they can



still be said to be cointegrated if a linear combination of them results in a stationary series.

The main concepts added here is:

1. Non-stationary Series: Time series data that do not have constant mean and variance over

time.

2. Stationary Series: Time series data that have constant mean and variance over time; they

are easier to model.

3. Linear Combination: A mathematical combination of the series, often involving

coefficients. For instance, if (Yt) and (Xt) are two time series.

4. Error Correction Model (ECM): When time series are cointegrated, they tend to adjust
towards equilibrium in the long run; the ECM captures how short-term deviations from this

equilibrium affect the changes in the series.
Testing for Cointegration
Several tests exist to assess whether series are cointegrated:

1. Engle-Granger Test: A two-step method that involves regressing one series on the other

and examining the residuals for stationarity.

2. Johansen Test: A more advanced method that allows testing for multiple cointegration

relationships among several time series.
Applications

Economics: Cointegration is often applied in economics to explore relationships among

macroeconomic indicators.

Finance: It is useful for pairs trading strategies, where traders look for cointegrated pairs of

stocks to exploit price inefficiencies.

Example



Consider two time series, (e.g., stock prices of two related companies). While both may trend
upward over time, if the difference between them remains stable (mean-reverting), they could

be considered cointegrated.

Cointegration is a powerful tool for understanding the long-term relationships between non-
stationary time series. It helps analysts and researchers model and predict economic and
financial phenomena more accurately when direct analysis of non-stationary data would lead

to spurious results.
14.2 Objectives

After completing this course, there should be a clear understanding of:

Error Correction Model

Cointegration

Granger representation theorem

Bivariate cointegration

Cointegration tests in static model
14.3 Error Correction Model
Spurious Regression

Spurious regression refers to a misleading statistical relationship that appears significant in a
regression analysis, but arises purely due to the non-stationary nature of the variables
involved. It often occurs when time series variables with trends are regressed against each
other without accounting for their non-stationarity, leading to erroneous conclusions about

the relationship.

The key features of the spurious regression are:

1. High R and Significant E_statistics: The regression may show high goodness-of-fit

and statistically significant coefficients, even when no genuine relationship exists.



2. Nonsensical Relationships: The results often suggest correlations between variables

that are logically unrelated.

3. Non-Stationary Variables: The underlying issue is that the variables are not stationary
(i.e., they have trends, unit roots, or other forms of time dependence).

The modeling of two or more time series using traditional regression methods requires all
variables to be 1(0). However, the question arises, do the statistical results of regression hold

if some or all of the variables are 1(1)?

Let us illustrate with the help of simulated data examples, the problems one may face when

regressors are 1(1).

Example: Consider two independent and 1(1) processes {x¢} and {yt} generated by
X = X1 + v, vi~WN(0,1) — tine series 1

Ve = Vi_q +us, u;~WN(0,1) — time series 2

10000 observations are simulated from each series. A visual inspection shows that the levels

of the two series are negatively related.
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The regression of ¥ ©11 X gives the following results
Estimate Std. Error t value Pr(>|t|)
Intercept 27.91741 0.50138 55.68 <2e-16

X -1.20342 0.01055 -114.07 <2e-16




Residual standard error: 35.82
Multiple R-squared: 0.5655, Adjusted R-squared: 0.5654
F-statistic: 1.301e+04 on 1 and 9999 DF,

p-value: < 2.2e-16

2
The estimated slope coefficient is negative and significant, R< is moderate.

These statistics are representative of the spurious regression as both the time series are

independently drawn.

Example: Let processes {(xe}and (¥t} pe generated by

x; = 0.61; + v, v,~WN(0,1),

vy = I +up, u,~WN(0,1)

I, = I,y + w,, w,~WN(0,1)

The processes {x¢} and {¥¢} jnvolve common stochastic trend (1(1) process) It} in them,

10000 observations are simulated from each series and their plots indicate that the two

processes are highly positively related.
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We run a regression of ¥t on *t and the results are as follows:
Residual standard error: 1.933 on 9998 degrees of freedom

Multiple R-squared: 0.9932,



Adjusted R-squared: 0.9932
F-statistic: 1.465e+06 on 1 and 9998 DF,

p-value: < 2.2e-16

2
The regression results are highly significant with the large value of R” |5 it because of the

common stochastic trend in the two processes?

Since both ¥t and *t are I(1) processes, to remove the stochastic trend, we take the first

difference and run regression between 4t 18Xt The plots of the first differences are like

purely random processes.

0 2000 4000 6000 8000 10000 0 2000

Estimate Std. Error t value Pr(>|t])
Intercept -0.004409 0.016721 -0.264 0.792
Ax 0.257132 0.010847 23.706 <2e-16

Residual s.e.: 1.672,
. RZ
Multiple ©* : 0.053,

Adjusted R” : 0.053,

F-statistic: 562 on 1 and 9997 DF

2
The regression is insignificant with low value of R®



An interesting feature of the process is
ve — (0.6) " 1xp = uy,

u; = up — (0.6)"1v,~WN(0,1 + (0.6)72)
Although both Xt and Yt are 1(1), 3 = (1, =(0.6)™%) gych that

g (%) ~10

Xt

Such processes are called cointegrated processes and B is called the cointegration vector.

It is important to develop statistical tools suited for capturing the relations between

nonstationary time series properly.

To overcome the spurious relations problem, instead of using the original series, the series
should be transformed so that they can be considered as realizations of weakly stationary
processes.

In the previous example, the transformation
, }’t)
o
leads to the stationary process, which can be estimated using usual statistical techniques.

Causal analysis for nonstationary processes:

Y

Causality tests assume that the underlying processes “t is stationary.

The existence of the unit root implies that the traditional asymptotic inference might be

invalid.
Error Correction Representation of VAR(p) process:
The vector autoregressive process (VAR) of order p is defined as

Yt — 5 ‘I‘ AIYt—l +A2Yt—2 ‘I‘ rer ‘I‘ Apyt—p ‘I‘ Ut (1)



MA representation of the above process is

Y, = A1(L)§ + A"H(L)U,
= U + Ut + BIUt—l + BZUt_z + e

=+ B(L)U, (2)

B(L) =1 +Z B;LJ = A™Y(L),
j=1
BQ — Ik

Error correction representation:

An error correction model (ECM) is a statistical tool often used in econometrics to model
relationships between time series variables that are integrated and may have a long-run

equilibrium relationship. It is widely applied in situations where:

1. Variables are non-stationary: The variables individually have trends or unit roots,

meaning their means and variances change over time.

2. Cointegration exists: Despite being non-stationary, a linear combination of the

variables is stationary, indicating a long-term equilibrium relationship.

The ECM captures both the short-term dynamics and long-term equilibrium adjustments of

the variables.
The key components of an ECM are as follows:

1. Error Correction Term: Represents the deviation from the long-term equilibrium.

The model "corrects" this error over time.

2. Short-term Dynamics: Explains immediate changes in the dependent variable due to

changes in explanatory variables.

3. Long-term Equilibrium: Ensures that the system converges to a stable relationship

over time.

Every stationary VAR of order p



Yt = 5 + AIYt—l +A2Yt_2 + e + Ath—p + Ut
or(I1—AL— A2 — - —A4,IP)Y, =6+ U,
can be written as

A, (LAY, = 6 — A(DY,—, + U,

with
A, (L) =T— AjL—— Ay

Proof: We have
A = A —ALi=1.,p—1,
Ay =0,

AH{] — _(Al ‘I‘AZ + Lo ‘I‘Ap)
I+Ay=1—A;— A+ —A4,=4AQ1)
We can write

I— A L—AjL2 — o — A, 1P
=1— (A} — AL — (A5 — ADL? — - — (45 —

p—1

= +APL+I10-1) = ) 41 -1
j=1

Ay ) )IP

Hence, we can write (3) as error correction representation.

{U+4a)L+10-1L) - Ef;j AQ-LDUY, =8+U;

or

(4)

(3)



p—1
I1— Z AU P AY, =8 — A(1Ye—y + U;
j=1

or

A, (LAY, = 6 — A(DY,y + U, (5)
We can write (5) as

AY, =8 — A,y + X°LAJAY, ;+ U, (6)

Components of Ve are I(1) variables. Hence each component of AV, AVe1, AV pia g

stationary. Further, each component of Ye~I(1)

AY,~I(0) gt

Since increases, AY: ang Ut approach to zero. Then the process approaches to

an equilibrium state.

§ —MY_; = 0,11 = A(I)

Here I represents the matrix of the long-run equilibrium relations and can be estimated
directly in the framework of a linear model.

Granger’s Representation Theorem: The entries of the I(1) vector Yt are cointegrated if and

only if they have an ECM representation.

Example: Consider a general dynamic model of a single equation, and one explanatory

variable, which is assumed to be exogenous:
ap(L)y: = 6 + B (L)x; + u,.

In the long-run equilibrium, it holds that

Ve =Ve-1 == Vep = =,

Xp=Xpg = =Xpp=-=X,U =0



Thus, for the long-run equilibrium, we get:

ap(1)y = 6 + B,(Dx.

T AR
P RORPYOR
=pu+ fx
with

_ o)
M, M

 By(D)

" a,(D

If ¥ and * are weakly stationary (or nonstationary but co-integrated), we get the following

alternative representation:

a;_l(L)(l - L)y; =6 +.3$—1(L)(1 — L)x; —YoYe-1 T ViXe—1 + 1y, (7)
With
a;_l(L) =1 —-a;L—— a;_l P la;
p
= — Z a,i=12.p—-1
j=itl
BiaW) =1 = Bil— =By, 77

p
B =— Z B i=12.q-1,

j=it+1
Yo = ap(1),
Y1 = Bq(l).

In equilibrium 4¥e = 4% = 0,u = 030 therefore, Yt = V> X¢ = X VT Hence



~ YT + 8 +ylE =0
or
—ap()y+6 +pq(l)x =0,

Thus, representation (5) has a long-run equilibrium. Here, the short-term and long-run effects

are separated and can be directly estimated.
Cointegration (Engle and Granger, 1987):

When the linear combination of two I(1) processes becomes an 1(0) process, then these two

series are cointegrated.

Why do we care about cointegration?
a. Cointegration implies the existence of long-run equilibrium
b. Cointegration implies the common stochastic trend

c. With cointegration, we can separate the short- and long- run relationship among

variables
d. Cointegration can be used to improve long-run forecast accuracy

e. Cointegration implies restrictions on the parameters and proper accounting of these

restrictions could improve estimation efficiency

Y

Definition: The elements of a k-dimensional vector are cointegrated of order

(d,e), denoted as Y~CI(d, ), if all elements of Yare I(d) and there exists at least one non-

I(d d=c >0 holds

trivial linear combination Z of these variables, which is —©), where

i.e.

RGIYt :Zt“"f(d _C).

Here P is termed as a cointegration vector.



The number of linearly independent cointegration vectors is known as cointegration rank r.

The cointegration matrix B

B:Yt = Zt.

is formed by cointegration vectors as the columns, with

14.4 Cointegration and Granger Representation Theorem

Cointegration and the Granger representation theorem are key concepts in time series

analysis, particularly in the context of non-stationary data.

Cointegration refers to a statistical property of a collection of time series variables which,
while individually non-stationary (typically following a stochastic trend), can exhibit a stable
long-term relationship when combined. Specifically, two or more non-stationary series are

said to be cointegrated if there is a linear combination of them that is stationary.

The Granger representation theorem extends the concept of cointegration by showing how
cointegrated time series can be described using an error correction model (ECM). The
theorem states that if two or more time series are cointegrated, then there exists a dynamic
model that describes the short-term behavior of the series in relation to their long-term

relationship.
Understanding cointegration and the Granger representation theorem is crucial for:

e Modeling Economic Relationships: Many economic variables are believed to be
related in the long run (e.g., GDP and consumption).

e Forecasting: Improved predictions by considering both short-term dynamics and long-

term relationships.

e Policy Analysis: Assessing the effects of interventions in economic models where

variables are cointegrated.

Cointegration highlights the existence of long-term relationships among non-stationary time
series, while the Granger representation theorem provides a framework for modeling the

dynamics of these relationships through error correction models.

14.4 Cointegration for Bivariate Processes



Bivariate cointegration specifically refers to the analysis of the cointegration relationship
between two time series. Bivariate cointegration specifically refers to the analysis of the
cointegration relationship between two time series. Bivariate cointegration is a fundamental
concept for understanding the long-run relationships between two economic or financial time
series. By establishing cointegration, analysts can more accurately model and predict future
behaviors of these related series, taking into account both their long-term equilibrium and

short-term dynamics.

Here the notation Xt™~1() denotes that the time series *t is integrated of order 9. Thus (0)

represents a stationary process and I(1) represents an integrated process of order one.

Let us consider that Xt and ¥t be two /(1) processes. If there exists a parameter b such that

Vi —bx; =z, +a (1)

is stationary then *t and Yt are said to be cointegrated. Here ¢ is a stationary process. Then

Corresponding equilibrium relation is
v =a+bx )
where,

@ level of equilibrium relation

B'=I[1 =Dl cointegration vector and

Z* Deviations from the equilibrium, i.e., equilibrium error.

Since z has finite variance, the deviations from the equilibrium are bounded and the system is

always returning to its equilibrium path. In this sense, relation (2) is called an attractor.

Cointegration of * and ¥ implies that both variables follow a common stochastic trend. Now,

we model it as a random walk,

Wy = Wi g + Uy, ©)



where,
Ut: White noise process

The two cointegrated I(1) processes can be represented as

Xy = Wy + ft with ft ~ I(D) (5)
The linear combination

Ve~ bxe =3 bX =2z (6)

is a linear combination Yt~ 2 ¥t of two 1(0) processes. Thus, it is also 1(0) (or stationary).

Hence, (6) is a cointegrating relation.

The error correction representation for k-variables case is
p—1

AY, =6 — A(DY,_; + Z AT DY, + U,
j=1

For bivariate case, we write

E‘}’t)
Ax,/'

- (3)

—b
an=(" 70")
Yx _b}'x

Uyt
Uyt

and

ﬂYt:(



. [Py G
5=t 1)

¥i

Then, in the bivariate case, the reduced form can be written as

v Py

Ay = ag= ¥y (Ve-1—bxe—y) + szzlaxjﬂxt—j + zjila_vj Aye-j + Uyt
- qy

Axy = bo= Yy (Xe-1= bye—1) + % by Ay + L2 by AYe—j + U

(1)

Equation (7) involves Px [@x] and Pv 9] terms involving lagged differences 2¥t-J and

By respectively. The representation contains stationary variables although the underlying

relation

is between nonstationary I(1) variables. It separates short-run adjustments from long-term

equilibrium term. Model fitted only for first differences misses the equilibrium term

Ve—1~bxi—y or (xe—1- by 1)_

If x and y are cointegrated, at least one Y £ = X ¥ js different from zero. If the variables

are cointegrated the traditional statistical procedures can be applied. The system reacts to the

deviations from the equilibrium relations which is lagged by one period. If b> 0, (7) is

stable whenever and at least one of the two parameters is

=0

different from zero. If Yx , second equation of (7) becomes

x qy
ﬂ.xt = b{] + Elebxj-ﬂxt_j + Ejllej ﬂ'.}rt—_}' + “’.‘X‘.t

The adjustment is only possible via changes in . Then development of * is independent of

the equilibrium error, it is the stochastic trend driving the system. In this situation, * is called

weakly exogenous.

If Y« =0 gng ¥» < G, or vice-versa, the system might be stable depending on the other

parameters. Thus, the following two situations can occur:



(i) The two variables are not cointegrated, i.e. ¥* = ¥» = O Then the system contains two

stochastic trends.

(i) The two variables are cointegrated, i.e. at least one Yi* £ = % ¥ s positive. Then the

system contains one cointegrating relation and one common stochastic trend.
14.4.1 The advantage of error correction representation
» ECMSs measure the correction from disequilibrium of the previous period.

» ECMs are formulated in terms of first differences and eliminate stochastic trends from

the variables involved. It resolves the problem of spurious regressions.
» They can easily fitted as the variables involved are stationary.

» The disequilibrium error term is a stationary variable (by definition of cointegration).
The cointegrated variables imply that there is some adjustment process preventing the

errors in the long-run relationship from becoming larger and larger.

Example: Consider an ARIMA(1,1,0) process {xed 55

Axy = alx, +uy, |la| <1

or (1 -al)Ax; = uy, u, ~WN (8)
and Ve = bxe +2b 20, ©)
with z; =pz, 1+ v, vi~WN (20)

The ¥ and Yare cointegrated for P! <1 1f P =1 ¥t —Dbxe~I(1) and there is no
cointegration. For 7 = 1, the development of ¥ is determined by two stochastic trends (both

*t and “t are (1)). For error correction representation, we write

Ve =P Vi1 =bxe-pbxiy + vy



or

ﬂ'.}’t - - (1 _p)yt—j_ + b (1 —p)xt_l + bf}.xt + Vt (11)

Then, substituting 2%t = @ A%e—1 Ut i (11), the reduced form of the system is

Axy = a Axp_ g + Uyt (12)
and Ay = - (1 -p)(¥e—1—b x4-1) + badx,y + Uyt (13)
Where %t = Ut gnq Uy e = Ve + but.

X

The equation (12) of * does not involve the equilibrium error ¥ ~ DX Thus, ¥ is weakly

exogenous and drives the whole system.

iF =1 <P <1 then0<¥y =010 =P) <2 1, the system is stable; ¥ is adjusting to the

long-run equilibrium. For P = 1, i.e., there is no cointegration, the error correction term

vanishes from (13) and the system contains two stochastic trends.

The error correction model only contains stationary variables, the differences of I(1)

variables and the stationary equilibrium error.
14.5 Cointegration tests in static model

In the context of time series analysis, cointegration tests are essential for assessing whether a
long-run equilibrium relationship exists between non-stationary time series variables. In a
static model, we typically imply a model where the relationships do not change over time,
and the focus is solely on the long-term relationship between variables without considering
dynamics like lags. Here's some cointegration tests that can be applied in a static modeling

framework:
e Engle-Granger Two-Step Approach
e Johansen Cointegration Test

e Phillips-Ouliaris Cointegration Test



e Kao Cointegration Test
e Cointegration in Error Correction Models (ECM)
14.5.1 Engle and Granger two-step procedure for cointegration analysis

The Engle-Granger two-step procedure is a widely used method for testing for cointegration
between two or more time series. Cointegration implies that even though the individual time
series may be non-stationary, a linear combination of them is stationary. This two-step
procedure is a straightforward yet powerful tool for investigating the long-run relationship
between non-stationary time series. Its simplicity makes it popular in empirical studies.
However, users should ensure the assumptions and conditions for validity are met,

particularly regarding the stationarity of residuals.
(1)  Estimate the long-run (equilibrium) equation:
Ve = 0 +01%; + uy (14)

e =yt — 80 — 61%¢: QLS residuals are a measure of disequilibrium

A test of cointegration is a test of whether e s stationary.

Apply ADF tests on the residuals, (critical values are given by MacKinnon, 1991). If

cointegration holds, the OLS estimator of (14) is said to be super-consistent.

T—)CJO

Implications: As there is no need to include 1(0) variables in the cointegrating

equation.
(i)  Estimate Error Correction Model

Ay = o + Lj=19; 8y + Zp—obpbxi p +at; | +6

by OLS. This equation has only 1(0) variables and standard hypothesis testing using t ratios
and diagnostic testing of the error term is appropriate.

Suppose we consider the special case:



Ayy = o + P14y +0,18xy +a(ye— — S{J - Slxt—l) + €

ECM describes how y and x behave in the short run consistent with a long run cointegrating

relationship.
Dynamic approach to ECM and cointegration

As residuals of (14) often have serial correlation, the least squares estimates can be
substantially biased in small samples. For reducing the bias, one may allow for some

dynamics in the model. For this purpose:

(1) Apply least squares to estimate autoregressive distributed lag (ADL) model
Vi =a+ Boxi+P1x—1 +y Vi1 e (15)

Solve (15) for the long run equation

, T Bo—B1
Ye =i Ty

Xe + U

a  Bo—f

Uy = Yy — Xt: . .
=y 17y Estimated residuals from (15).

where, “t are measure of disequilibrium.

A test of cointegration is a test of whether e g stationary or not. The ECM model can be
estimated using the residuals from (15). If cointegration holds, the OLS estimators of (15) are

super-consistent.
14.5.2 Johansen Methodology for Cointegration Test (Johansen, 1995)

The Johansen methodology is a statistical technique used to test for cointegration among
multiple time series. Cointegration is a concept from econometrics that refers to the existence
of a long-term equilibrium relationship among non-stationary time series. If two or more time
series are individually non-stationary but a linear combination of them is stationary, they are
said to be cointegrated. This methodology is widely used in econometrics to analyze and

model economic relationships, such as those between macroeconomic variables (e.g., GDP,



inflation, interest rates) and It’s particularly useful in establishing relationships that can

inform policy analyses and forecasting.

It is a powerful tool for assessing the existence of cointegration between multiple time series

and understanding long-term economic relationships.

Write (7), without deterministic term, as

AY, +TB'Y,_, = 25’;11 A AY,; + U,

Given r, MLE of B 4efines the combination of Ye-1 giving " largest canonical correlations of

AVt with Yt-1 after correcting for lagged differences and deterministic variables. Johansen
proposes two different likelihood ratio tests for the significance of these canonical
correlations and thereby the reduced rank of the IT matrix, (i) trace test and (ii)) maximum

eigenvalue test.
A ith . .
Let “i be the © largest canonical correlation. Then,

(i) For testing the null hypothesis of " cointegrating vectors against the alternative hypothesis

of ™ cointegrating vectors, the trace statistic is
Jor = _nz?’;r—lln(l - ‘:{I)
Jmax = _min(l - ‘21'+1)

(i) For testing the null hypothesis of ™ cointegrating vectors against the alternative

hypothesis of " +1 cointegrating vectors, the maximum eigenvalue test statistic is

Jmax = _min(l - ‘21'+1)
The critical values are given by Johansen and Juselius (1990).

Cointegration tests in the static model context are vital for confirming long-run relationships
among non-stationary time series. The choice of the test depends on the specific
characteristics of the data, such as the number of time series being analysed and whether they



are in

a panel structure. Understanding the underlying assumptions of each test and the

implications of findings is crucial for sound empirical analysis.

14.6

10.

11.

12.

13.

14.

Self-Assessment Exercise
What is spurious regression, and why does it occur in time-series analysis?
Explain the role of non-stationarity in causing spurious regression results.

Discuss the implications of spurious regression for hypothesis testing in econometric

models.

Define cointegration and explain its significance in time-series analysis.

What are the key conditions for two time-series variables to be cointegrated?
Explain the concept of a cointegrating vector and its role in cointegration analysis.
What is an Error Correction Model (ECM), and how is it derived?

How does an ECM capture both short-term dynamics and long-term equilibrium

relationships?
Explain the role of the error correction term in an ECM.
Describe the steps involved in estimating an ECM for a pair of cointegrated variables.

What is the Granger Representation Theorem, and why is it important in time-series
analysis? How does the Granger Representation Theorem establish a link between

cointegration and ECMs?

In a multivariate system, how does the Granger Representation Theorem guide the

modeling of relationships among variables?
What is bivariate cointegration, and how is it analyzed?

Describe the Engle-Granger two-step procedure for testing cointegration in bivariate

models.



15. What are the limitations of the Engle-Granger cointegration test?
16. What are the main tests used to detect cointegration in static models?
17. Explain the concept of residual-based tests for cointegration.

18. How does the Johansen cointegration test extend the Engle-Granger framework for

multivariate systems?

19. Compare the performance of Engle-Granger and Johansen tests in detecting

cointegration.

20. Define error correction representation of a bivariate VAR process. How it helps in
testing long term and short term relationship between two nonstationary time series?

Describe Engle-Granger procedure for the cointegration analysis.
14.7 Summary

This unit delves into key concepts and methods for analysing relationships among non-
stationary time series. It begins with a discussion on spurious regression, highlighting the
misleading inferences that arise when non-stationary variables are regressed without proper
adjustments. The unit introduces cointegration as a solution, explaining its significance in

identifying long-term equilibrium relationships between time-series variables.

The Error Correction Model (ECM) is presented as a framework for integrating short-term
dynamics with long-term cointegrating relationships, emphasizing its relevance in
econometric modelling. The Granger Representation Theorem is discussed as a theoretical
foundation linking cointegration and ECMs, demonstrating how cointegrated systems

naturally lead to error correction representations.

Specific focus is given to bivariate cointegration, outlining methods for identifying and
interpreting cointegrated relationships in pairs of variables. Cointegration tests in static
models, including methods like the Engle-Granger two-step procedure, are explained in

detail, with attention to their assumptions, applications, and limitations.
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