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Blocks & Units Introduction 

The present SLM on Econometrics consists of fourteen units with three blocks. 

The Block - 1 –Linear Model and its generalizations, is the first block, which is 

divided into five units. 

The Unit - 1 – Linear Regression Models, is the first unit of present self-learning 

material, which describes Linear regression model, Assumptions, estimation of parameters by 

least squares and maximum likelihood methods.  LOGIT, PROBIT, TOBIT and multinomial 

choice models, passion regression models. 

The Unit – 2 -   Multicollinearity, deals with Multicollinearity, problem of 

multicollinearity, consequences and solutions, regression, and LASSO estimators. 

The Unit – 3 -  Estimation of Parameters and Prediction deals with Testing of 

hypotheses and confidence estimation for regression coefficients, R2 and adjusted R2, point 

and interval predictors. 

The Unit – 4 - Model with qualitative independent variables deals with Models with 

dummy independent variables, discreet and limited dependent variables. Use of dummy 

variables, model with non-spherical disturbances, estimation of parametric by generalized 

equation. 

The Unit – 5 - Non-Spherical Disturbances, seemingly unrelated regression 

equations (SURE) model and its estimation, Panel data models, estimation in random effect 

and fixed effect models. 

The Block – 2 - Simultaneous Equations Models and Forecasting, is the second 

block, which is divided into five units. 

  The Unit – 6 - Structural and reduced form of the model and identification problem, 

deals with the Simultaneous equations model, concept of structural and reduced forms, 

problem of identification, rank and order conditions of identifiability. 



The Unit – 7 - Estimators in Simultaneous Equation Models – I, deals with the 

Limited and full information estimators, indirect least squares estimators, two stage least 

squares estimators, three stage least squares estimators and k class estimator. 

The Unit – 8 - Estimators in Simultaneous Equation Models – I, deals with the 

Limited information maximum likelihood estimation, full information maximum likelihood 

estimation, prediction, and simultaneous confidence interval. 

The Unit – 9 -  Forecasting, deals with the Forecasting, exponential and adaptive 

smoothing methods, periodogram and correlogram analysis. 

The Unit – 10 - Instrumental Variable Estimation, deals with the Review of GLM, 

analysis of GLM and generalized leased square estimation, Instrumental variables, 

estimation, consistency properties, asymptotic variance of instrumental variable estimators. 

The Block - 3 – Advance Econometrics, is the third block, which is divided into four 

units. 

The Unit – 11 - Autoregressive Process, deals with the Moving average (MA), Auto 

regressive (AR), ARMA and ARMA models, Box-Jenkins models, estimation of ARIMA 

model parameters, auto covariance and auto correlation function. 

The Unit – 12 - Vector Autoregressive Process, deals with the Multivariate time 

series process and their properties, vector autoregressive (VAR), Vector moving average 

(VMA) and vector autoregressive moving average (VARMA) process. 

The Unit – 13- Granger Causality, deals with the Granger causality, instantaneous 

Granger causality and feedback, characterization of casual relations in bivariate models, 

Granger causality tests, Haugh-Pierce test, Hsiao test. 

The Unit – 14- Cointegration, deals with the Cointegration, Granger representation 

theorem, Bivariate cointegration and cointegration tests in static model. 

At the end of every block/unit the summary, self assessment questions and further 

readings are given.  
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The present SLM on Econometrics consists of fourteen units with three blocks. 

The Block - 1 –Linear Model and its generalizations, is the first block, which is 
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The Unit - 1 – Linear Regression Models, is the first unit of present self-learning 

material, which describes Linear regression model, Assumptions, estimation of parameters by 

least squares and maximum likelihood methods.  LOGIT, PROBIT, TOBIT and multinomial 

choice models, passion regression models. 

The Unit – 2 -   Multicollinearity, deals with Multicollinearity, problem of 

multicollinearity, consequences and solutions, regression, and LASSO estimators. 

The Unit – 3 -  Estimation of Parameters and Prediction deals with Testing of 

hypotheses and confidence estimation for regression coefficients, R2 and adjusted R2, point 

and interval predictors. 

The Unit – 4 - Model with qualitative independent variables deals with Models with 

dummy independent variables, discreet and limited dependent variables. Use of dummy 

variables, model with non-spherical disturbances, estimation of parametric by generalized 

equation. 

The Unit – 5 - Non-Spherical Disturbances, seemingly unrelated regression 

equations (SURE) model and its estimation, Panel data models, estimation in random effect 

and fixed effect models. 

At the end of every unit the summary, self-assessment questions and further readings 

are given.  



Blocks and Units Introduction 

Block 1: Linear Model and its generalizations 

Unit 1:  Linear regression models: 

Linear regression model. Assumptions, estimation of parameters by least squares and 

maximum likelihood methods.   

Unit 2:   Multicollinearity: 

Multicollinearity, problem of multicollinearity, consequences and solutions, 

regression and LASSO estimators. 

Unit 3:  Estimation of parameters and prediction 

Testing of hypotheses and confidence estimation for regression coefficients, R2 and 

adjusted R2, point and interval predictors. 

Unit 4:  Model with qualitative independent variables: 

Models with dummy independent variables, discreet and limited dependent variables. 

Use of dummy variables, LOGIT, PROBIT, TOBIT and multinomial choice models, Poisson 

regression models. 

Unit 5:  Non-spherical disturbances 

Model with non-spherical disturbances, estimation of parametric by generalized 

equation., Seemingly unrelated regression equations (SURE) model and its estimation, Panel 

data models, estimation in random effect and fixed effect models. 

 

 

 

 



 

 

 

UNIT 1 LINEAR REGRESSION MODELS 

Structure 

1.1 Introduction 

1.1.1 How econometrics analysis proceeds? 

1.2 Objectives 

1.3 Multiple Regression Model 

1.3.1 Assumptions 

1.3.2 Estimation of parameters by least square 

1.3.2.1 Ordinary least square (OLS) estimator of  

1.3.2.2 Ordinary least square (OLS) estimator of  

1.4 Best Linear Unbiased Estimator (BLUE) property of b: Gauss Markov Theorem 

  1.4.1 Alternative form of Gauss-Markov Theorem 

  1.4.2 Maximum Likelihood Estimators of  and  

  1.4.3 Distribution of b and  

  1.4.4 Cramer-Rao lower bound 

  1.4.5 Large sample properties 

1.11 Self-Assessment Exercise 



 1.12 Summary 

 1.16 References 

 1.17 Further Readings 

1.1 Introduction 

Econometrics may be defined as the application of statistical and mathematical 

methods to the analysis of economic data.  Aims to give empirical content to economic 

relations for testing economic theories, forecasting, decision making, and policy evaluation. 

Econometrics may be considered as the combination of Economic Theory, Mathematical 

Economics and Statistics. 

For example, the microeconomic theory states that the demand of a commodity is 

expected to increase as the price of that commodity decreases, provided the other things 

remain constant. How much the demand will go up or down because of certain change in the 

price of the commodity?  Econometrician Job is to provide empirical content to the economic 

theory.  

• Mathematical Economics, Economic Statistics and Econometrics: 

Mathematical Economics 

Mathematical economics involves the application of mathematical methods to 

represent theories and analyze problems in economics. It uses mathematical symbols and 

equations to model economic phenomena and relationships. 

Economic Models are simplified mathematical representations of economic processes. 

An economic model describes the relationships between different economic variables and is 

used to explain how economies function or predict future economic behaviors. For example, 

supply and demand models, cost functions, and utility maximization problems. 

Economic Statistics 



Economic statistics focuses on the collection, processing, and presentation of 

economic data. It provides the quantitative basis for economic analysis, aiding in the 

visualization and understanding of economic trends and patterns. 

 

Data Collection: Gathering data from various sources such as surveys, censuses, and 

administrative records. 

Data Processing: Cleaning and organizing raw data to make it suitable for analysis. 

This includes handling missing values, correcting errors, and standardizing formats. 

Data Presentation: Displaying data in an accessible format, often using charts, 

diagrams, tables, and graphs to facilitate interpretation and decision-making. 

Econometrics 

Econometrics combines economic theory, mathematical economics, and economic 

statistics to empirically test economic theories and quantify economic relationships. It uses 

statistical methods to estimate and test hypotheses about economic models. 

Mathematical economics expresses economic theory in mathematical form.  

The mathematical description of relationship between different economic variables (causes 

and effects) describing the behavior of an economy is called an economic model.  

Objective of the econometrician is to put economic model in such a form that allows 

empirical testing and empirical verification of economic theory. 

1.1.1 How Econometric Analysis Proceeds? 

Steps involved 

• Statement of Economic Theory or Hypothesis 

• Specification of Mathematical Model 

• Specification of Statistical or Econometric Model 



• Collection of data on relevant variables 

• Estimation of parameters of chosen econometric model 

• Tests of the hypothesis derived from the model 

• Forecasting or Prediction 

Statement of Economic Theory or Hypothesis: 

Law of demand states that as the price of a commodity increases, the demand 

decreases provided the other things held constant.  

Specification of Mathematical Model: 

An inverse relationship exists between the price and demand. It does not tell the 

precise form of the relationship. For this purpose, we must express the statement in 

mathematical form. 

: Quantity demanded, : Price. 

We can write 

                      

(1) 

         

 (2)  

In both relationships,  has an inverse relationship with . Economic theory does not 

provide much information about the functional form of the relationship. For this purpose, we 

require statistical tools. 

Specification of Statistical or Econometric Model: 



Economic relationships are usually stochastic in nature. There are variables, other 

than main dominant variable  affecting . Let   be a random variable including the effect 

of all other variables. We can write (1) as 

         

 (3) 

 is called the random error term or disturbance term. Equation (3) is a statistical model or 

econometric model. 

Econometric Model may have more than one equation. For example, consider the 

following model: 

  

  

:  

   

Collection of data on relevant variables: 

Three types of data usually available 

Time series data: Time series data is collected over a time period. For example, data 

on unemployment rate of a country for 10 consecutive years. 

Cross-section data: Cross section data is collected on one or more variables at a 

single point of time. For example, data on unemployment rate of 20 countries at a particular 

time point. 

Pooled or Panel data: Panel data is the combination of time series and cross section data. For 

example, data on unemployment rate of 20 countries for 10 consecutive years. 

Estimation of parameters: 



Law of demand states that . Statistics provide us methods to estimate the 

parameters based on given observations on  and .  

Tests of the hypothesis derived from the model: 

Does the estimated model support the economic theory? For instance, is ? 

Forecasting or Prediction: 

Estimated demand function can be used to predict the value of demand for a specific 

value of price. 

Econometrics Applications 

Econometrics is a powerful tool used across various fields to analyze and interpret 

data, uncover relationships between variables, and make informed predictions. It is widely 

applied in domains such as business, economics, government, and finance to analyze 

relationships between variables, test hypotheses, and make predictions. Its ability to 

transform data into actionable insights makes it an invaluable tool for strategic planning, 

policy evaluation, risk management, and more.  

Here are some of the key applications: 

1. Business 

Strategic Planning: Econometric models help businesses forecast future sales, 

determine optimal pricing strategies, and allocate resources efficiently. 

Investment Decisions: Firms use econometric analysis to assess the potential returns 

on investments, analyze market trends, and make data-driven investment choices. 

Marketing and Advertising: Econometrics helps in evaluating the effectiveness of 

advertising campaigns, understanding consumer behavior, and optimizing marketing 

strategies. 

Budgeting and Revenue Forecasting: Companies employ econometric techniques to 

predict future revenues and plan budgets accordingly. 



2. Economics 

Macroeconomic Analysis: Economists use econometrics to study economic growth, 

inflation, unemployment, and other macroeconomic variables. This helps in understanding 

the broader economic environment and policy impacts. 

Microeconomic Analysis: Econometrics is used to analyze individual and firm 

behavior, market structures, and the effects of regulations on industries. 

3. Government and Policy Organizations 

Policy Evaluation: Governments use econometric models to evaluate the impact of 

policies such as tax changes, subsidies, and social programs on the economy and society. 

Economic Forecasting: Econometric models help in predicting economic indicators 

like GDP growth, inflation rates, and employment trends, aiding in policy formulation and 

planning. 

4. Central Banks 

Monetary Policy: Central banks utilize econometrics to analyze the effects of interest 

rates, money supply, and other monetary policies on the economy. This helps in maintaining 

economic stability and achieving policy targets. 

Financial Stability: Econometrics assists in assessing the health of financial systems, 

identifying potential risks, and devising strategies to mitigate financial crises. 

5. Financial Services 

Risk Management: Financial institutions use econometric models to measure and 

manage risks associated with investments, loans, and market fluctuations. 

Asset Pricing: Econometrics is employed to develop models for pricing financial 

assets and derivatives, helping in investment decision-making and portfolio management. 

6. Economic Consulting Firms 



Economic Impact Studies: Consulting firms use econometrics to conduct studies on 

the economic impact of projects, policies, and market changes, providing valuable insights 

for clients. 

Market Analysis: Firms analyze market trends, consumer behavior, and competitive 

dynamics to offer strategic advice to businesses and governments. 

 

The core of econometrics lies in analyzing causal relationships between variables and 

making predictions based on empirical data. 

Explanatory and response variables 

An explanatory variable is the expected cause, and it explains the results. 

A response variable is the expected effect, and it responds to changes in explanatory 

variables. 

Example: Researcher has five brands of coffee and believes that different brands used 

to make a cup of coffee affect hyperactivity differently. The explanatory variable is coffee 

brand. The response variable is hyperactivity level. 

Exogeneous and Endogenous Variables 

Exogenous variable is determined outside the model and is imposed on the model. An 

exogenous change is a change in an exogenous variable. 

Endogenous variable is the variable whose measure is determined by the model. An 

endogenous change is a change in an endogenous variable in response to an exogenous 

change that is imposed upon the model. An endogenous random variable is correlated with 

the error term while an exogenous variable is not. 

Example: Amount of wheat produced may depend on weather variables, farmer skill, 

pests, price of seeds, price of diesel etc.  

These are exogenous to crop production. The amount of wheat produced is an 

endogenous variable. Are other variables exogeneous? If we consider the entire system, then 



insects depend upon weather variable, price of seeds depend upon "price of diesel". Hence 

these are endogenous variables. 

1.2 Objectives 

After completing this Block, students should have developed a clear understanding of: 

• Regression analysis relevant for analysing economic data. 

• The fundamental concepts of econometrics. 

• Multiple Linear Regression Model 

1.3 Multiple Linear Regression Model 

Simple regression model involves a dependent and one independent variable. In 

Multiple Regression Model, the study or dependent variable depends on more than one 

explanatory or independent variables. 

Focus of Attention: 

Our main emphasis is on studying  

(i) What is causing variation in dependent variable? 

(ii) Which variables are mainly responsible for variation in dependent variable? 

Examples: 

(i) Scientists might be interested in observing the effect of different amounts of fertilizer, 

different levels of irrigation, different types of soil on crop yield. 

(ii) Selling price of a house depends upon its location, House area, House has sea facing 

or not, Number of bedrooms, Number of bathrooms, how old the house is, etc. 

Let  be a dependent variable, and   are k independent or explanatory 

variables. 

We assume 



        

 (4) 

       (5)  

Usually,  to allow for the intercept term. 

Here  is the random error or disturbance term and gives the difference between 

actual value of dependent variable and its expected value or its value predicted by the 

multiple regression. 

are unknown (constants) regression coefficients 

 

In (4), if we change  by one unit, i.e., to , then  changes by amount . 

Interpretation of regression coefficient as Elasticity 

In economics and engineering applications, Elasticity is measured as a percentage 

change/response. For instance, the price elasticity of demand of a commodity is the 

percentage change in quantity of demand resulting from unit change in price. 

For example, if a 10% increase in price of petroleum results in a 2 percent decrease in 

demand, then price elasticity is .02/.10 = 0.2. Corresponding regression coefficient is -0.2. If 

20% increase in price of mango results in 40% decrease in its demand, then its price elasticity 

is 0.4/0.2=2.0. Corresponding regression coefficient -2.0. 

Model Setup: Consider the set of  observations on dependent and independent 

variables arranged in the following table: 

Sample 

no. 

Dependent Variable  independent 

variables 



 

 

 

 

 

 

 

 

 

 

 

 

independent variable,  

1.3.1 Assumptions 

We consider the following assumptions for the multiple  

Assumption 1:  

The following linear relationship exists between and  

  

  

  

        (6) 

are the d  

Let us write 

 

Then, using these vector notations, we can write (6) as 

        

 (7)  



Further, we write 

  

Then, in matrix notations, we can write (6) as 

          

 (8)  

Usually, the first column of  consists of all elements equal to 1 to allow for the 

intercept term. Thus  

  

Assumption 2: 

  

          

 (9)  

Assumption 3: 

  

  

or 

                  

(10)  

Thus,  have same variance and pairwise uncorrelated. The disturbances are said to 

be homoscedastic if all the  have the same variances. 



Assumption 4: 

Rank of  is . 

Thus are linearly independent. 

Note: If some of the linear combinations of say, 

 can be estimated unbiasedly but all such linear combinations cannot 

be estimated unbiasedly. 

 

 

Assumption 5: 

 is a non-stochastic matrix. Even if  is stochastic, it is uncorrelated with , i.e.,  

. 

Using assumptions 2 and 5, we have 

  

  

Assumption 6: 

Sometimes we assume that  follows a normal distribution. 

We may combine assumptions 2,3 and 6 as . 

Assumption 7: 

Sometimes, for studying the asymptotic properties such as consistency of the 

estimator of , we assume that  



 

exists and  is a non-stochastic and positive definite matrix with finite elements. 

1.3.2 Estimation of parameters by least squares 

1.3.2.1 Ordinary Least Squares (OLS) Estimator of  

Let  be estimated by .  

In method of least squares,  is obtained by minimizing the residual sum of squares 

  

The resulting estimator is called the ordinary least squares (OLS) estimator. 

Result 1.3.1:  When X is of full column rank, the OLS estimator of  is given by 

 

Proof: We can write  as 

 

 

                (11) 

where 

 

 

where  

In (11),  is minimum when the term 



              

(12)  

is minimum.  

For any  vector  and  iff . For showing this, let 

us write . Since  is of full column rank,  is zero if and only if . Hence 

, iff . Thus,  is positive definite and the minimum value of (12) is 

zero. This value is attained for  

                 

(13)  

Alternative Derivation: We have 

 

 

 

Further 

 

Since  is positive definite,  is minimum for .   

 is known as the ordinary least squares (OLS) estimator of . 

Result 1.3.2: The OLS estimator  is an unbiased estimator of . 

Proof: We can write  as 

 

 



Taking expectation and observing that  

 

we have 

  

For , the error sum of squares is  

. 

1.3.2.2 Ordinary Least Squares (OLS) Estimator of  

Let us write 

  

We also observe that 

  

Result 1.3.3: An unbiased estimator of  is  

 

Proof: OLS residual vector is given by 

 

where is a symmetric, idempotent matrix and . Hence 

. Thus 

 

Further 



. 

Taking expectation, we get 

 

 

 

 

Hence 

■ 

Result 1.3.4: The variance covariance matrix of b is given by 

 

Proof: We have 

  

Hence 

 

 

Since  is a linear function of , it is said to be a linear unbiased estimator of . 

 

1.4 Best Linear Unbiased Estimator (BLUE) Property of : Gauss Markov 

Theorem 

Result 1.4.1: Let   and  . Then  is a Best 

Linear Unbiased Estimator (BLUE) of  in the sense that (i) it is an unbiased estimator of 

, (ii) for any linear unbiased estimator  of , . 



Proof: We assume that is of full column rank, i.e.,  Then 

  

(ii) Let  be any other unbiased estimator of  then, 

 

 

  

  

Since , we have 

  

or  

If  and all other elements of  are zero, then . Thus is BLUE 

of . In this sense, is a BLUE of . 

1.4.1 Alternative form of Gauss-Markov Theorem 

Result 1.4.2: Let  be any linear unbiased estimator of  

matrix and . Then  is positive semi definite.  

Proof: We write 

  

Then 

 

 



  

Hence 

  

 

 

Therefore 

  

which is positive semi-definite■ 

1.4.2 Maximum Likelihood Estimators of and  

Result 1.4.3: If , then maximum likelihood estimators of  and  are 

 

Proof: Since , the likelihood function is given by 

 

 

 

 

Since the log transformation is monotonic, the maximization of likelihood function is 

equivalent to the maximization of log likelihood function. 

Further 



 

Hence 

 

 

Let  denote the MLEs of   respectively. Then, we obtain  

by solving 

 

 

This gives 

  

 

 

Further 

 

 

 

 



 

 

The Hessian matrix of log likelihood is 

 

 

 

The Hessian matrix is negative definite for . This ensures that the 

likelihood function is maximized at these values. 

Note: The MLE of  is the same as OLS estimator . 

 is not an unbiased estimator of . The bias of  is given by 

 

1.4.3 Distributions of b and  

Result 1.4.4: If then . 

Further  are independently distributed.  

Proof: We can write 

  



where  

Since . Further 

. Hence . 

Further , where  is an idempotent matrix. The rank 

of  is 

 

Hence  eigenvalues of  are 1 and remaining eigen values are 0. Thus, there 

exists an orthogonal matrix  such that 

. 

Let . Then . Therefore, the elements of  

are iid standard normal variates. Hence 

 

For proving that  are independently distributed, we have 

 

 

 

Hence  are uncorrelated and both follow normal distribution. Thus, 

  are independently distributed. Further,  is a 

function of . Hence, are independently distributed■ 

We observe that 



 

 

 

1.4.4 Cramer-Rao lower bound 

We observed that 

 

 

 

 

 

 

 

Cramer-Rao lower bound for the variance of unbiased estimators of  is 



 

Cramer-Rao lower bound is attained for the variance-covariance matrix of    but not for 

variance of . 

1.4.5 Large Sample Properties 

Consistency of the Least Squares Estimator: 

We assume that  

 is a sequence of iid random variables 

 

exists and is a non-stochastic, positive definite matrix with finite elements. 

Result 1.4.5: (i) The OLS estimator  is a consistent estimator of , (ii)  is a 

consistent estimator of . 

Proof: We can write 

 

Now 

 

. Hence 

 

Further 



 

This implies that . Again, variance covariance matrix of  is 

 

 

so that 

 

Hence 

 

Since  is a finite positive definite matrix and , we 

have  

  

(ii) We can write  as 

 

 

Now, as . Further  

 

and 



 

Since  are iid with common mean ,  

  

Hence ■ 

Obviously, asymptotic variance covariance matrix of  is 

 

Further 

 

Thus, an estimator of the asymptotic variance covariance matrix of  is . 

1.5 Self-Assessment Exercise 

1. Discuss the role and applications of econometrics. 

2. What is the general form of the linear regression model? 

3. Why is linear regression considered a fundamental statistical tool? 

4. What are the main assumptions of the linear regression model? 

5. How does the assumption of linearity influence the model's application? 

6. Why is it important to check for homoscedasticity in a regression model? 

7. What is the objective of the Ordinary Least Squares (OLS) method in linear 

regression? 



8. How are the regression coefficients estimated using the OLS method? 

9. How does MLE differ from OLS in terms of methodology and assumptions? 

10. What assumptions are made about the error term (ϵ\epsilonϵ) when using MLE? 

11. How is the likelihood function maximized to estimate regression parameters? 

12. Under what conditions would OLS and MLE provide identical parameter estimates? 

13. When is MLE preferred over OLS in regression modeling? 

14. What are the practical implications if the assumptions of linear regression are 

violated? 

15. How would you interpret the regression coefficients in a multiple linear regression 

model? 

16. Define a multiple linear regression model and give its assumptions. 

17. Derive the least squares estimator of coefficients vector in a linear regression model 

and show that it is unbiased. 

18. State and prove the Gauss Markov theorem. 

1.6 Summary 

This unit provides a detailed exploration of regression modeling techniques, focusing 

on multiple linear regression. It begins with an in-depth study of the linear regression 

model, covering: 

1. Model Structure: Establishing a linear relationship between a dependent variable and 

multiple independent variables. 

2. Assumptions: 

o Linearity of the relationship between yyy and predictors. 

o Independence of observations. 



o Homoscedasticity (constant variance of errors). 

o Normality of residuals. 

o Absence of multicollinearity among predictors. 

3. Parameter Estimation Methods: 

Least Squares (OLS): Minimizes the sum of squared residuals to derive parameter 

estimates. 

Maximum Likelihood Estimation (MLE): Optimizes the likelihood of the observed 

data, providing flexible parameter estimates under normality assumptions. 
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1.1 Introduction 

Multicollinearity in regression analysis refers to the situation where two or more 

predictor variables in a model are highly correlated. This correlation can lead to unreliable 

estimates of the coefficients, reduced statistical power, interpretation difficulties, and 

instability of model coefficients. It occurs when predictor variables contain redundant 

information about the response variable, complicating the accurate estimation of their effects. 

Addressing multicollinearity is crucial for improving the robustness and reliability of 

regression models. 

Key Points about Multicollinearity: 

1. Identification: 

• Variance Inflation Factor (VIF): A common metric used to detect multicollinearity. 

VIF values greater than 10 (some sources use a threshold of 5) indicate significant 

multicollinearity. 

• Correlation Matrix: By examining the correlation coefficients between pairs of 

predictor variables. High absolute values (close to 1 or -1) suggest multicollinearity. 

• Condition Index: Values above 30 indicate strong multicollinearity. 

2. Problems Caused: 

• Unstable Estimates: Coefficients become very sensitive to changes in the model. 

• Reduced Precision: Confidence intervals for coefficients can become very wide. 



• Misleading Significance Tests: The p-values for predictors can be misleading, 

showing some predictors as non-significant when they contribute to the model. 

3. Solutions: 

• Removing Predictors: Eliminating one or more correlated predictors can help reduce 

multicollinearity. 

• Combining Predictors: Creating composite variables or using techniques like principal 

component analysis (PCA) to combine correlated variables into a single predictor. 

• Regularization Techniques: Methods like Ridge Regression (L2 regularization) and 

Lasso Regression (L1 regularization) can help manage multicollinearity by adding 

penalties to the size of the coefficients. 

Multicollinearity does not affect the predictive accuracy of the model per se, but it 

affects the interpretability and stability of the model coefficients. Techniques such as 

variance inflation factor (VIF) and principal component analysis (PCA) can be used to detect 

and mitigate multicollinearity in regression analysis. 

1.2 Objectives 

After completing this course, there should be a clear understanding of: 

• Multicollinearity 

• Its problem, consequences, and solution 

• LASSO Estimator 

1.3 Multicollinearity 

The multicollinearity exists when two or more explanatory variables have high 

correlation. The high correlation means one predictor variable can be used to predict the 

other. This creates unnecessary information, adversely affecting the results in a regression 

model. Some examples of multicollinear predictors are: 

(i) a person’s height and weight,  



(ii) age and sales price of a car,  

(iii) years in university teaching jobs and annual salary. 

Let us write 

           

 (1) 

where,  

and   

One of the assumptions is that the matrix  is of full column rank, i.e., . 

When , we face the problem of (exact) multicollinearity. 

What are the implications of exact multicollinearity? 

Let  be the columns of X. 

Exact Multicollinearity 

In case of exact multicollinearity, there exists a relation of the form 

; where  are the constants, not all equal to 0. 

A linear parametric function  is estimable iff  can be 

expressed as a linear combination of rows of , i.e.,  In other words, if  

belongs to the row space of  then is estimable. 

If above condition of estimability is satisfied then a BLUE of  is , where  

is a solution of  

Equivalently  is estimable iff , i.e.,  can be expressed as a 

linear combination of rows or columns of . 



Result 1.3.1: The linear parametric function  is estimable iff w can be expressed 

as a linear combination of the eigen vectors of  corresponding to non-zero eigen values of 

. 

Proof: Suppose  is an orthogonal matrix consists of orthonormal eigen vectors of 

so that . 

Let us write . We have 

  

where  are eigen values of .  

We can write the equation (1) as 

  

where . If . Then columns of are zero. Without 

loss of generality, we assume that last  columns of are zero and then last  

components of  disappear from the model. 

Hence  cannot be estimated. In other words,  or any linear 

combination of them can be estimated from the model. Then we have 

         

 (2) 

Hence, we can estimate  iff last  components of  are zero. This gives the 

required result■ 

Let  be a normalized eigen vector corresponding to non-zero eigen value  of X’X, 

so that . Then  is estimable and its BLUE is , where  is a solution of 

. 



We have 

,  

  

Hence 

        

 (3) 

If  are eigen vectors corresponding to two non-zero eigen values  of 

, then 

 

 

 

Let  be an estimable linear parametric function. Then 

 

where, 

 are constants and 

. Then 

 

Thus, precision of depends upon ,  and . 



Comparatively precise estimates can be obtained in the directions of eigen vectors of 

 corresponding to large eigen values. An estimable linear parametric function  will 

be comparatively estimated with less precision if w, as written in (5), has large weights  

attached to small eigen values . 

1.3.1 Case of near Multicollinearity 

Let us suppose that .  

Then all linear parametric functions  are estimable and BLUE is  

  

Then 

 

 

 

In the case of near multicollinearity  is estimated with less precision if w has large 

weights attached to small eigen values. 

1.3.2 Sources of Multicollinearity 

Data-based multicollinearity 

1) Poorly designed experiments: If only a subspace of regressors have been sampled, 

i.e., there are  regressors but sample is collected from a lower dimensional space. 

2) Insufficient data: If number of observations is less than the number of regressors, 

then collecting more data can resolve the issue but this is not possible in all the cases. For 

example, gene expression data. 



3) Variables may be highly correlated while collecting data from purely observational 

studies. 

Structural multicollinearity 

1) Constraints on the model or in the population: when two or more regressors are 

related with some kind of linear relationship.  

2) Model specification: if range of  is small, including in the model may cause 

multicollinearity. 

3) An over defined model: if in a model there are more regressors than number of 

observations. OLS estimator cannot be obtained. This problem is often faced in gene 

expression data. Then one of the usual approaches is to eliminate some of the regressors. 

For variables selection we cannot apply test of significance for regression coefficients 

as it involves OLS estimator. Then the question arises “How to select regressors to 

eliminate?” 

Some other Causes of multicollinearity 

1) Incorrectly using Dummy variables is also a cause of multicollinearity. For 

example, if we add a dummy variable for every category. 

2) Including a regressor, which is a combination of two other regressors can also 

cause the problem of multicollinearity. For example, interest rates of various terms to 

maturity influence amount of fixed investment. But various terms interest rates are usually 

highly correlated. 

1.3.3 Consequences of Multicollinearity 

1) Let us consider a model with two explanatory variables in deviation form 

(observations are deviations from mean): 

 

We also assume that the observations are scaled to unit length.  



Let  be the correlation coefficient between  and , and  

be the correlation coefficients of  with  and respectively. 

Then 

 

The OLS estimator of  is a solution of 

 

Now 

 

Then, the OLS estimator of  is 

 

 

The covariance matrix of  is 

        

 (7) 

The strong multicollinearity between  and  results in  close to 1 or -1. This 

leads to  

(i) Large variances and covariances between the OLS estimators of regression 

coefficients. 

(ii) The regression coefficients are large in magnitude. 



2) Let us write the model in the following canonical form: 

  

where .  

The OLS estimator of  is 

 

 

 

The small  results in estimates large in magnitude  and large 

variance. 

Main consequences of presence of multicollinearity are 

1. For exact multicollinearity, OLS estimators cannot be defined. 

2. Leads to estimators with large variances and covariances and hence imprecise 

estimators of regression coefficients. 

3. Since variances of individual coefficients are large, in testing significance of 

regression parameters, the null hypothesis of insignificant regression parameter is often 

accepted. 

4. Even when the coefficients are jointly significant and  is high, the individual 

coefficients are insignificant. 

5. Because of large variances of coefficients estimates, the confidence intervals tend 

to be much wider. 

6. It leads to estimates which are large in magnitude and often having wrong signs. 



7. OLS estimators and their variances become very sensitive to small changes in data. 

Thus, results are not very robust. 

1.3.4 Detection of Multicollinearity 

The measures are: 

(i) Condition number and condition index:  

Let           

 (8) 

where, 

 maximum eigen value of  

 minimum eigen value of , and 

 is a measure of sensitivity of  to changes in . 

If the condition number is around 5 to 10, then it shows weak dependence. If 

condition number is around 30 to 100 then it shows strong relations. 

(ii) Multicollinearity Index:  

Multicollinearity index (mci) is defined as 

         

 (9)  

If it indicates high multicollinearity, and 

if it indicates little or no multicollinearity. 

(iii) Variance Decomposition Proportions:  



Let us write the Spectral decomposition of as 

 

 

Here, . 

Let  so that 

 

Define, 

 

where,   

 

 

Table: Variance Decomposition Proportions 

Eigen 

Values 

  

… 
 

   

 

… 

 



   

 

… 

 

      

 

  

   

… 
 

 

Here, sum of diagonal elements is 1.  

Two or more large values of  in a row indicate that multicollinearity is adversely 

affecting the precision of estimate of the associated coefficient. 

(iv) Variance Inflation Factor (VIF):  

Let  is the multiple correlation coefficient between regressor and the remaining 

 regressors. Then VIF is defined as 

                    

(11) 

i) If VIF is close to 1, it means there is no correlation between  predictor and 

remaining predictors.  

ii) VIF exceeding 4 warrant further investigation. 

iii) VIFs exceeding 10 are signs of serious multicollinearity. 

1.3.5 Solutions to Multicollinearity Problem 

Suppose  has a small root  corresponding to eigen vector . An additional 

observation  is taken corresponding to , where  is a scalar. The model for 

complete set of observations is 



  

                 

(12) 

  

where,  is the eigen vector of corresponding to the eigen value . 

Choosing an additional observation in the direction of  can improve the precision of 

estimator. 

Some other methods to overcome multicollinearity problem: 

Exact Linear Constraint: 

It leads to restricted regression estimator. The restrictions imposed presumably 

describe some physical constraint on the variables involved and are the product of a theory 

relating the variables. One effect of using exact parameter restrictions is to reduce the 

sampling variability of the estimators, a desirable end given multicollinear data. The 

imposition of binding constraints, even if incorrect, may reduce the mean square error of the 

estimator although incorrect restrictions produce biased parameter estimators. Exact linear 

restrictions may be employed in case of both extreme and near-extreme multicollinearity. 

Exact restrictions "work" by reducing the dimensionality of the parameter space, one 

dimension for each independent linear constraint. 

Stochastic Linear Restrictions:  

Here, you get mixed regression estimator. It arises from prior statistical information, 

usually in the form of previous estimates of parameters that are also included in a current 

model 

Linear Inequality restrictions: 

Linear inequality restrictions can indeed be useful in addressing multicollinearity in 

regression analysis. By imposing linear inequality restrictions on the coefficients of the 



regression model, we can restrict the possible values that the coefficients can take. This 

restriction can potentially reduce the variance of the estimates and improve the precision of 

estimation, especially in cases of moderate to high multicollinearity. In cases of extreme 

multicollinearity, where predictors are nearly perfectly correlated, even imposing linear 

inequality restrictions may not resolve the problem. The estimates of the coefficients can 

become highly unstable and may not yield meaningful results regardless of the restrictions 

imposed. 

1.4 Principal Component Regression 

Principal Component Regression (PCR) is a technique that combines Principal 

Component Analysis (PCA) and linear regression. It is used when there are high levels of 

multicollinearity among the predictors in a regression model, leading to unstable estimates of 

regression coefficients. 

Let us consider the model . Suppose matrix of 

orthogonal eigen vectors of . 

 is the  principal component. Then , where  is the  largest 

eigen value of .  

 matrix of principal components. 

We can rewrite the model as 

                

(13) 

1.4.1 Steps for obtaining the principal component estimator  

(i) Delete some of the principal components  corresponding to small eigen values.  

(ii) Partition  

where, 



 be the matrix of principal components to be retained. 

 be the Matrix of principal components to be deleted. 

and  and  are orthogonal to each other.  

Then the model (13) become 

                  

(14)  

(iii) OLS estimator of  is , with covariance matrix . 

(iv) We have  

Omitting the components of  means setting . Hence the principal component 

estimator of  is  

 

where  

The principal component estimator has lower variance than OLS estimator but biased 

unless the restriction  is satisfied. 

1.4.2 How to select number of principal components to be omitted? 

Visual Examination 

The principal component matrix is of the same size as the original data matrix. 

However, fewer principal components are usually needed because many of them might not be 

meaningful. Examining the amount of variance explained by each new principal component 

vector is helpful in achieving this. For this purpose, one can use scree plot. Scree plot shows 

the eigenvalues in decreasing order.  



Let  be the eigen values in decreasing order. We plot  against 

. Then select the index of the last component before the plot flattens. 

 

Variance explained criteria: 

Let . Then the trace of covariance matrix with  components 

deleted is equal to . Percentage reduction in trace of covariance matrix obtainable 

from using a least squares estimator with independent linear restrictions is: 

 

where  is the benchmark function of principal component regression. This is the 

variance of the component which we have retained.  

The total % variation that is explained by the first  loadings is 

 

We may select  so that, say, the above percentage explained variation is greater than 

. 

1.5 Ordinary Ridge Regression (ORR) Estimator 



Ordinary Ridge Regression (ORR), often simply referred to as Ridge Regression, is a 

technique used in linear regression to mitigate the problem of multicollinearity among 

predictor variables. It extends the ordinary least squares (OLS) method by adding a 

regularization term to the regression objective function. 

The Ordinary Ridge Regression is given by 

                  

(15) 

For , we get the OLS estimator . We have 

                 

(16) 

where = minimum eigen value of  and, . 

For small , squared length of OLS estimator is much larger than squared length of 

coefficients vector . The squared length of ORR estimator in less than that of OLS 

estimator. 

Result 1.5.1: The bias and MSE of ORR estimator  are given by 

 

and 

 

 

Proof: We consider that, 

 

 



  

  

or 

  

or, the bias of  is 

                

(17) 

again, we have 

  

or 

 

 

Taking expectation on both sides, we get 

 

 

 

 

Then the MSE of  is 

 

 



Result 1.5.2: The mean squared error of ORR estimator is given by 

 

Proof: The mean square error of ORR estimator is obtained by taking the trace of 

mean square error of . From equation (18); 

 

 

 

 

How to select c? 

The estimation of ridge regression estimator depends upon the value of c.  Various 

approaches have been suggested in the literature to determine the value of c.  The value of c 

can be chosen on the bias of criteria like  

• the stability of estimators with respect to c.  

• reasonable signs.  

• the magnitude of residual sum of squares etc.  

We consider here the determination of c by the inspection of ridge trace. 

Ridge Trace 

Choosing an appropriate value for c is one of the main difficulties in using ridge 

regression. The inventors of ridge regression, Hoerl and Kennard (1970), recommended 

utilising a diagram known as the ridge trace. The ridge regression coefficients as a function of 

 are displayed in this graphic. The analyst selects a value for  for which the regression 



coefficients have stabilised when seeing the ridge trace. For modest values of , the 

regression coefficients frequently fluctuate greatly before stabilising. Select the minimum 

value of resulting in the least amount of bias, beyond which the regression coefficients 

appear to stay constant.  

Ridge Trace is a two-dimensional plot of  and residual sum of squares against c. 

Select that value of c for which the estimated coefficients stabilize with increasing c. 

Figure: Univariate ridge trace and VIF trace plots for the coefficients 

 

 

 

From the above two graphs we observe that: 



1) As  increases the coefficients shrink toward 0. 

2) VIF decreases rapidly as  gets bigger than 0.  

3) The VIF values begin to change slowly as  increases. 

4) We choose the smallest value of  where the regression coefficients become stable in 

the ridge trace and the VIF values become sufficiently small. 

Some operational choices of  are 

1) Hoerl, Kennard and Baldwin (1975):  

 

 

2) Lawless and Wang (1976): 

 

1.6 Generalized Ridge Regression Estimator 

Generalized Ridge Regression (GRR) is an extension of the classical Ridge 

Regression method, which is used to handle multicollinearity and improve the stability of 

regression estimates when there are correlated predictors in a linear regression model. Like 

Ridge Regression, the goal of GRR is to stabilize the parameter estimates by shrinking them 

towards zero, especially when multicollinearity is present. 

Consider the model in canonical form 

 

  

Let  Then GRR estimator of  is defined as 



 

where 

. 

The  component of  is given by 

                      

(19) 

Result 1.6.1: the expressions for bias and MSE of  are given by 

 

 

The MSE of  is minimum when  

Proof: We have, 

 

 

This is the expression for Bias of the . 

Now, for the expression of MSE of , let 

 

 



 

 

 

 

 

Differentiate equation (20) with respect to  and equate it to zero gives 

 

 

 

 

Now, 

 

Thus the MSE of  is minimum when . 

1.7 Shrinkage Estimator 

A shrinkage estimator in statistics is a method that combines information from a 

sample with some form of prior knowledge or assumptions to produce more stable and 



sometimes more accurate estimates of parameters or predictions. In the context of regression 

analysis, particularly when dealing with multicollinearity or high-dimensional data, shrinkage 

estimators like penalized regression and stein-rule estimators are commonly used. 

For the problem of multicollinearity, the selection of a subset of variables (among a 

large number of variables) are required. In the variable selection procedure variables are 

either retained or discarded. Variable selection procedure often leads to high variance and 

prediction error so it does not work well. 

The other method which are considered for variable selection is Shrinkage Methods, 

which is more continuous and do not suffer as much from high variability. Here we consider 

some shrinkage methods for estimating the regression. 

1.7.1 Penalized Regression Estimators 

A penalized regression estimator, also known as regularized regression, refers to a 

class of regression techniques that introduce a penalty term into the ordinary least squares 

(OLS) objective function. These penalties are designed to Shrink the estimators by imposing 

a penalty on their size, thereby mitigating issues like multicollinearity and overfitting. The 

two main types of penalized regression estimators are: Ridge Regression and LASSO (Least 

Absolute Shrinkage and Selection Operator) Regression. 

Sparsity: Large number of predictors recorded but a relatively small number 

(proportion) of strong effects. This corresponds to sparsity. 

Bias-Variance Trade-off 

General regression relationship:  

Let . The effectiveness of prediction is measured 

through squared error of prediction . Then 

 

 

 



This shows that 

(i) the estimators having lower bias have higher variance. 

(ii) the estimators having lower variance have higher bias.  

In terms of higher bias there is a trade-off between bias and variance then tune the 

estimator and find the best possible trade-off. 

1.7.1.1 Ridge Regression 

In ridge regression, a penalty term proportional to the sum of the squares of the 

coefficients is added to the OLS objective function. The ridge penalty is parameterized by a 

tuning parameter, which controls the amount of shrinkage applied to the coefficients. Ridge 

regression is effective in reducing the impact of multicollinearity by shrinking the 

coefficients of correlated predictors towards each other. 

Ridge estimator is obtained by minimizing the penalized residual sum of squares 

  

                   

(21) 

Thus,  

Equivalently 

               

(22) 

There is a one-to-one correspondence between (21) and (22). Differentiating  

with respect to  and substituting it equal to zero leads to 

 



The solution adds a positive constant in the diagonal elements of . The term  is 

the Penalty parameter controlling the amount of shrinkage. 

Consider singular value decomposition of  

 matrix 

 

 

.  

 is singular if any one of the  is zero. 

  

Then 

 

 

where,  is Co-ordinates of  with respect to the orthonormal basis . 

Further 

 

 

 

The ridge regression shrinks the co-ordinates of 𝑦 with respect to the orthonormal 

basis 𝑈 by the factor . Greater shrinkage is applied to co-ordinates corresponding to 

smaller values of  

 are the eigen values of . 



 

1.7.1.2 Least Absolute Shrinkage and Selection Operator (LASSO) 

In LASSO regression, a penalty term proportional to the sum of the absolute values of 

the coefficients is added to the OLS objective function. LASSO can shrink some coefficients 

exactly to zero, performing automatic variable selection and providing sparse solutions. 

The LASSO estimator is defined as 

             

(24)  

We have, 

Ridge Estimator is with  and LASSO estimator is with . 

Equivalently 

              

(25)  

LASSO solution is a quadratic programming.  

If  is larger than ,  is equivalent to .  If  is equal to , the 

amount of shrinkage is 50%.  It makes some of the coefficients zero. 

Choice of regularization parameter c 

K-fold cross validation:  

Data are randomly split in K groups. Model constructed for  groups and 

validated on  group. Sum of predictive errors for each model is an estimate of squared 

prediction error. 

We select that value of  for which estimate of squared prediction error is minimum. 



NOTE: Both ridge regression and lasso regression are forms of penalized regression 

that offer different trade-offs between bias and variance: 

• Ridge regression generally reduces variance more effectively than LASSO but does 

not perform variable selection. 

• LASSO can perform both variable selection and shrinkage but may have higher bias 

in estimation compared to ridge regression. 

The choice between ridge regression and LASSO (or a combination known as elastic 

net) depends on the specific characteristics of the data, including the presence of 

multicollinearity, the desired interpretability of the model, and the importance of variable 

selection in the analysis. These techniques are widely used in machine learning and statistical 

modeling to improve the performance and interpretability of regression models, especially 

when dealing with high-dimensional data or correlated predictors. 

1.8 Self-Assessment Exercise 

1. Discuss the problem of multicollinearity and its various consequences. 

2. Give various measures of multicollinearity. 

3. Describe the method of principal components to overcome the 

multicollinearity problem. 

4. Describe the ordinary ridge regression (ORR) estimator to overcome the 

multicollinearity problem. 

5. How can we obtain characterizing scalar of ordinary ridge regression estimator 

using ridge trace? 

6. Gie interpretations of ridge regression estimator and LASSO as penalized 

regression estimators. 

7. Describe the ordinary ridge regression (ORR) estimator to overcome the 

problem of multicollinearity and derive its bias and MSE. Discuss various 

methods for selecting the characterizing scalar in ORR estimator. 



 

1.9 Summary 

Multicollinearity is a common issue in regression analysis where predictor variables 

exhibit high correlations among themselves. It leads to to inflated standard errors of OLS 

estimators of regression coefficients and ambiguous interpretation of the relationships 

between predictors and the dependent variable. We have discussed the consequences of 

multicollinearity, which include unreliable coefficient estimates, difficulty in interpreting 

variable importance, and potential for misleading conclusions. Different measures such as 

Variance Inflation Factors (VIF) can be used to detect and address highly correlated 

predictors. 

We have explored several strategies to overcome multicollinearity, such as increasing 

sample size, careful variable selection, using regularization techniques like Ridge regression 

and LASSO, applying Principal Component regression. 
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3.1. Introduction 

This unit focuses on advanced techniques in multiple linear regression analysis, 

designed to refine estimation methods, test model assumptions, and enhance interpretability 

and prediction accuracy. By integrating statistical tools with theoretical insights, this unit 

equips learners to handle complex regression scenarios with confidence. The key topics 

covered include: 

Restricted Regression Estimation in Multiple Linear Regression Models 

Explore how to incorporate constraints on regression coefficients to improve model 

estimation and reflect specific theoretical or practical considerations. 

Tests for Linear Restrictions 

Learn hypothesis testing techniques to evaluate whether specific linear relationships 

among coefficients hold, providing insights into model structure and variable importance. 

Model in Deviation Form 

Understand how re-expressing a model in deviation form (mean-centered variables) 

simplifies interpretation and calculation, particularly in the presence of interaction terms. 

Analysis of Variance (ANOVA) in Regression 

Examine how ANOVA techniques decompose variability in regression models, 

offering a deeper understanding of the contribution of explanatory variables. 

R-Square and Adjusted R-Squar 

Gain proficiency in assessing the goodness-of-fit of a regression model, balancing the 

trade-off between explanatory power and model complexity. 

Interval Estimation of Regression Coefficients 



Learn how to calculate confidence intervals for regression coefficients, providing a 

measure of the precision and reliability of the estimates. 

Point and Interval Prediction 

Develop skills to make accurate predictions from regression models, including 

specific value forecasts (point predictions) and range-based predictions (interval predictions) 

with confidence levels. 

By the end of this unit, learners will have a comprehensive understanding of these 

advanced regression topics, enabling them to evaluate and enhance regression models 

effectively for robust analysis and decision-making. 

 

3.2. Objective 

After completing this Block, students should have developed a clear understanding of: 

• Estimation under Linear Restrictions 

• Tests of Linear Hypothesis 

• Model in Deviation Form and ANOVA 

• Performance of a regression model:  and adjusted  

• Confidence interval estimation 

• Point and Interval Prediction 

3.3. Estimation under Linear Restrictions 

Example: 

Cobb-Douglas production function 

 



 

 Total production,  Labour input,   Capital input 

Assumption of constant returns to scale means that doubling the usage of capital  

and labor  will also double output . 

This implies that . 

i.e. 

 

 

Diminishing returns to scale means output increases in lesser proportion than increase 

in factor inputs. 

This implies that . 

Increasing returns to scale means output increases in bigger proportion than increase 

in factor inputs. 

This implies that . 

Sometimes we have prior information about the regression coefficients in the form of 

linear constraints binding the coefficients. 

Such prior information may be available from 

(a) Some theoretical considerations. 

(b)  Past experience. 

(c) Empirical investigations. 

(d) Some extraneous sources etc. 

Forms of linear restrictions: 



(i) Exact linear restrictions. i.e.  

(ii) Stochastic linear restrictions. i.e.  

(iii)Inequality restrictions. i.e.  

 

We are interested in: 

(i) Estimation under set of exact linear restrictions (point estimation or confidence 

set/interval estimation)  

(ii) Test of set of linear restrictions 

Let us consider a set of q (<k) linearly independent restrictions on : 

 

 

 

Define 

 

Then the set of linear restrictions can be written as 

 

The rank of matrix R is q (<k). 

We require the method of Lagrange multiplier, which is defined as follows: 

For minimizing (or maximizing) a function  subject to the restriction , 

we define a Lagrangian function 



 

and then minimizing (or maximizing) . 

 is the Lagrange’s multiplier. 

3.3.1. Restricted Least Squares Estimation: 

We estimate  utilizing sample information  

 

and prior information  

 

Result 3.3.: The restricted regression estimator obtained by minimizing the residual 

sum of squares 

 

subject to the restriction  is 

 

Proof: Consider the Lagrange’s function 

 

Differentiating with respect to  and , we obtain 

 

 

Writing the resulting solution for as from  we get 

 



From (3.5), substituting  in (3.4), we get 

 

so that 

 

Hence the result follows■ 

3.3.2. Properties of : 

(i)  satisfies Linear Restrictions: We have 

 

Hence  satisfies the linear restrictions (3.1). 

(ii) Unbiasedness: We have 

 

 

When the restriction  is correct,  and  is an unbiased estimator of . 

However, if , then  is a biased estimator and its bias is given by 

 

(iii)MSE Matrix: Let us write 

 

The MSE Matrix of  

 

 



 

 

We observe that 

 

So that 

 

Hence 

 

When the restrictions  are correct, the variance-covariance matrix of  is 

 

3.3.3. Maximum Likelihood Estimator under Exact Restrictions: 

Let . The LF is given by 

 

We maximize the following log of LF combined with the Lagrange’s multiplier term: 

 

Partially differentiating  with respect to  and , substituting the 

derivatives equal to zero and denoting the MLE of  as  respectively, we 

have 



 

 

 

Solving these normal equations, we get 

 

 

 

The Hessian matrix of second order partial derivatives is positive definite at 

. The restricted least squares and restricted maximum likelihood estimators 

of  are the same whereas for , the two estimators are different. 

3.4. Tests of Linear Hypothesis 

Suppose we want to test the null hypothesis  

 

against  

or  against . 

 

Cobb-Douglas production function 



 

 Total production,  Labour input,  Capital input 

Assumption of constant returns to scale implies that 

. We take 

 

 

Examples: 

(i) Significance of a Regression Coefficient: 

vector with all elements equal to zero except the  element 

which is 1. 

Thus  

Further . Then, we get the hypothesis . 

For , we get the hypothesis . 

(ii) Significance of Complete Regression: 

 

 

 

Then the hypothesis becomes 



 

We are not interested in the hypothesis as it is corresponding to the intercept 

term and taking  means additional assumption that mean level is also zero. We are 

mainly interested in the significance of entire regression not in the mean level of Y. 

(iii)Equality of Two Coefficients:  

 

 

This leads to the hypothesis . 

3.4.1. Likelihood Ratio Test for Set of Linear Hypothesis: 

We assume that  The Likelihood Function is 

 

The likelihood ratio test statistic for testing  against  

 

Now  occurs when  and 

 

For these values 

 



 

Further  occurs when  and 

 

For these values 

 

 

Hence 

 

Further 

 

 

 

Therefore 

 

Therefore 

 



Distribution of test statistic 

Since we have 

 

Under H0  

Hence under H0 

 

Further 

 

independently of , and hence, independently of . 

Therefore, under  

 

We reject  when  

: tabulated value of  at  level of significance. 

(i) Significance of a Regression Coefficient: 

  

Hypothesis   

 



 

:  diagonal element of  

 

 

 

Hence, under  

 

We reject the null hypothesis  level of significance if 

 

(ii) Testing Significance of Complete Regression: 

 

 

 

 

sub matrix formed by last  rows and columns in  

 



 

Write 

 

Then 

 

 

Thus F-statistic becomes 

 

In terms of R2 

 

 

3.5. Model in Deviation Form and ANOVA 

The OLS Regression equation is 

 

Let us define  

 

 vector with all elements equal to 1.  



For any vector y 

,   

Further 

 

Hence  gives the observation vector  as deviation from mean. Further  is a 

symmetric idempotent matrix.  

 

 

 

 

 

The first column of  matrix is . Partition  matrix as 

 

Here matrix of observations on all explanatory variables, except 

first column corresponding to intercept term. We have 

 

Further,  

 

Then, we can write (3.6) as 



 

where 

 

is the intercept term and vector of slope coefficients. Pre 

multiplying (3.7) by , and observing that , we obtain 

 

Since  we have 

 

Here  is  vector as deviation from mean and  is the matrix of explanatory 

variables as deviation from mean. 

Equation  is a set of normal equations in terms of deviations, whose solution 

leads to OLS estimators of slope coefficients, i.e., . 

Pre multiplying  

  

by  leads to 

 

 

3.5.1. Analysis of Variance 

We have 



 

 

 

denotes the Total Sum of Squares (TSS) having d.f. 

 is the Explained Sum of Squares (ESS) having d.f. 

 is the Residual Sum of Squares (RSS) having d.f. 

Hence TSS=ESS+RSS 

Sum of squares and corresponding d.f. are additive. 

Analysis of Variance (ANOVA) Table 

S.S. d.f. M.S.S. F ratio 

ESS 
  

 

RSS 
  

 

TSS 
 

  

3.6. Performance of a regression model:  and adjusted  

The error sum of squares is 

 

In two variables simple linear regression, the model is good if  (square of 

correlation coefficient) is high. Here 



 

 is the coefficient of determination or square of multiple correlation coefficient. 

It gives the proportion of variation in the dependent variable that is explained by the 

independent variables. Further 

  

If it indicates the poor fit of the model. Further, indicates the best fit of the 

model. 

Suppose , then it indicates that 95% of the variation in y is explained by 

the explanatory variables. In simple words, the model is 95% good. Similarly, we can 

interpret any other value of  between 0 and 1. Thus,  indicates the adequacy of fitted 

model. Whenever we add an explanatory variable to the model, the value of   always 

increases. In case the included variable is irrelevant, the increase in  gives a misleading 

picture. We may also face the problem of multicollinearity if too many irrelevant variables 

are included. Keeping in view this problem, adjusted , denoted as  or is used. 

The adjusted  is defined as 

 

 

 

 

If adding a variable produces a too small reduction in  to compensate for the 

increase in  ,  may decrease. A problem with  is that it may take 

negative value, which is difficult to interpret. For instance, suppose, 

 



 

Some limitations of  

(i)  

 

 

 

 for model without intercept term (regression forced through origin) is usually 

greater than  for model with intercept term. However, of two different linear models 

cannot be compared. 

(ii)  is sensitive to extreme values, so  lacks robustness. 

(iii) Suppose we have following two alternative models: 

  

  

Then coefficients of determination for the two models are 

  

  

Then  and  are not comparable. If we define 



  

then  and  provide a better option for the comparison of two models. 

3.6.1. Relation between F-ratio for testing the significance of the regression and 

Coefficient of Determination: 

For testing , the F-test statistic is 

 

Further  is 

 

Hence 

 

 

 

In fact,  is a monotone increasing function of . 

3.7. Confidence interval estimation 

Confidence interval for the individual regression coefficient: 

Consider the model 

 

Then .  

Let  diagonal element of . Then . 

 



Then 

 

 

Hence  

 

 confidence interval is obtained as 

 

 

 

3.7.1. Joint Confidence Set for all the Coefficients: 

We have 

 

 

Then  joint confidence set for  is 

 

3.8. Point and Interval Prediction 

Prediction or Forecasting When  variables are Uncertain Model: 



 

 True value of the explanatory variable for the forecast period 𝑓 

: Estimated values of the explanatory variables for the forecast 

period f 

The true value of is given by 

 

The point prediction is 

 

 

Forecast error is 

 

 

 

 

We assume that 

(i) , i.e., forecaster makes unbiased forecasts of the values. 

(ii) Covariance between  and OLS estimator b is zero, i.e., . 

 

Thus is an unbiased forecast of . 



i.e.  

 

The variance of forecast error is given by 

 

 

 

The cross-product terms have expectation zero. i.e.  

 

 

 

Now 

 

 

 

 

Utilizing (3.10), (3.11), (3.12), (3.13), we obtain 

 

If , i.e., is exactly known, so that  , then 



 

An unbiased estimator of  is 

 

Result 3.8.1.: If an unbiased estimator of , say  is available, then an 

unbiased estimator of is given by 

 

Proof: The expression for  is 

 

An unbiased estimator of  is . Further 

.  

Hence, an unbiased estimator of  is , so that an unbiased estimator 

of 

 is 

 

Further 

 

 

 



Thus, an unbiased estimator of  is 

 

Combining (3.15), (3.16), and (3.17), we obtain the result (3.14)■ 

When is exactly known, 

 

Prediction for the Model with Non-spherical disturbances 

• In the linear model with non-spherical disturbances, the disturbances have 

interdependence. 

• The pattern of sample residuals contain information which  is useful in 

prediction of post-sample observations. 

• This information can be utilized to obtain the best linear unbiased predictor. 

• This leads to the gain in efficiency over the usual expected value estimator. 

Best Linear Unbiased Prediction 

Consider the model 

 

Consider the problem of predicting  for given  for the forecast period . Let  

be the disturbance term for the forecast period so that 

 

 

Result 3.8.2.: The best linear unbiased predictor (BLUP) of  is 



 

 GLS estimator of . 

Proof: Let  be a vector and is the linear predictor of . 

For the BLUP, we obtain such that 

 is minimum subject to . 

 

 requires that 

 

Further, using (3.18), we have 

 

 

 

 

 

3.9. Self-Assessment Exercise 

1. Explain the concept of restricted regression estimation. Why might it be useful in 

a multiple linear regression model? 

2. Given a regression model , impose the restriction 

 and derive the restricted estimator. 



3. What is the null hypothesis in a test for linear restrictions? Provide an example. 

4. For the model , test the restriction  using 

the F-test. Describe the steps and interpret the results. 

5. Rewrite the regression model  in deviation form. 

Explain how this transformation can simplify computations. 

6. Discuss the test for a set of linear hypotheses in a linear regression model. How 

can we test (i) the significance of complete regression, (ii) the significance of a 

single coefficient? Derive the bias and MSE matrix of restricted regression 

estimator when linear restrictions are not correct. 

7. Explain how ANOVA is used in the context of regression analysis. 

8. For a given regression model, decompose the total sum of squares (SST) into 

explained sum of squares (SSR) and residual sum of squares (SSE). Verify that 

SST=SSR+SSE.  

9. Write the linear model in deviation form and give the ANOVA. Define  and 

adjusted  and discuss their merits/demerits. 

10. Describe the difference between point prediction and interval prediction. When 

would you use each?  

11. Obtain an unbiased forecast for value of dependent variable of out of sample 

forecast period. Derive the variance of the forecast. 

 

3.10. Summary 

This unit delves into advanced methods in multiple linear regression analysis, 

focusing on enhancing model estimation, testing hypotheses, and improving predictive 

capabilities. Topics include restricted regression estimation, enabling the incorporation of 

constraints to align models with theoretical or practical considerations, and tests for linear 



restrictions to evaluate specific coefficient relationships. The unit introduces the deviation 

form of regression models, simplifying computations and improving interpretability. 

Measures of model fit, including R-square and adjusted R-square, are discussed alongside the 

application of Analysis of Variance (ANOVA) in regression to dissect variability. Techniques 

for interval estimation of regression coefficients and both point and interval predictions are 

also covered, equipping learners to construct robust and insightful regression models. This 

unit provides the analytical tools necessary for advanced regression modeling, emphasizing 

precision, reliability, and applicability in diverse contexts. 
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4.1. Introduction 

In econometrics and statistical modeling, data often include categorical variables that 

need special treatment when used in regression models. These variables, referred to as 

**dummy variables**, are essential tools to represent qualitative characteristics, enabling the 

inclusion of such data in quantitative models. Additionally, models may involve discrete or 

limited dependent variables, which require specific techniques to ensure accurate estimation 

and interpretation. 

A dummy variable is a numerical variable used in regression analysis to represent 

subgroups or categories within the data. Typically coded as 0 or 1, dummy variables capture 

the presence or absence of a particular attribute. 

For example, a variable for gender might be coded as: 

  - 1 for "Male" 

  - 0 for "Female" 

Dummy variables allow models to include qualitative factors, enabling analysis of 

their effects on the dependent variable. 

Dummy variables serve various purposes in regression modeling: 

(i) Capturing group effects: They differentiate between categories (e.g., urban vs. rural). 

(ii) Interaction effects: Allow investigation of whether the impact of one variable differs 

across groups. 

(iii)Structural changes: Model changes over time or across different periods. 

A dependent variable may not always be continuous. Instead, it might be: 

(i) Discrete: Taking on a limited number of distinct values (e.g., binary outcomes like 

"yes" or "no"). 



(ii) Limited: Subject to boundary constraints (e.g., censored or truncated data). 

Examples: 

(i) Binary outcomes: Whether a student passes or fails (1 = pass, 0 = fail). 

(ii) Ordered outcomes: Satisfaction ratings (e.g., 1 = dissatisfied, 2 = neutral, 3 = 

satisfied). 

(iii)Count data: Number of accidents on a road in a year. 

To appropriately handle Dummy and Limited Variables, specialized models are 

employed. The Logit and Probit Models address the limitations of LPM by modeling 

probabilities in a nonlinear fashion. The Tobit Models are used for censored dependent 

variables, combining regression with a limit-dependent component. The Multinomial and 

Ordered Models extend the analysis to categorical outcomes with more than two categories.  

In brief, the integration of dummy variables and the modeling of discrete or limited 

dependent variables expands the applicability of regression analysis to diverse datasets. By 

transforming qualitative attributes into quantitative forms and tailoring methods to specific 

data characteristics, these tools ensure robust, interpretable, and actionable results. 

4.2 Objectives 

The chapter aims to equip readers with a comprehensive understanding of the 

conceptual foundations, practical applications, and analytical techniques involved in 

modeling with dummy variables and discrete or limited dependent variables. The specific 

objectives are: 

● To explain the purpose and importance of dummy variables in regression models. 

● To learn how dummy variables, represent categorical or qualitative data in 

quantitative analysis. 

● To understand the creation, interpretation, and use of dummy variables in different 

scenarios, such as group comparisons, seasonal effects, and policy evaluation. 



● To introduce the characteristics and challenges of discrete and limited dependent 

variables, such as binary, ordered, or count data. 

● To explain the limitations of standard regression models when applied to such 

dependent variables. 

● To familiarize readers with specific models designed for discrete and limited 

dependent variables, including logit, probit, and Tobit models. 

● To demonstrate the formulation and estimation of models incorporating dummy 

variables and non-continuous dependent variables. 

● To illustrate how to interpret coefficients and marginal effects in these models. 

● To emphasize the importance of diagnostic checks and goodness-of-fit measures in 

evaluating model performance. 

● To provide examples of how dummy variables can be used to analyze qualitative 

factors like gender, location, or policy interventions. 

● To showcase the use of discrete and limited dependent variable models in various 

domains, including economics, health, marketing, and social sciences. 

● To highlight the role of such models in decision-making and prediction. 

● To identify common pitfalls in the use of dummy variables, such as multicollinearity 

and omitted variable bias. 

● To discuss challenges in modeling discrete outcomes, such as sample size 

requirements and model misspecification. 

● To offer strategies for addressing these challenges and improving model robustness. 

4.3. Models with Dummy Explanatory Variables 

Dummy Variables are defined for some unusual variables like seasonal variables, 

qualitative variables etc. These variables usually take values 1 or 0 to indicate the absence or 

presence of some categorical effect/qualitative characteristic. 



Seasonal Dummies: 

Example 4.3.1: Suppose the dependent variable  is rainfall. We have quarterly data 

on rainfall. Apart from other variables, rainfall depends upon different quarters also. How to 

accommodate different quarters in the model? 

For  we define a quarterly dummy variable as follows: 

 

For four quarters of each year these dummies are 

  

Let  be the vector of other explanatory variables at time . Then, the model may be 

written as 

 

 should not contain a column of ones, otherwise  would 

imply that the data matrix is perfectly collinear with four seasonal dummies and then data 

matrix is not of full column rank  The model has four intercept terms corresponding to four 

seasons, i.e., . 

An alternative formulation is 

 

Here . 

One may be interested in the hypothesis of the form 

or . 

Qualitative Variables: Qualitative variables like education level, cast, sex etc. may be 

represented by dummy variables. 



Example 4.3.2.:  

Consider three cast groups   

(i) General (GC) denoted by dummy variable , 

(ii) OBC denoted by ,  

(iii) SC/ST denoted by .  

Dummy variables , , defined as 

  

  

  

Similarly, corresponding to two categories of sex (male, female), we define two 

dummy variables, say .  

literacy level has four categories (i) illiterate, (ii) below graduation, (iii) graduate, (iv) 

above graduation. We define four dummy variables, say for each category. In 

case of one dummy variable either we do not include the constant term or if we include the 

constant term, we drop one of the dummy variables.  For two dummy variables, sum of first 

set minus the sum of second set is . 

Thus 

(i) Either drop the constant term and one of the dummy variables from one set.  

(ii) Alternatively, retain the constant term and drop one of the dummy variables from 

each set.  

This rule also appears for three or more dummy variables. 



Example 4.3.3.: Suppose the two dummy variables are Sex (S) and Category (C). 

Then we formulate the model as 

 

 

 

4.4. Model with Limited Dependent Variable 

Discrete and limited dependent variables are types of outcomes in statistical 

modelling that differ from continuous variables in how they are measured and modelled.  

Discrete Dependent Variable: 

A discrete dependent variable is one that can only take on a finite number of values or 

a countable number of values. 

Examples: include binary outcomes (yes/no, 0/1), counts of events (number of 

accidents in a month), or categorical outcomes with a limited number of categories (like 

low/medium/high). 

These variables are usually modelled using logistic regression (for binary outcomes) 

or Poisson regression (for count data). 

Limited Dependent Variable: 

Limited dependent variables are those that are restricted in some way, often in terms 

of their range or distribution. This could mean variables that are bounded (like proportions 

that range from 0 to 1), censored (where observations are not fully observed beyond a certain 

point), or truncated (where data points beyond a certain threshold are missing). 

Examples include wages (which cannot be negative), percentages (which are bounded 

between 0 and 100), or survival times (where the observation is censored if the event of 

interest has not occurred by the end of the study). 



Techniques used for modelling limited dependent variables include Tobit models (for 

censored or truncated data), logit and probit models (for bounded outcomes).  

4.4.1. Differences between Discrete dependent variables and limited dependent 

variables: 

(i) Nature of Values: Discrete dependent variables take on distinct, separate values, while 

limited dependent variables are restricted in terms of their range or distribution. 

(ii) Modelling Approaches: Both types often require specialized modelling techniques 

beyond ordinary least squares regression used for continuous variables. Logistic 

regression, Poisson regression, Tobit models, and others are tailored to handle the 

characteristics of these variables 

(iii)Application: Discrete dependent variables are common in binary and categorical 

outcomes, whereas limited dependent variables are encountered when dealing 

with bounded, censored, or truncated data. 

4.5 Uses of dummy variables 

First, we define the Dichotomous, and Polychotomous Variables. 

Dichotomous, binary, or dummy variables usually take on a value 1 or 0 depending 

upon which of two possible results occur. 

Example: Suppose  is the tolerance of an insect to a particular insecticide. Since 

is unobservable, it may be replaced by a dummy variable defined as 

  

Another example is 

  

Polychotomous variables, also known as categorical variables or multinomial 

variables, are variables that can take on more than two distinct categories or levels. Unlike 



binary (dichotomous) variables that have only two categories (e.g., yes/no, true/false), 

polychotomous variables have multiple categories.  

Example: 

  

Some other examples of polychotomous variables include: 

Colour of a Car: Red, Blue, Green, etc. 

Education Level: High School, Bachelor's Degree, Master's Degree, PhD, etc. 

Type of Employment: Full-time, Part-time, Self-employed, Unemployed, etc. 

First, we consider models for Dichotomous variables. Approaches for such models are 

1. Linear probability Model (L P M) 

2. Logit Model 

3. Probit Model  

Models with single explanatory variable: 

First, we consider different models for the case when we have just one explanatory 

variable. 

Linear Probability Model 

Consider the model  

 

Here 

  



: Amount of insecticide used 

Model  expresses a dichotomous dependent variable as a linear function of the 

explanatory variable . Such models are called LPM. 

Let  

 

Let . 

Then 

 

Since . 

Estimation of LPM: Difficulties in applying OLS 

1. Normality: We observe that  

Therefore 

  

Thus, does not follow a normal distribution. However, in applying OLS normality 

of is not required. 

2. Heteroscedasticity: Let 

 

 

 



 

 

heteroscedastic. Dividing both sides of  by gives 

 

Since , we can apply OLS to model . Since are unknown we 

adopt the following two step procedure: 

Step 1: Using OLS to model , obtain . 

Then estimate by . 

Step 2: Transform the data by dividing by and run OLS to the transformed data. 

Step 3: However, there is no guarantee that , the estimate of , lies between 0 

and 1. We may take if OLS estimate is less than 0 and if OLS estimate is 

greater than 1. 

Logit Model 

Suppose  is the income of  person 

  

Logit model for the above house ownership example is 

 

or 



 

 

where . As , ranges from 0 to 1. Since has a non-

linear relationship with and , we cannot directly use OLS. 

Now 

 

or 

 

or 

 

 

 

 is known as the LOGIT. 

Probit Model 

We consider the family house ownership example. Let the decision of the family 

to own a house depends upon a utility and  

 



Let be the critical or threshold level of the utility index for the family and 

if , the family own a house. is also unobservable.  

Assume that follows a normal distribution with the same mean and variance . 

Then  

 

 

 

 

So that 

 

 

is the inverse of normal cdf.  is known as the normal equivalent deviate (ned). 

Since < 0 whenever , we add 5 to the ned and get the PROBIT. 

 

We write  as 

 

For estimating , , we proceed as follows: 

Step 1: Estimate by . 



Step 2: Obtain by using the normal table. 

Step 3: Use or if required convert them need into Probit by adding 5 and use Probit 

as the dependent variable in . 

Step 4: Apply GLS for estimating , . 

Notice that the slope coefficient and will remain the same whether we use ned 

or PROBIT as the dependent variable and only the intercept term will change. 

General case of k Explanatory Variables: 

Now we consider the general case, when there are  explanatory variables. 

Formulating a probability model 

Let vector of explanatory variables, and 

 

 

is the link function lying between 0 and 1. Then 

 

Linear Probability Model: 

One possibility is to retain linear regression 

 

Thus 

 



Then 

 

Then, the disturbances are heteroscedastic and we can apply GLS. However, there 

is no guarantee that the predicted value lies between 0 and 1 

or is non-negative. Thus, linear probability models are not frequently used. 

Some requirements for a probability model are as follows: 

(i)  

(ii)  

(iii)  

Any continuous probability distribution satisfies these conditions and can be used as a 

link function. 

Most frequently used models are 

 

 

PROBIT Model: 

 

Some other models are 

Weibull model:  

 

Log-log Model: 



 

The LOGIT model is based on Logistic distribution whereas the PROBIT model is 

based on normal distribution. 

Two distributions are similar in nature except in tail region. The Logistic distribution 

has much heavier tails. For intermediate values of (between -1.2 to 1.2) two distributions 

give almost similar probabilities. When is extremely small, logistic distribution gives 

larger probabilities to . It gives smaller probabilities to when is extremely 

large. If the observations have very few responses or very few non-

responses , two models give different predictions.  

Regression for probability model: 

Let 

 

The marginal effect is 

 

The density function corresponding to  is 

 

For LOGIT Model, the marginal effect is given by 

 

For PROBIT Model, the marginal effect is 

 



Here  denotes the pdf of a standard normal distribution. Further, for both the 

models, the m s depends on . 

4.5.1 LOGIT model 

Let  be observations on binary response variable, and 

vectors of observations on input variables. We take 

 

 

 

It ensures that . Then 

 

Estimation for grouped data: 

If out of observations corresponding to , times  Then estimate by 

 

so that 

 

For large , 

 

Take 



 

or 

 

Applying OLS to (4.9), we can estimate . 

Estimation in Binary Choice Models 

Let  be the observation vector on binary response variable and 

 is  matrix of observations on input variables. We can write the 

likelihood function as 

 

 

Then, log likelihood function is 

 

Write 

 

Then 

 

or 



 

For LOGIT model  

 

Hence 

 

If first element of is 1, it implies that  

 

Thus, average of predicted probabilities is equal to proportion of ones in the sample. 

If we view as residuals, then sum of residuals is zero. 

The matrix of second derivatives 

 

 

 

The Hessian matrix does not involve and is negative definite. Thus, log 

likelihood is globally concave and Newton method converges to maximum and provides the 

maximum likelihood estimator of . 



Measures of Goodness of fit: 

Some of the measures of goodness of fit are 

Pearson Goodness of fit Statistic 

 

Deviance Statistic 

 

Under the null hypothesis that the LOGIT model fits the data, both of the statistic 

follows . 

4.5.2. PROBIT Model 

Let be a latent variable such that 

 

We observe dummy variable in place of such that 

 

Assume that . Further . Then 

 

 

 

 



 

 

Let be  observations. Then the likelihood function is 

 

is a function of . Thus, we cannot estimate separately. However, 

we can estimate .  

Without loss of generality, we take . The log likelihood function is 

 

Then likelihood equation is  

 

Let us write . We utilize the result that 

 

Then 

 

where 



 

Further 

 

 

We observe that when  

 

 

 

 

 

Hence 

 

as 

 

Similarly, for ,  

 



Hence, given in , is negative definite. Here also Newton’s method leads to 

maximum of the log likelihood. 

4.5.3. Censored or Truncated Data 

Suppose we do not observe values above or below a certain magnitude, due to a 

censoring or truncation mechanism. 

Example: 

● SEBI intervenes to stop trading in stock market if it falls or goes above certain levels.  

● Company paying no Dividend until its earnings reach some threshold value. 

● A pesticide affects the insect once its dose reaches a threshold level. 

● Estimate the relationship between hours worked by a labor and characteristics such as 

age, education, sex, family status. For unemployed, data on the number of hours they 

would have worked, in case employed, are not available but their age, education, sex 

and family status are available. 

● Suppose 100 researchers have applied for a grant out of which only 30 have received 

the grant. To model amount of grant received using number of publications, amount 

received in past grants, quality of proposal measured on a scale, amount received 

cannot be negative and for those not received grant, observations on other variables 

are available. 

4.5.4. TOBIT Model 

TOBIT model was developed by James Tobin in 1958 to overcome the problem of 

zero-inflated data. By zero-inflated, we mean, many zero cells in data matrix (here ). 

Example: Let  denotes a person’s desire to own a car, which is unobservable. In 

LOGIT and PROBIT models, we define a dummy variable 

  



In TOBIT model 

  

Hence, is a censored variable. 

Let  be the income of person in the sample. Then the model is 

 

 

The model is called a censored regression model. Let be a dependent variable with 

 

Then is observed using censoring 

 

We can write the model in terms of as 

 

Obviously 

 

Maximum Likelihood Estimation: 

For an observation , the contribution to the likelihood function is 



 

 

 

The likelihood function is 

 

Log likelihood is 

 

The MLE can be obtained by maximizing w.r.t. . 

Some other estimation procedures are: 

1) Symmetrically trimmed least squares method 

2) Censored least absolute deviation (CLAD) method. 

(1) Symmetrically trimmed least squares method 

 



The OLS estimator is inconsistent because of asymmetry in the distribution of the 

error term around 0, as the observations corresponding to are omitted. Now 

observations corresponding to (or are also truncated (trimmed) and we 

take 

  

The distribution of becomes symmetric and OLS estimator becomes consistent. 

Equivalently we define 

 

and replace with if , Delete the observation otherwise. 

The true value of the coefficient would satisfy the normal equation 

 

The normal equation is obtained by minimizing 

 

Algorithm to obtain a consistent estimator of  

(i) Compute the initial estimate , say OLS, on the original data. 

(ii) Compute predicted value . If , set observation to missing. If , 

set . 

(iii)Run OLS to these altered data. 

(iv) Use this in the original data and repeat until stabilizes. 



(2) Censored Least Absolute Deviation Method 

In this method the estimator of is obtained by minimizing the sum of absolute 

deviations 

 . 

The procedure is the same as that of symmetrically trimmed estimator. 

Multinomial Choice Models 

Let be the result of a single decision among more than 2 alternatives. For Unordered 

choice set such as categories or qualitative choices, we use multinomial LOGIT, or 

conditional LOGIT models. For ordered choice set (rankings), the models for ordered data 

include ordered PROBIT model. 

Example (Unordered): In Occupational field, let be 0 for labor, 1 Professional, 2 

White collar, 3 Blue collar (workers in a division of manufacturers) and include the 

education, parent’s income, etc. 

Example (Ordered): Opinions of a survey are coded  as, say, 1 for “strongly 

disagree”, 2 “disagree”, 3 “neutral”, 4 “agree”, 5 “strongly agree” (rankings). Further, 

include the monthly income, education level, caste group, etc. 

Random Utility Models 

Example: A car consumer decided to choose one of two cars A and B which are 

nearly identical except the car B has enhanced safety features and costs Rs 20,000 more.  

Marginal utility derived from car B is Rs 20,000.  

If 10,000 consumers preferred car B to car A, consumers overall 

received crore worth of incremental utility from the safety 

features of car B.  



Utility is derived from the consumer's belief that they are likely to have fewer accidents due 

to the added safety features. 

: Utility for customer if he makes choice among possible 

utilities  

Customer makes the choice if is maximum. Statistical model for utility is driven 

by . 

Linear utility model: 

 links the agent utility to factors that can be observed. 

4.5.5. Multinomial Logit Model 

Explanatory variables contain only individual characteristics 

 

Here is individual characteristics constant across all the alternatives . 

Estimated equations assign a set of probabilities to classes with observed 

characteristics . 

Model to define the probabilities for different classes is 

 

For a vector , if , then the probabilities computed in (4.11) remain same 

as all the terms involving will drop out. Sum of all the probabilities is one. Only 

parameters are needed to define probabilities. Thus, we can write 

 



 

Odds ratio of alternatives j and l: 

 

 

 

The odds ratio of alternatives and does not depend on any other alternative. 

Let;  

 

Log likelihood is 

 

Derivative of log likelihood is 

 

Second derivative matrix has blocks 

 



The Hessian matrix does not involve and Newton’s method can be applied to 

obtain MLEs. 

The main weaknesses of Newton’s method is that it has too many parameters. 

Multinomial LOGIT model: 

.  

Characteristics of the choice and individual . 

 

same for all choices 

Model: 

 

 

is independent of individual specific effects.  

 

 

Probability ratio is independence from irrelevant alternatives (IIA), i.e., it does not 

depend on alternatives other than and . 

We can write the log likelihood just like the multinomial Logit model. 

4.5.6. Poisson Regression Model 



Poisson regression is indeed a type of generalized linear model (GLM) specifically 

designed for modeling count data. It assumes that the response variable  follows a Poisson 

distribution, which is suitable for modeling non-negative integer outcomes such as counts of 

events. The objective of the model is to develop a relationship between observed counts and 

potentially useful regressors. 

Example: 1. Defects in a unit of manufacturing products 

      2. errors in software 

      3. counts of pollutants in environment 

Assume that response variable  is a count such that observations are .. 

Probability model for count data is Poisson distribution: 

 

For Poisson distribution 

 

Both mean and variance are equal to parameter . 

Poisson Regression Model 

Let 

. 

We assume, expected value of observed response can be written as 

 

and there is a function g called link function that relates or links mean response with 

linear predictor. 

 



where,   

so the relationship between mean response and linear predictor is 

 

Several link functions are used with Poisson distribution one of them is identity link 

 

When this link function is used 

 

Another popular link with Poisson distribution is log link. 

 

 

Log-link is particularly attractive for Poisson distribution because it ensures that all 

predicted values for response variable will be non-negative. For estimation of parameters 

method of maximum likelihood is used (approach like logistic regression). 

Let  is a random sample of n observation. 

Likelihood function is 

 

 

 



Log likelihood function 

 

where,  

Once the link function is specified, we maximize log-likelihood to find MLE’s. 

Iteratively reweighted least squares (IRLS) can be used following an approach similar to 

logistics regression. 

For Poisson distribution if  i.e. if the link is log-link then 

 

 

 

 

Equating to zero vector we get maximum likelihood score equations 

 

 

where, . 

If intercept is included in the model, then . 



4.6. Self-Assessment Exercise 

1. Discuss the limitations of the linear probability model. Can it be applied to all binary 

dependent variables? Why or why not? 

2. How do the Tobit and Probit models differ in their handling of limited dependent 

variables? 

3. Evaluate the implications of selecting an inappropriate model for discrete or limited 

dependent variables in terms of prediction accuracy and interpretation. 

4. What are dummy variables, and how are they created from categorical data? 

5. Define limited dependent variables and provide examples. 

6. Why is a standard OLS regression inappropriate for limited dependent variables? 

7. Discuss the key challenges in modeling limited dependent variables and suggest 

solutions. 

8. Describe the differences between binary, ordered, and count data as limited dependent 

variables. 

9. What is the primary purpose of the logit and probit models? 

10. Describe Logit and Probit models. Compare the logit and probit models in terms of 

assumptions, computation, and use cases. 

11. How do we estimate the parameters of logit and probit models? 

12. Explain the difference between censoring and truncation in data with examples. 

13. Describe the practical implications of ignoring censoring or truncation in data 

analysis. 

14. What is the Tobit model, and when should it be used? Explain how the Tobit model 

differs from standard linear regression. 



15. What are the assumptions underlying the Tobit model? How do we estimate the 

parameters of the model? 

16. What is the multinomial logit model, and how does it differ from the standard logit 

model? When is it appropriate to use a multinomial logit model? 

17. What type of dependent variable is suitable for analysis using a Poisson regression 

model? 

18. Discuss the assumptions of the Poisson regression model. How do we estimate its 

parameters? 

4.7. Summary 

This unit offers a comprehensive overview model with dummy explanatory variable 

and limited dependent variables. The discussion then extends to specialized models for non-

normal response variables. These include logistic (LOGIT) and probit (PROBIT) models for 

binary outcomes, TOBIT models for censored data, and Poisson regression for count data. 

Each model is analyzed in terms of its objectives, underlying assumptions, and parameter 

estimation techniques. 
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5.1. Introduction 

1. Model with Nonspherical Disturbances 

This unit covers the models with nonspherical disturbances, seemingly unrelated regression 

model, panel data model. 

In econometrics, nonspherical disturbances refer to a situation where the error terms 

(disturbances) in a regression model are not independently and identically distributed (i.i.d.) 

and may exhibit heteroskedasticity or autocorrelation. Such violations of the classical 

assumptions can lead to inefficient and biased estimators, if standard ordinary least squares 

(OLS) is used. 

To address nonspherical disturbances: 

• Generalized Least Squares (GLS) or Feasible GLS (FGLS) methods are often 

employed. 

• GLS transforms the model to ensure the error terms become i.i.d., improving the 

efficiency of the estimates. 

The seemingly unrelated regression (SUR) model is used when multiple regression 

equations are estimated simultaneously, and the error terms across equations are correlated. 

While the equations may appear unrelated in terms of their regressors, the correlation of their 

disturbances creates interdependence. 



Key Features of the SUR model are 

• SUR is more efficient than estimating the equations separately, especially if the error 

terms are highly correlated. 

• It is particularly useful in applications like demand systems or sectoral economic 

models. 

• Estimation is typically done using GLS or Maximum Likelihood Estimation (MLE). 

A panel data model combines cross-sectional and time-series data, observing the same units 

(individuals, firms, countries) over multiple time periods. Panel data models help capture 

dynamics across time while accounting for individual heterogeneity. 

Key Variants: of panel data models are 

1. Pooled OLS Model: Ignores individual or time-specific effects and pools all 

observations, assuming homogeneity. 

2. Fixed Effects (FE) Model: Accounts for unobserved individual-specific 

characteristics that are constant over time. 

3. Random Effects (RE) Model: Assumes individual-specific effects are randomly 

distributed and uncorrelated with regressors. 

Advantages: 

• Controls for unobserved heterogeneity. 

• Enables analysis of time-invariant and time-variant factors. 

• Improves estimation efficiency by utilizing both cross-sectional and temporal 

dimensions. 

5.2. Objectives 

After completing this Block, students should have developed a clear understanding of: 



• Model with non-spherical disturbances and estimation of parametric by generalized 

equation. 

• Seemingly unrelated regression equations (SURE) model and its estimation. 

• Panel data models. 

• Estimation in random effect and fixed effect models 

5.3. Model with non-spherical disturbances 

The Model is 

 

Assumption of Spherical Disturbances is . 

This assumption may be violated in many practical applications 

▪ Heteroskedastic disturbances  is different for different  

▪ Cross-observation correlations  

▪ Cluster effects  Observations come in groups having correlations within group, but 

not across groups. 

Suppose the Spherical disturbances are non-spherical then assumption is 

. 

where 

and  are Positive definite, symmetric matrices. 

For non-spherical disturbances, we refer to model as generalized linear model. 

Note: We write covariance matrix in the form  so that if we set  we get classical 

model with . 



Special cases 

(i) Heteroscedasticity: Disturbances are said to be heteroscedastic when they have 

different variances. 

Suppose  observations are in groups with  observations in  group, so that 

. The disturbance variance varies in difference groups. The model is 

 

where  

Further, 

 

We can write the model as 

 

with  

 

 

(ii) Autocorrelated Disturbances: Autocorrelation is usually observed for time series data. 

The disturbances usually have common variance but autocorrelated. 

Suppose  Then 



 

Suppose  follows an AR(1) process  

 

where  is the autoregressive coefficient and  are iid random errors with  

. Then 

 

 

Some other examples of models with non-spherical disturbances 

(i) Model with Autoregressive Conditional Heteroscedastic (ARCH) or Generalized 

ARCH (GARCH) disturbances. 

(ii) Panel data models. 

(iii)  Models having spatial autocorrelation 

Finite Sample Properties of OLS Estimator for Generalized Linear Model: 

Result 5.1: For the model with non-spherical disturbances 

(i) The OLS estimator  is unbiased 

(ii) The variance-covariance matrix of  is  

 



(iii) If , then 

 

Proof: We can write the OLS estimator as 

 

(i) As long as ,  

 

Thus, is still unbiased for . 

(ii) Variance-Covariance matrix of  is 

 

 

. 

(iii) Since 

 

is a linear function of  and , we have 

 

b is the linear unbiased estimator of . 

 

Consistency of OLS estimator for General Linear Model 



Result 5.2: If  are finite positive definite matrices, 

then the OLS estimator  is a consistent estimator of . 

Proof: We have 

 

Further 

 

Hence 

 

Further 

 

 

Hence  is a consistent estimator of  

Generalized Least Squares (GLS) Estimator: 

Since  is positive definite,  a nonsingular matrix  such that . 

We write 

 

 

where . 



Then 

 

Further . 

The GLS estimator of  is obtained by minimizing 

 

 

 

Notice that the OLS estimator is obtained by minimizing , whereas 

GLS estimator is obtained by minimizing . 

Result 5.3: The GLS estimator of  is 

 

Further  

(i) GLS estimator  is an unbiased estimator of . 

(ii) Variance-covariance matrix of  is 

 

Proof: The transformed model  satisfies the assumption of spherical disturbances 

. For obtaining the GLS estimator, we have to minimize 

, i.e., we have to apply OLS to . 

Applying OLS to , we have the following estimator for : 



 

 

 

which leads to . 

(i) For proving unbiasedness of , we write 

 

 

Hence 

 

(ii) Again 

 

■ 

Generalized Gauss Markov Theorem: 

Result 5.4: 

Let  and . Then  is a Best Linear Unbiased 

Estimator (BLUE) of  in the sense that (i) it is an unbiased estimator of , (ii) for any 

linear unbiased estimator  of , for all . 

Proof: We observe that 

(i)  



(ii) We write  Further 

 

 

Hence 

 

Result 5.5: If  is a finite positive definite matrix 

then  is a consistent estimator of . 

Proof: The result can be easily verified as  is obtained by applying OLS to model (5.1). 

Maximum Likelihood Estimation 

Result 5.6: If , the maximum likelihood estimators of  are, 

respectively, given by 

 

Proof:  The log likelihood function is given by 

 

 

 

 



Substituting these derivatives equal to zero, we obtain the following ML estimators of 

: 

 

 

 

 

ML estimator of is the same as the GLS estimator . Further 

 

Feasible Generalized Least Squares Estimator 

In practice  is usually unknown. Suppose it is a function of a  unknown parameter 

vector , so that we can write . Suppose a consistent estimator  of  is available. 

Then we estimate  by . 

A feasible generalized least squares (FGLS) estimator of  is given by 

 

5.4. Seemingly unrelated regression equations (SURE) model and its estimation 

➢ Multiple regression model describes the behavior of a particular study variable using a 

set of explanatory variables. 

➢ For explaining the whole economic system, the model may involve a set of multiple 

regression equations with each equation explaining a particular economic 

phenomenon. 



➢ Should different equations be treated separately for estimation purpose? 

➢ Equations may be seemingly unrelated with each other structurally but linked through 

some statistical interaction among them. 

➢ The interaction is through the correlation between random error terms of different 

equations. 

➢ Is it possible to improve the estimators based on individual equations by developing 

estimators based on the entire system of equations? 

➢ How to estimate the entire system of equations? 

SUR Models 

 Jointness of equations is through the covariance matrix of the associated disturbances 

 Jointness provide additional information over and above the information available 

with the individual equations. 

Example : Objective is to estimate demand relationships for a particular commodity for 

several households. 

Price and income data are the exogeneous variables. 

One may expect jointness of demand equations for different households through their error 

covariances. 

Example: While studying consumption pattern of a country with 20 states, each state has a 

consumption equation. Different equations may involve different variables and apparently 

look unrelated. Consumption pattern of different states may have some kind of statistical 

interdependence. Correlation may exist between the error terms associated with the 

equations. The equations are apparently or “seemingly” unrelated regressions but not 

independent relationships. 

Example: Capital Asset Pricing Model (CAPM) 

CAPM of finance evolves as a way to measure the systematic risk. For the security 



 

 Expected return on  security 

 Risk free rate 

Expected return of the market 

 Beta of the security (a measure of systematic risk of a security or portfolio compared to 

the market as a whole). 

Equity market premium 

: Disturbances 

CAPM describes the relationship between systematic risk and expected return for security. 

Risk-free rate accounts for the time value of money. 

Other components of CAPM formula account for the investor taking on additional risk. 

Beta is a measure of how much risk the investment will add to a portfolio that looks like the 

market. 

If a stock has beta greater than one, stock is riskier than the market. 

If a stock has a beta of less than one, it will reduce the risk of a portfolio. 

The information about the return of a security to exceed risk free rate by a given amount will 

provide the information about the excess return of some other securities. 

Disturbances are then obviously correlated across securities. 

Estimating the securities jointly may provide better estimates than the estimates based on 

individual equations. 

Example: Investment Model 



Consider two IT companies; say Tata consultancy Services (TCS) and Infosys. Let 

Vector of observations on investment by TCS  

Vector of observations on stock market value of TCS 

Vector of observations on year capital stock of TCS 

Corresponding  vectors of observations for Infosys 

 

 

 

We assume that 

 

Vector 

Let us write  

matrix 

matrix 

 

Then 

 

Applying least squares to two equations separately, we get the estimators of  and  as 



 

Two firms are working in the same branch of industry and investments (or errors) of two 

models may be correlated, i.e., . 

Reason for such a correlation  

The state of economy whose effect is felt through is likely to have similar effects 

on each of the firm.  

“Is it possible to pool the two equations and estimate  and  more efficiently taking into 

account the correlation between them?” 

5.4.2. Two Equations Seemingly Unrelated Regression (SUR) Model 

Consider the following two equations SUR model: 

 

 vectors of observations on dependent variable 

Matrices of observations on explanatory variables 

 

 

 

 

In matrix notations, we can write the conditions as 

 



; 

  

 

We can combine the two equations  as 

 

where 

 

 

 

 

 

 

Then 

 

 denotes the Kronecker product operator 

 

The GLS estimator of  is 



 

 

Covariance matrix of  is 

 

 is usually unknown. For estimating , we proceed as follows: 

i. Apply OLS to each equation in . Obtain the OLS residuals 

 

 

ii. Estimate by 

 

iii. Estimate  by 

 

 

iv. Obtain 

 

v. The feasible GLS estimator of  is 

. 

Kronecker Product: 



 matrix 

 matrix 

 matrix 

Algebra of Kronecker Products 

Result 5.8: We have 

 

From (i), we observe that for square matrices  

 

Hence . 

SUR Model: General Case of M Equations 

 

 

  

  

Let 



  

 

 ;  

Then the model can be expressed as 

 

 

 

The GLS estimator of  is 

 

 

Expending the Kronecker product, we obtain 

 

Result 5.9: When the GLS estimator of  reduces to the OLS estimator 

, where  



Proof: If  Hence (5.4) becomes 

 

Result 5.10: When , the GLS estimator becomes the OLS estimator. 

Proof: Let , so that 

 

 

Hence the result follows  

 unknown: Feasible Generalized Least Squares 

(i) Use of unrestricted residuals for Estimating  

Let  be the total number of distinct explanatory variables out of  variables in the 

full model  be  observation matrix of these variables Regress each of the M study 

variables on the column of Z and obtain  residual vectors 

  

where  



Obtain 

 

and construct the matrix . Since Xi is a submatrix of Z, we can write , 

where  is a  selection matrix. Then 

 

Thus 

 

Hence 

 

Thus, an unbiased estimator of  is 

 

 

The FGLS estimator of  is 

 

(ii) Use of restricted residuals for Estimating  

Regress  for each equation, , and obtain the OLS residual vector 

  

A consistent estimator of  is obtained as 

  



where 

 

 

Using  a consistent estimator can be constructed. Further 

 

 

Hence 

 

is an unbiased estimator of . 

5.4.3. Maximum Likelihood Estimation 

For obtaining MLE, consider  observation  on each of M dependent variables 

and corresponding regressors. Arranging these observations horizontally, we can write the 

model as 

 

 

 

Here  is the set of  different explanatory variables. 

  

 



 has one column for each equation and  has number of zeros in it each one 

imposing exclusion restriction. 

For example, let 

 

 

Then, corresponding to the  observation 

 

Log of joint normal density of M disturbances is 

 

Log likelihood is 

 

 

 

 

 

 

We have utilized the following results: 



 

 

 

 

 

 

 

From (5.6), given slope parameters, the MLE of  is . Replacing  by  in (5.5), the 

concentrated-log likelihood is 

 

Thus 

 subject to exclusion restrictions. 

Goodness of fit measure  is defined as 

 

 

 is FGLS estimator of  

 

 



 

 element of  

 

 

5.5. Panel data models 

Three types of data sets:  

(i) Time series data,  

(ii) Cross section data,  

(iii) Longitudinal or Panel data: Data that contains observations on different cross sections 

across time.  

If the same people or states or countries, sampled in the cross section, are then re-sampled at 

different time points, we get longitudinal or panel data set.  

➢ Panel data contains observations collected at a regular frequency, chronologically and 

observations across a collection of individuals. 

➢ Longitudinal/ Panel data sets are very common in Economics, Medical and 

Biostatistical studies. 

➢ Becoming popular due to the widespread use of the computer making it easy to 

organize, produce and analyze such data. 

Examples:  

▪ Annual data on unemployment rates, GDP, % of people living below the poverty line 

for 28 states of India over 2011-2020. 

▪ Quarterly sales of Cars (small hatchbacks) of different brands over several quarters. 



▪ Currency values of developing countries at regular intervals during last ten years. 

▪ Daily closing prices of different stocks of IT sector for the past one year. 

5.5.1. Benefits of Panel Data 

❑  More accurate inference of model parameters 

Panel data provide more informative data, more variability, less collinearity, more degrees of 

freedom and more efficiency. 

Provide a large number of data points, increasing the degrees of freedom and reducing the 

multicollinearity in explanatory variables. Thus lead to more efficient estimates. 

Example:  

Objective is to model yearly demand of car of Kia Motors in a city using explanatory 

variables such as peoples income, city size etc. 

Time series data on a particular city may not have enough data points  

If we fit model for panel data collected from different cities, the sample size increases. Data 

involves more heterogeneity, leading to more efficient estimates.  

One has to assume that the same relationship holds for different cities. 

If predictions for an individual are based on short time series, using panel data increases the 

sample information and the accuracy of predictions if behavior of individuals are similar 

conditional on certain variables.  

❑ Greater capacity for capturing the complexity of human behavior than a single 

cross-section or time series data 

Able to identify and measure effects that are not detectable using only cross section or time 

series data.  

Able to address important questions which can not be answered using only time series or 

cross section data. 



Example:  

While analyzing labor force participation cross-section data of women, an observed 

participation rate of, say, 50% implies that each women in a homogeneous population has 

50% chance of being (spends 50% of her life) in the labor force.  

It does not address the issue that whether the women is working or not in the past, which may 

be a good predictor of labor force participation. This kind of issues can be addressed if we 

analyze panel data. 

Example:  

Evaluating the effects of legalizing in a state A on marijuana smoking behavior by comparing 

the differences between A and other states that were still non-legalized.  

The panel data would allow the possibility of observing the before- and affect effects on 

individuals of legalization as well as providing the possibility of isolating the effects of 

treatment from other factors affecting the outcome. 

❑ Better understanding of dynamics of adjustment 

A single time series model cannot provide good estimates of dynamic coefficients.  

For instance, in distributed lag model 

 

 is close to  or . Thus data are nearly multicollinear.  

The panel data reduces multicollinearity using inter individual differences in  values.  

❑ Able to overcome the bias arising from Omitted Variables 

If omitted variables are correlated with included explanatory variables, it may lead to 

correlation between these variables and disturbances. Panel data controls the impact of 

omitted variables leading to individual or time heterogeneity. 



Consider 

 

If  is omitted, it makes the OLS estimators of  biased. However, in panel data, we 

may get rid of this problem.  

For instance, if , we may fit the model for first differences 

 

If  then we may transform the model as 

. 

❑ Overcome the problem of measurement error 

Measurement error leads to under identification of the model.  

The availability of multiple observations in panel data allows to make transformation in the 

model to make it identifiable. 

❑ Providing micro foundations for aggregate data analysis and overcome the problem 

of biases arising from aggregation 

If micro units are heterogeneous in nature, the time series properties of macro data based on 

aggregate information may be misleading.  

With panel data having time series observations on individuals, investigation of homogeneity 

versus heterogeneity is possible. 

❑ More accurate predictions for individual outcomes  

Pooling leads to improved predictions in comparison to generating predictions of individual 

outcomes using the data on the individuals.  

If individual behaviors are similar conditional on explanatory variables, panel data provides 

the possibility of learning an individual’s behavior by observing the behavior of others.  



❑ Availability of panel data simplifies computation and inference. Also Allows to 

construct and test more complicated behavioral models than purely cross-section or 

time series data. 

In nonstationary time series, the large sample approximations for the distribution of least 

squares or several other statistic is not normal.  

For panel data, one can use central limit theorem across the cross-section to derive the 

limiting distribution of several statistic and to prove asymptotic normality. 

5.5.2. Limitations of Panel Data Model: 

❑  Design and Data collection 

Include problems of coverage (incomplete account of the population of interest), 

nonresponse, recall (respondent not remembering correctly), frequency of interviewing, time-

in-sample bias etc. 

❑ Distortions of measurement errors 

Faulty responses due to unclear questions, memory errors, deliberate distortion of responses 

(e.g. prestige bias), inappropriate informants, mis recording of responses and interviewer 

effects.  

❑ Selectivity problem  

Self-Selectivity: Labor refuse to work as offered wage is lower than reservation wage (lowest 

wage rate at which a worker would be willing to accept a job). We can observe other 

variables but not wages of such people. If we don’t take data on such people, we get 

truncated sample. 

Nonresponse: Usually occurs at the initial waves of panel. In surveys some of the questions 

may remain unanswered or complete nonresponse may occur. 

Attrition: Nonresponse may occur in cross-sectional studies in the subsequent waves of the 

panel. 

❑ Short time-series dimension 



Micro panels involve annual data covering a short time span for each individual. Usually the 

asymptotic arguments rely crucially on the number of individuals tending to infinity. 

❑ Cross-section dependence 

Macro panels on countries or regions with long time series that do not account for cross-

country dependence may lead to misleading inference. 

5.5.3. Heterogeneity across individuals and time:  

Different individuals may be influenced by different factors leading to heterogeneity across 

individuals. 

Assumption that  is generated from probability distribution  with constant for all 

individuals is not valid if some significant factors are left out from the model specification. 

We characterize the distribution of  as .  

If  is decomposed into , then  are called structural parameters.  

 vary across individuals and time and called incidental parameters. 

If  are random variables, the model is called random effects model. If  are fixed 

unknown constants, it is called fixed effects model. 

Consider following models with single explanatory variable 

Model with no heterogeneity is 

 

Model with heterogeneity in intercept : 

 

Model with heterogeneity in intercept and slope coefficient 

 



Balanced panels: Same number of observations on each cross-section unit. 

 

Unbalanced panels: Unequal number of observations on each cross-section unit. 

 

We consider the case of balanced panels only. 

For , we get cross-section observations. For , we get time series observations. 

In panel data estimation methods, we consider the case when  and . 

 

5.6. Estimation in random effect and fixed effect models 

5.6.1. Fixed effects model with more than two time periods: 

Consider the model 

 

and . 

As  increases, number of parameters  also increases. 

We cannot estimate  consistently but we can estimate other parameters 

consistently. 

We write the model as 

 

 is a set of  dummy variables. 

We regress  on  and obtain OLS residuals . 

Then regress to get OLS residuals  



Running regression between OLS residuals  and , the estimator of  is obtained 

as 

 

This is the within estimator. The estimator is also called least squares dummy variable 

(LSDV) estimator. 

Any transformation that deletes the fixed effect produces a fixed effects estimator. 

For instance, pre multiplying a  vector by a  matrix 

 

produces a  vector of first differences. 

If we pre multiply the model by F, we get rid of fixed effect and then we can consistently 

estimate  by applying OLS. 

Again 

 

The model in deviation form is 

 

which satisfies the orthogonality condition. OLS can be applied to produce consistent 

estimators. 

First differences or differencing from person-specific means produce consistent (and 

unbiased) estimators of . 

5.6.2. Steps to Implement fixed effects estimator are: 

Transform all the variable by subtracting person-specific means 



Run OLS on transformed variables 

The matrix of standard errors of fixed effects estimators is 

 

The estimator of  is , where  is within OLS residual. 

Testing for Fixed Effects 

We assume  

For testing , we apply Chow test and obtain  

Restricted regression SS (RRSS) by using pooled model. 

Unrestricted regression SS (URSS) by using within estimator. 

The test statistic is 

 

. 

5.6.3. Random Effects Model: 

Random effect model is given by 

 

where  

 

Here is uncorrelated with . 

We assume that 

 



Hence 

 

where  is a  vector with all elements 1. 

Hence         

Using the result 

 

We have 

 

Thus 

 

FGLS estimator of  We need to estimate . 

5.6.4. Random effects as a combination of within and between estimators: 

Consider the  equation 

 

Then  

 

Similarly, we define  

Define a  matrix D of  dummy variables 



 

:  symmetric, idempotent matrix 

Pre multiplying the model by  transforms the data into the means and the model 

becomes 

 

Applying OLS to above model, we get the estimator 

 

This estimator is called the between estimator or Wald estimator. 

The between estimator is consistent but not efficient.  

If T is large, this estimator is robust to measurement errors in  variables, provided 

orthogonality condition  uncorrelated with  is satisfies for the correct data. 

The information thrown away by the between estimator can be used to construct 

following within estimator 

Let ,  

 Symmetric idempotent matrix 

Pre multiplying by , we obtain 

 

 Residual when we run regression between  and dummy variables  

: Residual when we run regression between  and  

Thus, pre multiplying by  transforms the data into residuals from auxiliary 

regressions of all the variables on a complete set of individual specific constants. 



Predicted value from such a regression is the individual specific means. Thus, residuals 

are deviations from personal specific means. 

 

Pre multiplying the model by  and applying OLS leads to the within estimator 

 

Estimator  is obtained by running OLS on the following equation: 

 

The estimator is called the within estimator because it uses only variation within each 

cross-section unit. 

The estimator is consistent but not efficient as it uses  unnecessary extra variables. We 

can write pooled OLS estimator as weighted sum of between and within estimators: 

 

 

Where  

The pooled OLS estimator is consistent but inefficient as it does not incorporate 

information about heteroscedasticity resulting from repeated observations from same 

cross section units. 

5.6.5. Estimation of  : 

Estimators of   based on standard ANOVA are 

; 



 

. 

: Residuals from the within regression 

: Residuals from the between regression 

Degrees of freedom for  is 

 

as the  equation has  explanatory variables, but  . These 

estimators are consistent estimators of corresponding variances. Then 

 

5.6.6. Steps for estimating random effects panel data model: 

i. Compute within and between estimators 

ii. Compute corresponding residuals and use residuals to estimate variance terms  and 

. 

iii. Obtain 

 

iv. Run OLS between transformed variables  and  where  

 

5.6.7. GLS Estimation:  



Consider the model 

 

Where 

 

 

 with all elements  

 

We consider 

Within Model: 

 

Between model: 

  

For each , equation is repeated  times. So, we multiply by . We can write (5.8) as 

 

 

 

 

Combining (5.7) and (5.9), we get 



 

Covariance matrix of  is 

 

Applying GLS to , we obtain 

 

 

 

where 

 

 

 

 

 

 

 

 

For  and  reduces to the OLS estimator 



 

5.7. Self-Assessment Exercise 

19. Explain the concept of nonspherical disturbances and why they pose a challenge in 

econometric modelling. 

20. What are the key differences between heteroskedasticity and autocorrelation in the 

context of regression analysis? 

21. Explain the purpose of Generalized Least Squares (GLS) and how it improves upon 

Ordinary Least Squares (OLS) in the presence of nonspherical disturbances. 

22. How does the Seemingly Unrelated Regression (SUR) model improve efficiency in 

estimation? Provide a real-world example. 

23. Compare and contrast the Fixed Effects (FE) and Random Effects (RE) models in 

panel data analysis. 

24. Describe a scenario where panel data models are more suitable than cross-sectional or 

time-series models. 

25. A researcher is analysing two interrelated equations for household spending on food 

 and clothing  where the error terms of the two equations are correlated. 

Explain how a SUR model can be used in this situation, and outline the steps for 

estimation. 

26. Given panel data on the annual income of individuals across 10 years, propose a 

suitable econometric model to examine the impact of education and experience on 

income. Justify your choice and discuss how to handle unobserved heterogeneity. 

27. Suppose a dataset exhibits heteroskedasticity in the error terms. Show how GLS can 

be applied to transform the model and estimate the parameters efficiently. 

5.8. Summary 



This unit introduces three advanced econometric models commonly used in analyzing 

complex economic relationships. The focus is on addressing limitations of basic regression 

models, particularly in cases involving nonspherical disturbances, interrelated systems, or 

combined cross-sectional and time-series data. 

1. Models with Nonspherical Disturbances 

• Explores situations where the assumptions of homoscedasticity and no autocorrelation 

in error terms are violated. 

• Discusses techniques such as Generalized Least Squares (GLS) and Feasible GLS 

(FGLS) for addressing these issues. 

• Applications: Time-series models with serial correlation, cross-sectional models with 

heteroskedasticity. 

2. Seemingly Unrelated Regression (SUR) Models 

• Focuses on systems of multiple regression equations with correlated error terms 

across equations. 

• Highlights efficiency gains from jointly estimating the equations using GLS or MLE. 

• Applications: Sectoral studies, consumption patterns, or interdependent economic 

models. 

3. Panel Data Models 

• Combines cross-sectional and time-series data to analyze entities over time. 

• Introduces key estimation techniques including: 

i. Pooled OLS for simplicity. 

ii. Fixed Effects (FE) for controlling unobserved, entity-specific characteristics. 

iii. Random Effects (RE) for cases where individual effects are random and 

uncorrelated with regressors. 
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Block & Units Introduction 

The present SLM on Econometrics consists of fourteen units with three blocks. 

The Block – 2 - Simultaneous Equations Models and Forecasting, is the second 

block, which is divided into five units. 

  The Unit – 6 - Structural and reduced form of the model and identification problem, 

deals with the Simultaneous equations model, concept of structural and reduced forms, 

problem of identification, rank and order conditions of identifiability. 

The Unit – 7 - Estimators in Simultaneous Equation Models – I, deals with the 

Limited and full information estimators, indirect least squares estimators, two stage least 

squares estimators, three stage least squares estimators and k class estimator. 

The Unit – 8 - Estimators in Simultaneous Equation Models – I, deals with the 

Limited information maximum likelihood estimation, full information maximum likelihood 

estimation, prediction, and simultaneous confidence interval. 

The Unit – 9 -  Forecasting, deals with the Forecasting, exponential and adaptive 

smoothing methods, periodogram and correlogram analysis. 

The Unit – 10 - Instrumental Variable Estimation, deals with the Review of GLM, 

analysis of GLM and generalized leased square estimation, Instrumental variables, 

estimation, consistency properties, asymptotic variance of instrumental variable estimators. 

At the end of every unit the summary, self-assessment questions and further readings 

are given.  



UNIT 6 STRUCTURAL AND REDUCED FORM OF THE MODEL AND 

IDENTIFICATION PROBLEM 

Structure 

6.1 Introduction 

6.2 Objectives 

6.3 Simultaneous equation model: Introduction 

6.3.1 Simultaneous equation models 

6.3.1.1 Endogenous variables or jointly determined variables 

6.3.1.2 Exogenous variables 

 6.4 Explaining estimation procedures using example 

  6.4.1 Instrumental variable (I V) estimation 

6.4.2 Indirect least squares (ILS) 

  6.4.3 Two-stage least squares estimation (2SLS) 

 6.5 General form of the Simultaneous Equation model 

 6.6 Identification Problem 

  6.6.1 Structural form of the model 

  6.6.2 Identification problem and likelihood function 

  6.6.3 Condition for Identification 

  6.6.4 Identification from Reduced form 

 6.7 Self-Assessment Exercise 

 6.8 Summary 

 6.9 References 

 6.10 Further Readings 

6.1 Introduction 

In econometrics, models are typically categorized into structural and reduced-form models 

based on their complexity and the relationships they describe: 

1. Structural Models: These models explicitly specify the relationships between variables 

based on economic theory. They are grounded in economic principles and attempt to capture 

the underlying mechanisms driving economic phenomena. Structural models often involve a 

system of equations that describe how different variables interact. They aim to uncover causal 



relationships and are typically used for policy analysis and theoretical exploration. For 

examples include models of consumer behavior, investment decisions, production functions, 

etc. 

2. Reduced-Form Models: These models focus on describing the statistical relationships 

between variables without explicit reference to underlying economic theory. Reduced-form 

models are derived from structural models and emphasize empirical relationships rather than 

theoretical foundations. They are commonly used for empirical analysis, forecasting, and to 

test specific hypotheses. For example, regression models where variables are regressed 

against each other without a clear theoretical model. 

In econometrics, the identification problem refers to the ability to uniquely determine the 

parameters of a model based on the available data. It arises when the model does not have 

enough information to estimate all the parameters separately and unambiguously. 

Identifiability is crucial because, without it, the estimates of model parameters can be biased, 

inconsistent, or even meaningless. The identification problem in econometrics underscores 

the importance of careful model specification and appropriate estimation techniques to ensure 

that the estimated parameters are reliable and meaningful for analysis and policy-making. 

6.2 Objectives 

After completing this course, there should be a clear understanding of: 

• Simultaneous equations model 

• Concept of structural and reduced forms  

• Problem of identification  

• Rank and order conditions of identifiability 

6.3 Simultaneous Equations Model: Introduction 

A simultaneous equations model (SEM) is a type of econometric model that consists of 

multiple equations where each equation depends on the endogenous variables (variables that 

are determined within the model) of the other equations. This interdependence distinguishes 



simultaneous equations model from single-equation model, such as simple regression models. 

The main features of the simultaneous equations model are: 

1. Endogeneity: Variables in a simultaneous equations model are endogenous, meaning 

they are jointly determined within the model rather than being exogenously given. 

2. System of Equations: In a system of equations (SEM), each equation represents a 

relationship between variables.  

Example: In a basic economic model, you might have equations for demand and supply that 

interact to determine equilibrium price and quantity. 

3. Simultaneity Bias: Simultaneous equations models can suffer from simultaneity bias, 

where the estimation of coefficients in one equation is biased due to endogeneity with 

respect to variables in other equations. Special techniques like instrumental variables 

or two-stage least squares are often used to address simultaneity bias. 

4. Identification Issues: Identification refers to the ability to separately estimate the 

parameters of the model equations. Simultaneous equations models require careful 

consideration of identification to ensure reliable estimation. 

Linear regression model involves a single equation which explains a dependent 

variable in terms of a set of independent or explanatory variables and then the 

relationship is unidirectional, i.e., explain but do not explain . This is called one 

way causality. In many economic theories, we usually built upon a system of relationships 

and in this kind of relationship we normally find variables which determine each other. 

Example:  In microeconomic theory for a particular commodity, there is a demand equation 

and a supply equation both involving price and the phenomenon is explained by the system of 

demand-supply equations. The price and quantity are interdependent and determined by the 

interaction of demand-supply equations. 

6.3.1 Simultaneous equation models  

Model is in the form of a set of linear simultaneous equations. The system is jointly 

determined by the set of equations in the system. A particular equation explaining a 



dependent variable may involve the dependent variables of other equations among the 

explanatory variables. When a relationship is a part of a system, some of the explanatory 

variables are stochastic and correlated with the disturbances. The assumption that the 

explanatory variable and disturbance are uncorrelated is not satisfied leading to inconsistent 

OLS. 

How to overcome this problem and estimate the model? 

1) Variables Classification in Single Equation Linear Model 

i. Dependent Variable 

ii. Independent Variables 

2) Variables Classification in Simultaneous Equations Model 

i. Endogenous variables 

ii. Exogenous variables 

6.3.1.1 Endogenous variables or jointly determined variables 

The variables, which are explained by the functioning of system, are known as endogenous 

variables. The values are determined by the simultaneous interaction of the relations in the 

model. Endogenous variables are those variables that are determined within the model itself, 

rather than being exogenously given. These variables are typically the main variables of 

interest whose values are simultaneously determined by the equations in the model.  

Example: In an economic system, price and quantity in a market might be endogenous 

variables since the equilibrium price and quantity are determined by the interaction of supply 

and demand equations. 

Thus, endogenous variables in a simultaneous equations model are the variables whose 

values are determined by the interactions and relationships specified within the model itself, 

making them central to the analysis of the system's behaviour and outcomes. 

6.3.1.2 Exogenous variables 



Exogenous variables provide explanations for the endogenous variables. The values are 

determined from outside the model. These variables help is explaining the variations in 

endogenous variables and influence the endogenous variables but are not influenced by them. 

Exogenous variables are independent variables in the model whose values are not determined 

by the relationships specified within the model. They are external to the system being 

modeled and are often considered as constants or variables whose values are given from 

outside the model.  

Example: In economic models, exogenous variables could include factors such as 

government policies, external shocks to the economy (like changes in international prices), or 

other variables that are assumed to be outside the control of the model and whose values are 

taken as given. 

6.3.1.3 Predetermined variables 

Exogenous variables and lagged endogenous variables form predetermined variables. Since 

exogenous variables are predetermined, so they are independent of disturbance term in the 

model. These variables satisfy the assumption that explanatory variables satisfy in the usual 

regression model.   

6.3.2 Reduced Form 

o Economic model involving several endogenous variables in each equation is called 

the structural form of the model. 

o If we transform the structural form so that each equation has one endogenous variable 

as a function of only exogenous and lagged endogenous variables, the new form is 

called the reduced form. 

o The structural form cannot be estimated using least squares as it includes endogenous 

variables on its right-hand side. 

In econometrics, the reduced form of a model refers to an equation that expresses the 

endogenous variables (variables influenced by the model's parameters) solely in terms of 

exogenous variables (variables not influenced by the model's parameters) and error terms. In 

econometrics, reducing the model to its reduced form is useful for understanding the 



relationships between variables without directly dealing with the complexities of the 

underlying structural model. It simplifies analysis and interpretation, especially in cases 

where the structural form involves multiple equations or complex interactions. The reduced 

form of a model typically refers to a simplified version that retains essential elements while 

omitting less significant details. In economics, for instance, it often involves eliminating 

endogenous variables by expressing them in terms of exogenous variables. This 

simplification aids in analysis and understanding by focusing on the core relationships within 

the model. The reduced form can be estimated by least squares. 

Example: Let us consider the following wage and price function  

     (1)  

where, 

; both are Endogenous Variables. 

, 

  

  

are jointly dependent and may be correlated with the stochastic disturbance terms. 

Reduces Form: We can write 

 

  

 



 

 

 

 

 

 

 

 

Is it possible to estimate the reduced form coefficients and then with the help of those 

estimates, estimate the structural form coefficients? 

Here, we discuss some examples to explain different problems that arise in the analysis of a 

simultaneous equation model. 

Example: Consider the following consumption function with a national income identity:  

        (2)  

where, C = aggregate consumption expenditure; Y= national income 

Z = non-consumption expenditure; u = disturbance term 

The model determines the consumption expenditure and the national income, which are 

jointly dependent or endogenous variables. The model contains a (i) behavioral equation and 

(ii) equilibrium condition. The equilibrium conditions have no disturbance term and are 

exact. Non-consumption expenditure is determined outside the model, which makes it 

exogeneous variable. We assume 



i. where and 

ii. are independent. 

Solving (2) for C and Y, we get the reduced form 

 

where 

 

Now 

 

 

 

 

OLS estimates of obtained from (2) would be inconsistent. So, we require some 

alternative estimation procedures. 

6.4 Explaining estimation procedures using example 

Selecting a model should be based on strong theoretical justification rather than just 

convenience of statistical estimation. Each model should be evaluated independently, 

considering the random fluctuations that may be present. It is not possible to apply OLS 

directly; instead, strategies for handling the estimation issue must be developed. There are 



several other estimation techniques available, however some of them could need a lot of 

work. Some methods are: 

6.4.1 Instrumental variable (I V) estimation 

Let Z be uncorrelated with u and correlated with Y. Applying IV estimator using Z as the IV 

leads to 

 

where . 

Using (4), we have 

 

 

 

 

  

 

 

 

Thus 



 

 

 

 

6.4.2 Indirect least squares (ILS) 

Apply OLS to reduced form equations, which satisfy the conditions under which OLS 

estimators are consistent and BLUE. 

 

 

 

Hence the estimator of is the ratio 

 

 

In ILS, reduced form coefficients are estimated by OLS and then structural coefficients are 

estimated by an appropriate transformation of the estimates of reduced form coefficients. 

6.4.3 Two-stage least squares estimation (2SLS) 

We first regress y on the exogenous variable. Writing second eq. in (3) in deviation form we 

have 



 

Apply OLS to (6) 

 

Hence, an estimated value of is 

 

 

 

 

 

Since, 

 

we have 

 

We write the first eq. of (2) as 

 

Since has zero correlation (in limit) with and , has zero correlation with the 

combined disturbance term of (8).  



Applying OLS to (8) gives the following 2SLS estimate of β, which is a consistent estimator: 

 

 

 

In this example 

  

The reason is that both the equations are just identified. 

6.5 General form of the Simultaneous Equation model 

Let us consider a model containing structural equations. 

 

where, 

: Observations on endogenous variables 

: Observations on predetermined (exogenous and lagged endogenous) variables 

Regression coefficients 

: disturbance term  

In equation (9) some of the and are zero otherwise all the equation in the model look 

alike and no equation could be identified. 

We can write the model in matrix form as 



 

 

 

Suppose is nonsingular. The reduced form of the model is 

 

. 

Note: 

Structural form relations: The interaction between endogenous and predetermined variables 

taking place inside the model. 

Reduced form relation: It express as jointly dependent (endogenous) variables as linear 

combination of predetermined variables. 

6.6 Identification Problem  

In econometrics, the identification problem refers to the ability to uniquely determine the 

parameters of a model based on the available data. It arises when the model does not have 

enough information to estimate all the parameters separately and unambiguously. 

Identifiability is crucial because without it, the estimates of model parameters can be biased, 

inconsistent, or even meaningless.  

The identification problem is whether the estimates of the structural parameters of the model 

can be obtained from the estimates of the reduced form coefficients? 

It has three possibilities: 

(i) Unique estimates of the structural parameters of a particular equation can be obtained. The 

equation is said to be exactly (or fully or just) identified.  



(ii) More than one estimates of the structural parameters can be obtained. The equation is said 

to be over identified. 

(iii) It is not possible to estimate of the structural parameters by using the estimates of the 

reduced form coefficients. The equation is said to be un-identified or under identified. 

Example: Under identified 

Consider the demand supply model, 

 

 

 

supplied, t = time 

By EC 

 

This gives the equilibrium price, 

 

 

 

 

Substituting in DF or SF gives the equilibrium quantity 

 

where 



 

 

Equations (15) & (16) are reduced form equations. 

Using (15) and (16) we can estimate . 

We cannot estimate four structural parameters ( from the estimates of two 

reduced form coefficients. 

Multiplying DF (12) by λ and SF (13) by (1-λ), (0<λ<1) and adding we get, 

 

where 

 

 

Equation (17) involves the regression of and  

It is observationally equivalent or indistinguishable from (12) and (13).  

For a given set of data on ( ) we are unable to say which one of these models we are 

fitting. 

Example: Just or exact identification 

 

 

: income of a consumer 

Using the equilibrium condition , we get equilibrium price and equilibrium quantity 



 

 

where 

 

 

 

 

We can obtain OLS estimates of , , , .  

We cannot get the unique solutions for five structural parameters ( . 

However 

 

SF can be identified but DF remains unidentified.  

Multiplying (20) by and (21) by and adding gives 

 

 

 

 

 

(22) is distinguishable from SF but indistinguishable from DF. 



Consider 

 

 

Price lagged one period which is a predetermined variable at time t. 

Equilibrium price and demand are 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Then equation (27) is distinguishable from both the DF (23) and SF (24). Both the DF and SF 

are just identifiable. 

Example: Over identification 

 

 

Wealth of the consumer 

Equilibrium price and quantity are obtained as 

 

 

where 

 

 

 

 

 

DF and SF have seven structural parameters. There are eight reduced form coefficients to 

estimate them. Hence unique solutions for all the structural parameters are not possible. For 

instance, 

 

This is the case of Over Identification. DF & SF both are distinguishable. 



Let us summarize the above possibilities: 

(i) Under identifiable or unidentified:  

The estimation of parameters is not at all possible in this case. No enough estimates are 

available for structural parameters. If more than one theory is consistent with the same data, 

the theories are observationally equivalent in the sense that we cannot distinguish them. 

(ii) Exactly identifiable: 

The estimation of parameters is possible in this case. The relationship between the reduced 

form coefficients and structural parameters is one to one. Thus, the OLSE of reduced form 

coefficients lead to unique estimates of structural coefficients. 

(iii) Over identifiable: 

The estimation of parameters in this case is possible. The OLS estimator of reduced form 

coefficients leads to multiple estimates of structural coefficients. 

Notice that the identification problem is not the sampling problem. We can not overcome this 

problem by increasing the sample size. 

In the reduced form 

 

 

we can consistently estimate using OLS. If is known, we can simply estimate using the 

relation .  

Our problem come to the estimation of . This makes sense because if is known, we can 

write (say) and apply OLS to 

 

and estimate . 



We can put the identification problem as: 

We can observe the reduced form and must be able to deduce the structural form from the 

reduced form. If more than one structural form leads to the same reduced form and we are not 

sure which structure we are estimating. Thus, we cannot estimate the structure. 

6.6.1 Structural form of the model 

Consider the structural form of the model 

 

where,  

 

 

and iid following . The reduced form of the model is 

 

Here 

 

and 

are iid following . 

Further 

 

 

 

 



Now, we can conclude the following points: 

(1) We can consistently estimate using OLS.  

(2) If is known, we can estimate using the relation . This makes sense because 

if is known, we can write (say) and apply OLS to and estimate . 

(3) The problem come to the estimation of . For this, we must be able to deduce the 

structural form from the reduced form. If more than one structural form led to the same 

reduced form, then we are not sure which structure we are estimating. 

6.6.2 Identification Problem and Likelihood Function 

The identification problem is directly related to the likelihood function. If a model is not 

identified, the likelihood function does not have a unique maximum because multiple 

parameter values produce the same likelihood. Therefore, for a model to be estimable (using 

MLE or other methods), it must be identified, meaning the likelihood function should have a 

unique maximum at the true parameter values. 

Consider the joint pdf of given is 

 

 

 

where,  

Notice that,  

 

 

where, 



 

The likelihood function corresponding to is given by 

 

 

 

Applying a nonsingular linear transformation on structural equations (32) with a nonsingular 

matrix we get 

 

Writing 

 

we obtain 

 

and 

 

The reduced form for is also  

 

Thus 

 

 



Both the structures have the same reduced form. Statistically we cannot distinguish them and 

both are observationally equivalent. 

We find with as follows: 

 

 

 

 

 

 

 

 

 

 

 

The LF corresponding to is 

 

 

 

 



Both the structural forms and have the same LF. LF forms the basis of statistical 

analysis, both and have same implications. One cannot identify whether the LF 

corresponds to and . So, we are unable to distinguish whether we are estimating true 

structure or transformed structure . In this sense, both and are observationally 

equivalent.  

Remark: 

1. A parameter is said to be identifiable within the model if the parameter has the same 

value for all equivalent structures contained in the model. 

2. A structural equation is identifiable if all the parameters in structural equation are 

identifiable. 

For a given structure, we can find many observationally equivalent structures by non-singular 

linear transformation. Then the presence and/or absence of certain variables help in the 

identifiability. So, a priori restrictions on and may help in the identification of 

parameters. These a priori restrictions may arise from various sources like economic theory. 

For the identification of an equation, some of the variables must be excluded from the 

equation which are present elsewhere in the model. This is known as exclusion (of variables) 

criterion or zero restriction criterion. 

6.6.3 Condition for Identification 

1. Order condition: 

“A necessary condition for an equation to be identified is that it must exclude at least M-1 

endogenous and predetermined variables.”  

• If it excludes exactly M-1 variables, the equation is just identified.  

• If it excludes more than M-1 variables, it is over identified. 

“Equivalently for an equation to be identified, the number of predetermined variables 

excluded from the equation must not be less than the number of endogenous variables 

included in that equation less one.” 



Let  

Number of predetermined variables included in the equation 

Number of endogenous variables included in that equation. 

Then it must exclude at least M-1 endogenous and predetermined variables which results 

in . 

Equivalently, if  

Thus 

Number of predetermined variables excluded from the equation Number of endogenous 

variables included in that equation less one. 

This gives 

• If the equation is just identified.  

• If then the equation is over identified. 

Example 1: 

Let  

  

Here, 

Number of endogenous variables  

Number of predetermined variables  

Each of these equations must exclude variables. Since this does not hold for any 

of two equations, neither equation is identified. 



Example 2: 

Let  

  

  

Here . SF is just identified as it excludes variable but DF is 

unidentified. 

Example 3: 

Let  

  

  

Here . Since each equation excludes exactly variable, both DF and 

SF are just identified. 

Example 4: 

Let  

  

  

Here . 

1, , , : predetermined variables  

DF excludes variables, so it is just identified and 

SF excludes variables, thus it is over identified. 



2. Rank condition of identifiability: 

The Order condition is the necessary but not sufficient condition for the identification of an 

equation. An equation may be unidentified even if the order condition is satisfied. The Rank 

condition stated below is the sufficient condition for the identification of an equation. 

“In a simultaneous equations model containing M equations in M endogenous variables, an 

equation is identified if and only if there exist at least one non-zero determinant of order (M-

1) from the coefficients of endogenous and predetermined variables excluded from that 

particular equation but included in the other equations of the model”. 

Note: The rank condition states whether the equation is identified or not. From the order 

condition we know whether the equation is just or over identified. 

Example 1: 

  

  

  

  

Here, from each equation, variables are excluded. Hence by order 

condition each of these equations is just identified. 

To check the rank condition, write the system in the tabular form 

  

Then, strike out the columns corresponding to nonzero coefficients of the first equation. Also, 

strike out the coefficients of the row in which the first equation appears.  



  

The remaining entries will give the following matrix: 

  

By rank condition, the first equation is identified if there exist a determinant of order M-1=3 

formed from the entries of A. Since , no non-zero determinant of order 3 exists. 

Hence the equation is unidentified. 

For the eq. (ii) 

  

Again, no nonzero determinant of order 3 exists and eq. (ii) is under identified. 

For the eq. (iii) 

  

and eq. (iii) is unidentified.  

For the Eq. (iv), , thus we have a non zero matrix. Hence equation (iv) is 

identified.  

Example 2: ( ’s are endogenous, are exogenous) 

  

  



Order condition: M=2, K=3 

In equation (i) m=2, k=1. Hence K-k=2>m-1=1, so that the first equation is over identified. 

In the equation (ii) m=2, k=2. Hence K-k=1=m-1=1, so the equation (ii) is just identified. 

Rank condition: 

  

We can form a nonzero determinant from A of order M-1=1. So, the equation (i) is (over) 

identified. 

For   

So, equation (ii) is also (just) identified. 

Example 3: Keynesian model of income determination  

Let us consider the following Keynesian model 

  

  

   

  

where, C: consumption, I: investment, T: taxes, Income, Government expenditure 

and  

  

  

This model includes an income identity. The identities do not raise any identification problem 

as the coefficients are known. 



Here, M=4, K=3 

Order condition:  

CF: m=3, k=1, K-k=2, m-1=2, just identified  

IF: m=1, k=2, K-k=1, m-1=0 over identified 

TF: m=2, k=1, K-k=2, m-1=1 over identified 

Rank Condition 

 

For CF: 

CF:  

We cannot form a nonzero determinant of order M-1=3. Thus, CF is unidentified. 

For IF: 

IF:  

. So, IF is identified. 

For TF: 

TF:  



. So, TF is identified. 

So, according to order conditions, first equation is just identified and the second and third is 

over identified. But, from rank condition first equation is unidentified, so our result is the first 

equation is unidentified. From rank condition second and third equation is identified, if we 

combine it with the order condition the results, we get is second and third equation is over 

identified. 

3. Determination of Rank condition: 

Let us consider the following model, 

Model:  

where, 

 

 

We consider the identification of first equation.  

Suppose the first structural equation is 

 

is the first row of A. The element of  have some linear restrictions. The most common 

restrictions are exclusion restrictions. 

Suppose a priori restrictions are expressed as 

 

where, Φ is (M+K)×R matrix of R restrictions on elements of  



In addition to restrictions (39), we have restrictions on arising from the relation between 

structural and reduced form coefficients 

 

where,   

Thus, restrictions on are 

 

Combining (39) and (41), we get 

 

has M+K unknowns. Further is of order (M+K)×(K+R). 

Hence (42) has (K+R) equations in (M+K) unknowns. 

The first element of is 1 ( Hence to determine uniquely, the condition is 

, so it is the case of Exact identification. 

If we get more than one solution for i.e., the equation is over 

identified. 

The rank condition cannot hold if does not have at least columns. Thus, 

a necessary condition for rank condition to satisfy is  

 

 

The necessary order condition for exclusion restrictions is 



“The no. of variables excluded from the equation should be greater than or equal to no. of 

equations in the model less 1”. i.e. 

 

 

Result: 

Let . Then 

 

Proof: The model is 

 

The relation between structural parameters and reduced form parameters is given by 

 

 

 

For the first equation the restriction due to relation between structural and reduced form 

parameters is 

 

We can write 

 

 

   

For any (M+K)×1 non-null vector  



 

Thus is positive definite and thus non-singular. Further . 

is also non-singular. 

It follows that is also non-singular. 

Hence, we can write as 

 

 

where is M×R and is K×R. 

Since AW=0, we have . 

is a M×M positive definite matrix, and hence non-singular so that . 

Thus  

Also 

 

So that 

 

 

 

 



Hence, we get the required result■ 

Remark: The above result leads to the following equivalent rank condition for identification: 

An equation is identified if 

 

Example: let us consider the model of the form 

  

  

Now 

  

For the first equation 

  

gives the restrictions , Now  

  

Then and the equation is identified. 

For the second equation 

  



gives the restrictions Now  

  

Then and the equation is identified. 

1.6.4 Identification from Reduced form 

Order condition is same as that for structural form:  

  

Rank Condition from the reduced form: We have 

  

Thus, rank condition is 

  

Rank Condition for Exclusive Restrictions: 

“An equation containing m endogenous variables is identified if and only if it is possible to 

construct a non-zero determinant of order from the reduced form coefficients of 

exogenous (predetermined) variables excluded from that particular equation.” 

Steps: 

1. Strike out the rows corresponding to endogenous variables excluded from that particular 

equation being examined for identifiability. 

2. Strike out columns referring to exogenous variables included in the structural form 

excluded from the equation. 

3. We are left with the reduced form coefficients excluded from the structural equation. 

4. If the order of largest non-zero determinant is m-1, the equation is identified. If it is less 

than m-1, equation is un identified. 



Example:  

Consider the given Model: 

  

  

  

The reduced form of the above model is 

  

  

  

Equation (i) (m=2): Table of reduced form coefficients 

 

x1 x2 x3 

y1 4 -2 3 

y2 2 -1 1 

y3 2 -1 0 

Excluded endogenous variables: (delete 3rd row) 

Included exogenous variables: (delete 1st & 2nd columns). 

Table of π’s of excluded exogenous variables and included endogenous variables is . We 

can form a nonzero determinant of order 1(=m-1), the equation is just identified. 

For equation (ii) (m=2) 



 

x1 x2 x3 

y1 4 -2 3 

y2 2 -1 1 

y3 2 -1 0 

Excluded endogenous variables: (delete 1st row) 

Included exogenous variables: (delete 3rd column) 

Table of π’s of excluded exogenous variables and included endogenous variables is 

. Highest order non-zero determinant is of order 1. The equation is identified. By 

order condition verify that equation is over identified. 

For the third equation (iii): . 

Table of π’s of excluded exogenous variables and included endogenous variables is 

.  Highest order non-zero determinant is of order 1. The equation is unidentified. 

1.7 Self-Assessment Exercise 

1.  Write general form of simultaneous equations model and, using the likelihood 

function of the model, explain the problem of identification. Deduce rank and order 

conditions for identification. 

2. Examine the identifiability of each of the equations in the following simultaneous 

equations model.  

 

 



3. For the following simultaneous equation model check the identifiability of both the 

equations. 

Demand Model:  

Supply Model:  

Equilibrium: . 

Here  and  are endogeneous variables.  

4. Verify if the second equation of following simultaneous equations model is exactly 

identified, unidentified or over identified: 

 

 

 

5. For the simultaneous equations model involving M equations and K predetermined 

variables Byt+xt=ut, if =B-1,  A=[B    ], , and the first column of A, 

say 1 follows R restrictions of the form . Then prove that  

 

6. With an example, elaborate the identification of reduced form equations. 

6.8 Summary 

This unit delves into simultaneous equations models, which are used to analyze systems of 

interdependent relationships among multiple variables. It begins by introducing the concept 

of simultaneity in econometric modelling, distinguishing these models from single-equation 

frameworks. The unit explores the identification problem, emphasizing the conditions under 

which structural parameters can be uniquely determined, with a focus on rank and order 

conditions. 



After the completion of this unit, you will be able to understand the concept of Simultaneous 

equations model and structural and reduced forms of the model. Also, you have a clear 

understanding of problem of identification, rank, and order conditions of identifiability 
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7.1 Introduction 

In simultaneous equations models (SEMs), multiple interdependent relationships are 

modeled, making ordinary least squares (OLS) estimation biased and inconsistent due to 

endogeneity issues. To address this, several specialized estimators are used: 

 1. Two-Stage Least Squares (2SLS) 

2. Three-Stage Least Squares (3SLS) 

3. Full Information Maximum Likelihood (FIML) 

4. Limited Information Maximum Likelihood (LIML) 

5. Instrumental Variables (IV) Estimator 

6.Generalized Method of Moments (GMM) 

Each of these estimators has its strengths and is chosen based on the specific characteristics 

of the SEM, the availability of instruments, and the degree of correlation among the errors in 

different equations. 

Limited and full information estimators are two broad categories of estimation techniques 

used in the context of simultaneous equations models (SEMs). The choice between them 

depends on the level of information utilized in the estimation process. 

1. Limited Information Estimators 

Limited information estimators focus on estimating a single equation within the system 

without explicitly considering the entire system of equations. These estimators use 

information only from the specific equation being estimated, not from the full system. 

a. Two-Stage Least Squares (2SLS): 2SLS is the most common limited information 

estimator. It is used when there is endogeneity in the equation being estimated, meaning some 

regressors are correlated with the error term. 



b. Limited Information Maximum Likelihood (LIML): LIML is another limited information 

estimator that estimates parameters by maximizing the likelihood function, considering only 

the information available in a single equation. 

2. Full Information Estimators 

Full information estimators, on the other hand, consider the entire system of equations 

simultaneously. They make use of all available information in the system, leading to 

potentially more efficient estimates. 

a. Three-Stage Least Squares (3SLS): 3SLS is a full information estimator that extends 2SLS 

by considering the contemporaneous correlation of errors across the different equations in the 

system. 

b. Full Information Maximum Likelihood (FIML): FIML estimates all parameters of the 

SEM simultaneously by maximizing the likelihood function for the entire system. 

The choice between limited and full information estimators depends on the specific context, 

the complexity of the system, the reliability of the model specification, and the goals of the 

analysis. 

Indirect Least Squares (ILS) is an estimation technique used in the context of simultaneous 

equations models (SEMs), particularly in overidentified systems. The key idea behind ILS is 

to transform the simultaneous equations system into a reduced form, estimate the parameters 

of this reduced form, and then use these estimates to infer the structural parameters. 

Indirect Least Squares is a method that first estimates the reduced form of a simultaneous 

equations model and then uses these estimates to infer the structural parameters. It is a useful 

technique under specific conditions, particularly when the model is overidentified and the 

reduced form is straightforward to estimate. 

7.2   Objective 

After going through this unit, you should be able to acquire the knowledge of 

• Limited and full information estimators 



• Indirect least squares estimators 

• Two stage least squares estimators 

• Three stage least squares estimators and k class estimator. 

7.3 Recursive or Triangular Models 

The OLS approach is inappropriate for the estimation of an equation in a system of 

simultaneous equations model due to the correlation between the endogenous explanatory 

variable(s) and the stochastic disturbance component. When incorrectly applied, the 

estimators exhibit not only bias (in small samples) but also inconsistent behaviour, meaning 

that the bias persists regardless of sample size. Nonetheless, there is one instance in which 

OLS—even in the context of simultaneous equations—can be used effectively. This is the 

situation with the causal, triangular, or recursive models. Example: Consider the three 

equations model, 

  

  

  

where,  and  are endogenous and exogenous variables. 

We assume that 

 

 

that is, there is no correlation between the same-period disturbances in distinct equations. 

This is the assumption of zero contemporaneous correlation. 

The matrix formed by the coefficients of the endogenous variables is the following triangular 

matrix: 



  

Such models are called recursive or triangular models. 

Now consider the first equation of the equation model, Equation (i) has only exogenous 

variables on RHS as explanatory variable, which are uncorrelated with  Thus OLS can be 

applied.  

Next consider the second equation of the model, Equation (ii) contains endogenous variable 

 as an explanatory variable. , which effects , is uncorrelated with , implying that 

. Thus, all the explanatory variables are uncorrelated with  and OLS can 

be used. 

Now consider Equation (iii) of the equation model, 

. OLS can be applied. 

Here  effects but  does not affect  and influence  but  does not 

influence  and . 

So, in the Recursive systems or model OLS can be applied to each equation separately. 

An illustration of a recursive system would be the wage and price determination model 

presented below: 

Price equation:  

Wage equation:  

where P = rate of change of price per unit of employee 

W = rate of change of wage per employee 

R = rate of change of price of capital 



L = rate of change of labor productivity 

U = unemployment rate, % 

We can write the model as 

  

where,  is Triangular matrix. 

7.3.1 General Form of Recursive or Triangular Model 

Let us consider the Model:  

If  is upper (or lower) triangular, then the system of equations is called triangular or 

recursive. 

The model is of the form 

  

  

  

  

  

Determination of variables is recursive in the sense that:  

(i)  affects but  does not affect   

(ii)  affect but  does not affect and   



and so on.  

and : Matrix of coefficients of endogenous variables is a lower 

triangular matrix. 

So, we can apply OLS to each equation separately. 

7.4 Limited and Full Information Estimation 

In limited information Estimation only the information specific to the equation under 

investigation is utilized in the estimation process. Limited information estimators are 

econometric tools used in situations where the available data or information is incomplete or 

limited. It is commonly used in empirical research, especially in fields like labor economics, 

industrial organization, and macroeconomics, where endogeneity is a concern, and the full 

system of equations is not always identifiable or estimable. When dealing with incomplete 

data or endogeneity issues, providing a way to obtain consistent and potentially more 

efficient estimates compared to traditional methods like OLS this method is used.  

The Estimation Procedures are  

(i) Indirect Least Squares (ILS),  

(ii) Two Stage Least Squares (2SLS), 

(iii)Limited Information Maximum Likelihood (LIML). 

Whereas, in full Information Estimation information present in other equations and the fact 

that the structural disturbances of various equations may be correlated is utilized in the 

estimation process. Full information estimators are econometric techniques used to estimate 

parameters in a model where all the equations and the relationships between them are 

considered simultaneously. These estimators are particularly relevant in the context of 

systems of simultaneous equations, where multiple interdependent equations need to be 

estimated together rather than separately. They offer more efficient estimates compared to 



limited information methods but require careful model specification and are computationally 

demanding.  

This Estimation Procedures includes  

(i) Three Stage Least Squares (3SLS), 

(ii)  Full Information Maximum Likelihood (FIML) 

7.4.1 Estimation of a just Identified Equation: Indirect Least Squares (ILS) 

The process of estimating the structural coefficients for a just or exactly identified structural 

equation using the OLS estimates of the reduced-form coefficients is called the indirect least 

squares (ILS) method, and the resulting estimates are called the indirect least squares 

estimates. 

The following three steps are involved in ILS: 

Step 1: Obtain reduced form equations. These reduced-form equations are derived from the 

structural equations in such a way that the only endogenous variable in each equation is the 

dependent variable, which depends only on the stochastic error term(s) and the predefined 

(exogenous or lagged endogenous) variables.  

Step 2: Obtain OLS estimates of reduced form coefficients. We treat each of the reduced-

form equations separately using OLS. Because the explanatory variables in these equations 

are predetermined and hence uncorrelated with the stochastic disturbances, this operation is 

allowed. Thus, consistent estimations are achieved. 

Step 3: Since the equation is just identified, there is one to one correspondence between the 

structural and reduced form coefficients. Obtain the estimates of structural coefficients form 

the estimated reduced form coefficients. 

Example: Let us consider the demand and supply model: 

Demand Function:       (i) 

Supply Function:        (ii) 



where, 

  

  

.  

Assume that P is endogenous variable and X is exogeneous variable. As we know that, the 

supply function is exactly identified whereas the demand function is not identified. 

Rearranging the term of the equation (i) and (ii), we obtain the reduced form equations:  

  

  

where,  are reduced form parameter and  

 

 

 

 

It is important to note that every reduced-form equation only has one endogenous variable, 

the dependent variable, and that it depends only on the exogenous variable  (income) and its 

stochastic disturbances. Therefore, OLS may be used to estimate the parameters of the 

previous reduced-form equations. These OLS estimates of are 

 

 



 

 

 

 

 

ILS estimators of  and  are 

 

 

Note that DF is unidentified and cannot be estimated. 

General Form: 

Consider the general structural model at time t: 

         (1) 

where, : matrix of observations on endogenous variables. 

matrix of observations on predetermined variables. 

 : matrix of disturbances. 

We may write (1) as 



           (2) 

Suppose we are interested in estimating the first equation is 

 

and   

where,  vector of observations on endogenous variable in the equation 

 matrix of observations on other  endogenous variable in the 

equation 

 matrix of observations on  predetermined variable in the equation    

 vector of disturbances 

Reduced form of model (2)  is 

 

 

Applying OLS to (4) gives the following estimator of : 

 

We can write equation (3) as 

 

 are matrices of observations on endogenous and predetermined variables excluded 

from the equation. 

The relation between the structural and reduced form parameters is  



 

The relation for the coefficients of the structural equation (3) is 

 

Then ILS estimator can be obtained by solving 

 

or 

 

 

 

 

  

Writing  we have  

 

 

We get unique solutions for b and c if the condition for exact identification is satisfied. 

Let 

 

Then ILS estimator of  is given by 



 

7.4.2 Instrumental Variable Estimator 

Applying the instrumental variable (IV) method to one system equation at a time is a single 

equation method. It works well with over-identified models. The instrumental variables (IV) 

method is a statistical technique used in econometrics and other social sciences to estimate 

causal relationships when a model has endogenous explanatory variables—variables that are 

correlated with the error term, leading to biased and inconsistent estimates. The IV method is 

particularly useful in situations where controlled experiments are not possible, and it helps in 

obtaining consistent estimators of the causal effects despite the presence of endogeneity. 

For instance, we can write the equation  

  

as 

 

where 

 

Let  matrix such that 

  

  

  

Then IV estimator of  is 

  



Here,  is consistent and its asymptotic covariance matrix is 

 

 

 

A consistent estimator of is 

 

Generalized Least Squares Estimator: 

Pre multiplying equation (9) by  leads to 

 

Applying OLS to (10) gives the ILS estimator 

 

The covariance matrix of  is . 

Applying GLS to (10), we obtain 

 

where,  

 

For  to be nonsingular, necessary condition is 

  

or order condition of identification is 



 

For just identified case  is of order  and 

  

  

  

Overidentified equation  

An equation is over-identified when there are more instruments (independent variables) 

available than the number of endogenous variables that need to be estimated. In other words, 

the system has more information than necessary to identify the parameters of interest. when a 

model is over-identified, the extra information provided by the additional instruments should 

be leveraged carefully to ensure the robustness of the estimates. 

If we consider the relations between structural and reduced form parameters and solve it then 

it leads to more than one solution for structural parameters. So, if we apply here Indirect least 

square procedure, we are getting more than one estimator and ILS is not unique. Hence, ILS 

cannot be used. For getting a unique estimator the alternative estimation procedure is Two 

Stage Last Squares. 

7.4.3 Estimation of an over identified Equation: Two Stage Least Squares (2SLS) 

It is a popular method used to estimate the parameters of an over-identified equation in 

econometrics. It is particularly useful when dealing with models where some of the 

explanatory variables (endogenous variables) are correlated with the error term, which 

violates the assumptions of ordinary least squares (OLS) regression. The idea behind 2SLS is 

to replace the endogenous variables with their instrumented versions, which are uncorrelated 

with the error term. This eliminates the bias that would occur if the endogenous variables 

were used directly. Let us take an example for better understanding of this method. 

Example: consider the following model 



Income function (   

Money-supply function (M-SF)  

where,  

, and  

  

The money supply equation is overidentified while the income equation is under-identified, 

as can be seen by applying the order condition of identification. Apart from altering the 

model specifications, there isn't much that can be done about the income equation. ILS might 

not be able to estimate the overidentified money supply function because there are two 

estimates of . So, we can apply the method of 2SLS for estimating M-SF. 

Method involves the following steps: 

Step 1: Regress on all the predetermined variables in the system, here  and , and 

obtain 

  

Then  

  

Step 2:  M-SF can be written as 

  

=  

 is uncorrelated with = . 



Apply OLS to this equation for obtaining 2SLS estimates of  and . 

7.4.4 Two Stage Least Squares as generalized classical linear (GCL) method 

The generalized classical linear method in econometrics refers to the Generalized Least 

Squares (GLS) technique, which is an extension of the ordinary least squares (OLS) method. 

While OLS assumes that the errors (or residuals) in the regression model are homoscedastic 

(i.e., they have constant variance) and uncorrelated, these assumptions are often violated in 

real-world data. When this happens, OLS estimates can become inefficient, leading to biased 

standard errors and misleading statistical inferences. The generalized least squares estimator 

 may be interpreted as a 2SLS estimator. 

For estimating the equation 

  

with K-k≥m-1, the 2SLS estimator of  can be obtained by solving the equations 

 

 

 

  

 

 

 

Notice that  

7.4.4.1 Derivation of 2-SLS estimator 

Let us write 



 

 

 

 

 

 

 

The reduced form is 

 

Applying OLS to reduced form, the predicted value of Y is 

 

where,  is an idempotent matrix. 

. 

Replacing  by  in equation (12), we obtain 

  

Applying OLS to this equation, we obtain 2SLS estimator 

 

 

Notice that 



 

 

 

Then 

 

We can write (12) as  

 

where   . 

Then 

 

 

7.4.4.2 Interpretation of 2-SLS as an IV Estimator 

Let us consider,  

W: Matrix of instrumental variables.  

The IV estimator of δ is 

  

If we set  , where , then 

 

 

 



 

 

 Then, the IV estimator  reduces to the 2SLS estimator. 

7.4.4.3 Consistency of 2SLS Estimator 

Result 1: Suppose, as  

  

  

. 

Then 2SLS estimator is a consistent estimator.  

Proof: Let us write 

 

 

 

 

Further 

 

 

 

Thus, we have 

  

  



 

 

 

 

  

 

 

 

 

  

 

  

Hence  

 

The asymptotic variance-covariance matrix of is  

Therefore, as , the asymptotic variance-covariance matrix of  tends to 0. 

Hence the result follows■ 

A consistent estimator of the asymptotic variance covariance matrix is given by 

  



where 

: Consistent estimator of  

For exactly identified equations (K-k=m-1), 

 

 

 

So that 

 

=  

 

Hence and 2SLS estimator coincides with ILS estimator when equation is just identified. 

Example: Let us take again the example of demand and supply function 

   

  

  

1, , , : Predetermined variables  

DF is just identified, SF is over identified 

2SLS Estimation:  

(i) Run OLS for 

   

and obtain OLS estimators . 



(ii) The predicted value of  is 

  

(iii) For estimating the demand function run OLS for 

,  

and obtain 2SLS estimators of . 

(iv) For estimating supply function run OLS for 

. 

Interpretation 

(1) In over identified equations, ILS provides multiple estimates of parameters whereas, 

2SLS provides only one estimate per parameter. So, it is unique. 

(2) 2SLS requires total number of predetermined variables in the system.  

(3) This method can also be applied to exactly identified equations.  

(4) 2SLS provides a consistent estimator. 

7.5 Family of k-class Estimators 

In econometrics, K-class estimators are a family of estimators used for estimating the 

parameters of a structural equation in the presence of endogeneity, which occurs when an 

explanatory variable is correlated with the error term. The K-class estimators were introduced 

by Henri Theil in 1958 and are a generalization of the instrumental variable (IV) estimator. 

K-class estimators are primarily used to address the issue of endogeneity by generalizing the 

way instruments are used in estimation. 

The family of k-class estimators is defined as 

                (13)  



For reduces to ordinary least squares estimator. 

For reduces to 2SLS estimator. 

If value of is the smallest root of the equation 

  

then reduces to LIML estimator. 

A Family of IV Estimators 

Consider system of structural equations 

  

The instrumental variable (IV) estimator is defined a 

  

matrix of instruments of the same dimension and rank as Further 

 

 

non singular 

Then 

 

 

 



 

 

is a consistent estimator and the asymptotic distribution of is normal with 

mean vector 0 and covariance matrix . 

For OLS estimator , the matrix of IV is .  

Since , the OLS estimator is inconsistent.  

For 2SLS estimator 

 

 

 

And 

  

Thus, 2SLS is consistent. 

For 3SLS estimator 

 

 

so that  

  

Thus, 3SLS is consistent. 



7.6 Self-Assessment Exercise 

1. Write the reduced form of the following simultaneous equations model and  obtain the 

indirect and two stage least squares estimators.. 

 

 

2. For the following simultaneous equation model describe the method of indirect least 

squares with the help of this example. 

Demand Model:  

Supply Model:  

Equilibrium: . 

Here  and  are endogeneous variables.  

3. For the general form of simultaneous equations model, derive the indirect least squares of 

estimator and two stage least squares estimator. Under what conditions two-stage least 

squares estimator and indirect least squares estimators are identical? 

7.7 Summary 

This unit focuses on the estimation techniques for simultaneous equations models, which are 

essential in analysing systems where variables are interdependent. It begins with a review of 

the structural and reduced forms of these models, highlighting the challenges posed by 

simultaneity and endogeneity. 

Key estimation methods are explored, including Indirect Least Squares (ILS), Two-Stage 

Least Squares (2SLS), Each method is explained in terms of its underlying assumptions, 

steps, and applicability to specific scenarios. Comparative analyses of these techniques are 

provided, focusing on their efficiency, consistency, and limitations. 

 



This unit makes imparts knowledge about the concept of Estimators in simultaneous equation 

models. Additionally, it covers the concept of limited and full information estimators, indirect 

least squares estimators, two stage least squares estimators, three stage least squares 

estimators and k class estimator in depth. 
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8.1 Introduction 

Simultaneous equations models (SEMs) are used in econometrics and statistics to represent 

systems where multiple dependent variables influence each other simultaneously. These 

models are common in economics, where variables like supply and demand are determined 

together. In SEMs, endogenous variables are those determined within the system by the 

equations themselves. Exogenous variables are determined outside the system and treated as 

given. Before estimation, it's essential to check if the model is identifiable, meaning that there 

is a unique solution for the parameters of the model. A model is exactly identified if the 

number of independent equations equals the number of parameters. It is over-identified if 

there are more independent equations than parameters, and under-identified if there are fewer. 

 Estimates the entire system of equations simultaneously and is efficient but computationally 

intensive are called Full Information Maximum Likelihood (FIML) 



Limited Information Maximum Likelihood (LIML) is similar to 2SLS but generally provides 

more efficient estimates in small samples. 

Simultaneous equations models are powerful tools but require careful consideration of the 

underlying assumptions and the methods used for estimation. 

Prediction and simultaneous confidence intervals are used to quantify uncertainty when 

predicting outcomes in models, particularly when multiple parameters or equations are 

involved, as in simultaneous equations models (SEMs). 

8.2 Objective 

After completing this course, students should have developed a clear understanding of: 

• Limited information maximum likelihood estimation 

• Full information maximum likelihood estimation 

• Prediction and simultaneous confidence interval. 

8.3 Limited Information Maximum Likelihood (LIML) Estimators 

An approach for estimating a single equation in a linear simultaneous equations model that 

maximises the likelihood function while adhering to the structure's constraints. When the 

errors are regularly distributed, the LIML estimator performs better than single equation 

estimators.  

An alternative to the ILS and 2SLS approaches is the Limited Information Maximum 

Likelihood (LIML). However, the 2SLS is more frequently used because to its computational 

complexity. Furthermore, the LIML requires rigorous and challenging derivation. 

Let us suppose that we write the equation as 

 

 

LIML estimator is obtained by maximizing the LF derived from the stochastic elements of 

single equation (2). 



Here 

 

 

 

 

 

 

 

 

We write the equations of (1) jointly as 

 

where 

 

 

 

 

The likelihood function is 



 

 

where,  

 

 

 

 

We maximize the LF subject to identification restriction of the equation, it leads to the 

LIML estimator. 

LIML estimator is efficient among the single equation estimators under the assumption of 

normality of disturbances. 

8.3.1 Pagan’s (1979) Procedure for obtaining LIML Estimator 

Pagan (1979) proposed an alternative formulation of limited information maximum 

likelihood (LIML) estimation in terms of an iterated Seemingly Unrelated Regression (SUR) 

procedure, based on the fact that the limited information (LI) specification of a standard 

simultaneous equation system can be expressed as a triangle model. Pagan also obtained an 

expression for the connection between LIML and two stage least squares (2SLS) estimates in 

finite samples by using this method. 

Let us consider the model 

 

Reduced form equation for  

  



Reduced form equation for in vector form 

 

where, 

 

 

 

 

We can write (4) and (5) jointly as 

 

Suppose the covariance matrix between a component of and that of is 

 

with 

 

Then 

 

 

 

From (6), we obtain the estimator 



 

 

Hence 

 

 

 

 

If we write , then 

 

so that 

  

which gives a relationship between 2SLS and LIML estimators. 

8.4 Full Information Methods 

ILS, 2SLS and LIML estimators are limited information estimators in the sense that in 

estimation of any structural equation, all other structural equations in the model have not 

been considered. In full information estimator’s other equations and the fact that the 

structural disturbances of various equations may be correlated is utilized in the estimation 

process. In principal information on complete system would yield estimators with improved 

efficiency properties. 

Let the equation be 

  



Writing  , we have 

 

The 2SLS estimator of is  

 

Now 

 

Staking the equations, we can write (9) as 

 

 

or,  

 

where,  

 

 

 

 



 

The covariance matrix of is 

 

Applying GLS to (11), we obtain the 3SLS estimator 

 

 

 

 

A consistent estimator of is given by 

 

2SLS estimator of  

In , in place of we may divide by  

 

A feasible 3SLS estimator is 

  

 

Result 1: If , then 3SLS reduces to 2SLS 



Proof: Let .  

When ,  

we have .  

Hence 

 

 

 

 

 

Then  

 

 

Hence the result follows■ 

 

Comparison of 2SLS and 3SLS Estimators: 



• 3SLS is asymptotically more efficient than 2SLS estimator.  

• 3SLS requires a much-detailed specification for the equation system than 2SLS estimator 

does. 

• 3SLS requires all variables in the equations to be estimated and all predetermined variables 

of the system.  

• If some equation of the system is mis specified, this affects the 2SLS estimator of that 

equation, but not those of other equations.  

• For 3SLS, estimates of all equations of the system are affected by any such 

misspecification.  

• For applying 3SLS, all equations of the system must be identified. 

8.5 Full Information Maximum Likelihood (FIML) Estimation 

Full Information Maximum Likelihood (FIML) Estimation is a statistical method used in 

econometrics to estimate the parameters of a model, particularly when dealing with 

incomplete data or systems of simultaneous equations. This approach leverages all available 

information in the model to maximize the likelihood function and produce estimates that are 

consistent and efficient. 

FIML is especially useful in the context of simultaneous equations models, where multiple 

equations are estimated together. Each equation typically has a dependent variable that is also 

an independent variable in another equation. By estimating all equations jointly, FIML 

accounts for the interdependencies and correlations between the error terms of the equations. 

In SEM, FIML handles both measurement and structural components simultaneously, making 

it a preferred method when dealing with complex data structures. For example; Suppose you 

have a system of equations where you want to model the relationship between different 

economic variables like income, consumption, and investment. If these variables influence 

each other, using FIML allows you to estimate the entire system at once, taking into account 

the potential feedback loops and correlations between the error terms in each equation. 

Consider the model 



. 

and the pdf of  

  

For estimating , the LF is 

  

Ignoring the constant term, the log LF is 

  

Maximizing the log likelihood subject to the restrictions on parameters leads to FIML 

estimators of parameters. 

8.6 Prediction and Simultaneous confidence interval 

In econometrics, prediction and simultaneous confidence intervals are tools used to assess the 

uncertainty around predicted values and parameter estimates, respectively. Both are important 

for understanding the range within which the true values of parameters or predictions are 

likely to lie, given a certain level of confidence. 

1. Prediction Intervals 

A prediction interval provides a range within which a single future observation is expected to 

fall, with a specified level of confidence (e.g., 95%). 

2. Simultaneous Confidence Intervals 

Simultaneous confidence intervals are used to provide a range of values for multiple 

parameter estimates (or predictions) simultaneously, while controlling the overall error rate. 

They ensure that the true values of all parameters fall within their respective intervals with a 

certain overall confidence level. 



In econometrics, when making inferences about multiple coefficients (e.g., in a regression 

model), using individual confidence intervals for each coefficient might not be appropriate if 

you want to control the overall confidence level for all coefficients together. Simultaneous 

confidence intervals address this issue by providing intervals that account for the joint 

distribution of the estimates. 

Application: 

1. Prediction Intervals: Useful when forecasting future values, such as predicting GDP, stock 

returns, etc., with a specified range of uncertainty. 

 2. Simultaneous Confidence Intervals: Crucial when making inferences about multiple 

parameters, such as when analyzing the effects of multiple explanatory variables on an 

outcome, while maintaining overall control of the Type I error rate. 

Both types of intervals are important tools in econometrics for providing a fuller picture of 

uncertainty in model estimates and predictions. 

8.7 Self-Assessment Exercise 

1. What are the advantages and disadvantages of three stage least squares over two-stage least 

squares estimator. 

2. Give the justification of two-stage least squares estimator as an instrumental variable 

estimator. 

3. Explain the difference between limited information and full information estimators. 

4. Explain the three-stage least squares estimator. Under what conditions it reduces to the two 

stage least squares estimator. 

8.8 Summary 

This unit provides an in-depth exploration of advanced estimation methods for simultaneous 

equations models, focusing on Three-Stage Least Squares (3SLS), Limited Information 

Maximum Likelihood (LIML), and Full Information Maximum Likelihood (FIML) 

estimators. The unit begins by outlining the challenges of estimation in systems of 



interdependent equations, such as endogeneity and simultaneity, and emphasizes the 

importance of choosing appropriate estimation techniques. 

Three-Stage Least Squares (3SLS) is introduced as an extension of Two-Stage Least Squares 

(2SLS), combining system-wide efficiency with the ability to handle correlation across 

equations. The unit explains the derivation and application of 3SLS, highlighting its 

advantages and limitations in practical settings. 

Limited Information Maximum Likelihood (LIML) is presented as a single-equation 

estimation method that addresses the identification problem while maintaining asymptotic 

efficiency. The discussion covers its assumptions, estimation steps, and scenarios where 

LIML is preferable to 2SLS. 

Finally, Full Information Maximum Likelihood (FIML) is explored as a comprehensive 

system-wide estimator that simultaneously considers all equations in a model. The unit 

examines FIML’s advantages in terms of efficiency and consistency, as well as its sensitivity 

to specification errors. 

The unit also explains the prediction in simultaneous equations model. 
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9.1 Introduction 

Forecasting in econometrics involves predicting future values of economic variables using 

statistical models based on historical data. This is a crucial activity in economics, finance, 

and related fields where future trends need to be anticipated for decision-making, policy 

formulation, and planning. 

Time series forecasting is widely used in various fields like finance, economics, weather 

forecasting, and inventory management. The unique aspect of time series data is that 

observations are time-ordered, and this temporal structure must be accounted for in the 

analysis. The main application of forecasting is in different areas, like 

• Macroeconomic Policy: Predicting GDP growth, inflation, unemployment rates, etc., 

to guide monetary and fiscal policy. 

• Financial Markets: Forecasting stock prices, interest rates, exchange rates, and other 

financial indicators. 

• Corporate Planning: Demand forecasting, sales prediction, and inventory 

management. 

• Supply Chain Management: Demand forecasting and inventory management. 

• Weather Forecasting: Predicting temperatures, rainfall, and other climatic conditions. 

Forecasting combines economic theory, statistical analysis, and historical data to provide 

insights into future economic conditions, making it a powerful tool in both public policy and 

business strategy. 

Exponential and adaptive smoothing processes are important techniques in time series 

forecasting, especially when the goal is to make predictions based on data that may exhibit 

trends, seasonality, or other patterns. Both methods emphasize the use of recent observations 

while giving progressively less weight to older data. Exponential smoothing methods forecast 

the future by applying exponentially decreasing weights to past observations. Simple 

exponential smoothing is used for series without trend or seasonality, while Holt-Winters 

exponential smoothing is used for series with trend and seasonality. 



9.2 Objectives 

After completing this unit, students should have developed a clear understanding of: 

• Forecasting  

• Exponential and adaptive smoothing methods  

• Periodogram and correlogram analysis. 

9.3 Exponential and Adoptive Smoothing Method 

Exponential smoothing is a time series forecasting method where past observations are 

weighted using exponentially decreasing factors. This means more recent observations have a 

higher influence on the forecast, making it responsive to changes in the data. It gives more 

weight to recent observations and is suited for stable series with clear patterns. Adaptive 

smoothing adjusts the smoothing parameters dynamically based on the data, unlike the 

traditional exponential smoothing where the smoothing constant is fixed. It adjusts to changes 

in the data patterns over time, making it ideal for more volatile series. Both methods are 

valuable tools in forecasting, depending on the characteristics of the data and the specific 

forecasting needs. 

9.3.1 Exponentially weighted moving average (EWMA) 

Exponentially Weighted Moving Averages (EWMA)* is a technique used in time series 

analysis and data smoothing. It is a class of procedures for smoothing discrete time series. It 

assigns exponentially decreasing weights to older observations, giving more importance to 

recent data points. This makes it particularly useful in situations where the most recent data is 

more relevant, such as in financial analysis, quality control, and forecasting.  It also applied 

in signal processing as low-pass filters to remove high-frequency noise. 

The simple moving average uses equal weights and exponential smoothing uses 

exponentially decreasing weights over time. It does not require any minimum number of 

observations before starting exponential smoothing (unlike simple smoothing) 



The EWMA series needs to start with an initial value, which can be the first observation, or it 

can be set to the mean of the first few observations. Let ;  be a given time 

series and . 

We define a new time series  that is a smoothed version of . 

 

where,  is the smoothing factor,  . 

• The smoothing parameter  controls how quickly the weights decrease for older 

observations. 

• A higher  (close to 1) gives more weight to recent observations, making the EWMA 

more responsive to recent changes. 

• A lower  (close to 0) smooths the data more, making the EWMA less sensitive to 

recent changes. The smaller the weight , the less influence each point has on the 

smoothed time series. 

This formulation is also known as Brown’s simple exponential smoothing. 

 



9.3.1.1 Brown’s simple exponential smoothing 

Brown's Simple Exponential Smoothing (SES) is a forecasting technique that assigns 

exponentially decreasing weights to past observations. The method is particularly useful for 

data that does not exhibit a clear trend or seasonality. Here,  is the smoothed statistic and it 

is the simple weighted average of  and the previous smoothed statistic . 

• Higher values of  give more weight to recent observations. Its larger values reduce 

the level of smoothing and give greater weight to recent changes in the data. 

• Lower values of  smooth the data more heavily, giving more weight to older 

observations. 

•  closer to zero have a greater smoothing effect and are less responsive to recent 

changes 

• It is useful for short-term forecasting where data is relatively stationary. 

• If , the resulting series is ; which is the original time series. 

9.3.1.2    Adoptive Forecasting Using EWMA 

Forecast is constructed using exponentially weighted average of past observations. 

Obviously, more recent values to have greater influence on the forecast and influence of past 

data decreases exponentially. Adoptive forecasting using Exponentially Weighted Moving 

Averages (EWMA) is a method used in time series forecasting where more recent data points 

are given exponentially more weight than older data points. This makes the forecast more 

adaptive to recent changes, which can be particularly useful in environments where patterns 

shift over time. In adaptive forecasting, the smoothing factor  may be adjusted dynamically 

based on the performance of the forecast. For instance, if the forecast error increases, the 

model might increase  to give more weight to recent data, making the forecast more 

responsive to changes. This method is quite simple, computational efficiency, ease of 

adjusting to changes in the process being forecast with reasonable accuracy. It allows to 

determine influence of recent observation on forecast value. 



Let  be the n observed time series values and we assume that there is neither 

cyclic variation nor pronounced trend. 

The exponential smoothing equation is: 

  

where, 

: Forecasted value at time t,   

: Smoothing constant, . 

The initial forecast value  is unknown. 

Set the first estimate , this implies that, the initial value will have an unreasonably 

large effect on early forecasts. Use the average of the first few (10 or more) observations for 

the initial smoothed value. 

We can write 

 

 

 

where, . 

By recursive substitution 

  

  

  

  



  

The forecast equation becomes 

 

where,  is the weighted moving average of all past observations. 

The series of weights decline toward zero in an exponential fashion. As we go back in the 

series, each value has a smaller weight in terms of its effect on the forecast. 

Notice that,  near zero allow the distant past observations to have a large influence and  

near one allow the past observations to have a negligible influence. 

9.3.1.3 How to select ? 

In this section we consider some methods for measuring the accuracy of forecast value. 

Measuring the accuracy of forecast method: 

1: Mean absolute percentage error (MAPE) 

It is defined as: 

 

 

Note that lower the MAPE the better is the forecast.   

•  implies highly accurate forecast. 

•  implies good forecast. 

•  implies reasonable forecast. 



•  implies inaccurate forecast 

2: MSE (Mean square error) and RMSE (Root mean square error) 

It is defined as: 

  

  

The MSE or RMSE can be used as criterion for selecting smoothing constant . Assign 

values from 0.1 to 0.99 to  and select the value with smallest MSE or RMSE. 

9.3.1.4 Double exponential smoothing (Holt’s Method) 

The Holt method, also known as double exponential smoothing, is an extension of simple 

exponential smoothing. It is used for forecasting time series data that exhibits both a linear 

trend and no seasonal pattern. it is also called Holt’s trend corrected or second-order 

exponential smoothing. This method introduces a term to take care of trend present in the 

time series and is capable of capturing increase or decrease in linear trend. It is useful when 

the data shows a linear trend over time. If the data also exhibits seasonality, the Holt-Winters 

method, which extends the Holt method to include seasonal components, may be more 

appropriate. 

Steps: Let ; , 

Initial value  or 

 

If  

 

 



where,  

= Smoothed statistic 

= smoothing factor of data;  

= best estimate of trend at time  

 = trend smoothing factor;  

For forecasting beyond  

 

9.3.1.5 Brown's linear exponential smoothing (LES) or double exponential smoothing 

Brown's linear exponential smoothing, also known as Brown's double exponential smoothing, 

is a forecasting method similar to Holt’s method but with a key difference in how the trend is 

handled. It is a simpler method primarily used for time series that exhibit a linear trend but 

without seasonality. Brown’s method uses a double application of exponential smoothing to 

handle the trend, effectively applying exponential smoothing twice to the data series. It 

involves two different smoothed series that are centered at different points in time. This 

forecasting formula is based on an extrapolation of a line through the two centers.  

Steps: Let 

 

 

 

 

where,  

 : Estimated level at time t  



 

Estimated trend at time t  

 

Brown’s method simplifies the estimation of trend compared to Holt’s method by not 

requiring a separate smoothing parameter for the trend. It achieves this by smoothing the data 

twice. This method is best suited for time series data with a linear trend but no seasonality. 

Brown's method is computationally simpler than Holt's, which can make it appealing for 

certain applications, but it may not be as flexible if the data requires more nuanced trend 

modelling. 

9.3.1.6 Triple exponential smoothing (Holt-Winters Smoothing) 

Holt-Winters smoothing is a time series forecasting technique that extends exponential 

smoothing to capture seasonality. It is particularly useful for data that exhibits both a trend 

and seasonal patterns. The method comes in three forms: 

1. Additive Model: Used when the seasonal variation is roughly constant over time. 

2. Multiplicative Model: Used when the seasonal variation increases or decreases 

proportionally with the level of the series. 

3. Damped Model: Applies a damping factor to the trend to make it less pronounced 

over time.  

Holt-Winters is widely used in fields like finance, economics, and inventory management for 

predicting future values based on historical time series data, especially when the data shows 

clear seasonal patterns. This model is used when time series has both trend and seasonal 

components.  

Let 

 Sequence of observations beginning at t=0.  



L: Length of the cycle of seasonal change. 

Number of complete cycles.  

Two cases of seasonality:  

Seasonality is (i) Multiplicative, (ii) Additive 
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Initial trend estimate : 

 

We denote 

= smoothed statistic 

= smoothing factor of data;  



= best estimate of a trend at time  

 = trend smoothing factor;  

= sequence of seasonal correction factor at time t 

= seasonal change smoothing factor;  

Triple exponential smoothing formulas for Multiplicative Seasonality:  

  

  

  

  

  

where, a and n are positive numbers. Further, a modulo n (a mod n) is the remainder of 

division of a by n. 

Triple exponential smoothing formula for additive seasonality: 

  

   

  

  

  

9.4 Numerical Examples 



We apply different exponential smoothing techniques to Google stock dataset with 1000 

observations available in R-package. The dataset is divided in two groups, first 950 

observations (training set) for exponential smoothing, and remaining 50 observations (test 

set) for checking the accuracy of forecasts. 

Simple Exponential Smoothing: A flatlined estimate is projected by simple exponential 

smoothing. The procedure is not capturing the trend present in the data.  

 

Removed Trend by differencing and used simple exponential smoothing. Best  is selected 

automatically. Since the data set was differenced, the procedure is forecasting differenced 

values. 

 



Holt Method takes care of trend. Best possible values of alpha and beta selected 

automatically.  

 

Holt-Winter’s Seasonal Method is used for data with both seasonal patterns and trends. Three 

smoothing parameters are selected automatically.  

 

 



 

9.4  Periodogram and Correlogram Analysis 

Periodogram and correlogram analyses are techniques used in time series analysis to 

understand the frequency and autocorrelation properties of a dataset. Both are 

essential tools for identifying periodic patterns, trends, and the structure of the time 

series. 

A periodogram is a tool used to estimate the spectral density of a time series. It 

provides a way to identify the dominant frequencies (or cycles) present in the data. 

The spectral density function reveals how the variance of the time series is distributed 

across different frequencies. The periodogram is computed by taking the Fourier 

transform of the time series data, which decomposes the data into its constituent 

frequencies. 

Peaks in the periodogram indicate dominant frequencies in the time series. These are 

the frequencies at which the time series has significant periodic components. For 

example, if you see a peak at a frequency corresponding to one year, this suggests an 

annual cycle in the data. 

A correlogram is a graphical representation of the autocorrelation function (ACF) of 

a time series. It shows the correlation of the time series with its own lagged values 

over different time lags. The correlogram shows the autocorrelation coefficients 

plotted against the lag. The significant autocorrelations at specific lags indicate that 

the time series has memory, meaning past values have an influence on future values. 



A slowly decaying correlogram suggests a trend, while a cyclical pattern in the 

correlogram suggests seasonality or periodicity. 

Focus:  

• The periodogram focuses on the frequency domain, identifying cycles and periodic 

patterns in the data. 

• The correlogram focuses on the time domain, showing how the data at one time point 

relates to data at other time points (lags). 

Usage: 

• Use the periodogram when you are interested in identifying specific cycles or 

frequencies in your data. 

• Use the correlogram when you want to understand the persistence of patterns over 

time and the time lags at which the series is correlated with itself. 

Interpretation: 

• A periodogram is interpreted by identifying peaks at specific frequencies. 

• A correlogram is interpreted by identifying significant autocorrelations at specific 

lags. 

The Periodogram Analysis is ideal for detecting and understanding the frequency 

components within a time series whereas, the Correlogram Analysis is best for 

examining the autocorrelation structure and understanding the time-domain 

relationships within the data. 

9.5.1 Periodogram Analysis 

Consider a time series from which trend and seasonal effects have been eliminated. 

Let  represents the residual series. We want to know whether  

contains a harmonic term with period . Consider the quantities 



 

And 

 

where n is the number of terms in the series. Let us write 

 

 is known as the intensity corresponding to the trial period . 

Let us consider a simple model, according to which  is composed of two 

components, one periodic with period  and amplitude a and the other an irregular 

component, say . Thus  

 

The second component is assumed to be uncorrelated with the first or similar periodic 

terms. 

Now, 

 

 



 

 

Remembering that 

 

For large n, the second term is always small; the first term will also be small unless  

tends to , i.e. unless , the trial period, approaches the true period . Since 

 

We have, if  tends to , then 

 

 

Similarly, 

 

and is small otherwise, so that 

 

i.e. when , and is small otherwise. 



We now take several trial periods  around the true period , which may be guessed 

by plotting the data on a graph paper, and calculate  in each case. Finally, we draw 

a graph plotting  against . The diagram is called a periodogram, is a simple 

device for finding the true cyclical period  in a time series by equating it to that 

value of  for which  attains a maximum. 

Similarly, if the cyclical component is composed of several periodic terms, say with 

periods  will remain small unless the trial period  coincides with one 

of the true periods, in which case it attains a local maximum with value equal to the 

square of the amplitude of the periodic term concerned.  

9.5.2 Correlogram 

An autocorrelation  of order k is the correlation between . From the 

original  series n-k pairs of values are obtained with a lag of period k. 

Thus, 

 

 

Obviously, we have . 

The diagram obtained by plotting  against k on graph paper and joining the points, 

each to the next, is called a correlogram. Theoretically, it can be demonstrated that 

the correlogram takes on significantly diverse forms in various scenarios. 

(a) Correlogram of Moving Average: 



When oscillatory movement is generated by an m-point simple moving average of a 

random component , where , we also 

know that 

 

 being the theoretical value of the serial correlation of order k. 

Thus, the correlogram would be a straight line starting at (0,1) and ending at (m,0) 

and thereafter the correlogram would coincide with the k-axis. If the oscillations were 

generated by an m-point weighted moving average with weights  the 

correlogram would oscillate between the points (0, 1) and (m,0) and thereafter would 

coincide with the k-axis. 

 

(b) Correlogram of oscillatory movement: 

When the oscillatory movement is generated by the sum of a number of cyclical 

components represented by the sum of a number of harmonic terms with periods 

 it can be shown that  would also be the sum of a number of harmonic 

terms, not necessarily with same periods. If we take 

 

 

 



 

 

 

, say. 

Similarly, 

 

So that  

 

Hence the correlogram would be a strictly periodic sinusoidal curve. In this case, the 

correlogram will take a sinusoidal form, which will not degenerate to the k-axis after 

some fixed point and will not be damped. 

(c) Correlogram of autoregressive series: 

Let us consider autoregressive equation of the first and second orders. For the 

equation of the first order, viz. , called Markov’s process 

 

gives 

 

so that 

 



again 

 

gives 

 

so that 

 

or 

 

 

 

The correlogram would therefore now take on an exponential shape. Since  needs to 

be smaller than 1 to prevent the time series from expanding to infinity, the curve 

would begin at (0,1), decrease quickly from there, and asymptotically gravitate 

towards the k-axis.  

For the equation of second order, viz. 

 

called Yule’s process, we have 

 

Multiplying both sides by  and taking expectations, we have 

 

The general solution of the above difference equation is given by 

 



 being found from the initial conditions and  are the roots of the equation 

, the characteristic equation of the process. 

Case 1: , roots are real 

 are found as follows 

 

 

 

Again, 

 

 

 

so that  

 

 

 

and 

 

 

Case 2:  , roots are imaginary. 



Let us write 

 

 

 

where 

 

and 

 

 

 

 

Since 

 

 

 

 

Giving 

 

In case 1 the correlogram starts at (0,1) and becomes asymptotic to the k-axis. 



In case 2 correlogram will be oscillatory. 

A correlogram is a powerful tool to detect patterns and dependencies in time series 

data, helping analysts choose the right models and validate their assumptions. 

9.6 Self-Assessment Exercise 

1. Define forecasting and explain its importance in decision-making processes. 

2. Explain the concept of forecast accuracy and discuss common measures used to 

evaluate it (e.g., MSE, MAE, MAPE). 

5. What is exponential smoothing, and how does it differ from simple moving averages? 

6. Describe the concept of a smoothing constant in exponential smoothing. How does its 

value affect the forecast? 

7. Explain the difference between single, double, and triple exponential smoothing. 

8. What is adaptive smoothing? How does it address limitations of traditional 

exponential smoothing methods? 

10. What is a periodogram, and how is it used in time-series analysis? 

11. Describe the steps involved in constructing a periodogram for a given time series. 

14. Define a correlogram and explain its role in time-series analysis. 

15. How is the autocorrelation function (ACF) calculated, and what information does it 

provide? 

16. Compare and contrast the correlogram with the periodogram in analysing time-series 

data. 

9.7 Summary 

This unit provides a comprehensive overview of forecasting methods used to predict 

future values based on historical data. The unit begins by introducing the 



fundamental principles of forecasting and the importance of accurate predictions in 

decision-making across various domains. 

A significant focus is placed on smoothing techniques, including exponential 

smoothing methods and adaptive smoothing methods. These approaches are 

explained in terms of their objectives, assumptions, and practical implementation for 

trend and seasonal components. The unit highlights the advantages of smoothing 

methods in handling time-series data with varying levels of volatility. 

In addition to smoothing techniques, the unit explores frequency-domain analysis 

methods, such as the periodogram, for identifying dominant cycles in time-series 

data. The correlogram is introduced as a tool for analyzing autocorrelation, providing 

insights into the lag structures of data and guiding the selection of appropriate 

forecasting models. 

By integrating these techniques, the unit equips learners with the tools to develop 

robust forecasts and assess the underlying patterns in time-series data, enabling 

informed decision-making in complex environments. 
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10.1 Introduction 

A Generalized Linear Model (GLM) is a flexible framework for modeling relationships 

between a response variable and one or more predictor variables. It generalizes traditional 

linear regression by allowing the response variable to have distributions other than a normal 

distribution. GLMs consist of three main components: 



1. Random Component 

2. Systematic Component 

3. Link Function 

Instrumental Variables (IV) is a critical concept in econometrics used to address the problem 

of endogeneity in regression models. Endogeneity occurs when an explanatory variable is 

correlated with the error term, which can lead to biased and inconsistent parameter estimates. 

This typically arises from omitted variable bias, measurement error, or reverse causality. It is 

a powerful tool in econometrics for addressing endogeneity and obtaining unbiased parameter 

estimates. Understanding and applying IV methods correctly are crucial for drawing valid 

conclusions from econometric models. The selection of valid instruments is critical 

researchers must carefully justify their choices to ensure the robustness of their findings. 

10.2 Objectives 

After completing this course, there should be a clear understanding of: 

• Review and analysis of GLM 

• Generalized least square estimation 

• Instrumental variables 

10.3 Generalized Linear Model 

Generalized Linear Model (GLM): Detailed Analysis 

A Generalized Linear Model (GLM) is a flexible generalization of ordinary linear regression 

that allows for the response variable (dependent variable) to have a non-normal distribution. 

It is particularly useful when the assumptions of linear regression, such as normality of 

residuals and homoscedasticity, do not hold.  

GLM expands the framework of linear models by allowing for: 

• Non-Normal Response Distributions (e.g., binomial, Poisson). 



• Non-Constant Variance of Residuals. 

• Link Functions that relate the linear predictor to the mean of the distribution. 

Key Components of a GLM 

1. Random Component: Specifies the probability distribution of the response variable. 

Common distributions include: 

• Normal distribution (for continuous outcomes with constant variance). 

• Binomial distribution (for binary or proportion data). 

• Poisson distribution (for count data). 

• Gamma distribution (for positive continuous data with non-constant variance). 

2. Systematic Component: The systematic component of a GLM is a linear combination of 

the explanatory variables (predictors). It is expressed as: 

  

where, X is the matrix of predictor variables, 

 is the vector of coefficients, and 

 is the linear predictor (a linear function of the predictors).    

3. Link Function: Transforms the expected value of the response variable to the linear 

predictor. Instead of assuming that the mean of the response is directly modeled as a linear 

function of the predictors. The link function relates the expected value of the response 

variable, , to the linear predictor. Common link functions include: 

• Identity link:   (used in linear regression) 

• Logit link:  (used in logistic regression for binary outcomes) 



• Log link:  (used in Poisson regression for count data) 

• Inverse link:  (used in Gamma regression for skewed continuous data) 

The choice of the link function depends on the nature of the response variable.  

General Framework of GLM 

GLM is defined by the following: 

• Response variable  comes from an exponential family distribution. 

Linear predictor .  

• Link function  that connects the mean of the response to the linear predictor: \( 

. 

Steps in GLM Analysis 

1. Specify the Model: 

• Choose the appropriate probability distribution for the response variable (e.g., 

binomial for binary, Poisson for counts). 

• Define the systematic component (linear predictor) that includes the independent 

variables. 

• Select the correct link function that fits the nature of the response. 

2. Fit the Model: 

• The parameters  are typically estimated using Maximum Likelihood Estimation 

(MLE). This approach maximizes the likelihood function (or equivalently, minimizes 

the negative log-likelihood). 

• The MLE estimation process involves iteratively finding the best fit of the parameters 

using algorithms such as Iteratively Reweighted Least Squares (IRLS). 



3. Assess Model Fit: Goodness-of-fit measures and diagnostic plots can be used to evaluate 

how well the model fits the data. Common measures include: 

• Deviance: A generalization of the residual sum of squares for GLM. It compares the 

likelihood of the fitted model with that of a saturated model (a model that perfectly 

fits the data). 

• Akaike Information Criterion (AIC): A metric that penalizes model complexity and 

helps select among different models. 

• Pseudo: An extension of the  statistic used in linear models, applicable to GLM. 

4. Hypothesis Testing and Inference: Hypothesis tests are used to assess the significance of 

individual predictors: 

• Wald Test: Tests whether a single coefficient is significantly different from zero. 

• Likelihood Ratio Test (LRT): Compares the goodness-of-fit of nested models. 

• Score Test (also called Lagrange Multiplier test): Tests for significance without 

fitting the full model. 

• Confidence intervals for the estimated coefficients can also be computed to provide 

insight into the uncertainty of the estimates. 

5. Model Validation: Residual analysis is crucial in checking the assumptions of the model. 

Common diagnostic tools include: 

• Deviance residuals: Measure the difference between the observed and predicted 

values. 

• Pearson residuals: Standardized residuals that help assess model fit. 

• Leverage and Cook's Distance: To detect influential data points that may unduly 

affect the model. 

Common GLM Applications 



Some common types of GLMs and their applications include: 

• Linear Regression (Normal distribution, identity link): For continuous outcomes. 

• Logistic Regression (Binomial distribution, logit link): For binary outcomes, often 

used in classification tasks. 

• Poisson Regression (Poisson distribution, log link): For count data, such as the 

number of occurrences in a fixed interval. 

• Gamma Regression (Gamma distribution, inverse link): For positively skewed 

continuous data, such as response times or wait times. 

Example: Logistic Regression as a GLM 

Problem: Predict whether a patient has a disease based on age and smoking status. 

Response Variable: Disease status (0 = no disease, 1 = disease). 

Predictor Variables: Age and smoking status (1 = smoker, 0 = non-smoker). 

Model: 

Using a logistic regression (GLM with binomial distribution and logit link): 

  

Here, the coefficients  and  indicate how age and smoking status affect the probability of 

having the disease. 

Advantages of GLM 

• Flexibility: Allows modeling of different types of data (binary, count, continuous). 

• Unified Framework: GLM provides a general framework for a variety of models. 

• Interpretability: Coefficients in GLMs still retain interpretability similar to linear 

regression. 



Limitations of GLM 

• Assumption of Linearity: Even though the link function provides flexibility, the 

linear predictor assumes a linear relationship between the transformed mean and 

predictors. 

• Complexity in Model Fit: Estimation using MLE may be computationally intensive, 

especially for large datasets or complicated models. 

In conclusion, GLMs offer a powerful extension to linear models, accommodating a wider 

variety of data types and distributions. Their flexibility in handling non-normal responses and 

complex data structures makes them invaluable in modern statistical modeling. 

10.4 Instrumental variables 

Instrumental Variables (IV) is a statistical technique used primarily in econometrics and 

causal inference to address issues of endogeneity in regression models. Endogeneity arises 

when an independent variable is correlated with the error term in a regression equation, 

leading to biased and inconsistent estimates of the causal effect of the independent variable 

on the dependent variable. For example: Suppose you want to estimate the effect of education 

on earnings, but education is endogenous because higher earnings might motivate individuals 

to pursue more education.  

Instrument: One might use the distance to the nearest college as an instrument. The idea is 

that those living closer to colleges may be more likely to obtain higher education, but the 

distance itself does not directly influence earnings. 

Consider the model 

          (1) 

where, 

 

 

 



One of the basic assumptions is either is non stochastic or even if stochastic, .  

Suppose (  correlated), then 

 

Further, if  (  correlated in limit), then 

 

 

Hence  is a biased and inconsistent estimator of .  

Example: Let us consider the Measurement Error Model. 

Suppose, 

 

where,  

Observed study variable is . 

Explanatory variable is , and 

be observed with additive measurement error 

  

Let  be the vector of observed (proxy) values of the explanatory variables related to the true 

 by 

 

We can write the model as 



 

 

We assume that 

 

 

 

 

 

Then we obtain 

  

where,  is the composite disturbance term. 

Then 

 

 

 

 

 

Thus, and  are correlated. If we apply OLS to estimate parameters of the model 

 

then the resulting estimator will be biased and inconsistent. 

Example: Let us consider Autoregressive Model: 

Consider the following autoregressive model 

 



where,  is correlated with , and  is Explanatory variable and uncorrelated with . 

In deviation form 

 

 

The OLS estimator of  is 

 

 

Then 

 

 

and  involves  and  contains  in it, which is correlated with . 

However, the estimator of is consistent as 

 

 

Example: Consider the Demand Supply Model 

 

 

where, 



 

 

Is  correlated with ? 

Now, we get  and  by solving these two equations.  

 

 

Hence,  is correlated with both . 

10.4.1 Instrumental variables (IV) Estimation 

An instrumental variable Z is an additional variable used to estimate the causal effect of 

variable X on Y. 

Instrumental Variables is a set of variables which are correlated with the explanatory 

variables in the model but uncorrelated with the composite disturbances, at least 

asymptotically, to ensure consistency. 

Case I: Number of instrumental variables is equal to the number of explanatory variables. 

Let  matrix of observations on  instrumental variables  such that  

 

 is a finite nonsingular matrix of full rank. 

is a finite nonsingular matrix. 

If some of X variables are uncorrelated with  then these can be used to form some of the 

columns of Z. Pre-multiplying the model (1) by , we obtain 



 

 

 

Then, 

 

Hence 

 

 

Replacing  and  by corresponding sample cross moments  and  

respectively, we obtain 

 

Result 1: The IV estimator  is a consistent estimator of . The asymptotic variance-

covariance matrix of  is given by 

 

 

Proof: We have 

 

 

 

Hence 

 

 



The asymptotic variance-covariance matrix of   is given by 

 

 

 

We observe that as , the asymptotic variance covariance matrix of  tends to 0. 

Thus, is a consistent estimator of  Hence the result follows■ 

Case II: Number of instrumental variables is more than the number of explanatory variables: 

Let matrix of observations on  variables such that 

: Finite matrix of full rank 

, i.e., in limit Z is uncorrelated with . 

 

Consider the model 

 

Pre multiplying the model by gives 

          (4)  

Then covariance matrix of  is . 

Applying GLS to (4), we get the IV estimator for : 

 

 



Result 2: The IV estimator  is a consistent estimator of . Its asymptotic variance-

covariance matrix is 

 

Proof: We have 

 

 

Hence, 

 

 

 

 

The asymptotic variance-covariance matrix of  is obtained as 

  

  

  

  

As , asymptotic variance covariance matrix tends to zero. Thus  is an unbiased and 

consistent estimator of  

10.4.2 Interpretation of IV Estimator as a Two Stage Least Squares Estimator 



The Instrumental Variables (IV) estimator is often implemented using the Two-Stage Least 

Squares (2SLS) method. This approach is particularly useful when addressing endogeneity 

issues in regression models. The IV estimator can be understood as a systematic way of 

dealing with endogeneity through 2SLS, which employs instrumental variables to extract the 

causal effect of an endogenous regressor on an outcome variable by addressing the 

correlation with the error term. The two stages highlight the separation of the estimation 

process into isolating the endogenous variable and then estimating the relationship of interest. 

The IV estimator can be implemented using the 2SLS approach, involving two stages: 

Stage 1: Consider the regression between  and  

  

The OLS estimator of B is  

 

Obtain a matrix of fitted values for  

 

 

 

Stage 2: Run regression between  and  to get the two-stage least squares estimator 

 

 

 

We obtain  and then run regression between . 

IV technique allows the use of only that part of the variation in the predictor  that is not 

related with unobservable factors affecting both predictor and outcome. 



This method allows to estimate the causal relationship between the outcome  and the 

predictor . The instrumental variable  affects  only through its effect on  

Suppose we want to investigate the relationship between depression  and smoking . 

Lack of job opportunities  could lead to depression, but it is only associated with smoking 

through its association with depression. It is not direct correlated with smoking.  can be 

used as an instrumental variable. 

10.4.3 Choice of Instrumental Variables 

We cannot use the actual data to find Instrumental Variables. One has to rely on knowledge 

about the model’s structure and the (economic) theory behind the experiment.  

(i)  should not be affected by other variables in the system  

(ii)  should correlate with ,  

(iii)Weak correlations lead to misleading estimates for parameters and standard errors. 

Some of the  variables are uncorrelated with  and used in instrument. Partition  as 

 

 

where,  

 uncorrelated with . 

, correlated with . 

, instrumental variables 

Then 

 



Here 

 Instruments for themselves, and 

 

How many instrumental variables to use? 

Minimum number is . Asymptotic efficiency increases with  but finite sample bias 

also increases. If  

 

 

 

Then 

 

 

which is biased. 

Then the  moment of IV estimator exists if . Thus for even the mean 

does not exist. With one more instrument, mean exists but variance does not. 

10.4.4 Measurement Error Model 

A measurement error model is particularly valuable for addressing bias that arises from 

inaccuracies in observable variables, especially in regression analysis. When there is 

measurement error in the independent variables, traditional regression techniques may 

produce biased and inconsistent estimates. 

Causes behind Measurement Errors 

• Taste, education, etc. are not measurable and some dummy variables are defined and 

observed. 



• Some quantitative variables are observed with measurement error. For example, age is 

generally reported in complete years. Income reported in multiples of hundred. 

• Some unobservable variable represented by some closely related proxy variable. For 

example, the level of education is measured by the number of years of schooling. 

• Some qualitative variables measured by closely related quantitative variable.  For 

example, intelligence is measured by intelligence quotient (IQ) scores.  

In all the examples, the variables are observed with some error. The difference between the 

observed and true values of the variable is called as measurement error or errors-in-variables. 

Disturbance term is defined as the influence of various explanatory variables that have not 

been included is the relation and Measurement errors is defined as the imperfect measure of 

true variables. 

True relationship between observed study variable  and explanatory variables 

:  

  

Let be observed with additive measurement error 

  

Let be the matrix of observed (proxy) values of the explanatory variables related to the true 

 by 

 

Alternatively, we can write the model as 

           (5)  

           (6)  



We assume that 

 

 

 

Combining (5) and (6) we obtain 

           (7)  

 is called the composite disturbance term. 

In model (7) 

 

 

 

 

Thus and  are correlated. 

Result 3: The OLS estimator  is biased estimator of  . 

Proof: We can write the OLS estimator of  as 

  

    

  . 

Hence 



 

 

 

Hence OLS estimator b is biased. The reason is the correlation between the data matrix and 

the composite disturbance term . 

Large sample properties of OLS Estimator 

We assume that 

(a) The measurement errors  in  are uncorrelated in limit with , i.e., 

. Hence, 

 

 

 

where 

 

 

(b) . 

Result 4: The OLS estimator  is inconsistent estimator of  

Proof: Utilizing assumptions (a) and (b), we get 



 

 

 

Therefore 

  

  

  

  

Thus, b is an inconsistent estimator of ■ 

Here residual sum of squares  involves . Thus,  

is not obtained by minimizing it. 

Example: Consider 

  

where, 

  

  

Define 

 



We assume 

 

 

Then 

 

 

 

Now 

 

 

 

 

 

 



Both  are Biased and inconsistent. Measurement error in  affects the estimator of 

intercept term also.  

Different Forms of Measurement Errors: 

Consider the model  

  

  

  

The three forms of measurement error models: 

(i) Functional Form: when  are unknown constants. 

(ii) Structural Form: when  are iid random variables, say, with mean  and 

variance . For , it reduces to functional form. 

(iii)Ultrastructural Form: when  are independently distributed random variables 

with different means, say  and variance . Both functional form and structural 

form are special cases of this form. 

Instrumental variables (IV) Estimation 

Let matrix of observations on  instrumental variables such that  

(i) : Finite matrix of full rank 

(ii) , i.e., in limit Z is uncorrelated with u 

(iii)  

(iv)  

Consider the model: 



 

Pre multiplying the model by gives 

          (8)  

Then the variance-covariance matrix of is . Applying GLS to (8), we get the 

IV estimator for : 

 

Result 5: The IV estimator  is a consistent estimator of . The asymptotic variance-

covariance matrix of  is 

 

Proof: We have 

 

 

  

 

  

 

 

 

 

which tends to zero as  

10.4.5 Choice of instrument  



Consider measurement error model with one explanatory variable: 

 

 

(i) Wald’s method: 

Arrange  in ascending or descending order and find median. Define 

 

and, 

 

 

Let two groups of , (i)  group of below the median and (ii)  group of 

above the median. where, 

 are means of  respectively and 

: means for  group, 

: means for  group 

 

 



 

 

 

 

Thus 

 

 

The estimators are consistent but have large sampling variance. 

(ii) Bartlett’s method: 

Divide observations into three groups after arranging in increasing or decreasing order, say  

sized groups. 

 

Discard the observations in the middle group and means of in bottom group is 

 and means of in top group is . 

Then  

 

 



Then the estimators are consistent. 

(iii) Durbin’s method: 

Rank . Let  be the rank of  we take . 

Then, if we have one explanatory variable 

 

 

For more than one explanatory variable, one may choose the instrument as the rank of that 

variable. The estimator uses more information and expected to perform better than other 

grouping methods. 

In general, the instrumental variable estimators may have fairly large standard errors in 

comparison to ordinary least square estimators which is the price paid for inconsistency. 

However, inconsistent estimators have little appeal. 

10.5 Self-Assessment Exercise 

1. What are the key components of a Generalized Linear Model (GLM)? 

2. Explain the role of the link function in a GLM. Provide examples of commonly used 

link functions. 

3. Discuss how GLMs extend ordinary linear regression to handle non-normal response 

variables. 

6. What is the primary objective of Generalized Least Squares (GLS) estimation? 

7. Explain how GLS addresses issues of heteroscedasticity and autocorrelation in 

regression analysis. 

8. What are the key assumptions underlying GLS estimation? 



9. Discuss a scenario where GLS would provide more efficient estimates than Ordinary 

Least Squares (OLS). 

11. What is endogeneity, and why does it pose a problem in regression analysis? 

12. Define instrumental variables and explain the criteria for a valid instrument. 

13. Outline the steps involved in Two-Stage Least Squares (2SLS) estimation using 

instrumental variables. 

16. Explain the concept of consistency in the context of estimators. 

17. Under what conditions is an instrumental variable estimator consistent? 

18. Why does the use of invalid instruments lead to inconsistent estimates? 

19. How does instrument relevance and exogeneity ensure the consistency of IV 

estimators? 

20. Derive the asymptotic variance of IV estimators. 

10.6 Summary 

By completing this unit, you will gain an understanding of the following concepts in 

econometrics: 

Generalized Linear Model (GLM): A GLM is an extension of traditional linear regression 

that allows for response variables to have error distributions other than the normal 

distribution. We observe that GLMs consist of three main components: a random component 

specifying the distribution of the response variable (e.g., Poisson, binomial), a systematic 

component that includes a linear predictor, and a link function that connects the mean of the 

response variable to the linear predictor. GLMs are useful for modelling various types of 

data, including count data, binary outcomes, and other non-normally distributed variables. 

Instrumental Variables (IV): Instrumental variables are used in regression models to address 

endogeneity issues, which occur when explanatory variables are correlated with the error 

term, potentially leading to biased and inconsistent estimates. An instrumental variable must 

satisfy two key conditions: it must be correlated with the endogenous explanatory variable 



(relevance condition) and uncorrelated with the error term (exogeneity condition). Common 

applications of IVs include addressing omitted variable bias, simultaneity, and measurement 

error.  

Estimation of Instrumental Variables: The most common method for estimating models with 

instrumental variables is Two-Stage Least Squares (2SLS). In 2SLS, the first stage involves 

regressing the endogenous variables on the instruments to obtain predicted values, and the 

second stage regresses the dependent variable on these predicted values.  

Consistency Properties of Instrumental Variables Estimators: Instrumental variable estimators 

are consistent if the instruments are valid, meaning they meet the relevance and exogeneity 

conditions. Consistency implies that as the sample size grows, the IV estimator converges to 

the true value of the parameter. 

5. Asymptotic Variance of Instrumental Variable Estimators: The asymptotic variance of an 

IV estimator is the variance of the estimator as the sample size approaches infinity. 

Understanding the asymptotic variance is important for constructing confidence intervals and 

conducting hypothesis tests in IV regression. IV estimators generally have larger asymptotic 

variance compared to ordinary least squares (OLS) estimators, reflecting the uncertainty 

added by the use of instruments to address endogeneity. 
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Block  & Units Introduction 

The present SLM on Econometrics consists of fourteen units with three blocks. 

The Block - 3 – Advance Econometrics, is the third block, which is divided into four 

units. 

The Unit – 11 - Autoregressive Process, deals with the Moving average (MA), Auto 

regressive (AR), ARMA and ARMA models, Box-Jenkins models, estimation of ARIMA 

model parameters, auto covariance and auto correlation function. 

The Unit – 12 - Vector Autoregressive Process, deals with the Multivariate time 

series process and their properties, vector autoregressive (VAR), Vector moving average 

(VMA) and vector autoregressive moving average (VARMA) process. 

The Unit – 13- Granger Causality, deals with the Granger causality, instantaneous 

Granger causality and feedback, characterization of casual relations in bivariate models, 

Granger causality tests, Haugh-Pierce test, Hsiao test. 

The Unit – 14- Cointegration, deals with the Cointegration, Granger representation 

theorem, Bivariate cointegration and cointegration tests in static model. 

At the end of every block/unit the summary, self-assessment questions and further 

readings are given.  

 

 

 

 

 

 

 



UNIT 11 AUTOREGRESSIVE PROCESS  

11.1 Introduction 

11.2 Objectives 

11.3 Simultaneous equation model: Introduction 

11.3.1 Simultaneous equation models 

11.3.1.1 Endogenous variables or Jointly determined variables 

11.3.1.2 Exogenous variables 

 11.4 Alternative Estimation Procedure 

  11.4.1 Instrumental variable (I V) estimation 

11.4.2 Indirect least squares (ILS) 

  11.4.3 Two-stage least squares estimation (2SLS) 

 11.5 General form of the Simultaneous Equation model 

 11.6 Identification Problem 

  11.6.1 Structural form of the model 

  11.6.2 Identification problem and likelihood function 

  11.6.3 Condition for Identification 

  11.6.4 Identification from Reduced form 

 11.7 Self-Assessment Exercise 

 11.8 Summary 

 11.9 References 

 11.10 Further Readings 



11.1 Introduction 

An autoregressive (AR) process is a type of statistical model used for analyzing and 

forecasting time series data. In an autoregressive model, the current value of a time series is 

expressed as a linear combination of its past values and a stochastic error term. Before 

proceeding further, we need to know the following terms.  

Stochastic Process: A stochastic process is a family of random variables  where 

 denotes the time points at which the process is defined. For a particular , let  be the set 

of all possible values of . Where,  is called the state space.   is a random variable 

taking value in State space . Usually we denote random variable by  if  is continuous 

and by  if  is discrete. 

• Stochastic Process  evolves in time according to probabilistic laws and 

provide a probability model for the analysis of time series. 

• The infinite set of all possible time series is called the ensemble. 

• Every member of ensemble is a particular realization 

An observed time series is a particular realization of infinite set of time series, which might 

have been observed. The objective is the evaluation of the statistical properties of the 

probability model, which generated the observed time series. 

Descriptive Measures: Describing Marginal behavior of  at a particular time point 

 

Mean function:  

Variance function:  

Measure of extent of dependence between  and    

• Autocovariance function (ACVF): 



   

  

• Auto correlation function (ACF) of lag k: 

  

Suppose  

 ,  then 

  

ACF satisfies the following properties: 

(i) For a stationary process .  

(ii)   . 

(iii) Non uniqueness: A stationary normal process is completely determined by its mean, 

variance and ACF. It is always possible to obtain several non-normal processes with same 

ACF. 

The ACF of purely random process or Gaussian white noise is given by 

  

Result: Let  be a time series with  Then ACF   is the value of a which 

minimizes  

. 



Sample ACF and ACVF of lag k: Let : observed timeseries form (n-1) pairs 

 then Sample autocorrelation coefficient (or serial 

autocorrelation coefficient) of lag one is 

  

where .  

Let .  

Since  

  

  

For large n,  and  can be approximated as  

  

Sample ACF of lag k: Let (n-k) pairs is , then 

  

  

Correlogram: The graph of against  is called the correlogram. The autocorrelation 

function plays an important role in model identification.  

Another tool, which is used in model identification, is partial autocorrelation function. 



Partial Autocorrelation Function (PACF): The PACF of order k, say , is the partial 

correlation coefficient between and  conditional on intermediate values of the process.  

➢  is the autocorrelation between and  removing the linear dependence of 

.  

➢  : Least squares residual of linear regression between  and  

➢ : Least squares residual of linear regression between  and .  

Then PACF  is the correlation between  and . 

Expression for PACF: 

Since the process is (variance) stationary, ’s have constant variance . We assume that 

 Write  

We have 

  

  

  

Here 

  

  



  

  

  

where, : Least squares residual of linear regression between  and  

For obtaining we minimize 

  

  

  

Hence 

  

Similarly, we obtain the least squares residual  of linear regression of  on  as 

  

Then variances of  and  are given by 

  

  

Covariance between  and  is 



  

  

Hence the PACF of order  is given by 

  

Purely Random Process or Random Shocks: A purely random process, often modeled as a 

white noise process, consists of a sequence of uncorrelated random variables with a constant 

mean and variance. Each observation in the time series is independent of the others. It is 

included the following points: 

❑ A discrete process  is called a purely random process if the random 

variables  are a sequence of iid random variables.  

❑ The process has constant mean and variance and γ(k)=0 for all . 

❑ It is also refereed as shocks. 

❑ It is also called white noise, as its spectrum is like that of white light.  

❑ A purely random process is useful as constituents of other complicated processes. 

Gaussian White Noise Process or Gaussian Random Shocks: A process  is called 

a Gaussian White Noise Process if the random variables  are a sequence of iid 

random variables with . We denote it by  
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Stationary Process: 

Why is Stationarity important? 

➢ To ensure that the probabilistic mechanism which has generated the time series do not 

change over time. 

➢ The way process changes is predictable. 

➢ It becomes possible to make predictions based on stationary processes.  

➢ It makes the process much easier to model and investigate.  

➢ An important concept for developing several inference and analytical tools.  

Definition: A time series is said to be strongly or strictly stationary if the joint distribution of 

 is the same as the joint distribution of . 

Thus, if  denotes the joint pdf of , then the condition for strong 

stationarity is 

  

❑ For n=1 the distribution of is the same for all  so that  and .  

❑ For n=2, writing , the joint distribution of  depends only 

on lag . Thus, the ACVF  depends only on the lag . 

 ACVF at lag  

Autocorrelation between  and  

  

Mean Stationary: A process is mean stationary if . 

Variance Stationary: A process is variance stationary if . 



Covariance Stationary: A process is covariance stationary if . 

Second Order Stationarity or Weak Stationarity: A time series is second order stationary (or 

weakly stationary) if its mean and variance are constant and ACVF depends only on the lag. 

We can conclude that  

➢ Strict stationarity implies second order stationarity but its converse is not always true.  

➢ When joint distribution of  is multivariate normal for all n, the second 

order stationarity implies strict stationarity. 

The ACF of the purely random process is given by 

 

A purely random process is second order stationary as well as strictly stationary. 

ACF of the purely random process 

 

Example: Let  and  is a sequence of 

identically independently random variables with mean 0 and variance . We define a 

process  as 

 



Then . Hence the process is second order stationary. The 

process is strictly stationary also. 

Example: Define the process  as 

  

: Purely random process  

Mean, variance, ACVF: 

  

ACF:  

The process is mean stationary but not second order stationary. 

Example: Consider the process 

  

Then  

  

The process is not mean stationary.  

(i) If , , and the process is mean stationary. 

(ii) Is the process second order stationary? 

If  is a rv with mean 0, the process becomes mean stationary 

Ergodic Process: Let us consider an example first 

Ex: Consider a process :  



Gaussian white noise process GWN(0,1) 

 Bernoulli distribution with pmf 

  

Then   

For , ACVF of the process is 

  

ACF:  

❑ The process is stationary and achieves statistical equilibrium. 

❑ The process revolves around -1 or 1 depending upon the initial value of X.  

Thus, this statistical equilibrium state is not unique. 

: observed time series,  is unbiasedly estimated by . 

But converges to , if the initial value of  is -1 and to  if the initial value of X 

is 1. Process gets stuck away from the data generating process mean leading to inconsistent 

estimator.  is constant and does not diminish as . Which implies that the strength of 

dependence on first observation remains intact with increasing t. We can’t estimate  

consistently using a single realization. 

Why ergodicity matters? 

❑ Stationarity ensures statistical equilibrium but not its uniqueness.  

❑ Ergodicity, along with stationarity, ensures that such an equilibrium is unique. 



❑ Ergodicity tells us that a single long time series becomes representative of the whole 

data-generating process, just like a large iid sample becomes representative of the 

whole population or distribution. 

❑ The properties of ergodic process can be investigated on the basis of a single long 

enough observed time series. 

❑ Ergodic processes forget the past in long run (“far apart” terms are distributed 

independently of each other).  

Definition: A process  is said to satisfy ergodic property with respect to a bounded 

function  if for the realization , the sample average   converges 

almost everywhere as n → ∞.  

If the process is stationary then . Hence,  converges to  A 

time series has to be stationary in order to be ergodic. 

❑ Ergodicity is not just characteristic of the process. 

❑ The way the experiment is conducted to collect the observed time series also effects 

the ergodicity of the time series. 

❑ While conducting a study about the air pollution, suppose the data is collected daily 

on level of nitrogen dioxide in air at a particular time.  

❑ On the first day, the time of measuring nitrogen dioxide level randomly and then, 

daily the data is collected at the same time.  

❑ Inference drawn will be severely affected by the timing selected on the first day. 

❑ The resulting time series won’t satisfy ergodic property. 

Definition. A covariance-stationary process, , is called (linearly) deterministic if 

. For a stationary, deterministic process  

❑  can be predicted correctly using the entire past .  



❑ One-step ahead prediction error is zero 

❑ It does not mean that  is non-random. 

Backward shift operator: Backward shift operator B is defined as 

  

Purely nondeterministic process: If all deterministic components of a time series have been 

subtracted in advance, it is a purely nondeterministic process.  

Example: Suppose  is defined by 

  

A and B are independently distributed standard normal random variables. 

Then 

  

  

  

  

Hence 

  

  

 is a deterministic process. 

Example: Consider the process  



Then  

         

          

or 

   

  

where,  is a deterministic process. 

Example: Let  

  

Then 

  

  

  

  

  

where,  is a deterministic process. 

The Moving average (MA), Auto regressive (AR), ARMA and ARMA models are widely 

used in forecasting, econometrics, and various fields of data analysis, particularly for time 

series data. 

• MA: Focuses on the relationship with past error terms. 

• AR: Focuses on the relationship with past values in the series. 



• ARMA: Combines AR and MA components for stationary data. 

• ARIMA: Extends ARMA to handle non-stationary data by incorporating differencing. 

11.2 Objectives 

After completing this course, there should be a clear understanding of: 

• Simultaneous equations model 

• Concept of structural and reduced forms  

• Problem of identification  

• Rank and order conditions of identifiability 

11.3 Moving average (MA) Model 

The Moving Average (MA) Model is a type of time series forecasting model that is used to 

analyze and predict future values based on past data. It is particularly useful in scenarios 

where the underlying time series data exhibit patterns, trends, or seasonal behaviors. 

• An MA(q) model specifies that the current value of the time series is a linear 

combination of the previous `q` white noise error terms. 

• It captures the effect of past shocks over a specified number of periods (q). 

• The model is called "moving average" because each forecasted value is influenced by 

a moving window of error terms. 

• MA models are typically stationary, meaning their statistical properties do not change 

over time. This is a crucial condition for many time series analyses. 

• Limitations: MA models are not suitable for time series with a trend or seasonality 

unless differencing or seasonal adjustments are applied first. They can only capture 

linear relationships, meaning non-linear patterns may not be effectively modeled. 



The MA model is a foundational tool in time series analysis, and when combined with other 

models (like AR), it can provide robust forecasting capabilities. Understanding its mechanics 

and implications is essential for effective time series forecasting in various domains. 

Now, the question is How  has evolved? 

Let us consider, 

: Time series observations up to time t-1 

: Random shocks up to time t-1 and 

: Random shocks at time t 

There are three possibilities: 

(i) Process has memory of random noise component of where it was (random noise 

corresponding to past values of 𝑦) but no memory of where it (y) was. 

(ii) Process has memory of where it (past values of y) was but no memory of random 

noise corresponding to past values of 𝑦. 

(iii) Process has memory of where it (past values of y) was but as well as memory of 

random noise corresponding to past values of 𝑦. 

Moving Average Process: A process  is called a moving average process of order 

 if 

      (1) 

We scale  so that coefficient of , say , is 1. where,  is the constants 

which may be positive or negative and . The 

process is denoted by MA(q) process. MA(q) process represents  against current and 

previous error shocks  and a constant μ (long-term mean). The process can be written as 



; 

which is the moving average of white noise . So, we have 

➢ Process does not have memory of exactly where it was (past values of ) 

➢ It does have memory of random noise component of where it was (random noise 

corresponding to past values of ). 

MA(q) process can be written as:  

  

Mean of the process:   

Variance of :   

MA(1) Process: For q=1     Simulated data from MA(1) 

process 

Let,                 

  

The variance of the process:     

  

ACVF: 

  

  

  

Obviously .        

MA(1) Process: mu = 0.05, theta = 0.7
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ACF of MA(1) process is 

  

ACF of MA(1) Process,  

 

 

MA(2) Process: For q=2 

  

Variance of the process: 

  

ACVF:  

    

  

Hence, ACF is given by 

  



MA(q) Process:  

  

ACVF of MA(q) Process:  

  

  

ACF of MA(q) Process:  

  

ACF of MA(q) process vanishes for . 

Example: MA(1) process  

Let, 

  

  

  

Example: Obtain ACF using auto covariance generating function for MA(2) process:  

 , where,  

  

  



  

MA(2) process:  

  

ACF ,  

Plots of ACF of MA(2) Process 

 

Random Walk: Let  be the purely random process with mean 0 and variance .  

A random walk process  is defined as  

          (2) 

Let . By recursive substitution, after  steps, model (2) can be written as 

 It appears that the process has linear trend. The process is said to have 

stochastic trend.  

Then,   

Since mean and variance of  depend on t, the process is non stationary. The economic time 

series behaving like a random walk. For ex; Share prices, real exchange rate, GDP etc.  

=0      =0.1 



   

11.4 Auto regressive (AR) Model 

Autoregressive (AR) models are a class of statistical models used for analyzing and 

forecasting time series data. In an autoregressive model, the current value of a time series is 

expressed as a linear combination of its previous values plus a stochastic (random) error term. 

• Constructed by regressing current value of variable on past values.  

• Uses regression of the variable against itself. Thus, it is termed as autoregression.  

• AR models generally assume that the time series is stationary, meaning its statistical 

properties (mean, variance) do not change over time. If the series is not stationary, 

techniques like differencing or transformation might be necessary to stabilize its 

properties. 

• Predicts future behavior based on past behavior. Used for forecasting when there is 

correlation between the current and the preceding values. 

• AR models are widely used in economic forecasting, signal processing, and other 

fields where time-dependent data needs to be analyzed. They serve well in the context 

of univariate time series, especially when past values hold predictive power. 

• The parameters of the AR model can be estimated using methods like the least 

squares method or maximum likelihood estimation. 

Autoregressive models are foundational tools in time series analysis, allowing statisticians 

and data scientists to model and forecast trends based on historical data. Understanding their 

structure and when to apply them is crucial for effective time series forecasting. 



An autoregressive process of order p (AR(p) process) is defined as 

     (3)  

Let  be a purely random process with . 

where, 

  

If , we have 

  

  

AR(1) Process: p=1 

  

Given that ,  becomes independent of ..This is called the Markovian 

property and the process is also called Markov process. 

Mean of the process:  

Simulated data from AR(1) process 

, n=2000 

 



If we take , so that . Assume that the process is variance stationary. Then, 

  

Then 

  

  

  

ACVF and ACF: 

  

Further 

  

   

ACF of the AR(1) process: 

  

Since ,  declines geometrically. 

ACF of the AR(1) process:  

 



 

Example: Let us consider AR(2) process with . So the model is 

  

We have 

  

       

  

  

Hence, we obtain 

  

  

  

Example: AR(2) process 

    

or    

Then 

  



For AR(2) process,  and , we have for   

  

Hence . 

ACF of the process:  

Note: For MA processes the correlogram vanishes after a certain point and for AR process it 

declines but never vanishes. 

11.4.1 Yule-walker Equations 

The Yule-Walker equations are a set of equations that relate the autocovariance function of a 

stationary time series to the parameters of an autoregressive (AR) model. These equations are 

particularly useful in the field of time series analysis for estimating the parameters of an AR 

process from sample data. This equation is fundamental in time series analysis, bridging the 

gap between the statistical properties of time series data and the mathematical representation 

of autoregressive models. 

Let us consider the AR(p) process and the model is 

  

Multiplying by  and taking expectation, we obtain 

  (4) 

Substituting  in (4) 

  

  

   



 

  (5)  

We observe that 

  

. 

Hence, set of equations (5) reduces to 

       (6)  

Dividing each of  equations of (6) by  gives the following  equations: 

  

  

           (7) 

  

Here  The equations in (7) jointly determine the  values of ACF and called Yule-

Walker equations. 

Let us write    

  



  

We can write Yule-Walker equations as 

  

Partial autocorrelation function for AR processes:  

PACF of order k, , is the Correlation coefficient between  and  after eliminating the 

effect of .  is obtained by solving  

           (8)  

with 

  

  

So, we can write (8) as 

       (9)  

Dividing each row of (9) by , we obtain 

              (10) 

And the equations are  



  

  

  

Solution for : 

  

Hence, 

                 (11)  

Example: Consider the AR(1) process and the model is 

;  

ACF:  

PACF:   

Hence, 

   



  

AR(1) Process we can conclude that 

➢ Markov Property: Given  becomes independent of   

➢  supports this Markovian property. 

Note: In general, for AR(p) process, PACF of order higher than p are zero. 

11.5 Autoregressive Moving Average (ARMA) Model 

The Autoregressive Moving Average (ARMA) model is a popular statistical tool used for 

analyzing and forecasting time series data. It combines two components: autoregression (AR) 

and moving average (MA). 

• The AR part of the model uses the dependency between an observation and several 

lagged observations (previous data points). 

• The MA part models the error of the series as a linear combination of error terms (also 

known as shocks) from previous time points. 

• ARMA models are widely used in various fields such as finance, economics, and 

environmental science for time series forecasting and analysis. 

• Non-stationary data must be transformed through differencing or other means before 

fitting an ARMA model. 

• ARMA models assume linear relationships and may not perform well if the 

underlying process is nonlinear. 



The ARMA model is a foundational method in time series analysis that can be used to 

understand and forecast time-dependent data effectively, as long as its assumptions are 

satisfied. 

Mixed Autoregressive-Moving Average (ARMA) Process of order  

It is denoted by . The model contains  autoregressive and  moving average 

terms. The process is defined as 

          (12) 

. 

Taking expectation of (12), we have 

  

For ,  is also zero. 

In terms of backward shift operator “B”: 

           (13) 

L  

  

  

Then (13) can be represented as 

                (14)  

Wold Representation for ARMA process 



The infinite lag polynomial of the Wold decomposition can be approximated by the ratio of 

two finite-lag polynomials: 

                   

(15) 

where  is a polynomial of order q in backward shift operator B and  is a 

polynomial of order p in B. 

ARMA Representation 

❑ Approximates the dynamic of any purely nondeterministic weakly stationary process.  

❑ Describes a weakly stationary process in terms of two polynomials, one for AR and 

the other for MA.  

❑ Higher order AR or MA processes with large number of parameters can be 

approximated with lower order ARMA processes with lesser number of parameters. 

Process:  

Consider process with =0 

        (16) 

The variance of the process is given by 

  

  

 (17)  

Simulated sample from ARMA(1,1) process with  



 

Notice that 

  

  

Therefore, (17) reduces to 

      (18)  

         (19) 

Further    

  

  

  

  

         (20) 

   (21)  

   (22) 

ACF of ARMA(1,1) process: 



         (23) 

For  

     (24) 

  

The following is observed: 

i. If ,  

ii. , ,  

iii. If ,  

iv. , , oscillates with  

v.  decays exponentially in magnitude. 

 

ACF of ARMA(1,1) Process  

i.      ii.  

     

iii.      iv.  



    

ACVF and ACF of  Process: 

  

If the process is stationary, we can write 

  

Variance: 

  

  

   

We have 

   

  

  

ACVF: 

  

        



For  

  

  

For  

  

Hence, for  

  

For ACF behaves like that of an AR(p) process. 

11.6 Stationarity and Invertibility of the Processes 

In time series analysis, stationarity and invertibility are critical concepts that help in 

understanding the properties of time series models, particularly in the context of 

autoregressive moving average (ARMA) models. 

Stationarity refers to the property of a time series that its statistical properties do not change 

over time. A stationary time series has constant mean, variance, and covariance across 

different time periods. 

Invertibility is a property related to the moving average (MA) component of an ARMA 

model. A time series model is said to be invertible if its MA representation can be expressed 

as an AR representation. 

Stationarity of a Process 

Consider AR(1) process: 

  

Using successive substitution, we can write the process as  



  

If , as , we have 

  

If  , the process explodes to infinity. 

Theorem: For the general linear process to be stationary, the series  must 

converge for , i.e., on or within the unit circle. 

(Proof is beyond the scope of this book) 

For MA(q) process, ACVF is 

  

which is a function of k only and is independent of t. So, we can conclude that 

❑ A process is stationary if it can be written as a moving average process of finite or 

infinite order with  converging for  . 

❑ No conditions are required for MA process to be stationary 

Invertibility 

To illustrate the motivation behind invertibility, consider MA(1) model 

  

Expressing  in terms of  

  

If , as , we obtain AR process of infinite order 

  



If ,  depends upon  with increasing weights. We avoid this situation and 

assume that . We say that the series is invertible if this condition is satisfied. 

Theorem (without proof): The general linear process is invertible if weights s ( ’s) are 

such that  converges on or within the unit circle . 

Condition for the Stationarity of an AR(p) Process 

       (25)  

          (26)   

where,  

      (27)  

Transfer function for AR(p) process is .  

Theorem: For the Stationarity of AR(p) process, roots of the equation  must be 

greater than 1 in magnitude. 

Proof: For stationarity  must converge for .  Let  

be the roots of the equation 

       (28)  

Then we can write 

   

We can write (assuming all roots to be distinctive) 

     (29)  



Hence, for convergence of  for all , . This implies that 

for stationarity, for all the roots , 

  

Example: Consider AR(1) process  

The root of is . The process is stationary whenever  or 

. 

Example: AR(2) process  Let  be the roots of 

  

We can write the process as 

  

For stationarity | . 

Further 

   

Suppose  is a conjugate pair . Then 

 

.   

The conditions on A and  are required to ensure | . 

Stationarity of  process:  

Let us write the model as  

  



  

  

Process is stationary whenever roots of  lie outside the unit circle. 

Example: Consider the  process 

  

Root of the model is , i . So, the process is stationary whenever 

. 

Invertibility Conditions 

❑ The process is invertible if it can be written as an autoregressive process (of finite or 

infinite order).  

❑ No conditions are required for Autoregressive processes to be invertible. 

Consider the MA(q) process with =0: 

  

 is a finite polynomial. So, no condition required on the parameters for stationarity.  

Theorem: For invertibility of MA(q) process, roots of equation  must be greater 

than 1 in magnitude. 

Proof: Let us suppose that  roots of the MA(q) 

process  

Write  

Then,  



We can easily verify that the process is invertible if So,  

• For the stationarity of an  process all roots of the equation  are 

greater than 1 in magnitude.  

• For the Invertibility of  process, roots of the equation  must be 

greater than 1 in magnitude. 

11.7 Estimation of parameters 

Suppose  be the observed time series, and 

Sample mean=   

Sample ACF=  

    

where,   

The s   

Empirical Version of Yule-Walker Equations for AR(p) Processes 

Let the model is: 

,   

Then the Yule-Walker equations become 

  

  

  



Again let  be the estimators of . Replacing  by  by  

and  by  leads to empirical version of these equations then we get 

      

or   

   

11.7.1 Estimation of parameters for AR Process 

Let us consider the AR(1) process. The model is  

  

Method of Moments:  

Compare parameters by corresponding sample estimates. Solve empirical Yule-Walker 

equations for . Let us consider that the ,  are the Moment Estimators of . 

For estimating   

  

and Yule Walker Equations for AR(1) is 

  

Replacing parameters by estimators 

  

Hence we get 



  

Method of Least squares:  

Let  be the least square estimators of then minimizing S i.e. residual sum of 

squares, we get 

  

     

    

      

  

       

 is minimum when 

  

  

Alternatively, we can minimize using differentiation. 

Estimation of parameters for AR(2) Process: 

The model of AR(2) process is,   

Method of Moments:  

The empirical Yule-Walker equations is 



  

 and 

  

  

Least Squares estimators  Method of moments estimators 

Estimation of Parameters of AR(p) process: 

The model for AR(p) process is 

     (30)  

Let  be the estimators of parameters . 

The empirical version of Yule-Walker equations is 

      (31)  

By solving these equations, the estimators  can be obtain. 

Estimate  by 

       (32)  

From the above we can conclude that 

➢ Method of moments estimators are very close to least squares estimators.  

➢ If roots of the AR polynomial are close to unit circle, this method will give estimates 

which are far from actual parameter values.  



➢ The estimates based on Yule Walker equations can be used as initial values for 

running numerical optimization method for calculating MLE. 

Suppose we write 

  

  

In the first Yule-Walker equation, replacing parameter  by their estimators, we 

obtain 

  

or    

         (33)  

If , then the matrix  is nonsingular and  

        (34)  

Maximum likelihood estimation:  

Let . Since AR process has Markovian structure, the joint density of the 

data is 

  

Ignoring initial p terms , LF becomes 

  

We can write 



  

       

where,  

 and 

  

  

Then LF is  

  

If the LF conditional on the initial values is multivariate normal 

. 

MLE’s of  and  are 

  

  

For an unbiased estimator, we use 

  

Result (without proof): When n is large   

   

and . 

11.7.2 Estimating parameters of Moving Average Processes 



Does method of moments work to fit MA processes? 

Example: Let the model for MA(1) process is 

          (35) 

We have 

  

Hence, 

  

Replacing  by their sample estimates  and  by , we obtain 

  

The solution for is 

        (36)  

If one of the two solutions in (3) give invertible process, select that value as an estimate of . 

• If ,  the two solutions are . Process is invertible for 

 we use it as estimate of .  

• If , then . Process is not invertible for .  

• If , we have     (37) 

•  Hence  and the process is not invertible. 

Fitting MA and mixed ARMA models require numerical optimization techniques. 



Estimation of Moving Average Processes using Innovation Algorithm: 

Let fitted MA(m) model is 

  

where, : White noise process  

the innovation estimate of MA parameter is 

 and 

  

Hannan-Rissanen Algorithm for Fitting ARMA(p,q) Process:  

Take  

  

Steps of Algorithm: 

Step 1: Fit a high order AR(m) model using Yule-Walker equations. Choose m=maximum 

integer at which ACF (or PACF) is significant. The estimated coefficients be 

. 

Estimate  by    

Step 2: Regress .  can be estimated by 

minimizing 

 with respect to .  

LS estimator of : ,  

  



  

where, Z  

 is computed for ake  for tm.  

Estimated error variance:   

Step 3: Repeat step 1 with ARMA model, obtain new set of residuals and carry out step 2. 

Repeat these steps unless reduction in error variance becomes insignificant. For obtaining the 

MLE’s of the parameters of ARMA models, iterative optimization procedures like 

innovations algorithm are required. 

11.7 Self-Assessment Exercise 

Example: Consider the process 

  

(i) If  are iid rv’s following , then the process is mean stationary. Is the process 

variance stationary? 

(ii) If , then the process is mean stationary. 

Example: Process with linear trend:  

Is the process (i) mean stationary, (ii) variance stationary? 

Example: The PACF for AR(2) process vanishes for all . 

1.8 Summary 

This chapter contain the concept of the autoregressive process, which have models and 

techniques form the backbone of time series analysis The choice of model depends on the 



characteristics of the dataset, particularly whether it is stationary or non-stationary. Box-

Jenkins methodology helps streamline the process of model selection and validation. 

Understanding autocovariance and autocorrelation is essential for diagnosing model fit and 

performance. This encapsulates the essential elements and principles that govern the AR, 

MA, ARMA, ARIMA, and Box-Jenkins models and their related concepts. 
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12.1 Introduction 

Christopher Sims is often credited with pioneering the VAR model in the 1980s. Sims 

introduced VAR models as an alternative to the large-scale simultaneous equation models 

commonly used in econometrics. He argued that structural models imposed too many 

restrictions and often led to biased results due to unverified assumptions. VAR models, in 

contrast, treat all variables symmetrically without requiring prior causal ordering. 

Building on univariate AR models, Christopher Sims expanded autoregressive modeling to 

handle multiple time series in Vector Autoregressive (VAR) models. VAR models became 

essential for analyzing the relationships among multiple interdependent time series. In 

finance, AR processes were further adapted by Robert Engle with the development of ARCH 

(Autoregressive Conditional Heteroskedasticity) and later GARCH models, to handle 

volatility clustering in time series. Sims applied VAR models to study how different 



economic indicators interact dynamically. For example, he used VARs to analyze the 

relationships between GDP, interest rates, inflation, and other key economic variables. This 

made VAR a popular tool for economic forecasting and policy analysis. 

A Vector Autoregressive (VAR) process is a statistical model used to capture the linear 

interdependencies among multiple time series. A VAR model consists of a system of 

equations where each variable is expressed as a linear combination of its own past values and 

the past values of all other variables in the model. This makes VAR suitable for capturing 

dynamic interdependencies among multiple time series. It is particularly useful in 

econometrics and time series analysis, where the relationships between different variables 

need to be examined simultaneously. The main features of this process are: 

1. Multiple Time Series: VAR models treat each time series in a system symmetrically. This 

differs from single-equation models, where only one variable is typically treated as 

endogenous, allowing VARs to capture complex, bidirectional relationships among variables. 

2. Stationarity: This is a crucial aspect because if the time series are non-stationary, spurious 

relationships might appear, leading to misleading interpretations. Stationarity can sometimes 

be addressed by transforming the series (e.g., differencing), but when variables are non-

stationary and cointegrated, adjustments or alternative models (like the Vector Error 

Correction Model, or VECM) might be required. 

3. Estimation via OLS: OLS estimation for each equation in a VAR model is simple and 

computationally efficient since each equation can be treated separately. However, the 

independence of equations might introduce inefficiency when the errors are correlated across 

equations, so some methods might incorporate more sophisticated estimation techniques to 

address this. 

4. Applications: VAR models are extensively used in econometrics to explore dynamic 

interdependencies, forecast future values, and simulate policy impacts. Impulse response 

functions and variance decomposition are two common tools derived from VARs to analyze 

how shocks in one variable propagate through the system. 

A big advantage of VAR process is its flexibility. Unlike structural models, VARs do not 

require specifying a strict causal order among variables, which can be advantageous in 



exploratory research or in complex systems where theoretical guidance on causal order is 

limited. 

Main limitations of VAR processes are the following:  

1. Data Requirements: VAR models can require a large amount of data, especially as the 

number of variables and lags increases. 

2. Complexity: As the number of variables and lags increases, the model can become 

complex and may lead to overfitting. 

3. Interpretability: While VAR models can capture relationships, the interpretation of 

coefficients may not be straightforward, particularly if the variables are cointegrated. 

The Vector Autoregressive process is a versatile tool in time series analysis, allowing 

researchers and practitioners to model and analyze the relationships among multiple time-

dependent variables. It is essential to ensure assumptions like stationarity are met for the 

model to yield reliable results.  

12.2 Objectives 

After completing this unit, there should be a clear understanding of: 

• Multivariate time series process and their properties 

• Vector autoregressive (VAR)  

• Vector moving average (VMA)  

• Vector autoregressive moving average (VARMA) process 

12.3 Multivariate Time Series Process 

Multivariate time series analysis involves the study of more than one time-dependent variable 

simultaneously. It allows for the examination of how multiple variables interact over time, 

and how they may influence each other. Multivariate Time Series is a collection of time 

series data where multiple variables are recorded over the same time intervals. For example, 

stock prices of several companies over time. On the other hand, vector autoregression (VAR) 



is a common model used in multivariate time series analysis. It generalizes the univariate 

autoregressive model by allowing for multiple interdependent time series, where the current 

value of each series depends on its own past values and on past values of other series. 

Multivariate processes/Vector processes emerges when several related time series processes 

are observed simultaneously over time. One may be interested in investigating the cross 

relationships between the series. The objectives for jointly analyzing and modeling the series 

is  

➢ To understand the dynamic relationships over time among the series  

➢ To improve accuracy of forecasts for individual series by utilizing the additional 

information available from the related series.  

Here are some key properties: 

1. Stationarity 

➢ Weak Stationarity: The mean and variance are constant over time, and the 

covariance between variables depends only on the lag between them. 

➢ Strict Stationarity: The joint distribution of any collection of observations is 

invariant to shifts in time. 

2. Correlation and Covariance 

➢ Cross-Correlation: Measures the correlation between different time series at 

different lags, capturing the lead-lag relationships. 

➢ Covariance Matrix: Represents the covariance between multiple series, providing 

insight into how series move together. 

3. Causality 

➢ Granger Causality: Tests whether one time series can predict another, implying a 

directional relationship between the variables. 



➢ Transfer Function Models: Capture the influence of one variable on another using 

input-output relationships. 

4. Seasonality 

➢ Seasonal patterns may exist in one or more of the time series, requiring adjustments 

or specific seasonal modeling techniques. 

5. Trends 

➢ Long-term trends may be present in individual series or across the multivariate set, 

requiring differencing or detrending. 

6. Asymptotic Properties 

➢ Behavior of estimators as the sample size approaches infinity, which affects the 

reliability of conclusions drawn from the data. 

7. Homoscedasticity vs. Heteroscedasticity 

➢ Homoscedasticity: Constant variance across time. 

➢ Heteroscedasticity: Variance changes over time, which can complicate modeling 

and forecasting. 

8. Multicollinearity 

➢ Occurs when two or more time series are highly correlated, complicating the 

estimation and interpretation of relationships. 

9. Integration 

➢ A time series is said to be *integrated* of order d (I(d)) if it becomes stationary after 

differencing d times. Multivariate frameworks might include considerations for 

cointegration. 

10. Dependence Structures 



➢ Some series might be conditionally dependent based on the values of other series, 

requiring copula approaches or vector autoregressions. 

11. Modeling Frameworks 

➢ Vector Autoregression (VAR): A common model for multivariate time series that 

captures the linear interdependencies among multiple time series. 

➢ Vector Autoregressive Moving Average (VARMA) and VARIMA: Extensions that 

incorporate moving averages and integrated processes. 

➢ State Space Models: Useful for handling latent variables and nonlinear relationships. 

12. Forecasting Techniques 

a) Various approaches such as dynamic factor models, Bayesian methods, and machine 

learning techniques to predict future observations based on historical data. 

13. Conditional Expectations 

b) Multivariate processes often involve the computation of conditional expectations to 

understand how one series might change given the values of others. 

14. Error Structures 

c) The error terms in multivariate models may be correlated, indicating that shocks to 

one series can affect others. 

Understanding these properties helps in the selection and application of appropriate models 

for analysis and forecasting in multivariate time series contexts. 

The techniques using for this are: 

1. Vector Moving Average (VMA): Used to model the influence of current and past 

innovations on multiple time series. 

2. Dynamic Factor Models: Simplifies the analysis by assuming that multiple series can be 

driven by a few unobservable latent factors. 



3. State Space Models: This framework is useful for handling multivariate time series with 

unobserved components, giving flexibility in how data is structured and modeled. 

4. Bayesian Approaches: Bayesian methods help to incorporate prior knowledge and manage 

uncertainties in parameter estimation. 

5. Longitudinal Data Analysis: Often used in multivariate time series to investigate 

relationships over time in different subjects or groups. 

Vector autoregressive moving average (VARMA) time series models have been developed 

keeping these objectives in mind. Vector processes are of considerable interest in several 

fields like: 

Economics: One may be interested in simultaneous behavior of interest rate, inflation, money 

supply, unemployment etc. Focus may be on simultaneous study of time series of GDP, 

percentage of people below the poverty line, unemployment rate, female-headed household, 

crime, average income, minimum wages etc.  

Environmental sciences and Agriculture: Joint study of time series observations of maximum 

and minimum temperatures, rainfall, atmospheric humidity, wind speed and direction, etc. 

and the total production of wheat.  

Health and Environment related studies: Joint study of air pollution level, number of asthma 

patients visiting the hospitals, number of registered cars in a city, monitoring and analyzing 

multiple health indicators or biomarkers simultaneously, etc. 

Multivariate time series processes represent a rich area of study, with numerous applications 

across fields. By considering multiple time-dependent variables together, analysts can gain 

insights into complex interactions and improve predictive accuracy. Understanding the 

fundamental properties and techniques is essential for effective modeling and analysis. 

12.3.1 Vector Autoregressive Moving Average (VARMA) Process 

The Vector Autoregressive Moving Average (VARMA) process is a multivariate time series 

model that combines the characteristics of both Vector Autoregressive (VAR) and Vector 

Moving Average (VMA) processes. It is used to capture the linear interdependencies among 



multiple time series variables. A VARMA(p, q) model integrates both the autoregressive and 

moving average components.  

In this process we assume that the error terms are typically assumed to be normally 

distributed and uncorrelated with each other and Stationarity is another critical assumption; 

the time series should exhibit constant mean and variance over time. 

Wold’s infinite MA representation of Stationary processes is 

  

Suppose  can be expressed (at least approximately) as  

  

where, 

  

  

and, 

  

  

  

 vector of white noise with  

 

 

It leads to the following vector autoregressive moving average process of order 

. 

Suppose, 



  

or 

 

where, 

 

The Process Mean is 

 

Stationarity and Invertibility of the process: 

The process is invertible then it can be represented as a convergent vector autoregressive 

process of infinite order. 

Let  

 

 

 

 

 

The process is stationary if it can be represented as a convergent vector moving average 

process of infinite order 



 

 

 

 

 

Let  denotes the determinant of a matrix , and  denoted adjoint of . Then 

 

We can write 

 

where, 

 

Now, we can write the process as 

 

 is a polynomial of finite order in . The process is stationary if  is 

convergent for . Further,  is a polynomial of degree  in . If  

are roots of , then  

 

 and is convergent  if roots  lie outside the unit circle. 



The process is invertible if we can write the process as an autoregressive process of infinite 

order. Along the similar lines as we proved the condition for stationarity, it can be shown that 

the process is invertible if all roots of  lie outside the unit 

circle. 

In , let . The model becomes 

          (1)  

Let  and we partition  and  as 

 

 

 

 

Suppose  We also take .  

Then (1) can be written as 

 

 

T  are said to cause  but  do not cause .  

where,  denotes the exogenous variables. 

Then, the model referred to as an ARMAX model (X stands for exogenous). Suppose  

denotes the vector of output variables and  denotes the vector of input (exogenous) 

variables. 



Future values of the process  are influenced by its own past, not by the past of  and 

future values of the process  are influenced by both  and . 

Again, consider the  Process for forecasting. Let  

  

 

 

where 

 

 

The process is said to be  

a) Stationary if roots of  lie outside the unit circle. 

b) Invertible if roots of  lie outside the unit circle. 

The VARMA model is a powerful tool for modelling multivariate time series data, allowing 

for richer interpretations of the relationships between multiple time series. Proper use and 

understanding of this model can lead to insights in various domains, particularly in analysing 

complex systems where multiple interrelated factors are at play. 

12.3.2 Vector Moving Average Processes of order q 

Vector Moving Average (VMA) processes are a generalization of univariate moving average 

processes for multidimensional data. While a univariate moving average (MA) process 

models a single time series, a vector moving average process allows for modelling multiple 

time series simultaneously, capturing potential interactions and dependencies between them. 

Let us assume the model, 



 

 

where, 

 

Now, consider the Vector  process i.e. . 

By recursive substitution 

  

    

      

      

     

    

The above process is a  process provided  

This requires that the eigenvalues of  are all less than 1 in modulus, i.e., 

 Notice that, if  are eigen values of , then  

 

The autocovariance matrix of the process is 



 

 

Again, consider the Vector  process 

 

The process is invertible, if it can be written as  

 

 

 

 

 

For invertibility  

  

Thus, roots of  lie outside the unit circle. 

Now define  in terms of : 

 

 



Comparing the coefficients of different powers of  we obtain the following recursive 

relations for  

  

  

Covariance Matrices of Vector  Processes:  

We have 

 

 

 

 

 

Example: Consider bivariate  process: 

 

 

Roots of  are , with absolute value 0.6. Hence 

process is invertible. Further 



 

  

 

 

  

 

Autocorrelation matrix 

 

 

■ 

Vector Moving Average processes provide a powerful tool for modelling and understanding 

relationships in multivariate time series data. They allow researchers and practitioners to 

analyse complex dynamics that exist in various fields. Proper specification and estimation of 

VMA models are crucial for accurate analysis and forecasting. 

12.3.3 Vector Autoregressive Process  

The Vector Autoregressive (VAR) process is a statistical model used to capture the linear 

interdependencies among multiple time series. In a VAR model, each variable in the system 

is modeled as a linear function of past values of itself and past values of all the other 

variables in the system. 



A vector autoregression of order p, VAR (p), can be described as 

     (2)  

where,  is a k-dimensional square matrices; 

Let  be a k-dimensional vector of residuals (vector of purely random processes) at time  

and  is a vector of constant terms. 

We can write (2) as 

          (3)  

 

Now,  

 

 

 

This system is stable if and only if all included variables are weakly stationary, i.e., if all 

roots of the characteristic equation of the lag polynomial are outside the unit circle. Hence 

     (4)  

We can write (2) as 

 

Where 

 

 

 



Under this condition, system (3) has the MA representation 

 

 

 

 

 

 

 

Notice that 

 

 

The autocovariance matrices are defined as: 

 

Set  so that . Due to (2), it holds that 

 

 

This leads to the equations determining the autocovariance matrices for . 

  

  

      (5)  



Thus Yule-Walker Equations for  process are 

 

 

 

 

 element of . 

Since 

 

we have 

 

The individual correlation coefficients is 

 

Autocorrelation matrices are given by 

 

where 

 



Consider  Process: 

 

 

Then, by recursive substitution 

 

Let  be the eigen values of .  

As  and we can write the process as a MA process of infinite order and the 

process is stationary (stable). 

 

 

 

 

 

 

 

 

 

 

  

Let  be the matrix of eigen values of  and  be a lower triangular 

nonsingular matrix such that . Then 

 



Hence 

 

Further 

 

 

Hence for vector  model, the correlations will exhibit a mixture of damped 

exponentials and damped harmonics depending upon whether the roots are real or complex. 

Example: consider the VAR (1) model as 

 

 

We can write the model as the following AR process 

 

 

 

To check whether the system is stable, we calculate roots 

 

This gives roots . Since one of the roots is 1, the model is not stable. 

Example: let us consider the VAR (1) model 



  

  

The roots of 

  

are  and both roots are larger than one in modulus. Thus, the system is stable.  

Variance-covariance matrix: 

 

 

For obtaining the variances  and  for  and  as well as their covariance 

 we solve the following linear equation system: 

 

 

 

Solving which, we obtain 

 

Thus, the instantaneous correlation between Y1 and Y2 is -0.594. 

Forecasting using VAR(p) models: 

The forecasts for VAR processes are obtained as: 



 

 

 

and so on. 

Alternatively, for the MA representation, we get 

 

Since 

 

we have the forecast error as 

 

The autoregressive representation is used to generate forecasts and MA representation is used 

for calculating the corresponding forecast errors. 

The VAR model is a powerful tool for understanding and predicting the dynamics of 

multivariate time series data. 

12.4 Self-Assessment Exercise 

1. What distinguishes multivariate time series from univariate time series? 

2. Explain the concept of stationarity in the context of multivariate time series processes. 

3. Define and differentiate between weak stationarity and strong stationarity in 

multivariate time series. 

4. What is the role of cross-correlation in analysing multivariate time series data? 

5. What is a Vector Autoregressive (VAR) model, and how is it mathematically 

represented? 



6. Describe the conditions for stability in a VAR model. 

7. What are the limitations of VAR models, and how can they be addressed in practice? 

8. What is a Vector Moving Average (VMA) model, and how is it represented 

mathematically? 

9. Compare VMA models to univariate Moving Average (MA) models in terms of 

complexity and interpretation. 

10. What is a Vector Autoregressive Moving Average (VARMA) model, and how does it 

generalize VAR and VMA models? 

11. Discuss the conditions for stationarity and invertibility in a VARMA model. 

12. What are the advantages of using VARMA models over VAR or VMA models alone? 

12.5 Summary 

In multivariate time series analysis, understanding the interdependencies among multiple 

variables is essential, especially in fields like economics, finance, and engineering. This unit 

discusses the three primary models addressing these relationships: Vector Autoregressive 

(VAR), Vector Moving Average (VMA), and Vector Autoregressive Moving Average 

(VARMA) processes. 

The VAR process models each variable as a function of its own past values and the past 

values of other variables, making it highly suitable for analyzing interconnected time series. 

The VMA process models each variable based on past shocks across variables, focusing on 

the effect of these shocks over time. Lastly, the VARMA process combines both 

autoregressive and moving average components, offering a more comprehensive approach to 

capture complex dependencies among variables. These models allow for dynamic forecasting 

and policy analysis, providing insights into how variables interact over time. We also discuss 

the stationarity and invertibility conditions for these models. Together, VAR, VMA, and 

VARMA processes serve as essential tools for multivariate time series modeling, and 

decision-making in various applications. After the completion of this unit, you have a clear 

concept of Multivariate time series process. And also you will be able to understand the 



different multivariate time series processes like; vector autoregressive (VAR), Vector moving 

average (VMA) and vector autoregressive moving average (VARMA) process 
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13.1 Introduction 

Granger causality is a statistical hypothesis test used to determine whether one time series can 

predict another time series. The concept was developed by the economist Clive Granger, who 

won the Nobel Prize in 2003 for his work in time series analysis. The key points are: 

1. Causality vs. Correlation: Granger causality does not imply true causation in the 

philosophical sense. It simply indicates that past values of one variable can provide 

information about future values of another variable. 

2. Time Series Data: The technique is typically applied to time series data, which means the 

data points are collected or recorded at multiple time intervals. 

3. Statistical Test: To determine whether one series Granger-causes another, you can use 

regression models. If the lagged values of time series X contribute significantly to predicting 

time series Y, then X is said to Granger-cause Y. 

4. Lag Length: The analysis typically involves choosing the number of lags to include in the 

model. This can be determined using information criteria such as Akaike Information 

Criterion (AIC) or Bayesian Information Criterion (BIC). 

5. Assumptions: Stationarity: The time series should be stationary, meaning that its statistical 

properties such as mean and variance are constant over time. If not, transformations (like 

differencing) may be required. 

Granger causality tests are a powerful tool for exploring predictive relationships in time 

series. Careful consideration of assumptions, testing procedures, and result interpretations is 

essential for drawing meaningful insights from such analyses. Granger causality tests are 

statistical methods used to determine whether one time series can predict another time series 

based on their past values.  

13.2 Objectives 

After completing this unit, there should be a clear understanding of: 

• Granger causality  



• Instantaneous Granger causality and feedback  

• Characterization of casual relations in bivariate models  

• Granger causality tests 

13.3 Granger Causality 

Granger causality is a powerful tool for exploring predictive relationships in time series data, 

but it should be used with caution and in conjunction with other methods and analyses to gain 

a comprehensive understanding of the dynamic relationships between variables. 

Suppose we have more than one time series. The question is whether data generating 

processes of these time series are independent of each other or dependent on each other. If 

yes, then the dynamic mechanism of dependence.  

Steps to Perform Granger Causality Test: 

1. Preprocess Data: Ensure your data is stationary. 

2. Choose the Lag Length: Use statistical criteria to determine how many lags of time series 

X to include when predicting Y. 

3. Fit Models: Fit both a restricted model (only Y's own lags) and an unrestricted model (Y's 

own lags plus X's lags). 

4. Conduct Hypothesis Test: Perform an F-test to compare the two models. The null 

hypothesis is that X does not Granger-cause Y. 

5. Interpret Results:  

• If you reject the null hypothesis, it suggests that past values of X provide statistically 

significant information about future values of Y. 

• If you fail to reject, it suggests that X does not help predict Y. 

Limitations of the test: 



1. Not True Causality: Just because one variable Granger-causes another does not mean there 

is a direct cause-and-effect relationship. 

2. Omitted Variable Bias: If a confounding variable affects both time series, the results may 

be misleading. 

3. Sensitivity to Specification: The results can be sensitive to the choice of lags and model 

specification. 

Application of the test: 

Granger causality is widely used in various fields, including economics, finance, 

neuroscience, and other areas that deal with time series data to analyze relationships between 

variables, forecast future movements, and inform decision-making. 

The two major challenges of test are: 

1. Correlation does not imply causality. It is important but difficult task to distinguishing 

between these two. 

2. The causal relationship among variables might disappear when the previously ignored 

common causes are considered. 

The two basic assumptions of the test are: 

1. The future cannot cause the past. The past causes the present or future.  

2. A cause contains unique information about an effect not available elsewhere. 

Definition: A variable  is causal to variable y if  could be interpreted as a cause to y or y as 

effect of . 

Let  be the total information set available at time t. This information set includes, above all, 

the two-timeseries  and y.  

Let : Set of all current and past values of ; 



: Set of all current and past values of  and 

: Variance of the corresponding forecast error.  

Then  is said not to Granger cause  if for any h>0,  

Let   

Let F denotes the conditional distribution and is all the information except . Thus  

is said not to Granger cause  if does not help to predict future  The whole distribution 

F is generally difficult to handle empirically and we turn to conditional expectation and 

variance. 

Definition:  is (simply) Granger causal to  if and only if the application of an optimal 

linear prediction function leads to 

 

i.e., if current and past values of  are used future values of  can be predicted better. 

13.3.1 Instantaneous Granger Causality 

Instantaneous Granger Causality is a concept in time series analysis that involves assessing 

whether one time series can predict another, specifically in the context of their simultaneous 

relationships. Traditionally, Granger causality tests determine if past values of one variable 

can predict future values of another. However, instantaneous Granger causality extends this 

by examining whether the current values of one time series can provide predictive 

information about the current values of another. This evaluates whether the current value of 

one time series affects the current value of another, alongside the historical values. It 

recognizes that some influences may act immediately rather than unfolding over time. 

Instantaneous Granger causality is a useful tool in understanding the immediate 

interdependencies between time series data. While it offers powerful insights, researchers 

should critically evaluate their results, considering potential confounding factors and the 

limitations inherent in statistical testing. 



Here,  is instantaneously Granger causal to  if and only if the application of an optimal 

linear prediction function leads to 

  

i.e., the future value of , can be predicted with a smaller forecast error variance, if the 

future value of , are used in addition to the current and past values of . 

13.3.2 Feedback  

There is feedback between  and  if  is causal to  and  is causal to . There are eight 

different, exclusive possibilities of causal relations between two time series: 

(i)  and  are independent:  

(ii) There is only instantaneous causality:  

(iii)  is causal to , without instantaneous causality:  

(iv)  is causal to , without instantaneous causality:  

(v)  is causal to , with instantaneous causality:  

(vi)  is causal to , with instantaneous causality:  

(vii) There is feedback without instantaneous causality:  

(viii) There is feedback with instantaneous causality:  

Now, consider the  

  

Four possible causal directions between x and y are: 



1. Feedback 

 

2. Independence,  

 

3. H2:   

4.  H3:  

Now for Two-stage testing procedure 

1. Test H1 (null) against H0, H2 against H0, and H3 against H0.  

2. If necessary, test H1 against H2, and H1 against H3. 

Equivalent definition 

For an r-dimension stationary process, , there exists a canonical MA representation 

 

 

Let  is the Lag operator (same as backward shift operator “B”) and  is the 

. Then 

i. A necessary and sufficient condition for variable  not Granger-cause variable is 

that    

ii. If the process is invertible, then 



 

 

. 

iii. If there are only two variables, or two-group of variables, and , then a necessary 

and sufficient condition for variable  not to Granger-cause variable  is that 

.  

iv. For a  process with dimension equal or greater than 3, , for i = 1, 

2,⋯,is sufficient for non-causality at h = 1 but it is insufficient for non-causality at h > 

1. 

v. Variable  might affect variable  in two or more period in the future via the effect 

through other variables. For example, in the AR model 

 

Then 

 

 

 

and 

 

Observe that  



y23 is not influenced by y11 but influenced by y01. 

Causality is defined for all lags h > 0 and not just for h = 1.  

Causality for a particular h is neither necessary nor sufficient for some other lag. Then, it is 

important to understand the causal mechanisms by which are produced. 

Two main tasks in causal inference: 

(a) Defining the Set of Hypothesis or counterfactuals that based on some economic 

theory. 

(b) Identifying causal models from data which require estimation and hypothesis testing 

theory. 

13.4 Causal analysis using Bivariate VAR and Bivariate MA representations 

Causal analysis using Bivariate Vector Autoregression (VAR) and Bivariate Moving Average 

(MA) models involves understanding how two time series interact over time. 

In a Bivariate VAR model, each of the two-time series is modeled as a linear function of their 

own past values and the past values of the other series. 

In a Bivariate MA model, the current value of a series is expressed as a linear combination of 

past error terms from both series. 

Causal interpretation requires careful consideration of the data structure, stationarity, and 

potential confounding variables. The presence of endogeneity or omitted variable bias can 

complicate causal claims. While both approaches offer valuable insights into bivariate time 

series data, VAR is typically favored for causal analysis due to its explicit modeling of 

dynamic interactions, whereas MA is more about understanding the influence of shocks. 

Let the AR representation of the processes is 

 

 



where,  is a matrix polynomial. 

 

 

 

if all their coefficients,  are zero.  

Also,  are the white noise which might be correlated with each other.  

Then does not Granger-cause  if  or , . 

The instantaneous causality exists iff  are contemporaneously correlated. Then in this 

case forecast error of  is reduced if current value of  is included in the forecast regression 

implying that either  

Now, let us consider the MA representation of the process 

 

 

Here,  is a Matrix polynomial with elements  

Further 

 

 

For the identifiability of the model 



 

The does not Granger-cause  if 

 

or 

 

Now 

 

 

 

 

 

and 

 

Then 

 

 

 

 

Hence does not Granger-cause  if . 



 

or , 

The hypothesis that all cross-lags coefficients are zero can be tested using F test for testing 

significance of coefficients. 

13.4.1 Characterizing Causal Relations using Residuals of individual Univariate 

Processes of  

Using Wold representation, we express by two separate MA processes of 

infinite order. Consider that, 

 

and   

 

We can write (3) as 

 

where,  

  

Further 



 

 

 

where, 

 

  

 

 

 

Now 

 

Thus 

 

 

 

Hence does not Granger-cause  if  

 

or 

 



The cross covariance between  is 

 

 

 

Assuming no instantaneous causality,  and  are uncorrelated . Hence  

 

When ,  and .  and  are white noise, thus both the 

representations of  

 

 

imply that . Hence . 

Thus,  

 

 

Hence, cross correlation 

 

Similarly, when , 

 

When ,  

 



13.5 Causality Tests  

Causality tests are statistical methods used to determine whether one variable influence or 

causes changes in another variable. Establishing causation is more complex than correlation, 

as correlation does not imply causation.  

Granger causality tests are a statistical hypothesis test used to determine whether one time 

series can predict another. It is based on the premise that if a variable (X) Granger-causes 

another variable (Y), then past values of (X) should contain information that helps to predict 

future values of (Y). 

13.5.1 The Direct Granger Procedure (Thomas SARGENT, 1976) 

The Direct Granger Procedure, introduced by Thomas Sargent in 1976, is a statistical method 

used primarily for testing and estimating causal relationships in time series data. It builds on 

the concept of Granger causality, which posits that if a time series (X) Granger-causes 

another time series (Y), then past values of (X) contain information that helps predict (Y) 

beyond the information contained in past values of (Y) alone. 

The Direct Granger Procedure is widely used in various fields, such as economics, finance, 

and social sciences, to understand complex relationships among time-dependent variables, 

assess shock transmission, and inform policy decisions. 

Let  be the two stationary time series. 

Test for simple causality from  to  is equivalent to examining whether the lagged values of 

 in the regression of  on lagged values of  and  significantly reduce the error variance.  

Consider the models 

 

 



We estimate both the models using least squares with . 

The Granger causality index is defined as 

 

where  and  are estimated error variances of models M1 and M2 respectively.  

Testing the null hypothesis,  is equivalent to testing  

 True model is M1 against  

 . 

Let  

= Residual sum of squares for the fitted model M1. 

= Residual sum of squares for the fitted model M2. 

For testing the significance of difference between these variances, the Fisher F-statistic is   

 

Here,  is the hypothesis that  does not cause . Under , statistic F follows the F-

distribution with  Interchanging  and  in M1 and M2, a simple 

causal relation from  to  can be tested. If the null hypothesis is rejected in both directions, 

we conclude that there is a feedback relation. For testing instantaneous causality, set 

in M2 and test H0:  = 0 using  test. 

Shortcomings: 

The results are strongly dependent on the number of lags of the explanatory variable .  



There is a trade-off that the more lagged values we include, the better the influence of this 

variable can be captured but the power of the test decreases as more lagged values are 

included. Use different values of  (and ) to inspect the sensitivity of the results to the 

number of lagged variables.  

Note: Use different information criteria (AIC, BIC) to select  (and ).  

Sargent's contribution through the Direct Granger Procedure significantly advanced the 

framework for analysing dynamic relationships in time series, allowing researchers to derive 

insights about causality and influence among multiple variables. 

13.5.2 The Haugh-Pierce Test 

The Haugh-Pierce test is a statistical method used for assessing Granger causality in time 

series data. It is specifically designed to test whether one time series can predict another, 

extending the classic Granger causality framework. The method extends traditional Granger 

causality tests by allowing for non-linear relationships between the variables. Unlike standard 

tests, it can account for situations where the relationship may not be strictly linear.  

The Haugh-Pierce test is useful in various fields, including economics, finance, and social 

sciences, where understanding interdependencies and predictive relationships among time 

series is critical. 

The steps for the Haugh-Pierce test are as fllows: 

1. Fit a univariate ARMA models for . 

2. Obtain estimated residuals, say, . 

3. Obtain the cross correlations between , say .  

4. Use Box-Pierce Q statistic (or the Box-Ljung Q statistic) to test the null hypothesis 

that the estimated residuals are white noise. If hypothesis not accepted, calculate the 

following statistic: 



 

Under the null hypothesis for all  is asymptotically 

distributed with d.f.. 

5. Check for and , whether there is any causal relation. If this hypothesis 

can be rejected, causal relation from can be checked for  and . In 

the reverse direction, for and , it can be checked whether there 

is a simple causal relation from . It can be tested by using  whether there 

exists an instantaneous relation. 

The Haugh-Pierce test adds depth to traditional Granger causality analysis by accommodating 

non-linear relationships, making it a powerful tool for researchers analysing time-dependent 

data. 

13.5.3 Hsiao Procedure 

The Hsiao procedure is a method used for testing Granger causality in time series analysis. 

Developed by Hsiao (1981), it is particularly useful for examining the causal relationships 

between two or more time series variables. It determines the lag lengths and then estimate 

parameters. The procedure is divided into six steps: 

(i) Optimal lag length  of univariate AR process of  is determined. 

(ii) Fixing , the optimal lag length  is determined. 

(iii)Given optimal lag length of , , is again determined. 

(iv) If the value of the information criterion in the third step is smaller than that of the first 

step,  has a significant impact on . Otherwise, the univariate representation of y is 

used. This gives a preliminary model for y.  



(v) Steps (i) to (iv) are repeated by exchanging the variables  and . We get a 

(preliminary) model for . 

(vi) Estimate the two specified models simultaneously taking into account the correlation 

between their residuals. 

The Hsiao procedure captures the simple causal relations between the two variables. The 

instantaneous relation is reflected by the correlation between the residuals. The Hsiao 

procedure is a valuable tool for researchers looking to establish causal relationships in time 

series data. Its systematic approach helps in identifying whether one variable can be used to 

predict another, which is essential in fields like econometrics, finance, and social sciences. 

13.5.4 Direct Granger Procedure for Testing the Causality of More than two Time 

Series 

The Direct Granger Causality procedure for testing the causal relationships among more than 

two time series is an extension of the classical Granger causality test, which is originally 

designed for two time series. The Haugh-Pierce test uses cross correlations between two time 

series and cannot be applied for more than two series. We can apply direct Granger procedure 

for more than two series. 

Let  time series. Estimating equation can be extended to 

 .  

where, : Coefficients corresponding to additional variables. 

After determining , estimate the model using least squares. Using F-test, 

we can test hypothesis such as whether different coefficients of  variables are significantly 

different from 0 or not. It can be tested if there exists a simple causal relation from  or 

feedback. The significance of coefficients of other time series  can also be tested by using 

the F-test. 



The Direct Granger causality procedure allows researchers to explore complex 

interrelationships among multiple time series. While powerful, it is essential to interpret the 

results within the context of the data and consider potential confounding variables. Further 

techniques, such as Structural VAR (SVAR), may be employed for more nuanced causal 

analysis. 

13.5.5 Systems with more than two variables 

Granger causality is a statistical hypothesis test for determining whether one time series can 

predict another time series. While the classic Granger causality test is generally applied to 

pairs of time series, it can certainly be extended to systems with more than two variables.  

If there are more than two time series then the question arises here is that; Are the inferences 

drawn from Bivariate Tests misleading? 

Then, 

• Instantaneous relations detected with the direct Granger procedure or Haugh-Pierce 

test using bivariate tests are only preliminary. Definite evidence about whether these 

relations are real or spurious can be drawn in a complete model using additional 

information. 

• If third variables are ignored, conclusion regarding feedback relation might be 

spurious. 

• Inclusion of other relevant variables might reduce it to a one sided relation.  

• If the relation between  and  is only one-sided in the bivariate model, there are no 

third variables which are Granger causal to  and . 

While causality tests provide valuable insights, interpreting the results requires careful 

consideration of context, methodology, and assumptions underlying each test. Employing a 

combination of methods often strengthens causal inferences. 

13.6 Self-Assessment Exercise 



1. What is Granger causality, and how does it differ from traditional causality in time-

series analysis? 

2. Giving the underlying assumptions, explain Granger’s causality. Discuss the concept 

of causality with the help of following example: 

,  

3. Define error correction representation of a bivariate VAR process. How it helps in 

testing long term and short-term relationship between two nonstationary time series?  

4. How does Granger causality account for the directionality of causation in time-series 

data? 

6. Define instantaneous Granger causality and explain how it differs from standard 

Granger causality. 

7. What is feedback in the context of causality analysis, and how can it be identified? 

8. Discuss the implications of finding bidirectional causality in a bivariate time-series 

model. 

9. How can instantaneous Granger causality be detected using statistical methods? 

11. Explain how causal relations are characterized in bivariate time-series models. 

12. Why is it important to assess the stationarity of time series before testing for Granger 

causality? 

16. What are the key steps involved in performing a Granger causality test? 

17. What are the assumptions underlying Granger causality tests, and how can violations 

affect results? 

21. What is the Haugh-Pierce test, and how does it relate to Granger causality? Explain 

the role of residual cross-correlation functions in the Haugh-Pierce test. 



22. Discuss the advantages and limitations of the Haugh-Pierce test in identifying 

causality. 

13.7 Summary 

This unit explores the concept of causality in time-series analysis, with a focus on Granger 

causality and its extensions. Granger causality is introduced as a statistical framework for 

determining whether one time series can predict another, distinguishing between correlation 

and predictive causation. The unit also examines instantaneous Granger causality, where 

causal relationships may occur without time lag, and feedback, a bidirectional causality 

between variables. 

The characterization of causal relationships in bivariate models is discussed, including how 

lag structures and model specifications influence causality interpretation. Emphasis is placed 

on practical techniques for testing Granger causality, including the Granger causality test, the 

Haugh-Pierce test for identifying cross-correlation between residuals, and Hsiao's test, which 

combines Granger causality with model selection procedures for improved robustness. 
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14.1 Introduction 

Causal analysis for nonstationary processes: 

Causality tests are based upon the assumption that the underlying processes  is stationary. 

The existence of unit root might make the traditional asymptotic inference invalid. 

Cointegration is a statistical concept used in time series analysis to establish whether two or 

more non-stationary series share a common long-term relationship. In simpler terms, even if 

the individual time series are not stationary (i.e., they have trends or seasonality), they can 



still be said to be cointegrated if a linear combination of them results in a stationary series.  

The main concepts added here is: 

1. Non-stationary Series: Time series data that do not have constant mean and variance over 

time. 

2. Stationary Series: Time series data that have constant mean and variance over time; they 

are easier to model. 

3. Linear Combination: A mathematical combination of the series, often involving 

coefficients. For instance, if ( ) and ( ) are two time series.  

4. Error Correction Model (ECM): When time series are cointegrated, they tend to adjust 

towards equilibrium in the long run; the ECM captures how short-term deviations from this 

equilibrium affect the changes in the series. 

Testing for Cointegration 

Several tests exist to assess whether series are cointegrated: 

1. Engle-Granger Test: A two-step method that involves regressing one series on the other 

and examining the residuals for stationarity. 

2. Johansen Test: A more advanced method that allows testing for multiple cointegration 

relationships among several time series. 

Applications 

Economics: Cointegration is often applied in economics to explore relationships among 

macroeconomic indicators. 

Finance: It is useful for pairs trading strategies, where traders look for cointegrated pairs of 

stocks to exploit price inefficiencies. 

Example 



Consider two time series, (e.g., stock prices of two related companies). While both may trend 

upward over time, if the difference between them remains stable (mean-reverting), they could 

be considered cointegrated. 

Cointegration is a powerful tool for understanding the long-term relationships between non-

stationary time series. It helps analysts and researchers model and predict economic and 

financial phenomena more accurately when direct analysis of non-stationary data would lead 

to spurious results.  

14.2 Objectives 

After completing this course, there should be a clear understanding of: 

• Error Correction Model 

• Cointegration 

• Granger representation theorem 

• Bivariate cointegration  

• Cointegration tests in static model 

14.3 Error Correction Model 

Spurious Regression 

Spurious regression refers to a misleading statistical relationship that appears significant in a 

regression analysis, but arises purely due to the non-stationary nature of the variables 

involved. It often occurs when time series variables with trends are regressed against each 

other without accounting for their non-stationarity, leading to erroneous conclusions about 

the relationship. 

The key features of the spurious regression are: 

1. High  and Significant -statistics: The regression may show high goodness-of-fit 

and statistically significant coefficients, even when no genuine relationship exists. 



2. Nonsensical Relationships: The results often suggest correlations between variables 

that are logically unrelated. 

3. Non-Stationary Variables: The underlying issue is that the variables are not stationary 

(i.e., they have trends, unit roots, or other forms of time dependence). 

The modeling of two or more time series using traditional regression methods requires all 

variables to be I(0). However, the question arises, do the statistical results of regression hold 

if some or all of the variables are I(1)? 

Let us illustrate with the help of simulated data examples, the problems one may face when 

regressors are I(1).  

Example: Consider two independent and I(1) processes  generated by 

 

 

10000 observations are simulated from each series. A visual inspection shows that the levels 

of the two series are negatively related. 

 

The regression of  gives the following results 

  Estimate   Std. Error   t value Pr(>|t|)     

Intercept 27.91741 0.50138 55.68 <2e-16 

x  -1.20342  0.01055  -114.07 <2e-16 

 



Residual standard error: 35.82 

Multiple R-squared:  0.5655, Adjusted R-squared:  0.5654  

F-statistic: 1.301e+04 on 1 and 9999 DF,  

p-value: < 2.2e-16 

The estimated slope coefficient is negative and significant,   is moderate.  

These statistics are representative of the spurious regression as both the time series are 

independently drawn. 

Example: Let processes  be generated by 

 

 

 

The processes  involve common stochastic trend (I(1) process)  in them. 

10000 observations are simulated from each series and their plots indicate that the two 

processes are highly positively related.   

 

We run a regression of  on  and the results are as follows: 

Residual standard error: 1.933 on 9998 degrees of freedom 

Multiple R-squared:  0.9932, 



Adjusted R-squared:  0.9932  

F-statistic: 1.465e+06 on 1 and 9998 DF, 

p-value: < 2.2e-16 

The regression results are highly significant with the large value of . Is it because of the 

common stochastic trend in the two processes? 

Since both  and  are I(1) processes, to remove the stochastic trend, we take the first 

difference and run regression between . The plots of the first differences are like 

purely random processes. 

 

  Estimate  Std. Error  t value  Pr(>|t|)     

Intercept  -0.004409    0.016721   -0.264     0.792     

 

 0.257132   0.010847   23.706    <2e-16 

 

Residual s.e.: 1.672,  

Multiple :  0.053,  

Adjusted :  0.053,  

F-statistic: 562 on 1 and 9997 DF  

The regression is insignificant with low value of . 



An interesting feature of the process is 

 

 

Although both  and  are I(1),  such that  

 

Such processes are called cointegrated processes and  is called the cointegration vector. 

It is important to develop statistical tools suited for capturing the relations between 

nonstationary time series properly. 

To overcome the spurious relations problem, instead of using the original series, the series 

should be transformed so that they can be considered as realizations of weakly stationary 

processes. 

In the previous example, the transformation  

 

leads to the stationary process, which can be estimated using usual statistical techniques.  

Causal analysis for nonstationary processes: 

Causality tests assume that the underlying processes  is stationary. 

The existence of the unit root implies that the traditional asymptotic inference might be 

invalid. 

Error Correction Representation of VAR(p) process:  

The vector autoregressive process (VAR) of order p is defined as 

 



MA representation of the above process is 

 

 

 

 

 

Error correction representation: 

An error correction model (ECM) is a statistical tool often used in econometrics to model 

relationships between time series variables that are integrated and may have a long-run 

equilibrium relationship. It is widely applied in situations where: 

1. Variables are non-stationary: The variables individually have trends or unit roots, 

meaning their means and variances change over time. 

2. Cointegration exists: Despite being non-stationary, a linear combination of the 

variables is stationary, indicating a long-term equilibrium relationship. 

The ECM captures both the short-term dynamics and long-term equilibrium adjustments of 

the variables. 

The key components of an ECM are as follows: 

1. Error Correction Term: Represents the deviation from the long-term equilibrium. 

The model "corrects" this error over time. 

2. Short-term Dynamics: Explains immediate changes in the dependent variable due to 

changes in explanatory variables. 

3. Long-term Equilibrium: Ensures that the system converges to a stable relationship 

over time. 

Every stationary VAR of order p  



 

 

can be written as 

 

with 

 

Proof: We have 

 

 

 

 

We can write 

 

 

 

Hence, we can write (3) as error correction representation. 

  

 



 

or 

 

We can write (5) as 

  

Components of  are I(1) variables. Hence each component of  is 

stationary.  Further, each component of .  

Since , as  increases, and  approach to zero. Then the process approaches to 

an equilibrium state. 

 

Here  represents the matrix of the long-run equilibrium relations and can be estimated 

directly in the framework of a linear model.  

Granger’s Representation Theorem: The entries of the  vector  are cointegrated if and 

only if they have an ECM representation. 

Example: Consider a general dynamic model of a single equation, and one explanatory 

variable, which is assumed to be exogenous: 

 

In the long-run equilibrium, it holds that 

 

 



Thus, for the long-run equilibrium, we get: 

 

 

 

with 

 

 

If  and  are weakly stationary (or nonstationary but co-integrated), we get the following 

alternative representation:  

 

With 

 

 

 

 

 

 

In equilibrium  and, therefore,  . Hence 



 

or 

 

Thus, representation (5) has a long-run equilibrium. Here, the short-term and long-run effects 

are separated and can be directly estimated. 

Cointegration (Engle and Granger, 1987): 

When the linear combination of two I(1) processes becomes an I(0) process, then these two 

series are cointegrated. 

Why do we care about cointegration? 

a. Cointegration implies the existence of long-run equilibrium 

b. Cointegration implies the common stochastic trend 

c. With cointegration, we can separate the short- and long- run relationship among 

variables 

d. Cointegration can be used to improve long-run forecast accuracy 

e. Cointegration implies restrictions on the parameters and proper accounting of these 

restrictions could improve estimation efficiency 

Definition: The elements of a k-dimensional vector  are cointegrated of order 

denoted as if all elements of are  and there exists at least one non-

trivial linear combination of these variables, which is where  holds, 

i.e. 

  

Here  is termed as a cointegration vector.  



The number of linearly independent cointegration vectors is known as cointegration rank r. 

The cointegration matrix  is formed by cointegration vectors as the columns, with 

. 

14.4 Cointegration and Granger Representation Theorem 

Cointegration and the Granger representation theorem are key concepts in time series 

analysis, particularly in the context of non-stationary data. 

Cointegration refers to a statistical property of a collection of time series variables which, 

while individually non-stationary (typically following a stochastic trend), can exhibit a stable 

long-term relationship when combined. Specifically, two or more non-stationary series are 

said to be cointegrated if there is a linear combination of them that is stationary. 

The Granger representation theorem extends the concept of cointegration by showing how 

cointegrated time series can be described using an error correction model (ECM). The 

theorem states that if two or more time series are cointegrated, then there exists a dynamic 

model that describes the short-term behavior of the series in relation to their long-term 

relationship. 

Understanding cointegration and the Granger representation theorem is crucial for: 

• Modeling Economic Relationships: Many economic variables are believed to be 

related in the long run (e.g., GDP and consumption). 

• Forecasting: Improved predictions by considering both short-term dynamics and long-

term relationships. 

• Policy Analysis: Assessing the effects of interventions in economic models where 

variables are cointegrated. 

Cointegration highlights the existence of long-term relationships among non-stationary time 

series, while the Granger representation theorem provides a framework for modeling the 

dynamics of these relationships through error correction models. 

14.4 Cointegration for Bivariate Processes 



Bivariate cointegration specifically refers to the analysis of the cointegration relationship 

between two time series. Bivariate cointegration specifically refers to the analysis of the 

cointegration relationship between two time series. Bivariate cointegration is a fundamental 

concept for understanding the long-run relationships between two economic or financial time 

series. By establishing cointegration, analysts can more accurately model and predict future 

behaviors of these related series, taking into account both their long-term equilibrium and 

short-term dynamics. 

Here the notation  denotes that the time series  is integrated of order . Thus  

represents a stationary process and  represents an integrated process of order one. 

Let us consider that  and  be two  processes. If there exists a parameter b such that  

          (1)  

is stationary then  and  are said to be cointegrated. Here  is a stationary process. Then 

Corresponding equilibrium relation is 

          (2) 

where,  

 level of equilibrium relation  

: Cointegration vector and 

 Deviations from the equilibrium, i.e., equilibrium error. 

Since z has finite variance, the deviations from the equilibrium are bounded and the system is 

always returning to its equilibrium path. In this sense, relation (2) is called an attractor. 

Cointegration of  and implies that both variables follow a common stochastic trend. Now, 

we model it as a random walk, 

          (3) 



where,  

 White noise process 

The two cointegrated  processes can be represented as 

        (4)  

        (5)  

The linear combination  

         (6)  

is a linear combination of two  processes. Thus, it is also  (or stationary). 

Hence, (6) is a cointegrating relation.  

 

The error correction representation for k-variables case is 

 

For bivariate case, we write 

 

 

 

 

and 



 

Then, in the bivariate case, the reduced form can be written as 

 

 

(7) 

Equation (7) involves   and   terms involving lagged differences  and 

 respectively. The representation contains stationary variables although the underlying 

relation 

is between nonstationary  variables. It separates short-run adjustments from long-term 

equilibrium term. Model fitted only for first differences misses the equilibrium term 

 or . 

If x and y are cointegrated, at least one , is different from zero. If the variables 

are cointegrated the traditional statistical procedures can be applied. The system reacts to the 

deviations from the equilibrium relations which is lagged by one period. If , (7) is 

stable whenever  and and at least one of the two parameters is 

different from zero. If , second equation of (7) becomes 

  

The adjustment is only possible via changes in . Then development of is independent of 

the equilibrium error, it is the stochastic trend driving the system. In this situation,  is called 

weakly exogenous.  

If  and , or vice-versa, the system might be stable depending on the other 

parameters. Thus, the following two situations can occur: 



(i) The two variables are not cointegrated, i.e. . Then the system contains two 

stochastic trends. 

(ii) The two variables are cointegrated, i.e. at least one  , is positive. Then the 

system contains one cointegrating relation and one common stochastic trend.  

14.4.1 The advantage of error correction representation 

➢ ECMs measure the correction from disequilibrium of the previous period. 

➢ ECMs are formulated in terms of first differences and eliminate stochastic trends from 

the variables involved. It resolves the problem of spurious regressions. 

➢ They can easily fitted as the variables involved are stationary.  

➢ The disequilibrium error term is a stationary variable (by definition of cointegration). 

The cointegrated variables imply that there is some adjustment process preventing the 

errors in the long-run relationship from becoming larger and larger. 

Example: Consider an ARIMA(1,1,0) process  as 

  

        (8)  

and          (9)  

                  (10)  

The  and are cointegrated for . If ,  and there is no 

cointegration. For , the development of  is determined by two stochastic trends (both 

 and  are ). For error correction representation, we write 

  



or 

              (11)  

Then, substituting  in (11), the reduced form of the system is 

                  (12)  

and               (13)  

where  and . 

The equation (12) of  does not involve the equilibrium error  Thus,  is weakly 

exogenous and drives the whole system.  

If , then . Thus, the system is stable; is adjusting to the 

long-run equilibrium. For , i.e., there is no cointegration, the error correction term 

vanishes from (13) and the system contains two stochastic trends.  

The error correction model only contains stationary variables, the differences of  

variables and the stationary equilibrium error. 

14.5 Cointegration tests in static model 

In the context of time series analysis, cointegration tests are essential for assessing whether a 

long-run equilibrium relationship exists between non-stationary time series variables. In a 

static model, we typically imply a model where the relationships do not change over time, 

and the focus is solely on the long-term relationship between variables without considering 

dynamics like lags. Here's some cointegration tests that can be applied in a static modeling 

framework: 

• Engle-Granger Two-Step Approach 

• Johansen Cointegration Test 

• Phillips-Ouliaris Cointegration Test 



• Kao Cointegration Test 

• Cointegration in Error Correction Models (ECM) 

14.5.1 Engle and Granger two-step procedure for cointegration analysis 

The Engle-Granger two-step procedure is a widely used method for testing for cointegration 

between two or more time series. Cointegration implies that even though the individual time 

series may be non-stationary, a linear combination of them is stationary. This two-step 

procedure is a straightforward yet powerful tool for investigating the long-run relationship 

between non-stationary time series. Its simplicity makes it popular in empirical studies. 

However, users should ensure the assumptions and conditions for validity are met, 

particularly regarding the stationarity of residuals. 

(i) Estimate the long-run (equilibrium) equation: 

  

 OLS residuals are a measure of disequilibrium 

A test of cointegration is a test of whether  is stationary.  

Apply ADF tests on the residuals, (critical values are given by MacKinnon, 1991). If 

cointegration holds, the OLS estimator of (14) is said to be super-consistent. 

Implications: As  there is no need to include I(0) variables in the cointegrating 

equation. 

(ii) Estimate Error Correction Model 

  

by OLS. This equation has only  variables and standard hypothesis testing using t ratios 

and diagnostic testing of the error term is appropriate.  

Suppose we consider the special case: 



  

ECM describes how y and x behave in the short run consistent with a long run cointegrating 

relationship. 

Dynamic approach to ECM and cointegration 

As residuals of (14) often have serial correlation, the least squares estimates can be 

substantially biased in small samples. For reducing the bias, one may allow for some 

dynamics in the model. For this purpose: 

(i) Apply least squares to estimate autoregressive distributed lag (ADL) model 

               (15)  

Solve (15) for the long run equation 

  

 Estimated residuals from (15). 

where, are measure of disequilibrium.  

A test of cointegration is a test of whether  is stationary or not. The ECM model can be 

estimated using the residuals from (15). If cointegration holds, the OLS estimators of (15) are 

super-consistent. 

14.5.2 Johansen Methodology for Cointegration Test (Johansen, 1995) 

The Johansen methodology is a statistical technique used to test for cointegration among 

multiple time series. Cointegration is a concept from econometrics that refers to the existence 

of a long-term equilibrium relationship among non-stationary time series. If two or more time 

series are individually non-stationary but a linear combination of them is stationary, they are 

said to be cointegrated. This methodology is widely used in econometrics to analyze and 

model economic relationships, such as those between macroeconomic variables (e.g., GDP, 



inflation, interest rates) and It’s particularly useful in establishing relationships that can 

inform policy analyses and forecasting. 

It is a powerful tool for assessing the existence of cointegration between multiple time series 

and understanding long-term economic relationships. 

Write (7), without deterministic term, as 

  

Given r, MLE of  defines the combination of  giving  largest canonical correlations of 

 with  after correcting for lagged differences and deterministic variables. Johansen 

proposes two different likelihood ratio tests for the significance of these canonical 

correlations and thereby the reduced rank of the Π matrix, (i) trace test and (ii) maximum 

eigenvalue test. 

Let  be the  largest canonical correlation. Then,  

(i) For testing the null hypothesis of  cointegrating vectors against the alternative hypothesis 

of  cointegrating vectors, the trace statistic is 

  

  

(ii) For testing the null hypothesis of  cointegrating vectors against the alternative 

hypothesis of  cointegrating vectors, the maximum eigenvalue test statistic is 

  

The critical values are given by Johansen and Juselius (1990). 

Cointegration tests in the static model context are vital for confirming long-run relationships 

among non-stationary time series. The choice of the test depends on the specific 

characteristics of the data, such as the number of time series being analysed and whether they 



are in a panel structure. Understanding the underlying assumptions of each test and the 

implications of findings is crucial for sound empirical analysis. 

14.6  Self-Assessment Exercise 

1. What is spurious regression, and why does it occur in time-series analysis?   

2. Explain the role of non-stationarity in causing spurious regression results.   

3. Discuss the implications of spurious regression for hypothesis testing in econometric 

models.   

4. Define cointegration and explain its significance in time-series analysis.   

5. What are the key conditions for two time-series variables to be cointegrated?   

6. Explain the concept of a cointegrating vector and its role in cointegration analysis.   

7. What is an Error Correction Model (ECM), and how is it derived?   

8. How does an ECM capture both short-term dynamics and long-term equilibrium 

relationships?   

9. Explain the role of the error correction term in an ECM.   

10. Describe the steps involved in estimating an ECM for a pair of cointegrated variables.   

11. What is the Granger Representation Theorem, and why is it important in time-series 

analysis?  How does the Granger Representation Theorem establish a link between 

cointegration and ECMs?   

12. In a multivariate system, how does the Granger Representation Theorem guide the 

modeling of relationships among variables?   

13. What is bivariate cointegration, and how is it analyzed?   

14. Describe the Engle-Granger two-step procedure for testing cointegration in bivariate 

models.   



15. What are the limitations of the Engle-Granger cointegration test?   

16. What are the main tests used to detect cointegration in static models?   

17. Explain the concept of residual-based tests for cointegration.   

18. How does the Johansen cointegration test extend the Engle-Granger framework for 

multivariate systems?   

19. Compare the performance of Engle-Granger and Johansen tests in detecting 

cointegration.   

20. Define error correction representation of a bivariate VAR process. How it helps in 

testing long term and short term relationship between two nonstationary time series? 

Describe Engle-Granger procedure for the cointegration analysis. 

14.7 Summary 

This unit delves into key concepts and methods for analysing relationships among non-

stationary time series. It begins with a discussion on spurious regression, highlighting the 

misleading inferences that arise when non-stationary variables are regressed without proper 

adjustments. The unit introduces cointegration as a solution, explaining its significance in 

identifying long-term equilibrium relationships between time-series variables. 

The Error Correction Model (ECM) is presented as a framework for integrating short-term 

dynamics with long-term cointegrating relationships, emphasizing its relevance in 

econometric modelling. The Granger Representation Theorem is discussed as a theoretical 

foundation linking cointegration and ECMs, demonstrating how cointegrated systems 

naturally lead to error correction representations. 

Specific focus is given to bivariate cointegration, outlining methods for identifying and 

interpreting cointegrated relationships in pairs of variables. Cointegration tests in static 

models, including methods like the Engle-Granger two-step procedure, are explained in 

detail, with attention to their assumptions, applications, and limitations. 
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