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Blocks & Units Introduction 

 

The Block - 1 – Survival Analysis, is the first block of said self-learning material 

(SLM), which is divided into five units. 

 The Unit – 1: Basic Concepts, is the first unit of present SLM, which serves as the 

introductory unit, outlining fundamental concepts such as time, order and random censoring, 

types of censoring and truncation, life tables, failure rate, mean residual life, ageing classes, 

bathtub failure rate, and the estimation of survival functions through the actuarial estimator, 

Kaplan-Meier estimator, and log-rank tests. 

 The Unit – 2: Parametric Survival Models, focus primarily on the assumptions and 

characteristics of parametric survival models, life distributions such as exponential, gamma, 

Weibull, lognormal, pareto, Rayleigh, piece-wise exponential, linear failure rate, parametric 

inference, likelihood ratio tests, maximum likelihood estimation tests, and estimation under the 

assumption of IFR/DFR. 

 The Unit – 3: Non-Parametric Survival Models, concentrates on the assumptions and 

characteristics of non-parametric survival models, total time on test, Deshpande test, two-

sample problems such as the Gehan test, Log-Rank test, Mantel-Haenszel test, and Ware tests. 

 The Unit – 4: Proportional Hazard Models, explores assumptions and characteristics 

of proportional hazard models, semi-parametric regression for failure rate, Cox’s proportional 

hazard model, rank tests for regression coefficients, competing risks models with parametric 

and non-parametric inference, and multiple decrement life tables. 

The Unit – 5: Recurrent Event Survival Analysis, introduces recurrent event survival 

analysis, competing risks survival analysis, competing risk events, and frailty models. 

The Block - 2 – Reliability Theory, is the second block of said self-learning material 

(SLM), which is divided into five units. 

  

The Block - 2 – Reliability Theory, is the second block of said self-learning material 

(SLM), which is divided into five units. 

Unit – 6: Basic Concepts; This unit lays the groundwork for understanding reliability 

theory by defining key concepts and terms. It covers the basic ideas of reliability, failure rates, 

and the probability of failure. Topics include the definitions of reliability, maintainability, and 

availability, and their importance in system design. The unit also introduces the mathematical 

tools and statistical methods used to analyse reliability data, such as probability distributions 

and failure rate functions. 



 
 

Unit – 7: Ageing; In this unit, the focus is on the phenomenon of ageing and its effects 

on system reliability. It explores the different stages of the life cycle of components and 

systems, including the infant mortality period, normal life, and wear-out phase. The unit 

discusses how ageing affects the failure rate and the reliability of components over time. It also 

covers models that describe ageing processes, such as the bathtub curve, and methods to assess 

and mitigate the impact of ageing on system performance. 

Unit – 8: Reliability Estimation; This unit is dedicated to the techniques and 

methodologies for estimating the reliability of systems and components. It includes statistical 

methods for analysing reliability data, such as life data analysis, censored data analysis, and 

reliability testing. The unit also discusses the use of reliability block diagrams and fault tree 

analysis to model and estimate system reliability. Practical aspects of conducting reliability 

tests and interpreting the results to make informed decisions about system design and 

maintenance are also covered. 

Unit – 9: Repairable Systems; This unit examines systems that can be repaired and 

restored to operational condition after experiencing failures. It covers the concepts of repair 

and maintenance, including preventive and corrective maintenance strategies. The unit 

introduces models for analysing the reliability of repairable systems, such as the renewal 

process, Markov chains, and availability models. It also discusses the impact of repair policies 

on system reliability and performance, and methods to optimize maintenance schedules to 

enhance system reliability. 

Unit – 10: Growth Models and Accelerated Life Testing; In this unit, growth models 

and accelerated life testing techniques are explored. Growth models describe how the reliability 

of a system improves over time as a result of testing and corrective actions. The unit covers 

various reliability growth models, such as the Duane model and the AMSAA model. 

Accelerated life testing involves subjecting products to higher stress levels than normal to 

induce failures quickly and gather reliability data in a shorter period. The unit discusses the 

principles and methodologies of accelerated life testing, including stress testing, data analysis, 

and extrapolation of results to normal operating conditions. 

 

At the end of every unit, the summary, self-assessment questions, and further readings 

are given.  
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Block & Units Introduction 

 

The Block - 1 – Survival Analysis, is the first block of said self-learning material 

(SLM), which is divided into five units. 

 

 The Unit – 1: Basic Concepts, is the first unit of present SLM, which serves as the 

introductory unit, outlining fundamental concepts such as time, order and random censoring, 

types of censoring and truncation, life tables, failure rate, mean residual life, ageing classes, 

bathtub failure rate, and the estimation of survival functions through the actuarial estimator, 

Kaplan-Meier estimator, and log-rank tests. 

 

 The Unit – 2: Parametric Survival Models, focus primarily on the assumptions and 

characteristics of parametric survival models, life distributions such as exponential, gamma, 

Weibull, lognormal, pareto, Rayleigh, piece-wise exponential, linear failure rate, parametric 

inference, likelihood ratio tests, maximum likelihood estimation tests, and estimation under the 

assumption of IFR/DFR. 

 

 The Unit – 3: Non-Parametric Survival Models, concentrates on the assumptions and 

characteristics of non-parametric survival models, total time on test, Deshpande test, two-

sample problems such as the Gehan test, Log-Rank test, Mantel-Haenszel test, and Ware tests. 

 

 The Unit – 4: Proportional Hazard Models, explores assumptions and characteristics 

of proportional hazard models, semi-parametric regression for failure rate, Cox’s proportional 

hazard model, rank tests for regression coefficients, competing risks models with parametric 

and non-parametric inference, and multiple decrement life tables. 

 

The Unit – 5: Recurrent Event Survival Analysis, introduces recurrent event survival 

analysis, competing risks survival analysis, competing risk events, and frailty models. 

 

At the end of every unit, the summary, self-assessment questions, and further readings 

are given.  

  



 
 

 

UNIT - 1  BASIC CONCEPTS 

Structure 

1.1 Introduction 

1.2 Objectives 

1.3 Concepts of time 

1.4 Order and Random Censoring 

 1.4.1      Likelihood in these cases 

1.5 Types of Censoring and Truncation 

1.6 Life Tables 

1.7 Failure Rate 

1.8 Mean Residual Life  

1.9 Ageing Classes 

 1.9.1      Class of distribution corresponding to adverse ageing 

1.10 Bathtub Failure Rate 

1.11 Estimation of Survival Function 

 1.11.1      Actuarial Estimator 

 1.11.2      Kaplan-Meier Estimator 

 1.11.3      Log Rank Tests 

1.12 Summary 

1.13 Self-Assessment Exercise  

1.14 References 

1.15 Further Reading 

 

1.1 Introduction 

 Survival analysis, a branch of statistics dealing with time-to-event data, is fundamental 

in various fields, including medicine, engineering, and social sciences. This analysis focuses 

on understanding the time until an event of interest occurs, such as the failure of a component, 

the occurrence of a disease, or the death of a patient. Central to survival analysis is the concept 

of survival time (T), a random variable representing the time from the start of observation to 

the occurrence of the event. The Hazard Function h(t) provides the instantaneous rate of event 

occurrence at time t, given survival up to that time. Additionally, the Cumulative Hazard 



 
 

Function R(t) represents the cumulative risk up to time t, defined as R(t). Censoring is a 

common challenge in survival analysis, occurring when the exact survival time is unknown. 

Order censoring happens when only the failure times of the first k items are available, with the 

remaining censored at the last failure time. Random censoring occurs when some information 

about survival time is available. Still, the exact time is not known for various reasons such as 

loss of follow-up or study termination. Censored data are the minimum of survival and 

censoring times, with an indicator of censoring status. To estimate population survival, life 

tables are employed, dividing time into intervals and recording the number of individuals alive, 

dead, lost, or withdrawn at the start and end of each interval. The actuarial method and the 

Kaplan-Meier method are common approaches for estimating survival functions. The failure 

(or hazard) rate represents the instantaneous rate of event occurrence, given no previous event. 

Different classes of distributions exist based on the shape of the failure rate function, such as 

Increasing Failure Rate (IFR), Decreasing Failure Rate (DFR), and Bathtub Failure Rate. 

 In conclusion, survival analysis provides valuable insights into time-to-event data, 

offering methods for estimating survival functions, handling censoring, and understanding 

failure rates. These tools are essential for various applications in healthcare, enabling a deeper 

understanding of event occurrence over time. 

 

1.2 Objectives 

After going through this unit, you should be able to: 

• Explain the basic concepts and terminology of survival analysis, such as survival time, 

censoring, hazard rate, and survival function. 

• Apply parametric survival models to estimate and compare the survival probabilities of 

different groups/ treatments, using distributions such as exponential, Weibull, and gamma. 

• Use non-parametric survival models to estimate the survival function and test the equality 

of survival curves using methods such as the Kaplan-Meier estimator and log-rank test. 

 

1.3 Concept of Time 

Time  

Survival analysis is a statistical methodology developed to analyse the time-to-event 

data. Time is referred to as the duration in years, months, weeks, or days starting from the 

initiation of an individual's follow-up until a specific event takes place. 



 
 

Survival time can be defined broadly as the time to the occurrence of a given event. 

This event can be the development of a disease, response to a treatment, relapse, or death. 

Therefore, survival time can be tumour-free time, the time from the start of treatment to 

response, length of remission, and time to death. Survival data can include survival time, 

response to a given treatment, and patient characteristics related to response, survival, and the 

development of a disease. 

Consider the random variable T≥0, which we will think of as the lifetime or the survival 

time of, say, a patient or a lightbulb. We want to know how long the patient or the lightbulb 

will last. Let T have density f(t) and distribution function F(t).  

Define S(t)=1-F(t)=P(T>t),the survival function of T, and define h(t) = 
f(t)

1-F(t)
, the 

hazard rate or hazard function (historically in epidemiology, it was called the force of 

mortality). The hazard rate has the interpretation: 

h(t)dt ≅ P{t<T<t+dt|T>t} 

= P{expiring in interval(t, t+dt)|survived past time t} 

(1) 

Integrating h(t), 

∫ h(u)du 
t

0
=∫

f(u)

1-F(u)

t

0
du = -log(1-F(u)) |

0

t
  

= - log(1-F(t))= - log S(t) , 

Which leads to the important expression: 

S(t)= e-∫ h(u)du
t

0  (2) 

Notice that F(+∞)=1 (i.e., S (+∞) =0) iff ∫ h(u)du= ∞.
∞

0
 

Note that the above concepts can be extended to the case when T does not have a 

density, that is, when the d.f. F has jumped. Our convention will be to assume continuity but 

to modify concepts and formulas to include jumps in the d.f when it is important to do so. 

 

Event 

 By "event," we are referring to occurrences such as death, the onset of disease, relapse 

from remission, recovery (e.g., returning to work), or any specified experience of interest that 

might occur to an individual. 



 
 

 While it is possible to analyse more than one event simultaneously, we will assume that 

only a specific event is of primary interest. In cases where multiple events are under 

consideration, such as death from various causes, the statistical challenge can be categorized 

either as a recurrent events problem or a competing risk problem. 

 Some examples of survival analysis are, leukaemia patients in remission over several 

weeks to see how long they stay in remission and following a disease-free cohort of individuals 

over several years to see who develops heart disease. 

 

Censored Data 

The techniques for reducing experimental time are known as censoring. In survival 

analysis the observations are lifetimes which can be indefinitely long. So quite often the 

experiment is so designed that the time required for collecting the data is reduced to 

manageable levels. Two types of censoring are built into the design of the experiment to reduce 

the time taken to complete the study.  

There are generally three reasons why censoring might happen:  

i. A subject does not experience the event before the study ends.  

ii. A person is lost to follow up during the study period.  

iii. A person withdraws from the study.   

Here, we have adopted the notation that TI is the survival time, CI is the censoring time, and 

the observed random variables are Yi=Ti∧Ci and δi=I(Ti< Ci). 

 

1.4 Order and Random Censoring 

 

Order Censoring 

Ordered censoring (or Type II censoring) is common in survival analysis, where the 

goal is to analyse time-to-event data, such as the time until a component fails. If n-identical 

components are simultaneously put into operation, the study is discontinued when a 

predetermined number k(<n) of the items fail. Hence, the failure times of the k failed items are 

available. These are the k smallest order statistics of the complete random sample. For the 

remaining items the censoring time xk, which is the failure of the item failing last, is available.   

Example: Twelve ceramic capacitors are subjected to a life test. To reduce the test time, 

the test is terminated after the eight capacitors fail. The remaining are type II censored or 

ordered censored data. 



 
 

 

Random Censoring 

Random censoring occurs when some information about individual survival time is 

available, but exact survival time is not known. The most frequent type of censoring is known 

as right random censoring. It occurs when the complete lifetimes are not observed for reasons 

that are beyond the control of the experimenter. For example, it may occur in any one of the 

following situations 

1) Loss to follow up  

2) Drop Out. 

3) Termination of the study  

Random censoring arises in medical applications involving animal studies or clinical trials. 

In a clinical trial, patients may enter the study at different times, and then each is treated with 

one of several possible therapies.  

Let  C1,C2…..Cn  be iid each with d.f. G.  CI is the censoring time associated with Ti. We 

can only observe (Y1,δ
1
),…………..,(Yn,δn); where: 

Yi= min(Ti, Ci)= Ti ∧ Ci (3) 

δi=I(Ti< Ci)= {
1    if     Ti      is not censored,

0     if    Ti     is not censored.
  

 Notice that Y1, ……………..,Yn are iid with some d.f.  Also δ1, ………δn contains the 

censoring information.  With random censoring we will make the following crucial assumption 

that TI  and  CI are independent.  

 Note: In Random censoring, the number of complete(uncensored) observation is 

random and time for which the study last may also be random.  

 

Example: Let T∼ω(p,σ). 

f(x)=
p

σ
⋅(

x

σ
)
p-1

e-(x/σ)
h

 

L=∏
p

σ
(
xi

σ
)
p-1

⋅e-(ti/σ)
p

nu

i=1
i∈0

∏ e-(ki/σ)
p

n-nu

i=1
i∈c

 

Where nu is the number of uncensored samples. 



 
 

L =
pnu

σnup
 (∏ xi

p-1
nu

i=1 i∈u

)

e
-∑ di/σ

nu
i=1

)
p

⋅e-∑ (xi/σ)
pn-uu

i=1  

As nu+n-nu=n 

Taking logarithm, we get:  

logL = nulogp - nuplogσ + (p-1)∑ logxi

nu

i=1

 - ∑ (xi/σ)
p

n

i=1

  

∂logL

∂σ
=

-nup

σ
+∑

xi
b

σp+1
=0

n

i=1

 

⇒-nup + 
p

σp
∑ ti

p

n

i=1

=0 

σ
^
 = 

p⋅tip

nu⋅p
 

σ
^
=(
∑ ti

pn

i=1

nu

)

1/p

 

∂lnL

∂p
 =

nu

p
-nulogσ+∑ logt1

nu

i=1

-∑ (
ti

σ
)
p

log
ti

σ

n

i=1

  

p
^
=

nu

nulogσ-∑ loghi
nu

i=1
+∑ (

ti
σ

)
p

log
hi

σ

n

i=1

 

These equations are transcendental equation and be solved by any numerical methods. 

 

1.4.1 Likelihood in these cases  

Delta Method 

 Suppose the random variable y has mean μ and variance σ2 and suppose we want the 

distribution of some function g(y). Expand g(y) about μ as:  

g(Y)=g(μ)+(Y-μ)g'(μ)+… 

And ignore higher order terms to get: 



 
 

g(Y) ≈ (g(μ),σ2(g'(μ))
2
) (4) 

Where ≈ denotes “is approximately distributed as”.  

If furthermore, Y∼
a

N(μ,σ2), then: 

g(Y)∼
a

N(g(μ),σ2(g'(μ))
2
) (5) 

The delta method also has a multivariate version. Suppose:  

(
X

Y
)∼ ([

μ
x

μ
y
] , ⌊

σx
2 σxy

σy
2
⌋) 

And suppose we want the distribution of g(X, Y) then: 

g(X,Y)=g (μ
x
,μ

y
)+(X-μ

x
)

∂

∂x
g (μ

x
,μ

y
)+ (Y-μ

y
)

∂

∂y
g (μ

x
,μ

y
)+………,  

So, g(x,Y)≈ (g (μ
x
,μ

y
) ,σx

2 (
∂

∂x
g)

2

+2σxy
∂

∂x
g

∂

∂y
g+σy

2 (
∂

∂y
g)

2

) . 

If ⌊
x

Y
⌋ ∼

a
N, then g(X, Y)∼

a
N 

The delta method is very useful. For example, we could use it to get an approximate value for 

Var (
X̅

Y
)  or Var(XY̅̅ ̅̅̅).  

Exponential Distribution:  

Under random censoring, let nu = number of uncensored observations. Then: 

L=λ
nu exp { -h∑ ti

n

i=1

- h∑ ci

n

c=1

} 

L = nu exp { -λ∑ y
i

n

i=1

} 

log L =nu log λ - λ∑ y
i

n

i=1

 



 
 

∂ log L

∂λ
=

nu

h
-∑ y

i

n

i=1

 

λ̂=
nu

∑ y
i

n
i=1

 

∂
2

log L

∂λ
2

= -
nu

λ
2
 

i(λ)=
nu

λ
2̂
 

 We remark that   λ̂=
nu

∑ yI
n
i=1

 is also the maximum likelihood estimator (MLE) under type 

I and type II censoring as well as random censoring.  

 

1.5 Types of Censoring and Truncation 

Type-I Censoring  

In type I censoring, without accidental losses, all censored observations equal the study 

period's length. In type I censoring the number of failures is a random variable.   

Example: Power supplies are major units for most electronic products. Suppose a manufacturer 

conducts a reliability test in which 15 power supplies are operated over the same duration. The 

manufacturer decides to terminate the test after 80000 hrs. Suppose 10 power supplies fail 

during the fixed time interval. Then remaining five are type I censored 

Let tc be some fixed number which we call the fixed censoring time. Instead of 

observing T1,T2,…..Tn we can only observe y
1
,y

2
….y

n
. Where,   

y
i
= {

Ti          if                Ti<tc  , 

tc        if               tc≤Ti.
 

Notice that the distribution function of y has positive mass p(T>tc)>0 at y=tc 

 

Type-II Censoring  

In type II censoring (also known as order censoring) the time interval over which the 

observation is taken is a random variable. Let r<n be fixed, and let T(1)<T(2)<………<T(n) be 

the order statistics of T1,T2….Tn. Observation ceases after the rth failure so we can observe 

T(1),…<T(r). The full ordered observed sample is: 

y(1)=T(1) 



 
 

                                                                           ⋮ 

y(r)=T(r) 

y(r+1)
=T(r) 

⋮ 

y(n)=T(r) 

The censoring time for every censored observation in type I and type II censoring is 

identical, but not so in random censoring.  

 Example: Twelve ceramic capacitors are subjected to a life test. In order to reduce the 

test time, the test is terminated after eight capacitors fail. The remaining are type II censored 

Right and Left Censoring 

When the study ends or when the person is lost to follow-up or is withdrawn, called as 

right censoring.  If the random variable of interest is too large, we do not get to observe it 

completely. This is called as left censoring.  

Example: In random left censoring, we can only observe (y
1
,ε1),…..(y

n
,εn); where,  

Yi= max(Ti, Ci)= Ti ∨ Ci, εi=I(Ci< Ti). Here both right and left censoring are present.  

Example: A Stanford psychiatrist wanted to know the age at which a certain group of 

African children learned to perform a particular task. When he arrived in the village, there were 

some children who already knew how to perform the task so these children contributed left 

censored on observation. Some children learned the task while he was present and their ages 

could be recorded. When he left, there remained some children who had not yet learned the 

task, thereby contributing to right-censored observations.  

Interval Censoring 

 Interval censoring is type of censoring for which life time is known only to fall into 

interval. Both the right and left censoring are special cases of interval censoring in which we 

may only gent to see that the random variable of interest falls in an interval.  If a Ti is random 

right censored, we gent to observe that Ti falls in the interval [Ci,∞), and if Ti is random left 

censored, we gent to observe that Ti falls in the interval (-∞,Ci]. 

Truncation 

 In contrast to interval censoring there is truncation in which if the random variable of 

interest falls outside some interval, even its existence is unobserved. For example, suppose 

we want to get the distribution and expect size of a certain organelle in the cell, Because of 



 
 

limitations on the measuring equipment, if an organelle is below a certain size, it cannot be 

detected.  

 

1.6 Life Tables 

A life table is a tabular representation of central features of the distribution of a positive 

random variable, say T, with an absolutely continuous distribution. It may represent the lifetime 

of an individual, the failure time of a physical component, the remission time of an illness, or 

some other duration variable. In general, T is the time of occurrence of some event that ends 

individual survival in a given status.  Let its cumulative distribution function be F(t)= Pr(T≤t) 

and let the corresponding survival function be S(t)=1-F(t).  

In applications to human mortality, which is where life tables originated, the time 

variable normally is a person’s attained age and is denoted x. The function µ(x) is then called 

the force of mortality or death intensity. The life table function lx=100000S(x) is called the 

decrement function and is tabulated for integer x in complete life tables; in abridged life tables 

it is tabulated for sparser values of x, most often for five-year intervals of age. The radix l0 is 

selected to minimize the need for decimal in the lx table; a value different from 100,000 is 

sometimes chosen. Other life tables functions are the expected number of deaths dx=lx-lx+1 at 

age x (i.e., between age x and age x + 1), the single year death probability 

q
x
=Pr(T≤x+1∣T>x) = dx/lx, and the corresponding survival probability p

x
=1-q

x
. Simple 

integration gives:q
x
=1-exp [-∫ μ(s)ds

x+1

x
]. 

1.7 Failure Rate 

Survival time data measure the time to a certain event, such as failure, death, response, 

relapse, the development of a given disease, parole, or divorce. These times are subject to 

random variations, and like any random variables, form a distribution. The distribution of 

survival times is usually described or characterized by three functions: (1) the survivorship 

function, (2) the probability density function, and (3) the hazard function. These three functions 

are mathematically equivalent—if one of them is given, the other two can be derived. 

 Let T denote the survival time. The distribution of T can be characterized by three 

equivalent functions. The probability that an individual survives beyond the time t is called as 

survival time of the individual at time t. 



 
 

 The Survival Function (or Survivorship Function), denoted by S(t), is defined as the 

probability that an individual survives longer than t: 

S(t) = p (an individual survives longer than t) 

S(t) = p(T>t)=1-p[T≤t]=1-F(t)=F(t) (6) 

T denotes the response variable and T≥0. It ranges from 0 to ∞ and some properties: 

i) S(0)=1 

ii) S(∞)=0 

 

The Probability Density Function (or Density Function) is given as: 

f(t)=
d

dt
F(t)=-

d

dt
F(t) (7) 

The Hazard Function of failure rate function, denoted by h(t) is the instantaneous rate of 

which event occurs, given no previous event.   

h(t) = lim
0<h→0

1

h
P[t<T≤t+dt∣T>t]

= lim
0<h→0

F(t)-F(t+dt)

hF(t)

                                 =
f(t)

F(t)
, provided F(t)<1, and f(t) exists. 

 

Conversely: 

S(t)=F(t)= exp {-∫ h(u)
t

0

du} (8) 

The probability density function of hazard function:  

f(x)=h(x)* exp {-∫ h(u)
t

0

du} (9) 

The Cumulative Hazard Functions describes the cumulative risk up to age x, denoted by: 

R(t)=∫ h(u)
t

0

du, t≥0 (10) 

Therefore, 

S(t)=F(t)= exp[-R(t)]= exp(-∫ h(u)
t

0

du) , t≥0 (11) 



 
 

 

Example-1:      Let x~exp(θ)  

The probability density function of the given distribution: 

f(x)=
1

θ
e-x/θ;x,θ>0 

S(t) = P(x>t) 

=∫ f(x)dx.

∞

t

 

=∫
1

e
e-x/θdx

∞

t

=e-t/θ 

S(t) = e-t/θ 

 

Example-2: Suppose that the survival time of a population has the following density function:  

f(t) = e-t,t≥0 

The cumulative distribution function: F(t) =∫ f(x)dx
t

0
=∫ e-xdx

t

0
=-e-x|

0

t
=1-e-t  

Survival Function: S(t) = e-t 

The hazard function: h(t)=
e-t

e-t
=1 

 

1.8 Mean Residual Life 

Let a unit be of age t. that is, it has survived without failure up to time t. Since the unit 

has not yet failed at has certain amount of residual life time.  

Let, S(t)=p(Tt>x)=p(T>t+x|T>t)= 
F(t+x)

F(t)
 

Then the mean residual life function is defined as:  

LF(t) = E(Tt)=∫ xdF(x)

∞

0

=∫ [1-F(x)]dx

∞

0

 

LF(t) =∫ S(t)
∞

0

dt=∫
F(t+u)

F(t)

∞

0

du,t≥0 (12) 

This gives,  LF(0)=E(T)=μ 

 



 
 

Example: Let the distribution has a constant hazard, λ(t)=λ.  

The cumulative hazard function is given by: h(t)= ∫ h(u)du 
t

0
= ∫ λdu

t

0
=λt|

0

t
=λt  

The survival function is: S(t)= e-h(t)= e-λt 

The probability density function is given by: f(t)=h(t)S(t)=λe-λt 

The mean of an exponential random variable is given by: E(T)= ∫ S(t)
∞

0
dt= ∫ e-λt dt=

1

λ
 

∞

0
and, 

Var(T)=
1

λ
2. 

 

1.9 Ageing Classes  

The choice of ageing plays and important role in the choice of models for the lifetime 

distributions. Consider the life length of components and the corresponding, life length of 

system of components.  In General, life length is random and so we are failing to study life 

distribution, so we first consider the concept of ageing. Ageing is studied in terms of Failure/ 

Hazard rate function.  

In the simplest case when no ageing is present, we obtain a constant failure rate 

corresponding to exponential distribution. The exponential distribution is in several senses the 

most fundamental distribution in reliability theory. 

The survival probability of a fresh unit corresponding to a mission of duration x is: 

S(x)=1-F(x) 

F(x)̅̅ ̅̅ ̅≡1-F(x) 

 F(x) is life distribution of the unit.  

 The corresponding conditional survival of a unit of age t is F (
x

t
)

̅̅ ̅̅ ̅̅
= 

F(t+x)

F(t)
, if F(t)̅̅ ̅̅ ̅>0. The 

conditional probability of failure during the next interval, of duration x of a unit of age t is 

F (
x

t
)

̅̅ ̅̅ ̅̅
= 

F(t+x)-F(t)

F(t)
=1- F (

x

t
)

̅̅ ̅̅ ̅̅
 

Suppose now the unit ages adversely in the series that conditional survival probability 

is a decreasing function of age F (
x

t
)

̅̅ ̅̅ ̅̅
= 

F(t+x)-F(t)

F(t)
 is decreasing in -∞<t<∞ 

 As a consequence, we obtain: h(t)=lim
x→0

1

x
[

1-F(t+x)

F(t)
]  is increasing in t≥0, when density 

f(t) exists.  Conversely (h(t)) is increasing implies F(x∣t) = exp[- ∫ h(u)du
t+x

t
]; decreasing in 

t≥0. So that F (
x

t
)

̅̅ ̅̅ ̅̅
decreasing in -∞<t<∞ holds. Then, when the density f(t) exists F (

x

t
)

̅̅ ̅̅ ̅̅
= 

F(t+x)-F(t)

F(t)
 is equivalent to failure rate h(t) increasing.   



 
 

 

1.9.1 Class of Distribution Corresponding to Adverse Ageing 

Increasing Failure Rate (IFR) class of distribution  

 We shall first define the concept of stochastic dominance. If X and Y are the two 

random variables then X is “stochastically smaller” than Y(X≤Y) if F(x)≥G(x)∀x, where F 

and G are distribution function of X and Y respectively. Obviously:  

F(x)≥G(x)∀⇔F(x)̅̅ ̅̅ ̅̅ ≤G(x),̅̅ ̅̅ ̅̅ ̅∀x (13) 

That is, p[X>x)≤p[Y>x], ∀ x  

In term of survival functions, Ft1
(x)≥Ft2

(x)  ∀  0≤t1≤t2 

⇔Ft↓t 

⇔lim
x→0

1

x
(1-Ft(x))↑t 

⇔lim
x→0

1

x
[1-

F(t+x)

F(t)
]↑t 

⇔lim
x→0

1

x
[
F(t+x)-F(t)

F(t)
]↑t 

⇔r(t)↑t,  provides the pdf exists.  

 Thus, the class of distribution known as the increasing failure rate (IFR) class is also 

exactly the class of distribution F such that Eq. (4) is satisfied for ∀x∈R. 

 

Increasing failure rate Average (IFRA) class of distributions  

The failure rate average function is defined as: 

RF(t)=
1

t
R(t) = -

1

t
logF(t) (14) 

If the function RF(t) is increasing, then the distribution F is said to possess the increasing 

failure rate average property and is said to belong to the IFRA class.  

A distribution F is IFRA distribution if and only if: F(αt) ≥ [F(t)]
α
 for 0<α≤1&t≥0. 

It is obvious that IFR⇒IFRA as the average of an increasing function is increasing.  



 
 

Simply, f or F has an increasing failure rate (we say f or F is IFR) if h(t) is increasing; 

f or F has an increasing failure rate average (we say f or F is IFRA) if 
1

t
∫ h(u)du

t

0
 is increasing. 

Analogous definitions can be made for DFR and DFRA. 

 

Constant FR IFR DFR 

Exponential Weibull (α > 1) Weibull (α < 1) 

Gamma (α > 1) Gamma (α < 1) 

Rayleigh (λ1> 0) Rayleigh (λ1 < 0) 

 Pareto (t > a) 

 

The concept of IRF and IFRA distributions are useful in engineering applications, 

particularly in the study of systems of components. In biostatistics they are not usually helpful. 

For example, in epidemiological studies the risk for long term survival usually has a bathtub 

shape with time divided into three periods.  

 

1.10 Bathtub Failure Rate 

 Another class of the distributions which arises naturally in human mortality study and 

in reliability situations is characterized by failure functions having “bathtub shape”. The failure 

rate decreases initially. This initial phase is known as the “infant mortality” phase. The next 

phase is known as “useful life” phase, in which the failure rate is more or less constant. Finally, 

in the third phase, known as “wear out phase”, the failure rate increases. The three phases of 

failure rates are represented by a bathtub curve.  



 
 

 

 

1.11 Estimation of Survival Function 

The classical method of estimating S(t) in epidemiology and actuarial science is the 

actuarial method discussed below. It depends on the life table. 

Let time be partitioned into a fixed sequence of intervals Ii…………, Ik, 

These intervals are almost always, but not necessarily, of equal lengths, and for human 

populations the length of each interval is usually one year.  

 

 

 

For a life table, let: 

ni= number of alive at the beginning  

di = # died during  Ii
th interval, 

li  = # lost to follow-up during Ii,  

wi  = # withdraw during Ii interval  

p
i
 = p {surviving through  Ii | alive at beginning of Ii} 

q
i
 = 1 - p

i
 

 

Reduced Sample Method 

To estimate S (τk), use only those subjects who are at risk during (0, τk], the entire 

interval of interest. Let: 

n = n1 - ∑ li
k
i=1   -  ∑ wi

k
i=1  

d = ∑ di
k
i=1  



 
 

Ŝ (τk) = 1- 
d

n
  

Table 1. Computation of the 5- Year Survival Rate 

Years after 

diagnosis  

Alive at 

beginning of 

Interval (ni) 

Died during 

Interval (di) 

Lost to Follow-

up during 

Interval (li) 

Withdraw alive 

during Interval 

(wi) 

0-1 126 47 4 15 

1-2 60 5 6 11 

2-3 38 2 - 15 

3-4 21 2 2 7 

4-5 10 - - 6 

 

Suppose we want to estimate Ŝ(5), then: 

n = 126 -∑ li -∑wi 

=126-(4+6+2)-(15+11+15+7+6) 

=126-12-54=60 

d =∑ di =(47+5+3+2)=56 

Ŝ (5 years) = 1- 
56

60
 = 0.078  

Which is the survival probability at the 5th interval.  

The drawback with the reduced sample method is that it ignores the information that is 

contained in  li and wi. It is a biased (downward) estimate of survival function S(t). 

 

1.11.1 Actuarial Estimator  

We can break up the survival probability S (τk) into a product of probabilities:  

S (τk) = P {T>τk}, 

= P {T>τ1} P {T>τ2|T>τ1}……P{T>τk|T>τk-1}, 



 
 

= p
1
. p

2
……p

k
=∏ p

i
k
i=1 , 

Where,  p
i
 = P{T>τ1|T>τi-1}. 

Here we assume that, on the average, those individuals who become lost or withdrawn 

their self during i
th

 interval (Ii) were at risk for half the interval. The actuarial method gives an 

example an estimate for each p
i
 separately and then multiplies the estimates together to estimate 

S (τk). 

For an estimate of  p
i
 , we could use 1- 

di

ni
, if there were no losses or withdrawals in Ii. 

However, with li and wi nonzero, we assume that, on the average, those individuals who 

became lost or withdrawn during Ii were at risk for half the interval. Therefore, we define the 

effective sample size ni
'  on: 

ni
'  = ni - 

1

2
 (li+ wi), 

q
î
 = 

di

ni
'  
  , 

p
î
 = 1-  q

î
 . 

The actuarial estimate is: Ŝ (τk) = ∏ p
î
 k

i=1 . 

 

From the above Table 1.   

 

Years 

after 

diagnosis  

Alive at 

beginning of 

Interval (ni) 

Died 

during 

Interval 

(di) 

Lost to 

Follow-up 

during 

Interval (li) 

Withdraw 

alive during 

Interval 

(wi) 

ni
'  

 

q
i
'  

 

p
î
 

0-1 126 47 4 15 1116.5 0.40 0.6 

1-2 60 5 6 11 51.5 0.10 0.9 

2-3 38 2 - 15 30.5 0.07 0.93 

3-4 21 2 2 7 16.5 0.12 0.88 

4-5 10 - - 6 7.0 0 1 

Now, from the above table, Ŝ (τk), = 0.44 

 

Variance of Ŝ (τk) 



 
 

To estimate the variance of Ŝ (τk), consider: log Ŝ (τk) = ∑ log p
î

k
i=1   . 

Assuming ni
'   p

î
 ≈ Binomial (ni

' , p
i
), the delta method implies:  

Var (log p
î
) ≈ Var (p

î
) ( 

d

dpi

 ( log p
i
))

2

 = 
pi qi

ni
'  

 . 
1

p
i
2 = 

 qi

ni
'  pi 

 

and assuming log p
î
, ……, log p

k̂
 are independent,  

Var (log Ŝ (τk)) = ∑
 qi

ni
'  pi 

andk
i=1 Var̂(log Ŝ (τk)) = ∑

 qî

ni
'   pî

k
i=1  = ∑

 di

ni
'  ( ni

' - di) 

k
i=1  

Now, using the delta method again: 

Var̂(Ŝ (τk)) = Ŝ 2(τk) ∑
 di

ni
'  (  ni

' - di) 

k
i=1  (15) 

 which is called Greenwood’s Formula. 

 

1.11.2 Kaplan-Meier Estimator  

 The product limit (PL) estimator is similar to the actuarial estimator except the lengths 

of the intervals Ii   are variables. In fact, let τi, the right endpoint of Ii , be the ith ordered 

censored or uncensored observation.  

 Recall that we observe the pairs (Y1, δ1), …...., (Yn, δn). For now, assume no ties. Let 

Y(1)<Y(2)<……. Y(n) be the order statistics of  Y1, Y2, ……., Yn and with an abuse of notation, 

define δ(i) to be the value of δ associate with Y(i), i.e., δ(i) = δj  when Y(i)=  Yj . note that δ(1), 

……, δ(n) are not ordered. Let R(t) denote the risk set at time t, which is the set of subjects still 

alive at time t, and let: 

ni = #in R (Y(i)) = #alive at time Y(i), 

di = #died at time Y(i), 

p
i
 = P(surviving through Ii | alive at beginning of Ii) = P{T>τ1|T>τi-1}. 

q
i
 = 1 -p

i
. 

From the estimates:  q
î
 = 

di

ni 
  , 

p
î
 = 1-  q

î
 = {

1- 
1

ni
  if δ(i)=1 (uncensored),

1  if  δ(i)=0  (censored),
 



 
 

The PL estimate when no ties are present is 

Ŝ (t) = ∏ p
î
 y(i)≤t  = ∏ 1- 

1

ni
 u:y(i)≤t  

= ∏ (1- 
1

ni
)
δ(i)

y(i)≤t  = ∏ (1- 
1

n-i+1
)
δ(i)

y(i)≤t  

= ∏ (
n-i

n-i+1
)
δ(i)

y(i)≤t . 

 

1.11.3 Log Rank Test  

Let τ1≤τ2≤ ……≤τg be ordered failure times from the combined sample; dj = #deaths at 

τj; rj = #at risk at τj; and rij = #at risk at τj from group i, i= 1,2. 

The long rank test compares the observed and expected (under Ho). Number of deaths 

in group 1st, we have: 

E = expected number of deaths (under Ho) in group I. 

   = ∑ dj

r1j

rj

g

j=1  

V= ∑ dj

r1j r2j

rj
2

g

j=1   

O = observed number of deaths from sample I (or group I). 

Then, z= 
O-E

√V
 ~ N (0,1). 

1.12 Summary 

 The unit covers the basic concepts of survival analysis, which is essential for 

understanding time-to-event data. Survival analysis deals with various aspects of time, 

particularly the time until a specific event occurs. This could be the failure of a component, the 

death of a patient, or the development of a disease. Key terms in survival analysis include 

survival time (T), distribution functions (F(t)), density functions (f(t)), survival functions (S(t)), 

hazard functions (h(t)), and cumulative hazard functions (R(t)). Censoring is a critical concept, 

where the exact survival time is not known but some information is available. Types of 

censoring include order censoring, random censoring, right censoring, left censoring, interval 

censoring, and truncation. Life tables and different methods, such as the actuarial and Kaplan-

Meier estimators, are used to estimate survival functions. Additionally, the unit discusses 



 
 

failure rates, ageing classes, and methods for estimating survival functions, as well as the log 

rank test for comparing survival functions of different groups 

1.13 Self-Assessment Exercise 

1. Given the hazard function, h(t) = c. Derive the survivorship function and the probability 

density function. 

2. Given the survivorship function, S(t) = exp (- tγ). Derive the probability density function 

and the hazard function. 

3. Suppose that the survival distribution of a group of patients follows the exponential 

distribution with G = 0 (year), λ = 0.65. find: 

a) The mean survival times 

b) The median survival times 

c) The probability of surviving 1.5 years or more 

4. In a compound exponential distribution, let the rate be represented by the random variable 

p. Prove that: 

a) E(T)=E(1/P) 

b) Var(T)=2E(1/P2)-[E(1/P)]
2
 

Check the results from the case where p has a gamma distribution.  

5. For the continuous logistic density with location v and scale parameter τ, having density  

τ-1exp[(x-v)/τ]

{1+exp[(x-v)/τ]}
2
 

Obtain the hazard function and mean survival time.  

6. Show that if the hazard function has the form: κρ(ρt)
κ-1

exp[(ρt)
κ
], the survival function is 

exp{-[exp((ρt)
κ
)-1]} 

7. Summarize the distributions discussed in this chapter, answering the following questions: 

a) What distributions describe constant hazard rates? Give the range of parameter values. 

b) What distributions describe increasing hazard rates? If there are more than one, discuss 

the differences between them. 



 
 

c) What distributions describe decreasing hazard rates? If there are more than one, discuss 

the differences between them.   
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2.1 Introduction 

 Survival analysis is a specialized statistical field concerned with analyzing time-to-

event data, focusing on the duration until an event of interest occurs. This section explores the 

application of parametric models within this framework, providing a robust approach to 

understanding the interplay between patient survival time, pre-defined probability 

distributions, and various explanatory factors. The foundation of survival analysis lies in the 

survival function, S(t), which quantifies the probability of an individual surviving beyond a 

specific time point (t). This function complements the more general cumulative density 



 

 

function (CDF), which captures the overall likelihood of the event occurring by time t. To gain 

a deeper understanding, the probability density function (PDF) is introduced, pinpointing the 

exact probability of the event occurring at a specific time point. Finally, the hazard function, 

denoted by h(t), depicts the instantaneous rate at which an event transpires at a given time point 

(t), taking into account the subject's survival up to that point. 

 The concept of life distributions within the context of reliability analysis and 

engineering is also explored. These distributions mathematically model the lifespan of systems 

or components before failure, playing a crucial role in informed decision-making. The section 

equips learners with an understanding of various common life distributions, including the 

exponential, Weibull, gamma, lognormal, Pareto, and Rayleigh distributions. Understanding 

and selecting the appropriate life distribution is paramount for accurate reliability assessments 

and informed engineering decisions. Furthermore, the unit delves into the "Linear Failure Rate" 

model, also referred to as the Bathtub distribution. This model is characterized by a hazard 

function resembling the shape of a bathtub, reflecting the changing failure rate over time. The 

method of estimating and testing the unknown parameters of a parametric survival model using 

the maximum likelihood method is also introduced. Finally, the concepts of increasing failure 

rate (IFR) and decreasing failure rate (DFR) distributions, with their properties relating to the 

behaviour of the hazard function over time, are discussed. 

 By offering a comprehensive exploration of these concepts, this unit empowers learners 

to effectively utilize parametric models in survival analysis, gaining valuable insights into the 

factors influencing event times and making informed decisions in various fields. 

 

2.2 Objectives 

After going through this unit, you should be able to: 

• Apply parametric models to analyze time-to-event data, focusing on the relationship 

between survival time, probability distributions, and explanatory factors. 

• Identify and interpret various life distributions used in reliability analysis, including 

exponential, Weibull, gamma, lognormal, Pareto, and Rayleigh distributions. 

• Understand the concepts of IFR and DFR distributions and their implications for 

interpreting and analysing survival data 

 

2.3 Assumptions and Characteristics 



 

 

Parametric Survival Model  

 A parametric survival model is one in which survival time (the outcome) is assumed to 

follow a known distribution. Examples of distribution that are commonly used for survival time 

are: the Weibull, the exponential (a special case of the Weibull), the log-logistic, the lognormal, 

and the generalized gamma etc.   

 

Assumptions:  

1. Outcomes are assumed to follow some family of distributions. 

2. Exact distribution is unknown if parameters are unknown. 

3. Data used to estimate parameters 

 

2.4 Life Distributions 

 Life distributions, also known as survival distributions, are a fundamental concept in 

parametric survival models. These models analyze data where the outcome of interest is the 

time until an event occurs, like a machine failure or a patient's recovery. Life distributions 

describe the probability of that event happening at a specific time. Parametric models assume 

the data follows a specific probability distribution, like the Weibull or exponential distribution. 

Non-parametric models make fewer assumptions about the data's form. Some frequently used 

life distributions in parametric models include: 

 

2.4.1 Exponential Distribution 

Several survival distributions are available for modelling survival data. The exponential 

distribution, the simplest survival distribution, has a constant hazard, h(t)=λ. The cumulative 

hazard function is given by: 

H(t)= ∫ h(u)du 

t

0

= ∫ λdu

t

0

=λt|
0

t
=λt (1) 

The survival function is: 

S(t)= e-R(t)= e-λt (2) 

The probability density function is given by: 

f(t)=h(t)S(t)=λe-λt 
(3) 



 

 

 The mean of an exponential random variable is given by: E(T) = ∫ S(t)
∞

0
dt= 

∫ e-λt dt=
1

λ
 

∞

0
and Var(T) =

1

λ
2 . The median is the value of t that satisfies 0.5 = e-λt,  so that 

tmed =
log(2)

λ
. 

The exponential distribution is easy to work with, but the constant hazard assumption 

is not often appropriate for describing the lifetimes of humans or animals. The Weibull 

distribution, which offers more flexibility in modelling survival data, has hazard function: 

h(t)=αλ(λt)α-1=αλ
α
tα-1 (4) 

 The cumulative hazard and survival functions are given by, respectively, H(t)=(λt)α 

and S(t) = e-(λt)α. The exponential distribution is a special case with α=1. It is monotone 

increasing for α>1 and monotone decreasing for α<1.  

 

2.4.2 Gamma Distribution 

The gamma distribution (not to be confused with the gamma function) provides yet 

another choice for survival modelling. The probability density function is given by: 

f(t) = 
λ

β
tβ-1 exp(-λt)

Γ(β)
 (5) 

It is monotone increasing for β>1 and monotone decreasing for β<1. When β=1, the 

gamma distribution reduces to an exponential distribution. Then: 

E(T) = 
α

λ
  and  Var(T) = 

α

λ
2    . 

Unfortunately, the gamma model does not have closed form expression for S(t) and λ(t): 

S(t) = 1 -∫ f(u)du

t

0

=1- (
incomplete gamma function

complete gamma function
) (6) 

 

2.4.3 Weibull Distribution 

 

The Weibull distribution is another generalization of the exponential distribution that 

is appropriate for modelling the lifetimes having constant, strictly increasing or strictly 



 

 

decreasing hazard functions, it is given by the distribution function   

F(t)=1-e-λt,t>0,λ>0  

The survival functions:  

S(t)=e(-λt)α  ,       α>0 , λ>0 (7) 

Then, 

∫ h(u)du =(λt)α  ,

t

0

 

h(t)=αλ(λt)α-1  and 

f(t)=h(t) S(t)=αλ(λt)α-1 e-(λt)α  

For the Weibull model, E(T) and Var(T) have no nice closed form expression, but the 

forms of λ(t) and S(t) make the Weibull model a useful one in survival analysis. 

 The mean and median of the Weibull distribution are, respectively, E(T)=
Γ(1+

1

α
)

λ
 and 

tmed=
[log(2)]

1
α

λ
. 

For integers, the gamma function is given by Γ(n)=(n-1)!. For the special case α=1, of 

course, the mean and median are identical to those of the exponential distribution. For non-

integers, it must be evaluated numerically. 

 

2.4.4 Lognormal Distribution 

A random variable T is said to have lognormal distribution when y=log
e
(T)  is 

distributed as normal (Gaussian) with mean μ and variance σ2. 

The d.f. and survival function of lognormal distribution, respectively are:  

f(t)=
1

tσ√2π
exp (-

1

2σ2
(log

e
(t)-μ)

2
) ,t>0,σ>0 

(8) 

F(t)̅̅ ̅̅ ̅=
1

σ√2π
∫

1

x

∞

t

[-
1

2σ2
(log

e
(x)-μ)

2
] dx 

(9) 

It may be noted that μ and σ2 which are the location and scale parameters of the normal 

distribution of Y are scale and shape parameter respectively for the lifetime distribution of T.  



 

 

The mean and the variance of the distribution are given by E(T)=exp[μ+σ2] and 

Var(T)=[e2μ+σ2
][e

σ2

-1] respectively. The density curve is positively skew and the skewness 

increases with σ2. There are no closed form expressions for survival and hazard function.  

 The survival function F(t)̅̅ ̅̅ ̅=p [z>
loge

(t)-μ

σ
], where Z~N(0,1). Thus: 

F(t)̅̅ ̅̅ ̅=1-ϕ(
log

e
(t)-μ

σ
) (10) 

Where ϕ(.) represents distribution function of standard normal variate. So, using the 

table of the cumulative probability integral for Z, one can evaluate the survival function of T. 

Similarly, using the table of ordinates of standard normal distribution we can compute f(t) and 

thus we can get values for hazard function, h(t)=
f(t)

F(t)̅̅ ̅̅ ̅. 

The hazard function is non-monotonic; initially it increases, reaches a maximum and 

then decreases to zero as time approaches infinity. The log normal distribution may be 

convenient for use with uncensored data. A log transformation converts the data into the 

standard linear model setup. 

 

2.4.5 Pareto Distribution 

The probability density function of the pareto distribution is: 

f(t)=
α aα

tα+1
I[a,∞)(t)   (11) 

Then the survival function of the pareto distribution is: 

S(t)= (
a

t
)

α

I[a,∞)(t) ,   α>0 , a>0 (12) 

Then, 

h(t)=
α

t
I[a,∞)(t) (13) 

The moments are easily calculated, but they may be infinite. 

 

2.4.6 Rayleigh Distribution 

  The probability density function of the Rayleigh Distribution is given by: 



 

 

f(t)=(λ0+λ1t)e-λ0t-
1
2
λ1t2

 (14) 

  

 

Suppose, λ(t)=λ0+λ1t   

∫ λ(u)du=λ0 t+
1

2
λ1 t2 

t

0

 

Then, S(t)=e
-λ0t-

1

2
λ1t2

 , 

The moments have no closed form expressions. The linear risk can be generalized to 

polynomials: 

λ(t)= ∑ λit
i

p

i=1

 (15) 

 

2.4.7 Piece-Wise Exponential Distribution 

 In a piecewise exponential distribution, the hazard rate is constant on specified 

confidence intervals. Suppose a three piecewise exponential random variable with cut points  

0<T1<T2<T3=∞ has hazard function: 

h(t)=λ1I[0≤t<T1]+λ2I[T1≤t<T2]+λ3I[T2≤t] (16) 

based on a sample of n i.i.d. observations from a piecewise exponential distribution, the MLE 

of hazard of the ith piece (for the interval [Ti-1,Ti)) is:  

λ
^

i=
#{xj∈[Ti-1,Ti)}

∑ [min(Ti,xj)-Ti-1]
+

n

j=1

 
(17) 

where [t]
+
=max(0, t). 

 

2.5 Linear Failure Rate  

It is given by: 

 F(x)=1- exp {- (x+
1

2
θx2)} , x>0, θ>0 

f(x)=(1+θx)e-(x+
1

2
θx2)

 and  



 

 

r(x)=
f(x)

F(x)̅̅ ̅̅ ̅̅
=(1+θx) 

This too is a generalization of exponential distribution as θ=0 gives the exponential 

distribution with failure rate 1. This distribution is a suitable model for items which exhibit 

positive ageing and has particularly simple formula for the failure rate. 

 

2.6 Parametric Inference 

Parametric estimation is a fundamental technique in survival analysis that assumes the 

survival times of subjects follow a specific probability distribution. This approach contrasts 

with non-parametric methods, which make no distributional assumptions and can yield 

smoother survival curves. Parametric methods also allow for the inclusion of covariates to 

examine their effects on survival outcomes. This facilitates the efficient estimation of model 

parameters, typically achieved through maximum likelihood estimation. In parametric 

estimation, researchers select a probability distribution that best fits the expected shape of the 

survival curve, such as the Weibull distribution for a monotonic hazard, the exponential 

distribution for a constant hazard, or the log-normal distribution for a flexible hazard. 

Subsequently, they estimate the unknown parameters of the chosen distribution using the 

available data, enabling them to calculate the probability of survival or hazard at any specific 

time point. 

 

2.6.1 LR and MLE Tests 

Maximum Likelihood Estimation 

Let T1.T2….Tn be a random sample from a life distribution having probability density 

f (x;θ
―
) where θ

―
=(θ1,θ2,…,θp)∈Θ is the vector of unknown parameters. Since the lifetimes are 

independent, the likelihood function L ( t
―

, θ
―
) , is the product of probability density functions 

evaluated at each sample points. Thus: 

L( t
―

, θ
―

)=∏ f(ti, θ
―

)

n

i=1

 (18) 

Where 
t

n
=(t1,t2,…,tn) is the data point. The maximum likelihood estimator θ

^

―
 is the 

value of θ
―

  which maximizes L( t
―

, θ
―

) for fixed t
―

. That is θ
^

―
 is the maximum likelihood 



 

 

estimator of θ
―

. One may say that f
θ
^

―

(t) corresponds to the distribution that is most likely to 

have produced the data t1.t2……tn in the family {f θ
―

, θ
―
∈Θ}. 

Since L( t
―

, θ
―

) is a joint density function, it must integrate over the range of t
―

 to one. 

Therefore, 

∭ L( t
―

, θ
―

)d t
―

∞

0

=1 (19) 

Under regularity conditions which allow interchange of differentiation and integration 

operations, the partial derivatives of the left side with respect to one on the parameter, θi yields 

δ

δθi

∭ L( t
―

, θ
―

)d t
―

∞

0

=∭
δ

δθi

logL( t
―

, θ
―

)L( t
―

, θ
―

)dt
―

∞

0

 

=E[
δ

δθi

logL( t
―

, θ
―

)]=E[Ui(θ
―

)],i=1,2,…,p (20) 

Where U(θ
―

)=(U1(θ
―

),…,Up(θ
―

))
'
 is often called the score vector. The argument t

―
 is suppressed 

for compactness. Differentiating the right side of (20) with respect to θ
―

,  we get: 

E [Ui (θ
―
)]=0,i=1,2….p (21) 

Further differentiation of (21) with respect to θj yields: 

E [Ui (θ
―
)Uj (θ

―
)]=E [

-δ
2

log L ( t
―

, θ
―
)

δθiδθj

]
i=1,2,…,p

j=1,2,…,p
 (22) 

From equations (21) and (22) it follows that: 

E[
-δ

2
logl( t

―
, θ
―

)

δθiδθj

]=cov(Ui(θ
―

),Uj(θ
―

)),
i=1,2,…,p

j=1,2,…,p
 (23) 

These elements form the p×p Fisher information matrix, I(θ
―

), whose diagonal elements 

are the variances and the off-diagonal elements are the covariances of the score vector. The 

solutions of the simultaneous likelihood equations: Ui(θ
―

)=
δ

δθi
logL( t

―
, θ
―

)=0, are θ
^

i, the 

maximum likelihood estimators of θi,i=1,2…..p.  



 

 

The estimators θ
^

1,…,θ
^

p, under certain regularity conditions are asymptotically 

normally distributed with mean θ1,…,θp and variance covariance matrix given by 

V(θ
^

―
)={I(θ

―
)}

-1
. 

 The observed (sample) information matrix called i(θ
―

)  is denoted by the elements: 

(-
δ

2

δθiδθj

logL( t
―

, θ
―

),i,j=1,…,p) (24) 

So that E[i(θ
―

)] = I(θ
―

). 

 

Three broad types of asymptotic procedures, based on the likelihood function, are 

available for testing of hypothesis θ
―

=θ
―0

. 

 

1. Wilks Likelihood Ratio  

Let L(θ
^

―
)=[L(θ

―
)]

θ
―

= θ
^

―

.  

-2log

L(θ
―0

)

L(θ
^

―
)

→
a

χ
p
2 under H0, 

Where →
a

 denotes “asymptotically distributed as”  

 

2. Wald’s method based on MLE’s  

(θ
^

―
-θ
―0

)

'

I(θ
―0

)(θ
^

―
-θ
―0

)→
a

χ
p
2 under H0. 

 

3. Rao Scores Method 

[
δ

δθ
―

logL(θ
―0

)]

'

I-1(θ
―0

)[
δ

δθ
―

log L(θ
―0

)]→
a

χ
p
2 

Rao’s method does not use the MLE and hence is recommend in practise if only in 

hypothesis testing. However, in addition to tests, we usually want estimates and confidence 

intervals, so we need to compute  θ
^

―
 anyway. Once we have θ

^

―
 and I(θ

―0
), the Wald method is 

easy.  

 



 

 

2.6.2 Point Estimation and Scores 

Following are the two commonly used methods for obtaining MLEs when closed form 

solutions are not possible.  

1. Newton-Raphson Method of Scoring:  

Assume  θ
^(0)

=(θ
^

1

(0)

,…,θ
^

p

(0)

)

'

 is an initial guess at the solution.  

Then θ
^

―

(1)

=θ
^

―

(0)

+(i(θ
―

(0)
))

-1 δ

δθ
log L(θ

―

(0)
), 

Where i(θ
―

(0)
)=[i(θ

―
)]

θ
―

= θ
―

(0)  

And L(θ
―

(0)
)=L[(θ

―
)]

θ
―

= θ
―

(0)  

In general, 

θ
^

―

(j+1)

=θ
^

―

(j)

+(i(θ
―

(j)
)
-1 δ

δθ
―

log L(θ
―

(j)
),j=1,2,… (25) 

 

2. Fisher’s Method of Scoring  

Replacing sample information matrix i(θ
―

) in equation 1 by Fisher’s information matrix we 

get following iterative formula for Fisher’s method:  

θ
^

―

(j+1)

=θ
^

―

(j)

+(I(θ
―

(j)
)
-1 δ

δθ
―

log L(θ
―

(j)
),j=1,2,… 

(26) 

Fisher's method of scoring produces improved convergence in some instances. However, 

in many situations, particularly if censoring is present, I(θ
―

) is not mathematically tractable. 

Hence the Newton-Raphson method is used. 

 

2.6.3 Confidence Intervals  

To construct confidence intervals and perform test, we need the distribution of λ̂ 

a) If no censoring is present 



 

 

λ̂=
nu

∑ Ti
n
i=1

=
1

T̅
,  

Where T1,……Tn are iid each with the exponential distribution 

f(T1)=λe(-λt) 

Consequently, ∑ Ti
n
i=1  h has the gamma density  

fs(t)=
λ

n

Γ(n)
t(n-1)e(-λt) 

So 2λ∑ Ti
n
i=1 ∼χ(2n)

2  or equivalently 

2nλ

λ̂
~χ(2n)

2   

Therefore, 
2nλ

λ̂
 is a pivotal statistic and can be used for test and confidence interval 

construction.  

 

b) For Type II Censoring 

We can rewrite 

∑Yi

n

i=1

=T(1)+T(2)+…+T(r)+(n-r)T(r) 

= nT(1)+(n-1)[T(2)-T(1)]+…+(n-r+1)[T(r)-T(r-1)] 

Using the results about Poisson processes and exponential waiting times, 

T(1)={min of n iid exponential(λ) r.v.'s}∼nλe-nλt 

nT(1)∼λe-λt 

T(2)-T(1)={min of n-1 exponential(λ) r.v.'s}∼(n-1)λe-(n-11)λt 



 

 

(n-1)[T2-T1]∼λe-λt,etc., 

and (n[T1],(n-1)[T2-T1],…,(n-r+1)[Tr-Tr-1] are independent, so; 

2λ∑Ti

n

i=1

∼χ(2r)
2   

Thus, 2rλ/λ
^

 can be used in conjunction with a 𝜒2 distribution, where the d.f. are twice the 

number of uncensored ordered statistics, to construct confidence intervals and tests.  

 

c) For Type I Censoring 

If random or type I censoring is present, we have no recourse but to use the asymptotic 

theory.  

Thus, λ
^

=
nu

∑ yi

n

i=1

  ,  

∂
2

∂λ
2 log L=

-nu

λ
2 , 

So,  

λ
^

-λ

√λ
2

nu

∼
a

N(0,1) 

Where nu may be replaced by E(nu) if the latter is available.  

The normality approximation can be improved by transforming the estimate. By the 

delta method, since, λ
^

 ~(λ,
λ

2

nu
). Then; logλ

^

 ~ (log λ,
1

nu
). 

Notice that  
1

nu
, the asymptotic variance of log λ

^

 , does not depend on the unknown 

parameter λ. It is an empirical fact that transforming an estimate to remove the dependence 



 

 

of the variance on the unknown parameter tends to improve the convergence to normality 

by reducing the skewness. 

Example 1: Let t1.t2…….tn be a random sample from an exponential distribution with 

parameter λ.  

f(t;λ)=λe-λt,t≥0;λ>0 

L( t
―

;λ)=∏ λe-λti

n

i=1

=λ
n
e-λ∑ ti

n
i=1  

The log likelihood function is: log L ( t
―

,λ) = n log λ-λ∑ ti
n
i=1  

The score is U(λ)=
δ

δλ
log L ( t

―
,λ) =

n

λ
-∑ ti

n
1  

[
δ

δλ
logL( t

―
,λ)]

λ=λ
^= 0 ⇒λ

^

=
n

∑ ti
n
1

 

I(λ)=
n

λ
2

. 

Sample information at λ
^

 is 
n

λ
2 and var(λ

^

) is 
λ
^2

n
. 

The maximum likelihood estimator of λ is the ratio of total number of failures to the 

total lifetime of all the units, i.e., the total time on test. If μ is the mean of the distribution then 

its maximum likelihood estimator (MLE) is 1/λ
^

 which is also the method of moment estimator 

of μ. We know that ∑ Ti
n
1  is minimal sufficient statistic. T is consistent for μ and 

1

T
 is a consistent 

estimator of λ. The asymptotic distribution of λ
^

 is normal with mean λ and variance 
λ

2

n
. So that, 

√n(λ
^

-λ)

λ
→
a

N(0,1). 

The exact distribution of μ
^
=

1

λ
 can be derived using following result: 

∑ Ti
n
i  is the sum of n independent exponential random variables, hence it has gamma 

distribution and therefore 
2nT

μ
=

2nμ
^

μ
 has χ

2n
2  distribution.  Equivalently 

2nλ

λ
  has χ

2n
2  distribution. 

From the above result we have: 



 

 

E[
2nμ

^

μ
]=2n⇒E(μ

^
)=μ 

Exact confidence interval for λ is obtained by using the pivotal quantity 
2nλ

λ
^ . Let (1-α) 

be the confidence coefficient and χ
α/2,2n
2   and χ

1-α/2,2n
2  be such that: 

P[χ
2n
2 ≤χ

α/2,2n
2 ]=P[χ

2n
2 ≥χ

1-α/2,2n
2 ]=α/2. 

Then 100(1-α)% equal tailed confidence interval for λ is obtained from:  

(χ
α/2,2n
2 ≤

2nλ

λ
^

≤χ
1-α/2,2n
2 )=1-α. 

The required confidence interval is (
λ
^

2n
χ

α/2,2n
2 ;

λ
^

2n
χ

1-α/2,2n
2 ) 

 

Example 2:  Let x~exp(θ), then, f(x)=
1

θ
e-x/θ;x,0>0. 

S(t) = P(x>t) 

=∫ f(x)dx

∞

t

 

=∫
1

e
e-x/θdx

∞

t

=e-t/θ 

S(t) =e-t/0 

Maximum Likelihood Estimate: θ
^

=x=
1

n
∑ xi

n
i=1  

S(t)
^

=e-t/x  (Due to the invariance property) 

UMVUE of S(t) 

Let us consider the statistic T(x1) 

T(x1)= {
1  if x1>t

0 ; otherneise 
 



 

 

Then,  

E[T(x1)] =1⋅P(x1>t).

=e-t/θ
 

So, T(x1) is an Unbiased Estimation of survival function.  

We know that sample mean  x̅  is complete and sufficient.  

UMVUE of S(t) is E[T(x1) ∣∣ x ] (Lehmann–Scheffé Theorem) 

So, to find f(x1∣x): 

Let n numbers of units are put to test. Life time of 1st m units are observed. We call if 

type II censored (test is terminated after termination of m unit).is called type II censoring failure 

censored data. So, we get order statistics: x(1)<x(2)<⋯<x(m). When n units were put on testing, 

we intend to estimate S(t).  

To estimate survival function using EM algorithm, we x follow Weibull distribution 

under failure censoring: 

L=(
n

m
)⋅∏ f(xi)

m

i=1

⋅[1-f(x(m))]
n-m

. 

= (
n

m
) ⋅

1

θ
m ⋅e

-
1
θ

∑x(i)  ⌈e-
x(m)

θ ⌉
n-m

 

=(
n

m
)⋅

1

θ
m ⋅e

-
1
θ
[∑ x(i)m

i=1 +(n-m)x(m)]
 

Then, θ
^

=
1

m
[∑ x(i)

m

i=1

+(n-m)×(m)] , which is MLE.  

 Let, zi=(n-i+1)[x(i)-x(i-1)] and x0=0. 

z1=nx(1) 

z2=(n-1)[x(2)-x(1)] 

……………… 



 

 

zm=(n-m+1)[x(m)-x(m-1)] 

∑ zi

m

i=1

=∑ x(i)

m

i=1

+(n-m)x(m) 

1

m
∑ zi

m

i=1

=
1

m
[∑ x(i)

m

i=1

+(n-m)x(m)] 

θ
^

=
1

m
∑ zi

m

i=1

 

We know that here zi's are iid exponential (θ). 

 

 Example 3: For the given probability density function of Weibull distribution: 

f(x)=
p

σ
xr-1e-xp/σ;σ,p,x>0; where σ=scale parameter, p=shape parameter  

S(t)=∫ f(x)dx

∞

t

=∫
p

σ
xp-1e-x/σdx

∞

t

=e-tp/σ 

h(t)=
f(t)

S(t)
=

p/σtp-1e-tp/σ

e-tp/σ
=

p

σ
tp-1. 

MLE estimation of parameters: Suppose 'n' units are put to test and test is terminated after 

termination of 1st r unit.  Then the likelihood is given by: 

L(σ,p∣x
―

) = c⋅∏ f(x(i))

r

i=1

[1-F(x
r
)]

n-r
 

Where, c= 
n!

(n-r)!
 

=∏
p

σ

r

i=1

⋅xi

p-1
⋅e-

x(i)
p

σ ⋅ ⌊e
-(

x(r)
p

σ
)

⌋

n-r

 

= (
p

σ
)
r

(∏ xi

p-1

r

i=1

)⋅e
-
1
σ

[∑ x(i)
p

r

i,1
+(n-r)x(r)

p
]
 

logL = rlog(p) - rlog(σ) + (p-1)∑ log xi -
1

σ
[∑x(i)

p
+(n-r)x(r)

p
].

r

i=1

 



 

 

Differentiating with respect to σ: 

∂ log L

∂σ
=-

r

σ
+

1

σ2
[∑x(i)

b +(n-r)x(r)
b ] 

⇒σ
^
=

1

r
⌊∑ x(i)

b

r

i=1

+(n-r)x(r)
b ⌋ 

∂logL

∂p
=

r

p
+∑ logxi

r

i=1

-
1

σ
[∑xi

p
logx(i)+(n-r)x

˙

r

p

logxr] 

p
^
→r[

1

σ
[Σx(i)

p
logx(i)+(n-r)x(r)

p
] -Σ log xi] 

These likelihood equations are transcendental equation. And can be solve by using any 

appropriate iterative procedure.  

E(x)= 
1

p
Γ

1

p
.σ

1

p  

 

Example 4: Gamma Distribution: Let x1,x2….xn be the complete sample 

L=∏ f(xi)

n

i=1

=
1

σn(√p)
n
⋅∏ xi

p-1

n

i=1

e-Σxi/σ 

log L=-n p log σ-n log√p
i
+(p-1)∑logxi-∑xi/σ 

∂logL

∂σ
=

-np

σ
+
⋅∑xi

σ2
=0 

⇒σ=
∑xi

np

=
x

p
 

∂logL

∂p
=-n log(σ) - n

∂log√p

∂p
+∑ logxi

n

i=1

 



 

 

Substituting the value of σ in the above equation, we get: 

∂logL

∂p
=-n log

x

p
-n

∂logΓp

∂p
+∑ log x

i

n

i=1

=0 

=log(
x

p
)-

∂log√p

∂p
-
1

n
∑logxi=0 

After getting the values of p by Newton Raphson method, we get the value of σ using invariance 

property of MLE, we get the ML estimation for Survival function S(t). 

 

2.7 Estimation under the assumption of IFR/DFR 

Lognormal Distribution 

If log x ∼ N(μ, σ2), then x~ lognormal (μ,σ2). 

f(x∣μ,σ2) = 
1

σx√2π
e-1/2σ2(logx-μ)

2
. 

=
1

σx
ϕ (

logx-μ

σ
) . 

F(x)=Φ(
logx-μ

σ
) 

h(x)=
f(x)

1-F(x)
=

1

σx
⋅

ϕ(
logx-μ

σ
)

1-Φ(
logx-μ

σ
)

 

In this distribution, maximum portion DFR then IFR, inverted Bathtub, Hazard is non 

monotonic.  

Maximum likelihood Estimation: 

If  x ~ lognormal (μ,σ2), then y=log x ∼ N (μ, σ2) 

μ
^
=y=

1

n
∑ y

i

n

i=1

=
1

n
∑ logxi

n

i=1

 



 

 

σ
^ 2

=
1

n
∑ (y

i
-y

^
)
2

n

i=1

 

σ
^ 2

=
1

n
∑ (

n

i=1

logxi-
1

n
∑ logxi

n

i=1

)

2

 

Thus, α = mean = exp(μ+
σ2

2
) and β =variance =(eσ2-1)(e2μ+σ2

) 

 

Normal Distribution 

f(x)=
1

σ√2π
e

-
1

2σ2
(x-μ)

2

; -∞<x,μ<∞ and σ>0 

If mean is very large than σ, then the distribution can be used as a life time distribution  

f(x)=
1

σ
ϕ(

x-μ

σ
). 

F(x)=ϕ̅ (
x-μ

σ
) 

The Hazard Rate is given as: 

h(x)=
f(x)

1-F(x)
=

1
σ

ϕ(
x-μ
σ

)

ϕ̅(
x-μ
σ

)
. 

h(x) is increasing with x so, normal distribution in this case follows IFR distribution. 

 

Pareto Family 

Simple (one parameter) form of this distribution is given by:  

F(x)=1-(1+θx)
-
1
θ,x>0,θ>0 

f(x)=(1+θx)
-(1/θ+1)

,x>0,θ>0 

r(x)=(1+θx)
-1

,x>0,θ>0. 



 

 

It is a family of DFR distributions. 

The two-parameter version of this distribution known as “Pareto distribution of second 

kind or Lomax distribution arises as a compound exponential distribution when the parameter 

of the exponential distribution, is itself distributed as a gamma variate.  

P[X ≤ x ∣θ]=1-e-x/θ,x>0,θ>0 

And μ=1/θ has a gamma distribution. Then: 

F(x)=P[X ≤ x] 

=
1

β
α
Γ(α)

∫ t(α-1)e-t/β(1-e-tx)dt

∞

0

 

=1-(βx+1)
-α

,α,β>0;x>0, 

f(x)=βα(βx+1)
-(α+1)

,α,β>0;x>0 

And r(x)=
αβ

(βx+1)
,α,β>0, x>0 

Observe that r(x)↓x. Hence this distribution also belongs to the DFR class.  

2.8 Summary 

 This unit covers the application of parametric survival models to analyze time-to-event 

data. It explores key concepts like the survival function, hazard function, and various life 

distributions used in reliability analysis. The module equips learners with the skills to estimate 

model parameters, understand increasing/decreasing failure rates, and make informed 

decisions based on survival analysis. 

2.9 Self-Assessment Exercise 

1. Suppose pain relief time follows the gamma distribution with λ=1, γ=0.5. Find: 

a) The hazard functions  

b) The Maximum likelihood estimation  

2. Suppose that the survival distribution is (1) Gompertz and (2) linear- exponential, and 

λ=1, γ=2.0. Plot the hazard function and find: 



 

 

a) The mean  

b) The probability of surviving longer than 1 unit of time 

3. Consider a survival distribution with constant hazard λ=0.07 from t=0 until t=5 and then 

hazard λ=0.14 for t > 5. (This is known as a piecewise constant hazard.) Plot this hazard 

function and the corresponding survival function for 0 < t < 10. What is the median survival 

time? 

4. Following are the times (in minutes) to break down of an insulating fluid between 

electrodes recorded at voltage 36kv. Assume Weibull distribution and estimate the 

parameters of the distribution .35, .59, .96, .99, 1.69, 1.97, 2.07, 2.58, 2.71, 2.90, 3.67, 3.99, 

5.35, 13.77 with and without censoring.  

5. Consider the following remission times in weeks for 21 patients with acute leukaemia: 1, 

1, 2, 2, 3, 4, 4, 5, 5, 6, 8, 8, 9, 10, 10, 12, 14, 16, 20, 24, and 34. Assume that remission 

duration follows the exponential distribution. Estimate the parameter λ. Also obtain the 

Maximum likelihood estimate and confidence interval for mean.  

6. Consider the following tumor-free times in days of 10 animals: 2, 3.5, 5,7, 9, 10, 15, 20, 

30, and 40. Assume that the tumor-free times follow the log-logistic distribution. Estimate 

the parameters and α and γ. 

7. In a study of deep venous thrombosis, the following blood clot lysis times in hours were 

recorded from 20 patients: 2, 3, 4, 5.5, 9, 13, 16.5, 17.5, 12.5, 7, 6, 17.5, 11.5, 6, 14, 25, 49, 

37.5, 49, and 28. Assume that the blood clot lysis times follow the lognormal distribution. 

a) Obtain MLEs of the parameters μ and σ2. 

b) Obtain 95% confidence intervals for μ and σ2. 
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3.1 Introduction 

 Survival analysis, or reliability analysis, examines the time until an event occurs, such 

as failure. This module introduces non-parametric methods in survival analysis, avoiding 

assumptions about survival time distributions. It covers the hazard function, describing the 

instantaneous failure risk, and the exponential distribution's role in inference, especially with 

censored data. However, the exponential distribution's memoryless property limits its use in 

scenarios where aging affects failure rates. The module introduces alternatives like the Total 

Time on Test (TTT) transform for assessing the increasing failure rate (IFR) property, 

indicating higher failure likelihood with age. It also explores U-statistics, useful for non-

parametric tests and estimators, including the Deshpande test for checking exponential 

distribution fit in data, crucial for reliability modelling. The “Two Sample Problem” in survival 

analysis refers to comparing two independent samples to test whether there is a difference in 

their survival distributions. The following two sample tests are discussed in this self-learning 

module - the Gehan Test, Log Rank Test, Mantel-Haenszel Test, and Tarone-Ware Test.  The 

Gehan Test extends the Wilcoxon rank-sum test to handle censored data. It compares the ranks 



 

 

of survival times across two groups, providing a robust option when dealing with censored 

observations. The Log Rank Test is a widely used method that assesses the null hypothesis of 

no difference in survival times between groups. By comparing observed and expected event 

occurrences at each observed event time, it provides a powerful test statistic. The Mantel-

Haenszel Test, while not exclusive to survival analysis, offers valuable insights in this context.  

It allows incorporating additional factors (strata) into the analysis, helping to control for 

potential confounding variables and assess the association between exposure and survival 

outcomes across different groups. The Tarone-Ware Test presents itself as an intermediate 

option between the Gehan and Mantel-Haenszel tests. It assigns weights to observations, 

accounting for potential variations in the underlying hazard functions, making it particularly 

useful when the proportional hazards assumption might not hold true. By working through this 

module, you will gain a comprehensive understanding of non-parametric methods in survival 

analysis, equipping you to analyse time-to-event data and draw meaningful conclusions from 

studies investigating the duration until an event of interest occurs. 

 

3.2 Objectives 

After going through this unit, you should be able to: 

• Explain the exponential distribution and its significance in survival analysis, particularly in 

dealing with censored data. 

• Apply alternative tools such as the Total Time on Test (TTT) transform and U-statistics to 

assess the increasing failure rate (IFR) property and construct non-parametric tests and 

estimators, including the Deshpande test for checking exponential distribution fit in data. 

• Understand the "Two Sample Problem" in survival analysis and apply the Gehan Test, Log 

Rank Test, Mantel-Haenszel Test, and Tarone-Ware Test to compare survival distributions 

between two independent samples, considering their advantages and applications. 

 

3.3 
Assumptions and Characteristics of exponentiality against non-

parametric classes 

 The exponential distribution plays an important role in reliability and life-time 

modelling, just as the normal distribution in classical statistics. For this distribution, explicit 

and simple forms of survival function, density and hazard are available. It is technically 

convenient for drawing inferences even in the presence of censoring. Furthermore, it is the only 



 

 

distribution with the memoryless (no ageing) property and therefore is often used to model the 

lifetimes of electronic and other non-ageing components. However, exponential distribution 

should be used judiciously since it’s no ageing property actually restricts its applicability. For, 

many mechanical components undergo wear (e.g., bearings) or fatigue (e.g. structural 

components) whereas certain electronic components undergo reliability growth. These are the 

reasons why testing for exponentiality is important and why there are many tests of 

exponentiality. However, out of the several tests for exponentiality we shall only study the 

three tests:  

(i) Hollander and Proschan's test (1972) 

(ii) Certain tests based on sample spacings (Hollander and Proschan ,1975), Kllefsjo (1983)  

(iii) Deshpande's class of tests (1983). 

 

U-Statistics  

 Let X1,X2,⋯,Xn be a random sample from the distribution F∈F. A parameter γ is said 

to be estimable for degree r for the family of distributions F if r is the smallest sample size for 

which there exists a function h
*
(x1,x2,⋯,xr) such that: 

EF[h
*
(X1,X2,⋯,Xr)]=γ (1) 

For every F∈F, the function h
*
(.) in Eq. (1) is known as the kernel for the parameter γ 

 It may be noted that for any kernel h
*
(x1,x2,⋯,xr) we can always create one that is 

symmetric in its arguments by using: 

h(X1,X2,⋯,Xr)=
1

r!
∑ h

*
(Xα1

,⋯,Xαr
)

A

 (2) 

where α1,α2,⋯,αr is a permutation of the number 1,2…. r and A are the set of all permutation 

(α1,⋯,αr) of the integers 1,2…. r.  

 A U-statistic for the estimable function γ is constructed with the symmetric kernel h(.) 

by forming: 

U(X1,⋯,Xn)=
1

ncr
∑ h(Xβ1

,⋯,Xβr
)

β
―
∈B

 
(3) 



 

 

Where β
―

=(β
1
,⋯,β

r
) is a combination of r integers from (1,2…. n) and B is the set of all such 

combinations.  

 

Variance of the U-statistic  

 For a symmetric kernel h(.) consider the random functions h(X1,⋯,Xc,Xc+1,⋯,Xr) and 

h(X1,⋯,Xc,Xr+1,⋯,X2r-c) having exactly c variables in common. The covariance between these 

two random variables is given by: 

 ξ
c
 = Cov[h(X1,⋯,Xc,Xc+1,⋯,Xr),h(X1,⋯,Xc,Xr+1,⋯,X2r-c)] 

  = E[h(X1,⋯,Xc,Xc+1,⋯,Xr)h(X1,⋯,Xc,Xr+1,⋯X2r-c)]-γ
2 

Therefore,  

ξ
c
= Cov[h(Xβ1

,⋯,Xβr
),h(X

β1
' ,⋯,X

βr
' )] 

(4) 

Where (β
1
,⋯,β

r
)
'
 and (β

1

'
,⋯,β

r

'
)
'
 are subsets of the integers {1,2, ⋯, n} having exactly c integers 

(out of r) in common. It may be notes that if c=0 then the kernel functions based on β and β
'
  

are independent. Hence ξ
0
=0. 

Now the variance of the U-statistic is:  

Var(U)=E [{
1

n
∑ h(Xβ1

,⋯,Xβr
)-γ

r∈B

}

2

] 

=
1

(ncr)
2
∑∑Cov[h(Xβ1

,⋯,Xβr
),h(X

β1
' ,⋯,X

βr
' )

β
'β

 

 All the terms in the above equation for which β
―

 and β
―

'
 have exactly c integers in the 

common have the same covariance, say ξ
c
. The number of such terms is (

n

r
)(

r

c
)(

n-r

r-c
). It follows 

that Var(U) = 
1

(nr)
∑ (

r

c
)

r

c=1

(
n-r

r-c
)ξ

c
 since ξ

0
=0. 

 

3.3.1 Total Time on Test 



 

 

 Let T1,T2…...Tn be a random sample of size n from the distribution F which is 

continuous and have support on the positive half of the real line. Let f be its density F̅, its 

survival function and rF , its failure rate function. The Total Time on Test Transform (TTT) of 

F is defined as: 

HF
-1(t)=∫ F

F
1
(t)

0

(u)du for 0≤t≤1 (5) 

F
1
(t) = inf{u:F(u)≥t} (6) 

Some Properties of TTT transform  

i) HF
-1(t) is integral of a non- negative function and hence HF

-1(t) is an increasing function of t,  

ii) If F-1(t)=∞ then HF
-1(t)=∫ F

∞

0
(u)du=μ= the mean of F. This is the largest value of HF

-1(t) 

iii) 
d

dt
HF

-1(t)=F (F-1(t))
d

dt
F-1(t) 

=F(F-1(t))⋅
1

[
d
du

F(u)]
u=F-1(t)

 

=F(F-1(t))⋅
1

f[F-1(t)]
 

=[
f(F-1(t))

F(F-1(t))
]

-1

=[r(F-1(t))]
-1

 

Where r(F-1(t)) is failure rate evaluated at F-1(t) 

iv) F is IFR if and only if HF
-1(t) is concave function of t.  

F is IFR⇔r(x)↑x 

⇔ r[F-1(t)]↑t ⇔{r[F-1(t)}
-1

↓t 

F is IFR⇔
d

dt
HF

-1(t)↓t 



 

 

⇔
d

2

dt2
(HF

-1(t))≤0 

⇔HF
-1(t) is concave function of t.  

v) F is NBUE iff ψ
F
(t)≥t,0≤t≤1 

F is NBUE ⇔∫
F(t+x)

F(t)

∞

0

dx≤μ, ∀t≥0 

⇔∫
F(y)

F(t)
dy

∞

t

≤μ by putting x+t=y 

⇔
1

u
∫ F

∞

F-1(1-u)

(y)dy≤μ 

By writing F(t)=u,0≤u≤1 

⇔
1

u
[μ-∫ F

F
1
(1-u)

0

(y)dy]≤μ,0≤u≤1 

⇔HF
-1(1-u)≥μ(1-u),0≤u≤1 

⇔
1

μ
HF

-1(1-u)≥(1-u),0≤u≤1 

⇔ψ
F
(t)≥t,0≤t≤1 

vi) let F be exponential (λ) where λ=
1

μ
 

HF
-1(t) =∫ F

F-1(t)

0

(u)du=∫ e-λudu

F-1(t)

0

 

=(-
1

λ
e-λu)

0

F-1(t)

=(
1

λ
-
1

λ
e-λ(F-1(t))) 

Where F-1(t)=-
1

λ
log(1-t). 



 

 

This gives, HF
-1(t)=t/λ=μt. 

If F is exponential then HF
-1(t)=μt, where μ is the mean of the distribution.  

Estimation of TTT transform of F 

F
^

(t)=Fn(t)= empirical distribution function =
(# sample T(i)≤t)

n
 

HFn

-1 (t)= Sample TTT transform  

HF
-1

^

(t) =∫ Fn(u)du.

Fn
-1(t)

0

 

HFn

-1 (j/n) =∫ Fn(u)du

T(j)

0

 

=∑∫ [1-
(i-1)

n
]

T(i)

T(i-1)

du

j

i=1

 

Note that between T(i-1) and T(i),F
^

n(t) and hence F

^

n(t) is constant.  Therefore, HFn

-1 (t) changes at 

1/n,2/n, ⋯ and in between is constant.  

HFn

-1 (j/n)=∑
(n-i+1)

n
[T(i)-T(i-1)]

j

i=1

 

HFn

-1 (j/n)=
Sj

n
,j=0,1,2,⋯,n 

Where Sj=∑ (n-i+1)(T(i)-T(i-1))
j

i=1

 

=∑Di

j

i=1

 

Where Di=(n-i+1) (T(i)-T(i-1)) are the normalized sample spacings 



 

 

Therefore, HFn

-1 (j/n) = 
1

n
∑ Di

j

i=1   and estimator of scaled TTT transform  

ψ
Fn

(j/n) =
1

Tn

∑ (
n-i+1

n
)

j

i=1

(T(i)-T(i-1)) 

=
1

Tn

Sj

n
 

=
Sj

Sn
, where Sn=nTn and S0=0. 

3.3.2 Deshpande Test 

A class of tests for exponentiality against increasing failure rate average alternatives. 

H0:F(x)=1-exp(-λx),x≥0,λ>0  (unspecified) 

H1:F is IFRA but not exponential.  

Rationale of the test:  

F is IFRA⇔[F(x)]
b
≤[F(bx)],0≤b≤1,0≤x<∞ (7) 

Equality in Eq. (4) holds iff F is exponential. For F, not exponential, but in IFRA class,  

[F(x)]
b
<F(bx), 0<b<1,0≤x<∞ (8) 

Let, MF=∫ F
∞

0
(bx)dF(x) 

Under H0; γ=MF=
1

(b+1)
 for 0<b<1 

Under H1; γ>
1

(b+1)
 

 For a chosen number b between 0 and 1 (0.5 and 0.9 are possible choices), (γ-
1

b+1
). 

may be taken as a measure of divergence of F from exponentiality.  

Construction of U-statistic for the testing problem 

Let  X1,X2………Xn be a random sample from the distribution F. Let τ=γ-
1

(b+1)
 and  



 

 

h(X1,X2) = ψ(X1-bX2) 

= {
1 if X1>bX2

0 otherwise 
 

EH0
(ψ(X1-bX2)) = P[X1>bX2] 

=∫ P[X1>bx]dF(x)

∞

0

 

=∫ F

∞

0

(bx)dF(x) 

=∫ (F(x))
b
dF(x)

∞

0

 

=
1

(b+1)
 

=γ 

 Thus, γ is an estimable function of degree 2 and h(X1,X2) is a kernel of degree 2. 

However, h(X1,X2) Is not symmetric. Hence a symmetric kernel is obtained as follows: 

h
*
(X1,X2)=

1

2
[ψ(X1-bX2)+ψ(X2-bX1)] 

(9) 

 Using this symmetric kernel, the corresponding U-statistic is constructed to test the 

hypothesis of interest: 

U = Jb=
1

(
n

2
)
⋅
1

2
∑∑[ψ(Xi-bXj)+ψ(Xj-bXi)]

i<j

 

=
1

n(n-1)
∑∑[ψ(Xi-bXj)+ψ(Xj-bXi)].

i<j

 

E(U)=γ under H0  asymptotic variance of √n(U-γ) is 4ξ
1
. Under H0, ξ

1
 is given by: 

ξ
1
=

1

4
{1+

b

2+b
+

1

2b+1
+

2(1-b)

(1+b)
-

2b

(1+b+b
2
)
-

4

(b+1)
2

} (10) 



 

 

 

3.4 Two Sample Problem 

  

For the first sample, T1,T2…….Tm be iid each with d.f. F1 and C1,C2,…,Cm be iid each 

with d.f. G1. Ci is the censoring time associated with Ti. We can observe (x1,δ1),…,(xm,δm) 

where: 

xi=Ti∧Ci,δi=I(Ti<Ci) (11) 

 And for second sample, let U1,U2,…,Un be iid each with d.f. F2, and D1,D2,…,Dn be 

the iid each with d.f. G2. Dj is the censoring time associated with Uj and we observe 

(Y1,ε1),…,(Yn,εn) where: 

Yj=Uj∧Dj,εj=I(Uj<Dj). (12) 

The usual two sample problems are to test: H0:F1=F2 

 

3.4.1 Gehan Test 

 Gehan’s test is an extension of the Wilcoxon test. Let the observations from the two 

samples be X1,………Xm;Y1,……….Yn. Order the combined sample and define  

Z1<Z2…..<Zm+n,R1i=rank of Xi ,  R1= ∑ R1i
m
i=1 . 

 Reject H0 if R1 is too small or too large. Use small sample tables or the large sample 

approximation: 

R1-E0(R1)

√var0(R1)
=

R1-
m(m+n+1)

2

√(
mn(m+n+1)

12
 

 ~N(0,1) (13) 

Where E0(R1) and Var0(R1) are the moments calculated under the null hypothesis. 

The Mann-Whitney form of the Wilcoxon test will be useful.  

U(x1,y
j
)=Uij={

+1  if x1>y
j
,

0  if x1=y
j
,  

-1  if x1<y
j
,

=∑∑U1j

n

j=1

m

i=1

 (14) 

It can be shown that R1=
m(m+n+1)

2
+

1

2
U. 



 

 

 To see this notice that if we have the total separation x(1)<⋯<x(m)<y(1)<…<y(n), then 

R1=
m(m+1)

2
. For every interchange of contagious x-y pair, R1 is increased by 1, and the number 

of such interchanges is ΣiΣj
1

2
(Uij+1). Therefore,  

R1=
m(m+1)

2
+∑∑

1

2
(U1j+1)

ji

 

=
m(m+1)

2
+

mn

2
+

1

2
U 

=
m(m+n+1)

2
+

1

2
U. 

 The Mann-Whitney test rejects H0 if U of |U| is too large. Use small sample tables or 

the large sample approximation: 

U-E0(U)

√Var0(U)
=

U

√mn(m+n)
3

 ~ N(0,1). 

For censored data, Gehan defines:  

Uij={

1 if we know ti>uj, i.e.,; (xi>y
j
,εj=1) or (xi=y

j
,δi=0,εj=1)

0;otherwise,

-1,if we know ti<uj, i.e.,

 

(xi<y
j
,δi=1) or (xi=y

j
,δi=1,εj=0), 

 (15) 

U= ∑∑Uij

n

j=1

m

i=1

 (16) 

 Reject H0 if U or |U| is large. The statistic U is asymptotically normally distributed by 

the theory of two-sample U-statistics, but to calculate the critical values we need to know the 

moments of U. 

Mean and variance of U 

 With no censoring, the mean and variance can be calculated using permutation theory. 

Under H0, consider sampling m balls without replacement from an urn containing m+n balls 

labeled Z1,………, Zm+n. Think of the labels on the m sampled balls as the values of 

X1,……,Xm, and the labels on the n unsampled balls as the values of Y1,……,Yn .  

 Let E(0,P)(U)=0=E0(U) and Var0,P(U)=
mn(m+n+1) 

3
=Var0(U). 



 

 

 With censoring, Gehan also uses permutation theory but under the more restrictive null 

hypothesis: H0
*:F1=F2   and G1=G2. Let the combined sample be denoted by (Z1,ζ

1
),……, 

(Zm+n,ζ
m+n
).  

 Consider sampling m balls without replacement from an urn containing m+n balls 

labeled (Z1,ζ
1
),……,(Zm+n,ζ

m+n
).  Think of the labels on the m sampled balls 

(X1,δ1),……, (Xm,δm) and the labels on the n unsampled balls as (Y1,ϵ1), ……,(Yn,ϵn). Then, 

E0,P
* (U)=0.  

 Mantel computational form for Var0,P
* (U): 

Ukl=U ((Zk,ζ
k
),(Zl,ζl

))= {

+1,  if (Zk>Zl, ζl
=1) or (Zk=Zl, ζk

=0, ζ
l
=1)

0; otherwise

-1; if (Zk<Zl,ζk
=1) or (Zk=Zl, ζk

=1, ζ
l
=0),

 (17) 

Uk
*= ∑Ukl ,

m+n

l=1
≠k

 

U= ∑Uk
*I(k∈I1),

m+n

k=1

 

 Where I1 is the set of integers comprising sample 1. Notice that U is equal to Gehan’s 

statistic because Uk1k2
= -Uk2k1

 so if k1, k2 ϵ I1 , they cancel each other out in the sum. 

 To calculate the permutation distribution of U, suppose we are given U1
*,……, Um+n

* .  

Under H0
*, we sample m of these Uk

* without replacement and form U, the sum of these m 

values. Using results on sampling from finite populations, 

Var0,P
* (U)=m (

1

m+n-1
∑ (Ui

*)
2
 

m+n

i=1

) (1-
m

m+n
)=

mn

(m+n)(m+n-1)
∑(Ui

*)
2
.

m+n

i=1

 

Example-1: In the hypothetical clinical trial constructed by Byron Wn. Brown, Jr. let the 

treatment A patients be the X observations and the treatment B patients be the Y observations.  

 

Rx A: 3 5 7 9
+
 18 

Rx B: 12 19 20 20
+
 33

+
 

 

Solution:  For Brown’s hypothetical clinical trial 



 

 

Z Rx #<Z #>z U* 

3 A 0 9 -9 

5 A 1 8 -7 

7 A 2 7 -5 

+9 A 3 0 3 

12 B 3 5 -2 

18 A 4 4 0 

19 B 5 3 +2 

20 B 6 2 +4 

20+ B 7 0 +7 

33+ B 7 0 +7 

 

U= -9-7-5+3+0 = -18, E0,P
* (U)=0; Var0,P

* (U)=
(5)(5)(286)

(10)(9)
=79.44. 

Under H0
*, 

U

√Var0,P
* (U)

= -
18

8.91
= -2.02~ N(0,1), 

So, p = 0.022 is the one-tailed p-value. 

 

3.4.2 Log Rank Test 

 The Log–Rank Test is a large-sample chi-square test that uses as its test criterion a 

statistic that provides an overall comparison of the KM curves being compared. This (log–

rank) statistic, like many other statistics used in other kinds of chi-square tests, makes use of 

observed versus expected cell counts over categories of outcomes. The categories for the log–

rank statistic is defined by each of the ordered failure times for the entire set of data being 

analysed. 

 Let ζ
1
≤ζ

2
≤…≤ζ

g
 be ordered failure times from the combined sample. Let dj=deaths at 

ζ
j
; rj = at risk at ζ

j
; rij=at risk at ζ

j
 from group i,  i=1,2. 

 The log Rank test compares the observed and expected (under H0). Number of deaths 

in group 1st. We have, E = Expected number of deaths (under H0) group I and O = observed 

Number of deaths from sample I (or group I).  

V = ∑ dj

rij

rj

g

j=1

 = ∑
djr1jr2j

rj
2

g

j=1

 (18) 

Then,  



 

 

Z=
O-E

√V
~ N(0,1)  (19) 

 

3.4.3 Mantel-Haenszel Test 

 Suppose we have two population, individual i.e., either population can have one of two 

characteristics e.g., population 1. Might be cancer population and certain treatment and 

population 2, cancer population under different treatment.  The patient is either group may 

either die within one year or survive beyond one year. The data may be summarized in a 2×2 

table as follows. 

 Dead Alive  

Population 1 a b n1 

Population 2 c  d  n2 

 m1 m2 n  

Where, 

a: No. of deaths at complete observation (say ‘t’ time) from sample 1. 

n1: a+b, indicates the no. at risk at t- time from sample 1. 

n2: define similarly. 

m1: c+d, Total number of deaths at t- time. 

m2: define similarly. 

n: a+b+c+d, total no. of observation 

Let, 

P1=P[Dead|Population 1] 

P2=P[Dead|Population 2]. 

We intend to test, H0:P1=P2 and the test statistic, 

Z=
p

1̂
-p

2̂

√p̂(1-p̂) (
1
n1

+
1
n2
)

 ~ N(0,1) 

Where, 

p
1̂
=

a

n1

  ,p
2̂
=

c

n2

 , p ̂=
a+c

n1+n2

=
m1

n
  



 

 

Z2=

(
a
n1

-
c
n2
)

2

m1

n
(1-

m1

n
) . (

1
n1

+
1
n2
)
 =  

n(ad-bc)2

m1m2n1n2

 ~ χ
1
2 (20) 

 This is an approximation to the exact conditional distribution under H0, given n1,n2, 

m1,m2 fixed the random variable A, the entry in cell (1,1) of 2×2 table, follow hyper geometric 

distribution with p.m.f. 

P(A=a)=
(n1

a
) ( n2

m1-a
)

( n

m1
)

; a=0(1)min(m1,n1) 

E(A)=
m1n1

n
 and  Var(A)=

m1m2n1n2

n2(n-1)
 

Consider, 

a-EH0
(A)=a-

m1n1

n
=

na-m1n1

n
=

ad-bc

n
  

ad-bc=n[a-EH0
(A)] 

And, m1m2n1n2=n2(n-1)varH0
(A) 

So, 

n(ad-bc)2

m1m2n1n2

=
n3[a-EH0

(A)]
2

n2(n-1)varH0
(A)

 = 
n[a-EH0

(A)]
2

(n-1)varH0
(A)

 ~χ
1
 [as n→∞] 

 Now suppose we have a sequence of 2 * 2 tables. For example, we might have k 

hospitals; at each hospital, patients receive either treatment 1 or treatment 2 and their responses 

are observed. 

 D A   D A  

Treatment 1 a1  n11 ……….. ak  nk1 

Treatment 2   n12    nk2 

  m11 m12 n1  mk1 mk2 nk 

 Hospital 1    Hospital k 

 Because there may be difference among hospitals, we don’t want to combine all k-table 

into a single 2×2 table. Based on these table (k). We want to test:  



 

 

H0:P11=P12, P21=P22, ……., Pk1=Pk2. 

Where, 

Pi1=P[Dead|Population1, Hospital i] 

Pi2=P[Dead|Population 2, Hospital i],  ∀i=1(1)k. 

Suppose, ai=no. of patients receiving treatment 1, who died in hospital 'i'. 

 Montel-Haenzel suggested the following statistic: 

MH= ∑
|ai-EH0

(Ai)|-
1
2

√∑ VH0
(Ai)

k
i=1

 

k

i=1

~N(0,1) (21) 

Here, 
1

2
 may be consider as continuity correction 

 If the tables are independent, then MH~N(0,1) either when k is fixed and n1→∞ or 

when k→∞ and the tables are also identically distributed. 

 In survival analysis the MH statistic is applied as follow. As  (Z1,ζ
1
),….(Zm+n,ζ

m+n
) is 

the combined ordered sample. Construct a 2×2 table for each uncensored time point. 

 

 

 D A  D A  D A  

X 1  X 0  X 2   

Y 0  Y 1  Y 0   

  n1   n2   n3  

Example-2: The computations for the MH statistic in Brown’s hypothetical clinical trial are 

given in table. The column labeled z contains the uncensored ordered observations. The next 

four columns labeled n, m1, n1,  a construct the 2×2 tables. The next column is 

E0(A)=
n1m1

n
. The product of the last two columns, labeled 

m1(n-m1)

n-1
 and (

n1

n2
) (1-

n1

n
), is 



 

 

var0(A); it is convenient to break up the calculation of var0(A) in this way because 
m1(n-m1)

n-1
 is 

usually equal to 1 and (
n1

n
) (1-

n1

n
) is the product of the proportions in the two samples. 

z n m1 n1 a  E0(A) a-E0(A) m1(n-m1)

n
-1 

n1

n
(1-

n1

n
) 

3 10 1 5 1 .50 0.50 1 .2500 

5 9 1 4 1 .44 0.56 1 .2469 

7 8 1 3 1 .38 0.62 1 .2344 

12 6 1 1 0 .17 -0.17 1 .1389 

18 5 1 1 1 .20 0.80 1 .1600 

19 4 1 0 0 0 0 1 0 

20 3 1 0 0 0 0 1 0 

 

MH=
sum of a-E0(A) column

√sum of (
m1(n-m1)

n-1
 col.×

n1
n
(1-

n1
n
)col.)

, 

=
2.31

1.02
=2.26. 

p = .012 (one-tailed). 

MHc=
2.31-0.50

1.02
 , 

=
1.81

1.02
=1.77. 

p = .038 (one-tailed) 

Asymptotic normality 

To show asymptotic normality, we adapt Crowley’s representation to our case. Assume no ties. 

Denote N=m+n, 

Ĥ(t)=
1

N
∑ I(Zi≤t)

N

i=1

, Ĥ1(t)=
1

m
∑ I(Xi≤t)

m

i=1

 



 

 

Ĥu(t)=
1

N
∑ I(Zi≤t, ζ

i
=1)

N

i=1

;  Ĥ1u(t)=
1

m
∑ I(Xi≤t, δi=1)

m

i=1

. 

Then the numerator of MH is: 

∑(ai-E(Ai))

k 

i=1

=m {∫ dĤ

∞

0 1u

(s)- ∫
1-Ĥ1(s-)

1-Ĥ(s-)
dĤu(s)

∞

0

} (22) 

 To see this, recall that E(Ai)=
mi1ni1

ni
  where ai, mi1, ni1, ni are gotten from the 2×2 table 

corresponding to the ith uncensored observation: 

 D A   

X ai  ni1  

Y    

 mi1  ni 

 Because we have assumed no ties,  mi1=1. Letting si denote the time of the ith 

uncensored observation, 

ni1= #(X's remaining at time si-), 

= m (1-Ĥ1(si-)) 

ni=# (Z's remaining at time si-) 

=N (1-Ĥ(si-)) . 

 Now that we have the numerator of MH expressed in terms of empirical (sub) 

distribution functions, we may apply arguments similar to those used in showing the asymptotic 

normality of the PL estimator. 

 

3.4.4 Tarone-Ware Test 

Tarone-ware suggested the following statistic: 

∑Wi|a-EH0
(A)|

k

i=1

 (23) 

where  wi denotes the weight of ith class or observation. 

Variance, 



 

 

∑wi
2

k

i=1

varH(A)= ∑wi
2 [

mi1(ni-m1i)

ni-1
.
n1i

ni

. (1-
n1i

ni

)] (23) 

Cases: 

I. If wi=1, it become Montel-Haenzel statistic. 

II. If wi=ni;  then it given Gehan’s statistic with its variance given as above. 

III. If wi=√ni, this suggested by Tarone-Ware. 

It may be noted that Gahen’s statistic put more weight to small observations while MH 

statistic puts equal weight to each observation. Tarone and ware’s suggestion is intermediate 

between the two. They claim that wi=√ni, have greater efficiency over the range of alternatives. 

Notes: 

1. The Gehan statistic puts more weight on the beginning observations, while the MH statistic 

puts equal weight on each observation. Tarone and Ware's suggestion is intermediate 

between the two, and they claim that the weights wi =  √ni  have high efficiency over a 

range of alternatives. 

2. Although Tarone equation is identical to the Gehan statistic U, Var̂TW(U), is not the same 

as Var0,P
* (U). Asymptotically,  Var̂TW(U) is equivalent to the variance of U under H0 while 

Var0,P
* (U) is the variance under H0

*. 

Example-3: Using the above Example-2, where we calculate the MH statistic for Brown’s 

clinical trial, 

∑ ni(ai-E(Ai))=(10)(.50)+(9).56)+(8).62)+(6)(-.17)+5(.80)

k

i=1

 

= 17.98 

Which is what we got for Gehan’s statistic U except for sign and roundoff. Also, 

Var̂TW(U) = ∑ ni
2 [

mi1(ni-mi1)

ni-1
] [(

ni1

ni

) (1-
ni1

ni

)] 

= (10
2)(.25)+(92)(.2469)+(82)(.2344)+(62)(.1389)+(52)(.16), 



 

 

= 69 

Var0,P
* (U) = 79.44 , 

Which give: √Var̂TW(U)=8.31 and √Var0,p
* (U)=8.91 

3.5 Summary 

 This unit covers the application of survival analysis, also known as reliability analysis, 

which investigates the time until an event like failure occurs. Non-parametric methods are 

introduced to avoid assumptions about survival time distributions, along with concepts like the 

hazard function and the role of the exponential distribution, especially with censored data. 

Alternatives like the TTT transform and U-statistics are explored, including the Deshpande test 

for assessing exponential distribution fit, crucial for reliability modelling. The module also 

delves into the "Two Sample Problem" in survival analysis, discussing tests like the Gehan 

Test, Log Rank Test, Mantel-Haenszel Test, and Tarone-Ware Test. These tests offer various 

approaches to comparing survival distributions between independent samples, providing robust 

options for handling censored observations and controlling for confounding variables. 

 

3.6 Self-Assessment Exercise 

1. Following table shows failure time of two machines, new and old. 

 Failure times (day) 

New machine 250, 476+, 355, 200, 355+ 

Old machine 191, 563, 242, 285, 16, 16, 16, 257, 16 

(+ indicates censored times). 

Test whether the new machine is more reliable than the old one by using log rank test. 

2. Ten female patients with breast cancer are randomized to receive either CMF (cyclic 

administration of cyclophosphamide, methatrexate, and fluorouracil) or no treatment after 

a radical mastectomy. At the end of two years, the following times to relapse (or remission 

times) in months are recorded: 

CMF(Group1) 23 16
+
 18

+
 20

+
 24

+
 

Control (Group 2)  15 18 19 19 20 

Test whether the CMF more efficient than no treatment (Control Group) using the Gehan 

Test.  



 

 

3. Five hundred and ninety-five persons participate in a case control study of the association 

of cholesterol and coronary heart disease (CHD). Among them, 300 persons are known to 

have CHD and 295 are free of CHD. To find out if elevated cholesterol is significantly 

associated with CHD, the investigator decides to control the effects of smoking. The study 

subjects are then divided into two strata: smokers and non-smokers. The following tables 

give the data for smokers: 

Elevated cholesterol? With CHD Without CHD Total 

For smokers 

Yes 120 20 140 

No 80 60 140 

Total 200 80 280 

For non-smokers 

Yes 30 60 90 

No 70 155 255 

Total 100 215 315 

Compare the survival distributions of the two treatment groups using the Mantel Haenszel 

Test.  

4. The table below gives the survival times in weeks of 30 brain tumour patients receiving 

four different treatments. Are the four treatments equally effective?  

 

1 2 3 4 

4 1 3 5 

5 4 7 15 

9 9 14 20 

12 12 20 31 

20
+
 15 27 39 

25 23 30 47 

30
+
 30 32

+
 55+ 

  50
+
 67

+
 



 

 

5. Form the below table, use Mantel’s procedure for Gehan’s generalized Wilcoxon test to 

compute a score for each observation and the sum of scores for each of the three treatment 

groups.  

Group – 1 4, 5, 9, 10, 12, 13, 10, 23, 28, 28, 28, 29, 31, 32, 37, 41, 41, 57, 62, 74, 

100, 139, 20+, 258+, 269+ 

Group – 2 8, 10, 10, 12, 14, 20, 48, 70, 75, 99, 103, 162, 169, 195, 220, 161+, 

199+, 217+, 245+ 

Group – 3 8, 10, 11, 23, 25, 25, 28, 28, 31, 31, 40, 48, 89, 124, 143, 12+, 159+, 

190+, 196+, 197+, 205+, 219+ 
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4.1 Introduction 

 Survival analysis is a fundamental statistical tool used to analyze time-to-event data, 

where the primary interest lies in understanding the time until an event of interest occurs. In 

this chapter, we focus on the Proportional Hazard Models, with a particular emphasis on the 

Cox Proportional Hazards Model. This model is a cornerstone in survival analysis due to its 

ability to analyze the effect of covariates on survival times without assuming a specific form 

for the underlying survival distribution. The Cox Proportional Hazards Model is a versatile tool 

in survival analysis as it does not require knowledge of the underlying survival distribution. It 

assumes that the hazard rates among individuals change in step functions over time, under the 

proportionality assumption. This assumption implies that the hazard functions for different 

individuals are proportional and time-independent, allowing for the inclusion of covariates that 

can be time-dependent or constant. Statistical inference in the Cox model is based on the partial 

likelihood function, which considers the relative ordering of event times rather than the exact 

times themselves. This makes the Cox model particularly useful in identifying significant 



 

 

prognostic factors when the exact form of the survival distribution is unknown. To ensure the 

validity of the Cox Proportional Hazards Model, it is crucial to assess the proportionality 

assumption. This can be done using both graphical and analytical tests. The graphical test 

involves comparing survival functions for two groups using a log-log plot, while the analytical 

test utilizes a test statistic based on pairs of observed survival times. These tests help 

researchers determine if the hazard functions of different individuals are parallel, indicating 

proportionality. The Cox Proportional Hazards Model can be extended to include several 

covariates, allowing for the analysis of the effect of multiple factors on survival times. This 

extension does not require specifying the baseline hazard function and provides a framework 

for interpreting regression coefficients and constructing the likelihood function for observed 

failure times. In the context of competing risks, where multiple risks compete to cause failure, 

the Cox model can be extended to account for these complexities. Each risk is associated with 

its own cause-specific hazard function, and the overall hazard is the sum of all cause-specific 

hazards, assuming the failure types are mutually exclusive. This section also covers modeling 

the joint distribution of survival time and cause of failure using sub-survival functions and 

constructing multiple decrement life tables to reflect competing risks. The chapter concludes 

with a discussion on multiple decrement life tables, which are used to compute survival 

probabilities when multiple, mutually exclusive risks affect the population. This section 

introduces cause-specific hazard functions and decrement probabilities for each cause, 

providing a comprehensive framework for understanding the impact of individual risks on 

survival probability. 

 

4.2 Objectives 

After going through this unit, you should be able to: 

• Explain the principles of Proportional Hazard Models, with a focus on the Cox Proportional 

Hazards Model and its significance in survival analysis. 

• Apply the Cox Proportional Hazards Model to analyze survival data effectively, 

demonstrating proficiency in assessing the impact of covariates on survival times without 

requiring assumptions about the underlying survival distribution. 

• Evaluate the validity of the proportionality assumption inherent in the Cox Proportional 

Hazards Model through both graphical and analytical tests, ensuring the appropriate 

application of the model in survival analysis. 



 

 

• Extend the application of the Cox Proportional Hazards Model to accommodate multiple 

covariates and competing risks, enabling the analysis of factors influencing survival times 

and understanding the complexities of competing failure types in survival analysis. 

 

4.3 Assumptions and Characteristics 

Proportional Hazard models 

The parametric survival methods for model fitting and for identifying significant 

prognostic factors are powerful if the underlying survival distribution is known. The estimation 

and hypothesis testing of parameters in the models can be conducted by applying standard 

asymptotic likelihood techniques. However, in practice, the exact form of the underlying 

survival distribution is usually unknown, and we may not be able to find an appropriate model. 

Therefore, the use of parametric methods in identifying significant prognostic factors is 

somewhat limited. We discuss a most commonly used model, the Cox (1972) proportional 

hazards model, and its related statistical inference. This model does not require knowledge of 

the underlying distribution. The hazard function in this model can take on any form, including 

that of a step function, but the hazard functions of different individuals are assumed to be 

proportional and independent of time. The usual likelihood function is replaced by the partial 

likelihood function. The important fact is that the statistical inference based on the partial 

likelihood function is similar to that based on the likelihood function.  

Assumption 

The proportional hazards assumption states that the hazard ratio associated with each 

covariate is constant over time. In other words, the relative hazard of experiencing the event 

remains constant across different levels of the covariate(s) throughout the follow-up period. 

This assumption implies that the hazard curves for different levels of the covariate(s) are 

parallel over time. 

Graphical Test 

Consider the case of single variate at two levels denoted by z=0 (control)  and z=1  

(treatment). Let X and Y denote the lifetime of the subjects for the two values of the covariates 

Z0. Let F and G be the survival functions and hf and  hG be the hazard function of X and Y 

respectively. Under the proportional hazard assumption, we have: 



 

 

hG(t)=δhF(t) 
(1) 

Where δ>0 is the constant of proportionality  

From equation 1), in term of survival functions is: e-∫ hG(u)du
t

0  = e-δ∫ hF(u)du
t

0  

G(t)̅̅ ̅̅ ̅̅ =[F(t)̅̅ ̅̅ ̅]δ
 (2) 

Under commonly used log linear function δ=eβ where β is the regression coefficient. Using 

equation 2) we have:  

⇒-logG(t) = δ(-logF(t)) 

⇒-log(-logG(t)) = -logδ-log(-logF(t)) = -β-log(-logF(t)) 

Now consider the estimated transformed survival curves corresponding to two groups indexed 

by 0 and 1. The difference between their transformed survival curves is β, a constant not 

depending on t.  So, if we plot the transformed survival curves for the two groups on the same 

plot, they should be parallel if the proportionality assumption holds.  

 

Example:  Suppose a data set from randomized clinical trial investigate prednisolone therapy. 

These are the survival times in months until death from chronic active hepatitis patients (+ 

denotes censored data)  

Treatment Group: 2, 6, 12, 54, 56+, 68, 89, 96, 96, 125+, 128+, 131+, 140+, 141+, 143, 145+, 

146, 148+, 162+, 168, 173+, 181+ 

Control Group: 2, 3, 4, 7, 10, 22, 28, 29, 32, 37, 40, 41, 54, 61, 63, 71, 127+, 140+, 146, 158+, 

167+, 182+ 

                             Data set 1:   

 

                               Data set 2: 

 



 

 

Analytical Test  

Let X~F (control groups) and Y~ (treatment group) under proportional assumption (or 

under PH assumption) G(t)=[F(t)]
δ
. δ>0∀t, or, hG(t)=δhF(t). 

The value of δ=1 indicates that X and Y have the same probability distribution. Given 

x1,x2…….xnand y
1
,y

2
….y

m
, two independents’ samples from F and G respectively. We 

assume that there is no censoring. Define a statistic:  

U=
1

mn
∑∑Φ(xi,yj

)

m

j=1

n

i=1

 (3) 

Where 

 Φij=Φ(xi,Yj)= {
1 ; if xi≤y

j

0 ; otherwise. 
 

Then,  

Z=
U-E(U)

√V(U)
∼N(0,1) 

E(Φij) = 1⋅P(xi≤y
j
)+0⋅P(xi>y

j
)=P(xi≤y

j
) 

=∑ ∑G(y)⋅dF(x)

∞

y=x

∞

x=0

=∫ G

∞

x=0

(x)dF(x)=∫ (F(x))
δ
dF(x)

∞

x=0

 

=-∫ tδdt

0

1

, (let F(x)=t⇒-DF(x)=dt) 

=∫ tδdt

1

0

=
tδ+1

δ+1
]
0

1

=
1

δ+1
 

E(u)=
1

mn
∑∑

1

δ+1

m

j=q

n

i=1

=
1

δ+1
 

We intend to test whether, H0:δ=0 vs. H1:δ≠0 



 

 

Under H0:δ=0, we have E(U)=
1

δ+1
 and under H1:δ≠0 we have E(U)>

1

δ0+1
. Hence a test which 

rejects for large value of U is reasonable in this context.  

Var(u)=∑∑Var(Φij)

m

j=1

n

i=1

+∑ ∑ ∑Cov((Φij,Φil)

≤j<m≠l

n

i=1

+∑ ∑ ∑Cov((Φil,Φkl)

i≤i≠k<n

m

i=1

+ 

∑ ∑∑ ∑ Cov((Φij,Φkl)

i≤j≠l<nl≤i≠k≤n

 

Var(Φij)=E[Φij
2]-{E[Φij]}

2
 

=
1

δ+1
-(

1

δ+1
)

2

=
1

δ+1
(1-

1

δ+1
) 

=
δ

(δ+1)
2
 

Cov(Φij,Φii) = E[Φij,Φil]-E(ϕ
ij
)⋅E(Φil) 

E[ΦijΦil] = P[xi<y
j
 and xi<y

l
] 

=∫ ∫ dG(y)
2
dF(x)

∞

y=x

∞

x=0

 

∫ {G(x)̅̅ ̅̅ ̅̅ }
2
dF(x)=∫ (F(x))

2δ
dF(x)

∞

0

∞

0

 

=-∫ t2δdt=
t2δ+1

2δ+1
]

0

1

=
1

2δ+1

1

0

 

cov(Φij,Φil)=
1

2δ+1
-(

1

δ+1
)

2

=
δ

2

(δ+1)
2
(2δ+1)

 

When j=l 

 E[Φil,Φkl
] = P[xi<y

l
&xk<y

l] 



 

 

=∫ ∫ dF(x)2dG(y)

y

0

∞

y=0

=∫ (F(y))
2
dG(y).

∞

y=0

 

=∫ (1-F(y))
2
dG(y)

∞

y,0

=∫ (1-(G(y))
1/δ

)
2
dG(y)

∞

y=0

 

=∫ (1-y1/δ)
2
dy

1

0

=δ B(3,δ)=
δ√3√δ

√3+δ
=

2δ√δ

(δ+2)(δ+1)δ√δ
=

2

(δ+2)(δ+1)
 

cov[Φil,Φkl] = 
2

(δ+2)(δ+1)
-(

1

δ+1
)

2

=
2δ+2-δ-2

(δ+1)
2
(δ+2)

=
δ

(δ+2)(δ+1)
2
 

V(u) = 
1

(mn)
2
[

δ

(δ+1)
2
]+

δ
2

(δ+1)
2
(2δ+1)

*
n(m-1)m

m2n2
+

δ

(δ+2)(δ+1)
2
⋅
(n-1)

mn
 

V(u) = 
1

(δ+1)
2
mn

[
δ

mn
+

δ
2(m-1)

(2δ+1)
+

δ(n-1)

(δ+2)
]=

δ

(δ+1)
2
mn

[
1

mn
+

δ(m-1)

2δ+1
+

n-1

δ+2
] 

 

4.4 Semi – Parametric Regression for Failure Rate 

Cox-Proportional Hazard Model  

 Here, we study certain models which incorporate the effect of covariates of explanatory 

variable on the distribution of life times. With this model, we will be able to test whether the 

covariates affect the lifetimes significant or not covariates may be in several form: 

Covariates: these are the characteristic or features of the experimental units which are though 

to affect the lifetimes of individuals. Following are some examples of covariates:  

i) Treatment 

 In simple comparison of 2 treatment, say a new treatment with a central or standard 

treatment. We consider a binary covariate; 

ᵶ= {
1;                       if an individual recieve a new treatment

0; if an individual recieve control or standard treatment
 

ii) Intrinsic Properties 

 Explanatory variables or covariates, measuring intrinsic properties of the individual, 

include (in medical context) such variables as sex, age on entry in the medical trial and 

variables describing medical history before admission to the study. 



 

 

iii) Exogeneous Variables 

 This type of covariates exhibits environmental features of the problem, for example, 

grouping of individuals according to observers or apparatus, month in which the experiment 

was carried out, etc. 

The covariates could be constant over time or dependent on time. For example, 

i) Suppose that a treatment is applied at time t0>0. Then one can incorporate a time dependent 

binary covariate (Z(t)) defined as  

Z(t)= {
0 if t<t0
1 if t≥t0

 

ii) In some industrial applications, a time varying stress may be applied. So, the covariate 

process will be the entire history of the stress process. 

Model formulation              

Suppose that for every individual there is defined a vector ᵶ of covariates, such models are 

developed in two parts. 

i) A model of distribution of lifetime where ᵶ = 0, which may be called baseline model 

ii) A representation (link function) of the changes introduced by the non-zero vector ᵶ. 

 

4.4.1 Cox’s Proportional Hazards Model with one covariate 

The simplest form of cox proportional hazard model for single covariate x is given by:  

• h(t,ᵶ)=h0.Ψ(ᵶ)=h0.exp(βx)  

• Ψ(ᵶ)=  link function bringing in the covariate; 

• h0(t) = baseline hazard rate (Hazard rate of control grp) 

• Ψ(ᵶ) satisfies, Ψ(0)=1 and Ψ(ᵶ)>0 ∀ ᵶ 

4.4.2 Cox’s Proportional Hazards Model with several covariates  

The simplest form of proportional hazard model is, 

h(t,ᵶ)=h0.Ψ(ᵶ) 

Ψ(ᵶ)=  link function bringing in the covariate; 

h0(t) = baseline hazard rate (Hazard rate of control grp). 



 

 

Ψ(ᵶ) satisfies, Ψ(0)=1 and Ψ(ᵶ)>0 ∀ ᵶ 

The following two forms of Ψ are commonly used; 

i) Ψ(ᵶ,β)= exp(β'
ᵶ)      (log linear form); 

ii) Ψ(ᵶ, β)=1+β
'
ᵶ           (linear form) 

We shall consider h0(t) unknown and the covariates as fixed quantities, thus leading to semi-

parametric model. 

Complete data Modelling 

Let t1, t2, ………,tn be the observation and ζ
1
<ζ

2
<…<ζ

n
 denote ordered failure times 

of n-individuals. Let li be the label of the subject which fails at ζ
j
. Thus, lj=i  iff   ti=ζ

j
.Let 

R (ζ
j
) be the risk set at ζ

j
. i.e., R (ζ

j
) = {i;ti≥ζ

j
} .  

For example: R(ζ
1
)={1,2,3} 

R(ζ
2
)={1,3},   R(ζ

3
)={1} 

 

 

 Individual i  failure time ti j R(τj)

1 20 3 1

2 10 1 1,2,3

3 15 2 1,3

 

 

 
 

Likelihood Function 



 

 

The basic principle of the derivation of the likelihood is as follows. The {τj}and  {lj} are 

jointly equivalent to the original data, namely the unordered failure times ti. In the absence of 

knowledge of h0(t), the τj can provide little or no information about β as their distribution 

depends heavily on h0(t). 

The conditional probability that lj=i given Hj= {ζ1
, ………, ζ

j
 ;  i1, i2,………, ij-1} 

P[lj=i | Hj] upto j
th

 failure time ζ
j
 can be written as follows. 

P[lj=i |Hj]   = The conditional prob that individual i fail at ζ
j
 given that one individual from 

R (ζ
j
) fails at ζ

j
 

hi (ζ
j
)∆t

∑ hk (ζ
j
)∆t(kϵR(ζj)

=
hi(ζi

)

∑ hk (ζ
j
)

kϵR(ζj)

 

P[lj=i |Hj] =
h0(t)Ψ(i)

∑ h0(t).Ψ(k)kϵR(ζj)

 

=
Ψ(i)

∑ Ψ(k)
kϵR(ζj)

 

L(i1,i2,………,in) = ∏ Pj[ej=i|Hj]

n

i=1

 

= ∏
Ψ(i)

∑ Ψ(k)
kϵR(ζj)

n

i=1

 

Example: In a laboratory, test was conducted with 3 rats. First and second rats were given 100 

mg dose of a drug whereas the third rat was given 50 mg dose. The purpose is to determine 

whether increment in dose of drug has any influence on the survival of rats. Let: 

t1=60 days.(100 mg dose) 

t2=30 days. (100 mg dose) 

t3=50 days.  (50 mg dose) 

ζ
1
=30=t2  



 

 

ζ
2
=50=t3  

ζ
3
=60 =t1  

Let the covariate ᵶ assumes value 0 for 50 mg dose and 1 for 100 mg dose. 

t1→ᵶ1=1 

t2→ᵶ2=1 

t3→ᵶ3=0 

w.r.t. ᵶj 

i ti lj Rj 

1 60 3 1 

2 30 1 (x, 3, 1) 

3 50 2 (1,3) 

 

L(2,3,1)=
Ψ(2)

Ψ(2)+Ψ(3)+Ψ(1)
 ×

Ψ(3)

[Ψ(1)+Ψ(3)]
×

Ψ(1)

Ψ(1)
 

Let  

Ψ(β'
ᵶ)=eβ

'
ᵶ 

Ψ(1)= eβ,   Ψ(2)=eβ,  Ψ(3)=1  

L(2,3,1) =
eβ

1+eβ+eβ
×

1

1+eβ
 ×1 

=
eβ

(1+eβ)(1+2eβ)
 

log L = β- log[1+eβ] - log(2eβ+1) 

∂logL

∂β
=1-

1

1+eβ
 . eβ-

2eβ

2eβ+1
=0 

β= -0.347 

eβ = 0.746  

h(t)= {
h0(t)              ;ᵶ=0

h0(t)*0.706  ;ᵶ=1
 

This shows that, when ᵶ=0, i.e., dose of 50 mg is provided, the hazard rate remains same but 

with increment of dose (100 mg); i.e., ᵶ =1, the hazard rate decreases, and so the chances of 

survival increase with use of 100 mg dose. 



 

 

  

Censored Data 

Suppose that there is ‘d’ observed failures. From the sample of size ‘n’. Let the ordered 

observed failure times be ζ
1
≤ζ

2
≤…≤ζ

d
. Let lj=i   if the subject I fails at ζ

j
 And let 

R(tj)= { i:ti≥ζ
j
} be the corresponding risk set. The likelihood function can be obtained similar 

to the precious case. Here, Hj will also include censored observation in (0,ζ
j
) ,  as well as 

information regarding the failure and the combination of these condition probabilities gives the 

overall partial likelihood: 

L= ∏
Ψ(i)

∑ Ψ(k)kϵRiiϵD

  =   ∏
Ψ(k)

∑ Ψ(k)kϵRi

d

j=1 

 

Where D is the set of complete observations. 

 Ri=R(ti) and ti
' s are the unordered failure times. It may be noted here that we have omitted 

terms corresponding to censored observation from each risk set. Since censoring mechanism, 

itself does not depend on β, such terms can be ignored for the purpose of likelihood inference 

about β.  

For the general case the log likelihood is: 

log(L)=∑[logψ(i)-log∑ ψ(k)

k∈Ri

]

i∈D

=∑Li

i∈D

 (4) 

Assume that ψ(i) possesses first and second derivatives with respect to β
―

 for all i.  

Then,  

δLi

δβ
r

=
ψ

r
(i)

ψ(i)
-

∑ ψ
r
(k)

k∈Ri

∑ ψ(k)k∈Ri

 

Where, ψ
r
(i)=

δ

δβr

ψ(i),r=1,2,⋯,q 

Let:  



 

 

ψ
rs

(i)=
δ

2

δβ
r
δβ

s

ψ(i)r=1,2,⋯,q,s=1,2,⋯,q 

Then: 

δ
2
Li

δβ
r
δβ

s

=
ψ

rs
(i)

ψ(i)
-
ψ

r
(i)ψ

s
(i)

[ψ(i)]
2

-

∑ ψ
rs

(k)
k∈Ri

∑ ψ(k)k∈Ri

+

∑ ψ
r
(k)

k∈Ri

∑ ψ
s
(k)

k∈Ri

[∑ ψ(k)k∈Ri
]
2

 

For the log linear form:  

δLi

δβ
r

=zir-

∑ zkrexp[β
―

'
Z
―k

]k∈Ri

∑ exp[β
―

'
Z
―k

]k∈Ri

 (5) 

Where zir = value of the r-th covariate for ith subject.  

 

Example: The following figure summarize the information regarding the failure of four 

individuals with censoring.  

 
From this figure: R3={ 1,2,3,4}=R(τ1) 

R1={1,2}=R(τ2) (3 has failed and 4 censored before τ2) 

R2={2}=R(τ3). 

The partial likelihood is:  

L=
Ψ(3)

Ψ(1)+Ψ(2)+Ψ(3)+Ψ(4)
×

Ψ(1)

Ψ(1)+Ψ(2)
×

Ψ(2)

Ψ(2)
 

Ψ(i) = eβ
'
ᵶ= {

1   ;      i=1.

eβ   ;   i=2,3,4
 



 

 

L = 
eβ

3eβ+1
 .

1

1+eβ
 . 

 

4.5 Rank Test for the Regression Coefficients 

 

The likelihood function for censored case is: 

L=∏
ψ(i)

∑ ψ(k)k∈Rii∈D

 

logL=∑[logψ(i)-log ∑ ψ(k)

k∈Ri

]

i∈D

 

=∑Li

i∈D

 

Where, 

Li= [logψ(i)-log∑ ψ(k)

k∈Ri

] 

∂Li

∂βr

=
1

ψ(i)
⋅

∂

∂βr

ψ(i)-
1

∑ ψ(k)k∈Ri

∑
∂

∂βr

ψ(k); [r=1(1)q.] 

∂Li

∂β
r

=
ψ

r
(i)

ψ(i)
-
∑ Ψr(x)k∈Ri

∑ ψ(k)k∈R

 

Further, 
∂

2
Li

∂βr∂βs

= {
ψrs(i)

ψ(i)
-

ψr(i)ψs(i)

[ψ(i)]2 } -{
∑ ψrs(k)

k∈Ri

∑ ψ(k)k∈Ri

-

∑ ψr(k)
k∈Ri

∑ ψs(k)
k∈Ri

(∑ ψ(k)k∈Ri
)
2 } 

Where: 

∂

∂p
r
∂β

s

ψ(i)=ψ
rs

 

∂
2
Li

∂βrγβ
s

=

(∑ zkre
Rzi

'

k∈Ri

)(∑ zkse
β

'
z'

k=zi

)

(∑ eR'zk

k∈R

)
2

-∑
e

β1 z
―kzkrzks

∑ eβ
'
zk

k∈Ri

k∈Ri

 

= C(irs)(β) (Say) 



 

 

Suppose we intend to test H0:β=0 vs. H1:β≠0 

The value of Ur(0) = ∑ ziri∈D -
∑ zkrk∈Ri

ni
 

Where ni= # is Ri (Risk set)] 

Then, C(irs)(0)=-
∑ zkszkrk∈Ri

ni
+
(∑ zkrk∈Fi

)(∑ zksk∈Ri
)

ni
2  

Thus, the approximate variance is: 

Cirr=
-∑zkr

2

ni

+
(∑ zkrk∈fi

)
2

ni
2

 

It can be assumed that, E(ur)=0 

Therefore: 

xi
2=

vr
2(0)

∑ cirri∈n

∼x(q)
2 . 

Let ψ(i) = eβ
'
zi 

Then,  

 

∂Li

∂βr

=
eβ

'
zi* zir

eβ-
'
zi

 - ∑
eβi

'
zk⋅zkr

∑ eβ
'
zk

k∈Ri

k∈Ri
 

=zir-

∑ eβn
'
zk*zkr

k∈Ri
'

∑ eβn
'
zk

k∈Ri

 

zir-Air(βα
) 

The score function is,  

vγ(β)=∑
∂Li

∂β
r

i∈D

=∑ [zir-Air(k)]

i∈D

;[r=1(1)q.] 

Again,  

∂
2
Li

'

∂β
r
∂β

s

=
eβ

'
zizirzis

eβ1
'
zi

-
eβ2

'
zizire

β2
'
zis

'

[eβ
'2

zi]
2

-

∑ eβ2
'
zi

'

zKrzkS
k∈Ri

∑ eβ
'
zk

k∈Ri

+

(∑ zkre
R'z

k∈Ri

) (∑ zksk∈Ri
eβ

'
zk)

(∑ eβ
'
zk

k∈R

)
2

 (6) 



 

 

 

4.6 Competing Risks Model 

Competing Risk 

In many situations there are several possible risks of modes of failure. The unique actual 

risk which claims the life of the unit is called the cause of failure. The risks are said to complete 

each other for the life the unit, hence the probabilistic models used for the life times in presence 

of several risks are called competing risk model. Let T be the survival time, x the covariate 

vector, and J the type or cause of failure. We defined a type or cause specific hazard function 

hj(t;x) 

hj(t;x)= lim
Δt→0

P(t⩽T<t+Δt,J=j∣T⩾t,x)

Δt
,j=1,…,m (7) 

In words, hj(t;x) is the instantaneous failure rate of cause j  at time t given x and in the 

presence of other (m-1) cause of failure. The overall hazard of failure is the sum of all the type-

specified hazards, that is h(t;x)=∑ hj(t;x)
j

; provided that the failure types are mutually 

excluded.  

The survival function: 

Sj(t;x)=exp[-∫ hj(u;x)du],

t

0

j=1,…,m (8) 

These functions cannot, in general be interpreted as survivorship   functions when m>1. 

The Model for General Competing Risks 

In all the models described above, the observation consists of a positive values 

continuous random variable T indicating the time at which the event takes place and the 

outcome of event which is a discrete random variable δ, taking values 1,2…..k; assuming there 

are k possible outcomes, risks, component etc. therefore we need to model the probabilistic 

behaviour of the random pair (T,δ). If we have n independent pairs (Ti,δi), i=1,2…..n. 

The joint distribution of (T,δ). May be specified in term of the k sub survival functions: 



 

 

F(t,j)=P(T>t,δ=j),j=1,2,⋯,k (8) 

The sub density functions f(t,j)=-
∂

∂t
F(t,j). The Proper density of T is then 

f(t)=∑ f(t,j).k
j=1  Similarly, the marginal probability distribution of δ is given by 

P(δ=j)=F(0,j)=p
j
 say. Then ∑ p

j
=

k

j=1

1. 

The overall hazard rate of T is h(t)=-
∂

∂t
logF(t)=f(t)/F(t) and the cause specific hazard 

rate is defined as h(t,j)=
f(t,j)

F(t)
 leading to the relationship h(t)=∑ h(t,j).k

j=1  

The cause specific hazard rates are also known as crude hazard rates. The relative risk 

of the jth competing risk is defined as the ratio h(t,j)/h(t).  This ratio is constant (independent 

of t) and if and only if T and δ are independent.  

The constant relative risk phenomenon is also known as “proportional hazards” in the 

context of competing risks  

The conditional survival function of the jth cause of failure as: 

F( t ∣∣ j )=P(T>i ∣∣ δ=j ]=
P[T>t,δ=j]

P(δ=j]
=

F(t,j)

p
j

 (9) 

Therefore, in case, T and δ are independent, F(t)=F( t ∣∣ j ),  for every j. In general:  

F(t)=∑ p
j
F(t∣j)

k

j=1

 (10) 

Which is a mixture of the conditional survival function F(t∣j) with weights p
j
. 

 

4.6.1 Parametric and Non-Parametric Inference 

The Likelihood for Parametric Models with Independent Latent Lifetimes 

Suppose that n units were under investigation and each unit faces the risk of failure due 

to J risk. Let 



 

 

δij= {
1; if the ith unit is falied due to jth cause

0;otherwise 
 

L=∏∏ {f(ti)}
δij{F(ti)}

j-δij

n

i=1

J

j=1

 

=∏ Lj

J

j=1

 where Lj=∏ {F(ti)}
δij⋅{F(ti)}

1-δijn

i=1

 

Let us further assume that the latent lifetimes are independent exponential random 

variable mean T~Exp(σ); σ=σj for jth cause. 

Lj=∏ (
1

σj

e-ti/σj)

δij

(e-ti/σj)
1-δij

n

i=1

 

=(
1

σj

)

∑ δij

n

i=1
e

-∑ ti/σj

n

i=1  

=(
1

σj

)

nj

e
-
1
σj
∑ ti

n
i=1

 

Let,∑ δij

n

i=1

=nj=number of units failed due to the jth cause and ∑ ti
n
i=1 =t. 

Maximum Likelihood estimation:  

logLj=-njlogσj-
1

σj

∑ ti
i=1

 

∂

∂σj

logLj=
-nj

σj

+
1

σj
2
∑ ti

n

i=1

=0 

⇒
1

σj
2
∑ ti

n

i=1

=
nj

σj

 

σ
^

j=∑
ti

nj

n

i=1

 

s
^

j(t)=e-t/σ
^

j; survival function due to jth cause and where t~Weibull(p,σ) 



 

 

 

Example: Suppose tj~Weibull(p
j
,σj) under jth cause  

Lj =∏{
p

j

σj

t
i

pj-1
e-t

i

kj
/σj}

δij

n

i=1

{e-t
i

rj
/σj}

1-δij

 

=(
p

j

σj

)

∑ δij

n

i=1

 ∏ (t
i

pj-1
)

n

i=1

∑ δij

n

i=1

*e
-
1
σj
∑ ti

pj
n

i=1  

Lj =(
p

j

σj

)

nj

∏ (t
i

pj-1
)

n

i=1

*e
-
1
σj
∑ ti

pj
n

i=1  

Test for the Stochastic dominance of independent Competing risks  

Let us consider the situation where only two risks are operating so the data consists of 

T1,T2…..Tn where Ti= min(X1i,X2i),the lifetimes of n units and δi=I(x1i>x2i), the lifetimes, the 

indicate of the unit that the second risk claimed the life.  Let F and G be the distribution function 

of X1 and X2 respectively, we intend to test H0:F(x)=G(x) vs. H1:F(x)⩽G(x); i.e. second risk 

is more likely to be the cause of failure than the first.  

We look simultaneously at the pair (Ti,δi)  and  (Ti,δj)   and define a statistic: 

Φi<j(Ti,δi,Tj,δj)={

1,  if δi=1,Ti<Tj

1,  if δj=1,Tj<Ti

0,  otherevise 

 

Then define the statistic: 

U*=
1

(
n

2
)
 ∑∑ ϕ(Ti,δi,Tj,δj)

ji

 (11) 

Which is equal to n. 

U*=
1

(
n

2
)
∑ (n-Ri)δi

n

i=1

 (12) 

Ri is rank of Ti 



 

 

Let us consider the statistic: 

U=
1

(
n

2
)
∑ (n-Ri+1)

n

i=1

δi (13) 

And if S=(
n

2
)U; then EH0

(s)=
n(n+1)

4
 and VH0

(s)=
n(n+1)(2n+1)

24
 

For large n,  
3

√n
(ux-

1

2
)∼N(0,1). 

Non parametric Estimation 

Consider a random sample with observed data {(Yi,δi,C
~

i),i=1,…,k}, Let 0<y
1
<⋯<y

N
 

be the ordered distinct observed time points. We define the following quantities:  

• dij is the number of subjects failing from cause j at time y
i
, 

• di=∑ dij

k

j=1

 are the number subjects failing at time y
i
 from any cause, 

• ni=∑ Il(yi
), 

n

l=1

with Il(t)=I(y
l
≥t) is number of individuals at risk at y

i
 , that is, alive 

and uncensored just prior to this time. 

The estimate of the cause-specific hazard for cause j at time y
i
 is given by λ

^

j(yi
)=

dij

nn
, 

and it is 0 at any other time. Hence, the Nelson-Aalen estimator for the cumulative cause-

specific hazard function is given by: 

Λ
^

j(t)=∑
dij

ni

; 

iti≤t

j=1,…,k 

With variance estimated by: 

Var
^

[Λ
^

j(t)]=∑
dij

ni
2

iti≤t

; j=1,…,k. 

The overall survival function for T can be obtained by using the Kaplan-Meier estimate: 



 

 

S
^

(t)=∏ (1-
di

ni

)

δi

i:yi<t

 (14) 

Alternative, S(t) can be obtained through S
^

(t)=exp[-∑ Λ
^

j(t)
k
j=1 ]. 

Since the cumulative incidence function for cause j can be obtained from the cause 

specific hazard trough  Fj(t)=∫ λj(u)S(u)du
t

0
, a natural non-parametric estimate of Fj(t) is: 

F
^

j(t)=∫ λ
^

j(u)S
^

(u)du

t

0

=∑
dij

ni

i:yi≤t

S
^

(y
i
-); j=1,…,k. (15) 

 

4.7 Multiple Decrement Life Table 

When two or more mutually exclusive risks operate on the study population (see 

Competing Risks), one may correspondingly compute a multiple-decrement table to reflect 

this. For instance, a period of sickness can end in death or, alternatively, in recovery. Suppose 

that an integer random variable K represents the cause of decrement and define 

Fk(t)= Pr(T≤t,K=k), fk(t)=dFk(t)/dt and μ
k
(t)=fk(t)/S(t), Assuming that all Fk(⋅) are absolutely 

continuous. Then μ
k
(⋅) is the cause-specific hazard for risk cause k and μ(t)=∑ μ

k
(t)

k

 is the 

total risk of decrement at time t. For the multiple decrement table, we define the decrement 

probability: 

q
x
(k)=Pr(T≤x+1,K=k∣T>x) 

=∫ exp ⌊[-∫ μ(x+s)ds]

t

0

⌋

1

0

.μ
k
(x+t)dt 

 For given risk intensities, q
x
(k) can be computed by numerical integration of the above 

equation. The expected number of decrements at age x as a result of cause k is dx
(k)

=lxq
x
(k). When 

estimates are available for the cause-specific risk intensities, one or two columns can therefore 

be added to the life table for each cause to include estimates of dx
(k)

 and q
x
(k).  

Several further life-table functions can be defined by formal reduction or elimination 

of one or more of the intensity functions in formulas like those above. In this manner, a single-

decrement life table can be computed for each cause k, depicting what the normal life table 



 

 

would look like if cause k were the only one that operated in the study population and if it did 

so with the risk function estimated from the data. The purpose is to see the effect of the risk 

cause in question without interference from other causes. Some demographers call this 

abstraction the risk’s pure effect. No assumption is made that in practice the total attrition risk 

can actually be reduced to the level of the one which is in focus or that this cause operates 

independently of other causes. For instance, a single-decrement life table of recovery from an 

illness reflects the pure timing effect of the duration structure of the intensity of recovery even 

though the elimination of mortality is unattainable. 

A single-decrement life table is at an extreme end of a class of tables produced by 

deleting one (or more) of the cause intensities in formulas like those above. To obtain a cause-

deleted life table, where only cause k has been eliminated, one may introduce: 

μ
-k
(t)=μ(t)-μ

k
(t), 

q
x
(-k)=∫ exp [-∫ μ

-k
(x+s)ds]

t

0

] μ
-k

(x+t)dt

1

0

 

=1-exp[∫ μ
-k

(s)ds

x+1

x

] 

And so on, and a normal life table may be computed with μ(t)  replaced by μ
-k

(t) 

everywhere. A corresponding cause-deleted multiple-decrement life table may be based on 

reduced cause-specific decrement probabilities like: 

∫ exp [-∫ μ
-k

(x+s)ds

t

0

] μ
j
(x+t)dt

1

0

; for j≠k 

Such a table would show what a normal table would look like if it were possible to 

eliminate cause k without changing the risk of any other cause. Again, no assumption needs to 

be made about the feasibility of such elimination in real life nor about cause independence. The 

computations are based on a pure abstraction. The interpretation for real-life applications must 

be based on substantive considerations and is a different matter. 

 

4.8 Summary 

 The unit covers the fundamentals of survival analysis, focusing on Proportional Hazard 

Models, particularly the Cox Proportional Hazards Model. This model is essential for analyzing 



 

 

time-to-event data without assuming a specific survival distribution. It allows for the analysis 

of covariate effects on survival times and is useful for identifying significant prognostic factors. 

The unit discusses the proportionality assumption, which implies that hazard functions are 

proportional and time-independent among individuals. Statistical inference is based on the 

partial likelihood function, which considers the relative ordering of event times. Graphical and 

analytical tests are used to assess the proportionality assumption. The Cox model can be 

extended to include multiple covariates and account for competing risks. It also covers the joint 

distribution of survival time and cause of failure using sub-survival functions and constructing 

multiple decrement life tables. Multiple decrement life tables help compute survival 

probabilities when multiple, mutually exclusive risks affect the population, providing a 

comprehensive framework for understanding the impact of individual risks on survival 

probability. 

 

4.9 Self-Assessment Exercise 

1. Suppose h(t∣Z) = h0(t)eβ1Z1+β2Z2+β3Z3  where: 

Z1= {
0;tr.0

1;tr.1
 ,  Z2= {

0; female 

1;male 
  and Z3=Z1⋅Z2. 

What values of β
1
,β

2
,β

3
 correspond to  

a) treatment hazard ratio same in males as in females 

b) no treatment effect in males, but an effect in females  

c) no treatment effects 

2. Following is a survival data set from 30 patients with AML (acute Myelogenous 

Leukaemia). Following possible prognostic factors are considered:  

x1: {
1; if the patients  ≥50 year old 

0;otheriwse 
 

x2: {
1; if celluraity of marrow clot section is 100%

0;                                                            otheriwse 
 

Survival Time  x1 x2 Survival Time  x1 x2 

18 0 0 8 1 0 

9 0 1 2 1 1 

28+ 0 0 26+ 1 0 

31 0 1 10 1 1 

39+ 0 1 4 1 0 

19+ 0 1 3 1 0 



 

 

45+ 0 1 4 1 0 

6 0 1 18 1 1 

8 0 1 8 1 1 

15 0 1 2 1 1 

23 0 0 14 1 1 

28+ 0 0 3 1 0 

7 0 1 13 1 1 

12 1 0 13 1 1 

9 1 0 35+ 1 0 

Cary out the analysis using proportional hazard’s model.  

3. What does the proportional hazards assumption state about the hazard ratio associated with 

each covariate in the Cox Proportional Hazards Model, and how can this assumption be 

graphically tested using survival functions? 

4. Describe how the Cox model can be extended to account for competing risks in 

survival analysis. 
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5.1 Introduction 

 Competing risks are a fundamental concept in survival analysis, particularly in 

scenarios where subjects are at risk of experiencing multiple, mutually exclusive failure events. 

This chapter provides a comprehensive overview of competing risks in survival data, 

emphasizing the need to understand and model the probabilities associated with each potential 

event. The chapter begins by discussing the model specification, which involves defining the 

failure time T and the cause of failure C, where the joint distribution is specified by cause-

specific hazards or cumulative incidence functions. Cause-Specific Hazard Function λj(t) is 

introduced as a key component, representing the rate of occurrence of the jth failure. This 

function is utilized to define the Cumulative Incidence Function Fj(t), which represents the 

probability of a subject failing from cause j in the presence of all competing risks. The 

likelihood function for a sample is then presented, considering a random sample of individuals 

with observed data, including failure times Yi, censoring indicators δi, and causes of failure 

Ci. Various interpretations of probabilities in competing risk scenarios are discussed, 

emphasizing the distinction between survival functions and cumulative incidence functions. 

The chapter also delves into the interpretation of the function Sj(t) and its estimation. A key 

modeling approach discussed in this chapter is the Cox Proportional Hazard Model, which is 

used for each cause-specific hazard, treating other causes as censored observations. The model 

assumes a multiplicative effect of covariates on an unknown baseline hazard function and 

estimates parameters using the partial likelihood approach. Furthermore, the chapter explores 



 

 

the use of Cumulative Incidence Functions to compare the observed incidence of events from 

a given cause between groups. Estimates of cumulative incidence functions can be obtained 

using the estimated hazards from Cox’s analyses and distinct failure times. The chapter also 

introduces Fine and Gray’s Model, which fits the sub-hazard with a Cox model, considering a 

new function derived from the sub-distribution function for the cumulative incidence. Lastly, 

the chapter introduces Frailty models, which account for unobserved heterogeneity or 

dependencies in survival analysis. These models are particularly useful for related individuals, 

recurrent events, and multiple treatments. Frailty models introduce a random effect, or 'frailty,' 

into the hazard function, often following a gamma distribution, to capture variability. The 

chapter discusses the expression of hazard conditionally on frailty and the integration of 

unknown frailty to obtain a marginal distribution of survival times, showcasing the utility of 

these models in various survival analysis scenarios. 

 

5.2 Objectives 

After going through this unit, you should be able to: 

• Understand the concept of competing risks in survival analysis and explain why it is 

important in scenarios with multiple potential failure events. 

• Define and explain the model specification in competing risks, including the concepts of 

failure time, cause of failure, cause-specific hazards, and cumulative incidence functions. 

• Interpret probabilities in competing risk scenarios, distinguishing between survival 

functions and cumulative incidence functions. 

• Apply the Cox Proportional Hazard Model to model cause-specific hazards, estimate 

parameters using the partial likelihood approach, and understand its implications in 

competing risk analysis. 

• Gain an understanding of frailty in survival analysis and its function in addressing 

unobserved heterogeneity or dependencies among subjects. 

 

5.3 Competing Risks Survival Analysis 

 The survival data in which each subject can experience only one of different types of 

events over follow-up. The probabilities of these events are referred as competing risks. 

Competing risks occur when there are at least two possible ways that a person can fail, but only 

one such failure type can actually occur.  

Example:  



 

 

a) A person can die from lung cancer or from a stroke, but not from both (although he can 

have both lung cancer and atherosclerosis before he dies); 

b) Patients with advanced-stage cancer may die after surgery before their hospital stay is long 

enough for them to get a hospital infection.  

c) In a clinical trial, patients with nonmetastatic limb sarcoma undergoing chemotherapy and 

d) surgery might develop a local recurrence, lung metastasis, or another metastasis after 

follow-up. 

 For each of the above examples, the possible events of interest differ, but only one such 

event can occur per subject. 

 

5.4 Competing Risk Events 

 The objective of the competing risks data is to assess the relationship of relevant 

predictors to the failure rate or corresponding survival probability of any one of the possible 

events, allowing for the competing risks of the other ways to fail. 

 

Model Specification 

 Define for each individual, the pair (T, C), where T us the failure time, and C is the 

failure cause. T  is assumed to be a continuous and positive random variable, while C takes 

values in the finite set {1,2....,k). Assume that the individual fails from one and only one cause. 

The joint distribution of (T, C) is completely specified through either the cause-specific 

hazards λj(t) or through the cumulative incidence functions Fj(t). The cause-specific hazard 

function for the jth cause is defined as: 

λj(t)= lim
Δt→0

Pr(T<t+Δt,C=j∣T≥t)

Δt
j=1,…,k (1) 

and represents the rate of occurrence of the jth failure. 

 The cumulative incidence function from type j failure is defined by: 

Fj(t)=Pr(T≤t,C=j)j=1,…,k, (2) 

 and corresponds to the sub-distribution function for the probability of a subject failing 

from cause j in the presence of all the competing risks. 

 The cause-specific cumulative hazards Λj(t), the overall hazard λ(t). The overall 

cumulative hazard Λ(t) and the overall survival function S(t) are defined, respectively, as: 



 

 

Λj(t)=∫ λj(t); 

t

0

j=1,…,k, 

λ(t) = lim
Δt→0

Pr(T<t+Δt∣T≥t)

Δt
=∑ λj(t),

k

j=1

 

Λ(t) =∫ λ(u)du

t

0

=∑Λj(t)

k

j=1

, and 

S(t) = Pr(T>t) = e-Λ(t) 

 The survival function can be factorized into the following k functions Sj(t)=e-Λj(t) as 

follows: 

S(t)=e
-∑ Λj(t)

k

j=1 =∏ e-Λj(t)

k

j=1

=∏ Sj(t)

k

j=1

 (3) 

 The sub density function fj(t) from the j. the marginal distribution F(t) of T, and the 

marginal distribution of C are respectively given by:  

fj(t) =
d

dt
Fj(t)=λj(t)S(t), 

F(t) = P(T≤t)=∑ Fj(t), 

k

j=1

and 

πj(t) = Pr(C=j) = lim
t→∞

Fj(t)j=1,…,k. 

 The cumulative incidence function for cause j, Fj(t), can be obtained from the cause 

specific hazard λj and the overall survival function S(t) from the relationship: 

Fj(t)=∫ λj(u)S(u)du; j

t

0

=1,…,k (4) 

 

Likelihood Function 



 

 

 Consider a random sample of n individual, (T1,C1),…,(Tn,Cn),where Ti is the time of 

failure and Ci is the cause of failure for subject i. For each individual, there exists a non-

negative right censoring time  Vi. Let δi=I(Ti≤Vi) be the censoring indicator, and define 

Ci=δiCi is the cause of failure for failing individuals or 0 for censored individuals, The observed 

data for each individual are given by Yi=min(Ti,Vi),δi,Ci,i=1,…,n. 

In the following these conditions are assumed:  

1) Vi is independent of (Ti,Ci). 

2) If Yi=Ti(Ti is not censored), then Ci is observed (we exclude cases when the time of failure 

is observed, but to information about the cause of failure is available).  

3) The support of T and V are disjoint.  

 

 The likelihood function for the sample is given by: 

L=∏ fci
(y

i
)
δiS(y

i
)
1-δi

n

i=1

∏Q(y
i
)
δiq(y

i
)
1-δi

n

i=1

 (5) 

 Since the censoring time V is independent from the failure time T, and their supports 

are disjoint (assumptions 1 and 3 respectively), the censoring terms in the likelihood do not 

provide information on the failure process and can be removed. The likelihood function is then 

proportional to: 

L∝L=∏ fci
(y

i
)
δiS(y

i
)
1-δi

n

i=1

 (6) 

 Denoted by δij=I(Ci=j), where δi=∑ δij.
k

j=1

 If δi=1, then it exists some j with δij=1. 

From the factorization of the survival S(t)=∏ Sj(t)
k

j=1

 and defining g
j
(t)=-Sj

'(t)=λj(t)Sj(t). 

The likelihood function can be rewritten as product of k separate components for each failure 

cause:  

L =∏∏ fj(yi
)
δijS(y

i
)
1-δi= 

k

j=1

n

i=1

∏∏ (λj(yi
)S(y

i
))

δij)S(y
i
)
1-δi

k

j=1

n

i=1

 



 

 

=∏{(∏ (λj(yi
)S(y

i
))

δij)
k

j=1

)∏ Sj(yi
)
1-δi

k

j=1

}

n

i=1

 

=∏∏(λj(yi
)

δij
[∏Sl(yi

)
δij

k

l=1

] Sj(yi
)

1-δi
)

k

j=1

n

i=1

 

=∏ ∏ g
j
(y

i
)
δijSj(yi

)
1-δijk

j=1
n
i=1   

L =∏(∏ g
j
(y

i
)
δijSj(yi

)
1-δij

k

j=1

)

n

i=1

=∏Lj

k

j=1

 (7) 

 The above expression provides a factorization of the overall likelihood L in terms of 

cause-specific likelihood Lj.  

 

Interpretating Probabilities in Competing Risk 

 In classical survival analysis, a lifetime endpoint T is usually described by its survival 

function S(t)=P(T>t) which satisfies that S(t)=1-F(t), F(t) being its distribution function. The 

survival function could be derived from the hazard function of T, λ(t), by S(t)=e-∫ λ(u)du
t

6 . And 

in competing risks, given the cause specific hazard for cause j λj(t), a similar function Sj(t) 

could be considered for each cause of failure: Sj(t)=e
-∫ λj(u)du

t

6 =e-Λj(t). The Sj(t)  Sj(t) do not 

correspond to the complementary of the incidence function Fj(t), that is Sj(t)≠Fj(t), neither to 

the joint probability of failing from cause j after t, P(T>t,C=j). This consideration led us to 

define two more functions that may play the role of cause-specific survivals. We define S
*
(t) 

as the complement of the cumulative incidence function Sj
*
(t)=1-Fj(t). 

A function S(t) is a survival function if: 

i) It is defined in [0, ∞) 

ii) it is non-negative and non-increasing 

iii) it is right-continuous, 

iv) S(0)=1 and lim
t→∞

S(t)=0 



 

 

Interpretation of Function Sj
*
(t) = 1-Fj(t) 

 Sj
*
(t) = 1-Fj(t) represents the probability of not failing from cause j before t. It is not a 

proper survivor function because lim
t→∞

(Sj
*(t))= 1- lim

n→∞
Fj(t) = 1 – P (C = j), which is strictly 

positive if there are at least two causes of failure.  

 Moreover, Sj
*
(t) = 1-Fj(t) = 1- F(t) + ∑ Fl (t)l≠j  = S(t) + ∑ P(T≤t,C=l).l≠j  That is, the 

probability of not failing from cause j before t is the sum of the probability of having not failed 

for any cause by t plus the probability of having failed before t from other causes than j. This 

probability Sj
*
(t) is used to build Fine and Gray’s regression model for the cumulative incidence 

function.  

Interpretation of Function Sj̃(t) = P(T>t, C=j) 

 By analogy with the cumulative incidence functions Fj were defined, Sj̃(t) = P(T>t, C=j) 

represents the probability of failing from cause j after t. It is not a proper survivor function 

because Sj̃(0) = P (C = j), which is strictly below 1 if there are at least two causes of failure.  

The relationship with Fj(t) is given by: 

Sj̃(t) = P(T>t, C=j) = Pr{T>j|C=j}P (C=j) = [1-P{T≤j|C=j}]P(C=j) 

         = P(C=j)-P (T≤ t, C=j) = P(C=j) - Fj(t). 

 Hence, it behaves like a complementary probability for Fj(t), complementary on the 

probability of failing from cause j, P (C = j). Note as well that S(t) could be decomposed in 

terms of  Sj̃(t) as follows: 

S(t) = 1- F(t) = 1- ∑ Fj(t)
k
j=1  = 1- ∑ P(C=j)k

j=1  + ∑ P(T>t,C=j)k
j=1   = ∑ Sj̃(t) 

k
j=1 . 

 The expression of S(t) as a sum of  Sj̃(t) is indeed different from the alternative 

decomposition S(t) = ∏ Sj(t)
n
j=1  , and shows that Sj̃(t) and Sj(t) are different. A consistent 

estimate for  Sj̃(t) is given by:         

Sj̃(t) = 
1

n
∑ I(Yi>t, Ci=j)n

i=1 ;  j = 1,………,k. 



 

 

 Despite these are estimable functions and could specify the competing risks model, they 

have been scarcely used in the competing risks literature (Peterson, 1976). 

 

Interpretation of Function Sj(t) = e-⋀j (t) 

 We have come across functions Sj(t) repeatedly in the previous sections. Firstly, we 

encountered them in the factorization of the survival function S(t) in eq.  (3). Later, in the 

factorization of the likelihood function, where Sj(t) corresponds to the survival function 

obtained from the cumulative hazard function Λj(t), the cumulative risk when failure times 

from other causes are treated as censoring times. The functions Sj(t) hold the mathematical 

properties of a survival function, however they are not survival functions of any observable 

random variable. 

 When failures from other causes are treated as censored observations, the assumption 

of independence between failure time and censoring time is possibly violated. Thus, only when 

distinct causes of failure are assumed to be independent, 1−Sj(t)) is fully interpretable as the 

probability of failing from cause j if the other causes of failure were removed (Gooley et al., 

1999).  

 Often 1 − Sj(t) has been used incorrectly to estimate Fj(t) partly because of the 

availability of software to obtain the Kaplan-Meier estimate for Sj(t): 

KMj (t) = ∏ (1-
dji

ni

)

δij

i:yi<t

 (8) 

 Where dji , ni and δij are defined in equation (7) and failures from other causes are 

treated as censored observation. However, 1- KMj (t) provides a biased estimate of the 

cumulative probability of failure from type j, Fj(t) (Putter et al., 2007). This is clear intuitively 

since Sj(t) only depends on the cause-specific hazard λj(t), whereas Fj(t) depends on all cause-

specific causes λl̃(t), l € {1,….,k}through the survival function S(t) . Moreover, 1 – KMj(t) as 

an estimate of 1 − Sj(t) overestimates the probability of failure from cause j, Fj(t). This is 

reasonable, because if an individual failing from other causes is treated as a censored 

observation, one assumes that the individual WILL fail from the cause of interest j somewhen 

in the future, which in some situations may be unfeasible: if an individual dies due to cancer, 

he/she would not certainly die (again) due to a heart attack. By censoring individuals, we expect 

a higher incidence of failures. In effect, there always exist t* > 0 such as: 



 

 

Fj(t*) = ∫ S(u)
t*

0
λj (u)du < ∫ Sj(u)

t*

0
λj (u) = 1- Sj(t*) 

(9) 

 

Regression Modelling of Competing Risks Events 

 In a survival analysis with competing risks, two different regression modelling 

strategies are possible, modelling the cause-specific hazards or modelling the cumulative 

incidence functions. When the cause-specific hazards are modelled, each hazard is analysed 

separately by treating individuals failing from other causes as censored observations, On the 

other hand, the cumulative incidence functions are used to determine factors associated to the 

incidence of a given cause.  

 

Modelling the Cause-Specific Hazard ΛJ(T) 

 The classical regression analysis of competing risks establishes a Cox Proportional 

Hazard (PH) Model for each cause-specific hazard:  

λj(t∣Z)=λ0je
β

'
Zj=1,…,k (10) 

 Where Z is a p×1 vector of covariates and β
j
 is a p×1 vector of regression coefficients 

for each cause. Each cause of failure is analysed separately, treating individuals failing from 

other causes as censored observations. The effect of the covariates is assumed to act 

multiplicatively on an unknown baseline hazard function λ0j . As in classical PH analysis, the 

validity of the models does not depend on the true form of the baseline hazard, provided the 

multiplicative form of the model is correct. The PH assumption is a strong one that must be 

carefully checked for each cause.  

 Estimation of the regression parameters β
j
 is based on the partial likelihood approach. 

Let’s suppose that a censored random sample (y
i
,δi,δici),i=1,…,n yields N distinct observed 

times of failure t1<⋯<tN and n-N censored times (no ties considered here). Consider the 

probability that an individual fails by cause j at time ti , given that one of the individuals at risk 

(alive and uncensored) at time ti fails by cause j: 

eβ
'
Zi

∑ Yl(ti)e
βj

'
Zl

n

l=1

 (11) 



 

 

 Where Yl(t)=I(tl≥t). The partial likelihood function is defined only in the N times of 

failure, yielding: 

L(β
1
,…,β

k
)= ∏ ∏(

eβ
'
Zi

∑ Yl(ti)
n
l=1 eβ

'
Zl

)

δijk

j=1

n

i=1

=∏Lj(βj
)

k

j=1

 (12) 

 Where δij=I(Ci=j).  The risk set can be diminished by the occurrence of an event from 

any cause. Maximizing each factor in eq(12) provides an estimator β
^

j
 consistent and d 

asymptotically normal under suitable conditions, and score, information and likelihood ratio 

statistics based on L(β
^

j
) behave as if they were deduced from ordinary likelihood. 

 Given β
^

j
, the generalized Nelson-Aalen estimates for the cause-specific baseline 

cumulative hazard functions are: 

Λ
^

0j(t)=∑(
δij

∑ Yl(ti)e
β
^'

Zln
l=1

) ;

i:tl≤t

j=1,…,k (13) 

Inference for the β
j

'
s and for the Λ0j's can be conducted then as in the standard Cox 

model where a single cause of failure is considered. Overall survival and cumulative hazard 

functions for T given Z are obtained by: 

S
^

(t∣Z)=exp {-∑ Λ
^

0j(t)e
β

'
^

Zk
j=1 } and Λ

^

j(t∣Z)=Λ
^

0j(t)e
β
^'

Z; j=1,…,k. 

 The cumulative incidence function Fj(t∣Z) can be obtained by plugging-in the 

estimation in equation Fj(t)=∫ λj(u)S(u)du; j
t

0
=1,…,k.  

F
^

j(t∣Z)=∫ S
^t

0

(u∣Z)dΛ
^

j(u∣Z) 

 ∑ δijexp {-∑Λ
^

0l(u)eβ
^

l

'

Z

k

l=1

}

i:ti≤t

eβ
^'

Z

∑ Yr(ti)e
βj

'
Zrn

r=1

 

 

Modelling the Cumulative Incidence Functions FJ(T)  



 

 

The modelling of the cause-specific hazards applies when the goal is to assess if a factor 

is associated with the risk of a specific cause of failure. However, when the goal is to compare 

the observed incidence of events from a given cause between groups, the cumulative incidence 

functions should be used. Estimates of these functions can be obtained via: 

F
^

j(t∣Z)=∑ λ
^

j(ti∣Z)S
^

(t∣Z)

ti≤t

 (14) 

Where λ
^

j(t∣Z) are the estimated hazards resulting from Cox’s analyses, and ti the 

distinct failure times. The overall survivor function is: 

S
^

(t∣Z)=exp {∑∑ λ
^

j(ti∣Z)

ti≤t

k

j=1

} (15) 

 

Fine and Gray’s Model 

Fine and Gray considers a new function, the sub-hazard γ
j
(t)derived from the sub-

distribution function: 

γ
j
( t ∣ Z )= lim

Δt→0

Pr(T<t+Δt,C=j ∣∣ Z,T≥t or (T<t and C≠j) )

Δt
=

fj(t∣Z)

1-Fj(t∣Z)
j=1,…,k (16) 

This would be the hazard obtained from Fj if it were a proper distribution. The 

conditional expression includes two different scenarios: i) the event has not occurred at time t, 

ii) the event has occurred from a different cause before t. Thus, the risk set at time t is formed 

by two types of individuals, corresponding to the two different scenarios. Contrary to the 

analyses based on the cause-specific hazards, a patient failing from other causes would not be 

removed from the risk set at his/her time of failure. The sub-distribution function is expressed 

in terms of the sub-hazards as Fj{t|x} = 1- exp (-∫ γ
j
{t|x}

t

0
). 

Fine and Gray proposed to fit the sub hazard with a Cox model, that is: 

γ
j
{t|x} = γ

0j
(t) e

βj
'
x
,    j=1,…..k (17) 

where the covariates are linear on a complementary log-log transformed cumulative 

incidence function. When censoring is absent or is always observable, Fine and Gray (1999) 

showed that the partial likelihood approach is valid for estimation. In the case of right-



 

 

censoring, they developed a weighted score function based on the non-censored case to deal 

with dependent censoring. If there are N failures at the times t1 <  t2< · · · < tN, the partial 

likelihood was defined by: 

L(β
j
)=∏(

e
βj

'
Zi

∑ wile
βj

'
Zl

i∈R
~

i

)

N

i=1

 (18) 

Now the risk set for cause j at time  ti is  Rĩ = {l: tl≥ ti or (tl≤ ti and C≠j)} where subjects 

experiencing a competing cause remain in the risk set. The weight ɯil given to such an 

individual is  G̃(ti)/  G̃(min(tl,ti)), where  G̃ is the survivor function for the censoring 

distribution. An individual satisfyingtl≥ ti  is given a weight of 1. 

 

5.5 Frailty Models 

 Frailty models represent a specific class of random effects models widely employed in 

survival analysis. Their core function lies in addressing unobserved heterogeneity or 

dependence within observational data. Unlike conventional random effects models, frailty 

models introduce an additional layer of random variation, termed frailty, that supplements the 

inherent randomness. In the context of survival analysis, frailty models offer a particularly 

valuable tool for modeling survival times when observations exhibit dependencies or when the 

data displays overdispersion relative to the baseline random variation. Their application 

extends to diverse scenarios, encompassing: 

• Related individuals: This includes studies involving families, twins, or other groupings 

where shared genetic or environmental factors might influence survival outcomes. 

• Similar organs within an individual: Frailty models can be used to analyze the survival 

of paired organs (e.g., kidneys) where the health of one might influence the other. 

• Recurrent events: These models can account for dependencies between the times of 

repeated events for a single individual (e.g., hospital admissions). 

• Experimental designs involving multiple treatments: Frailty models can be employed 

to account for unobserved heterogeneity among experimental units that might influence 

treatment response times. 

 By incorporating frailty, these models provide a more nuanced understanding of 

survival data, allowing researchers to account for unobserved factors that contribute to 

variability in event times. 



 

 

 The frailty model introduces a random effect, denoted as Y, which is assumed to follow 

a specific distribution, often a gamma distribution. This random effect is incorporated into the 

hazard function, which describes the instantaneous probability of an event occurring at a given 

time. Mathematically, the frailty model specifies that the hazard, conditional on the frailty, is 

of the form Y*μ(t), where μ(t) represents the hazard function (or conditional hazard function) 

at time t. Since Y is unknown, this formulation may initially seem impractical. However, 

similar to other random effects models, the approach is to integrate out the random components, 

resulting in a marginal distribution of the survival times, which are the observed quantities. 

 One key advantage of the frailty model is its ability to create dependence between 

survival times by allowing the frailty Y to be shared among several individuals. This shared 

frailty can capture the effects of unobserved covariates, similar to how random effects in other 

models can reflect unobserved factors influencing the outcome of interest. 

 

Purpose of a Frailty Model  

 One of the key characteristics of a frailty model is its capacity to model dependence 

among multiple time variables. This is achieved by positing that the frailty is shared across 

these variables. Fundamentally, the time variables are considered conditionally independent 

given the frailty; however, when the frailty is integrated out, the observations exhibit 

dependence. Consequently, the frailty methodology serves as a mechanism for inducing 

dependence among time variables. 

 

Example for Multivariate Data 

 In this case, the frailty model is created by the conditional independence setup. It is, for 

example, useful to model the genetic effect in a twin. In most cases, the actual genes are not 

known, but it is known that identical twins have the same genes. The conditional independence 

assumption means that when the genes are accounted for, the survival times of twins are 

independent. As the genes are unknown, their effects have to be integrated out, and this implies 

that the times will be dependent. If some genes are known, they can be included as fixed effects. 

Inclusion of known covariates is therefore a key aspect of the model, and this turns the random 

effects model into a mixed effects model. In the twin case, it is the dependence as modelled by 

the frailty that is the interesting aspect of the model. 

 In other cases, the most interesting aspect in the study may be the effect of covariates, 

and the frailty is only included in order to account for the dependence. Still, the frailty model 

is useful and the frailty setup does the job of describing the dependence. This dependence is 



 

 

sometimes a nuisance, but in other cases, such as a cross-over experiment, the dependence is a 

design tool that reduces the unexplained random error and therefore allows for more precise 

evaluation of the effect of key covariates (typically, treatment). 

 

Example for Univariate Data 

 While the multivariate data are the real drivers of frailty models, they may have some 

use even in the case of univariate (independent) data. If μ(t) is a restricted parametric model, 

including a frailty on top of this can create a more flexible model. This could be interpreted as 

a model with overdispersion compared to the model given by μ(t) but alternatively, it could be 

used pragmatically just as a model with more parameters than the original model. 

 As an example of creating a more flexible model, one can take the proportional hazards 

regression model. Depending on the choice of distribution for the frailty, this leads to a model 

with non-proportional hazards. This can be used not only to derive a test for hazard 

proportionality but also as a model in its own right, for use when the proportional hazards 

model is not fulfilled.  

 

Model for Univariate data 

 The frailty model will be presented in the general case, meaning that at this stage, the 

calculations apply to all distributions for the frailty, of course, satisfying that Y ≥ 0. The 

univariate model for the hazard is simply given by:  

Yμ(t)=Y exp(βz) μ
0
(t) (19) 

 Where z is a vector of covariates with corresponding regression coefficient β and μ
0
(t) 

is the conditional hazard function corresponding to z=0. The function μ
0
(t) can be parametric 

or non-parametric. From this expression, on can derive the conditional survival function, which 

in the absence of covariates is: 

S( t ∣ Y )= exp(-YM(t)) (20) 

 Where M(t)= ∫ μ(u)du
t

0
 is the integrated conditional hazard. As Y is unobserved and 

independent for all times, it has to be considered random and integrated out. Then, for 

continuous distribution S(t)=∫ exp(-yM(T))g(y)dy 
∞

0
 



 

 

 Using the Laplace transformation defined as L(s)=E{exp(-sY)}, the survivor function 

becomes: 

S(t)=ES(t∣Y)=L(M(t)) (21) 

 Using this expression, we can derive the distribution of the frailty among the survivors 

at time t. 

Example: Assume a frailty model given by. The hazard function of the population μ(t)=
f(t)

S(t)
 is 

generally μ(t)=E(μ(t,Z)∣T>t), or more specifically,  

μ(t)=∫ μ(t,z)f(z∣T>t)dz

∞

0

=μ
0
(t)∫ zf(z∣T>t)dz

∞

0

, 

Where f(z∣T>t) represents the density of frailty among the survivors of age t. Then: 

μ(t,z)=
f(t∣z)

S(t∣z)
=zμ

0
(x) 

f(t∣z)=zμ
0
(t)S(t∣z) 

f(t,z)=zμ
0
(t)S(t∣z)fZ(z) 

f(t)=μ
0
(t)∫ zS(t∣z)fZ(z)dz

∞

0

 

With fz as p.d.f. of the frailty distribution. Hence:  

μ(t)=
μ

0
(t)∫ zS(t∣z)fZ(z)dz

∞

0

S(t)
. 

Because survival at age t implies an age of death greater that t, it holds that: 

f(z,T>t)=fZ(z)∫ μ
0
(s)S(s∣z)ds

∞

t

z=fZ(z)S(t∣z) 

f(z∣T>t)=
fZ(z)S(t∣z)

S(t)
 

 

Shared Frailty Models for Multivariate Data 

 When the frailty is shared among several individuals, it leads to dependence between 

the times. To be more precise, conditionally on the frailty, the individuals are assumed to have 



 

 

independent times, modelled as described in Equation Y*μ(t), but the frailty is shared, the 

actual times are dependent. Thus, one can say that the frailty generates dependence between 

the times. For example, the frailty can describe the effect of shared genes among family 

members. In this setup, the dependence is necessarily positive. So, the hazard function model 

conditional on the frailty will have the form Yμ
j
(t) for the jth individual, where μ

j
(t) can denoted 

either of uj(t) (one hazard function per coordinate), μ(t)(symmetric) or exp(β
'
zj)μ0

(t) 

(proportional hazards). The likelihood function can be given as: 

∫ yD1+D2μ
1
(T1)

D1μ
2
(T2)

D2

∞

0

exp(-y{M1(T1)+M2(T2)})g(y)dy 
(22) 

In the Bivariate Case 

 Laplace transform allows for direct computation of the survivor function. This is based 

on the bivariate conditional survivor function being of the form: 

S(t1,t2∣Y)=exp(-Y{M1(t1)+M2(t2)}) (23) 

 The integration is essential the same as in the univariate case, giving the bivariate 

survivor function as: 

S(t1,t2)=L{M1(t1)+M2(t2)} (24) 

 To handle possible censored data, this expression needs to be differentiated towards the 

coordinates, which correspond to actual events. This gives:  

(-1)
D1+D2μ

1
(T1)

D1μ
2
(T2)

D2L(D1+D2)(M1(T1)+M2(T2)) 

 The expressions above are given using the conditional hazard function μ(t) and this is 

the standard way of thinking in a random effects model. In a normal distribution repeated 

measurements model, this is known as a “subject-specific model.” Alternatively, one might 

invert the expression in Equation (21) to give M(t) as function of S(t) for each coordinate and 

insert this in Equation (23). This gives the bivariate survivor function S(t1,t2)as function of the 

univariate marginal survivor functions S1(t1)and S2(t2).Within survival data, this is known as 

a copula approach referring to separate modelling of dependence and marginal distributions. 

This would correspond to what in a normal distribution repeated measurements model is known 

as a “population-average model.  

 

5.6 Summary 



 

 

 The unit covers the fundamental concept of competing risks in survival analysis, where 

subjects face multiple, mutually exclusive failure events. It emphasizes the importance of 

understanding and modelling the probabilities associated with each potential event. The unit 

discusses Model Specification, which involves defining failure time and cause of failure, and 

introduces Cause-Specific Hazard Function and Cumulative Incidence Function. It explores 

the likelihood function for a sample, interpretations of probabilities in competing risk 

scenarios, and the Cox Proportional Hazard Model for modelling cause-specific hazards. 

Additionally, the unit discusses Cumulative Incidence Functions for comparing observed event 

incidences between groups, introduces Fine and Gray’s Model, and explores Frailty models to 

account for unobserved heterogeneity or dependencies in survival analysis. 

 

5.7 Self-Assessment Exercise 

1. Consider a hypothetical study of the effect of a bone marrow transplant for leukaemia on 

leukaemia-free survival, where transplant failures can be of one of two types: relapse of 

leukaemia and non-relapse death (without prior relapse of leukaemia). Suppose that in 

hospital A, 100 patients undergo such a transplant and that within the first 4 years post-

transplant, 60 die without relapse by year 2 and 20 relapse during year 4. Suppose that in 

hospital B, 100 patients undergo such a transplant but post-transplant, there are 20 non-

relapse deaths by year 1, 15 relapses during year 2, 40 non-relapse deaths between years 3 

and 4, and 5 relapses during year 4. 

a) What are the competing risks in this study? 

b) What is the proportion of initial patients in hospitals A and B, respectively, that have 

leukaemia relapse by 4 years? 

2. What are the key factors that influence the occurrence of competing risk events in survival 

analysis? What are the essential components for specifying a model for competing risk 

data? How does the model specification differ when dealing with cause-specific hazards 

and cumulative incidence functions? 

3. What role does the likelihood function play in the analysis of competing risk data? How 

should probabilities be interpreted in the context of competing risk events? 

4. What are some effective regression modelling strategies for cause-specific hazards and 

cumulative incidence functions? 



 

 

5. What is the primary purpose of frailty models in survival analysis? Provide examples of 

situations in which frailty models are notably advantageous. How is the hazard function 

modified in a frailty model to include the frailty effect? 

6. Are there any correlations or dependencies between the different variables in the 

multivariate data for frailty models? What is the distribution of the univariate data? 
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Block & Units Introduction 
 

The Block - 2 – Reliability Theory, is the second block of said self-learning material 

(SLM), which is divided into five units. 
 

Unit – 6: Basic Concepts; This unit lays the groundwork for understanding reliability 

theory by defining key concepts and terms. It covers the basic ideas of reliability, failure rates, 

and the probability of failure. Topics include the definitions of reliability, maintainability, and 

availability, and their importance in system design. The unit also introduces the mathematical 

tools and statistical methods used to analyse reliability data, such as probability distributions 

and failure rate functions. 
 

Unit – 7: Ageing; In this unit, the focus is on the phenomenon of ageing and its effects 

on system reliability. It explores the different stages of the life cycle of components and 

systems, including the infant mortality period, normal life, and wear-out phase. The unit 

discusses how ageing affects the failure rate and the reliability of components over time. It also 

covers models that describe ageing processes, such as the bathtub curve, and methods to assess 

and mitigate the impact of ageing on system performance. 
 

Unit – 8: Reliability Estimation; This unit is dedicated to the techniques and 

methodologies for estimating the reliability of systems and components. It includes statistical 

methods for analysing reliability data, such as life data analysis, censored data analysis, and 

reliability testing. The unit also discusses the use of reliability block diagrams and fault tree 

analysis to model and estimate system reliability. Practical aspects of conducting reliability 

tests and interpreting the results to make informed decisions about system design and 

maintenance are also covered. 
 

Unit – 9: Repairable Systems; This unit examines systems that can be repaired and 

restored to operational condition after experiencing failures. It covers the concepts of repair 

and maintenance, including preventive and corrective maintenance strategies. The unit 

introduces models for analysing the reliability of repairable systems, such as the renewal 

process, Markov chains, and availability models. It also discusses the impact of repair policies 

on system reliability and performance, and methods to optimize maintenance schedules to 

enhance system reliability. 
 

Unit – 10: Growth Models and Accelerated Life Testing; In this unit, growth models 

and accelerated life testing techniques are explored. Growth models describe how the reliability 

of a system improves over time as a result of testing and corrective actions. The unit covers 

various reliability growth models, such as the Duane model and the AMSAA model. 

Accelerated life testing involves subjecting products to higher stress levels than normal to 

induce failures quickly and gather reliability data in a shorter period. The unit discusses the 

principles and methodologies of accelerated life testing, including stress testing, data analysis, 

and extrapolation of results to normal operating conditions. 

At the end of every unit, the summary, self-assessment questions, and further readings 

are given.  

 



 

 

UNIT - 6  BASIC CONCEPTS 

Structure 

6.1         Introduction 

6.2          Objectives 

6.3          Reliability Measures 

6.3.1            Reliability 

6.3.2          Hazard Rate 

6.3.3          Mean Life 

6.4     System configurations 

6.4.2       Series Systems 

6.4.2        Parallel Systems 

6.4.3       K-Out of-n Systems 

6.5      Coherent Systems 

6.5.1      Definition 

6.5.2    Paths and Cuts of a Coherent System 

6.5.3      Representation of a Coherent in Terms of Paths and Cuts 

6.5.4      Relative Importance of Components 

6.6        Modular Decomposition  

6.7         Summary 

6.8         Self-Assessment Questions 

6.9         References 

6.10       Suggesting Readings 

 

6.1      Introduction 

When we buy any product like electric lamp or car, we expect it to function properly for a 

reasonable period of time. When a new ceiling fan is floated in market, the customers would 

like to know about the average life of the fan. Another related queries may be about the failure 

pattern of units or about the probability of its satisfactorily functioning for a desired duration. 

Life testing experiments are conducted to answer such questions.  

 



 

 

In a life testing experiment a number of units are subjected to test and the test is terminated 

according to the considered test plan. The data (sample) then consists of lifetimes of the units 

put to test. The sample is called a complete sample if the test is terminated after the failure of 

all the units put to test. However, sometimes due to time or cost constraints the experiment is 

terminated before the failure of all the units. Such experiment are termed as censored 

experiments and give rise to censored data. Consequently, the inferential procedures in 

reliability theory are developed in presence of censored data. 

 

6.2       Objectives 

 

After going through this unit, you will be able to know 

• the reliability and related measures 

• Basics of various system configurations 

• Coherent systems  

• Paths and cuts and their importance  

• Modular decomposition of a system 

 

6.3  Reliability Measures 

The notion of reliability and some related concepts are defined as follows: 

6.3.1       Reliability 

Definition: Reliability of a unit at time t0 is the probability that a unit will perform its 

intended function for a mission time t0, under the stated operating conditions. Let X denote the 

lifetime of the unit, then the reliability of unit at time t0 is given by 

𝑅(𝑡) = 𝑃(𝑋 > 𝑡0) 

 6.3.2      Hazard Rate 

The hazard rate is the instantaneous rate of failure. We can think of the hazard function 

as an item’s propensity to fail in the next short interval of time, given that the item has 

survived to time t. Mathematically, let the random variable T denote the lifetime of a unit and 

F be the distribution function of T, then the hazard rate h(t) can be expressed mathematically 

as follows 



 

 

ℎ(𝑡) = lim
t→0

P(t ≤ T <t+∆t)

∆t
       (1) 

1. Increasing failure rate (IFR): the instantaneous failure rate (hazard rate) increases as a 

function of time. We expect to see an increasing number of failures for a given period 

of time. 

2. Decreasing failure rate (DFR): the instantaneous failure rate (hazard rate) decreases as 

a function of time. We expect to see a decreasing number of failures for a given period 

of time. 

3. Bathtub failure rate (BFR): the instantaneous failure rate (hazard rate) begins high 

because of early failures (“infant mortality” or “burn-in” failures), levels off for a period 

of time (“useful life”), and then increases (“wear out” or “aging” failures). 

4. Constant failure rate (CFR): the instantaneous failure rate (hazard rate) is constant for 

the observed lifetime. We expect to see a relatively constant number of failures for a 

given period of time. 

Figure 1.1 shows four of the most common types of hazard functions.  

 

  
Fig. 1.1: Different plots of hazard rates. Dotted lines represent the bath-tub hazard function. 

Relation between Hazard Rate and Reliability 

The hazard function is defined as 

ℎ(𝑡) = lim
t→0

P(t ≤  T < t + ∆t)

∆t
   



 

 

= lim
t→0

P(t ≤  T <  𝑡 + ∆𝑡 ,   𝑇 > 𝑡)

P(T > 𝑡) ∆t
 

= lim
𝑡→0

P(t ≤  T <  𝑡 + ∆𝑡)

P(T > 𝑡) ∆t
 

= lim
𝑡→0

𝐹(𝑡 + ∆𝑡) − 𝐹(𝑡)

1 − 𝐹(𝑡)
 

= lim
𝑡→0

𝐹(𝑡 + ∆𝑡) − 𝐹(𝑡)

∆𝑡 𝑅(𝑡)
 

⇒ ℎ(𝑡) =  
𝑓(𝑡)

𝑅(𝑡)
       (2) 

Further, integrating (2) from 0 to t, we have 

∫ ℎ(𝑢)𝑑𝑢 =  ∫
𝑓(𝑢)

𝑅(𝑢)
𝑑𝑢

𝑡

0

𝑡

0

 

=  ∫
𝑓(𝑢)

1 − 𝐹(𝑢)
𝑑𝑢

𝑡

0

 

 Let, 1 − 𝐹(𝑢) = 𝑧, ⇒  −𝑓(𝑢)𝑑𝑢 = 𝑑𝑧,  

∫ ℎ(𝑢)𝑑𝑢 =  − ∫
1

𝑧
𝑑𝑧

1−𝐹(𝑡)

1

𝑡

0

 

= −[𝑙𝑜𝑔𝑧]1
1−𝐹(𝑡)

 

= − log𝑅(𝑡) +  0 

⇒ 𝑅(𝑡) =  𝑒−∫ ℎ(𝑢)𝑑𝑢
𝑡
0      (3) 

6.3.3           Mean Time to Failure (Average life) 

𝐸(𝑇) = ∫ 𝑓(𝑡)𝑑𝑡
𝑡

0

 



 

 

= ∫ 𝑡𝑑𝐹(𝑡)
∞

0

 

          =  ∫ 𝑡𝑑(1 − 𝑅(𝑡))
∞

0

 

 = −∫ 𝑡 𝑑𝑅(𝑡)
∞

0

 

 = [𝑡 𝑅(𝑡)]0
∞ + ∫ 𝑅(𝑡)𝑑𝑡

∞

0
 

⇒ 𝐸(𝑇) =  ∫ 𝑅(𝑡)𝑑𝑡
∞

0
      (4) 

Example 1: The hazard rate of a unit is given by (i) ℎ(𝑡) = 𝜆 (ii)    ℎ(𝑡) =  𝜆𝑡, find the mean 

reliability function, pdf f(t) and mean life of the unit.  

(i) We have from (3) that 

 

𝑅(𝑡) =  𝑒− ∫ ℎ(𝑢)𝑑𝑢
𝑡
0  

= 𝑒− ∫ 𝜆 𝑑𝑢
𝑡
0  

= 𝑒− 𝜆 [𝑢]0
𝑡
 

= 𝑒−𝜆 𝑡 

Now, since 

ℎ(𝑡) =  
𝑓(𝑡)

𝑅(𝑡)
 

or 

𝑓(𝑡) = ℎ(𝑡). 𝑅(𝑡) 

We have     

𝑓(𝑡) =  𝜆𝑒−𝜆 𝑡 

Further, 

𝐸(𝑇) =  ∫ 𝑅(𝑡) 𝑑𝑡
∞

0

 



 

 

= ∫ 𝑒−𝜆 𝑡
∞

0

 𝑑𝑡⬚ 

= 𝜆 

(ii) Again, we have from (3) that 

 

𝑅(𝑡) =  𝑒−𝜆∫ 𝑢.𝑑𝑢
𝑡
0  

= 𝑒
−𝜆𝑡2

2  

ℎ(𝑡) =  
𝑓(𝑡)

𝑅(𝑡)
 

𝑓(𝑡) = ℎ(𝑡). 𝑅(𝑡) 

=  𝜆𝑡𝑒
−𝑡2

2  

Using (4), the mean life of the unit is given by 

𝐸(𝑇) =  ∫ 𝑅(𝑡). 𝑑𝑡
∞

0

 

= ∫ 𝑒
−𝜆𝑡2

2

∞

0

. 𝑑𝑡 

𝐿𝑒𝑡 
𝜆𝑡2

2
= 𝑧, that is  𝑡 = √

2𝑧

𝜆
, or  

𝜆2𝑡𝑑𝑡

2
= 𝑑𝑧,  

therefore 

𝐸(𝑇) = ∫ 𝑒−𝑧
∞

0

𝑑𝑧

𝑡𝜆
 

= 
√𝜆

𝜆
∫

1

(2𝑧)
1
2⁄
𝑒−𝑧

∞

0

 𝑑𝑧 

= 
1

√2𝜆
∫ 𝑧

1
2
−1𝑒−𝑧

∞

0

𝑑 



 

 

= 
Γ(
1
2)

√2𝜆
 

= √
𝜋

2𝜆
 

Example 2: The hazard rate of a unit is given by   ℎ(𝑡) =  𝜆𝑡𝑚−1 ; 𝑚 ≥ 1 , find the mean 

reliability function, pdf f(t) and mean life of the unit. Using (3), the reliability function of the 

unit is 

     𝑅(𝑡) =  𝑒−𝜆∫ 𝑡𝑚−1𝑑𝑡
∞
0  

= 𝑒−
𝜆𝑡𝑚

𝑚  

Now, using (4), the mean life of the unit is 

𝐸(𝑇) =  ∫ 𝑅(𝑡)𝑑𝑡
∞

0

 

= ∫ 𝑒−
𝜆𝑡𝑚

𝑚

∞

0

𝑑𝑡 

𝐿𝑒𝑡 
𝜆𝑡𝑚

𝑚
= 𝑧 , that is  

𝜆𝑚𝑡𝑚−1

𝑚
𝑑𝑡 = 𝑑𝑧 or  𝑑𝑡 =  

1

𝜆𝑡𝑚−1
𝑑𝑧 

𝑆𝑖𝑛𝑐𝑒, 𝑡 =  (
𝑧𝑚

𝜆
)

1

𝑚
, then  𝑑𝑡 =  

1

𝜆(
𝑚𝑧

𝜆
)

𝑚−1
𝑚

𝑑𝑧 =  
1

𝜆(
𝑚𝑧

𝜆
)
1−

1
𝑚

𝑑𝑧 =  
1

𝜆
(
𝑚𝑧

𝜆
)

1

𝑚
−1

𝑑𝑧 

Finally, we have 

𝐸(𝑇) =  ∫ 𝑒−𝑧
∞

0

1

𝜆
1
𝑚⁄
𝑚

1
𝑚
−1𝑧

1
𝑚
−1 𝑑𝑧 

= 
𝑚

1
𝑚
−1

𝜆
1
𝑚⁄

 Γ(1 𝑚⁄ ) 

 

 



 

 

 

Example-3:   The hazard rate of a device is   

ℎ(𝑡) = {
0, 𝑡 ≤ 𝑢
𝜆, 𝑡 > 𝑢

 

Obtain the reliability function, lifetime pdf and mean life of the unit. 

The reliability function of the unit can be obtained as follows: 

𝑅(𝑡) =  𝑒−∫ ℎ(𝑢).𝑑𝑢
𝑡
0  

= {
𝑒−∫ 0.𝑑𝑡

𝑡
0 , 𝑡 ≤ 𝑢

𝑒−∫ 𝜆.𝑑𝑡
𝑡
𝑢 , 𝑡 > 𝑢

 

= {
1, 𝑡 ≤ 𝑢

𝑒−𝜆(𝑡−𝑢), 𝑡 > 𝑢
 

𝑓(𝑡) =  {𝜆𝑒
−𝜆(𝑡−𝑢), 𝑡 > 𝑢

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Meanlife =  ∫ R(t)dt 
∞

0

 

= ∫ 1 𝑑𝑡 + ∫ 𝑒− 𝜆 (𝑡−𝑢)
∞

𝑢

𝑑𝑡
𝑢

0

 

Let, t − u = x ⇒ 𝑑𝑡 = 𝑑𝑥 

∴ 𝑀𝑇𝑇𝐹 = 𝑢 + ∫ 𝑒− 𝜆 𝑥 𝑑𝑥
∞

0

 

= 𝑢 + 
1

𝜆
 

Example-4: The hazard rate of a unit is   

(𝑖) ℎ(𝑢) = 𝑎 𝑒− 𝑏 𝑢           (ii)  ℎ(𝑢) =  𝜆  

Find the probability that a unit of age t will further be operative for a mission time x. 



 

 

Answer:(i) We have  

𝑅(𝑡) : A unit will be operative from 0 to t. 

We have to obtain the conditional probability that unit will be operative from t to t+x given 

that it is operative at t.  

𝑅(𝑥|𝑡) = 𝑃(𝑇 > 𝑡 + 𝑥|𝑇 > 𝑡) 

=
𝑃(𝑇 > 𝑡 + 𝑥, 𝑇 > 𝑡)

𝑃(𝑇 > 𝑡)
 

=
𝑃(𝑇 > 𝑡 + 𝑥)

𝑃(𝑇 > 𝑡)
 

=
𝑅(𝑡 + 𝑥)

𝑅(𝑡)
 

Now  

𝑅(𝑡) =  𝑒− ∫ 𝑎 𝑒− 𝑏 𝑢
𝑡
0

 𝑑𝑢 = 𝑒
𝑎
𝑏
[𝑒−𝑏𝑢]

0

𝑡

 

= 𝑒− 
𝑎
𝑏
(1−𝑒−𝑏 𝑡)

 

𝑅(𝑡 + 𝑥) =  𝑒− 
𝑎
𝑏
[1−𝑒−𝑏( 𝑡+𝑥)]

 

Then  

𝑅(𝑥|𝑡) =  𝑒− 
𝑎
𝑏
[1−𝑒−𝑏( 𝑡+𝑥)] −   

𝑎
𝑏
(1−𝑒−𝑏 𝑡) 

 

= 𝑒
−𝑎
𝑏
𝑒− 𝑏𝑡 [1− 𝑒

−𝑏 𝑥]

 

 

(iii) Derive yourself. 

 

6.4         System Configurations 

In reliability analysis, we often model systems graphically. This provides a visual 

representation of the components and how they are configured to form a system. One of the 



 

 

most commonly used system representations in risk and reliability analysis is the reliability 

block diagram.  

6.4.1      Series System 

A system that functions if and only if all of its components are functioning is series 

system. Figure 1.2 below shows the reliability block diagram for a series system.  

 

Fig. 1.2 

6.4.2     Parallel System 

A system that functions if at least one of its n components functions is called a parallel 

system. The first figure in Figure 1.3 shows the reliability block diagram for a parallel system. 

6.4.2      k-of-n Systems 

A k-of-n system functions if at least k of its n components function. Series and parallel 

systems are special cases of k-of-n systems.  If k = n, it reduces to a series system; if k = 1, we 

have a parallel system. The second figure in Figure1.3 shows the reliability block diagram for 

a k-of-n system with k = 2 and n = 3. 

 

Figures: Parallel and k-out of –n systems. 



 

 

6.5        Coherent Systems 

 Here, we first define structure function of a system then coherent system. 

6.5.1   Structure Function 

Structure functions provide another way to summarize the relationships between 

components in a system. Consider a system with n components. For the ith component and time 

t, define a random variable 𝑥𝑖 = 𝑋𝑖(𝑡), so that 

 

  

𝑥𝑖 = {
1    𝑖𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑐𝑜𝑚𝑝𝑒𝑛𝑒𝑛𝑡 𝑖𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖𝑛𝑔
0          𝑖𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑐𝑜𝑚𝑝𝑒𝑛𝑒𝑛𝑡 𝑖𝑠 𝑓𝑎𝑖𝑙𝑒𝑑.

  

 

Coherent System 

 A system is coherent if its structure function satisfies the following conditions: 

1.  φ(0, 0, . . . , 0) = 0, 

2.  φ(1, 1, . . . , 1) = 1, 

3.  φ(x) is nondecreasing in each argument. 

Consider a series system, which functions if and only if all of its n components are 

functioning. Thus, 𝜙(x) = 1 if x1 = x2 = ... = xn = 1, and is 0 otherwise. We can write the 

following three equivalent expressions: 

𝜙(𝑥) =  {
1 𝑖𝑓 𝑥𝑖 = 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖
0 𝑖𝑓 𝑥𝑖 = 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑖,

 

= min(𝑥1, 𝑥2, … , 𝑥𝑛), 

                                                          = ∏ 𝑥𝑖
𝑛
𝑖=1   

A parallel system functions if at least one of its components is functioning. Thus, 𝜙(x) 

= 0 if x1 = x2 = ... = xn = 0, and is 1 otherwise. We can write the following three equivalent 

expressions: 

𝜙(𝑥) =  {
1 𝑖𝑓 𝑥𝑖 = 1 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑖
0 𝑖𝑓 𝑥𝑖 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖,

 

= max(𝑥1, 𝑥2, … , 𝑥𝑛), 



 

 

                                                          = 1 −∏ (1 − 𝑥𝑖).
𝑛
𝑖=1   

A k-of-n system functions if k or more of its components function. We can write 

                                                     𝜙(𝑥) =  {
1 𝑖𝑓 ∑ 𝑥𝑖 ≥ 𝑘𝑛

𝑖=1

0 𝑖𝑓 ∑ 𝑥𝑖 < 𝑘
𝑛
𝑖=1 ,

  

                                                              = ∑ (∏ 𝑥𝑖𝑖∈𝐴𝑗
)𝑗 [∏ (1 − 𝑥𝑖)𝑖∈𝐴𝑗

𝑐 ], 

Where, Aj is any subset of {1, 2,...,n} with at least k elements, and the sum is over all 

such subsets. For example, the structure function for a 2-of-3 system is, 

                                         𝜙(𝑥) =  ∑ (∏ 𝑥𝑖𝑖∈𝐴𝑗
)𝑗 [∏ (1 − 𝑥𝑖)𝑖∈𝐴𝑗

𝑐 ]  

                                                  = 𝑥1𝑥2(1 − 𝑥3) + 𝑥1𝑥3(1 − 𝑥2) + 𝑥2𝑥3(1 − 𝑥1) + 𝑥1𝑥2𝑥3 

                                                  = 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3 − 2𝑥1𝑥2𝑥3 

6.5.2     Path and Cut of a Coherent System 

In addition to reliability block diagrams and structure functions, we can use minimal 

path and cut sets to represent the structure of a system. We call any x for which φ(x) = 1 a path 

vector for the system, and any x for which φ(x) = 0 a cut vector for the structure. The set of 

component indices corresponding to the functioning (failed) components of a path vector (cut 

vector) is a path set (cut set). We denote by y < x if for all i, yi ≤ xi, and for some i, yi< xi, i = 

1, . . . n.  

Paths: A path vector, x, is a minimal path vector if for every y < x, φ(y) = 0. The minimal path 

set is the set of components in a minimal path vector that are functioning; that is, a minimal set 

of components such that if they are all functioning, the system is functioning, but if one of them 

fails (and all of the components outside the set have failed), then the system fails.  

Cuts: A cut vector, x, is a minimal cut vector if for every y > x, φ(y) = 1. The minimal cut set 

is the set of components in a minimal cut vector that are failed, that is, a minimal set of 

components such that if they have all failed, the system has failed, but if one of them is 

functioning (and all of the components outside the set are functioning), then the system is 

functioning. 



 

 

6.5.3   Structure function of a coherent system in terms of minimal paths and 

minimal cuts 

  We can determine the structure function of a coherent system from either its minimal 

path sets or its minimal cut sets. Suppose that {a1, a2, . . . , am}is the collection of all minimal 

path sets of a coherent system, with xi being the state variable of the ith component. The system 

is functioning if all of the components in one or more path sets are functioning. We can think 

of this as a parallel arrangement of m sets of components in series. In terms of the minimal 

path sets, the structure function of the system is 

𝜑 (𝑥) = 1 −∏[1 −∏𝑥𝑗
𝑗∈𝑎𝑗

]

𝑚

𝑖=1

 

   

 

A similar result holds for cut sets. Let {b1, b2, . . . , bk} be the collection of  all minimal 

cut sets of a coherent system, with xi being the state variable of the ith component. The system 

fails if all of the components in one or more cut sets fail. We can think of this as a series 

arrangement of k sets of components in parallel. In terms of minimal cut sets, the structure 

function of the system is 

   

 

𝜑 (𝑥) =∏[1 −∏𝑥𝑗
𝑗∈𝑏𝑗

]

𝑘

𝑖=1

 

 

Example 5.1:  Using path sets and cut sets to determine a structure function. Consider the 

system in Fig. 5.5. The minimal path sets are a1 = {1,2}, a2 = {1,3}. Using Eq. 5.3, the structure 

function for the system is 

                                       𝜙(𝑥) = 1 − ∏ (1 − ∏ 𝑥𝑖𝑖∈𝑎𝑗
)2

𝑗=1   

 

                                                = 1 − (1 − 𝑥1𝑥2)(1 − 𝑥1𝑥3)   
 

                                                = 𝑥1𝑥2 + 𝑥1𝑥3 − 𝑥1𝑥2𝑥3  

 

The minimal cut sets for the system are b1 = {1} and b2 = {2,3}. Using Eq. 5.4, the structure 

function for the system is 



 

 

                                       𝜙(𝑥) = ∏ (1 − ∏ (1 − 𝑥𝑖)𝑖∈𝑏𝑘 )2
𝑘=1   

 

                                                = (1 − (1 − 𝑥1))(1 − (1 − 𝑥2)(1 − 𝑥3))   

 

                                                = 𝑥1(𝑥2 + 𝑥3 − 𝑥2𝑥3)  
 

                                                = 𝑥1𝑥2 + 𝑥1𝑥3 − 𝑥1𝑥2𝑥3  

 

 
Fig. 5.5. System with minimal path sets a1 = {1,2} and a2 = {1,3}. 

6.5.4  Relative Importance of Components 

For a given coherent system, some components are more important than others in 

determining whether system functions or not. For example, if a component is in series with rest 

of the system, then it would seem to be at least as important as any other component in the 

system. 

First suppose we are given the state of each of the remaining components,  

 Then we would consider component i more important if (*j, 𝑥) 

    𝜑(1𝑗 , 𝑥) −  𝜑(0𝑗 , 𝑥) = 1  (5) 

rather than 

   𝜑(1𝑗 , 𝑥) = 1 =  𝜑(0𝑗 , 𝑥) or 𝜑(1𝑗 , 𝑥) = 0 =  𝜑(0𝑗 , 𝑥)  

   

When (5) holds, we call 𝜑(1𝑗 , 𝑥)  a critical path vector for ith component. 

 Let  𝜂𝜑(𝑖) =  ∑ [𝜑(1𝑗 , 𝑥) −  𝜑(0𝑗 , 𝑥)](𝑥|𝑥𝑗 = 1)  denotes total number of critical paths. 

Then, the relative importance of ith component is 

𝐼∅(𝑖) =
1

2𝑛−1
𝜂𝜑(𝑖) 

Example 5: Determine the importance of various components in following structure. 



 

 

 

Here, the structure function of the system is 

     𝜑( 𝑥) = 𝑥1(𝑥2𝑣𝑥3) 

Since, among four outcomes 100, 101, 110 and 111, there are three critical path vectors for 

component 1, given by (101, 110, and 111). Therefore, relative importance of component 1 is 

𝐼∅(1) =
1

22
3 = 

3

4
 

Similarly, for Component 2, we have 

𝐼∅(2) =
1

22
1 = 

1

4
 

since among four outcomes 010, 011, 110, 111 the only one critical path vector for component 

2, is 110.  

Here, it may be noted that I(2)=I(3). 

6.6   Modular Decomposition 

 

Definition: The coherent system (A, χ) is a module of the coherent system (c, φ) if  

   𝜑(𝑥) =  𝜓[𝜒(𝑥
𝐴), 𝑥𝐴] 

where 𝜓 is a coherent structure function and A⸦C The set A⸦C is called modular set of (C, 𝜑). 

Intuitively, a module (A, 𝜒) of (C, 𝜑) is a coherent sub-system that acts as if it were just a 

component. Knowing whether 𝜒 is 1 or 0 is as informative as knowing the value of 𝑥𝑖 for each 

i in A, in determining the value of 𝜑 . In the usual performance diagram of a system, we can 

identify a module by the fact that it is a cluster of components with one wire leading into it and 

one wire leading out of it. 

Example 6:  Consider a coherent system (C, 𝜑). having the structure function 

 𝜑(𝑥) = 𝑥1(𝑥2𝜈 𝑥3)(𝑥4𝜈 𝑥5) and 𝐶 = {1,  2,  3,  4,  5}. A module of (C, 𝜑) is (A, 𝜒) where 

𝐴 = {2,  3}and 𝜒(𝑥𝐴) = (𝑥2𝜈 𝑥3). We may write 

 𝜑(𝑥) = 𝜓[𝜒(𝑥𝐴), 𝑥𝐴
𝑐
] = 𝑥1.  𝜒 . (𝑥4𝜈 𝑥5). 



 

 

6.7  Summary 

We have discussed various reliability measures, such as, reliability, hazard rate and 

meanlife of a unit. Interrelations between these functions were also obtained. Various types of 

hazard rates are described in detail. The notion of a coherent system is explained with example. 

Paths and cuts of a coherent system are discussed and representation of a coherent systems in 

terms of its paths and cuts is elaborated. Relative importance of components is formulated. 

Modullar decomposition is discussed. 

6.8  Self-Assessment Questions 

      1. The hazard rate of a device is   

ℎ(𝑡) = {
0, 𝑡 ≤ 𝑎
𝛼𝑡, 𝑡 > 𝑎

 

Obtain the reliability function, lifetime pdf and mean life of the unit. 

2.    ℎ(𝑢) =  𝜆  

Find the probability that a unit of age t will further be operative for a mission time x. 
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7.1       Introduction 

By far we have built our understanding of the reliability concepts and their related 

measures, developed a comprehensive idea of system and components of coherent systems, 

understood cuts and paths, modular decomposition, discussed bounds on system reliability, and 

the structural and reliability importance of components. This unit will help us understand the 

concept of ageing, and explore how components and systems evolve, focusing on different 

ageing classes and their properties. These notions are essential for predicting failure rates, 

planning maintenance, and enhancing the overall reliability of systems. 



 

 

7.2         Objectives 

After going through this unit, you should be able to: 

• Develop a clear understanding of ageing in reliability and its impact on system performance 

over time. 

• Learn about various ageing classes, including IFR, IFRA, NBU, DMRL, and NBUE, and 

distinguish their characteristics. 

• Examine the specific properties of each ageing class and their influence on failure rates and 

component reliability. 

• Investigate the dual classes corresponding to each ageing class and understand their inverse 

relationships. 

7.3        Concept of Ageing 

Reliability finds its application in the field of engineering where units are exposed to wear, 

tear or shock. In this regard, the concept of ageing plays an important role in the selection of 

appropriate lifetime models. Before diving into the depths of understanding of ageing let us 

first develop the notion of the lifetime of a unit and the age of a unit in reliability analysis.  

i) Lifetime of a Unit:  

The lifetime of a unit, denoted as 𝑇, is a continuous, non-negative valued random 

variable that represents the total time duration for which the unit performs its appointed 

task satisfactorily until it transitions into a failed or dead state. 

 

ii) Age of a Working Unit: 

The age of a working unit is the elapsed time that the unit has been operating 

satisfactorily without failure 

7.4       Some Basic Notions Related to Lifetime Random Variables 

The probabilistic properties of the random variable are analysed using it’s cumulative 

distribution function; 𝐹(𝑡), reliability function; 𝑅(𝑡),  probability density function; 𝑓(𝑡) hazard 

function; ℎ(𝑡), cumulative hazard function; 𝐻(𝑡) and mean residual life function at age 

𝑥;  𝑀𝐹(𝑡). 



 

 

i) Cumulative Distribution Function:  

The cumulative distribution function (CDF) gives the probability that the event has 

occurred by time t. 𝐹(𝑡) is given by 

𝐹(𝑡) = 𝑃[𝑋 ≤ 𝑡],  𝑡 ≥ 0 ( 7.1 ) 

This function represents the probability that the event will have occurred by time t. 

 

ii) Reliability Function:  

The reliability function, represents the probability that the event has not occurred by 

time t, meaning the system or component is still functioning. The reliability function 𝑅(𝑡)  

is the complement of the CDF and is given by 

𝑅(𝑡) = 1 − 𝐹(𝑡) = 𝑃[𝑋 > 𝑡],  𝑡 ≥ 0 ( 7.2 ) 

iii) Probability Density Function:  

The probability density function (PDF) provides the likelihood that the event occurs at 

a specific time t. It is denoted by 𝑓(𝑡) and is given as 

𝑓(𝑡) =
𝑑

𝑑𝑡
𝐹(𝑡) = −

𝑑

𝑑𝑡
𝑅(𝑡) ( 7.3 ) 

(when it exists) 

iv) Hazard Function (Failure Rate Function) 

The hazard function, or failure rate function, represents the instantaneous rate of failure 

at any given time  𝑡, given that the system has survived up to that point. The hazard function 

ℎ(𝑡) is given by 

ℎ(𝑡) = lim
0<𝑎→0

 
1

𝑎
𝑃[ 𝑡 < 𝑇 ≤ 𝑡 + 𝑎 ∣ 𝑇 > 𝑡 ] 

= lim
0<𝑎→0

 
𝑃[𝑡 > 𝑇] − 𝑃[𝑡 ≥ 𝑡 + 𝑎]

𝑎𝑃[𝑇 > 𝑡]
 

= lim
0<𝑎→0

 
𝑅(𝑡) − R(𝑡 + 𝑎)

𝑎R(𝑡)
 

= −
1

𝑅(𝑡)
lim

0<𝑎→0
 
𝑅(𝑡 + 𝑎) − R(𝑡)

𝑎
 

=
1

𝑅(𝑡)
(−

𝑑

𝑑𝑡
𝑅(𝑡)) 

 

 

 

[by the definition of conditional probability] 

 

 

 

[∵ 𝑅(𝑡) is independent of a] 

( 7.4 ) 

 



 

 

=
𝑓(𝑡)

𝑅(𝑡)
 

[from ( 7.3 )] ( 7.5 ) 

The above equation [from ( 7.3 )] ( 7.5 ) will be true provided 𝐹(𝑡) < 1, and 𝑓(𝑡) exists.  

Conversely, ℎ(𝑡) =
1

𝑅(𝑡)
(−

𝑑

𝑑𝑡
𝑅(𝑡)) shows that 

ℎ(𝑡) = −
𝑑

𝑑𝑡
ln (𝑅(𝑡)) 

 integrating on both w.r.t 𝑡 we obtain 

ln(𝑅(𝑡)) = −∫  
𝑡

0

 ℎ(𝑢)𝑑𝑢 

𝑅(𝑡) = exp {−∫  
𝑡

0

 ℎ(𝑢)𝑑𝑢} 

 

 

 

 

( 7.6 ) 

v) Cumulative Hazard Function 

𝐻(𝑡) is given by 

𝐻(𝑡) = ∫  
𝑡

0

ℎ(𝑢)𝑑𝑢,  𝑡 ≥ 0 
( 7.7 ) 

Therefore using ( 7.7 ) in ( 7.6 ) we obtain 

𝑅(𝑡) = exp[−𝐻(𝑡)] ( 7.8 ) 

vi) Mean Residual Life Function at Age 𝒙 

Let a unit be of age 𝑥, i.e., it has been under “operating state” at time 𝑥. Since the 

unit has not yet failed it has a certain amount of residual lifetime. Let 𝑇𝑥 be the residual 

lifetime and 𝐹‾𝑥 be its survival function. 

𝑅𝑥(𝑡) = 𝑃[𝑇𝑥 > 𝑡] 

= 𝑃[ 𝑇 > 𝑥 + 𝑡 ∣ 𝑇 > 𝑥 ] 

=
𝑃[𝑇 > 𝑥 + 𝑡]

𝑃[𝑇 > 𝑥]
 

=
𝑅(𝑥 + 𝑡)

𝑅(𝑥)
 

 

 

[by the definition of conditional probability] 

( 7.9 ) 



 

 

 

Then the mean residual life function, 𝑀𝐹(𝑥)is given by  

𝑀𝐹(𝑥) = 𝐸[𝑇𝑥],  𝑥 ≥ 0 

= ∫  
∞

0

𝑅𝑥(𝑢)𝑑𝑢,  𝑥 ≥ 0 

= ∫  
∞

0

𝑅(𝑥 + 𝑢)

𝑅(𝑥)
𝑑𝑢,  𝑥 ≥ 0 

 

 

( 7.10 ) 

This gives, 

𝑀𝐹(0) = 𝐸(𝑇0) = 𝐸(𝑇) = 𝜇 ( 7.11 ) 

And 

ℎ(𝑡) =
[1 + 𝑀′(𝑥)]

𝑀(𝑥)
 

( 7.12 ) 

vii) Equilibrium Distribution Function 

Suppose identical units are put into operation consecutively, i.e. a new unit is put in 

operation immediately after the failure of the one in operation. The lifetimes of these units are 

assumed to be independent identically distributed random variables (i.i.d.r.v.s), with 

distribution function 𝐹. Let us consider the residual lifetime of a unit in operation at time 𝑡 as 

𝑡 → ∞. The distribution function of this lifetime is called the equilibrium distribution function, 

say 𝐸𝑄𝐹. From renewal theory we have 

𝐸𝑄𝐹(𝑡) =
1

𝜇
∫  
𝑡

0

𝑅(𝑢)𝑑𝑢,  𝜇 = 𝐸(𝑇) = ∫  
∞

0

𝑅(𝑢)𝑑𝑢 
( 7.13 ) 

It can be verified that 𝐸𝑄𝐹 is a proper distribution function. Let 

ℎ𝐸𝑄(𝑡) =  failure rate of equilibrium distribution. 

 =
𝑅(𝑡)

𝐸𝑄‾ 𝐹(𝑡)
⋅
1

𝜇

 

( 7.14 ) 

Then 

ℎ𝐸𝑄(0) =
1

𝜇
 

( 7.15 ) 

And 



 

 

𝑅(𝑡) =
ℎ𝐸𝑄(𝑡)

ℎ𝐸𝑄(0)
exp {−∫  

𝑡

0

 ℎ𝐸𝑄(𝑢)𝑑𝑢} 
( 7.16 ) 

All the above functions clearly show one-to-one correspondence. A model uses the 

function which brings out the interesting properties most clearly.  

7.5   Some Basic Lifetime Distributions 

In this unit, we will explore some fundamental probability distributions that are widely 

used in reliability engineering and various other fields. These distributions—exponential, 

Weibull, gamma, and log-normal—are essential tools for modelling and analysing the lifetimes 

of systems and components. Each distribution has unique characteristics that make it suitable 

for different types of data and scenarios. Understanding these distributions will provide a solid 

foundation for analyzing the reliability and performance of systems, helping to predict failure 

rates, assess risks, and make informed decisions. 

7.5.1   Exponential Distribution 

The exponential distribution is a fundamental probability distribution used extensively 

in reliability theory and various fields of engineering and science. It is particularly significant 

for modelling the time until an event occurs, such as the failure of a component or system. The 

exponential distribution is characterized by its simplicity and its relationship with the Poisson 

process, where it models the time between events occurring independently and at a constant 

average rate. 

The exponential distribution is unique in its memoryless property, which implies that the 

probability of an event occurring in the future is independent of the past. This property makes 

the exponential distribution particularly useful in situations where the time since the last event 

does not influence the likelihood of the next event. 

(a) Probability Density Function (PDF) 

A positive valued random variable X is said to follow exponential 

distribution if its probability density function is given by 

 

𝑓(𝑥; 𝜎) =
1

𝜎
𝑒𝑥𝑝 {−

𝑥

𝜎
} ;    𝑥 > 0,  𝜎 > 0.

 

( 7.17 ) 

(b) Cumulative Distribution Function (CDF) 



 

 

Using ( 7.17 ) in ( 7.1 ) 𝐹(𝑡) follows 

𝐹(𝑡) =  ∫
1

𝜎
𝑒𝑥𝑝 {−

𝑥

𝜎
} 𝑑𝑥

𝑡

0

  

= 
1

𝜎
∫  𝑒𝑥𝑝 {−

𝑥

𝜎
} 𝑑𝑥

𝑡

0

  

=  1 − 𝑒𝑥𝑝 {−
𝑡

𝜎
} 

 

 

 

 

 

( 7.18 ) 

(c) Reliability Function 

Substituting the CDF for the exponential distribution in ( 7.2 )  

𝑅(𝑡) =  ∫
1

𝜎
𝑒𝑥𝑝 {−

𝑥

𝜎
}

∞

𝑡

  𝑑𝑥 

= ∫  𝑒− 𝑢
∞

𝑡
𝜎

  𝑑𝑢 

=  𝜆(𝑒− 𝑢)𝑡
𝜎

∞ 

=  𝑒−
𝑡
𝜎 

 

 

 

 

 

( 7.19 ) 

Conversely on using ( 7.18 ) in ( 7.2 ) we have 

𝑅(𝑡) =  1 − 𝐹(𝑡) = 1 − (1 − 𝑒−𝜆𝑡) =  𝑒−𝜆𝑡 

The reliability function shows an exponential decrease over time, reflecting the decreasing 

probability that the system or component will continue to function as time progresses. 

(d) Hazard Function 

For the exponential distribution, the hazard function ℎ(𝑡) is derived using  ( 7.17 ) and           

( 7.19 ) in [from ( 7.3 )] ( 7.5 ) as: 

Therefore h(t) is constant =
1

𝜎
 indicating that the failure rate remains the same over time. This 

constant hazard rate is a defining feature of the exponential distribution, making it suitable for 

modelling scenarios where the likelihood of an event occurring is consistent throughout the 

observation period. 

ℎ(𝑡) =
𝑓(𝑡)

𝑅(𝑡)
=

1
𝜎 𝑒𝑥𝑝

{−
𝑡
𝜎
}

𝑒𝑥𝑝 {−
𝑡
𝜎
}
=
1

𝜎
. 

 

 

( 7.20 ) 

 



 

 

 𝑀𝑒𝑎𝑛 𝑙𝑖𝑓𝑒 = 𝐸(𝑋) = ∫ 𝑥 
1

𝜎
𝑒𝑥𝑝 {−

𝑥

𝜎
} 𝑑𝑥

∞

0
 

     = ∫ 𝑦 𝑒−𝑦𝑑𝑦
∞

0
= 𝜎. 

Note: Sometimes, the exponential distribution is defined by the parameter, 𝜆, known as the rate 

parameter. This parameter represents the rate at which events occur and is the reciprocal of the 

mean time to failure (MTTF). Mathematically, if the mean time between events (such as 

failures) is  𝜇, then the rate parameter is given by 𝜆   =  
1

𝜇
. 

7.5.2   Weibull Distribution 

The Weibull distribution is a versatile probability distribution widely used in reliability 

engineering and lifetime data analysis. Introduced by Waloddi Weibull in 1951, it can model 

various types of failure rates—decreasing, constant, or increasing—depending on its shape 

parameter. This flexibility makes it ideal for analysing the life expectancy of products and 

systems, capturing behaviours like early-life failures (burn-in), random failures, and wear-out 

failures. 

Its broad applicability across industries like manufacturing, aerospace, and electronics 

stems from this adaptability. By adjusting its parameters, the Weibull distribution can 

accurately reflect different real-world scenarios, making it a fundamental tool in predicting 

product lifespan and system reliability. 

 

Fig. CDF, pdf and hazard rate functions of Weibull distribution (𝑝 = 𝛽,  𝜎 = 𝜂). 



 

 

𝑀𝑒𝑎𝑛 𝑙𝑖𝑓𝑒 = 𝐸(𝑋) = ∫ 𝑥 
𝑝

𝜎
𝑥𝑝−1 𝑒𝑥𝑝 {−

𝑥𝑝

𝜎
} 𝑑𝑥

∞

0

 

   = ∫ 𝜎1/𝑝𝑦1/𝑝 𝑒−𝑦𝑑𝑦
∞

0
 

   

= 𝜎1/𝑝 ∫ 𝑦
𝑝+1

𝑝
−1
 𝑒−𝑦𝑑𝑦

∞

0
 

   

= 𝜎1/𝑝𝛤 (
𝑝+1

𝑝
). 

(a) Probability Density Function (PDF) 

A positive valued random variable X is said to follow Weibull distribution if its probability 

density function is given by 

 

𝑓(𝑥; 𝑝,  𝜎) =
𝑝

𝜎
𝑥𝑝−1 𝑒𝑥𝑝 {−

𝑥𝑝

𝜎
} ;    𝑥 > 0,  𝑝,  𝜎 > 0.   (7.21) 

where p is shape parameter and 𝜎 is scale parameter. 

 

(b) Cumulative Distribution Function (CDF) 

To derive the CDF, integrate the PDF over the interval from 0 to 𝑡: 

𝐹(𝑡) = ∫ 𝑓(𝑥; 𝑝, 𝜎 )
𝑡

0

𝑑𝑥 

= ∫
𝑝

𝜎
𝑥𝑝−1 𝑒𝑥𝑝 {−

𝑥𝑝

𝜎
} 𝑑𝑥

𝑡

0

 

Let 
𝑥𝑝

𝜎
= 𝑦 𝑡ℎ𝑒𝑛 

𝑝𝑥𝑝−1

𝜎
𝑑𝑥 = 𝑑𝑦. Thus 

 

𝐹(𝑡) = ∫ 𝑒−𝑦
𝑡𝑝

𝜎
0

𝑑𝑦 = 1 − 𝑒−
𝑡𝑝

𝜎 . 

 

 

 

( 7.21 ) 

(c) Reliability Function 

Substituting the CDF ( 7.21 ) for the Weibull distribution in ( 7.2 )  

𝑅(𝑡) = 𝑒−
𝑡𝑝

𝜎  

 

( 7.22 ) 

(d) Hazard Function 



 

 

For the Weibull distribution, the hazard function ℎ(𝑡) is derived using Error! Reference 

source not found. and ( 7.22 ) in [from ( 7.3 )] ( 7.5 ) as: 

ℎ(𝑡) =
𝑓(𝑡)

𝑅(𝑡)
=

𝑝
𝜎 𝑡

𝑝−1 𝑒𝑥𝑝 {−
𝑡𝑝

𝜎 }

𝑒𝑥𝑝 {−
𝑡𝑝

𝜎
}

=
𝑝

𝜎
𝑡𝑝−1. 

 

 

Therefore: 

When p>1, h(t) is an increasing function of t. 

When p=1, h(t) is constant =
1

𝜎
. 

When p<1, h(t) is a decreasing function of t. 

 

( 7.23 ) 

This function helps in understanding the failure behaviour over time, which can either 

increase, decrease, or remain constant depending on the shape parameter 𝛼. 

7.5.3    Gamma Distribution 

The Gamma distribution is a continuous probability distribution that plays a significant 

role in various fields, including reliability engineering, queuing theory, and Bayesian statistics. 

It is particularly useful for modelling the time until the occurrence of an event, such as the 

failure of a system or the arrival of the nth event in a Poisson process. The distribution is 

characterized by its two parameters: the shape parameter (𝛼) and the rate parameter (𝛽). These 

parameters allow the Gamma distribution to model a wide range of behaviors, from 

exponential-like distributions (when 𝛼 = 1) to distributions that can account for varying rates 

of occurrence. 

The Gamma distribution is flexible and can model scenarios where the event rate changes 

over time, making it ideal for representing life data and waiting times. In reliability engineering, 

it is often used to model systems where the failure rate changes as the system ages or undergoes 

different operational phases. The distribution's versatility and ability to adapt to various shapes 

make it an essential tool for analysing and predicting the lifespan and performance of 

components and systems across different industries. 

(a) Probability Density Function 

The PDF of the Gamma distribution is given by: 



 

 

𝑓(𝑡; 𝛼, 𝛽) =  
𝛽𝛼

Γ(𝛼)
𝑡𝛼−1 𝑒−𝛽𝑡, 𝑡 ≥  0 

 

( 7.24 ) 

where: 

• 𝛼 >  0 is the shape parameter, 

• 𝛽 >  0 is the rate parameter (inverse of the scale parameter), 

• 𝑡 is the time or variable of interest, 

• Γ(𝛼) is the Gamma function, defined as Γ(𝛼)  =  ∫ 𝑥𝛼−1 𝑒−𝑥 𝑑𝑥
∞

0
. 

(b) Cumulative Distribution Function  

To derive the CDF, integrate the PDF from 0 to 𝑡: 

𝐹(𝑡) =  ∫ 𝑓(𝑢; 𝛼, 𝛽)
𝑡

0

𝑑𝑢  

= ∫
𝛽𝛼

Γ(𝛼)
𝑢𝛼−1 𝑒−𝛽𝑢

𝑡

0

𝑑𝑢 

Let 𝛽𝑢 = 𝑘 ⟹ 𝛽𝑑𝑢 = 𝑑𝑘 and the limits for k will be 

for 𝑢 = 0; 𝑘 = 0 and 𝑢 = 𝑡; 𝑘 = 𝛽𝑡 

= ∫
𝛽𝛼

Γ(𝛼)
(
𝑘

𝛽
)
𝛼−1

 𝑒−𝑘
𝛽𝑡

0

1

𝛽
𝑑𝑘 

= ∫
𝑘𝛼−1

Γ(𝛼)
 𝑒−𝑘

𝛽𝑡

0

𝑑𝑘 

=
1

Γ(𝛼)
∫  𝑘𝛼−1𝑒−𝑘
𝛽𝑡

0

𝑑𝑘 

= 
𝛾(𝛼, 𝛽𝑡)

Γ(𝛼 )
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( 7.25 ) 

where 𝛾(𝛼, 𝛽𝑡) is the lower incomplete Gamma function, defined as  𝛾(𝛼, 𝛽𝑡)  =

∫ 𝑘𝛼−1𝑒−𝑘 𝑑𝑘
𝛽𝑡

0
. 

(c) Reliability Function 

Substituting the CDF ( 7.26 ) for the Gamma distribution in ( 7.2 )  



 

 

𝑅(𝑡) =  1 −  𝐹(𝑡) =  1 − 
𝛾(𝛼, 𝛽𝑡)

Γ(𝛼)
. 

 

( 7.26 ) 

(d) Hazard Function 

For the Gamma distribution, the hazard function ℎ(𝑡) is derived by substituting ( 7.24 ) and 

( 7.26 ) in [from ( 7.3 )] ( 7.5 ) as: 

ℎ(𝑡)  =  
𝑓(𝑡)

𝑅(𝑡)
=  

𝛽𝛼𝑡𝛼−1 𝑒−𝛽𝑡

Γ(𝛼) −  𝛾(𝛼, 𝛽𝑡)
 

 

( 7.27 ) 

The hazard function of the Gamma distribution can take various shapes depending on 

the value of 𝛼, which makes it useful for modeling different types of time-to-failure data. 

7.5.4   Lognormal Distribution 

The Lognormal distribution is a continuous probability distribution widely used to 

model data that are positively skewed and cover several orders of magnitude. It arises when a 

variable is the product of many independent, positive factors, making it ideal for situations 

where the logarithm of the data follows a normal distribution. Common applications include 

modelling the distribution of income levels, stock prices, and the lifespan of products in 

reliability engineering. 

This distribution is particularly valuable because it can capture the asymmetric nature of 

many real-world phenomena, where data is non-negative and exhibits a long right tail. For 

instance, in reliability engineering, the Lognormal distribution is used to model the time to 

failure of products, especially when failure rates increase initially and then stabilize. Its ability 

to represent such varied behaviors makes the Lognormal distribution a crucial tool in statistical 

analysis and risk assessment. 

(a) Probability Density Function 

The PDF of the Lognormal distribution is given by: 

𝑓(𝑡; 𝜇, 𝜎) =  
1

𝑡𝜎√2𝜋
 exp (−

(ln 𝑡 − 𝜇) 2

2𝜎2
) , 𝑡 >  0 

 

( 7.28 ) 

where: 



 

 

• 𝜇  is the mean of the logarithm of the variable, 

• 𝜎 >  0 is the standard deviation of the logarithm of the variable, 

• 𝑡 is the time or variable of interest. 

 

(b) Cumulative Distribution Function 

The CDF of the Lognormal distribution is derived by integrating the PDF 

𝐹(𝑡) =  ∫ 𝑓(𝑢; 𝜇, 𝜎)
𝑡

0

𝑑𝑢   

= ∫
1

𝑢𝜎√2𝜋
 exp (−

(ln 𝑢 − 𝜇) 2

2𝜎2
)

𝑡

0

𝑑𝑢 

Let 
ln 𝑢−𝜇

𝜎√2
= 𝑘 ⟹

1

𝑢𝜎√2
𝑑𝑢 = 𝑑𝑘 and the limits for k will be 

for 𝑢 = 0; 𝑘 = ∞ and 𝑢 = 𝑡; 𝑘 =
ln 𝑡−𝜇

𝜎√2
 

= ∫
1

√𝜋
 exp(−𝑘2)

ln 𝑡−𝜇

𝜎√2

∞

𝑑𝑘 

= −∫
1

√𝜋
 exp(−𝑘2)

∞

ln 𝑡−𝜇

𝜎√2

𝑑𝑘 

= −(
1

2
∫

2

√𝜋
 exp(−𝑘2)

∞

0

𝑑𝑘 −
1

2
∫

2

√𝜋
 exp(−𝑘2)

ln 𝑡−𝜇

𝜎√2

0

𝑑𝑘) 

We have an error function erf(𝑥) = ∫
2

√𝜋
 exp(−𝑘2)

𝑥

0
𝑑𝑘, using this error 

function in above equation we have 

 

           =  
1

2
lim
𝑥→∞

erf(𝑥) +
1

2
erf (

ln 𝑡 − 𝜇

𝜎√2
) 

= 
1

2
+
1

2
erf (

ln 𝑡 − 𝜇

𝜎√2
) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( 7.29 ) 

(c) Reliability Function 

Substituting the CDF ( 7.29 ) for the Lognormal distribution in ( 7.2 )  



 

 

𝑅(𝑡) =  1 −  𝐹(𝑡) =  
1

2
−
1

2
erf (

ln 𝑡 − 𝜇

𝜎√2
) 

 

( 7.30 ) 

(d) Hazard Function 

For the Gamma distribution, the hazard function ℎ(𝑡) is derived by substituting ( 7.28 ) and ( 

7.26 ) in [from ( 7.3 )] ( 7.5 ) as: 

ℎ(𝑡)  =  
𝑓(𝑡)

𝑅(𝑡)
=  

1

𝑡𝜎√2𝜋
 exp (−

(ln 𝑡 − 𝜇) 2

2𝜎2
)/

1

2
+
1

2
erf (

ln 𝑡 − 𝜇

𝜎√2
) 

 

( 7.31 ) 

The Lognormal distribution's hazard function typically starts at zero, increases to a 

peak, and then decreases, making it useful for modelling scenarios where the risk of failure 

increases and then decreases, such as in the early wear-in period of a product followed by a 

stable operational phase. 

7.6       Ageing Classes and their Properties 

Ageing classes in reliability theory are essential to understand how a component or 

system's likelihood of failure changes over time. These classes can be broadly categorized into 

three main types: no ageing, positive ageing, and negative ageing. Each of these classes reflects 

a different relationship between the age of a component and its residual lifetime. 

7.6.1         No Ageing  

A component exhibits "no ageing" if the probability distribution of its residual lifetime 

is independent of its current age. In terms of hazard function, a component exhibits no ageing 

if its hazard function (failure rate) is constant, meaning that the component does not become 

more or less likely to fail as time progresses. Following are some properties of the no ageing 

class. 

a) A mathematical way to describe no ageing would be to say that 𝑇𝑥(𝑡 >  0) are identically 

distributed random variables. That is,  

 𝑅(𝑡) =  𝑅𝑥(𝑡)∀ 𝑥, 𝑡 ≥ 0. ( 7.32 ) 

Or  



 

 

 𝑅(𝑡) =
𝑅(𝑥 + 𝑡)

𝑅(𝑥)
∀ 𝑥, 𝑡 ≥ 0. 

( 7.33 ) 

Or  

𝑅(𝑡)𝑅(𝑥)  =  𝑅(𝑥 +  𝑡).  ( 7.34 ) 

This equation is commonly known as the Cauchy functional equation. It is well 

established that among continuous distributions, only the exponential distribution, satisfies this 

equation. This defining feature of the exponential distribution is also referred to as the "lack of 

memory" property. In the context of lifetime studies, this property is described as the "no 

ageing" property. 

b) For the exponential distribution, the failure rate is constant which can be seen as 

follows, from [from ( 7.3 )] ( 7.5 ) we know that 

ℎ(𝑡) =
𝑓(𝑡)

𝑅(𝑡)
 

=
𝜆𝑒−𝜆𝑡

𝑒−𝜆𝑡
 

ℎ(𝑡) = 𝜆. 

 

 

( 7.35 ) 

Based on the hazard function, the exponential distribution also expresses its no ageing property. 

c) For exponential distribution, consider the mean residual life function: 

𝑀𝐹(𝑡) = ∫  
∞

0

𝑅𝑥(𝑢)𝑑𝑢 

= ∫  
∞

0

𝑒−𝜆𝑢𝑑𝑢 

= (𝑒−𝜆𝑢)
0

∞
 

= −
1

𝜆
(𝑒−𝜆(∞) − 𝑒−𝜆(0)) 

𝑀𝐹(𝑡) =
1

𝜆
   ∀ 𝑡 > 0 

 

 

 

 

( 7.36 ) 

That is, the constant mean residual life also shows that exponential distribution can be 

categorised as no ageing distribution. 

d) Yet another characterization of interest of the exponential distribution is in terms of its 

equilibrium distribution, defined as 



 

 

𝐻𝐹(𝑡) =
1

𝜇
∫  
𝑡

0

𝑅(𝑢)𝑑𝑢,  𝜇 = 𝐸(𝑇) 

=
1

𝜇
∫  
𝑡

0

  𝑒−𝜆𝑢𝑑𝑢 where 𝜇 =
1

𝜆

 = 1 − 𝑒−𝜆𝑡,  𝑡 ≥ 0
𝐻𝐹(𝑡) = 𝐹(𝑡)
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Similarly, the converse may be proved. Therefore, no ageing is equivalent to 

𝐻𝐹(𝑡) ≡ 𝐹(𝑡) 

(e) Define 

TTT𝐹(𝑡) =
1

𝜇
∫  
𝐹−1(𝑡)

0

𝑅(𝑢)𝑑𝑢,  0 ≤ 𝑡 ≤ 1 and 𝜇 = 𝐸(𝑇) 
 

( 7.38 ) 

TTT𝐹 is known as the scaled "total time on test" (TTT) transform of 𝐹 provided 𝐹−1 exists and 

is unique. Trivially 𝐻𝐹(𝑡) = TTT𝐹(𝐹(𝑡)) 

No ageing or the exponential distribution is characterized by 

TTT𝐹(𝑡) = 𝑡,  0 ≤ 𝑡 ≤ 1 ( 7.39 ) 

for exponential distribution 

TTT𝐹(𝑡) = 𝜆∫  
𝐹−1(𝑡)

0

𝑒−𝜆𝑢𝑑𝑢 = 𝑡,  0 ≤ 𝑡 ≤ 1 
 

( 7.40 ) 

In short, NO AGEING can be described as the case where the following holds: 

a) Cauchy functional equation is satisfied. 

b) Failure rate is constant. 

c) Mean residual life is constant. 

d) Lifetime follows exponential distribution. 

e) TTT is identity function. 

Electronic items, such as light bulbs, often demonstrate the "no ageing" phenomenon. 

This means their performance doesn't degrade with use; instead, they fail suddenly when 



 

 

subjected to external factors like a surge in voltage. It can be shown that if these external shocks 

occur according to a Poisson process, the item's lifetime follows an exponential distribution. 

Practical implications of no ageing: 

• Since a used component is statistically as good as a new one, there is no benefit in 

replacing components that are still functioning, as planned replacement offers no advantage. 

• In estimating metrics like mean life, percentiles, or survival functions, only the 

observed lifetimes and the number of failures are needed for data collection. The current age 

of the components being observed is irrelevant. 

In the following sections, we will explore how deviations from the no ageing 

characteristic lead to various ageing behaviours. 

7.6.2      Positive Ageing Class 

The exponential distribution serves as a unique model for no ageing, characterized by 

a constant failure rate over time, meaning the likelihood of failure is independent of the unit's 

age. However, in most practical situations, positive ageing is prevalent, where the failure rate 

increases as the unit ages. This implies that as time passes, the unit becomes more prone to 

failure, and its remaining lifetime shortens. 

To model positive ageing, distributions like the Weibull distribution are often used, as they 

allow the failure rate to increase over time, reflecting the impact of ageing. These models are 

crucial for accurately predicting system reliability and scheduling maintenance. Moreover, by 

adjusting these models, one can describe negative ageing scenarios, where the failure rate 

decreases with age, although this phenomenon is less common. Various notions of ageing are 

available under positive ageing scenario we will be discussing them now. 

I. Increasing Failure Rate (IFR) Classes 

 

Definition 1: A component or unit is said to have an Increasing Failure Rate (IFR) if the 

probability of failure increases as the unit ages or the reliability decreases as the age 

increases. Hence the unit’s age adversely affects the conditional survival probability i.e. F 

is an IFR if 𝑅(𝑡|𝑥) is decreasing Ɐ 𝑡 ≥  0.  

 

Definition 2: In terms of hazard rate, a unit is said to have IFR if its hazard rate ℎ(𝑡) is 

increasing Ɐ 𝑡 ≥  0. 



 

 

 

The major difference between the two definitions is that the latter requires the existence of  

the density 𝑓(𝑡) whereas the former is always true. 

 

Example: Consider a system with a lifetime T that follows an exponential distribution with 

a parameter λ > 0. Verify whether this distribution belongs to the IFR class. 

Solution:   For an exponential distribution, the failure rate λ(t) is constant: 

ℎ(𝑡)  = 𝜆 

Since h(t) does not increase over time but remains constant, the exponential distribution 

does not belong to the IFR class. However, it is memoryless, meaning it does not exhibit 

positive ageing. 

 

Example: Consider a system with a lifetime 𝑇 that follows a Weibull distribution with 

shape parameter 𝛼 = 2 and scale parameter 𝜆 > 0  Verify if this distribution belongs to the 

IFR class. 

Solution: For a Weibull distribution, the failure rate function is given by: 

ℎ(𝑡)  =  𝛼𝜆(𝜆𝑡)𝛼−1 

For 𝛼 =  2, this simplifies to: 

 

ℎ(𝑡)  =  2𝜆2𝑡 

Since ℎ(𝑡) is a linear function of 𝑡 and increases with time, the Weibull distribution with 

𝛼 >  1 (in this case, 𝛼 =  2) is in the IFR class. 

 

II. Increasing Failure Rate Average (IFRA) Classes 

The failure rate average function is defined as 

𝐻𝐹(𝑡) =
1

𝑡
𝐻(𝑡) 

= −
1

𝑡
log𝑅(𝑡) 

 

( 7.41 ) 

if the function 𝐻‾𝐹(𝑡) is increasing, then the distribution 𝐹 is said to possess the increasing 

failure rate average property and is said to belong to the IFRA class. 

Theorem: A distribution 𝐹 is IFRA if and only if 

𝑅(𝛼𝑡) ≥ [𝑅(𝑡)]𝛼 for 0 < 𝛼 ≤ 1&𝑡 ≥ 0 



 

 

Proof: 𝐹 is IFRA 

⇔
1

𝑡
∫  
𝑡

0

 ℎ𝐹(𝑢)𝑑𝑢 ↑ 𝑡

 ⇔ −
1

𝑡
log 𝑅(𝑡) ↑ 𝑡

 ⇔ 𝑅(𝑡)1/𝑡 ↓ 𝑡

 ⇔ [𝑅(𝛼𝑡)]1/𝛼𝑡 ≥ [𝑅(𝑡)]1/𝑡 ∀𝑡 ≥ 0 and 0 < 𝛼 ≤ 1

 ⇔ [𝑅(𝛼𝑡)] ≥ [𝑅(𝑡)]𝛼∀𝑡 > 0,  0 < 𝛼 ≤ 1

 

( 7.42 ) 

( 7.43 ) 

( 7.44 ) 

( 7.45 ) 

( 7.46 ) 

It is obvious that IFR ⇒ IFRA as the average of an increasing function is increasing. 

Remark : The classes IFR and IFRA are classes of progressive ageing. We shall now 

consider a weaker form of ageing which is different from progressive ageing. 

 

Theorem: Suppose each of the independent component of a coherent system has an IFRA 

life distribution. Then the system itself has an IFRA life distribution. 

Proof: Let 𝐹 denotes the lifetime distribution of system and  𝐹𝑖 denotes the lifetime 

distribution of 𝑖𝑡ℎcomponent. 

𝑅(𝛼𝑡) = 𝑅[𝑅1(𝛼𝑡), 𝑅2(𝛼𝑡),⋯ , 𝑅𝑛(𝛼𝑡)] ( 7.47 ) 

Then for 0 ≤ α ≤ 1 

Since 𝐹𝑖  is IFRA from  

( 7.46 ) for 𝑖𝑡ℎ component we have  

𝑅𝑖(𝛼𝑡) ≥ 𝑅𝑖
𝛼(𝑡) 

Also 𝑅 is increasing in each argument, thus 

𝑅(𝛼𝑡) ≥ 𝑅[𝑅𝛼1(𝑡), 𝑅
𝛼
2(𝑡),⋯ , 𝑅

𝛼
𝑛(𝑡)] 

( 7.48 ) 

But the following inequality holds 

𝑅[𝑅𝛼1(𝑡), 𝑅
𝛼
2(𝑡),⋯ , 𝑅

𝛼
𝑛(𝑡)] ≥ 𝑅([𝑅1(𝑡), 𝑅2(𝑡),⋯ , 𝑅𝑛(𝑡)])

𝛼 
( 7.49 ) 

Using ( 7.48 ) and ( 7.49 ) we have 

𝑅(𝛼𝑡) = 𝑅[𝑅1(𝛼𝑡), 𝑅2(𝛼𝑡),⋯ , 𝑅𝑛(𝛼𝑡)] 

Example: Consider a system with a lifetime 𝑇 that follows an exponential distribution 

with parameter 𝜆 = 3. Verify if this distribution belongs to the IFRA class. 



 

 

Solution: The exponential distribution has a constant failure rate ℎ(𝑡) = 3. The average 

failure rate 𝐻(𝑡) is: 

𝐻(𝑡) =
1

𝑡
∫  
𝑡

0

𝜆(𝑢)𝑑𝑢 = 3 

Since the average failure rate 𝐻(𝑡) is non-decreasing, the exponential distribution is in 

the IFRA class. 

Example: Consider a system with a lifetime 𝑇 that follows a Weibull distribution with 

shape parameter 𝛽 = 1.5 and scale parameter 𝜂 = 2. Determine if this distribution is 

IFRA. 

Solution: The failure rate function is: 

𝜆(𝑡) =
1.5

2
(
𝑡

2
)
0.5

=
0.75 ⋅ 𝑡0.5

20.5
 

Since 𝜆(𝑡) increases with 𝑡, this distribution is IFR, and thus also IFRA. 

Example: Consider a system with a lifetime 𝑇 that follows a Gamma distribution with 

shape parameter 𝛼 = 3 and rate parameter 𝜆 = 1. Verify whether this distribution is IFRA. 

Solution: The failure rate for a Gamma distribution with 𝛼 > 1 is increasing, which makes 

it IFR. Since IFR implies IFRA, the Gamma distribution with 𝛼 = 3 belongs to the IFRA 

class. 

III. New Better than Used (NBU) Classes 

Here, distribution of the lifetime of a new unit (say r.v. 𝑌 ) is compared with the lifetime 

of a unit of age 𝑥(> 0) [i.e. r.v. 𝑌𝑥 ]. The distribution function of the two random variables are 

considered to be 𝐹 and 𝐹𝑥 respectively. 𝐹 is said to have the "New Better than Used" property 

if 

𝑅(𝑡) ≥ 𝑅𝑥(𝑡),  ∀𝑡, 𝑥 > 0 ( 7.50 ) 

That is, 

𝑅(𝑡)𝑅(𝑥) ≥ R(𝑡 + 𝑥),  ∀𝑡, 𝑥 > 0 ( 7.51 ) 



 

 

This is a weaker form of ageing since in this criterion the comparison of  the units is done at 

specific age. 

Theorem: If 𝐹 is IFRA then it implies 𝐹 is NBU i.e. 

IFRA ⇒ NBU. 

Proof: We know that if 𝐹 is 𝐼𝐹𝑅𝐴 then 

⇒ 𝑅(𝛼𝑡) ≥ [𝑅(𝑡)]𝛼, 𝑡 > 0,0 < 𝛼 < 1 

⇒ 𝑅((1 − 𝛼)𝑡) ≥ [𝑅(𝑡)]1−𝛼∀𝑡 > 0,0 < 𝛼 < 1 

⇒ 𝑅(𝛼𝑡)𝑅[(1 − 𝛼)𝑡] ≥ 𝑅(𝑡)∀𝑡 > 0,0 < 𝛼 < 1 

⇒ 𝑅(𝑥)𝑅(𝑦) ≥ 𝑅(𝑥 + 𝑦) 

 

 

( 7.52 ) 

where 𝑡 = 𝑥 + 𝑦 and 𝛼 =
𝑥

𝑥+𝑦
 . On comparing ( 7.52 ) with( 7.51 ) one can infer that 𝐹 is 

NBU. 

IV. New Better than Used in Expectation (NBUE) Classes 

A still weaker form of positive ageing than NBU is NBUE defined by the inequality 

∫  
∞

0

𝑅(𝑥)𝑑𝑥 ≥ ∫  
∞

0

𝑅𝑡(𝑥)𝑑𝑥 
( 7.53 ) 

Or 

𝑀𝐹(0) ≥ 𝑀𝐹(𝑡) ∀𝑡 > 0 ( 7.54 ) 

It is obvious that NBU ⇒ NBUE. 

It may be noted that for progressive ageing classes the comparison between units of 

different ages is possible. However, for NBU and NBUE classes the comparison is between 

brand new unit and a unit aged 𝑡. We shall now consider another progressive ageing class. 

V. Decreasing Mean Residual Life (DMRL) Classes 

Let 𝐸(𝑌𝑥) denote the mean residual life time of a unit of age 𝑥. Then one can say that 

𝐸(𝑌𝑥) ↓ 𝑥 is also a way of describing progressive positive ageing. This is called the 

"Decreasing Mean Residual Life" (DMRL) property. 



 

 

Theorem: If 𝐹 possess IFR property ⇒ 𝐹 possess DMRL property. 

Proof: For, 

𝐹 is 𝐼𝐹𝑅 ⇔ 𝑅𝑥1(𝑥) ≥ 𝑅𝑥2(𝑥) ∀ 𝑥1 < 𝑥2 

By integration, we get 

∫  
∞

0

𝑅𝑥1(𝑥)𝑑𝑥 ≥ ∫  
∞

0

𝑅𝑥2(𝑥)𝑑𝑥,  ∀ 𝑥1 < 𝑥2 

That is 𝐸(𝑌𝑥) ↓ 𝑥 and hence 𝐹 possess DMRL property 

Theorem: If 𝐹 possess DMRL property ⇒ 𝐹 possess NBU property. 

Proof: This is seen by putting 𝑥1 = 0 in the above. 

The complete picture of implications of these ageing classes can be seen below 

Fig. 1 Relation of implications between different classes of Positive Ageing 

 

7.6.3      Negative Ageing Class as Dual of Positive Ageing Class 

Negative ageing represents a scenario where the failure rate decreases over time, meaning 

that as a unit ages, it becomes less likely to fail. This phenomenon suggests that surviving 

components tend to "wear in" rather than "wear out," leading to an increased remaining lifetime 

as time progresses. Although less common, negative ageing is particularly relevant in situations 

where early-life defects or "infant mortality" are significant. During the initial period, units 

may experience higher failure rates due to inherent defects or weaknesses. However, as these 

defects are corrected or naturally eliminated, the remaining population of units becomes more 

robust, leading to a declining failure rate over time. 

EXP IFR

IFRA NBU

DMRL NBUE



 

 

To model negative ageing, distributions such as the lognormal or mixtures of exponential 

distributions are often employed. These models effectively capture systems that improve with 

age or undergo a burn-in period, after which the likelihood of failure diminishes. Understanding 

negative ageing is crucial in contexts like manufacturing, where identifying and mitigating 

early failures can significantly enhance overall system reliability. By accurately modeling 

negative ageing, it becomes possible to optimize maintenance schedules and replacement 

strategies, ensuring that interventions are timed to maximize the longevity and performance of 

the system. 

I. Decreasing Failure Rate (DFR) Classes 

Definition 1: A component or unit is said to have an decreasing Failure Rate (DFR) if the 

probability of failure decreases as the unit ages or the reliability increases as the age 

increases. Hence the unit’s age beneficially affects the conditional survival probability i.e. F 

is an DFR if 𝑅(𝑡|𝑥) is increasing Ɐ 𝑡 ≥  0.  

Definition 2: In terms of hazard rate, a unit is said to have DFR if its hazard rate ℎ(𝑡) is 

decreasing Ɐ 𝑡 ≥  0. 

The major difference between the two definitions is that the latter requires the existence 

of the density 𝑓(𝑡) whereas the former true in non-existence of  𝑓(𝑡). This is the dual class of 

IFR class. 

II. Decreasing Failure Rate Average (DFRA) Classes 

If the failure rate average function defined in ( 7.41 ) is decreasing, then the distribution 𝐹 

is said to possess the decreasing failure rate average property and is said to belong to the DFRA 

class. 

It is obvious that DFR ⇒ DFRA as the average of an increasing function is increasing. This 

is the dual class of IFRA class. 

Remark: The classes DFR and DFRA are classes of regressive ageing. We shall now consider 

a weaker form of ageing which is different from regressive ageing. 

III. New Worse than Used (NWU) Classes 



 

 

Here, distribution of the lifetime of a new unit (say r.v. 𝑌 ) is compared with the lifetime 

of a unit of age 𝑥(> 0) [i.e. r.v. 𝑌𝑥 ]. The distribution function of the two random variables are 

considered to be 𝐹 and 𝐹𝑥 respectively. 𝐹 is said to have the "New Worse than Used" property 

if 

𝑅(𝑡) ≤ 𝑅𝑥(𝑡),  ∀𝑡, 𝑥 > 0 ( 7.55 ) 

That is, 

𝑅(𝑡)𝑅(𝑥) ≤ R(𝑡 + 𝑥),  ∀𝑡, 𝑥 > 0 ( 7.56 ) 

This is a weaker form of ageing since in this criterion the comparison of the units is done 

at specific age. This is the dual class of NBU class. 

IV. New Worse than Used in Expectation (NWUE) Classes 

A still weaker form of positive ageing than NWU is NWUE defined by the inequality 

∫  
∞

0

𝑅(𝑥)𝑑𝑥 ≤ ∫  
∞

0

𝑅𝑡(𝑥)𝑑𝑥 
( 7.57 ) 

Or 

𝑀𝐹(0) ≤ 𝑀𝐹(𝑡) ∀𝑡 > 0 ( 7.58 ) 

It is obvious that NWU ⇒ NWUE. This is the dual class of NBUE class. 

It may be noted that for regressive ageing classes the comparison between units of 

different ages is possible. However, for NWU and NWUE classes the comparison is between 

brand new unit and a unit aged 𝑡. We shall now consider another regressive ageing class. 

V. Increasing Mean Residual Life (IMRL) Classes 

Let 𝐸(𝑌𝑥) denote the mean residual life time of a unit of age 𝑥. Then one can say that 

𝐸(𝑌𝑥) ↑ 𝑥 is also a way of describing regressive negative ageing. This is called the "Increasing 

Mean Residual Life" (IMRL) property. This is the dual class of DMRL class. 

Fig. 2 Relation of implications between different classes of Negative Ageing Classes 



 

 

 

7.7  Self-Assessment Exercise 

1) Given a system with a lifetime that follows a Rayleigh distribution, determine whether this 

distribution belongs to the IFR class. Justify your answer by examining the failure rate 

function. 

2) A component’s lifetime follows a distribution with an increasing failure rate (IFR). Explain 

why this implies that the component also belongs to the IFRA class. Provide a numerical 

example to support your explanation. 

3) Consider a system with a lifetime that follows a uniform distribution over the interval [0,2] 

. Analyse whether this distribution belongs to the NBU class by checking the survival 

function’s behaviour. 

4) A device has a lifetime that follows a Gamma distribution with shape parameter 𝛼=2 and 

rate parameter λ=1. Determine whether this distribution belongs to the NBUE class by 

evaluating the mean residual life function. 

5) Consider a system with a lifetime following a Weibull distribution with shape parameter 

β=0.8 and scale parameter η=3. Determine if this distribution belongs to the DMRL class 

and explain your reasoning. 

6) Explain the relationship between the NBU, NBUE, and IFR classes. Can a distribution 

belong to one of these classes without belonging to the others? Provide an example to 

illustrate your explanation. 

7.8  Summary 

The unit explored the concept of ageing in reliability engineering, which examined how 

the likelihood of system failure evolves over time. Focussed on various ageing classes, 

including IFR(DFR), IFRA(DFRA), NBU (NWU), DMRL (IMRL), and NBUE(NWUE), each 

defined by specific patterns in failure rates and mean residual life functions. These classes help 

EXP DFR

DFRA NWU

IMRL NWUE



 

 

categorize and predict system reliability, with each class having its dual class. Understanding 

these concepts is crucial for assessing and managing the reliability and maintenance of systems 

over their lifetimes. 
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8.1  Introduction  

Reliability estimation involves determining how likely a system, item, component, or 

product is to perform its intended function without failure over a specified period. This 

estimation is crucial in fields like engineering, manufacturing, and software development, 

where reliability directly impacts safety, performance, and customer satisfaction. Censoring 



 

 

occurs when the information about the survival time of an individual or component is 

incomplete. This incomplete information could result from a variety of situations, such as the 

end of the study period, loss of contact with study participants, or the removal of items before 

they fail. Despite this incomplete data, censoring enables analysts to make use of the available 

information, rather than discarding it. 

Various quantities of Interest in Reliability Estimation: 

1. Failure Rate: The frequency with which an engineered system or component 

fails. Often expressed as failures per unit of time (e.g., failures per hour). 

2. Mean Time to Failure (MTTF): The average time a non-repairable system 

operates before failing. Used mainly for systems that are not repaired after 

failure. 

3. Mean Time Between Failures (MTBF): Similar to MTTF but used for 

repairable systems, representing the average time between failures. 

4. Reliability Function (R(t)): The probability that a system will perform without 

failure for a time period t.  

The parametric reliability estimation includes the following steps: 

 Data Collection, Choice a suitable statistical model (e.g., exponential, Weibull) based 

on the nature of the failure data, Parameter Estimation and Reliability Analysis.  

8.2  Objectives  

After going through this unit, students should be able to:  

• Understand the basic concepts of reliability estimation.  

• Understand the uses and applications of censoring and stress- strength model 

• Obtain the reliability estimate under Type-I and Type-II censoring schemes. 

• Obtain the reliability estimates for stress strength model. 

 

8.3  Reliability Estimation for some well-known Distributions  

Here we consider some well-known distributions namely Exponential, Weibull, 

Gamma and Log Normal distributions and provide estimator of various functions for the same. 



 

 

8.3.1  Exponential Distribution
 

A positive valued random variable X is said to follow exponential distribution if its 

probability density function is given by 

 

 

𝑓(𝑥) = 𝜆 𝑒−𝜆𝑥 , 𝑥 ≥  0
  

 
The probability density function of exponential random variable with 𝜆 = 2 

 

Maximum Likelihood Estimation 

Let 𝑥 = (𝑥1, 𝑥2, 𝑥3…… , 𝑥𝑛)  are i.i.d. observations from exp(𝜆). The likelihood of
 
𝜆 

given the observations  𝑥 can be written as follows. 

𝐿(𝜆|𝑥) =∏𝑓(𝑥𝑖)

𝑛

𝑖=1

 

Taking logarithm, we get 

  ln 𝐿(𝜆) = 𝑛𝑙𝑛 𝜆 − 𝜆∑ 𝑥𝑖
𝑛
𝑖=1  

To obtain MLE, we solve the likelihood equation  

𝜕 ln 𝐿(𝜆)

𝜕𝜆
= 0 

That is 
𝑛

𝜆
− ∑ 𝑥𝑖

𝑛
𝑖=1 = 0, 

 



 

 

𝑛

𝜆
=∑𝑥𝑖

𝑛

𝑖=1

 

 

 

which gives the MLE of 𝜆 

�̂� =
𝑛

∑ 𝑥𝑖
𝑛
𝑖=1

 

   

 

8.3.2   Weibull Distribution 

Definition: A positive valued random variable X is said to follow Weibull distribution if its 

probability density function is given by 

𝑓(𝑥; 𝜆, 𝛼) = 𝛼𝜆(𝜆𝑥)𝛼−1𝑒−(𝜆𝑥)
𝛼
, 𝑥 ≥ 0 

 

 

where: 

• 𝜆 > 0 is the scale parameter, 

• 𝛼 > 0 is the shape parameter, 

Maximum Likelihood Estimation (Both parameters are unknown): 

Let 𝑥 = (𝑥1, 𝑥2, 𝑥3…… , 𝑥𝑛)  are iid observations from W(𝜆, 𝛼). The likelihood of 𝜆, 𝛼 

given the observations 𝑥 can be written as follows. 

𝐿(𝜆, 𝛼|𝑥) =∏𝑓(𝑥𝑖; 𝛼, 𝛽)

𝑛

𝑖=1

 

 

𝐿(𝜆, 𝛼|𝑥) =∏(𝛼𝜆(𝜆𝑥𝑖)
𝛼−1𝑒−(𝜆𝑥𝑖)

𝛼
)

𝑛

𝑖=1

 

 

𝐿(𝜆, 𝛼|𝑥) = 𝛼𝑛𝜆𝑛𝛼∏((𝑥𝑖)
𝛼−1𝑒−(𝜆𝑥𝑖)

𝛼
)

𝑛

𝑖=1

 

 

Taking logarithm of the likelihood function gives the log likelihood function, we get 

   ln 𝐿(𝜆, 𝛼) = nln𝛼 + 𝑛𝛼 ln 𝜆 + (𝛼 − 1)∑ 𝑙𝑛(𝑥𝑖)
𝑛
𝑖=1 − ∑ (𝜆𝑥𝑖)

𝛼𝑛
𝑖=1  



 

 

We differentiate with respect to 𝜆 𝑎𝑛𝑑 𝛼  the likelihood equation and equal to 0  

𝜕𝑙

𝜕𝛼
=

𝑛

𝛼
+ 𝑛𝑙𝑛 𝜆 + ∑ 𝑙𝑛(𝑥𝑖) −

𝑛
𝑖=1 ∑ (𝜆𝑥𝑖)

𝛼𝑙𝑛(𝜆𝑥𝑖)
𝑛
𝑖=1 =0 

𝜕𝑙

𝜕𝜆
=

𝑛𝛼

𝜆
− 𝛼∑ 𝑥𝑖

𝛼(𝜆)𝛼−1𝑛
𝑖=1 =0 

𝑛𝛼

𝜆
= 𝛼∑𝑥𝑖

𝛼(𝜆)𝛼−1
𝑛

𝑖=1

 

𝑛 = 𝜆𝛼∑𝑥𝑖
𝛼

𝑛

𝑖=1

 

𝜆�̂� =
𝑛

∑ 𝑥𝑖𝛼
𝑛
𝑖=1

 

 And 

�̂� = (
𝑛

∑ 𝑥𝑖𝛼
𝑛
𝑖=1

)

1
𝛼

 

𝑛

�̂�
+ 𝑛𝑙𝑛 �̂� +∑𝑙𝑛(𝑥𝑖) =

𝑛

𝑖=1

∑(�̂�𝑥𝑖)
�̂�𝑙𝑛(�̂�𝑥𝑖)

𝑟

𝑖=1

 

This equation does not have a closed form solution. It can be solved through Newton-

Raphson method. 

 

8.3.3   Gamma Distribution 

We consider the gamma distribution with pdf given by 

𝑓(𝑥; 𝛼, 𝛽) =  
𝛽𝛼

Γ(𝛼)
𝑥𝛼−1𝑒−𝛽𝑥, 𝑥 ≥  0 

 

 

Maximum Likelihood Estimation (Both parameters are unknown) 

Suppose that n units are put to test and the lifetime of each unit follow gamma 

distribution with parameter 𝛼 𝑎𝑛𝑑 𝛽. Suppose that test is terminated after the failure of all the 

units. Let the sample 𝑥 = (𝑥1, 𝑥2, 𝑥3…… , 𝑥𝑛) is observed. The likelihood of 𝛼, 𝛽 given the 

observations 𝑥 can be written as follows. 

𝐿(𝛼, 𝛽|𝑥 ) =∏𝑓(𝑥𝑖; 𝛼, 𝛽)

𝑛

𝑖=1

 



 

 

 Type equation here. 
𝐿(𝛼, 𝛽|𝑥 ) =∏

𝛽𝛼

Γ(𝛼)
𝑥𝑖
𝛼−1𝑒−𝛽𝑥𝑖

𝑛

𝑖=1

 

 

 

 

𝐿(𝛼, 𝛽 |𝑥) =
𝛽𝑛𝛼

Γ(𝛼)n
∏𝑥𝑖

𝛼−1𝑒−𝛽𝑥𝑖

𝑛

𝑖=1

 

 

Taking logarithm, we get 

ln 𝐿(𝛼, 𝛽 ) = 𝑛  𝛼 ln 𝛽 − 𝑛𝑙𝑛  Γ(𝛼) + (𝛼 − 1)∑ln (𝑥𝑖) −

𝑛

𝑖=1

 𝛽∑𝑥𝑖

𝑛

𝑖=1

 

 To find the estimates of parameters, take the partial derivatives of the log likelihood 

function with respect to 𝛼 𝑎𝑛𝑑 𝛽 and put them equal to 0. 

𝜕 ln 𝐿(𝛼, 𝛽 )

𝜕𝛽
=
𝑛𝛼

𝛽
−∑𝑥𝑖

𝑛

𝑖=1

 

𝑛𝛼

𝛽
−∑𝑥𝑖

𝑛

𝑖=1

= 0 

𝑛𝛼

𝛽
=∑𝑥𝑖

𝑛

𝑖=1

 

𝛽 =
𝑛𝛼

∑ 𝑥𝑖
𝑛
𝑖=1

 

𝛽 =
𝛼

∑ 𝑥𝑖
𝑛
𝑖=1
𝑛

 

�̂� =
𝛼

�̅�
    (*) 

Note that, since 𝛼 is unknown, 
𝛼

�̅�
 is not MLE of 𝛽. With the help of (*), we solve the following 

equation to get MLE of 𝛼 

𝜕 ln 𝐿(𝛼, 𝛽 )

𝜕𝛼
= 𝑛 ln 𝛽 +∑ln(𝑥𝑖) − 𝑛

Γ(𝛼)́

Γ(𝛼)

𝑛

𝑖=1

 



 

 

𝑛 ln 𝛽 +∑ln(𝑥𝑖) − 𝑛
Γ(𝛼)́

Γ(𝛼)

𝑛

𝑖=1

= 0 

Now substituting the value of 𝛽 from (*) , get 

𝑛 ln 𝛼 − 𝑛𝑙𝑜𝑔�̅� +∑ln(𝑥𝑖) − 𝑛
Γ(𝛼)́

Γ(𝛼)

𝑛

𝑖=1

= 0 

Solve this equation for 𝛼 using numerically (e.g. Newton Raphson method). Using �̂� ,  the 

MLE of 𝛼, we can obtain 

�̂� =
𝛼

�̅�
. 

 

8.3.4   Log-Normal Distribution 

A random variable X is said to follow a log-normal distribution if ln(X) follows a 

normal distribution. The log-normal distribution is characterized by two parameters: 

 

The probability density function (PDF) of the log-normal distribution is: 

𝑓(𝑥; μ, σ) =
1

𝑥σ√2π
exp (−

(ln𝑥−μ)2

2σ2
), 𝑥>0 

The cumulative distribution function (CDF) is: 

𝐹(𝑥; μ, σ) = Φ(
ln 𝑥 − μ

σ
) 

where Φ is the CDF of the standard normal distribution. 

The reliability function R(x) (the probability that a component survives beyond time  x ) is: 

𝑅(𝑥; μ, σ) = 1 − 𝐹(𝑥; μ, σ) = 1 −Φ(
ln 𝑥 − μ

σ
) 

Maximum Likelihood Estimation (Both parameters are unknown): 

Suppose a sample 𝑥1,   𝑥2,… , 𝑥𝑛 from the log-normal distribution, the likelihood 

function L(μ, σ) is the joint probability of observed sample is: 



 

 

𝐿(μ, σ|𝑥) = ∏
1

𝑥𝑖σ√2π
exp (−

(ln𝑥𝑖−μ)
2

2σ2
)𝑛

𝑖=1  

Taking log of likelihood function, we get 

ln 𝐿(μ, σ|𝑥) = −𝑛𝑙𝑛(σ√2π) − ∑ ln(𝑥𝑖) −
1

2σ2
𝑛
𝑖=1 ∑ (ln 𝑥𝑖 − μ)

2𝑛
𝑖=1 , 

We can write it 

ln 𝐿(μ, σ) = −
2𝑛

2
ln σ − n ln (√2π) −∑ln(𝑥𝑖) −

1

2σ2

𝑛

𝑖=1

∑(ln 𝑥𝑖 − μ)
2

𝑛

𝑖=1

 

Now again write  

ln 𝐿(μ, σ) = −
𝑛

2
ln σ2 − n ln (√2π) −∑ln(𝑥𝑖) −

1

2σ2

𝑛

𝑖=1

∑(ln𝑥𝑖 − μ)
2

𝑛

𝑖=1

 

To obtain the estimate the parameters, we need to maximize the log likelihood function 

with respect to parameters and set it equal to zero 

 

𝜕 ln 𝐿(μ,σ)

𝜕μ
=

2

2σ2
∑ (ln𝑥𝑖 − μ)
𝑛
𝑖=1 , 

 

𝜕 ln 𝐿(μ,σ)

𝜕μ
=

1

σ2
∑ (ln 𝑥𝑖 − μ)
𝑛
𝑖=1 =0, 

∑ln𝑥𝑖 − 𝑛

𝑛

𝑖=1

μ = 0 

We get  

μ̂ =
∑ ln 𝑥𝑖
𝑛
𝑖=1

𝑛
 

Now we differentiate with respect to σ2 

 

𝜕 ln 𝐿(μ,σ)

𝜕σ2
= −

𝑛

2σ2
+

1

2σ4
∑ (ln 𝑥𝑖 − μ)

2𝑛
𝑖=1 =0 

 

Solving this we obtain estimate of σ2 

1

2σ4
∑ (ln 𝑥𝑖 − μ)

2𝑛
𝑖=1 =

𝑛

2σ2
, 

 

∑ (ln 𝑥𝑖 − μ)
2𝑛

𝑖=1 =nσ2, 



 

 

 

σ2̂ =
∑ (ln 𝑥𝑖 − μ̂)

2𝑛
𝑖=1

𝑛
 

Reliability estimate of Log normal Distribution is  

𝑅(𝑡; μ, σ) = 1 − Φ(
ln 𝑡 − μ̂

σ̂
) 

8.4.  Censoring 

Censoring: Censoring is a common issue in survival analysis and reliability studies where the 

exact time to event (such as failure or death) is not fully observed for all subjects. Censoring 

occurs when the exact failure time is unknown for some subjects within the study period. There 

are several types of censoring: 

8.4.1   Types of Censoring 

 1. Right Censoring: The most common type, where the event of interest has not 

occurred by the end of the observation period for some subjects. For example, in a clinical trial, 

patients who are still alive at the end of the study are right-censored. 

 2. Left Censoring: Occurs when the event has already occurred before the 

observation period starts. For example, if the exact time of an event is known to be before a 

certain point but the exact time is not known, it is left-censored. 

 3. Interval Censoring: Occurs when the exact time of the event is unknown, but 

it is known to have occurred within a specific time interval. For example, if a patient visits a 

doctor at irregular intervals and an event (such as disease onset) is detected during a visit, the 

exact time between visits is unknown, leading to interval censoring. 

Two popular forms of right censoring, frequently considered in reliability estimation, are 

Type I Censoring (Time Censoring): The study is terminated at a pre-fixed time. Suppose r 

items have failed by this time and the remaining nc = n-r items remain operative. These are 

called the censored items. Not that, in this case number of failures are random variable.  

For Example- Suppose a manufacturer company conducts a reliability test in which 10 power 

supplies are operated over the same duration. The manufacturer company decides that test is 

terminating after 60000 hrs. Suppose 7 power supplies failed during predetermined time 

interval. Then remaining three is type I censored. 



 

 

Type II Censoring (Failure Censoring): The study continues until a predetermined number 

of failures have occurred. For Example-Ten semiconductors are subjected to a life test and the 

test is terminated a predetermined number five failures. 

8.4.2            Reliability Estimation of Exponential Distribution under Type I 

Censoring 

For an exponential distribution with unknown parameter  𝜆 , the PDF is: 

𝑓(𝑥; 𝜆) = 𝜆 𝑒−𝜆𝑥 , 𝑥 ≥  0 

The CDF is: 

𝐹(𝑥; 𝜆) =  1 – 𝑒−𝜆 𝑥 

The reliability function R(t) is: 

𝑅(𝑡; 𝜆) = 𝑒−𝜆 𝑡 

Type I Censoring 

In Type I censoring, the study is terminated at a fixed time t0 . Any component that 

has not failed by time t0  is considered censored. let us suppose 𝑥1, 𝑥2,…, 𝑥n be a random 

sample from exponential distribution with scale parameter 𝜆 and t0 be the pre fixed time at 

which test is terminate. We observe that t1,t2,…,tn where  ti=xi if xi≤t0  and t0 if xi>t0. 

Estimating the Scale Parameter  𝛉 Using Maximum Likelihood Estimation (MLE) 

 1. Likelihood Function: 

𝐿(𝜆|𝑥) =
𝑛!

𝑛−𝑟!
∏ 𝑓(𝑥𝑖)[1 − 𝐹(𝑡0)]

𝑛−𝑟𝑟
𝑖=1 ,   0<𝑥(1)<...< 𝑥(r)≤t0< ∞ 

 

After simplifying, we get 

𝐿(𝜆|𝑥) =
𝑛!

𝑛−𝑟!
𝜆r𝑒−𝜆∑ 𝑥𝑖

𝑟
𝑖=1 (𝑒−𝜆 𝑡0)

𝑛−𝑟
, 

 2. Log-Likelihood Function: 

                                    The log-likelihood function is: 

ln 𝐿 (𝜆) ∝ 𝑟 ln 𝜆 − 𝜆∑𝑥𝑖

𝑟

𝑖=1

− (𝑛 − 𝑟)𝜆 𝑡0 



 

 

 3. MLE for  𝜆 : 

To find the maximum likelihood estimate  𝜆
^

, differentiate the log-likelihood function 

with respect to  𝜆 and set it to zero: 

𝑑

𝑑𝜆
ln 𝐿 (𝜆) =

𝑟

𝜆
−∑𝑥𝑖

𝑟

𝑖=1

− (𝑛 − 𝑟) 𝑡0 = 0 

𝑟

𝜆
= ∑ 𝑥𝑖

𝑟
𝑖=1 + (𝑛 − 𝑟) 𝑡0   

�̂� =
𝑟

∑ 𝑥𝑖
𝑟
𝑖=1 + (𝑛 − 𝑟) 𝑡0

 

Reliability Estimation 

Once you have the MLE  𝜆
^

, you can estimate the reliability function for any time  t . 

 1. Reliability Function with Estimated  𝜆 : 

�̂�(𝑡) = 𝑒−𝜆
^
 𝑡. 

Example Calculation 

Assume the following data: 

 •  n = 10  components, t0=10. 

 •  r = 5  failures observed at times  2, 4, 5, 7, 9 

 1. Calculate the MLE for  𝜆 : 

  Sum of failure times= 2 + 4 + 5 + 7 + 9 = 27  

σ
^
 = 

5

77
= 0.065 

 2. ML estimate of reliability at  t = 6 : 

𝑅
^

(6) = 𝑒−6∗0.065 ≈ 𝑒−0.39 ≈ 0.6770 

8.4.3 Reliability Estimation of Weibull Distribution under Type I 

Censoring 



 

 

Let us suppose 𝑥 1, 𝑥 2,…, 𝑥 n be a random sample from Weibull distribution with scale 

parameter 𝜆 and shape parameter 𝛼, t0 be the pre fixed time at which test is terminate. The 

Weibull distribution is characterized by: 

The probability density function (PDF) is: 

𝑓(𝑥; 𝜆, 𝛼) = 𝛼𝜆(𝜆𝑥)𝛼−1𝑒−(𝜆𝑥)
𝛼
, 𝑥 ≥ 0  

Where Shape parameter (𝛼) and Scale parameter (𝜆 ) 

The cumulative distribution function (CDF) is: 

𝐹(𝑥) = 1 − 𝑒−(𝜆𝑥)
𝛼
 

The reliability function  R(t)  is: 

𝑅(𝑡) = 1 − 𝐹(𝑡) = 𝑒−(𝜆𝑡)
𝛼
 

Maximum Likelihood Estimation (MLE) 

To estimate the parameters  𝜆 𝑎𝑛𝑑 𝛼 of the Weibull distribution. Similar to exponential 

distribution, we derive for Weibull distribution. 

 1. Likelihood Function: 

𝐿(𝜆, 𝛼|𝑥) =
𝑛!

𝑛−𝑟!
∏ 𝑓(𝑥𝑖)[1 − 𝐹(𝑡0)]

𝑛−𝑟𝑟
𝑖=1 ,   0<𝑥(1)<...< 𝑥(r)≤t0< ∞ 

The likelihood function is: 

𝐿(𝜆, 𝛼|𝑥) =
𝑛!

(𝑛 − 𝑟)!
∏(𝛼𝜆(𝜆𝑥𝑖)

𝛼−1𝑒−(𝜆𝑥𝑖)
𝛼
)

𝑟

𝑖=1

(𝑒−(𝜆𝑡0)
𝛼
)
𝑛−𝑟

 

𝐿(𝜆, 𝛼|𝑥) =
𝑛!

(𝑛 − 𝑟)!
𝛼𝑟𝜆𝑟𝛼∏((𝑥𝑖)

𝛼−1𝑒−(𝜆𝑥𝑖)
𝛼
)

𝑟

𝑖=1

(𝑒−(𝜆𝑡0)
𝛼
)
𝑛−𝑟

 

𝐿(𝜆, 𝛼|𝑥) =
𝑛!

(𝑛 − 𝑟)!
𝛼𝑟𝜆𝑟𝛼∏𝑥𝑖

𝛼−1𝑒−𝜆
𝛼(∑ 𝑥𝑖

𝛼𝑟
𝑖=1 +(𝑛−𝑟)𝑡0

𝛼)

𝑟

𝑖=1

 

 2. Log-Likelihood Function is: 

ln 𝐿(𝜆, 𝛼) ∝ rln 𝛼 + 𝑟𝛼 ln 𝜆 + (𝛼 − 1)∑ 𝑙𝑛(𝑥𝑖)
𝑟
𝑖=1 −𝜆𝛼(∑ 𝑥𝑖

𝛼𝑟
𝑖=1 + (𝑛 − 𝑟)𝑡0

𝛼)  

Now we differentiate log likelihood with respect to parameters 



 

 

𝜕𝑙

𝜕𝛼
=

𝑟

𝛼
+ 𝑟𝑙𝑛 𝜆 + ∑ 𝑙𝑛(𝑥𝑖)

𝑟
𝑖=1 −𝜆𝛼 ln(𝜆) (∑ 𝑥𝑖

𝛼𝑟
𝑖=1 + (𝑛 − 𝑟)𝑡0

𝛼)−𝜆𝛼[∑ 𝑥𝑖
𝛼𝑟

𝑖=1 ln(𝑥𝑖) +

(𝑛 − 𝑟)𝑡0
𝛼ln (𝑡0)]=0 

𝑟

𝛼
+ 𝑟𝑙𝑛 𝜆 + ∑ 𝑙𝑛(𝑥𝑖)

𝑟
𝑖=1 −𝜆𝛼[ln(𝜆) (∑ 𝑥𝑖

𝛼𝑟
𝑖=1 + (𝑛 − 𝑟)𝑡0

𝛼) + ∑ 𝑥𝑖
𝛼𝑟

𝑖=1 ln(𝑥𝑖) + (𝑛 −

𝑟) 𝑡0
𝛼ln (𝑡0)]=0 

𝜕𝑙

𝜕𝜆
=

𝑟𝛼

𝜆
− 𝛼𝜆𝛼−1(∑ 𝑥𝑖

𝛼𝑟
𝑖=1 + (𝑛 − 𝑟)𝑡0

𝛼)=0 

𝑟

𝜆
= 𝜆𝛼−1 (∑𝑥𝑖

𝛼

𝑟

𝑖=1

+ (𝑛 − 𝑟)𝑡0
𝛼) 

𝑟 = 𝜆𝛼 (∑𝑥𝑖
𝛼

𝑟

𝑖=1

+ (𝑛 − 𝑟)𝑡0
𝛼) 

𝜆𝛼 =
𝑟

(∑ 𝑥𝑖𝛼
𝑟
𝑖=1 + (𝑛 − 𝑟)𝑡0

𝛼)
 

�̂� = (
𝑟

(∑ 𝑥𝑖𝛼
𝑟
𝑖=1 + (𝑛 − 𝑟)𝑡0

𝛼)
)

1
𝛼

 

Solving 
𝜕𝑙

𝜕𝛼
= 0. Using numerical approximation technique, we can obtain MLEs of 

parameters. 

After obtain the estimate of parameter, we can evaluate reliability estimate 

𝑅(𝑡) = 𝑒−(�̂�𝑡)
�̂�
 

 

8.5.1 Reliability Estimation of Exponential Distribution under Type 

II Censoring 

When the scale parameter  𝜆  of the exponential distribution is unknown, and you have 

Type II censoring, you need to estimate  𝜆  from the data before estimating reliability. Suppose 

𝑥1, 𝑥 2,…, 𝑥 n be a random sample from exponential distribution with scale parameter 𝜆 and r 

be the pre fixed number of failure, at which test is terminate. 

Step 1: Estimate the Parameter  𝜆 



 

 

We use Maximum Likelihood Estimation (MLE) to estimate  𝜆 . The likelihood 

function for the exponential distribution, considering r (fixed before start to test) failures and n 

- r censored observations, is: 

1. Likelihood Function: 

𝐿(𝜆|𝑥) =
𝑛!

(𝑛−𝑟)!
∏ 𝑓(𝑥𝑖)[1 − 𝐹(𝑥(𝑟))]

𝑛−𝑟𝑟
𝑖=1 ;        0< 𝑥(1)<...< 𝑥(r)< ∞ 

 

After substituting the expressions of pdf and cdf, we get 

𝐿(𝜆|𝑥) =
𝑛!

(𝑛 − 𝑟)!
(∏𝜆 𝑒−𝜆𝑥𝑖 

r

i=1

) (𝑒−𝜆𝑥(𝑟))
𝑛−𝑟

 

𝐿(𝜆|𝑥) =
𝑛!

(𝑛 − 𝑟)!
𝜆r𝑒−𝜆∑ 𝑥𝑖

𝑟
𝑖=1 (𝑒−𝜆 𝑥(𝑟))

𝑛−𝑟
 

 2. Then the Log-Likelihood function is 

Ln 𝐿(𝜆) ∝ 𝑟 ln 𝜆 − 𝜆∑𝑥𝑖

𝑟

𝑖=1

− (𝑛 − 𝑟)𝜆 𝑥(𝑟) 

 3. MLE for  𝜆: 

To find the maximum likelihood estimate of  𝜆, take the derivative of the log-likelihood 

function with respect to  𝜆 and equals it to zero: 

𝑑

𝑑𝜆
ln 𝐿(𝜆) =

𝑟

𝜆
−∑𝑥𝑖

𝑟

𝑖=1

− (𝑛 − 𝑟) 𝑥(𝑟) = 0 

Which implies 

𝑟

𝜆
= ∑ 𝑥𝑖

𝑟
𝑖=1 + (𝑛 − 𝑟) 𝑥(𝑟)   

or 

�̂� =
𝑟

∑ 𝑥𝑖
𝑟
𝑖=1 + (𝑛 − 𝑟) 𝑥(𝑟)

 

 

Step 2: Calculate the Reliability Function 

After estimating  �̂�  and using invariance property if MLE, we can estimate the 

reliability function at any time t . 



 

 

 1. Reliability Function with Estimated  �̂�: 

𝑅
^

(𝑡) = 𝑒−�̂�𝑡 

Example Calculation 

Assume the following data: 

 •  n = 10  components 

 •  r = 6  failures observed at times  2, 4, 5, 7, 8, 9. 

 •  t = 10  (censoring time for the remaining  n - r = 4  components) 

 1. Calculate the MLE for  �̂�: 

 Sum of failure times = 2 + 4 + 5 + 7 + 8 + 9 = 35  

�̂� =
6

75
= 0.08 

 2. Reliability Calculation for  t = 5 : 

𝑅
^

(5) = 𝑒−5∗0.08 ≈ 𝑒−0.4 ≈ 0.6703. 

8.5.2 Reliability Estimation of Weibull Distribution under Type II 

Censoring 

The Weibull distribution is widely used in reliability engineering and survival analysis 

due to its flexibility in modelling various types of failure rates. Reliability estimation under 

Type II censoring involves determining the reliability function when the study is terminated at 

a fixed number of failures. 

Weibull Distribution 

The Weibull distribution is characterized by two parameters: 

 • Shape parameter (𝛼) 

 • Scale parameter (𝜆) 

The probability density function (PDF) is: 

𝑓(𝑥; 𝜆, 𝛼) = 𝛼𝜆(𝜆𝑥)𝛼−1𝑒−(𝜆𝑥)
𝛼
, 𝑥 ≥ 0  



 

 

The cumulative distribution function (CDF) is: 

𝐹(𝑥; 𝜆, 𝛼) = 1 − 𝑒−(𝜆𝑥)
𝛼
 

The reliability function R(t)  (the probability that a component survives beyond time  t ) is: 

𝑅(𝑡) = 1 − 𝐹(𝑡) = 𝑒−(𝜆𝑡)
𝛼
 

Maximum Likelihood Estimation (MLE) 

To estimate the parameters   𝜆 𝑎𝑛𝑑 𝛼 under Type II censoring, we use the maximum 

likelihood estimation method. The likelihood function L for r failures and n - r censored 

observations is: 

𝐿(𝜆, 𝛼|𝑥) =
𝑛!

(𝑛 − 𝑟)!
∏(𝑓(𝑥𝑖))

𝑟

𝑖=1

(1 − 𝐹(𝑥(𝑟)))
𝑛−𝑟

 

𝐿(𝜆, 𝛼|𝑥) =
𝑛!

(𝑛 − 𝑟)!
∏(𝛼𝜆(𝜆𝑥𝑖)

𝛼−1𝑒−(𝜆𝑥𝑖)
𝛼
)

𝑟

𝑖=1

(𝑒−(𝜆𝑥𝑟)
𝛼
)
𝑛−𝑟

 

𝐿(𝜆, 𝛼|𝑥) =
𝑛!

(𝑛 − 𝑟)!
𝛼𝑟𝜆𝑟𝛼∏((𝑥𝑖)

𝛼−1𝑒−(𝜆𝑥𝑖)
𝛼
)

𝑟

𝑖=1

(𝑒−(𝜆𝑥𝑟)
𝛼
)
𝑛−𝑟

 

2. Log-Likelihood Function is: 

ln 𝐿(𝜆, 𝛼) ∝ rln 𝛼 + 𝑟𝛼 ln 𝜆 + (𝛼 − 1)∑ 𝑙𝑛(𝑥𝑖)
𝑟
𝑖=1 −−𝜆𝛼(∑ 𝑥𝑖

𝛼𝑟
𝑖=1 + (𝑛 − 𝑟)𝑥(𝑟)

𝛼)  

Now we differentiate log likelihood with respect to parameters 

𝜕𝑙

𝜕𝛼
=

𝑟

𝛼
+ 𝑟𝑙𝑛 𝜆 + ∑ 𝑙𝑛(𝑥𝑖)

𝑟
𝑖=1 −𝜆𝛼 ln(𝜆) (∑ 𝑥𝑖

𝛼𝑟
𝑖=1 + (𝑛 − 𝑟)𝑥(𝑟)

𝛼)−𝜆𝛼[∑ 𝑥𝑖
𝛼𝑟

𝑖=1 ln(𝑥𝑖) +

(𝑛 − 𝑟)𝑥(𝑟)
𝛼ln (𝑥(𝑟))]=0 

𝑟

𝛼
+ 𝑟𝑙𝑛 𝜆 +∑𝑙𝑛(𝑥𝑖)

𝑟

𝑖=1

−𝜆𝛼 [ln(𝜆)(∑𝑥𝑖
𝛼

𝑟

𝑖=1

+ (𝑛 − 𝑟)𝑥(𝑟)
𝛼)

+∑𝑥𝑖
𝛼

𝑟

𝑖=1

ln(𝑥𝑖) + (𝑛 − 𝑟) 𝑥(𝑟)
𝛼ln (𝑡𝑟)] 

=0 

𝜕𝑙

𝜕𝜆
=

𝑟𝛼

𝜆
− 𝛼𝜆𝛼−1(∑ 𝑥𝑖

𝛼𝑟
𝑖=1 + (𝑛 − 𝑟)𝑥(𝑟)

𝛼)=0 



 

 

𝑟

𝜆
= 𝜆𝛼−1 (∑𝑥𝑖

𝛼

𝑟

𝑖=1

+ (𝑛 − 𝑟)𝑥(𝑟)
𝛼) 

𝑟 = 𝜆𝛼 (∑𝑥𝑖
𝛼

𝑟

𝑖=1

+ (𝑛 − 𝑟)𝑥(𝑟)
𝛼) 

𝜆𝛼 =
𝑟

(∑ 𝑥𝑖𝛼
𝑟
𝑖=1 + (𝑛 − 𝑟)𝑥(𝑟)𝛼)

 

�̂� = (
𝑟

(∑ 𝑥𝑖𝛼
𝑟
𝑖=1 + (𝑛 − 𝑟)𝑥(𝑟)𝛼)

)

1
𝛼

 

To find the MLEs for  𝛼  and  𝜆 , we need to solve the system of equations obtained by 

setting the partial derivatives of the log-likelihood function with respect to  𝛼  and  𝜆  to zero. 

This typically requires numerical methods. 

Reliability Estimation: Once  𝛼  and  𝜆    are estimated, the reliability function R(t)  can 

be estimated using the invariance property of MLE which is given by: 

𝑅(𝑡) = 𝑒−(�̂�𝑡)
�̂�
 

8.6 Stress-Strength Reliability 

The stress-strength model is a reliability model used to evaluate the probability that a 

system or component will perform its intended function under given stress conditions. It is 

commonly applied in engineering and reliability analysis. In the stress-strength model, the 

reliability of a component is determined by comparing the random variables representing the 

stress, applied to the component, and the strength of the component. Let Y be the random 

variable representing the stress and X be the random variable representing the strength. 

Reliability Calculation 

The reliability R of the component is the probability that the strength X exceeds the 

stress Y: 

R = P (X >Y) 

8.6.1  Application in Reliability Engineering 



 

 

In reliability engineering, the Stress-Strength model helps in evaluating the likelihood 

that a component or system will perform reliably under expected stress conditions. It provides 

insights into how well a product will withstand operational stresses and helps in designing 

products that meet safety and performance standards. Reliability Prediction: The model 

predicts the probability of failure by calculating the likelihood that the applied stress will 

exceed the strength of the component. This prediction helps in assessing the overall reliability 

of the system under typical operating conditions. 

8.6.2  Application in Survival Analysis 

In survival analysis, the Stress-Strength model is used to understand the relationship 

between the duration until an event occurs (e.g., failure, death) and the underlying factors that 

influence survival. This model helps in evaluating the effects of different stress factors on the 

survival time of subjects. 

(i) Medical Research 

 (i) Patient Survival: In medical research, the Stress-Strength model can be applied 

to predict patient survival times based on factors such as disease severity, treatment efficacy, 

and patient characteristics. The model helps in understanding how stressors (e.g., disease 

progression) affect patient survival. 

 (ii) Treatment Efficacy: Researchers use the model to evaluate the effectiveness of 

treatments by comparing the strength of the treatment effect against the stress imposed by the 

disease. This helps in determining the likelihood of treatment success and patient recovery. 

(ii) Reliability of Medical Devices 

 (i) Device Performance: In the context of medical devices, the Stress-Strength 

model assesses the reliability of devices under operational conditions. This includes evaluating 

how well a device performs under stress conditions like prolonged use or varying 

environmental conditions. 

 (ii) Failure Analysis: The model helps in analysing the likelihood of device failure 

and understanding the factors that contribute to it. This information is crucial for improving 

device design and ensuring patient safety. 

8.6.3  Applications 



 

 

Example 1: Reliability Engineering 

 (i) Scenario: An engineer is designing a new mechanical component that must 

withstand a maximum operational stress of 1500 psi. The component is tested under various 

conditions, and its strength follows a normal distribution with a mean of 1600 psi and a standard 

deviation of 100 psi. 

 (ii) Application: Using the Stress-Strength model, the engineer calculates the 

probability that the component will fail under the maximum stress condition. This probability 

helps in assessing whether the component meets the reliability requirements. 

Example 2: Survival Analysis in Medicine 

 (i) Scenario: A study aims to evaluate the impact of a new drug on patient survival 

rates for a specific type of cancer. The stress (e.g., cancer progression) and strength (e.g., drug 

efficacy) are modelled using survival data. 

 (ii) Application: The model helps in estimating the probability that patients will 

survive beyond a certain time frame, given the drug’s efficacy and the severity of the cancer. 

This information is used to make decisions about the drug’s effectiveness and treatment 

recommendations. 

Summary 

 (i). Reliability Engineering: The Stress-Strength model helps in designing, 

manufacturing, and testing products by comparing the strength of materials/components with 

the applied stress. It predicts reliability, assesses risk, and estimates component life. 

 (ii). Survival Analysis: The model is used to understand and predict survival times 

based on stress factors and treatment strengths. It is applied in medical research, epidemiology, 

and evaluating medical devices. 

The Stress-Strength model is a powerful tool in both fields, providing valuable insights 

into how stress and strength interact to influence performance and survival.  

8.6.4  Stress Strength Model with Examples 

Stress-Strength Model 



 

 

The stress-strength model is used in reliability engineering to assess the probability that 

a system will function properly under varying stress levels. The model compares the 

distribution of the stress applied to a system with the distribution of the system’s strength. The 

primary goal is to evaluate the reliability of the system by determining the probability that the 

stress does not exceed the strength. 

Key Components 

The Stress Distribution is represented by Y with cumulative distribution function 

(CDF) is 𝐹𝑌(𝑦)  and  strength Distribution is represented by X with CDF  𝐹𝑋(𝑥). 

The reliability of the system R, is the probability that the strength is greater than the stress: 

R = P( X>Y) 

If  Y  and  X  are independent, the reliability can be calculated as: 

𝑅 = 𝑃(𝑋 > 𝑌) = ∫ ∫ 𝑓𝑋(𝑥)
∞

𝑦

∞

0

fY(𝑦) 𝑑𝑥𝑑𝑦 

where  𝑓𝑋(𝑥)is the probability density function (PDF) of  X , and  fY(𝑦) is the CDF of  S . 

Examples 

1. Normal Stress and Strength 

 • Stress Distribution:  𝑌 ∼ N(μ𝑌, σ𝑌
2) 

 • Strength Distribution: 𝑋 ∼ N(μ𝑋, σ𝑋
2) 

For normal distributions, the reliability function can be calculated using: 

𝑅 = 𝑃(𝑆 > 𝑋) = 𝑃 (
𝑋 − μ𝑋
σ𝑋

>
𝑌 − μ𝑌
σ𝑌

) 

This can be simplified using the cumulative distribution function of the standard normal 

distribution: 

𝑅 = 1 − Φ(
μ𝑌 − μ𝑋

√σ𝑋
2 + σ𝑌

2
) 

Example Calculation: 

 • Stress: 𝜇𝑌 = 5, 𝜎𝑌 = 1  



 

 

 • Strength:  𝜇𝑋 = 7, 𝜎𝑋 = 2 

Reliability: 

𝑅 = 1 − Φ(
5 − 7

√12 + 22
) 

𝑅 = 1 − Φ(
−2

√5
) 

𝑅 = 1 − Φ(−0.894) ≈ 1 − 0.185 = 0.815 

8.6.4.1 Reliability Estimation of Exponential Distributions for Stress 

Strength Model 

Reliability estimation involves calculating the probability that the strength exceeds the 

stress. The probability density function (PDF) of an exponential distribution with parameter 𝜆 

(rate parameter) is: 

𝑓(𝑥; 𝜆) = 𝜆 𝑒−𝜆𝑥 , 𝑥 ≥  0 

The cumulative distribution function (CDF) is: 

𝐹(𝑥; 𝜆) = 1 − 𝑒−𝜆𝑥 

Let X be the random variable representing the strength of a component, and Y be the 

random variable representing the applied stress. Both X and Y follow exponential 

distributions with parameters 𝜆x and 𝜆𝑦 , respectively. Our aim is to calculate the reliability 

R, which is the probability that the strength X exceeds the stress Y. Mathematically: 

R = P(X > Y) 

Calculation 

Since X and Y are independent random variable, the reliability R can be computed as: 

𝑅 = 𝑃(𝑋 > 𝑌) = ∫ ∫ 𝑓𝑋(𝑥)
∞

𝑦

∞

0

fY(𝑦) 𝑑𝑥𝑑𝑦 

Solving inner integral, we get 

𝑅 = ∫ 𝑒−𝜆𝑋𝑦 
∞

0

 𝜆𝑌𝑒
−𝜆𝑌𝑦 𝑑𝑦 



 

 

𝑅 = 𝜆𝑌∫ 𝑒−(𝜆𝑋+𝜆𝑌)𝑦
∞

0

𝑑𝑦 

The integral is the standard form of an exponential distribution’s CDF: 

∫ 𝑒−(𝜆𝑋+𝜆𝑌)𝑦
∞

0

𝑑𝑦 =
1

(𝜆𝑋 + 𝜆𝑌)
 

The stress-strength reliability when both X and Y follows exponential distributions is: 

R=
𝜆𝑌

(𝜆𝑋+𝜆𝑌)
 

Using the ML estimators of parameters, the ML estimator of stress strength reliability of 

exponential distribution 

R=
𝜆�̂�

(𝜆�̂�+𝜆�̂�)
 

Example Calculation 

Let’s compute the reliability for specific Exponential parameters. 

Given: 

 • Stress Distribution:  𝑌 ∼ Exponential(𝜆𝑌 = 1) 

 • Strength Distribution:  𝑋 ∼ Exponential(𝜆𝑋 = 2) 

Calculate Reliability: 

R=
𝜆𝑌

(𝜆𝑋+𝜆𝑌)
 

𝑅 =
1

1 + 2
 

𝑅 =
1

3
 

 𝑅 =  0.33  

8.6.4.2  Reliability Estimation of Weibull Distribution for Stress 

Strength Model 



 

 

Suppose stress and strength both follow Weibull distributions; reliability estimation 

involves comparing the Weibull distributions of stress and strength to determine the probability 

that the strength will exceed the stress. 

A Weibull distribution is defined by two parameters:   

The probability density function (PDF) for a Weibull distribution is: 

𝑓(𝑥; 𝜆, 𝛼) = 𝛼𝜆(𝜆𝑥)𝛼−1𝑒−(𝜆𝑥)
𝛼
, 𝑥 ≥ 0  

• Where Shape Parameter (α) and Scale Parameter (λ) 

The cumulative distribution function (CDF) is: 

𝐹(𝑥; 𝜆, 𝛼) = 1 − 𝑒−(𝜆𝑥)
𝛼
 

Let X be the random variable representing the strength of a component, and Y be the 

random variable representing the applied stress. Both X and Y follow Weibull distributions 

with parameters 𝜆𝑥, 𝛼𝑥 and 𝜆𝑦, 𝛼𝑦, respectively. Our aim is to calculate the reliability R, 

which is the probability that the strength X exceeds the stress Y. Mathematically: 

R = P(X > Y) 

Given stress and strength distributions: 

 • Strength Distribution: 𝑋 ∼ Weibull( 𝜆𝑥, 𝛼𝑥) 

 • Stress Distribution: 𝑌 ∼ Weibull(𝜆𝑦, 𝛼𝑦) 

The aim is to calculate the reliability R . Mathematically: 

R = P(X > Y) 

Given that X and Y are independent, the reliability function R  is: 

𝑅 = 𝑃(𝑋 > 𝑌) = ∫ ∫ 𝑓𝑋(𝑥)
∞

𝑦

∞

0
fY(𝑦) 𝑑𝑥𝑑𝑦                (*)   

where 𝑓𝑋(𝑥)is the pdf of X and  fY(𝑦) is the pdf of Y. Further, we have 

∫ 𝛼𝑥𝜆𝑥(𝜆𝑥𝑥)
𝛼𝑥−1𝑒−(𝜆𝑥𝑥)

𝛼𝑥
∞

𝑦

𝑑𝑥 = 𝛼𝑥𝜆𝑥
𝛼𝑥∫ (𝑡)𝛼𝑥−1𝑒−(𝜆𝑥𝑡)

𝛼𝑥
∞

𝑦

𝑑𝑥 

                                                                              = 𝑒−(𝜆𝑥𝑦)
𝛼𝑥

   (**) 



 

 

Finally from (*) and (**), the reliability function becomes: 

𝑅 =  ∫ 𝛼𝑦𝜆𝑦(𝜆𝑦𝑦)
𝛼𝑦−1𝑒−(𝜆𝑦𝑦)

𝛼𝑦
𝑒−(𝜆𝑥𝑦)

𝛼𝑥
∞

0

𝑑𝑦 

 

𝑅 = 𝛼𝑦𝜆𝑦
𝛼𝑦∫ 𝑦𝛼𝑦−1

∞

0

𝑒−(𝜆𝑦𝑦)
𝛼𝑦−(𝜆𝑥𝑦)

𝛼𝑥
𝑑𝑦 

This integral generally does not have a closed-form solution and often requires numerical 

methods to evaluate. 

8.7      Summery 

This unit covers the fundamental concepts and methodologies for estimating the 

parameters of well-known distributions such as Exponential, Weibull, Gamma, and Log-

Normal. It also explores how to evaluate reliability for complete failure data as well as censored 

data, providing a comprehensive understanding of reliability assessment. Additionally, the 

units explain the stress-strength model, which is crucial for assessing system reliability based 

on the comparison between applied stress and material strength.  

 

8.8      Self-Assessment Exercises 

1. A life test was conducted on 14 identical components, and the following failure times 

(in hours) were recorded: 5, 7, 12, 15, 20, 22, 30, 35, 40, 45, 50, 55, 60, and 80. Assume 

the failure times follow an exponential distribution. Estimate the failure rate (λ) using 

the Maximum Likelihood Estimation (MLE) method, estimate the Mean Time to 

Failure (MTTF) and also Estimate the reliability at 25 hours using the estimated λ. 

 

2. A life test was conducted on 10 identical components, and the recorded failure times 

(in hours) were as follows: 15, 20, 30, 35, 50, 55, 60, 75, 80, and 100. Assume that the 

data follows a Weibull distribution. Estimate the parameters of Weibull distribution 

using the Maximum Likelihood Estimation (MLE) method and also estimate the 

reliability at 40 hours using the estimated parameters. 

 

3. Consider a scenario where the lifetimes of a particular type of component are follow a 

log-normal distribution. Suppose a sample of 10 components is tested, and their 



 

 

lifetimes (in hours) are recorded as follows: 100, 120, 150, 200, 250, 300, 350, 400, 

450, and 500 hours. Estimate the parameters of the log-normal distribution: the mean µ 

and standard deviation σ of the natural logarithms of the lifetimes. 

 

4. A life test is performed on 8 identical components. The test is terminated after 5 failures, 

and the recorded failure times (in hours) are: 10, 15, 20, 25, and 30. The test is stopped 

after the fifth failure, and the remaining 3 components are censored. Assuming the 

failure times follow an exponential distribution, estimate the failure rate λ and the 

reliability at 20 hours. 

 

5. A life test is conducted on 10 identical components, with the test ending after 50 hours. 

The failure times (in hours) of the components are recorded as follows: 12, 18, 25, 30, 

and 40. The remaining 5 components did not fail by the end of the test and are therefore 

censored at 50 hours. Estimate the reliability of the components at 40 hours. 

 

6. In a reliability test, the strength X and stress Y of a material are modelled by exponential 

distributions. The strength of the material has a rate parameter λX = 0.01 failures per 

hour, and the stress has a rate parameter λY= 0.015 failures per hour. (i) Calculate the 

system reliability R = P(X > Y) .(ii) If the rate parameter for the stress  λY were to 

increase to  0.02  failures per hour, recalculate the system reliability. 
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9.1 Introduction 

 

As discussed in earlier chapters, a system is an attachment of components that work 

together to perform a specific function. It is obvious that during performing a given function 

the system will experience failure at a time point which is called failure time. Once a system 

fails then the choice is either it can be replaced by the new one or it can be repaired. There are 

various advantages to repairing a system instead of replacing it such as repair cost likely to be 

lower than a new system, less time to repair than replace the entire system setup, better resource 

optimization and many more.  

In reliability theory, a repairable system is a chain which, after it has failed to perform 

properly, can be restored to satisfactory performance by any method except replacement of the 

entire system. The repairable systems are designed with the expectation that they will 

experience failure/breakdowns over time, but their useful life can be extended through part 

replacement, maintenance, or adjustments. Repairable systems are common in industries where 



 

 

replacing entire units would be costly or impractical. In many industries such as manufacturing, 

automotive, electronics, and infrastructure repairable systems are utilized.  

A real-life example of a repairable system in the electronics industry is the smartphone. 

Once a smartphone experiences issues such as a cracked screen, faulty battery, or 

malfunctioning charging port, it can be repaired instead of being completely replaced. For 

instance, if the screen is damaged, a technician can replace just the screen, restoring the device 

to working condition. Similarly, if the battery loses its capacity, it can be swapped out for a 

new one, extending the overall lifespan of the smartphone.  

The study of repairable systems involves understanding failure patterns, optimizing 

maintenance strategies, and balancing repair costs with system reliability to ensure long-term 

performance. In the following sections our aim is to introduce some statistical methods to deal 

with the repairable system.  

9.2  Objectives 

After going through this unit, you will be able to  

• Know about basic concepts of repairable systems 

• Maintenance and Replacement Policies for repairable systems 

• Non-homogeneous Poisson process modeling 

• Availability of repairable systems 

• Preventive Maintenance Policy for Repairable Systems 

 

9.3 Maintenance and Replacement Policies 

 

The purpose of a reliability system is to create a sustainable environment, where a 

system and its components perform at their best. To achieve this, it becomes necessary to define 

the maintenance and replacement policies. For an organization, these policies serve as essential 

guidelines for managing the maintenance and eventual replacement of equipment, assets, or 

systems. These policies ensure reliability, minimize downtime (not available for use due to 

maintenance), and optimize costs over time. 

 

9.3.1  Maintenance Policy 

A maintenance policy outlines the procedures and frequency of servicing or repairing assets 

to ensure they operate efficiently and safely. The major types of maintenance policy include: 



 

 

A. Preventive Maintenance: This is a proactive approach to maintaining a system by 

performing regular, scheduled tasks to prevent expected failure. This type of maintenance 

is carried out before issues arise. It is based on time intervals, usage, or condition-based 

triggers, to ensure that equipment remains in good working order and to avoid unexpected 

breakdowns. The examples of preventive maintenance are such as lubrication, cleaning, and 

replacing worn-out parts, routine inspections. 

B. Predictive Maintenance: This is also a proactive maintenance strategy that uses real-time 

data and advanced diagnostic tools to predict when equipment or systems are likely to fail, 

allowing for maintenance to be performed just before a failure occurs. This approach is 

based on monitoring and analyzing key performance indicators, such as vibration, 

temperature, and wears patterns, to assess the condition of equipment. 

C. Corrective Maintenance: Corrective maintenance is a reactive approach to maintaining 

equipment or systems that involves performing repairs or taking corrective actions after a 

failure or malfunction has occurred. It focuses on addressing and fixing the root cause of the 

issue to ensure that the system or equipment can resume its intended function. 

D. Routine Maintenance: It refers to the regular, often scheduled, tasks performed to keep 

components or systems in good working condition and to prevent potential problems. 

Routine maintenance helps to ensure that the system operates smoothly. These tasks are 

typically performed on a daily, weekly, or monthly basis and include activities such as 

cleaning, lubricating, adjusting, and inspecting. 

The above-mentioned maintenance policies can be effectively implemented in an 

organization through the following practices: conducting frequent checks and inspections, 

assigning maintenance tasks to responsible personnel, maintaining proper documentation of all 

maintenance activities, and allocating an appropriate budget for maintenance tasks and 

supplies. These practices help to ensure that maintenance is carried out systematically and 

efficiently. 

 

9.3.2  Replacement Policy 

As a system ages, the costs and risks associated with maintenance and repairs may increase 

rapidly and replacement becomes a better option for ensuring reliability. A well-defined 

replacement policy helps to avoid unexpected system failures, reduce downtime, optimize 



 

 

resource allocation, and plan for capital expenditures. So the purpose of a replacement policy 

is to ensure that systems are replaced at the right time before they become unreliable, or too 

costly to maintain. The major types of replacement policy include:  

A. Age-Based Replacement: This is a maintenance strategy in which systems or components 

are replaced after reaching a prefixed time, regardless of their current condition or 

performance. This approach assumes that the probability of failure increases with age. Such 

replacement is often used for systems with predictable life time, such as batteries, filters, 

etc.. 

B. Condition-Based Replacement: This is a maintenance strategy in which systems or 

components are replaced based on their actual condition at inspection/monitoring time 

rather. When the condition of a system falls below a certain level or shows signs of possible 

failure, it is replaced to prevent breakdowns. For example, in data centers, where server 

hard drives are monitored using Self-Monitoring technique and when the system detects 

signs of declining performance, the hard drive is proactively replaced before it fails. 

C. Usage-Based Replacement: This is a maintenance strategy where systems or components 

are replaced based on the amount of usage they have experienced, rather than on a fixed 

time schedule or their current condition. This approach relies on tracking the actual 

operational usage, such as hours of operation, cycles, or distance traveled, to determine 

when an item should be replaced. For example, in vehicles, machinery, or aircraft, where 

components like tires, engines, or filters are replaced after a certain number of miles, cycles, 

or operating hours. 

D. Failure-Based Replacement: In this maintenance strategy, systems or components are 

replaced only after they have failed. This approach is reactive, focusing on addressing 

issues that arise due to actual breakdowns. However, this strategy may lead to higher 

downtime and increased maintenance costs due to unexpected breakdowns. 

So, replacement policies provide guidelines on when to replace a system so the repair 

cost does not exceed a proportion of the replacement cost. This is planning for the costs of 

replacements over time. 

A good strategy is to use both maintenance and replacement policies together to keep 

systems function satisfactorily. By figuring out if a system needs more regular maintenance or 

should be replaced sooner. This helps them understand whether it's cheaper to keep fixing the 



 

 

system or to replace it, making sure they make the best choice for both cost and performance. 

For example, regularly updating and taking care of computers can help them last longer, but 

after about 5-7 years, they often need to be replaced because they become outdated or slow. 

Similarly, for vehicles, regular oil changes can keep a vehicle running smoothly, but after a 

certain number of distance or if it starts to wear out, replacing it with a new vehicle might be 

more cost-effective than constantly fixing the old one. 

9.4 Availability of Repairable Systems 

Repairable systems offer significant benefits across various industries by allowing 

organizations to maintain and extend the life of their equipment. They help save costs by 

enabling repairs instead of complete replacements, making them a cost-effective solution for 

managing expensive machinery and technology. Regular maintenance and repairs also reduce 

downtime, increase reliability, and ensure operational efficiency, which is crucial for 

continuous productivity. Additionally, repairable systems contribute to environmental 

sustainability by reducing waste, as parts are fixed or upgraded rather than discarded. Overall, 

repairable systems are essential for maximizing the value of investments, maintaining smooth 

operations, and supporting sustainable practices. Repairable systems are used in many different 

industries, and they are designed to be fixed and maintained rather than replaced entirely. Here 

are a few areas where such system available: 

A. Manufacturing: In factories, equipment like conveyor belts, CNC machines, and 

industrial robots are built to be repaired. If something breaks down or wears out, parts can 

be replaced or fixed to keep everything running smoothly. This helps ensure that production 

doesn’t stop and that the factory continues to operate efficiently. 

B. Aerospace and Aviation: Airplanes have important parts like engines, landing gear, and 

navigation systems that can be repaired. Regular maintenance and repairs are crucial to 

keep aircraft safe and reliable for many years of flying. 

C. Automotive: Cars, trucks, and buses have many parts that can be repaired, such as engines, 

transmissions, and brakes. When these parts wear out or break, they can be fixed or replaced 

to keep the vehicle running safely and effectively. 



 

 

D. Electronics: Consumer gadgets like smartphones, laptops, and home appliances often have 

parts that can be repaired, such as screens, batteries, and hard drives. If these parts fail, they 

can be serviced or replaced, which helps extend the life of the device. 

E. Energy and Utilities: Equipment used to generate power, like turbines and generators, as 

well as infrastructure like pipelines and transformers, are designed to be repaired. Regular 

maintenance ensures they continue to work efficiently and supply energy without 

interruptions. 

F. Healthcare: Medical devices, including MRI machines, ventilators, and diagnostic 

equipment, can be repaired to ensure they keep functioning correctly. This is important for 

providing accurate diagnoses and effective patient care. 

G. Railway and Public Transportation: Trains, buses, and trams have components like 

engines, brakes, and electronics that can be repaired. Keeping these parts in good condition 

is essential for safe and reliable transportation. 

Repairable systems are designed to be maintained and fixed as needed. This approach 

helps to keep things running well, extends the life of the equipment, and manages costs 

effectively. 

 

9.5 Modeling a Repairable System 

 

The objective of this chapter is to study about the repairable system. So in this section, 

few simple statistical methods are introduced for a repairable system under reliability data. So 

let's consider a repairable system where 𝑇1, 𝑇2, 𝑇3, … represent the times at which the system 

fails. Let 𝑋𝑖 for 𝑖 = 1,2,3, . .. be the time between the failure (i − 1)th and the ith failure, with 

𝑇0 defined as zero. Both 𝑇𝑖 and 𝑋𝑖 are random variables. The corresponding observed values 

are 𝑡𝑖 and𝑥𝑖, respectively. Additionally, let 𝑁(𝑡) denote the number of failures that occur within 

the time interval (0, 𝑡]. In repairable system reliability, the random variable 𝑋  is a variable of 

interest. For such systems, the occurrence of dependence or autocorrelation between the 𝑋 is 

quite obvious.  

One can understand that in component reliability, dealing with the time until the first 

failure of several similar components, it's common to assume that the lifetimes of these 

components are independent and identical. However, in repairable systems, you're looking at 

the times between repeated failures of the same system. In these cases, it's the differences from 



 

 

the independent and identical assumption that matter. So, it's not surprising that the statistical 

methods used for repairable systems are different from those used for component reliability. 

In a repairable system, the behaviour can be termed as "happy" and "sad". When the 

time between failures gets longer, a system is said to be a happy system and for a shorter time 

it is called a sad one. It becomes important to identify and fix "sad" systems to prevent them 

from causing problems in production processes.  

 

9.5.1  Rate of Occurrence of Failure 

The next step is to design a mathematical formula to express whether a system is 

"happy" or "sad." To do this, we will consider the Rate of Occurrence of Failure (ROCOF), 

which can be defined as follows: 

   𝑣(𝑡) =
d

dt
E[N(t)]. 

A happy system will have a decreasing ROCOF, while a sad system will have an 

increasing ROCOF. However, it is important to note that just because a system is happy (or 

sad) does not necessarily mean that, in practical terms, it is satisfactory (or unsatisfactory). For 

example, a system with a very low ROCOF may be perfectly satisfactory for its intended 

lifespan, even if its ROCOF is increasing. 

It is also important to distinguish between ROCOF and the hazard function, as both are 

sometimes referred to as the failure rate. Interestingly, it is possible for a system to have a non-

decreasing hazard function while still experiencing a decreasing ROCOF. A natural estimator 

of𝜈(𝑡) is�̂�(𝑡), given by 

   �̂�(𝑡) =
no.of failures in (t,t+δt)

δt
     (9.1) 

 Here, 𝛿𝑡 represents a suitable time interval. The choice of 𝛿𝑡 is arbitrary, the goal is to 

highlight the main features of the data while smoothing out the noise. 

One can visualize the behaviour of a repairable system by a simple informative graph 

comprising the cumulative number of failures versus the cumulative time. In such graphs 

departures from linearity are indicative of the fact that the X, are not IID. In particular this plot 

is useful for detecting the presence of a trend. To gain an indication as to the form of the trend 

the estimated ROCOF may be calculated and/or plotted against time.  

For example, in Table 9.1 21 observations are the failure time (in days) corresponding 

to the failed component of a smartphone before it is replaced by the owner. Figure 9.1 shows 

the behaviour of the repairable system. In the plot it can be seen that failure pattern is almost 

linear so it is expected that ROCOF is also approximately constant.    



 

 

Table 9.1: Failure time data of a smartphone with component of failure. 

Failure Number Failure Time 
Inter-Failure Inter

val 
Component 

1 112 112 Battery 

2 251 139 Camera 

3 262 11 Camera 

4 289 27 Screen 

5 381 92 Camera 

7 402 21 Screen 

8 425 23 Processor 

9 486 61 Battery 

10 642 156 Screen 

11 660 18 Screen 

12 781 121 Camera 

13 783 2 Camera 

14 800 17 Battery 

15 852 52 Camera 

16 882 30 Processor 

17 891 9 Screen 

18 903 12 Processor 

19 978 75 Processor 

20 981 3 Processor 

21 1135 154 Battery 

 

 

Figure 9.1: Plot of failure number versus failure time in days for the smartphone data. 



 

 

9.5.2 Non-Homogeneous Poisson Process Model 

 A stochastic point process can be thought of as a series of events happening in a 

continuous space, like time, where the events follow a certain probability pattern. If we think 

of the continuous space as time and the events as failures, this idea fits well with the study of 

systems that can be repaired after failing. While there are different models, we could use to 

describe how failures happen in a repairable system, we will focus on the Non-Homogeneous 

Poisson Process (NHPP). This model is easy to understand, can represent both systems that 

improve over time and those that get worse, and has well-developed statistical methods that 

are simple to use. The assumptions for a NHPP are as for the Poisson process except that the 

ROCOF varies with time rather than being a constant. 

 Consider a NHPP with time dependent ROCOF𝜈(𝑡) (this is sometime called intensity 

function), then the numbers of failures in the time interval (𝑡1, 𝑡2] has a Possion process with 

mean ∫ 𝜈(𝑡)𝑑𝑡
𝑡2
𝑡1

. Thus, the probability of number of failures in time interval (𝑡1, 𝑡2) is 

exp{−∫ 𝜈(𝑡)𝑑𝑡
𝑡2
𝑡1

}. Here it is easy to see that if 𝜈(𝑡) ≡ 𝜈 for all 𝑡, then this will give a 

homogenous process with constant ROCOF 𝜈. By choosing a suitable parametric form for𝜈(𝑡), 

a flexible model for the failures of a repairable system in a ‘minimal repair’ setup can be 

obtained.  

 Suppose we observe a system for the time interval [0, 𝑡0] with failures occurring at 

𝑡1, 𝑡2, 𝑡3, … 𝑡𝑛. The likelihood may be obtained as follows. The probability of observing no 

failures in(0, 𝑡1), one failure in(𝑡1, 𝑡1 + 𝛿𝑡1), no failures in(𝑡1 + 𝛿𝑡1, 𝑡2), one failure in(𝑡2, 𝑡2 +

𝛿𝑡2) and so on up to no failures in(𝑡𝑛 + 𝛿𝑡𝑛, 𝑡𝑛), (for small𝛿𝑡1, 𝛿𝑡2, … 𝛿𝑡𝑛 ) is 

{𝑒𝑥𝑝 (−∫ 𝜈(𝑡)𝑑𝑡
𝑡1
0

)} 𝜈(𝑡1)𝛿𝑡1 {𝑒𝑥𝑝 (−∫ 𝜈(𝑡)𝑑𝑡
𝑡2
𝑡1+𝛿𝑡1

)} 𝜈(𝑡2)𝛿𝑡2…{𝑒𝑥𝑝 (−∫ 𝜈(𝑡)𝑑𝑡
𝑡0
𝑡𝑛+𝛿𝑡𝑛

)} 

  

Dividing throughout by𝛿𝑡1, 𝛿𝑡2, … 𝛿𝑡𝑛 and letting  𝛿𝑖 → 0, (𝑖 = 1,2…𝑛) gives the 

likelihood function 

 𝐿 = {∏ 𝜈(𝑡𝑖)
𝑛
𝜈=1 } 𝑒𝑥𝑝 (−∫ 𝜈(𝑡)𝑑𝑡

𝑡0
0

)     (9.2) 

and the log likelihood is thus, 

𝑙 = ∑ 𝑙𝑜𝑔 𝜈 (𝑡𝑖)
𝑛
𝑖=1 − ∫ 𝜈(𝑡)𝑑𝑡

𝑡0
0

            (9.3)  

 In some cases, the exact times of the failures aren’t recorded, and only the number of 

failures within separate, non-overlapping time periods is known. For example, if 



 

 

𝑛1, 𝑛2, 𝑛3, … 𝑛𝑚 failures have been recorded in non-overlapping time intervals 

(𝑎1, 𝑏1], (𝑎2, 𝑏2]… , (𝑎𝑚, 𝑏𝑚], then the likelihood function is 

                    𝐿 = {𝑒𝑥𝑝 (−∫ 𝑣(𝑡)𝑑𝑡
𝑏1
𝑎1

)
(∫ 𝑣(𝑡)𝑑𝑡
𝑏1
𝑎1

)
𝑛1

𝑛1!
} {𝑒𝑥𝑝 (−∫ 𝑣(𝑡)𝑑𝑡

𝑏1
𝑎1

)
(∫ 𝑣(𝑡)𝑑𝑡
𝑏1
𝑎1

)
𝑛1

𝑛1!
}……… .. 

……… . . … .

{
 

 
{𝑒𝑥𝑝(−∫ 𝑣(𝑡)𝑑𝑡

𝑏𝑚

𝑎𝑚

)
(∫ 𝑣(𝑡)𝑑𝑡

𝑏𝑚
𝑎𝑚

)
𝑛𝑚

𝑛𝑚!
}

}
 

 
 

= {𝑒𝑥𝑝(−∑∫ 𝑣(𝑡)𝑑𝑡
𝑏1

𝑎1

𝑚

𝑖=1

)∏
(∫ 𝑣(𝑡)𝑑𝑡

𝑏𝑖
𝑎𝑖

)
𝑛𝑖

𝑛𝑖!

𝑛

𝑖=1

} 

Thus, the log-likelihood (apart from additive constant) is 

                           𝑙 = ∑ {𝑛𝑖 𝑙𝑜𝑔 ∫ 𝜈(𝑡)𝑑𝑡
𝑏𝑖
𝑎𝑖

− ∫ 𝜈(𝑡)𝑑𝑡
𝑏𝑖
𝑎𝑖

}𝑚
𝑖=1                          (9.4)  

  Therefore, once 𝜈(𝑡) has been specified, it is straight forward to use the likelihood-

based method to obtain ML estimates for any unknown parameters inherent in the specification 

of𝜈(𝑡). Here the two obvious choices of 𝜈(𝑡) that give monotonic ROCOF are considered for 

inference purpose. 

(a) Log-Linear ROCOF   𝜈1(𝑡) = 𝑒𝑥𝑝( 𝛽0 + 𝛽1𝑡) 

       (b) Weibull Process  𝜈2(𝑡) = 𝛾𝛿𝑡𝛿−1;   𝛾 > 0, 𝛿 > 0 

 Both of these widely used due to their applicability in the real-life problems. Other 

complicated models are also available in the literature which can be utilised as per the 

requirements. 

9.5.3 NHPP with Log-Linear ROCOF 

 A log-linear ROCOF model, 𝜈1(𝑡) = 𝑒𝑥𝑝( 𝛽0 + 𝛽1𝑡) is a simple model to describe a 

happy system(𝛽1 < 0) or a sad system(𝛽1 > 0). Also, if the parameter 𝛽1is near zero𝜈1(𝑡) 

approximate a linear trend in ROCOF over short time period. Here we discuss some likelihood 

based statistical methods for fitting a NHPP with𝜈1(𝑡) to a set of repairable system data. 

Putting the value of 𝜈(𝑡) in (9.3), we have 

𝑙1 = ∑(𝛽0 + 𝛽1𝑡𝑖)

𝑛

𝑖=1

−∫ 𝑒𝛽0+𝛽1𝑡𝑖
𝑡0

0

𝑑𝑡 



 

 

   =𝑛𝛽0 + 𝛽1∑ (𝑡𝑖)
𝑛
𝑖=1 − 𝑒𝛽0 ∫ 𝑒𝛽1𝑡𝑖

𝑡0
0

𝑑𝑡 

                                     =𝑛𝛽0 + 𝛽1∑ (𝑡𝑖)
𝑛
𝑖=1 − 𝑒𝛽0

(𝑒𝛽1𝑡𝑖−1)

𝛽1
 

To obtain ML estimate of 𝛽0 and 𝛽1, we have 

𝜕𝑙1

𝜕𝛽0
= 𝑛 −

1

𝛽1
𝑒𝛽0(𝑒𝛽1𝑡0 − 1)               (9.5) 

𝜕𝑙1

𝜕𝛽0
= ∑ 𝑡𝑖

𝑛
𝑖=1 − 𝑒𝛽0 [

𝛽1𝑒
𝛽1𝑡0𝑡0−(𝑒

𝛽1𝑡0−1)∗1

𝛽1
2 ]

       

(9.6)  

 The ML estimates of parameters can be obtained by equating (9.5) and (9.6) to zero. 

From the equation (9.5), by putting the value of 𝑒𝛽0 = 𝑛𝛽1/(𝑒
𝛽1𝑡0 − 1) in (9.6), we get 

∑𝑡𝑖

𝑛

𝑖=1

−
𝑛𝛽1

(𝑒𝛽1𝑡0 − 1)
[
𝑡0𝛽1𝑒

𝛽1𝑡0 − (𝑒𝛽1𝑡0 − 1)

𝛽1
2 ] = 0 

∑𝑡𝑖

𝑛

𝑖=1

− 𝑛𝑡0
𝑒𝛽1𝑡0

(𝑒𝛽1𝑡0 − 1)
+ 𝑛𝛽1

−1 = 0 

∑𝑡𝑖

𝑛

𝑖=1

− 𝑛𝑡0{1 − 𝑒
𝛽1𝑡0}−1 + 𝑛𝛽1

−1 = 0 

 Any simple iterative method (i.e. Bisection method) is sufficient to obtain the 

estimate �̂�1 of𝛽1and by putting the value �̂�1 we can get  

�̂�0 = 𝑙𝑜𝑔
𝑛�̂�1

(𝑒�̂�1𝑡0−1)                 (9.7) 

The observed information matrix, evaluated at the MLE, has entries 

  

                             
−𝜕2𝑙1

𝜕𝛽0
2 = 𝑛                             

−𝜕2𝑙1

𝜕𝛽0
⬚𝜕𝛽1

⬚
=∑𝑡𝑖

𝑛

𝑖=1

 

−𝜕2𝑙1

𝜕𝛽1
2 = 𝛽1

−1̂ {∑𝑡𝑖

𝑛

𝑖=1

(𝛽1
⬚̂𝑡0 − 2) + 𝑛𝑡0} 



 

 

Inverting the information matrix gives the variance-covariance matrix for(�̂�0, �̂�1). In particular 

the standard error of�̂�1is 

                                𝑠𝑒(�̂�1) = {�̂�1
−1{∑ 𝑡𝑖(�̂�1𝑡0 − 2) + 𝑛𝑡0

𝑛
𝑖=1 } − 𝑛−1(∑ 𝑡𝑖

𝑛
𝑖=1 )2}

−1 2⁄
       (9.8) 

The maximized log-likelihood may be obtained by substituting�̂�0and�̂�1, giving 

                                 𝑙1(�̂�0, �̂�1) = 𝑛�̂�0 + �̂�1∑ 𝑡𝑖
𝑛
𝑖=1 − 𝑛 

A natural hypothesis to test in repairable system reliability is that the ROCOF is constant; that 

is𝛽1 = 0. If𝛽1is set to zero, then 

                                 
𝜕𝑙

𝜕𝛽0
⬚ = 𝑛𝛽0

⬚ − 𝑡0 exp(𝛽0
⬚) = 0 

⇒ 𝛽0
⬚= log

𝑛

𝑡0
 

This is maximized when𝛽0is𝑙𝑜𝑔(𝑛 𝑡0⁄ ). So the maximized log-likelihood when𝛽1 = 0 is 

                                                                  𝑛 𝑙𝑜𝑔(𝑛 𝑡0⁄ ) − 𝑛 

Hence using the result 

                                𝑊 = 2{𝑙(�̂�0, �̂�1) − 𝑙(�̂�0,∗∗)} 

We get  

                             𝑊 = 2{𝑛�̂�0 + �̂�1∑ 𝑡𝑖 − 𝑛 𝑙𝑜𝑔(𝑛 𝑡0⁄ )𝑛
𝑖=1 }                                               (9.9) 

has an approximate𝜒2(1) distribution when 𝛽1 = 0. Large values of W supply evidence against 

the null hypothesis. Note that it is necessary to evaluate the MLEs in order to perform the test 

based on W. A more commonly used test of𝛽1 = 0is Laplace’s test. This is based on the 

statistic 

                                 𝑈 =
∑ 𝑡𝑖−

1

2
𝑛𝑡0

𝑛
𝑖=1

𝑡0(𝑛 12⁄ )1 2⁄
 .                                                                  (9.10) 

 The statistics U has approximately a standard normal distribution under the null 

hypothesis. If the alternative hypothesis is 𝛽1 ≠ 0, then large value of |𝑈|supply evidence 

against the null hypothesis in favour of the general alternative. If the alternative is that𝛽1 > 0, 

a large value of U supplies evidence against the null hypothesis in favour of this alternative. If 



 

 

the alternative is 𝛽1 < 0, a large value of –U supplies evidence against the null hypothesis in 

favour of alternative. Laplace’s test is asymptotically equivalent to the test based on W, but it 

does not require explicit evaluation of the MLEs. For further details see Cox and Lewis (1966). 

In the case in which the repairable system is observed until the nth failure, Laplace’s test statistic 

U must be modified slightly.  In (9.4) 𝑡0must be replaced by𝑡𝑛, and n must be replace by (n-1). 

When only numbers of failures within non-overlapping time intervals are available, then  

                                  ∑ 𝑛𝑖
𝑛
𝑖=1 {𝛽0 + 𝑙𝑜𝑔 (

𝑒𝛽1𝑏𝑖−𝑒𝛽1𝑎𝑖

𝛽1
)} − 𝑒𝛽0 ∑ (

𝑒𝛽1𝑏𝑖−𝑒𝛽1𝑎𝑖

𝛽1
)𝑚

𝑖=1               (9.11) 

In the special case in which the intervals are contiguous from time 𝑎1 up to time 𝑎1 so that𝑏1 =

𝑎2, 𝑏2 = 𝑎3, … , 𝑏𝑚 = 𝑎𝑚+1 the final term in (9.11) simplifies to  

                                   −𝑒
𝛽0 (

𝑒𝛽1𝑎𝑚+1−𝑒𝛽1𝑎𝑖

𝛽1
).  

In this case the MLEs for𝛽0and𝛽1may be found first by solving 

                                   ∑ 𝑛𝑖 (
𝑎𝑖+1𝑒

𝛽1𝑎𝑖+1−𝑎𝑖𝑒
𝛽1𝑎𝑖

𝑒𝛽1𝑎𝑖+1−𝑒𝛽1𝑎𝑖
)𝑚

𝑖=1 − 𝑛 (
𝑎𝑚+1𝑒

𝛽1𝑎𝑚+1−𝑎1𝑒
𝛽1𝑎1

𝑒𝛽1𝑎𝑚+1−𝑒𝛽1𝑎𝑖
) = 0,          

(9.12) where𝑛 = 𝑛1 + 𝑛2 +⋯+ 𝑛𝑚. Use any iterative method to solve (9.12) to obtain�̂�1. 

Then�̂�0 can be obtain by 

                                   �̂�0 = 𝑙𝑜𝑔 (
𝑛𝛽1

𝑒𝛽1𝑎𝑚+1−𝑒𝛽1𝑎1
). 

9.5.4 NHPP with Weibull Process 

 In this section, let develop the estimation method for the ROCOF, 𝜈2(𝑡) = 𝛾𝛿𝑡
𝛿−1 

then putting. So if this ROCOF is used in equation (9.3), the log-likelihood function will be as 

follows: 

   𝑙2 = ∑ log(𝛾𝛿𝑡𝑖
𝛿−1) − ∫ 𝛾𝛿𝑡⬚

𝛿−1𝑡0
0

𝑑𝑡𝑛
𝑖=1  

= 𝑛𝑙𝑜𝑔𝛾 + 𝑛𝑙𝑜𝑔𝛿 + (𝛿 − 1)∑𝑙𝑜𝑔𝑡𝑖 −
𝛾𝛿𝑡0

𝛿−1

𝛿

𝑛

𝑖=1

 

= 𝑛𝑙𝑜𝑔𝛾 + 𝑛𝑙𝑜𝑔𝛿 + (𝛿 − 1)∑𝑙𝑜𝑔𝑡𝑖 −
𝛾𝛿𝑡0

𝛿−1

𝛿

⬚

⬚

 



 

 

= 𝑛𝑙𝑜𝑔𝛾 + 𝑛𝑙𝑜𝑔𝛿 + (𝛿 − 1)∑𝑙𝑜𝑔𝑡𝑖 − 𝛾𝑡0
𝛿

𝑛

𝑖=1

 

 To obtain the parameter estimates, let differentiate the above derived log-likelihood 

function with respect to parameters. The  

𝜕𝑙2
⬚

𝜕𝛾
=  
𝑛

𝛾
− 𝑡0

𝛿 = 0 

𝜕𝑙2
⬚

𝜕𝛾
=  
𝑛

𝛿
+∑log 𝑡𝑖 − 𝛾𝑡0

𝛿 log 𝑡0 = 0 

Now equating these equations to zero, the estimated of the parameters will be 

�̂� =  
𝑛

𝑡0
𝛿               

𝛿 =  
𝑛

𝑛𝑙𝑜𝑔𝑡0
⬚ − ∑ 𝑙𝑜𝑔𝑡𝑖

𝑛
𝑖=1

 

For information matrix, let first calculate the second order derivative of the log-likelihood 

function as follows: 

− 
𝜕2𝑙2
𝜕𝛾2

=
𝑛

𝛾2
 

− 
𝜕2𝑙1
𝜕𝛾𝜕𝛿

= 𝑡0
𝛿𝑙𝑜𝑔𝑡0 

− 
𝜕2𝑙1

𝜕𝛿2
=

𝑛

𝛿2
 + n (𝑙𝑜𝑔𝑡0)2 

Let for ease of mathematics if choose 𝑡0 = 1then the estimates of the above parameters will be 

as follows: 

 𝛾 = 𝑛; 𝛿 =
−𝑛

∑ 𝑙𝑜𝑔 𝑡𝑖
𝑛
𝑖=1

. 

 In addition, the information matrix will become 

− 
𝜕2𝑙2
𝜕𝛾2

=
1

𝑛
 

− 
𝜕2𝑙2
𝜕𝛾𝜕𝛿

= 0 



 

 

− 
𝜕2𝑙1
𝜕𝛿2

=
𝑛

𝛿2
 

Further the standard error of  𝛿 is, 𝑠𝑒(𝛿) =
�̂�

√𝑛
. 

 Let consider the case of general 𝑡0. The most commonly used test of constant ROCOF 

relative to the power law model is to test the null hypothesis that 𝛿 = 1 using 

𝑉 = 2∑𝑙𝑜𝑔 (
𝑡0
𝑡𝑖
)

𝑛

𝑖=1

 

 Under the null hypothesis, V has a 𝜒2(2𝑛) distribution. Large values of V supply 

evidence against the null hypothesis in favor of reliability growth (𝛿 < 1). Small values of V 

are indicative of reliability deterioration(𝛿 > 1). When the system is observed up to the nth 

failure, the statistic V should be modified by replacing n by n-1, and 𝑡0 by 𝑡𝑛 with 𝜒2(2𝑛 − 1) 

distribution. 

 

9.6  Preventive Maintenance Policy for Repairable Systems 

 Preventive maintenance is when you regularly check and repair equipment before it 

breaks down. This is different from waiting until something breaks and then fixing it. The goal 

of preventive maintenance is to keep things running smoothly and avoid unexpected problems. 

There are several importance of preventive maintenance for the reliability. It avoids 

breakdowns, save money of an organization and extends the system life. The preventive 

maintenance has the following steps: 

List All Equipment: Make a list of all the repairable systems that need preventive 

maintenance. Rank them by how important they are to the operation. 

A. Find Potential Problems: Think about how each system could fail and what would happen 

if it did. This helps you decide what maintenance tasks are necessary. 

 

B. Set Maintenance Schedules: Decide how often maintenance should be done for each 

system. This can be based on the manufacturer’s recommendations or past experience. 

 

C. Assign Resources: Make sure you have the people, tools, and parts ready for the 

maintenance work. This could mean having spare parts on hand. 

 



 

 

D. Track Maintenance Work: Keep records of when and what maintenance was done. This 

helps you know when it's time for the next check-up and can improve future planning. 

 Preventive maintenance can be significantly enhanced through the strategic use of 

data, condition monitoring, and a focus on critical systems. By analyzing historical 

maintenance records and failure data, organizations can make more precise decisions regarding 

when maintenance is necessary, thereby avoiding redundant tasks while effectively preventing 

breakdowns. Moreover, advanced condition monitoring technology facilitates real-time 

oversight of equipment health, allowing for maintenance interventions only when truly 

warranted. This approach not only optimizes resource allocation but also minimizes operational 

downtime. Prioritizing maintenance on essential systems ensures that key equipment remains 

functional, thereby maintaining smooth operations and mitigating the potential effects of any 

failures. 

9.7  Self-Assessment Questions 

1. Describe the difference between a happy system and a sad system in terms of the Rate of 

Occurrence of Failures (ROCOF). 

2. Explain the concept of a Non-Homogeneous Poisson Process (NHPP) in the context of 

repairable systems. 

3. Provide an example of a situation where a repairable system might have an increasing 

ROCOF but still be considered satisfactory.  

4. An automobile company is analyzing the reliability of its brake system over time based on 

the following failure data.  

Failure Time (miles): 10,000, 20,000, 30,500, 35,000, 40,200, 50,000, 55,300, 60,100, 

70,000, 80,000, 85,000, 90,500, 95,000, 100,000, 110,000 

Component: Brake Pad, Brake Disc, Brake Fluid, Brake Pad, Brake Pad, Brake Disc, Brake 

Pad, Brake Pad, Brake Pad, Brake Disc, Brake Fluid, Brake Pad, Brake Pad, Brake Pad, 

Brake Disc 

Then determine whether the brake system is "happy" (decreasing failure rate) or "sad" 

(increasing failure rate) using the Rate of Occurrence of Failure (ROCOF) as the key 

indicator. 

Remark: The company has collected the following failure data for the brake system over a 

period of time. 

 



 

 

 

9.8  Summary 

In this unit we discuss the modelling of data from repairable systems. The Rate of 

Occurrence of Failures (ROCOF) is defined. We have employed Non-Homogeneous Poisson 

Processes (NHPP) models which allows the ROCOF to vary over time. Likelihood-based 

methods for Log-Linear and Weibull processes, are used to estimate parameters of these 

models and assess system reliability. 
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10.1 Introduction 

Reliability engineering is one of the crucial fields of research that ensures products or 

systems perform their intended functions without failures over a specified period of time. 

Under this discipline, reliability growth models and accelerated life testing (ALT) are two 

principal techniques that enhance the durability and dependability of systems. Reliability 



 

 

growth models are statistical tools used during the development and operational phases of 

systems to improve the reliability of systems. These models allow engineers to identify design 

flaws, manufacturing defects, and operational inefficiencies. By orderly analysis of data on 

failures and implementing corrective measures, the reliability growth models provide direction 

for continuous improvement in the reliability of systems. ALT is also an important technique 

that helps to estimate the life characteristics of products and systems in less time than under 

normal operating conditions. It significantly shortens the time needed to identify any ongoing 

or potential failure modes and mechanisms of a system by applying elevated stress levels to 

them.  

In addition to these topics, probability plotting, a graphical technique used to assess 

whether a given data set follows a specified distribution, will also be discussed. In reliability 

analysis, probability plots are useful for visualizing and interpreting failure data. Examples 

used here in probability plots include the exponential, Weibull, and normal plots for portraying 

an underlying pattern, trend, or departure from assumed distributions to engineers. The plots 

aid reliability practitioners in making decisions regarding model selection and parameter 

estimation by graphically understanding the data. It will introduce one-to-one probability 

plotting techniques, together with their step-by-step procedures and illustrative examples.  

Apart from these models and visualization, this chapter also covers tests for 

Exponentiality and tests for HPP vs. NHPP with Repairable System. Tests for Exponentiality 

cover two tests: the Hollander-Proschan test and the Deshpande test.  These tests can be 

beneficial for testing whether failure data follows an exponential distribution. Tests for HPP 

vs. NHPP with repairable systems are beneficial for differentiating between HPP and NHPP, 

which provides accurate reliability analysis and maintenance planning.  Both tests are 

important for accurate reliability analysis and maintenance planning. 

10.2   Objectives  

This unit will largely be on reliability growth models and accelerated life testing. After 

going through the chapter, readers will be equipped with the knowledge and tools to:  

• Understand the principles and applications of reliability growth models. 

• Utilize probability plotting techniques for reliability analysis. 

• Conduct and interpret tests for exponentiality. 

• Differentiate between HPP and NHPP in repairable systems. 

• Design and implement accelerated life testing experiments. 



 

 

10.3 Reliability Growth Models 

Reliability Growth Models assist in improving the performance of a system and 

predicting future reliability based on the view that the system has met its intended reliability 

targets. More description is as follows: 

10.3.1   Definition and Purpose 

Reliability growth models are statistical tools used for assessing and improving system 

reliability over time. Especially in complex systems, such as software, hardware, and aerospace 

systems, these models are very useful. In the reliability analysis of such a system, it becomes 

essential to understand reliability growth since the improvement in reliability may happen due 

to various reasons at any stage of life. For instance, in software development and testing, 

defects are detected early to identify and rectify bug-related issues.  In the case of hardware, 

the failures of the components are analysed to enhance the reliability of the system. In 

aerospace systems, the highest level of reliability is essential, as system failure can lead to 

catastrophic consequences. In all these cases, reliability growth models provide information on 

how reliability can be improved during the development and operational phases of the system. 

Such models also help to identify design flaws, manufacturing defects, and operational 

inefficiencies through failure data analysis and implementation of corrective measures. The 

overall objective of these models is to assist in improving the performance of a system and 

predicting future reliability based on the view that the system has met its intended reliability 

targets. 

10.3.2   Duane Model 

The Duane model, introduced by J.T. Duane in 1964, is a cornerstone methodology for 

analysing reliability growth during testing and development. The Duane model is an empirical 

model that describes reliability growth through a power-law relationship between cumulative 

operating time and cumulative failures. It is one of the earliest models used for reliability 

growth analysis. The Duane model is based on empirical observations and assumes a power 

law relationship between cumulative test time and cumulative number of failures. It can be 

interpreted as either a decrease in the failure rate or an increase in the mean time between 

failures (MTBF). 



 

 

Cumulative Failure Rate (λ) 

In the Duane model, we consider the cumulative failure rate as a power-law model, 

given as 

                                                                    λ𝑐 =
k

Tm
,                                                                            (10.1) 

where 𝜆𝑐 denotes the cumulative failure rate at time t,  𝑘 represents the initial failure rate at 

T=1, T denotes the cumulative test time, and m represents the slope of the log-log plot of 

cumulative failures vs cumulative test time, as taking the logarithm of both sides gives 

                                                     𝑙𝑜𝑔 λ𝑐 = 𝑙𝑜𝑔 𝑘 −𝑚 𝑙𝑜𝑔 𝑇.                                    (10.2)   

It can be observed from equation (8.2) that there exists a linear relationship between 𝑙𝑜𝑔 λc and 

𝑙𝑜𝑔 𝑇, and m represents the slope of log-log plot. Notice that here, the linear model coefficient 

can be obtained by performing the ordinary least square linear regression method. 

Further, suppose at start of the test, that is 𝑇 = 𝑇0, failure rate if λ0. Using this, another form 

of growth model can be obtained as follows 

λ𝑐 = λ0 (
T

𝑇0
)
−𝑚

. 

Cumulative MTBF 

Cumulative MTBF can be used as an alternative to failure rate. It can be expressed as 

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑀𝑇𝐵𝐹 =
𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡𝑒𝑠𝑡

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠
. 

In the Duane growth model, as an alternative to failure rate, MTBF can also be used, given as 

                                                         𝜃𝑐  = 𝑇m/𝑘 ,                                                    (10.3) 

where 𝜃𝑐 denotes the cumulative MTBF at time T. Taking the logarithm of both sides in 

equation (8.3), the following relation can be observed 

                                                   𝑙𝑜𝑔 𝜃𝑐  = 𝑚 𝑙𝑜𝑔 𝑇 − 𝑙𝑜𝑔 𝑘.                                      (10.4) 

In certain cases, if someone prefers to work with MTBF instead of failure rate, then 

they can use a least-squares regression model to derive the model's coefficients. Note that it's 

important to update the regression model as new data is collected periodically. 



 

 

Suppose at the initial time 𝑇 = 𝑇0, MTBF is obtained as 𝜃0 . This value helps us to 

derive following relation  

                                                                 𝜃𝑐  = 𝜃0  (
T

𝑇0
)
𝑚

                                                  (10.5) 

From equation (8.5), the following relation can be obtained 

                                                                     𝑇 = 𝑇0 (
𝜃𝑐 

𝜃0 
)
1/𝑚

                                                             (10.6) 

Using equation (8.6), the total time of test required to meet specific reliability requirements can 

be evaluated. At this point, I believe the reader can start thinking about the following question 

How can MTBF be obtained at the starting time 𝒕𝟎? 

The MTBF at the time 𝑡0 can be obtained in three ways.  

I. Using the assessment of past data. 

II. When the system is new, there can be no past data, or there might be very little 

information about past data. In this case, the failure modes and corresponding causes 

can be analysed using tools such as cause-and-effect diagrams, Failure mode, effects, 

and criticality analysis (FMECA), and Fault tree analysis (FTA).  

III. The short reliability demonstration test can also estimate MTBF at the starting point. If 

any failure occurs in this process, components can be replaced without considering it a 

design improvement.  

Instantaneous Failure Rate and MTBF 

The cumulative MTBF sometimes underestimates the current MTBF of the system, as 

it is evaluated using total failure and total time. For this reason, instantaneous MTBF might be 

a better indicator for identifying and solving the problem. Note that, instantaneous MTBF can 

be derived using the cumulative MTBF. By definition, cumulative MTBF can be derived as the 

ratio of total time and total number of failures, given as 

                                                            𝜃𝑐 =
𝑇

𝑛
 ,                                                                   (10.7) 

where T is the total time and n denotes the number of failures.  



 

 

Note that here  
𝑑𝑛

𝑑𝑇
 represents the instantaneous failure rate λ𝑖, whereas 

𝑑𝑇

𝑑𝑛
 denotes the 

instantaneous MTBF 𝜃𝑖. Using (10.7), following relation holds 

𝑛 =
𝑇

𝜃𝑐
, 

Furthermore, using (10.5), n can be derived as 

𝑛 =
𝑇

𝜃0  (
T
𝑇0
)
𝑚 =

1

θ0

T0
m

Tm−1
. 

It gives, 

𝑑𝑛

𝑑𝑇
= (1 − 𝑚)

1

θ0
(
T0
𝑇
)
𝑚

 

   or, 

                                            
𝑑𝑛

𝑑𝑇
=

(1−𝑚)

θ𝑐
.                                                                       (10.8) 

Based on equation (10.8), we can also write 

                                         θ𝑖 =
𝑑𝑇

𝑑𝑛
=

θ𝑐

(1−𝑚)
,                                                                        (10.9) 

Using (10.9), we can write 

λ𝑖 = (1 − 𝑚)λ𝑐. 

Example: 

An aerospace company has tested a new aircraft engine over multiple phases. The 

testing phases and corresponding failure data are as follows: 

Phase 1: 100 hours, 2 failures 

Phase 2: 200 hours, 2 failures 

Phase 3: 300 hours, 3 failures 

Phase 4: 500 hours, 2 failures 

Phase 5: 700 hours, 2 failures 

Given the cumulative data up to Phase 5: 

a) Calculate the cumulative MTBF θ𝑐. 

b) Estimate the slope m. 

c) Calculate the instantaneous MTBF θ𝑖 at the end of Phase 3. 



 

 

Solution 

a) Calculate Cumulative MTBF : 

     Total Operational Time (T): 

T=100+200+300+500+700=1800 hours. 

 

Total Number of Failures (n): 

n=2+2+3+2+2=11 failures 

 

Cumulative MTBF (θ𝑐): 

θ𝑐=T/n=1800/11≈163.64 hours 

b) Estimate slope m: 

To estimate m, we use the reliability growth model. Let's assume the Duane Model is 

applicable and use the cumulative data to estimate m. 

Cumulative Data: 

Table for evaluation of log T and log θ𝑐 

Time Number of 

failures 

T 𝛉𝒄 log T log 𝛉𝒄 

100 2 100 50.00 2.00 1.70 

200 4 300 75.00 2.48 1.88 

300 7 600 85.71 2.78 1.93 

500 9 1100 122.22 3.04 2.09 

700 11 1800 163.64 3.26 2.21 

Using ordinary least square regression estimation technique for 

𝑙𝑜𝑔 𝜃𝑐  = 𝑚 𝑙𝑜𝑔 𝑇 − 𝑙𝑜𝑔 𝑘, 

we obtain 

m=0.39. 



 

 

 

Figure 10.2 log-log plot of MTBF vs time 

Note that the slope of the reliability growth curve reflects the rate at which problems 

can be identified and solved. Here, m for aerospace company is observed as 0.39, which can 

be considered as good.  

c) Calculate Instantaneous MTBF (𝜽𝒊) 

Using the relation: 

θ𝑖 =
θ𝑐

(1 − 𝑚)
=
163.64

1 − 0.39
= 268.26 

The instantaneous MTBF of 268.26 hours is a better indicator of the current reliability 

of the aircraft engine compared to the cumulative MTBF of 163.64 hours. This suggests that 

the reliability growth program is effective, and the engine's reliability is improving over time. 

10.3.3  Latent or Dormant Failures 

Sometimes, reliability growth tests might take a long time to observe any failure. In 

these cases, the concept of latent or dormant failures can be useful. Latent failures occur when 

potential failures have not occurred, or there is not enough planned time. There can be various 



 

 

reasons behind it. For instance, when the test duration is very small compared with a 

component's MTTF, it is highly unlikely that the component will actually fail during testing. 

Another instance might be the test conditions. If the component’s failure is triggered by a 

specific environment that cannot be replicated in the reliability growth test, it is less likely to 

fail during testing. However, these failures will show up with sufficient test time under 

appropriate test conditions. Consequently, for repairable products, when the MTTF for latent 

failures is less than the useful life of the product, these extremely long-life components must 

be considered in developing reliability goals and in determining test time. 

How to set a target for reliabilities growth testing under Dormant Problems? 

The setting of test targets for reliability growth testing should take the presence of 

dormant problems into account. The instantaneous MTBF and instantaneous failure rate will 

provide the most reliable estimates of MTBF and system failure rate, respectively. These values 

would be observed if you stop the reliability growth test at any given point and run a reliability 

demonstration test in the values where failures are fixed, but no other design improvements are 

made. System failure rate and MTBF can be evaluated using equations (8.13) and (8.14). 

Another point to note is that if there are problems of dormant failures with MTTFs significantly 

longer than the system MTBFs and you do not plan to test long enough for those long-life 

components to fail, then it is necessary to adjust the failure rate or MTBF to account for these 

dormant components. 

Example: Suppose a product is designing to meet a MTBF goal of 400 hours. Besides the 

critical components that contribute the majority to system MTBF, there are three long-life, non-

repairable components in the system. From supplier data and component life testing it has been 

determined that the MTTFs for the components are 1000, 1500, and 2000 hours. The 

components may yield to change out and are likely to fail in useful life of the product. 

After 250 hours of initial testing to establish a baseline MTBF, two failures were 

observed at an initial MTBF of 150 hours. A historical data collected for the reliability growth 

testing of the same product indicated that the log-log plot of cumulative MTBF versus 

cumulative test time should show a reasonable slope of 0.50. Now using the Duane Growth 

Model, we first estimate the test time and test goal required to attain system MTBF. 

Here, the instantaneous MTBF for the system can be calculated by using  



 

 

1

400
=
1

θ𝑖
+

1

1000
+

1

1500
+

1

2000
. 

This gives, θ𝑖 = 3000 hours. Further, we obtain 

θ𝑐 = (1 −𝑚)θ𝑖 = 0.5 × 3000 = 1500 ℎ𝑜𝑢𝑟𝑠 

The total test time can be calculated using the (8.6)  

𝑇 = 𝑇0 (
𝜃𝑐  

𝜃0 
)
1/𝑚

= 250 (
1500 

150
)
1/0.5

= 25000 ℎ𝑜𝑢𝑟𝑠 

10.3.4        Drivers of Higher Reliability Growth Rate in Product Development   

Some major elements that drive higher reliability growth rates in product development 

are those that support problem-solving efficiency and overall system optimization. Responsive 

behaviours for fast problem solving engage teams in creative and wise use of time and 

resources. This makes sure that the product is field-ready for use by customers. Excellence in 

cross-functional teamwork is also critical because project teams shall use the best capabilities 

of the organization to optimize system-level performance. The cross-functional teams, with 

their development and test facilities, enable engineers to quickly respond to issues correctly for 

increased reliability. There is a standardized corrective action system to ensure a robust project 

management system that will support problem analysis and resolution with clear 

responsibilities and transparent tracking. Management's expectation of an effective and 

consistent corrective action process assures predictable progress, while a documented system 

for failure reporting and corrective actions assures that solutions are understood correctly and 

applied by production and service operations to benefit future product development. 

Effective risk management processes prioritize problem-solving investments by their 

potential impacts on the customer and ensure that critical issues are handled promptly. Enough 

time, labour, and capacity for multiple iterations of test planning, execution, failure analysis, 

and corrective actions introduce reliable market entry by identification and solution of 

problems efficiently. Stressful and accelerated test plans find out the problems in a quicker way 

to provide superior solutions. Workforce training in problem-solving methods, such as six 

sigma, provides uniformity of process across development teams. Rapid prototyping speeds up 

the build-test-fix cycle. Agile development processes incorporate changes into the designs even 



 

 

in the later stages of work. The independence of testing and verification responsibilities ensures 

that solutions indeed solve the problems by giving the highest priority to customer satisfaction.  

10.4   Probability Plotting Techniques 

Probability plotting is one of the basic tools of statistical analysis that can be used for 

graphical examination of the likelihood that a given data set may be representative of some 

stipulated theoretical distribution. Such plots help to diagnose deviations from the expected 

distribution and can, therefore, be very useful in guiding the choice of appropriate statistical 

models. We will here present an overview of some important probability plotting techniques, 

including applications and interpretations. 

10.4.1  Quantile-Quantile (Q-Q) Plot 

The quantile-quantile plot is a graphical technique for checking the quantiles of a 

sample distribution against the quantiles of another theoretical distribution. One of the main 

uses of this plot is to verify the normality of a dataset. 

Steps to Create a Q-Q Plot: 

• Order the Data: Rank the data from smallest to largest. 

• Calculate Theoretical Quantiles: Determine the theoretical quantiles from the specified 

distribution (e.g., normal distribution). 

• Plot the Points: Plot the ordered data points (sample quantiles) against the theoretical 

quantiles. 

From the plot, if the data points lie approximately along a straight line, the sample 

distribution matches the theoretical distribution. If we observe deviations from the straight 

line, it indicates departures from the theoretical distribution. 

Example: Suppose we have the following failure times (in hours) for a sample of mechanical 

components: 

400,500,600,150,200,240,300, 700,850,1000. 

Using a Q-Q plot, we can evaluate whether a dataset of failure times follows Weibull (β =

1.5, η = 600), where β represents shape and η denotes scale . 



 

 

• Order the Data: 150,200,240,300,400,500,600,700,850,1000 

• Calculate Theoretical Quantiles: Assume the failure times follow Weibull (β, η). The 

theoretical quantiles can be computed using the Weibull cumulative distribution 

function (CDF): 

𝐹(𝑡) = 1 − 𝑒𝑥𝑝(−(𝑡/η)β). 

Using inverse CDF, the quantile can be obtained for the given probability 𝑝𝑖 as 

𝑄𝑖 = η(− 𝑙𝑜𝑔(1 − 𝑝𝑖))
1/β. 

Here, 𝑝𝑖 is the probability position usually assumed as 

𝑝𝑖 =
𝑖 − 0.5

𝑛
. 

where i denotes the rank of the data point, and n represents the total number of data 

points. For our dataset: 

𝑝𝑖 =
𝑖 − 0.5

10
. 

Further, theoretical quantiles 𝑄𝑖 can be obtained using 𝛽 = 1.5 and 𝜂 = 600 from 

Weibull distribution. 

Table for Q-Q plot 

 Failure Times Ordered Data 

Plotting 

Positions 

Theoretical 

Quantiles 

1 400 150 0.05 82.83 

2 500 200 0.15 178.68 

3 600 240 0.25 261.47 

4 150 300 0.35 342.23 

5 200 400 0.45 425.80 

6 240 500 0.55 516.42 

7 300 600 0.65 619.77 

8 700 700 0.75 745.97 

9 850 850 0.85 919.49 

10 1000 1000 0.95 1246.87 

• Plot the Points: Plot the ordered data points (sample quantiles) against the theoretical 

quantiles. 



 

 

Figure 10.2 Q-Q plot for Weibull distribution 

From Figure 10.2, the linear trend line indicates that the data fits the Weibull distribution.  

10.4.2   Probability-Probability (PP) Plot 

The Probability-Probability (P-P) plot is a technique similar to a Q-Q plot, but it 

compares the cumulative distribution functions (CDFs) of the sample data with the theoretical 

distribution. 

Steps to Create a P-P Plot: 

1. Order the Data: Rank the data from smallest to largest. 

2. Calculate Empirical CDF: Compute the empirical CDF for the sample data using (i-

0.5)/n or (i+05)/n. In the case of tied observations, the empirical CDF is plotted against 

only time with the largest i.  

3. Plot the Points: Plot the empirical CDF values against the time or its function. The 

linear relationship can be established from the assumed distribution.  

Similar to the Q-Q plot, a 45-degree line suggests that the sample distribution fits the 

theoretical distribution well, and deviations from this line highlight discrepancies between the 

sample and theoretical distributions. 



 

 

Example: Consider a new set of failure times (in hours) for a different sample of mechanical 

components:  

408, 357, 422, 220, 37, 124, 303, 572, 32, 1259 

Check whether data follows an exponential distribution. 

The CDF of exponential distribution given by 

𝐹(𝑡) = 1 − 𝑒𝑥𝑝(−𝑡/λ) 

It gives,  

1 − 𝐹(𝑡) = 𝑒𝑥𝑝(−𝑡/𝜆) 

Or,  

                                                    𝑡 = −λ 𝑙𝑜𝑔(1 − 𝐹(𝑡))                                                  (10.10) 

From (10.10), we observed a linear relation between t and 𝑙𝑜𝑔(1 − 𝐹(𝑡)).  For F(t), we choose 

𝑝 =
𝑖−0.5

𝑛
. Further, we will use this relationship in the probability plot given in Figure 3. This 

figure confirms data follows an exponential distribution. 

 

Figure 10.3: Probability Plot of Exponential Distribution 

Example:  Consider the following time recorded from a test of electrical system 

1.47 ,2.87, 0.77, 0.84, 1.81, 1.14 ,1.91 ,1.59 ,0.50, 1.09 ,1.81, 2.31, 1.54, 1.28, 0.90, 1.92, 1.54, 

0.66, 2.09, 1.12 



 

 

Check whether the data follows the Weibull distribution using a probability plot. 

Let us first assume data follows Weibull distribution with CDF 

𝐹(𝑡) = 1 − 𝑒𝑥𝑝(−(𝑡/η)β) 

It gives,  

1 − 𝐹(𝑡) = 𝑒𝑥𝑝(−(𝑡/η)β) 

Or,  

(𝑡/η)β = − 𝑙𝑜𝑔(1 − 𝐹(𝑡)) 

Taking the logarithm of both sides one more time, we get 

log t =
1

β
log(− 𝑙𝑜𝑔(1 − 𝐹(𝑡))) + 𝑙𝑜𝑔 η.                                               (10.11) 

From (10.11), we observe a linear relation between log t and  𝑙𝑜𝑔(− 𝑙𝑜𝑔(1 − 𝐹(𝑡))). We 

utilized this relation to get the probability plot in Figure 10.4. 

 

Figure 10.4: Probability plot of Weibull distribution 

Example: Consider a manufacturing company that produces specified electronic components, 

which are then assembled into high-performance equipment. The firm is interested in analysing 

the failure times of these components to understand their reliability. The company believes that 



 

 

these failure times are log-normally distributed and wishes to check this assumption using the 

log-normal probability plot. The recorded time of failures are 

150, 200, 250, 300, 400, 600, 800, 1200, 1600, 2000, 2500, 3000 

The cumulative distribution function (CDF) of a log-normal distribution is given by: 

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) = 𝑃(ln(𝑋) ≤ ln(𝑥)) = Φ(
ln(𝑥) − μ

σ
) 

where Φ(⋅) is the CDF of the standard normal distribution. 

To derive the linear relationship used in log-normal probability plotting, we take the inverse 

of the CDF: 

   For a given probability p, the inverse relationship is: 

ln(𝑥) − μ

σ
= Φ−1(𝑝) 

  Rearranging this, we get: 

ln(𝑥) = μ + σΦ−1(𝑝) 

  The above equation is now in the form of a linear equation: 

(log-transformed data) = μ + σ × (standard normal quantile) 

We use this equation to show that the data is log-normally distributed. In this process, 

we plot the logarithm of the data  ln(𝑥) against the standard normal quantiles Φ−1(𝑝), the 

points should approximately form a straight line with a slope  σ and intercept  μ  if the data is 

log-normally distributed. For p, we choose 𝑝 =
𝑖−0.5

𝑛
. Following these operations, we obtain 

the probability plot in Figure 5, showing that data follow a log-normal distribution.  



 

 

 

Figure 10.5: Probability plot of log-normal distribution 

10.5  Tests for Exponentiality 

The exponential distribution is important for reliability engineering and several other fields. 

Perhaps the most common application of the exponential distribution concerns modeling times 

between events in a Poisson process. Thus, it is one of the basic elements in the theory of 

analysis of lifetimes and failure rates. The exponential distribution is often used in reliability 

engineering for several important reasons.  

• Memoryless property: The exponential distribution follows memoryless property; that 

is, the future probability of an event's occurrence does not depend upon the past. This 

makes the analysis of systems and processes very easy. 

• Modelling Failures: This is commonly used for modelling times to failure of 

components and systems, mainly when the failure rate is constant over time. 

• Easy Calculations: The mathematical simplicity of the exponential distribution allows 

simple calculations with straightforward interpretations for reliability studies. 

Due to the most frequent use of exponential distribution, it becomes important to perform a test 

of exponentiality.  



 

 

10.5.1   Hollander-Proschan Test 

The Hollander-Proschan test represents a non-parametric test specially designed to 

answer the question of whether a given data set follows an exponential distribution. This test 

is based on the total time on the test concept and is particularly devised to detect deviation from 

exponentiality in increasing or decreasing failure-rate forms. In the Hollander-Proschan test, 

we assumed that the sample data represents the lifetimes of independently and identically 

distributed (i.i.d.) components, and the test is sensitive to monotonic trends in the hazard 

function. 

Steps in Conducting the Hollander-Proschan Test 

1. Calculate TTT: Compute the total time on test for the given sample data. 

2. Plot TTT: Create a TTT plot by plotting the cumulative TTT against the number of 

failures. 

3. Analyze the Plot: Compare the TTT plot to the 45-degree line (which represents 

exponentiality). Deviations from this line indicate departures from exponentiality. 

If the plot of TTT is always above the 45-degree line, it will show the decreasing failure 

rate; the meaning is that the component or the system is improving with time. If the plot of 

TTT always lies below the 45-degree line, then one would know that the failure rate is 

increasing; thus, the component or the system is getting worse with time. Otherwise, it confirms 

the data according to an exponential distribution. 

Example: Let us consider the following data representing the lifetimes (in hours) of 10 

identical components: 

120, 180, 250, 300, 330, 400, 480, 550, 610, 700 

Perform the Hollander-Proschan test to determine if these lifetimes follow an exponential 

distribution. 

Step 1: Calculate TTT: 

First, we sort the data in ascending order, which is already sorted in this example. Then, 

we calculate TTT for each component. TTT can be defined as the cumulative sum of ordered 



 

 

lifetimes, divided by number of components. The TTT corresponding to 𝑖𝑡ℎcomponent, 𝑇𝑇𝑇𝑖, 

is given by 

𝑇𝑇𝑇𝑖 =
1

𝑛
∑𝑋𝑗

𝑖

𝑗=1

, 

where n is the number of components and 𝑋𝑗 represents the jth ordered lifetime. 

 No. of 

failure 

1 2 3 4 5 6 7 8 9 10 

Cumulative 

TTT 

12 20 55 85 118 158 206 261 322 392 

 

Figure 10.6: Hollander-Proschan test 

In Figure 10.6, points are below the 45-degree line, indicating an increasing failure rate 

(deteriorating system). 

10.5.2   Deshpande Test 

The Deshpande test checks exponentiality in a given dataset. This test is based on ratios 

of pairs of data points. The underlying idea is that certain properties should characterize the 



 

 

ratios of data points in an exponentially distributed dataset. In this test, we assume that the 

sample data consists of IID lifetimes, and the test is particularly effective in detecting 

deviations from exponentiality due to non-constant failure rates. 

Hypotheses: 

Null Hypothesis (𝐻0): The underlying distribution is exponential, i.e., (𝐹(𝑥) = 1 − 𝑒−λ𝑥). 

Alternative Hypothesis (𝐻1): The distribution is increasing failure rate average (not 

exponential), where (F(x)) satisfies (𝐹(𝑏𝑥) = [𝐹(𝑥)]𝑏) for all (x > 0). 

Steps in Conducting the Deshpande Test 

• Calculate the Pairwise Ratios: Compute all possible pairwise ratios 

(𝑋𝑖/𝑋𝑗)𝑓𝑜𝑟 𝑎𝑙𝑙(𝑖 ≠ 𝑗), where Xi and Xj are data points. 

• Significance Level: Set a significance level α (e.g., α=0.05). 

• Choose a value for b: Select a threshold value b (commonly, b=0.5). 

• Compute the Test Statistic J: 

𝐽 =
1

𝑛(𝑛 − 1)
∑𝐼(𝑋𝑖 > 𝑏𝑋𝑗)

𝑖≠𝑗

 

where I(⋅) is an indicator function that equals 1 if the condition inside is true and 0 otherwise. 

Notice that, this statistic counts the proportion of pairwise comparisons where Xi is greater 

than bXj. 

• Degrees of Freedom:  After calculating the test statistic J, it is compared against a 

critical value obtained from the chi-squared distribution with n(n−1)/2 degrees of 

freedom, where n is the number of observations. 

• Determine the Critical Value: Determine the critical value from the chi-squared 

distribution table for the given degrees of freedom and significance level α. 

• Decision Rule: If J exceeds the critical value, we should reject the null hypothesis, 

meaning that the data do not follow an exponential distribution. If J does not 

exceed the critical value, then we fail to reject the null hypothesis, indicating that 

the data may follow an exponential distribution. 



 

 

Example: Let's consider a real-world example using medical data related to renal cancer 

patients. Suppose we have a dataset that represents the survival times (in months) of patients 

after diagnosis.  

12, 18, 24, 30, 36, 42, 48, 54, 60, 66 

We want to assess whether the survival times follow an exponential distribution. 

1. Step-by-Step Deshpande Test: 

   - Calculate the pairwise ratios: (𝑋𝑖/𝑋𝑗)𝑓𝑜𝑟 𝑎𝑙𝑙(𝑖 ≠ 𝑗). 

   - Consider a level of significance as α =  0.05. 

   - Compute the test statistic J: 

𝐽 =
1

𝑛(𝑛 − 1)
∑𝐼(𝑋𝑖 > 𝑏𝑋𝑗)

𝑖≠𝑗

 

   - Choose a value for b = 0.5. 

   - Compare the observed J with the critical value from the chi-squared distribution with n(n-

1)/2 degrees of freedom. 

   - If J exceeds the critical value, we reject the null hypothesis (non-exponential distribution). 

2. Calculation: 

   - For our dataset, let's compute the pairwise ratios: 

𝑋𝑖
𝑋𝑗
= {

12

18
,
12

24
,… ,

66

60
}. 

   Compare this with b, or 

   - Using b = 0.5, we find: 

𝐽 =
1

10 ∗ 9
(𝐼(12 > 0.5 ∗ 18) + 𝐼(12 > 0.5 ∗ 24) + ⋯+ 𝐼(66 > 0.5 ∗ 60)) 

    = 0.7778 



 

 

 Here, the critical value at df=45 is 61.65 based on the chi-square distribution table. It can be 

noticed that J does not exceed the critical value; therefore, we fail to reject the null 

hypothesis. That means data follows an exponential distribution. 

4. Conclusion: 

   -We fail to reject the null hypothesis, which suggests that survival times follow an 

exponential distribution. 

10.6   Tests for HPP vs. NHPP with Repairable Systems 

Several statistical tests and model comparison techniques can be used to compare HPP 

and NHPP models applied to repairable systems. Here are some common methods: 

10.6.1   Likelihood Ratio Test (LRT) 

    This test compares the likelihoods of the HPP and NHPP models. 

    The likelihood ratio statistic is given by: 

λ = −2(𝑙𝑜𝑔 𝐿𝐻𝑃𝑃 − 𝑙𝑜𝑔 𝐿𝑁𝐻𝑃𝑃) 

where 𝐿𝐻𝑃𝑃 and 𝐿𝑁𝐻𝑃𝑃 are the likelihoods of the HPP and NHPP models, respectively. 

    Under the null hypothesis (HPP), λ follows a chi-square distribution with degrees of freedom 

equal to the difference in the number of parameters between the NHPP and HPP models. 

Example: Consider a dataset of failure times for a repairable system. Suppose we have 10 

failure times over a period of 1000 hours. 

    HPP Model: Estimate (λ): 

λ̂ =
10

1000
= 0.01 failures per hour 

  Compute the log-likelihood:   

log 𝐿𝐻𝑃𝑃 = 10 log(0.01) − 0.01 × 1000 = −46.0517. 



 

 

     NHPP Model: Suppose we fit a Weibull process with parameters (β) and (η). After 

estimation, let's say the log-likelihood comes out as: 

log 𝐿𝑁𝐻𝑃𝑃 = −40.1234 

    Therefore, the LRT Statistic will be: 

λ = −2(−46.0517 + 40.1234) = 11.8566 

Notice that here, the degree of freedom will be 2-1=1. 

 Critical Value: For χ2distribution with 1 degree of freedom and at 5 % level of significance, 

the critical value cab be calculated as 3.84. Now, since 11.8566 > 3.84, we reject the null 

hypothesis and conclude that the NHPP model better fits the data, indicating a time-varying 

failure rate. 

10.6.2  Cox-Lewis Test 

The Cox-Lewis test is, in fact, a goodness-of-fit test designed to examine how well the 

observable failure data from a repairable system can be fitted with an HPP. In this respect, it is 

quite a useful test for differentiating between the fittings of HPP and NHPP. The main idea 

behind the Cox-Lewis test lies in the graphical examination of the cumulative number of 

failures against time for trends or patterns that may indicate non-compliance with the 

assumptions of HPP. This test uses two key concepts 

• Interarrival Times: The times between successive failures, inter-arrival times, for an 

HPP must be exponentially distributed. This implies that the failures must occur at 

random in time with a constant rate λ. 

• Cumulative failures: Considering an HPP, the cumulative number of failures against 

time will follow a straight line. Any prominent deviation from this linear trend would 

suggest a trend in the failure rate, and hence, an NHPP may be present. 

Test Procedure: 

• Data Collection and Preparation: Collect the failure times 𝑡1, 𝑡2, … , 𝑡𝑛 

 of the repairable system. 

• Calculate Interarrival Times:  Compute the interarrival times 𝛥𝑡𝑖 = 𝑡𝑖 − 𝑡𝑖−1 



 

 

 for i=2,…,n. For an HPP, these interarrival times should follow an exponential 

distribution. 

• Cumulative Plot: Plot the cumulative number of failures N(t) against time t. For 

an HPP, the relation between the two should be a straight line with a slope equal to 

the failure rate λ. 

• Interpretation:  If the cumulative plot is considerably nonlinear, or if there are 

patterns in the residuals from the linear regression, then this would be indicative of 

a trend in the failure rate, hence indicative that the assumptions of the HPP model 

are not correct. If the plot is approximately linear and there is no presence of any 

systematic pattern in the residuals, it may be concluded that the HPP model is 

reasonable. 

Example 

• Data Collection and Preparation: Suppose we have the following failure times (in 

hours) for a repairable system: 

t=[5, 10, 14, 19, 23, 28, 35, 39, 45, 50] 

• Calculate Interarrival Times: 

Δt=[5, 5, 4, 5, 4, 5, 7, 4, 6,5] 

• Cumulative Plot: Construct the cumulative number of failures N(t) against time t: 

N(t)=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 

• Plot Cumulative Failures Against Time 

 

Figure 10.7: the cumulative number of failures N(t) against the failure times t. 



 

 

From Figure 10.7, one can see that the cumulative plot is linear. Hence, we conclude that the 

HPP model is adequate for the data. 

10.7   Basic Ideas of Accelerated Life Testing 

Accelerated life testing (ALT) is recognized as one of the important techniques of 

reliability engineering and product lifecycle analysis. We discuss some basic concepts related 

to ALT. 

10.7.1  Definition and Purpose 

Accelerated life testing (ALT) is recognized as one of the important techniques of 

reliability engineering and product lifecycle analysis. The technique involves increasing the 

level of stress on a product to make it fail at a quicker rate than it would do with regular usage. 

The main aim of ALT is to estimate the basic characteristics of a product's life related to its 

reliability and durability within a considerably short time. This method offers an opportunity 

for life prediction of a product and identification of possible failure mechanisms without 

waiting for it in real time. 

To illustrate the concepts and mathematical framework of ALT, consider a case in 

which a device has an exponential failure distribution under a constant application of one stress. 

The exponential failure distribution is given by: 

𝑓(𝑡, 𝜆𝑖) = 𝜆𝑖𝑒
−𝜆𝑖𝑡, 

where 𝜆𝑖 is constant hazard rate under stress 𝑉𝑖. If 𝜃𝑖 = 1 𝜆𝑖⁄ , then 𝜃𝑖  will be the mean time to 

failure under the stress 𝑉𝑖. 

We may have the following relationship between 𝜆𝑖and 𝑉𝑖. 

1. The Power Rule Model: 

The Power Rule Model was derived from kinetic theory and considerations of 

activation energy and is applicable to most paper-impregnated dielectric capacitors. In 

𝑉𝑖′𝑠model, we have 

1

𝜆𝑖
=

𝑐

𝑉𝑖
𝑝 ; 𝑐 > 0 

⇒ 𝜆𝑖 =
1

𝑐
𝑉𝑖
𝑝
 



 

 

where 𝑉𝑖 is voltage and p and c are estimated. 

 

2. The Reaction Rate Model:  

This model, often used for semiconductors, relates the hazard rate   𝜆𝑖 to 

temperature stress 𝑉𝑖 as follows: 

𝜆𝑖 = 𝑒𝑥𝑝 (𝐴 −
𝐵

𝑉𝑖
) 

where 𝑉𝑖 is temperature stress, and A and B are parameters need to be estimated. 

 

3. The Eyring Model: 

The Eyring Model describes the hazard rate   𝜆𝑖 as a function of temperature  𝑉𝑖 

and another stressor, such as voltage or pressure: 

𝜆𝑖 = 𝑉𝑖 𝑒𝑥𝑝 (𝐴 −
𝐵

𝑉𝑖
) 

where 𝑉𝑖 is temperature. 

10.7.2  Conducting Accelerated Life Test 

Suppose that k values of stress 𝑉𝑖, 𝑖 = 1,2⋯ , 𝑘, are chosen randomly and are to be 

applied on a device. Suppose the device under stress 𝑉𝑖 has an exponential failure distribution 

with scale parameter 𝜆𝑖 = 1 𝜃𝑖⁄ . Further, suppose that while applying each stress 𝑉𝑖, 𝑛𝑖  devices 

are put to the test, and the test is terminated after the failure of 𝑟𝑖 items, with time of failure 

𝑡1𝑖, … , 𝑡𝑟𝑖𝑖. This way, we observe 𝑘  such time of failure for each stress  𝑉𝑖. Apart from data, we 

also obtain (𝑉𝑖, 𝑛𝑖 , 𝑟𝑖, 𝜃𝑖)   from k life test of data, where 𝜃𝑖 is ML estimator of θ. It also comes 

as UMVUE of 𝜃𝑖, 𝜃𝑖is given as  

                                                            𝜃𝑖 =
∑ 𝑡𝑗𝑖+(𝑛𝑖−𝑟𝑖)𝑡𝑟𝑖𝑖
𝑟𝑖
𝑗=1

𝑟𝑖
                                                                      

Since 𝑡𝑗𝑖 follows the exponential distribution; therefore, the pdf of �̂�𝑖  comes out as a gamma 

density with shape  𝑟𝑖 and scale θ𝑖/𝑟𝑖, that is 

𝑔(𝜃𝑖) =
1

Γ𝑟𝑖
(
𝑟𝑖
θ𝑖
)
𝑟𝑖

(𝜃𝑖)
𝑟𝑖−1

𝑒𝑥𝑝 (−
𝑟𝑖𝜃𝑖
θ𝑖
) 

Estimation under power rule model: 



 

 

Under power rule mode, we have                                        

𝜃𝑖 =
𝑐

(
𝑉𝑖
�̄�
⁄ )

𝑝 

where �̄� = ∏ 𝑉𝑖
𝑟𝑖
∑ 𝑟𝑖
𝑘
𝑖=1

⁄
𝑘
𝑖=1

  

is the weighted geometric mean of 𝑉𝑖’s. 

The likelihood function having parameters C and P comes out as 

𝐿(𝐶, 𝑃|θ̂) =∏
1

Γ𝑟𝑖

𝑘

𝑖=1

[
𝑟𝑖
𝐶
(
𝑉𝑖

�̅�
)
𝑃

]

𝑟𝑖

θ�̂� 𝑒𝑥𝑝 [−
𝑟𝑖𝜃𝑖
𝐶
(
𝑉𝑖

�̅�
)
𝑃

] , 

                             where 𝜃 = [𝜃1, 𝜃2, … , 𝜃𝑘]. Taking the logarithm of both sides 

ln 𝐿 (𝐶, 𝑃|θ̂) = ln (∏
1

Γ𝑟𝑖

𝑘

𝑖=1

[
𝑟𝑖
𝐶
(
𝑉𝑖

�̅�
)
𝑃

]

𝑟𝑖

θ�̂� exp [−
𝑟𝑖𝜃𝑖
𝐶
(
𝑉𝑖

�̅�
)
𝑃

]) 

ln 𝐿 (𝐶, 𝑃|θ̂) =∑(ln (
1

Γ𝑟𝑖
) + ln ([

𝑟𝑖
𝐶
(
𝑉𝑖

�̅�
)
𝑃

]

𝑟𝑖

) + ln(θ�̂�) + ln (exp [−
𝑟𝑖𝜃𝑖
𝐶
(
𝑉𝑖

�̅�
)
𝑃

]))

𝑘

𝑖=1

 

                        = ∑(ln (
1

Γ𝑟𝑖
) + 𝑟𝑖 ln(𝑟𝑖) − 𝑟𝑖 ln(𝐶) + 𝑟𝑖𝑃 ln (

𝑉𝑖

�̅�
) + ln(θ�̂�) −

𝑟𝑖𝜃𝑖
𝐶
(
𝑉𝑖

�̅�
)
𝑃

)

𝑘

𝑖=1

 

Taking the derivative with respect to C, we get 

𝑑

𝑑𝐶
ln 𝐿 (𝐶, 𝑃|θ̂) =∑(

𝑑

𝑑𝐶
(−𝑟𝑖 ln(𝐶)) +

𝑑

𝑑𝐶
(−

𝑟𝑖𝜃𝑖
𝐶
(
𝑉𝑖

�̅�
)
𝑃

))

𝑘

𝑖=1

 

=∑(−
𝑟𝑖
𝐶
+
𝑟𝑖𝜃𝑖
𝐶2

(
𝑉𝑖

�̅�
)
𝑃

)

𝑘

𝑖=1

 

Here, 
𝑑

𝑑𝐶
ln 𝐿 (𝐶, 𝑃|𝜃) = 0, 𝑔𝑖𝑣𝑒𝑠 

∑(−
𝑟𝑖
𝐶
+
𝑟𝑖θ�̂�
𝐶2

(
𝑉𝑖

�̅�
)
𝑃

)

𝑘

𝑖=1

= 0 

which gives 



 

 

                                                                      �̂� =
∑ 𝑟𝑖𝜃𝑖
𝑘
𝑖=1 (

𝑉𝑖
�̅�
)
𝑃

∑ 𝑟𝑖
𝑘
𝑖=1

                                               (10.12) 

   Further, 

𝜕 𝑙𝑛 𝐿

𝜕𝑃
=∑𝑟𝑖 [𝑙𝑜𝑔 (

𝑉𝑖

�̄�
)]

𝑘

𝑖=1

−∑
𝑟𝑖𝜃𝑖
𝐶
(
𝑉𝑖

�̄�
)
𝑃

𝑙𝑜𝑔 (
𝑉𝑖

�̄�
)

𝑘

𝑖=1

 

             = 𝐶∑𝑟𝑖 𝑙𝑜𝑔 (
𝑉𝑖

�̄�
) −∑𝑟𝑖𝜃𝑖 (

𝑉𝑖

�̄�
)
𝑃

𝑙𝑜𝑔 (
𝑉𝑖

�̄�
) = 0

𝑘

𝑖=1

𝑘

𝑖=1

 

Substituting the value of �̂� from (10.2), we get 

𝜕 𝑙𝑛 𝐿

𝜕𝑃
=∑𝑟𝑖 𝑙𝑜𝑔 (

𝑉𝑖

�̄�
)

𝑘

𝑖=1

{𝐶 − 𝜃𝑖 (
𝑉𝑖

�̄�
)
𝑃

} = 0 

∑𝑟𝑖 𝑙𝑜𝑔 (
𝑉𝑖

�̄�
)

𝑘

𝑖=1

{
∑ 𝑟𝑖𝑣𝑖 (

𝑉𝑖
�̄�
)
𝑃

∑𝑟𝑖
− 𝜃 (

𝑉𝑖

�̄�
)
𝑃

} = 0                                                      (10.13)  

Here, since equation (10.13) is non-linear, therefore we need to use numerical technique 

to solve them. This way, we can obtain estimates of C and P and use them further to predict 

the lifetime characteristic of the system.  

Example: Suppose an electronics manufacturer wants to estimate the reliability of a new type 

of capacitor under normal usage conditions. Here, capacitors are subjected to increased voltage 

levels to accelerate life testing to induce failures faster. Three different stress levels (Level 1 

(V1): 100V, Level 2 (V2): 150V, Level 3 (V3): 200V) are applied to three groups of capacitors. 

For each stress level, we record the failure times of the capacitors. The test is terminated after 

a specific number of failures (𝑟𝑖 = 6) in each group. Here, we record the following data 

𝑡1,1 = 100, 𝑡1,2 = 120, 𝑡1,3 = 140, 𝑡1,4 = 160, 𝑡1,5 = 180, 𝑡1,6 = 200 

𝑡2,1 = 50, 𝑡2,2 = 60, 𝑡2,3 = 70, 𝑡2,4 = 80, 𝑡2,5 = 90, 𝑡2,6 = 100 

𝑡3,1 = 30, 𝑡3,2 = 35, 𝑡3,3 = 40, 𝑡3,4 = 45, 𝑡3,5 = 50, 𝑡3,6 = 55 

 Step 1: Calculate 𝜃𝑖  for each stress level 

The MLE for θ𝑖 



 

 

 is given by: 

𝜃𝑖 =
∑ 𝑡𝑗𝑖
𝑟𝑖
𝑗=1 + (𝑛𝑖 − 𝑟𝑖)𝑡𝑟𝑖𝑖

𝑟𝑖
 

For V1 = 100V: 

θ1̂ =
100 + 120 + 140 + 160 + 180 + 200 + 4 × 200

6
=
1100 + 800

6
= 316.67 hours 

For V = 150V: 

θ2̂ =
50 + 60 + 70 + 80 + 90 + 100 + 4 × 100

6
=
450 + 400

6
= 141.67 hours 

 

For V3 = 200V: 

θ3̂ =
30 + 35 + 40 + 45 + 50 + 55 + 4 × 55

6
=
255 + 220

6
= 79.17 hours 

Step 2: Estimate parameters C and P using the Power Rule Model 

The Power Rule Model is: 

λ𝑖 =
1

𝑐
𝑉𝑖
𝑝
 

or equivalently, 

θ𝑖 = 𝑐𝑉𝑖
−𝑝

 

Using the likelihood function and solving for C and P: 

ln 𝐿 (𝐶, 𝑃|θ̂) =∑(−𝑟𝑖 ln 𝐶 + 𝑟𝑖𝑃 ln 𝑉𝑖 + lnθ�̂� −
𝑟𝑖θ�̂�
𝐶
(
𝑉𝑖

�̅�
)
𝑃

)

𝑘

𝑖=1

 

We need to solve this numerically to find the estimates for C and P. Using numerical methods 

(such as Newton-Raphson) and equations (8.12) and (8.13), we can iteratively solve for C and 

P. This gives the following result 

�̂� = 152.58  

�̂� = 2 

Step 3: In light of the results obtained, we can also predict reliability under normal usage 

conditions. Suppose the normal operating voltage is V0 = 50V. We use the estimated 

parameters to predict the reliability under this condition as follows. 

θ0̂ = �̂�𝑉0
−�̂� = 0.061 

10.8  Summary  



 

 

This unit discussed the reliability growth model and accelerated life testing. 

Additionally, it included important concepts such as probability plotting, HPP vs NHPP testing, 

and exponentiality testing. The methodologies discussed were accompanied by, which provides 

readers a strong conceptual understanding.  

10.9  Self-Assessment Exercise 

Question-1:  A company aims for an MTBF of 600 hours for a new electronic device, which 

includes three non-repairable components with MTTFs of 1200, 1800, and 2400 hours. After 

300 hours of testing, with two failures and an initial MTBF of 150 hours, historical data 

suggests a log-log plot slope of 0.60. 

a) Calculate the test time needed to achieve the 600-hour MTBF. 

b) Estimate the test goal using the Duane Growth Model. Also, prepare a summary 

of your findings and calculations. 

Question-2:  Write a brief overview of the utilization of the reliability growth model. 

Question-3:  Suppose a repairable device has 15 recorded failure times: 

Failure Times (hours): 50, 120, 180, 230, 290, 350, 410, 470, 540, 600, 670, 730,    790, 

860, 920 

a) Calculate Interarrival Times: 

b) Compute times between successive failures. 

c) Plot Cumulative Failures: 

d) Create a plot of cumulative failures N(t)) against time t. 

e) Evaluate if failure times follow a Homogeneous Poisson Process (HPP). 

Question-4:  Suppose components are tested under three stress levels: 

S1: Moderate Stress 

S2: High Stress 

S3: Very High Stress 

Failure Times Data (hours): 

S1: 120, 150, 160, 180, 200, 210, 230, 250, 270, 300 

S2: 70, 90, 110, 130, 150, 160, 180, 200, 220, 240 

S3: 30, 50, 70, 90, 100, 110, 130, 150, 170, 200 



 

 

For this data,  

a) Plot histograms for each stress level. 

b) Fit an exponential distribution to the data. 

c) Perform Deshpande Test test to check for exponentiality. 

d) Interpret the results and discuss the implications for component reliability. 

e) Prepare a brief report summarizing your findings. 

Question-5:  What is the accelerated life testing? Comment on the use of this concept.  

Question-6:  A manufacturer tests the lifespan of new LED bulbs under different temperatures 

to assess reliability. Three temperature levels are used: 

T1: 30°C; T2: 50°C; T3: 70°C 

Each group of bulbs is tested until 8 failures are recorded. Failure times (in hours) for 

each temperature are: 

T1: 500, 520, 540, 550, 570, 580, 590, 600 

T2: 300, 320, 340, 350, 370, 380, 390, 400 

T3: 150, 160, 170, 180, 190, 200, 210, 220 

Uses this data to analyze the reliability of the LED bulbs and to estimate their lifespan 

under normal operating conditions? 
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