
MCS-102

C++ & OBJECT ORIENTED
PROGRAMMING

Block-1 Principles of OOP, OOP Systems and
Advanced concepts 3-30

UNIT-1 Principles of Object Oriented Programming 7

UNIT-2 Object Oriented Programming Systems 15

UNIT-3 Advanced Concepts 23

Block-2 31-180
UNIT-4 Overview of C++ 35

UNIT-5 Class and Objects 99

UNIT-6 Object initialization and clean-up 145

Block-3

UNIT-7 Operator Overloading 185

UNIT-8 Inheritance-Extending classes 207

Block-4
247-320

UNIT-9 Pointer, Virtual Functions and Polymorphism 251

UNIT-10 Working with Files 269

UNIT-11 Object Oriented Modelling 289

Uttar Pradesh Rajarshi Tandon
Open University

OVERVIEW OF C++, CLASSES AND OBJECTS

OPERATOR OVERLOADING AND INHERITENCE

181-246

POLYMORPHISM, FILE HANDLING AND OBJECT
ORIENTED MODELLING

R
IL

-0
85

MCS-102/1

R
IL

-0
85

MCS-102/2

MCS-102
C++ & OBJECT ORIENTED
PROGRAMMING

BLOCK

1
PRINCIPLES OF OOP, OOP SYSTEMS AND
ADVANCED CONCEPTS

UNIT-1 7

Principles of Object Oriented Programming

UNIT-2 15

Object Oriented Programming Systems

UNIT-3 23

Advanced Concepts

Uttar Pradesh Rajarshi Tandon
Open University

R
IL

-0
85

MCS-102/3

Course Design Committee

Prof. Ashutosh Gupta Chairman
Director-In charge,
School of Computer and Information Science
UPRTOU, Prayagraj
Prof. U. S. Tiwari Member
Dept. of Computer Science
IIIT Prayagraj
Prof. R. S. Yadav Member
Department of Computer Science and Engineering
MNNIT-Allahabad, Prayagraj
Dr Marisha Member
Assistant Professor (Computer Science)
School of Science, UPRTOU, Prayagraj
Mr. Manoj K. Balwant Member
Assistant Professor (Computer Science)
School of Science, UPRTOU, Prayagraj

Course Preparation Committee

Dr. Marisha Author (Block 1)
Assistant Professor (Computer Science)
School of Science
UPRTOU, Prayagraj
Er. Pooja Yadav Author (Blocks 2, 3 and 4)
Assistant Professor
Dept. of Computer Science and IT
M.J.P. Rohilkhand University
Bareilly
Prof. Ashutosh Gupta Editor
Director (In-Charge)
School of Computer and Information Science
UPRTOU, Prayagraj
Dr. Marisha Coordinator
Assistant Professor (Computer Science)
 School of Science
UPRTOU, Prayagraj

©All Rights are reserved. No part of this work may be reproduced in any
form, by mimeograph or any other means, without permission in writing
from the Uttar Pradesh Rajarshi Tondon Open University, Prayagraj.

Printed and Published by Dr. Arun Kumar Gupta Registrar, Uttar
Pradesh Rajarshi Tandon Open University, 2020.

Printed By : Chandrakala Universal Pvt.Ltd. 42/7 Jawahar Lal Neharu
Road, Prayagraj, 211002

©UPRTOU, Prayagraj
ISBN : 978-93-83328-98-7

R
IL

-0
85

MCS-102/4

BLOCK INTRODUCTION

In this block, we shall discuss the basic concepts of object oriented
programming systems.

Unit-1 : In unit 1, we shall discuss object oriented paradigm. We shall
discuss the advantages of object oriented languages over procedural
languages. In the end, we shall briefly discuss the advantages of the
object oriented language C++.

Unit-2 : In this unit, you will learn in detail about the features of object
oriented programming. In particular, we shall discuss about the
concepts of class, objects, inheritance, abstraction and polymorphism.
These features will be used in programming object oriented systems.
The basic concpts of these features will be discussed here. You will
learn programming using these features in later units.

Unit-3 : In the last unit, we shall discuss advanced concepts of object
oriented programming systems. In particular, we shall discuss about the
concept of dynamism, program structuring and reusability. In the end,
we shall discuss about how large object oriented projects are organized.

R
IL

-0
85

MCS-102/5

R
IL

-0
85

MCS-102/6

UNIT-I PRINCIPLES OF OBJECT
ORIENTED PROGRAMMING

Structure
1.1 Introduction

Objectives

1.2 Object Oriented Programming Paradigm

1.3 Limitations of Procedural Programming Languages

1.4 Basic Concepts of Object Oriented Programming

1.5 Object Oriented Languages

1.6 Advantages of C++

1.7 Summary

1.8 Review Questions

1.1 INTRODUCTION

This unit gives an introduction of the basic concepts of object
oriented programming. We begin with object oriented programming
paradigm and discuss the meaning of classes and objects, the concept of
abstraction and why it is useful. Then, we will briefly discuss procedural
languages and compare object oriented languages with procedural
languages. We will then move on to discuss the basic features of object
oriented programming languages and also about some commonly used
object oriented languages. Later on, we will discuss the advantages of
using C++. The last section will provide a summary of the topics learned
in the unit which will be followed by review questions.

Objectives :
After learning this unit you should be able to:

1. Understand the object oriented paradigm

2. Differentiate between procedural and object oriented languages

3. Describe the basic concepts of object oriented programming

4. List the advantages of using C++ over C

1.2 OBJECT ORIENTED PARADIGM

Object Oriented Programming systems are based on the concept of
classes and objects. Classes and objects form the basic building blocks of
any object oriented programming language. Classes are abstract things R

IL
-0

85

MCS-102/7

while objects form particular instances of classes. The word abstract
literally means something which exists in one’s mind. Abstraction is not a
new concept; we use abstraction in our day-to-day life for almost
everything that we deal with. Like a book is an abstract term while “Wings
of Fire” and “My experiments with Truth” are particular instances of a
book. Similarly, fruit is an abstract term while mango, guava, apple etc.
form particular instances of fruit. Abstraction helps us in understanding
the overall structure and behavior of an entity without going into finer
details. As you might have guessed by looking at the example, there can
be different levels of abstraction like mango is a fruit but there can be
different varieties of mangoes, each of which forms an instance of the
class Mango.

The discussion above makes it clear that we always use abstraction
while dealing with real life entities although the level of abstraction may
vary depending upon the needs. We hide those details of the objects which
are not needed and focus on only those attributes which are useful for us
according to our requirements. This reduces the complexity of the real
world system and makes it easier for us to deal with so many things in an
organized manner and use them for our advantage.

Any abstract entity is characterized by certain features and
behaviours. For example, when we talk about the class book, there are
certain features that come to mind, say it would be something of the shape
of a rectangle with a number of pages bound together, it will have a cover
page with a picture and a name describing what is written inside. It will
have an author; a publisher etc. and it will be used for the purpose of
reading or studying. These features and behaviours form the
characteristics of the class and are used for defining a class. Any object
oriented system involves thinking of the system in terms of classes and
objects as instances belonging to different classes which interact with each
other and produce the whole system as a result.

As you know, we use programming to solve the real world
problems, the object oriented languages give us the freedom to map the
real life entities into program objects and thus depict the real life system as
closely as possible in our programs. Before going into deeper details of
object oriented programming languages and the advantages of using
OOPS (Object Oriented Programming Systems), let us first discuss
procedural languages and some of their limitations.

Concept of Procedural Programming
In procedural programming, we divide the problem into a number

of sub-problems or tasks and solving the problem involves writing
procedures for doing the individual tasks. Thus we think of the problem as
being composed of different modules and we write code for each module
to solve the whole problem.

The programming languages which support procedural
programming are called procedural programming languages. Some R

IL
-0

85

MCS-102/8

examples of procedural programming languages are C, Pascal, Fortran etc.
In fact, initially we had only procedural programming languages and no
Object Oriented languages. Object oriented programming was developed
later on as we started facing difficulty in solving real world
problems while sticking to procedural programming. We will discuss
the limitations of procedural programming languages in greater detail in
later sections.

In procedural programming, as discussed earlier we write
procedures for doing specific tasks. For example we may write an area
function to calculate the area of say a rectangle. The code for doing this in
C is given below:

#include<stdio.h>

int calcarea(int, int);

void main()

{

int side1, side2, area;

printf("enter the lengths of two sides\n");

scanf("%d%d",&side1,&side2);

area = calcarea(side1, side2);

printf("area = %d", area);

}

int calcarea(int side1, int side2)

{

int area;

area = side1 * side2;

return(area);

}

The above program has a function named calcarea which takes as
input the two sides of the rectangle and produces the area of the rectangle
as output. Inside the main function the calcarea function is called with
sides as arguments. The return value is stored in the variable area. This
example shows you how procedures are written to solve problems in
procedural programming. Let us move a step further and suppose your
requirement changes now and you want calcarea function to take float
values also as input. So, your rectangle can have non-integer values also as
side lengths. For doing this, you will have to write a new code with sides
defined as floats instead of integers.

R
IL

-0
85

MCS-102/9

Similarly, suppose you want to calculate the area of different
geometrical figures not necessarily rectangle, then you need to write
separate codes for calculating the area of each geometrical figure and each
procedure will have to be given a separate name. This will reduce the
readability of program and increase its complexity thus, making the
program difficult to understand. It is not possible to reuse the same
function name for doing similar type of tasks.

When procedural programming is used for designing
large systems, it is common practice to make the data variables that
will be used by many programs public so as to reduce the overhead of
parameter passing in the function call. This however makes the data
vulnerable to inadvertent changes by program functions. The changes
made to the global data are difficult to track.

The important characteristics of Procedural Programming are given below:

1. The prime focus is on functions, which operate on data.

2. Data moves freely among different functions

3. Constant data values and the data that are to be shared among
many functions are usually made global.

4. It follows top-down approach of program design.

1.3 LIMITATIONS OF PROCEDURAL
PROGRAMMING

Some of the limitations of procedural programming languages are
as follows:

Data is vulnerable to inadvertent changes : Since, this type of
programming focuses mainly on functions and data moves freely among
different functions, the data is vulnerable to inadvertent changes by the
functions. Also, it makes the task of debugging difficult as it is hard to
track the changes made to the data when it is accessed by many functions.
Tracking changes in global data is even more difficult as global data can
be changed by virtually any function if it is not specifically declared as a
constant.

Real Life Entities cannot be represented properly : As already
discussed, procedural programming does not naturally represent how we
perceive real life systems. This poses difficulty in solving real world
problems especially when the system is very large and complex.

Lack of Reusability : In procedural programming, if we want to do little
modification in an existing function, we will have to write a new function.
The same function cannot be reused for a slightly different scenario.
Another related shortcoming is that one cannot have two functions with
same name in a single program. This forces the programmer to choose

R
IL

-0
85

MCS-102/10

different names for functions that actually do very similar job. This
reduces the clarity and understandability of the code.

Difficulty in Testing and Debugging : This is the outcome of the
limitations that we have already discussed. If we let the data move freely
among different functions, tracking changes in the data values will
become difficult. Tracking the changes in the data gets even more difficult
for large systems (which is the case for most real world systems). Large
systems naturally have more modules resulting in a lot of data and thus
posing difficulty in tracking the changes made in the data by different
modules.

Lack of reusability also increases the burden of testing, as every new
module will have to be tested in totality even when it is only slightly
different from an already written and tested module. This increases the
work of the programmer and also increases the time required for
delivering the system.

To overcome these limitations of procedural programming languages,
object oriented programming was introduced. We will now briefly discuss
the basic concepts of object oriented programming. Detailed explanation
of these concepts will follow in subsequent units.

1.4 BASICS OF OBJECT ORIENTED
PROGRAMMING

Any object oriented programming system involves the following concepts:
1. Objects

2. Classes

3. Abstraction

4. Encapsulation and Information Hiding

5. Polymorphism

Objects : Objects form the basic runtime entities in an object oriented
programming environment. They might represent real life entities or
program objects. Objects contain data and methods that operate on the
data. They form instance of classes and occupy space in memory.

Classes : Classes are the user-defined data types which represent the
objects. The data and methods that operate on data are tied together to
form a user-defined data type that we call as class. We can define any
number of instances of a class and each such instance will be called an
object of that class.

Abstraction : Abstraction as we have already discussed, implies
representing the important features of a system while avoiding finer
details. This reduces the complexity of very large systems. We consider

R
IL

-0
85

MCS-102/11

program entities and model their interaction without paying attention to
the internal structure of an entity.

Encapsulation and Information Hiding : In object oriented
programming we define program entities as objects which contain data as
well as the methods that operate on the data. This idea of representing the
data and the operations together as one entity is called encapsulation. Any
entity thus formed is isolated from rest of the system and can only be
accessed through the public interfaces of the class i.e. the functions.

Since, the data is accessible to other entities in the system only through
public interfaces of a class; the data is protected from any inadvertent
changes. This forms the basic idea of information hiding, as any
information that is stored in the system is hidden from other entities of the
system. All the interactions among different entities are governed by the
functions that are defined for an entity which also act as the interfaces of
the class.

Polymorphism : Polymorphism literally means having more than one
form. Polymorphism allows us to use the same function to perform similar
tasks. For example, using polymorphism you don’t have to write two
different functions for adding two numbers and for adding three numbers.
Similarly, the same function which is used for calculating the sum of two
real numbers can be used for calculating the sum of two complex
numbers. It is the property of polymorphism which allows the same
function to exhibit multiple forms.

The important features of any object oriented system may be listed as
follows:

1. It follows bottom-up approach of program design.

2. Emphasis is laid on data rather than functions.

3. Data are hidden and can be accessed only by the functions that
operate on the data.

4. The data and the functions that operate on the data are tied together
in the form of objects and are thus isolated from all other entities
of the system.

5. It allows reusability of the already written and tested modules and
thus reduces the time required to build a system.

1.5 OBJECT ORIENTED LANGUAGES

Object oriented programming started for the first time in 1960s.
Simula67 was the first programming language which used objects. An
object oriented programming language called Smalltalk was developed to
program the Dynabook, a proposed personal computer for children.
Though, Smalltalk was used independently of Dynabook in a variety of
applications. In the early 1980s Bjarne Stroustrup integrated object R

IL
-0

85

MCS-102/12

oriented features in C programming language and the resulting language
was called C++ (drawing inspiration from the increment operator “++’” in
C). C++ was widely used commercially. Gradually many object oriented
programming languages were developed. The most commonly used object
oriented programming languages used nowadays include Java, Python,
Ruby, Perl, .NET, C# etc.

1.6 ADVANTAGES OF C++

As discussed in previous sections, C++ has many advantages over C. The
important ones are given below:

1. It provides protection to the data.

2. Facilitates reusability of code

3. Complex systems can be designed easily and conveniently

4. Increases clarity of code

5. Reduces the time and cost of debugging

6. Better error-handling and type-checking

7. It is easy to learn and the C++ also accepts C code.

1.7 SUMMARY

In this unit we have discussed about the basics of object oriented
systems. Object oriented systems are based on the concepts of classes and
objects. Class is an abstract entity while object forms an instance of the
class. Object oriented systems provide many features such as abstraction,
data hiding, encapsulation inheritance and polymorphism. We discussed
briefly about each of these features. We also discussed about procedural
programming, its limitations and advantages of object oriented
programming over procedural programming. Then we discussed about
some of the object oriented programming languages. We have concluded
by taking the specific example of C and C++ and discussing the
advantages of using C++ over C.

1.8 REVIEW QUESTIONS

1. Briefly explain the basic features of object oriented systems.

2. Discuss the limitations of procedural programming.

3. List three object oriented languages other than those already
mentioned in the text.

 R
IL

-0
85

MCS-102/13

R
IL

-0
85

MCS-102/14

UNIT-II
OBJECT ORIENTED PROGRAMMING
SYSTEMS

Structure :
2.1 Introduction

Objectives
2.2 Class
2.3 Inheritance
2.4 Abstraction
2.5 Encapsulation and Information Hiding
2.6 Polymorphism and Overloading
2.7 Summary
2.8 Review Questions

2.1 INTRODUCTION

In this unit we will discuss in detail the features of object oriented
programming systems. This will include the concepts of class, inheritance,
abstraction, encapsulation and information hiding, polymorphism and
overloading. Each section will have one concept explained with the help
of examples. The last section will provide a summary of the concepts
learned which will be followed by review questions.

Objectives
After learning this unit you should be able to:

1. Understand the basic features of object oriented programming
languages

2. Understand the importance and utility of each of the features

2.2 CLASS

As discussed earlier, classes are abstract entities which bind the
data and the methods together. Thus, a class defines the characteristics of
the objects and also their behavior. Objects form particular instances of a
class. Let us understand the concept of classes and objects with the help of
an example. Suppose we want to create a class triangle to calculate the
area of a given triangle. Then, the data members of this class will be the
lengths of each of the edges of the triangle while the methods will include
the function to calculate the area of the triangle. Also if we give particular
values to all the edges of the triangle then it will form an instance i.e. an R

IL
-0

85

MCS-102/15

object of the class. A schematic diagram of the class Triangle is given
below.

Fig. 1 : Description of the class triangle

Class is a user defined data type and can represent any real life
entity or a program object. For example, a class may represent a person, a
company, a geometrical figure or it might represent time, a vector or any
other thing. Classes are the basic program entities in an object oriented
programming system i.e. any object oriented programming system can be
viewed as a system of classes interacting with each other through passing
messages. The diagram showing an object oriented programming system
is given in Fig 2:

Fig. 2: An Object Oriented System

Class: Triangle

Data: Edge 1
 Edge 2
 Edge 3

Function: Area

Class 1

Attributes: A1, A2 …

Functions: F1, F2 …

Class 2

Attributes: A1, A2 …

Functions: F1, F2 …

Class 3

Attributes: A1, A2 …

Functions: F1, F2 …

R
IL

-0
85

MCS-102/16

2.3 INHERITANCE

The concept of inheritance has been taken from real life. As
children inherit genetic traits from their parents, similarly new class can be
derived from an existing class. Thus, inheritance is the process by which
we can create new classes using an existing already written class.
Inheritance allows reusability of the code. Thus, if we write a class and at
a later date we need to modify it slightly then we can simply create a new
class which inherits the existing class instead of creating a new class from
scratch. Using inheritance we can also combine the features of two or
more classes and make a new class.

Fig. 3 : Example showing Inheritance

Suppose we define a class Shape to calculate the area of a
geometric shape. This class contains the edge lengths of the given
geometric shape as data members and a method to calculate the area of the
shape as shown in Fig 2. Now, we can use this class to define new classes
for different shapes such as triangle, rectangle etc., each of which will
inherit the Shape class and can define their number of edges in according
to the shape. The class which acts as the parent class is called base class
while the new class which inherits the properties of the base class is called
the derived class.

There are two broad types of inheritance, single inheritance and
multiple inheritance based upon how the child class derives the properties
and behaviors from the parent class. In single inheritance the derived class
inherits from a single parent class while in multiple inheritance, the
derived class has more than one parent as illustrated in Fig4.

Class: Shape

Attributes: Edge 1
 Edge 2
 .
 .
 .

Class: Triangle

Attributes: Edge 1
 Edge 2
 Edge 3

Class: Rectangle

Attributes: Edge 1
 Edge 2

R
IL

-0
85

MCS-102/17

Single Inheritance :

Multiple Inheritance :

Fig. 4 : Figure showing single and multiple inheritances

2.4 ABSTRACTION

In object oriented programming we achieve abstraction through
classes. A class is used to describe what an entity does without detailing
about how it does. For example the Triangle class in our previous example
calculates the area of a given triangle without describing how the area is
calculated. The methods of the class act as public interfaces of the class
which can be used to perform the functionalities provided by the class.

Abstraction is especially helpful if we are designing a large system
as with abstraction one can design units which perform definite tasks and
interact with other units through clearly defined interfaces thus making it

Class A

Class B

Class B

Class A

Class C

R
IL

-0
85

MCS-102/18

easier to track the behavior of an entity in different scenarios and also its
interaction with other entities.

2.5 ENCAPSULATION AND INFORMATION
HIDING

Encapsulation in Object Oriented Programming systems implies
binding data and function together. Unlike procedural programming where
data is allowed to move freely among different functions making it
vulnerable to inadvertent changes, in OOP data is bound together with the
function. What this really means is that whatever operations are allowed
on a particular data item are described clearly and the methods to perform
those operations are written and the method and the data are both tied
together in the form of a class.

Thus, after we have defined a class, no function other than the once
written in the class can access or modify the data associated with the class.
Of course, there are exceptions to this rule and in some cases outside
functions may access or modify the data of a class but then these
exceptional functionalities of object oriented languages are used only
when it is extremely necessary to do so and using them frequently or
unnecessarily is against the basic idea of object oriented programming
systems and is therefore, considered as a bad programming practice.

2.6 POLYMORPHISM AND OVERLOADING

Polymorphism is a Greek term and it means having more than one
form. In Object Oriented Programming Systems, using polymorphism we
can create two functions with the same name to perform two different but
closely related operations. For example, the Area function in Fig 4 can be
used to calculate the area of different kinds of shapes in the Shape class.

Similarly, we might want to define a function sum which can
calculate the sum of two real numbers as well as the sum of two complex
numbers depending upon whether the input numbers are real or complex.
When we are using the same function name to describe more than one
function, the program needs to do decide which function to use in a
particular case. This decision as to which method is to be used for a given
input may be taken at compile time or at run-time resulting into two
different types of polymorphisms namely compile-time polymorphism
(achieved through function and operator overloading) and run-time
polymorphism (achieved through virtual functions). Many object oriented
programming languages such as Java support only run-time polymorphism
and not compile-time. Usually, pure object oriented languages support
only run-time polymorphism.

 R
IL

-0
85

MCS-102/19

Fig 5 : Example showing polymorphism

When we define a function or an operator to behave differently
under different inputs, the method or the operator is said to be overloaded.
Both function and operator overloading form example of compile time
polymorphism whereas run-time polymorphism is achieved in C++
through virtual functions. We will discuss these concepts in more detail in
later sections.

Object oriented systems are represented using UML (Unified
Modeling Language) diagrams. There are thirteen different types of UML
diagrams which are used to describe any object oriented system. For
example, the UML class diagrams are used to represent the classes in an
object oriented system. The schematic diagrams that we have used to
describe classes in this text are also examples of UML class diagrams.

2.7 SUMMARY

In this unit we have learned about object oriented programming
systems. We discussed about classes and objects and also how object
oriented programming systems achieve abstraction and encapsulation
using classes. We discussed inheritance which is based on the concept
reusability. Inheritance allows us to reuse an existing class to describe a
new class which is slightly different from the existing class. There are
different types of inheritance which we will discuss in later blocks. We
have also discussed polymorphism which is extensively used to implement
inheritance. Using polymorphism we can have the same method behaving
differently under different input conditions. All these concepts form the

Class : Shape

Area()

Class : Triangle

Area()

Class : Rectangle

Area()

R
IL

-0
85

MCS-102/20

basic features of any object oriented programming system. Different
object oriented programming languages provide different ways of
implementing these features. In the later blocks of the material we will
discuss in detail the features available in C++ and also learn how to use
them.

2.8 REVIEW QUESTIONS

1. Discuss the important features of object oriented programming
systems.

2. How is abstraction different from encapsulation?

3. What do you understand by the term “Information Hiding”? Why
is it important to hide certain information in a system?

R
IL

-0
85

MCS-102/21

R
IL

-0
85

MCS-102/22

UNIT-III ADVANCED PROGRAMMING
CONCEPTS

Structure
3.1 Introduction

Objectives

3.2 Dynamism

3.2.1 Dynamic Typing

3.2.2 Dynamic Binding

3.2.3 Late Binding

3.2.4 Dynamic Loading

3.3 Structuring Programs

3.4 Reusability

3.6 Organizing Object Oriented Projects

3.6 Summary

3.7 Review Questions

3.1 INTRODUCTION

In this unit we will learn some of the advanced concepts related to
programming. More specifically, we will learn about dynamism supported
in C++ programming language. This will include dynamic typing,
dynamic binding, late binding and dynamic loading. We will start with an
introduction to these terms and then discuss about these features as they
are available in C++. Then we will discuss about how object oriented
programs are structured and also about reusability. Lastly, we will discuss
how the object oriented projects are organized. This will be followed by a
summary of the topics learned and review questions.

Objectives :

After learning this unit you should be able to understand:

1. The concept of dynamism in programming languages

2. How dynamism helps in designing better programs

3. How dynamism is implemented in C++

4. How to structure programs and how to organize object oriented
projects

5. The concept of reusability and its importance R
IL

-0
85

MCS-102/23

3.2 DYNAMISM

Dynamism in programming languages means reducing the amount
of information that needs to be supplied during compilation and delaying
much of the decisions such as type checking, binding of methods, loading,
linking etc. until the program is run. Therefore, with dynamism such
decisions are taken by the programming environment at the runtime
instead by the compiler during the compilation of the code. Dynamism
provides more and more flexibility to the users in terms of what can be
done using the programming language. Many of the features of object
oriented programming such as inheritance, reusability, polymorphism etc.
are possible only because of dynamism. Dynamism can be of different
types as also different programming languages support different types of
dynamism. We will now discuss different types of dynamism in detail.

3.2.1 DYNAMIC TYPING

Type checking or simply typing in a programming language is the
process through which the translator verifies whether all the constructs in
the program such as the variables, constants, procedures etc. are written
correctly or not. All the constructs of the programming languages need to
follow the rules and constraints defined by the programming language and
it is the job of the translator to verify if the constructs used in the code
follow the language rules. This process of verification is known as type
checking. Type checking can be of two types static and dynamic. In static
typing the type checking is done by the translator before program
execution and any type error is reported as compile-time error which
prevents the execution of the program. In dynamic typing on the other
hand, the type information is checked at runtime.

In strongly typed languages, all the type errors have to be caught
before program execution and therefore, such languages must be statically
typed. C compilers provide static type checking however; C language is
not strongly typed as many of the type errors are removed automatically
through conversion code with or without a warning message, thus not
preventing the program from running. C++ provides stronger type
checking than C though most of the type errors are reported as warning
rather than compile-time error thus allowing the program to execute.
Therefore, one must be very careful while ignoring the warnings that are
generated by the compiler. Java is also a statically typed language.

Many scripting languages such as Perl, Python and PHP are
dynamically typed. The biggest advantage of dynamically typed languages
is that the variables need not be declared before they are used. For
example the following code is totally valid in Python.

/* Python code */

x = 10; // variable is directly used

R
IL

-0
85

MCS-102/24

However, dynamic typing has the disadvantage that any typing
error in variable names will not cause the compiler to prompt an error
message. The compiler will simply treat them as two different variables
that may lead to serious consequences.

3.2.2 DYNAMIC BINDING

We have already studied polymorphism in previous units and
discussed how the same function name can be used to define similar
operations. For example, both the derived classes in Fig5 have their own
implementation of the area method although both the methods have the
same name.

Polymorphism can be of two types compile time polymorphism
and run-time polymorphism. When the decisions as to which version of a
function to invoke is taken at compile time then it is known as compile
time polymorphism while if this decision is delayed until runtime then it is
known as runtime polymorphism. Runtime polymorphism is possible due
to late binding and dynamic binding.

Dynamic binding as the name implies involves dynamically
deciding the correct function to invoke in response to a function call. In
C++ dynamic binding is implemented through virtual functions. We will
discuss virtual functions in detail when we will study inheritance. In most
pure object-oriented languages such as Java, dynamic binding always
applies as all the methods are implicitly virtual. Dynamic binding puts
significant runtime overhead as the runtime environment must check
which object is associated to which class in order to invoke the correct
method. You should note however that it is possible to implement
dynamic binding while retaining static typing.

3.2.3 LATE BINDING

There is very subtle difference between dynamic binding and Late
Binding. Here also the decision as to which method to invoke in response
to a function call is delayed until run time but there are restrictions on the
type of the objects that can be used to invoke late binding. Let us discuss
this in a bit detail.

C++ programming language implements late binding. Here,
runtime polymorphism is achieved through virtual functions. To invoke
late binding i.e. runtime polymorphism in C++, the object pointed to by a
pointer can be the object of the base class or any of its derived class. Here,
the compiler cannot decide the method belonging to which of the classes is
to be invoked and this decision is delayed until the program is run. Thus,
this is known as late binding.

Dynamic Binding is however a much broader term. The languages
that allow dynamic binding do not put compile time restrictions on the
objects. Therefore, the object may belong to literally any class and thus,
the decision of invoking a particular function is totally dynamic. More

R
IL

-0
85

MCS-102/25

specifically, while static and late binding can ensure that the method that
will be invoked actually exists; in dynamic binding there is no way the
compiler can ensure that the method actually exists. Thus, unlike static
and late binding, dynamic binding may fail at runtime.

3.2.4 DYNAMIC LOADING

Historically, the program code was written in a single file and the
complete program was loaded into the memory before execution. With the
advancement of technology or to be more specific, with the development
of the concept of virtual memory, it is now possible to have only a part of
the program in memory and the remaining part can be loaded dynamically
into the memory on demand.

This concept of loading only that part of a program which is
essential for program execution and loading other parts as and when they
are needed is known as dynamic loading. The reason being that unlike
static loading in which the whole program code needs to be in memory
before program execution begins, the loading of the modules in dynamic
loading systems takes place dynamically when they are required. Thus,
dynamic loading implies that a module will not be loaded into the memory
unless it is called. Many programming languages now provide the facility
of dynamic loading.

The advantage of dynamic loading is that the program can be built
in parts. Therefore, the software developers may build only a part of the
software and deploy it to the users while new facilities may be added to
the software later. Thus dynamic loading helps make the applications
extensible. This however makes the implementation of modules hard.

With dynamic loading it is a necessary requirement to have clear
cut interface between modules of the program so that the working of one
module is not affected by that of the other. It is crucial for success of the
concept of dynamic loading that a module can be developed or modified
anytime without affecting the other modules. Object oriented
programming comes handy in this case as the objects define the program
modules with clear cut interfaces among them and can thus easily
facilitate dynamic loading.

3.3 STRUCTURING PROGRAMS

The structure of object oriented programs is usually thought of in
terms of a) class hierarchies and b) the interaction between objects.

The class hierarchies define the structure of the system. It
describes how the classes are arranged into the system and how they relate
to each other. Thus, as considered in the previous examples, the shape
class describes the main module of the system while the classes triangle
and rectangle are the subclasses. These three combined together describe

R
IL

-0
85

MCS-102/26

the system in terms of the objects present in the system and how the
different objects stand in relation to each other in the system.

The objects in an object oriented system interact with each other
through message passing. This interaction between objects describes how
the system works. One object can send a message to another object
requesting it to do some task; the receiver in turn does the required
processing at its end and may send some message back to the sender or to
some other object in the system. These relationships need not be static and
may change dynamically as the program runs.

3.4 REUSABILITY

Reusability is one of the most important features of object oriented
programming systems. Reusability in OOP implies that it is possible to use
existing modules again in a related context either with or without
modification. Object oriented languages provide facilities to write codes in
such a way that it can be reused. The extent of reusability supported by a
language may however vary.

Organizing system in terms of classes provides reusability as the
existing classes can be extended with inheritance and new functionalities
may be added to it as also new data members can be added. We now
discuss the different ways in which classes can be modified to achieve
reusability. These are listed below:

1) By increasing the number of data members or member functions
present in a class

2) By restricting the number of data members or the member
functions present in a class. This may be achieved by restricting
the functions that operate on the data. The mechanism of
restriction is however not a common programming practice and is
therefore not found in many programming languages. It seems
more natural to extend already restrict classes instead of restricting
an existing class.

3) By redefining one or more of the operations defined in a class

4) By using the concept of polymorphism i.e. by making the same
function act differently depending upon the type of object which is
used to call the function.

Reusability of the code depends on a number of factors other than
the facilities provided by the programming which include the reliability
and efficiency of the code, the clarity of the documentation, the simplicity
of the interface etc.

R
IL

-0
85

MCS-102/27

3.5 ORGANIZING OBJECT ORIENTED
PROJECTS
Object oriented programming systems are generally used to design

large scale systems. Designing large scale systems poses a lot of
challenges which are not usually faced in small systems. Also large
systems are usually designed by a group of people and not by a single
person. As a result, it is necessary to organize the object oriented projects
in a systematic manner otherwise the programmers may very easily lose
track of the system. Following are the broad guidelines which should be
followed while designing large object oriented systems:

1) Abstraction and Modularization : At abstract level it is easy to
identify the main modules in a system, they can be understood
easily by the people involved and also it would be easy to divide
the work among different groups. The abstract modules can then
be refined and further divisions may be created.

2) Simple Interface : The objects in an object oriented system interact
through sending messages to each other using public interfaces of
the class. It is therefore, important to keep the interface simple and
clear so that new classes can be added as also new connections can
be added to the system with least overhead.

3) Reusability : The strength of object oriented system lies in its
reusability. The more you reuse the existing code the less effort
you will need to put in designing the new system. It is therefore
important to use the generic code though the mechanism of
inheritance and also to reuse the already written and tested
modules.

4) Dynamism : As already discussed dynamism allows the program
to leave much of the decision regarding function call or association
of objects to a type to runtime. This reduces the amount of
information which needs to be provided during compilation and
hence there is less effort required in coordinating different
modules to work. Thus, the designer should focus on increasing
the dynamism in the system.

3.6 SUMMARY

In this unit we studied about some of the advanced concepts
related to object oriented programming systems. We discussed about the
concept of dynamism. Dynamic typing allows the type checking of the
program objects to be delayed until runtime. Similarly, dynamic loading
allows the program to run with only a part of the program actually loaded
into the memory. The modules are dynamically loaded as they are needed.
Dynamic binding delays the decision as to which particular method is to
be invoked in response to a function call until runtime. Late binding is also

R
IL

-0
85

MCS-102/28

a similar concept; it however puts some restrictions on the type of objects
which can be used for invoking a method dynamically. We discussed
about reusability and how it is achieved in object oriented programming
followed by some guidelines for structuring programs and organizing
object oriented projects.

3.7 REVIEW QUESTIONS

Q1. What do you mean by dynamism in object oriented systems? What
are the different types of dynamism? Briefly explain.

Q2. Explain the difference between dynamic binding and late binding
with example.

Q3. Suppose you want to automate the various activities that take place
in a library. Identify the major objects that should be present in the
system.

Bibliography :

1. The C++ Programming Language by Bjarne Stroustrup

2. Object Oriented Programming by Joyce Farrell

3. Programming Languages Principles and Practice by Kenneth C.
Louden

4. Object Oriented Programming with C++ by E Balagurusamy

R
IL

-0
85

MCS-102/29

R
IL

-0
85

MCS-102/30

 MCS-102

C++ & OBJECT ORIENTED
PROGRAMMING

BLOCK

2
OVERVIEW OF C++, CLASSES AND OBJECTS

UNIT-4 35

Overview of C++

UNIT-5 99

Class and Objects

UNIT-6 145

Object initialization and clean-up

Uttar Pradesh Rajarshi Tandon
Open University

R
IL

-0
85

MCS-102/31

Course Design Committee
Prof. Ashutosh Gupta Chairman
Director-In charge,
School of Computer and Information Science
UPRTOU, Prayagraj
Prof. U. S. Tiwari Member
Dept. of Computer Science
IIIT Prayagraj
Prof. R. S. Yadav Member
Department of Computer Science and Engineering
MNNIT-Allahabad, Prayagraj
Dr Marisha Member
Assistant Professor (Computer Science)
School of Science, UPRTOU, Prayagraj
Mr. Manoj K. Balwant Member
Assistant Professor (Computer Science)
School of Science, UPRTOU, Prayagraj

Course Preparation Committee
Dr Marisha Author (Block 1)
Assistant Professor (Computer Science)
 School of Science
UPRTOU, Prayagraj

Author (Blocks 2, 3 and 4) Er. Pooja Yadav
Assistant Professor
Dept. of Computer Science and IT M.J.P.
Rohilkhand University Bareilly
Prof. Ashutosh Gupta Editor
Director (In-Charge)
School of Computer and Information Science
UPRTOU, Prayagraj

Dr Marisha Coordinator
Assistant Professor (Computer Science)
School of Science
UPRTOU, Prayagraj

©All Rights are reserved. No part of this work may be reproduced in any
form, by mimeograph or any other means, without permission in writing
from the Uttar Pradesh Rajarshi Tondon Open University, Prayagraj.

Printed and Published by Dr. Arun Kumar Gupta Registrar, Uttar
Pradesh Rajarshi Tandon Open University, 2020.

Printed By : Chandrakala Universal Pvt. Ltd. 42/7 Jawahar Lal Neharu
Road, Prayagraj, 211002

©UPRTOU, Prayagraj
ISBN : 978-93-83328-98-7

R
IL

-0
85

MCS-102/32

BLOCK INTRODUCTION

In this section we discuss the overview of this block’s content. This block
consists of the following units:

Unit-4 : Overview of C++

In this unit we'll discuss about the basics of C++, specifically, identifier,
keyword, data type variables and operators, with the help of examples
explain how we can use them and their syntax and what the need of them
is.

Unit-5 : Class and Objects

In this unit we'll discuss the differentiation between class and structure and
each and everything about Class and Objects in C++, specifically,
characteristics of OOPs and their purpose and also define use of friend
function in different ways and static member with examples.

Unit-6 : Object initialization and clean-up

In this unit we'll discuss about initialization of object with the help of
Constructor and its types and characteristics, and also explain the role of
destructor and concept of nested class and examples.

R
IL

-0
85

MCS-102/33

R
IL

-0
85

MCS-102/34

UNIT-4 OVERVIEW OF C++

Structure
4.1 Introduction

4.2 Objective

4.3 Tokens

4.3.1 Keywords

4.3.2 Identifiers

4.3.3 Literals

4.3.4 Operators

4.3.5 Punctuation marks

4.4 Data Types

4.4.1 Basic data type

4.4.2 User-defined

4.4.3 Derived data type

4.5 Type compatibility

4.6 Reference

4.7 Variable

4.8 Constant

4.9 Type casting

4.10 Operator precedence

4.11 Control structures

4.12 Structure

4.13 Function

4.14 Summary

4.15 Exercise

4.1 INTRODUCTION

In this unit, the focus is to explain the basics of C++. It gives the
full explanation to building blocks of any C++ program. We will learn the
data type in C++, variables and its naming convection. It will also include
the type compatibility among data type for data storage and transfer
among variables. It will also give the basic control structure of C++ R

IL
-0

85

MCS-102/35

program. At the end of this unit, information about structure and functions
in C++ will also be given in brief.

4.2 OBJECTIVE

The objective of this unit is to explain the basic idea of C++ like
variable, constants, data types, and also explain the working of function
and how to define class and object with basic characteristics of OOPs.

4.3 TOKENS
Entire C++ program is made up of tokens. Token is the basic

building block of any C++ program. We may also understand the token as
most important part of any program. Token is the smallest meaningful unit
in the program. Tokens are used for different purposes at different places.

For example, if we think of any house, it is made up of different
elements like cement, iron, wood, bricks, doors, windows, electric
elements, bath elements etc. But builder has to decide where to put which
element. In the same way token is the basic element of any program. One
program is made up of many tokens. Every token is used for any particular
purpose. Some tokens have predefined purposes and some tokens are
defined by programmer. As a programmer we have to decide, where to use
which token. We may also define new tokens as per our need. Simply we
may say that, anything we write down in program is token.

For example: if, for, while, switch, class, all variables name, all
operators are tokens.

There are 5 types of tokens in the program-

1. Keyword

2. Identifier

3. Operators

4. Literals (Constants)

5. Punctuation marks

4.3.1 KEYWORDS

Keywords are the reserve words in compiler. Meaning of the
keywords are fixed in the compiler and there meaning cannot be changed.
There are fixed number of keywords in compiler. Keywords in C++ are
also case sensitive.

R
IL

-0
85

MCS-102/36

There are 32 in C++ which were also in C language :

auto const double float int short struct unsigne
d

break continu
e else for long signed switch void

case default enum goto registe
r sizeof typede

f volatile

char do extern if return static union while

There are another 30 more reserved words in C++ those were not in C :

asm dynamic_cast namespace reinterpret_cast try

bool explicit new static_cast typeid

catch false operator template typename

class friend private this using

const_cast inline public throw virtual

delete mutable protected true wchar_t

There are 11 C++ reserved words, which are not essential in standard
ASCII character set, but they are added for some of the C++ operators :

and bitand compl not_eq or_eq xor_eq

and_eq bitor not or xor

4.3.2 IDENTIFIERS

Identifiers are the words which don’t have predefined meaning in
compiler. Identifiers are the words which are used to identify something.
Variables names are the best example of identifiers. There are two
categories in identifiers: first library and second user defined.

In the first category, there are some words defined in the library
i.e. getch, clrscr etc. These words are not given in compiler but they are
given in header files. We need to first include the header files for such
words. Purpose of such library identifiers are defined in library,
programmer just need to call the identifier from library. As library
identifiers are defined in library, there meaning will be same in all
programs. R

IL
-0

85

MCS-102/37

In the second category, programmer has to define the words i.e.
variable names, array name, function name, object name, structure name
etc. Programmer need not to include any header file in such case. One user
defined identifier, used for one purpose, may be used for other purpose in
different program.

Naming Conventions : There are some rules for defining the identifiers,
those are called naming convection. Naming convention in C++ are as
given:

• May contain only: A to Z (Capital alphabets)

 Z to z (Lowercase
alphabets)

 0 to 9 (Digits)

 _ (underscore)

• Must begin with alphabet or underscore.

• Identifiers are case sensitive.

• Identifiers must be unique within block. (No duplicity)

Identifiers should be in small letters because capital letters are used
to identify constant values.

Valid identifiers Invalid identifiers

age 123abc

name abc 123

name1 student’s

height1 Student name

address_1 int

weight ur-name

rollno roll number

4.3.3 LITERALS

Literals are the actual values, which are written in the
programming code. The value of constant can’t be changed.

R
IL

-0
85

MCS-102/38

Integer literals : Any whole number
e.g. 1, 2, 123, 0, -123 etc.

Real literal : Any real number (floating / double)
e.g. 1.23, 1.23f, 1.23F, 0.0, 1.0, -23.34, 3.14 etc.

Character literal : Any single letter within single quotes or escape
sequences.
e.g. ‘a’, ‘x’, ‘1’, ‘ ’, ‘+’, ‘A’, etc.

String literal : Anything or nothing with double quotes
e.g. “ankur”, “C++”, “”, “ankur mittal”, “123”, “a”, “a-
123” etc.

4.3.4 OPERATORS

Operators are symbols which take one or more operands or
expressions and perform any arithmetic or logical computations. The
values on which operator perform any action are known as operands. E.g.
in a+b: + is the operator and a, b are the operands. There are 3 types of
operators.

• Unary Operator : Unary operators are those operators which
perform action on only one operand. There are some unary
operators e.g. sizeof(), negation operator, increment, decrement
operator etc.

Literal

Numeric Literal

Integer Literal

Real Literal

Non-numeric
Literal

Character
Literal

String Literal

Operator

Unary Operator

Binary Operator

Ternary Operator

R
IL

-0
85

MCS-102/39

• Binary operator : Binary operators are those operators which
perform action on exactly two operands. Mostly operators are the
binary operators e.g. +, -, *, >, = etc.

• Ternary Operator : Ternary operators are those operators which
perform action on three operands. There is only one ternary
operator i.e. ternary operator (? :).

Operators are categorized in the following categories:

• Arithmetic Operators C++ provides five basic arithmetic operators.
These are summarized in Table.

Operator Name Example

+ Addition 12 + 4.9 // gives 16.9

- Subtraction 3.98 – 4 // gives -0.02

* Multiplication 2 * 3.4 // gives 6.8

/ Division 9 / 2.0 // gives 4.5

% Remainder 13 % 3 // gives 1

• Relational Operators

C++ provides six relational operators for comparing numeric
quantities. Relational operators evaluate to 1 (representing the true
outcome) or 0 (representing the false outcome).

Operator Name Example

== Equality 5 == 5 // gives 1

!= Inequality 5 != 5 // gives 0

< Less Than 5 < 5.5 // gives 1

<= Less Than or Equal 5 <= 5 // gives 1

> Greater Than 5 > 5.5 // gives 0

>= Greater Than or Equal 6.3 >= 5 // gives 1

• Logical Operators

C++ provides three logical operators for combining logical
expression. These are summarized in Table. Like the relational
operators, logical operators evaluate to 1 or 0.

R
IL

-0
85

MCS-102/40

Operator Name Example

! Logical Negation !(5 == 5) // gives 0

&& Logical And 5 < 6 && 6 < 6 // gives 1

|| Logical Or 5 < 6 || 6 < 5 // gives 1

• Bitwise Operators

C++ provides six bitwise operators for manipulating the individual
bits in an integer quantity. These are summarized in Table.

Operator Name Example

~ Bitwise Negation ~'\011' // gives '\366'

& Bitwise And '\011' & '\027' // gives '\001'

| Bitwise Or '\011' | '\027' // gives '\037'

^ Bitwise Exclusive Or '\011' ^ '\027' // gives '\036'

<< Bitwise Left Shift '\011' << 2 // gives '\044'

>> Bitwise Right Shift '\011' >> 2 // gives '\002'

• Increment/Decrement Operators

The auto increment (++) and auto decrement (--) operators provide
a convenient way of, respectively, adding and subtracting 1 from a
numeric variable. The examples assume:

 int k = 5;

Operator Name Example

++ Auto Increment (prefix) ++k + 10 // gives 16

++ Auto Increment (postfix) k++ + 10 // gives 15

-- Auto Decrement (prefix) --k + 10 // gives 14

-- Auto Decrement (postfix) k-- + 10 // gives 15

• Assignment Operator

The assignment operator is used for assigning a value at some
memory location. Its left operand is an l-Value, and its right
operand is an r-Value. And r-Value is assigned into l-Value.

Assignment may also be used in shorthand form like :

R
IL

-0
85

MCS-102/41

Operator Example Equivalent To

= n = 25 n = 25

+= n += 25 n = n + 25

-= n -= 25 n = n - 25

*= n *= 25 n = n * 25

/= n /= 25 n = n / 25

%= n %= 25 n = n % 25

&= n &= 0xF2F2 n = n & 0xF2F2

|= n |= 0xF2F2 n = n | 0xF2F2

^= n ^= 0xF2F2 n = n ^ 0xF2F2

<<= n <<= 4 n = n << 4

>>= n >>= 4 n = n >> 4

• Conditional Operator

The conditional operator takes three operands. It has the general
form :

 operand1 ? operand2 : operand3

First operand1 is evaluated, which is treated as a logical condition.
If the result is nonzero then operand2 is evaluated and its value is the final
result. Otherwise, operand3 is evaluated and its value is the final result.
For example:

m = 1; n = 2;

min = (m < n ? m : n); // min receives 1

Note that of the second and the third operands of the conditional operator
only one is evaluated. This may be significant when one or both contain
side-effects (i.e., their evaluation causes a change to the value of a
variable). For example, in

min = (m < n ? m++ : n++);

m is incremented because m++ is evaluated but n is not incremented
because n++ is not evaluated.

Because a conditional operation is itself an expression, it may be used as
an operand of another conditional operation, that is, conditional
expressions may be nested. For example:

int m = 1, n = 2, p =3;

R
IL

-0
85

MCS-102/42

int min = (m < n ? (m < p ? m : p): (n < p ? n : p));

4.3.5 PUNCTUATION MARKS

A punctuator is a token that has syntactic and semantic meaning to
the compiler, but the exact significance depends on the context. A
punctuator can also be a token that is used in the syntax of the pre-
processor. Some characters in C are used as punctuators, which have
their own syntactic and semantic significance. Punctuators are not
operators or identifiers. Here is the list of punctuators-

Punctuator Use Example

< > Header file name #include <limits.h>

[] Array delimiter char a[7];

{ } Initializer list, function body, or
compound statement delimiter

char x[4] = {'H', 'i', '!',
'\0' };

()
Function parameter list
delimiter; also used in
expression grouping

int f (x,y)

* Pointer declaration int *x;

, Argument list separator char x[4] = { 'H', 'i', '!',
'\0'};

: Statement label labela: if (x :=,= 0) x +=
1;

= Declaration initializer char x[4] = { "Hi!" };

; Statement end x += 1;

... Variable-length argument list int f (int y, ...)

Pre-processor directive #include "limits.h"

' ' Character constant char x = 'x';

" " String literal or header name char x[] = "Hi!";

Check Your Progress :

In a AND operator what is necessary for execution?

R
IL

-0
85

MCS-102/43

4.4 DATA TYPES

Data type is the collection of values which can be assigned to the
variable. Data type is mandatory to be declared before the use of any
variable because it determines the type of operations those can be
performed on the declared variables. Suppose arithmetic operation can be
performed on the numeric values only and string operation can be
performed on the char data type only. Every data type has its fixed
memory consumption at compile time. The range of values is also there
for the numeric values.

Data type can also be treated as the type of the variable. A data
type in programming, a classification identifying one of various types of
data, as floating-point, or integer, stating the possible values for that type,
the operations that can be done on that type, and the way the values of that
type are stored.

4.4.1 BASIC DATA TYPE (PRIMITIVE DATA TYPE)

Primitive data type is the data type which may be used in program
directly. This data type does not need any header file or any other
declaration before its use. They are directly available in compiler. They
are also known as basic data type. There are 4 basic data types :

Data Types
in C++

Primitive
Data Type

 char
 int
 float
 double

Derived
Data Type

 Array
 Pointer
 Function

User Defined
Data Type

 Class
 Structure, Union
 Typedef, Enum

R
IL

-0
85

MCS-102/44

S. no. Data
type

Memory
consumption Utility Range

1. char 1 byte
For any single letter

within single quote
-128 to 127

2. int 2 bytes

Integer number

(whole number)

within range.

-32768 to

+32767

3. float 4 bytes
Real number with

max 6 decimal places.

3.4 e-38 to

3.4 e+38

4. double 8 bytes

Real number with

max 14 decimal

places.

1.7 e-308 to

1.7 e+308

For example, int variable definition

int salary;

This salary variable will consume 2 bytes in main memory like this-

Representation of an integer in memory.

1211 1212 1213 1214 1215 1216 1217
Byte Byte Byte Byte Byte ... Memory... 10110011 10110011

sal ar y
(a two-byte integer whose address is 1214)

4.4.2 DERIVED DATA TYPES

Derived data types are those types which are derived from other
types (either primitive or user defined data type). They are used to change
the range of the data items. But they cannot be modified by the
programmer.

R
IL

-0
85

MCS-102/45

S.no.
Data

type
Memory consumption Utility

1 Array

Number of items *

memory consumed by

1 element

Where multiple items of

homogenous types are

needed to be stored.

Supports static memory

allocation.

2 Pointer

Number of items *

memory consumed by

1 element

For Dynamic memory

allocation

3 Function Depends on return type For modularity in program.

4.4.3 USER DEFINED TYPE

User defined data type is one type which is defined by the
programmer as per the requirement of the user. It is the customized data
type. In case of structure or union heterogeneous data types can be
collected together to form a new data type.

Check Your Progress

What is size of void in C++?

4.5 TYPE COMPATIBILITY

Type compatibility is applied when we use two different types of
data types in one operation. Type compatibility allows the use of two
different types in one operation without any notification and it also allows
to substitute one value for other without modification. It is very close to
implicit type conversion. Type compatibility is applied in two forms: First
at the assignment compatibility, second at the expression compatibility.

R
IL

-0
85

MCS-102/46

 Example 5.1 Program to show the implementation of expression

capability and assignment capability

#include<iostream.h>

#include<conio.h>

void main()

{

 clrscr();

 int a, b;

 a=10/3; // expression capability

 b=10.5; // assignment capability

 cout<<"a="<<a<<endl;

 cout<<"b="<<b<<endl;

 getch();

}

Output:
a=3

b=10

Value of a will be 3 because 10 and 3 are integers and their result
will be integer in C++. It will be called expression compatibility.

Value of b will be 10 because b is also declared as integer; it
cannot store the float value. It is called assignment compatibility.

Check your Progress

How would you declare a double called add and initialize it to 5?
And which compatibility it represents?

4.6 REFERENCE

Reference variable in C++ is its new feature as compared to C
language. In C language, we have to use pointer to variable for
referencing. It is also possible in C++. Besides pointer to variable, C++
also supports reference variables. Reference variables are those variables
which share the same memory location as assigned to them at the time of
declaration.

If we change the value of reference variable, it will also update the
value of that variable, which was assigned into it. And its opposite is also

R
IL

-0
85

MCS-102/47

true. If we change the value of original variable, it will also update the
value of its reference variable.

Example 4.2 Program to show the implementation of reference
variables

#include<iostream.h>

#include<conio.h>

void main()

{

 clrscr();

 int a,c;

 a=10;

 int &b=a; //reference variable to a

 c=a;

 cout<<"a="<<a<<endl;

 cout<<"b="<<b<<endl;

 cout<<"c="<<c<<endl;

 b=15; // update a and b

 c=20; // will not update a

 cout<<"a="<<a<<endl;

 cout<<"b="<<b<<endl;

 cout<<"c="<<c<<endl;

 a=19; // update a and b

 cout<<"b="<<b<<endl;

 getch();
}

Output :
a=10

b=10

c=10

a=15

b=15

c=20

b=19

R
IL

-0
85

MCS-102/48

Check Your Progress
Can we reinitialize reference variable?

4.7 VARIABLE

Whenever we create any program, we need to store some values.
Values may be stored for input, processing or result. For all purposes, we
need some memory in main memory. Programming languages provide
variables to store values into them.

A variable is a named location in memory that is used to hold a
value that can be modified by the program. All variables must be declared
before they can be used. Variable can be declared as any valid identifier.

A variable is a symbolic name for a memory location in which data
can be stored. This value may be recalled as and when necessary.
Variables are used for holding data values so that they can be utilized in
various computations in a program. All variables have two important
attributes:

* A type which is established when the variable is defined (e.g.,
integer, float, character etc.). Once defined, the type of a C++
variable cannot be changed.

* A value which can be changed by assigning a new value to the
variable. The kind of values a variable can assume depends on its
type. For example, an integer variable can only take integer values
(e.g., 2, 100, -12).

Variable Declaration : The general form of a declaration is

Datatype variable_list ;

Here, type must be a valid data type, and variable_list may consist of one
or more identifier names separated by commas. In c language all the
variables must be declared at the beginning of the function before any
processing command.

Variable has the ability to change (vary) its value anywhere in the
program. That’s why it is known as variable. One variable can hold only
one value at a time. On changing the variable value, the old will be
replaced with the new value.

Variable Initialization : The assigning of a value to a variable for the
first time is called initialization. It is important to ensure that a variable is
initialized before it is used in any computation. It is possible to define a
variable and initialize it at the same time. For example-

int a=10,b,c=5;

float x=10.25,y;

R
IL

-0
85

MCS-102/49

Types of Variables : There are four types of variables local, global
variables, instance variables and class variables.

Local Variables : Local variables are declared in any specific block.
Block may be any function, loop or any other block. These variables are
also known as automatic variables. Scope or accessibility of such variables
are within the block in which they are declared. Their lifetime or memory
consumption will also be the same i.e. till the existence of that block. We
cannot access local variables outside its block. There may be multiple
variables with same name but in different blocks. All will consume
memory separately till the existence of their block and may be accessed
inside block only. A local variable is created upon entry into its block and
destroyed upon exit.

Global Variables : Global variables are declared outside the main
function. They are constructed at the start of the program execution and
destroyed at the end. They may be accessed in the entire program. Values
of global variable may be changed in any block. Once changed, they will
be updated for all other locations as well. They will hold their value
throughout the program's execution. If global variable and local variables
are declared with same name, preference will be given to local variable to
accessing block.

Example 4.3 Program to show the implementation of local and
global variables

#include<iostream.h>

#include<conio.h>

int x; //global variable

void disp1();

void disp2();

void main()

{

 clrscr();

 x=10;

 cout<<"x="<<x<<endl; // print 10

 disp1(); // print 10 and increase x by 1

 disp2();

 cout<<"x="<<x<<endl; // print 11

 getch();

R
IL

-0
85

MCS-102/50

}

void disp1() // will access global variable

{

 cout<<"x="<<x<<endl; // print value of global x

 x++; // increase x by 1

}

void disp2() // will access local variable

{

 int x=5; // local variable

 cout<<"x"<<x<<endl; // print 5

 x++; // increase x by 1

}

Output:

x=10

x=10

x=5

x=11

Instance Variables : Instance variables are declared as member of the
class. They will consume memory when object of that class is created.
They are created on instance creation that’s why they are known as
instance variables. They cannot be accessed directly outside the class.
They are like other local variables except the fact that they are created
each time object of that class is created. Memory will be allocated
separately for all instance variables for all objects of that class. They will
be used when we will use class and objects.

Class Variables : Class variables are declared as member of the class but
as static member. They will not consume memory separately for all
objects of that class. They will consume memory only once irrespective of
number of objects. They consume once for that class that’s why they are
known as class variables. They may be updated through one object and
will be updated for all objects of that class as they consume only once for
one class. They may be used where programmer needs common value for
all objects. For example if we need to count the number of objects created
for any class, we may declare one static integer data member and increase
its value by one inside the constructor. They will also be used during class
and objects like instance variables.

R
IL

-0
85

MCS-102/51

Check Your Progress
What happens if a local variable exists with the same name as the global
variable you want to access?

4.8 CONSTANT

A Constant value is the one which does not modify throughout the
execution of a program or we can say that constant has fixed
value. Constant uses the secondary storage area. Constant is also called
literals. Constants are of two types: Numeric and Non- Numeric Constants
(Character Constant)

e.g. int x=5;

float t=3.2;

char =’p’;

4.9 TYPE CASTING

You can force an expression to be of a specific type by using a
cast. The general form of a cast is

(type) expression

where type is a valid data type. For example, to cause the expression x/2 to
evaluate to type float, write

(float) x/2

Casts are technically operators. As an operator, a cast is unary and has the
same precedence as any other unary operator. Casts can be very useful.
Caste can be used for caste promotion or demotion both.

Type Conversion : Type conversion is the process in which one data type
will be converted into another data type. When constants and variables of
different types are mixed in an expression, they are all converted to the
same type. The compiler converts all operands up to the type of the largest
operand, which is called type promotion e.g.

Operand1 Type Operand2 Type Resultant Type

int int int
int float float
float int float
float double double
double int double
int char int R

IL
-0

85

MCS-102/52

Check your Progress
What is the difference between type casting and type conversion?

4.10 OPERATOR PRECEDENCE

Operator Precedence determines which operator will be executed
first in the expression or statement. Operator precedence is manipulated
only if multiple operators in single expression are found. The order in
which operators are evaluated in an expression is significant and is
determined by precedence rules. These rules divide the C operators into a
number of precedence levels. Operators in higher levels take precedence
over operators in lower levels.

Operator Association : If multiple operators of equal precedence are
found in the single expression, operator association determines in which
sequence the operators will be executed. Association can be either left to
right or right to left. Mostly operators are associated from left to right.

Precedence Operator Description Associativity
1 :: Scope resolution Left-to-right

2

++ -- Suffix/postfix increment and
decrement

type() type{} Function-style type cast
() Function call
[] Array subscripting

. Element selection by
reference

-> Element selection through
pointer

3

++ -- Prefix increment and
decrement

Right-to-left

+ - Unary plus and minus

! ~ Logical NOT and bitwise
NOT

(type) C-style type cast
* Indirection (dereference)
& Address-of

sizeof Size-of
new, new[] Dynamic memory allocation

delete, delete[] Dynamic memory de-R
IL

-0
85

MCS-102/53

allocation
4 .* ->* Pointer to member Left-to-right

5 * / % Multiplication, division, and
remainder

6 + - Addition and subtraction

7 << >> Bitwise left shift and right
shift

8
< <= For relational operators < and

≤ respectively

> >= For relational operators > and
≥ respectively

9 == != For relational = and ≠
respectively

10 & Bitwise AND
11 ^ Bitwise XOR (exclusive or)
12 | Bitwise OR (inclusive or)
13 && Logical AND
14 || Logical OR

15

?: Ternary conditional Right-to-left

= Direct assignment (provided
by default for C++ classes)

+= -= Assignment by sum and
difference

*= /= %= Assignment by product,
quotient, and remainder

<<= >>= Assignment by bitwise left
shift and right shift

&= ^= |= Assignment by bitwise AND,
XOR, and OR

16 throw Throw operator (for
exceptions)

17 , Comma Left-to-right

When two operators of the same priority are found in the expression,
precedence is given to the extreme left operator.

Example: - x = 5 * 4 + 8 / 2;

 first second

 third R
IL

-0
85

MCS-102/54

Here, 5*4 is solved first. Through * and / have the same priorities. The
operator * occurs before /.

Check Your Progress
Which operator has highest precedence in * / % ?

4.11 CONTROL STRUCTURES

A running program spends all of its time executing statements. The
order in which statements are executed is called flow control (or control
structures). This term reflect the fact that the currently executing statement
has the control of the CPU, which when completed will be handed over
(flow) to another statement. Flow control in a program is typically
sequential, from one statement to the next, but may be diverted to other
paths by branch statements. Flow control is an important consideration
because it determines what is executed during a run and what is not,
therefore affecting the overall outcome of the program.

There are 3 categories of control structures in C++

• Sequential Statement

• Selection Statement

• Iterative Statement

4.11.1 SEQUENTIAL STATEMENT

A statement, the smallest independent computational unit, specifies
an action to be performed. In most cases, statements are executed in
sequence. Sequential statements are those statements which are executed
in linear order. These statement never change their flow of execution.

4.11.2 SELECTION STATEMENT

Selection statement applies the decision making and case control
instruction in Programming. Decision and Case control instructions allow
the computer to take a decision as to which instruction is to be executed
next. Selection statement is used in structured programming to branch the
execution of flow at run time. The branching will be done on the basis of
any criteria given in the problem. This category involves if statement and
switch statement. If statement is the branching statement which transfer
the flow of control in the program.

Switch is the selective statement which select any case block on
the basis of given value or variable. Switch can be used where
programmer has multiple options but only one option can be selected by
user. In selective statement specific block of code will be executed on the
basis of criteria but only once. Suppose programmer needs to check

R
IL

-0
85

MCS-102/55

even/odd number, +ve/-ve number, Teenagers, leap year, conditional
discount, Grade of student etc.; they need selective statement. C++
language must be able to perform different sets of actions depending on
the circumstances. In sequence control structure, the various steps are
executed sequentially, i.e. in the same order in which they appear in the
program. In fact to execute the instructions sequentially, we don’t have to
do anything at all. By default the instructions in a program are executed
sequentially. However, in serious programming situations, seldom do we
want the instructions to be executed sequentially. Many a times, we want a
set of instructions to be executed in one situation, and an entirely different
set of instructions to be executed in another situation. This kind of
situation is dealt using a decision control instruction. A decision control
instruction can be implemented using:

• The if statement

• The if-else statement

• The if-else ladder statement

• The nested if-else statement

• Switch Statement

4.11.2.1 IF STATEMENT

It is sometimes desirable to make the execution of a statement
dependent upon a condition being satisfied. The if statement provides a
way of expressing this. C++ uses the keyword if to implement the decision
control instruction. If the branching statement which directs the flow of
execution at run time.
Syntax : The general syntax of if statement is as follows:

if (condition)
{
:
}

C++ uses the keyword “if” to execute a set of command lines or
one command line when the logical condition is true. It has only one
option. The set of command lines or command lines are executed only
when the logical condition is true. The statement is executed only when
the condition is true. In case condition is false the compiler skips the lines
within the if block.

The keyword if tells the compiler that what follows is a decision
control instruction. The condition following the keyword if is always
enclosed within a pair of parentheses. If the condition, whatever it is, is
true, then the statement is executed. If the condition is not true then the
statement is not executed; instead the program skips past it. But how do R

IL
-0

85

MCS-102/56

we express the condition itself? And how do we evaluate its truth or
falsity? As a general rule, we express a condition using ‘relational’
operators. The relational operators allow us to compare two values to see
whether they are equal to each other, unequal, or whether one is greater
than the other.

 False True

Example 4.4 Program to convert any alphabet from lower case to
upper case

#include<iostream.h> /* Header file inclusion */
#include<conio.h>
void main()
{
char ch; /* variable declaration; */
clrscr();
cout<<"Enter any letter ";
cin>>ch; /* input statement */
if(ch>='a' && ch<='z') /* if statement to check for

small letter*/
{
ch=ch-32;
}
cout<<"\n After conversion "<<ch;
getch();
}

Output:
Enter any letter a
After conversion A

Message

Is V < 10

 Stop

 Start

Input Value Of V

R
IL

-0
85

MCS-102/57

Observe that here the two statements to be executed on satisfaction
of the condition have been enclosed within a pair of braces. If a pair of
braces is not used then the compiler assumes that the programmer wants
only the immediately next statement after the if to be executed on
satisfaction of the condition. In other words we can say that the default scope
of the if statement is the immediately next statement after it.

Check Your Progress
In an if statement when do you need the curly braces?

4.11.2.2 THE IF-ELSE STATEMENT

The if statement by itself will execute a single statement, or a
group of statements, when the expression following if evaluates to true. It
does nothing when the expression evaluates to false. Programmer can use
the if-else statement to specify what to execute if the criteria is true and
what to do when criteria is false. It means else block is optional.

Syntax : The general syntax of if-else is as follows:

if (condition)
{
:
}
else
{
:
}

R
IL

-0
85

MCS-102/58

Example 4.5 Program of Compare two numbers .

#include<iostream.h> /* Header file inclusion */

#include<conio.h>

void main()

{

int a,b; /* variable declaration; */

clrscr();

cout<<"Enter two numbers ";

cin>>a>>b; /* input statement */

if(a>b) /* if statement to compare

two numbers */

{

cout<<"\nGreater number is "<<a;

}

else

{

cout<< "\nGreater number is "<<b;

}

getch();

}

Output:

Enter two numbers 23 4

Greater number is 23

Check Your Progress
The if.-else statement can be replaced by which operator?

4.11.2.3 NESTED IF-ELSE

If statement can be used to execute anything conditionally. So we
can also use if statement within if statement. It is perfectly all right if we
write an entire if-else construct within either the body of the if statement
or the body of an else statement. This is called ‘nesting’ of ifs or nested if-R

IL
-0

85

MCS-102/59

else. Nested if can be implemented to any level; but after second level it
becomes very typical to debug and understand.

Syntax : The general syntax of nested if-else is as follows:

if
(conditi
on)

{
if()
{ }
}
else
{
if()
{ }
else
{ }
}

Example 4.6 Program to compare three numbers by using Nested if-
else

#include<iostream.h> /* Header file inclusion */

#include<conio.h>

void main()

{

int a, b, c; /* variable declaration; */

clrscr();

cout<<"Enter three numbers ";

cin>>a>>b>>c; /* input statement */

if(a>b) /* if statement to compare two numbers

*/

{

if(a>c) /* nested if statement to compare

remaining 2 numbers */

 cout<<"\n The Greatest number is "<<a;

else

 cout<<"\n The Greatest number is "<<c;

}

R
IL

-0
85

MCS-102/60

else

{

if(b>c) /* nested if statement to compare

remaining 2 numbers */

 cout<<"\n The Greatest number is "<<b;

else

 cout<<"\n The Greatest number is "<<c;

}

getch();

}

Output:

Enter three numbers 23 45 37

The Greatest number is 45

4.11.2.4 IF-ELSE LADDER

In this kind of statements numbers of logical conditions are
checked for executing various statements. Here, if any logical condition is
true the compiler executes the block followed by if condition otherwise it
skip and executes else block.

If statement can be used to compare multiple conditions one after
another and execute different block for different conditions. This can be
done with if-else ladder. This category of if involves a range of conditions
and their separate block regarding their execution.

Syntax : The general syntax of if-else ladder is as follows:

if
(conditio
n1)

{
:
}
else if

(conditio
n2)

{
:
}
else if

(conditioR
IL

-0
85

MCS-102/61

n3)
{
:
}
else
{
:
}

Example 4.7 Program to compare four numbers by using if-else

ladder

#include<iostream.h> /* Header file inclusion */

#include<conio.h>

void main()

{

int a, b, c, d; /* variable declaration; */

clrscr();

cout<<"Enter four numbers ";

cin>>a>>b>>c>>d; /* input statement */

if(a>=b && a>=c && a>=d) /* if statement to compare

1 number with 3 */

{

cout<<"\n The Greatest number is "<<a;

}

else if(b>=c && b>=d) /* if statement to compare

1 number with 2 */

{

cout<<"\n The Greatest number is "<<b;

}

else if(c>=d) /* if statement to compare

1 number with 2 */

{

cout<<"\n The Greatest number is "<<c;

 }

R
IL

-0
85

MCS-102/62

else

{

cout<<"\n The Greatest number is "<<d;

}

getch();

}

Output:

Enter four numbers 67 78 98 34

The Greatest number is 98

Logical Operator
Logical operators are used to perform action on conditional

operands. There are three types of logical operators:

1. Logical AND operator (&&) : operators are used to combine two
conditions and return the 1 or 0. 1 represents true and 0 represents
false. This is the binary operator. It returns true only if both the
conditions are true otherwise it returns false.

Condition 1 Condition2 Result (condition1 && condition2)

True True True

True False False

False True False

False False False

2. Logical OR operator (||) : Logical or operator is also used to
combine two conditions and return 1 or 0. This is also the binary
operator. This operator returns true if any or both the conditions
are true. If both the conditions are false only then it returns false.

Condition 1 Condition2 Result (condition1 || condition2)

True True True

True False True

False True True

False False False

R
IL

-0
85

MCS-102/63

3. Logical NOT operator (!) : Logical not operator is used to invert
the condition result. This is the unary operator. If the condition is
true it returns false and if the condition is false it return true.

Condition Result (!condition)

True False

False True

4.11.2.5 SWITCH STATEMENT

The switch statement is a multi-way branch statement. If we have
multiple choices and we want to choose any of the choice, we may use
switch statement. But we may only compare any specific value with
equality, we may not compare with any other relational operator like
greater than or less than. Switch is the selective statement.

During making match against given value, if match is found in
case statement, it execute the statement there onwards till break statement
is found. If match is not found, it moves to next case value. At last if no
case is matched, it executes default group. Default is optional in switch
statement. If we want to compare one value against some values, we may
use switch statement or we may use else-if ladder. But we cannot replace
else-if ladder with switch statement as in switch, we cannot perform all
comparison operations except equality with one value.

The Switch Case vs. Nested if

S.no. Switch if

1.

The switch () can only test for

equality

i.e. only constant values are

applicable

The if can evaluate relational

or logical expressions.

2.

No two case statements have

identical

constants in the same switch

Same conditions may be

replaced for number of times.

3.

Character constants are

automatically converted to

integers.

Character constants are

automatically converted to

integers.

4. In switch case statement nested In nested if statement switch

R
IL

-0
85

MCS-102/64

if can be used. () case can be used.

5.

Switch statement’s program can

be created with if-else ladder

statement.

All if programs cannot be

developed with switch

programs.

Syntax : The general syntax of switch is as follows :

switch(variable)
{
case value1:
:

break;

case value2:
:
break;
case value3:
:
break;
default :
:
}

Example 4.8 Program of arithmetic operator and perform
operation

#include<iostream.h> /* Header file inclusion */

#include<conio.h>

void main()

{

int a, b, c; /* variable declaration; */

char op;

clrscr();

cout<<"Enter two numbers ";

cin>>a>>b; /* input statement */

cout<<"Enter any arithmetic operator ";

cin>>op; /* input statement */

switch(op) /* switch statement */

{ R
IL

-0
85

MCS-102/65

case '+': /* case value checking */

c=a+b;

cout<<"Result is "<<c;

break;

case '-': /* case value checking */

c=a-b;

cout<<"Result is "<<c;

break;

case '/': /* case value checking */

c=a/b;

cout<<"Result is "<<c;

break;

case '*': /* case value checking */

c=a*b;

cout<<"Result is "<<c;

break;

case '%': /* case value checking */

c=a%b;

cout<<"Result is "<<c;

break;

default:

cout<<"Wrong operator";

}

getch();

}

Output:
Enter two numbers 34 23

Enter any arithmetic operator +

Result is 57

In this example the value of op will be checked against all the case
values. First of all + will be checked. If it if matched then its blocked will
be executed otherwise next case value will be checked. The case matching
will be checked till first match. If no case value is matched then default

R
IL

-0
85

MCS-102/66

block will be executed. We must use break statement before starting new
case value otherwise all the statements after matching will be executed.
Case value is ended with colon (:) not with semicolon.

Check Your Progress

In a switch statement what must come after every case?

4.11.3 ITERATIVE STATEMENT

Iterative is the non-sequential statement in programming. It is used
to implement the reusability concept in code. It is also known looping
statement. Looping execute the single or group of statement for multiple
times. The number times is to be decided by programmer. It may be fixed
number of times or variable number of times. In some cases it may also be
infinite loop. But important thing is that single or group will be executed
repeatedly. So we can also say that iterative statement involves the
repetitive statement. If we write some statements inside the iterative block
that will be executed multiple times continuously till any specific
condition. Iterative statement defines a specific block which defines the
number of repetition. For example display counting of numbers, table of
any number, factorial etc. can be solved with iterative statement.

A loop is defined as a block of statements which are repeatedly executed
for certain number of times. The condition may be predetermined or open
ended.

Parts of the loop :

1. Initialization: Initialization is the first step involved in loop. It
specifies the starting value of the counter variable of loop. It is
executed only once at the start of loop.

2. Ending Condition: Ending condition specifies the terminating
condition for loop. Loop is executed till the condition is true. As
soon as the condition gets false, loop stops. Condition is checked
every time the loop is executed.

3. Step value: Step value defines the difference between two terms of
the loop counter. If loop starts from smaller starting value to larger
value, increment is applied. If loop starts from ending value to
smaller value, decrement is applied. Increment or decrement is
applied from the second time and then each time.

4. Loop Body: Loop body can be any single or a group of statements
which executes till condition is true. It contains the actual
statements which are required to be executed repeatedly.

R
IL

-0
85

MCS-102/67

Categories of looping

Fixed Length Loop :

It is also known as counter controlled loop. Fixed Length loop is
used where number of iteration is known at the time of looping. For loop
is the type of fixed loop. In this loop initial value of counter, ending
condition and step value are known to programmer. For example :

Requirement
Initial

value

Ending

condition

Step

value

Natural numbers 1 N +1

Natural number in reverse

order
N 1 -1

Even numbers 2 N +2

Odd Numbers 1 N +2

In the above table N is the integer variable, where value is input by user.

Variable length Loop :
Variable length loop is a kind of loop which is executed till

specified condition is true. Sometimes programmer doesn’t know the
number of iterations then variable length loop is used. Its syntax does not
include initialization and step value. It is variable length loop because with
the help of loop we cannot specify how many times loop will execute.
While and do-while is the type of variable length loop. For example to
find the LCM, HCF, Binary search, sum of digits etc. we have to use
variable length loop.

On the basis of length

Fixed Length Loop

Variable Length Loop

On the basis condition
checking

Entry controlled loop

Exit controlled loop

R
IL

-0
85

MCS-102/68

Fixed Length vs. Variable length Loop
S.no. Fixed Length Loop Variable length Loop

1.
In fixed length loop numbers

of iterations are known.

In variable length loop numbers

of iterations are not known.

2.

In this loop syntax contains

initialization, condition and

step value.

In this loop syntax contains

only condition.

3. For loop is fixed length loop.
While and do-while loop are the

variable length loops.

Entry controlled Loop :
It is also known as top tested loop. Entry controlled loop is the

loop where terminating condition is tested from the start of looping. For
and while loops are the top tested loop.

Exit controlled Loop :
It is also known as Bottom tested loop. Exit controlled loop is the

loop where terminating condition is tested at the bottom of looping. Do-
while loop is the bottom tested loop. Exit controlled loop will execute one
time even condition is false on first time. So we can say that when we
need loop to be execute at least one time irrespective of the condition, we
have to use do-while loop. If the condition gets false on the second time
there is no difference between entry controlled and exit controlled loop.

Entry controlled Loop vs. Exit controlled Loop
S.no Entry controlled Loop Exit controlled Loop

1.
Condition is checked at the

top of loop.

Condition is checked at the

bottom of loop.

2.

It is used to execute till the

condition is true.

It is used to execute till the

condition is true but at least one

time irrespective of the condition.

3.

If the condition gets false on

first time then loop will not

execute.

If the condition gets false first

time, loop will execute one time.

4.
For loop and while are top

length loop.

Do-while loop is the variable

length loops.

R
IL

-0
85

MCS-102/69

Types of Loop :
The C++ language supports three types of loop control statements.

a. The for loop

b. The while loop

c. The do-while loop

4.11.3.1 THE FOR LOOP

For loop is the fixed length and entry controlled loop. Whenever
programmer know the number of iterations for loop is used. The for loop
allows to execute a set of instructions until a certain condition is satisfied.

Syntax : The general syntax of for loop is as follows:

The for loop is the simplest and most commonly used loop. The loop
consists of three expressions. The first expression is used to initialize the
counter, the second is used to specify the terminating condition of loop.
Loop will be executed till condition is true. Increment/decrement will
specify the step value of counter. You must separate these three major
sections by semicolons. The for loop is more powerful when compared to
other loops. The number of iterations required to execute the body of the
loop is compared by using the formula.

for (initialization ; test condition ; increment/decrement)
{
 Statement1;
 Statement2;
}

Number of iteration = (Final Value(FV) - Initial Value(IV) + Step

Increment(SI)) / (Step Increment(SI))

R
IL

-0
85

MCS-102/70

Flowchart of for-loop

for Loop Variations
The previous discussion described the most common form of the for loop.
However, several variations of the for are allowed that increase its power,
flexibility, and applicability to certain programming situations. One of the
most common variations uses the comma operator to allow two or more
variables to control the loop.

The Infinite Loop
Although you can use any loop statement to create an infinite loop, for is
traditionally used for this purpose. Since none of the three expressions that
form the for loop are required, you can make an endless loop by leaving
the conditional expression empty, as here:

for(; ;) cout<<"This loop will run forever.\n";

When the conditional expression is absent, it is assumed to be true. You
may have an initialization and increment expression, but programmers
more commonly use the for(;;) construct to signify an infinite loop.
Actually, the for(;;) construct does not guarantee an infinite loop because
a break statement, encountered anywhere inside the body of a loop,
causes immediate termination. Program control then resumes at the code
following the loop, as shown here:

ch = '\0';

for(; ;)

{

ch = getchar(); /* get a character */

if(ch == 'A') R
IL

-0
85

MCS-102/71

 break; /* exit the loop */

}

cout<<"you typed an A";

This loop will run until the user types an A at the keyboard.

for Loops with No Bodies
A statement may be empty. This means that the body of the for loop (or
any other loop) may also be empty. You can use this fact to simplify the
coding of certain algorithms and to create time delay loops

for(; *str == ' '; str++) ;

As you can see, this loop has no body— and no need for one either.

Time delay loops

The following code shows how to create one by using for:

for(t=0; t < SOME_VALUE; t++) ;

The only purpose of this loop is to eat up time.

Syntax Output Remarks

for(a=0; a<=10;

a++)

 printf(“%d”, a);

Display value

from 1 to 10

‘a’ is increased from 0 to 10.

Curly braces are not necessary.

Default scope of for loop is

one statement after loop.

for(a=10; a>=0; a--

)

 cout<< a;

Display value

from 10 to 0
‘a’ is decreased from 10 to 0.

for(; ;)

 cout<< a;
Infinite loop No terminating statement

for(a=0; a<=20;)

 cout<< a;
Infinite loop

‘a’ is neither increased nor

decreased.

Check Your Progress
The C code ‘for (; ;) ’ represents an infinite loop. It can be
terminated by ___________

R
IL

-0
85

MCS-102/72

Example 4.9 Program to Print natural numbers up to n
#include<iostream.h> /* Header file inclusion */

#include<conio.h>

void main()

{

int i, n; /* variable declaration; */

clrscr();

cout<<"Enter limit ";

cin>>n; /* input statement */

for(i=0; i<=n; i++)

{

 cout<<"\t"<<i;

}

getch();

}

Output:
Enter limit 7

0 1 2 3 4 5 6 7

Check Your Progress

Can a for loop contain another for loop?

4.11.3.2 THE WHILE LOOP

While is the variable length and entry controlled loop. This loop
contains a condition but not initialization and increment/decrement. The
condition may be any expression, and true is any nonzero value. The loop
iterates while the condition is true. When the condition becomes false,
program control passes to the line of code immediately following the loop.

Syntax: The general syntax of while loop is as follows:

R
IL

-0
85

MCS-102/73

The test condition may be any expression. The loop statements will be
executed till the condition is true i.e. the test condition is evaluated and if
the condition is true, then the body of the loop is executed. When the
condition becomes false the execution will be out of the loop.

Example 4.10 Program to Print natural numbers up to n
#include<iostream.h> /* Header file inclusion */

#include<conio.h>

void main()

{

int i, n; /* variable declaration; */

clrscr();

cout<<"Enter limit ";

while (test condition)
{
 :
 :
}

R
IL

-0
85

MCS-102/74

cin>>n; /* input statement */

i=0; /* input statement */

while(i<=n)

{

 cout<<"\t"<<i;

 i++;

}

getch();

}

Output:

Enter limit 7

0 1 2 3 4 5 6 7

Check Your Progress
How many times ‘ its a while loop' should be printed?

int main()

{

int i = 1 ;

i = i - 1 ;

while(i)

{ cout<<"its a while loop";

 i++ ;

}

return 0;

}

4.11.3.3 THE DO-WHILE LOOP

Do-while is the variable length and exit controlled loop.

Unlike for and while loops, which test the loop condition at the top of the
loop, the do-while loop checks its condition at the bottom of the loop. This
means that a do-while loop always executes at least once.

Syntax: The general syntax of do-while loop is as follows: R
IL

-0
85

MCS-102/75

Do while loop is ended with terminator(;) after condition because it treats
the block as a single statement starts from do.

Example 4.11 Program to Print natural numbers up to n
#include<iostream.h> /* Header file inclusion */

#include<conio.h>

void main()

{

int i, n; /* variable declaration; */

clrscr();

cout<<"Enter limit ";

cin>>n; /* input statement */

i=0; /* input statement */

do {

 cout<<"\t"<<i;

do

{

 :

 :

}while (test condition);

R
IL

-0
85

MCS-102/76

 i++;

} while(i<=n)

getch();

}

Output:

Enter limit 7

0 1 2 3 4 5 6 7

In this program if user input 10 in limit, loop will print natural
numbers from 1 to 10. If user input 0 in range, even then it will print 1
because it is the exit controlled loop.

Perhaps the most common use of the do-while loop is in a menu
selection function. When the user enters a valid response, it is returned as
the value of the function. Invalid responses cause a return to next life after
the condition. Here, the do-while loop is a good choice because you will
always want a menu function to execute at least once. After the options
have been displayed, the program will loop until a valid option is selected.

Check Your Progress
What loops will always execute at least once?

For Loop vs. While Loop

S.no.

For Loop

While Loop

1. For loop is the fixed loop. While loop is the variable loop.

2.

For loop syntax contains

initialization, condition and

increment/decrement.

While loop syntax contains only

condition.

3.
Terminator(;) is used to

separate 3 parts.

Only condition is used so

separation is not required.

4.
Multiple initialization and

increments can be used.

While loop syntax does not

include initialization and

increment.

5. for keyword is used. while keyword is used.

6. Syntax- Syntax-

R
IL

-0
85

MCS-102/77

for (initialization ; condition ;

increment)

{

 :

}

while (test condition)

{

 :

}

While Loop vs. do-while Loop

S.no While Loop Do-while Loop

1. While loop is the entry

controlled loop.

Do-While loop is the exit controlled

variable loop.

2. While loop is executed till

condition is true.

Do-while loop is executed till

condition is true but at least one time.

3. While loop is not ended

with terminator (;).

While loop is ended with terminator

(;).

4. while keyword is used. Do and while keywords are used.

5. Generally used when

number of iterations are not

known and loop needs to

be executed till condition is

true.

Generally used in menu based

programs where loop needs to be

executed at least 1 time even

condition is false very first time.

6. Syntax-

:

while (test condition)

{

 :

}

Syntax-

:

do

{

 :

} while (test condition);

The break statement is used to terminate a case in a switch construct.
The break statement is also for termination of a loop, bypassing the
normal loop conditional test.

When a break is encountered inside a loop, the loop is terminated and
control passes to the statement following the loop body.

 R
IL

-0
85

MCS-102/78

Example 4.12 Program to find the inverse of a number
#include<iostream.h>

#include<conio.h>

void main()

{

float n;

char reply;

clrscr();

do

{

cout<<"Enter a number:";

cin>>n;

if(n == 0)

break;

cout<<"Inverse of the number is "<<1/n<<endl;

cout<<"Do you want to input another number(y/n)?";

cin>>reply;

}

while(reply != 'n');

getch();

}

Output:
Enter a number : 2

Inverse of the number is 0.5

Do you want to input another number (y/n) ?y

Enter a number:67

Inverse of the number is 0.014925

Do you want to input another number(y/n)? n

The continue statement forces the next iteration of the loop to take place,
skipping any code following the continue statement in the loop body. In
the for loop, the continue statement causes the conditional test and then
the re-initialization portion of the loop to be executed. In the while and do. R

IL
-0

85

MCS-102/79

While loops, program control passes to the conditional test. The following
program illustrates the usage of the continue statement:

Example 4.13 Program to finds the square of the numbers less than
100

#include<iostream.h>

#include<conio.h>

void main()

{

int n;

char reply = 'y';

clrscr();

do

{

cout<<"Enter a number:";

cin>>n;

if(n > 100)

{

cout<<"The number is greater than 100, enter another"<<endl;

continue;

}

cout<<"The square of the number is: "<<n*n<<endl;

cout<<"Do you want to enter another(y/n)? ";

cin>>reply;

}

while(reply != 'n');

getch();

}

Output:
Enter a number : 123

The number is greater than 100, enter another

Enter a number : 34

The square of the number is: 1156

Do you want to enter another (y/n) ?y

R
IL

-0
85

MCS-102/80

Enter a number :7

The square of the number is: 49

Do you want to enter another (y/n) ?n

Check Your Progress
Which keyword is used to come out of a loop only for that iteration?

4.12 STRUCTURE

Structure is the user defined data type. It is the collection of
multiple members. Data type of all members may be similar or different.
All the members declared inside the structure will consume memory when
variable of that structure will be created. Size of the structure variable
depends on the members declared in the structure.

Syntax : The general syntax of structure is as follows:

struct structure_name{

member_1_declaration;

member_2_declaration;

member_3_declaration;

member_n_declaration;

 }variable_list;

Unlike array, data type of all elements in structure, are not
mandatorily to be same but they will consume memory sequential order.
For example if we declare the structure for storing the record of any
student, that needs to store his name, roll number and age. It will be like
this

Example :

 struct student

 {

 int rollno;

R
IL

-0
85

MCS-102/81

 char sname[50];

 int age;

 };

Variable for this structure variable will be declared like:

 student s;

Memory representation of this variable be represented like:

 rollno sname age

 2 bytes 50 bytes
2

bytes

So each variable of this student structure will consume 54 bytes.

Members will be accessed via dot (.) operator through variable name. for
example in the above case, we may access the members like:

s.rollno

s.sname

s.age

Example 4.14 Program to store and display the record of student
with structure.

#include<iostream.h>

#include<conio.h>

struct student

{

 int rollno;

 char sname[50];

 int age;

};

void main()

{

R
IL

-0
85

MCS-102/82

 clrscr();

 student s;

 cout<<"Enter student name ";

 cin>>s.name;

 cout<<"Enter student roll number ";

 cin>>s.rollno;

 cout<<"Enter student age ";

 cin>>s.age;

 cout<<"\n\t\tStudent Record \n";

 cout<<"\n\t NAME : "<<s.sname;

 cout<<"\n\t ROLL NUMBER : "<<s.rollno;

 cout<<"\n\t AGE : "<<s.age;

 getch();

}

Output:
Enter student name Amit

Enter student roll number 101

Enter student age 17

 Student Record

 NAME : Amit

 ROLL NUMBER : 101

 AGE : 17

Check Your Progress
What will happen when the structure is declared?

Unions
Like structure of C language, C++ also support unions. Union is also one
of the user defined data type. It may contain multiple members of different
data types. But union variable may store any one member’s value at a
time. If we try to store value in any other member then value of pervious
member will be overwritten.

R
IL

-0
85

MCS-102/83

Syntax : The general syntax of Union is as follows:

union union_name{

member_1_declaration;

member_2_declaration;

member_3_declaration;

member_n_declaration;

 }variable_list;

Unlike array, data type of all elements in union, are not
mandatorily to be same but they will consume in different way. Memory
will depends on the member which consumes largest number of bytes. For
example if we declare the union for storing the record of any student, that
needs to store his name, roll number and age. It will be like this

Example :

 union student

 {

 int rollno;

 char sname[50];

 int age;

 };

Variable for this union variable will be declared like:
 student s;

Memory representation of this variable be represented like:

 sname / rollno / age

 50 bytes

So each variable of this student structure will consume 50 bytes because
name consumes maximum number of bytes. If we store any member, it R

IL
-0

85

MCS-102/84

will be stored in that location. If any new member is updated, it will be
updated in the same location.

Members will be accessed via dot (.) operator through variable name. For
example in the above case, we may access the members like:

s.rollno

s.sname

s.age

Example 4.15 Program to display the multiple student’s records
through unions.

#include<iostream.h>

#include<conio.h>

union student

{

 int rollno;

 char sname[50];

 int age;

};

void main()

{

 clrscr();

 student s1,s2,s3;

 cout<<"Enter name of 1st student ";

 cin>>s1.sname;

 cout<<"Enter roll number of 2nd student ";

 cin>>s2.rollno;

 cout<<"Enter age of 3rd student ";

 cin>>s3.age;

 cout<<"\n\t\tStudent's Record \n";

 cout<<"\n\t NAME : "<<s1.sname;

 cout<<"\n\t ROLL NUMBER : "<<s2.rollno;

 cout<<"\n\t AGE : "<<s3.age; R
IL

-0
85

MCS-102/85

 cout<<"\n\nEnter roll number of first student ";

 cin>>s1.rollno;

 cout<<"\n\n\t After Input all values of first student";

 cout<<"\n\t NAME : "<<s1.sname;

 cout<<"\n\t ROLL NUMBER : "<<s1.rollno;

 cout<<"\n\t AGE : "<<s1.age;

 getch();

}

Output:

Enter name of 1st student Amit

Enter roll number of 2nd student 102

Enter age of 3rd student 17

 Student‘s Record

 NAME : Rahul

 ROLL NUMBER : 101

 AGE : 17

Enter roll number of first student 101

 After Input all values of first student

 NAME : e

 ROLL NUMBER: 101

 AGE: 101

Check Your Progress
What will be used when terminating a union?

4.13 FUNCTIONS

C++ supports sequential, selection and iteration in statements. For
reusability in code, we use looping. But looping is used for reusability R

IL
-0

85

MCS-102/86

only when code needs to be executed multiple times but in continuously.
If we need to reuse the same code any different locations, looping cannot
be used. We need some reusable modules which may be called at different
locations. At such situation, we use functions.

“A function is defined as program segment that carries out some specific,
well defined task.”

A function is a group of statements for reusability purpose. There may be
multiple functions in one program. Functions needs to be defined only
once and they may be called any number of times at anywhere. There is
always a specific purpose for function. One function is meant for one
purpose. For different purposes, we need to create multiple functions. A
function receives zero or more parameters, performs a specific task, and
returns zero or one value. Every C++ program has at least one function,
which is main. Sometimes function is also known as method or sub-
routine or procedure or module etc.

Need of Functions
There are several reasons for which we need functions:

• Complex Problems

• Lengthy Projects

• Time Management

• Debugging Problems

Benefits of Functions :
• Simplicity : reduced complexity in program

• Reusability : Avoid code repetition

• Easy Debugging

• Time management : project completion in time.

Modularity is the solution to the above problems. Via functions, complex
problems may be divided into small and simple modules. It also reduces
the length of code through reusability. A lengthy and complex problem
may be divided into team members for early solutions. Functions also
makes the debugging easy because programmer knows the segments
where error may arise.

Function Types :
• Library Functions: stored in compiler library

• User Defined Functions: Developed by programmer

Category of function :
• Parameterized with returning value

R
IL

-0
85

MCS-102/87

• Parameterized without returning value

• Non parameterized with returning value

• Non parameterized without returning value

Parts of FUNCTION :
• Function Prototype: Declaration

• Function Definition: Function body

• Function Calling: Revoking Statement

Type Prototype Definition Calling

Library
Functions

Pre-declared in
header files

Predefined in
library files

Call by
programmer

User
defined
functions

Have to be
declared by
programmer

Have to be
defined by
programmer

Call by
programmer

Function Prototype (Declaration) :
A function declaration tells the compiler about a function's name,

return type, and parameters. It tells the compiler how to call the function.

ReturnType FunctionName (Parameterlist);

where meaning default value

ReturnType

Function type.

(At most one type in

counting)

int

FunctionName Name of the function.
Any valid identifier is

mandatory

Parameterlist

Values to be passed

(Can be zero or multiple in

counting)

void

Example :

 union student

 {

R
IL

-0
85

MCS-102/88

 int rollno;

 char sname[50];

 int age;

 };

Parameter names are not mandatory in function declaration, following is
also valid:

void sum(int , int);

Function Definition :
A function definition provides the actual body of the function. The general
form of a function definition in C++ programming language is as follows.

Syntax: The general syntax of Function is as follows :

return_type Function_Name (parameter list)

{

 statement(s);

 …….

 …….

 return (value); //if required

}

A function definition consists of a function header and a function
body. Here are all the parts of a function:

• Return Type: A function may return a value. The return_type is
the data type of the value the function returns. Some functions
perform the desired operations without returning a value. In this
case, the return_type is the keyword void. If no return type is
specified, it will be considered as int by compiler in C++.

• Function Name: This is the actual name of function. The function
name and the parameter list together constitute the function
signature. It must be any valid identifier.

• Parameters: It is also known as argument. Sometimes function
needs some value for performing operations, in that case we may
send some values into the function while calling. We may call the
function multiple times with different values but number and type
of arguments must be same. There are two types of parameters:

R
IL

-0
85

MCS-102/89

 Formal parameters: At the definition of function
parameters are known as formal parameters. We need to
specify the formal parameter names with data type.

 Actual parameters: At the calling of function, parameters
are known as actual parameter. We need to specify the
parameters without datatype. Actual parameters may be
values, variables or any valid expression.

A parameter is like a placeholder. When a function is called,
values are passed from actual parameters to formal parameters in
same sequence. Parameters are optional; that is, a function may
contain no parameters.

• Function Body: The function body is the actual definition of the
function. It will be executed whenever function is called. Function
may or may not any value after execution. But there may be at
most one value while returning. We need to define the function
body once irrespective of the number of function calling.

Example:

/* function definition to add two numbers */

int sum(int x, int y)

{

 int z;

 z=x+y;

 return z;

}

Calling a Function :
While creating a function, you give a definition of what the function has to
do. To use a function, you will have to call that function to perform the
defined task.

[variable=] FunctionName (Parameterlist);

where

• Variable is used to store the result (if any). It is optional,
depending the function.

• FunctionName is the name of the function as in the declaration.

• Parameterlist is the list of values to be passed. Here parameters are
also actual parameters. Number and type of parameters depends on
function prototype. R

IL
-0

85

MCS-102/90

Example:

display(); /* non parameterized function without returning
value*/

sum(a, b); /* parameterized function without returning
value*/

f=factorial(5); /* parameterized function with returning value*/

p=pi(); /* parameterized function with returning value*/

Execution of Function:

1. When we execute C++ program, normal execution is started.

2. When a program calls a function, first of all address of the next
statement to function call is stored to stack memory. This address
is stored so that we may return to that statement once function is
executed.

3. Program control is transferred to the called function.

4. A called function performs defined task

5. When function execution is completed it returns program control
back to the calling section from where it was called. That address
will be received from stack memory where address was already
stored before calling.

6. Once it is returned, normal course of action is performed again.

There may be multiple function call and they will be executed in
the same way. Function may be called from main function or it may be
called from any other function. Even in that case, execution will remain
same and it will be returned to its calling section.

main()
{
Statement1;
Statement2;
Statement3;
FunctionCall();
Statement5;
Statement6;
Statement7;
Statement8;
FunctionCall();
Statement10;
Statement11;
Statement12;
}

FunctionBody()
{

Statement1;
Statement2;
Statement3;
Statement4;
return;

}

1

2

3 4

5

Stores the address of statement5 in stack memory

6

R
IL

-0
85

MCS-102/91

Example 4.16 Program to find the larger of two number with
function

#include <iostream.h>

#include<conio.h>

 /* function declaration */

int max(int x, int y);

void main ()

{

 /* local variable definition */

 int a,b,large;

 clrscr();

 cout<<"Enter two numbers ";

 cin>>a>>b;

 /* calling a function to get max value */

 large = max(a,b);

 cout<<"\n Max value is :"<<large ;

 getch();

}

 /* function returning the max between two numbers */

int max(int x, int y)

{

 /* local variable declaration */

 int result;

 if (x > y)

 result = x;

 else

 result = y;

 return result;

}

Output:

R
IL

-0
85

MCS-102/92

Enter two numbers 23 45

Max value is 45

Function calling types :
Function may be called in two ways depending on the values/ address sent
as parameter.

Call Type Description

Call by
value

When values of actual parameters are sent to formal
parameters, it is called function call by value. In this case,
changes in formal parameters is not reflected back into actual
parameters.

Call by
reference

When reference of actual parameters are sent to formal
parameters rather than its value, it is called function call by
reference. In this case, changes in formal parameters are
reflected back into actual parameters. This is achieved via
array, pointers and reference variables.

Suppose we need to swap the values of two variables, in that case, after
swapping via function, we needs updated values back in calling section.
So we need function call by reference in that case.

Example 4.17 Program to swap of two variable without calling be
reference

#include<iostream.h>

#include<conio.h>

// function declaration

void swap(int x, int y);

void main ()

{

 // local variable declaration:

 int a, b;

 clrscr();

R
IL

-0
85

MCS-102/93

 cout<<"Enter two numbers ";

 cin>>a>>b;

 cout << "\n Before swap, value of a :" <<a;

 cout << "\n Before swap, value of b :" <<b ;

 // calling a function to swap the values.

 swap(a, b);

 cout << "\n After swap, value of a :" << a;

 cout << "\n After swap, value of b :" << b;

 getch();

}

void swap(int x, int y)

{

 int temp;

 temp=x;

 x=y;

 y=temp;

 cout<<"\n During Swapping x="<<x;

 cout<<"\n During Swapping y="<<y;

}

Output :

Enter two number 23 45

Before swap , value of a : 23

Before swap , value of b : 45

During swapping x= 45

During swapping y= 23

After swap, value of a : 23

After swap, value of b :45

In the above program code, swapping will be temporarily as it is not
reflected back into calling section.

So we need to solve it via function call by reference. R
IL

-0
85

MCS-102/94

Example 4.18 Program to Swap of two variable. (with calling by
reference)

#include<iostream.h>

#include<conio.h>

// function declaration

void swap(int &x, int &y);

void main ()

{

 // local variable declaration:

 int a, b;

 clrscr();

 cout<<"Enter two numbers ";

 cin>>a>>b;

 cout << "\n Before swap, value of a :" <<a;

 cout << "\n Before swap, value of b :" <<b ;

 // calling a function to swap the values.

 swap(a, b);

 cout << "\n After swap, value of a :" << a;

 cout << "\n After swap, value of b :" << b;

 getch();

}

void swap(int &x, int &y)

{

 int temp;

 temp=x;

 x=y;

 y=temp;

 cout<<"\n During Swapping x="<<x;

 cout<<"\n during Swapping y="<<y;

R
IL

-0
85

MCS-102/95

}

Output:

Enter two number 23 45

Before swap , value of a : 23

Before swap , value of b : 45

During swapping x= 45

During swapping y= 23

After swap, value of a : 23

After swap, value of b :45

Above problem is solved via reference variables. This feature was not
available in C language. In C language, we have to solve it with pointers.
In C++, we may call the function by reference with pointers as well as
with reference variables. If we pass the arrays as parameter, it will also be
called by reference because array name is actually a pointer to first
element of array.

Check Your Progress

Which is the default return value of functions in C++?

4.14 SUMMARY

C++ is one of the object oriented programming language. It is truly
object oriented programming language as it supports all features of object
orientation like: abstraction, encapsulation, data hiding, inheritance,
polymorphism, message passing, class and objects.

C++ supports approximately all features of C language. It supports
if statements with all its variants, all loop with their variants, array,
pointer, structure, unions and functions etc.

Class is the collection of data members and member function.
Class is a kind of template for customised user-defined data types. Object
is known as the instance of class.

Functions are applicable in the same manner as in C language.
Functions are the subprograms to solve any complicated and lengthy
problems.

R
IL

-0
85

MCS-102/96

4.15 EXERCISE

Q1. Explain the features of OOPs in C++.

Q2. What is type casting? How it is achieved in C++. Explain with
example.

Q3. What is function? Describe its types and how they are called.

Q4. What is control structure in C++? Describe their types with
example.

Q5. Write a program in C++ to create a user defined function to
calculate the factorial of any number.

Q6. Write a program in C++ to check whether any number is prime
number or not.

Q7. Write a program in C++ to find the reverse of any number.

Q8. Write a program in C++ to create the structure to store two
employee records and compare them on the basis of their salary.
Display the record of employee who earns more salary. Employee
records should store his name, address, employee ID and salary.

Q9. Write a program in C++ to display the Fibonacci series via
function.

Q10. Write a program in C++ to swap the values of two variables
without third variable.

 R
IL

-0
85

MCS-102/97

R
IL

-0
85

MCS-102/98

UNIT-5 CLASS & OBJECTS

Structure
5.1 Introduction

5.2 Objective

5.3 Class specifications

5.4 Class

5.5 Objects

5.6 Accessing class members

5.7 Scope resolution operator

5.8 Data hiding

5.9 Empty classes

5.10 Pointer within a class

5.11 Passing objects as arguments

5.12 Retuning object from functions

5.13 Friend functions

5.14 Friend classes

5.15 Constant parameters and member functions

5.16 Structures and classes

5.17 Static members

5.18 Summary

5.19 Exercise

5.1 INTRODUCTION

Earlier programming was restricted to procedure oriented
programming but it was sufficient to solve the all real world problems.
Because many problems were dynamic in nature so we need a different
approach. In this approach, our major requirement is to focus more on data
as compared to procedure because procedure will be different in different
scenarios. That’s why object oriented approach was developed.

In this approach we use objects which may be any instance. For
example any chair, table, student, school, hospital etc. may be an object.
There may be multiple objects of one category. But each object of one
category has some common fields for example if we have multiple
students, all of them will have name, roll number, age etc. And their R

IL
-0

85

MCS-102/99

values may be different. So an object can be considered a "thing" that can
perform a set of activities. The set of activities that the object performs
defines the object's behaviour.

Object-oriented programming attempts to provide a model for
programming based on objects. Object-oriented programming integrates
code and data using the concept of an "object". In object oriented data and
functions are not freely moved as they were moving in procedure oriented
programming. We need this kind of restriction so that we may run a
complicated and lengthy problem. Besides movement, data and functions
may also not be directly accessible anywhere. Addition to this, one
concept may also be reused at other places to save the time.

Here are some features of object-oriented programming approach:
abstraction, encapsulation, data hiding, polymorphism and inheritance.

Abstraction : Abstraction is the feature to hide the programming code to
outside world and reveals its required information. Abstraction saves us
form dealing with complicated and lengthy internal details. We just need
to know the essential part for implementation.

For example if we want to implement the banking system, then customer
only needs to know about deposit and withdrawal forms, rest internal
details are of no use for him. Internal processing will be there but the
customer only need to know the interfacing with forms. In the same way,
in programming if we are implementing any problem, then we only need
to know how to implement the pre solved things.

In simpler way, we can say abstraction hides the complicated details and
reveals the essential information only.

Encapsulation : Encapsulation is the feature to wrap up the data members
and methods into a single unit. Wrapping the members in a single unit
restrict it to be accessed directly outside that unit. That unit is known as
class. Encapsulation restricts the free flow of the data across the program.
It also ensures that outside data to the class may also not be accessed
inside the class. So we may also say that encapsulation creates a layer
between inside class members and outside class members. Whenever we
create the object of that class, that object may access only those members.
It means, data of one object will be different from data of other object.
One object cannot update the data of other object directly. If we need to
update the data of one object, we must have one method for that in the
class.

Data Hiding : Data hiding restricts the data member accessing via object /
inheritance. It is used to implement the data security in class. There are
three visibility modes for data accessing- public, private and protected.
Public mode is used to access the members via object and inheritance.
Private mode is used to restrict the member access outside the class.
Protected mode is used to restrict the member accessing only via
inheritance. So private visibility mode hides the data to be accessed via

R
IL

-0
85

MCS-102/100

object. Without object / inheritance any member cannot be accessed
outside the class. Members may be accessed inside the class directly.

Inheritance : Inheritance is the ability to reuse the members of one class
into other class without redefining them. The class which is to be accessed
is called super class or base class. The class in which members will be
accessed is known as sub class or derived class. In C++, we may inherit
more than one class into any class.

Polymorphism : Polymorphism is the feature which enables any object to
act differently in different scenarios. For example, there is a boy, at home-
he is son, at school- he is student, at sports ground- he is sportsman but he
is the same boy. He will act differently at different scenarios.
Polymorphism is again very important feature of object oriented approach
as we are more focused on real world problems and real world problems
are dynamic in nature.

Some of the advantages of object-oriented programming include:

1. Improved software-development productivity.

2. Improved software maintainability.

3. Faster development.

4. Lower cost of development.

5. Higher-quality software.

Check Your Progress

Which concept allows you to reuse the written code?

5.2 OBJECTIVES

After studying this unit you should be able to identify and describe
class and objects, Characteristics of OOP’s, brief introduction of pointers
and their use with class and function.

5.3 CLASS SPECIFICATION

The building block of C++ that leads to Object Oriented
programming is a Class. It is a user defined data type, which holds its own
data members and member functions, which can be accessed and used by
creating an instance of that class. A class is like a blueprint for an object.

For Example: Consider the Class of Cars. There may be many cars with
different names and brand but all of them will share some common
properties like all of them will have number of wheels, Speed

R
IL

-0
85

MCS-102/101

Limit, Mileage range etc. So here, Car is the class and wheels, speed
limits, mileage are their properties.

• A Class is a user defined data-type which has data members and
member functions.

• Data members are the data variables and member functions are the
functions used to manipulate these variables and together these
data members and member functions defines the properties and
behavior of the objects in a Class.

• In the above example of class Car, the data member will be speed
limit, mileage etc and member functions can be apply
brakes, increase speed etc.

An Object is an instance of a Class. When a class is defined, no memory is
allocated but when it is instantiated (i.e. an object is created) memory is
allocated.

Defining Class and Objects
A class is defined in C++ using keyword class followed by the

name of class. The body of class is defined inside the curly brackets and
terminated by a semicolon at the end.

Syntax : The general syntax of Class is as follows:

class <CLASSNAME>

{

 <ACCESSSPECIFIER>: // may be

public/private/protected

 <Data Members List>;

 <Members Function List>;

<ACCESSSPECIFIER>: // may be

public/private/protected

 <Data Members List>;

 <Members Function List>;

<ACCESSSPECIFIER>: // may be

public/private/protected

 <Data Members List>;

 <Members Function List>;

R
IL

-0
85

MCS-102/102

} ;

For Example : if we need to store the record of student with his name, roll
number and average marks. We may define the class like this

class student

{

 private:

 int rollno;

 char sname[20];

 float avg;

 public:

 void input();

 void display();

};

Declaring Objects : When we define a class, we define only it’s
specification for the object. It does not consume any memory at runtime.
So we cannot store any value in class. Whenever we need to store any
record for that class, we need to define the object of that class. We may
also call their methods, once object is defined.

Syntax :

ClassName ObjectName1, ObjectName2, ObjectName3;

For example:

student s1, s2, s3;

Accessing data members and member functions: The data members and
member functions of class can be accessed using the dot(‘.’) operator with
the object. For example if the name of object is s1 and we want to access
the member function, we will use this syntax-

For example: R
IL

-0
85

MCS-102/103

s1.sname // not possible outside the class as sname is private

s1.rollno // not possible outside the class as rollno is private

s1.avg // not possible outside the class as avg is private

s1.input() // possible as input() is public

s1.display() // possible as display() is public

Check your Progress
The variables declared inside the class are known as data members and
functions are known as ………….

5.4 CLASS

Class is the collection of data members and methods. Methods are
also known as member functions. Data members are used to store the
values and methods are used to be called. Data members are generally
defined as private so that they may be hidden from outside the class and
methods are generally made public so that object may access them.

• Class is also known as template data.

• Class is the user defined data type.

• Class is the logical concept of data because it does not consume
memory at runtime.

• Class acts as a blue print for any problem as it has to be defined
only once.

• Class may also be considered as the collection of similar type of
objects.

• In Class members are encapsulated so members of class cannot be
used directly outside the class.

• In Class members are encapsulated so outside data cannot be
accessed inside the class directly.

• Class members may have different modifiers.

• Class members may have different visibility modes (access
specifier).

• Classes may be nested or local.

• There may be multiple classes in one program.

• C++ program may also be developed without class definition like
C language. R

IL
-0

85

MCS-102/104

5.5 OBJECT

Object is declared to store the values and execute the methods
defined inside the class. The may access the public members of their class.
They cannot access private or protected members of the class. There may
be multiple objects of one class depending on their need in the program.
All objects will consume memory separately. Updating data members in
object will not update values in other objects. We need to update each
object separately as their allocated memory is different.

• An object is the instance of class.

• We can create multiple objects of one class.

• Objects consume memory at run time.

Stack memory Heap

memory

S1

Name=

“Mohit”

Age=

17

Rollno=

101

S2

Name=

“Ankush”

Age=

19

Rollno=

102

(reference type data type)

int a

101

1000

Variable name

Value

Address (Value type data type)

• Object consumes memory separately for each object.

• They are also known as physical concept of data.

• Objects can access public members of the class outside the class.

• Objects are called by reference in methods calling as they are
created from class and class is the reference type data type.

• Reference of the object is stored in stack memory.

R
IL

-0
85

MCS-102/105

• Memory for values of object is reserved in heap memory when we
allocate the memory with new keyword.

• Memory for object is automatically de-allocated by garbage
collector when memory is of no-use in program.

Any object may call any public method with dot operator, which is
declared in its class definition.

Check Your Progress

How many object can be created of a Class in C++?

5.6 ACCESSING DATA MEMBERS

The public data members are also accessed in the same way given
however the private data members are not allowed to be accessed directly
by the object. Accessing a data member depends solely on the access
control of that data member. This access control is given by Access
modifiers in C++. There are three access modifiers: public, private and
protected.

Member Functions in Classes
There are 2 ways to define a member function:

• Inside class definition

• Outside class definition

To define a member function outside the class definition we have to use
the scope resolution ‘::’ operator along with class name and function
name.

Example 5.1 Program to demonstrate method declaration inline
and outside class

#include<iostream.h>

#include<conio.h>

#include<stdio.h>

class student

{

 private:

 char sname[50];

R
IL

-0
85

MCS-102/106

 int rno;

 float avg;

 public:

 void input();

 void display()

 {

 cout<<"\n\t\t\tStudent record";

 cout<<"\n STUDENT NAME : "<<sname;

 cout<<"\n STUDENT ROLL NUMBER : "<<rno;

 cout<<"\n STUDENT AVERAGE MARKS : "<<avg;

 }

};

void student::input() // outside definition

{

 cout<<"\n ENTER STUDENT RECORD \n";

 cout<<" Enter Student name ";

 gets(sname);

 cout<<" Enter Roll Number ";

 cin>>rno;

 cout<<" Enter average marks ";

 cin>>avg;

}

void main()

{

 student s1;

 clrscr();

 s1.input();

 s1.display();

 getch();

}

 R
IL

-0
85

MCS-102/107

Output:

ENTER STUDENT RECORD

Enter Student name Mohit

Enter Roll Number 101

Enter average marks 89.5

 Student record

STUDENT NAME : Mohit

STUDENT ROLL NUMBER : 101

STUDENT AVERAGE MARKS : 89.5

Note that all the member functions defined inside the class definition
are by default inline, but you can also make any non-class function inline
by using keyword inline with them. Inline functions are actual functions,
which are copied everywhere during compilation, like pre-processor
macro, so the overhead of function calling is reduced.

5.7 SCOPE RESOLUTION OPERATOR

There are three uses of ‘:: ’ operators in C++

• Outside definition of methods of the class.

• Accessing global variable’s value

• Accessing class members in some cases.

First use of :: (scope resolution) operator in C++ is for outside method
definition for classes. That is already discussed in the previous section.

Second use of :: (scope resolution) operator is access global variables.
There may be cases where we have global and local variables with same
name. In that case, if we specify the variable name, it will access the local
variable because local variable hides the global variable. We can use the
scope operator as unary operator to access the global variable.

For example:

int count = 0;

int main()

{

 int count = 0;

R
IL

-0
85

MCS-102/108

 ::count = 1; // set global count to 1

 count = 2; // set local count to 2

 return 0;

}

Count variable, which is declared outside the main function is global
variable.

Count variable, which is declared inside the main function is local
variable.

Local variables hides the global variables so the declaration
of count declared inside the main function hides the integer
named count declared outside the main.

The statement ::count = 1 accesses the variable
named count declared in global namespace scope.

Third use of scope resolution operator is implemented in cases of class. It
may be used to access the class members via class separated with it. It
qualifies the class name with class member name. If a class member name
is hidden, you can use it by qualifying it with its class name and the class
scope operator. It can also access the static members of the class.

Example. 5.2 Program to demonstrate method declaration inline
and outside class

#include<iostream.h>

#include<conio.h>

class math

{

 public:

 static int sum(int a, int b)

 {

 int c;

 c=a + b;

 return c;

 }

};

R
IL

-0
85

MCS-102/109

void main()

{

 int x, y, z;

 clrscr();

 cout<<"Enter two numbers ";

 cin>>x>>y;

 z=math::sum(x, y);

 cout<<"\n Sum="<<z;

 getch();

}

Output:

Enter two numbers 34 45

Sum =79

Check Your Progress

Where a class member function can be defined?

Static data member :
In C++, we can also define static data methods. But static members

may be accessed via class names separated with :: operator. Besides that
static methods may access static members only. They cannot access non-
static members.

5.8 DATA HIDING

Data hiding is also known as Information hiding. Data hiding is
applicable in C++ as the feature of Object oriented programming concept.
Data hiding restrict the access of data outside the class. Data which needs
to be restricted in C++ classes are made private with private keyword at
declaration time. All members including data members and methods
which are made private cannot be accessed directly with object outside the
class and they also cannot be inherited in sub class.

R
IL

-0
85

MCS-102/110

Private members : These can be accessed only from within the members
of the same class.

Protected members : These can be accessed only from within other
members of the same class and its derived classes.

Public members : These can be accessed from anywhere where the object
is accessible.

By declaring the member variables and functions as a private in a class,
the members are hidden from outside the class. Those private members
and data cannot be accessed by the object directly.

Private and public members are already discussed the example-02 of this
unit.

We have defined student name, roll number and average marks as private.
It means it can be accessed inside the class directly but it may not be
accessed outside the class directly or va object. If we try to do that, it will
produce compile time error.

We have defined input() and display() as public. They may be accessed
directly inside the class and outside the class via object name.

Check your Progress

Can we declare a member function private?

5.9 EMPTY CLASSES

C++ allows creating an Empty class. Empty class is that class
which is defined but there is member defined inside the class. It’s object
will consume 1 byte in memory because it will take minimum memory
storage. It is just like normal class except the fact that there is no data
member. One byte is the minimum memory amount that could be
occupied.

Example 5.3 Program to find the size of empty class.

#include<iostream.h>

Access specifiers

private protected public

R
IL

-0
85

MCS-102/111

class math

{

};

void main()

{

 math m;

 clrscr();

 cout<<"Size of math class "<<sizeof (m);

 getch();

}

Output:

Size of math class 1

5.10 POINTER WITHIN CLASS

Pointers are the very powerful features of C++. Pointers support
dynamic memory management in C++. Dynamic memory management
means, memory will be allocated and de-allocated at the runtime rather
than compile time.

To manage the compile time and runtime memory, C++ used stack
and heap memory. Stack memory is used for compile time memory
management while heap memory is used for dynamic memory
management.

Stack memory is generally low in size as compared to heap
memory. It is automatically allocated and de-allocated at runtime. As
programmer, we need not too do anything extra for that.

Heap memory is generally high in size as compared to stack
memory. It has to be explicitly allocated and de-allocated by the C++
programmer. C++ provides two keywords-

• new : to allocate memory at runtime.

• delete : to de-allocate memory at runtime.

While allocating memory, we have to specify the size of memory in
number of bytes but during de-allocation, we need not to specify its size.
Memory will be allocate sequentially at runtime.

R
IL

-0
85

MCS-102/112

If we want to fix memory at compile time, we need not to do anything
extra for memory management. For fixing memory at runtime, we have to
manage the memory address for retrieving stored values.

Pointers are the variables, which store the address of any location.

Pointers may do the following-

• Use in function call by reference

• Use in referring / pointing any existing memory location

• Allocating and de-allocating new memory at runtime

In 32 bit C++, a pointer consumes 2 bytes as it needs to store only address.
The address will indicate where the values are stored.

In pointer we use two major operators-

* : dereferencing operator

 To access the value stored at given address

& : to access the address of given variable/object

Pointer declaration-
 Datatype *PointerName;

For example-

int *a; pointer to integer

float *b; pointer to float

char *c; pointer to char

student *s; pointer to student class (if student is a class)

employee *e; pointer to employee structure (if employee is
structure)

int *arr[10]; array of pointer to integer

student *s[10]; array of pointer to student class

Storing Address in pointers:
 ptrName = &VarNAme;

for example-

 int a,*ptr;

 ptr=&a;

where

 a is the variable of integer type

R
IL

-0
85

MCS-102/113

 ptr is pointer to integer

Pointer to pointer-
Pointer to pointer may also be created easily. In that case we have to
define double pointer.

 Datatype **ptrName;

For example-

 int a, *ptr1, **ptr2;

where

 a is integer variable

 *ptr1 is single pointer (pointer to integer)

 **ptr2 is double pointer (pointer to pointer)

Example 5. 4 Program to show the referencing in pointers

#include<iostream.h>

#include<conio.h>

void main()

{

 clrscr();

 int a,*p1,**p2;

 a=10; // initialized with value

 p1=&a; // stores the address of variable a

 p2=&p1; // stores the address of p1

 cout<<"\n &a ="<<&a;

 cout<<"\n &p1="<<&p1;

 cout<<"\n &p2="<<&p2<<"\n";

 cout<<"\n a ="<<a;

 cout<<"\n p1="<<p1;

 cout<<"\n p2="<<p2<<"\n";

 cout<<"\n *a ="<<"Error";

 cout<<"\n *p1="<<*p1;

R
IL

-0
85

MCS-102/114

 cout<<"\n *p2="<<*p2<<"\n";

 cout<<"\n **a ="<<"Error";

 cout<<"\n **p1="<<"Error";

 cout<<"\n **p2="<<**p2<<"\n";

 getch();

}

Output:
&a=0x8f88fff4

&p1=0x8f88fff2

&p2=0x8f88fff0

a=10

p1=0x8f88fff4

p2=0x8f88fff2

*a=Error

*p1=10

*p2=0x8f88fff4

**a=Error

**p1=Error

**p2=10

In the above example, we have write down the name, value and address of
all variables-

 Variable

Name

Value

Address

a

10

0x8f88fff4

*p1

0x8f88fff4

0x8f88fff2

**p2

0x8f88fff2

0x8f88fff0

Where
a is integer variable R

IL
-0

85

MCS-102/115

p1 is pointer to a

p2 is pointer to p1 (double pointer to a)

* Denotes that value stored there is not actually a values, it is an
address. It will jump to given address and return the value.

** denotes the task of * two times.

Check Your Progress

Which operator used for dereferencing or indirection ?

Pointer to Data Members of Class :
Pointers may be created for objects. In that case, they will refer to objects.
Memory of objects may be used of existing objects or new memory may
be allocated.

If we wish to access the existing memory of any object then, just assign
the reference of existing object.

Syntax will be

className object, *ptrName;

ptrName=&object;

 ptrName->Method();

For accessing methods or other members, we have to use -> operator
instead of dot operator.

Example 5.5 Program to show the referencing of pointers with data
members

#include<iostream.h>

#include<conio.h>

#include<stdio.h>

#include<string.h>

class student

{

R
IL

-0
85

MCS-102/116

 private:

 char sname[50];

 int rno;

 float avg;

 public:

 void input();

 void display();

};

void student::input()

{

 cout<<"\n ENTER STUDENT RECORD \n";

 cout<<" Enter Student name ";

 gets(sname);

 cout<<" Enter Roll Number ";

 cin>>rno;

 cout<<" Enter average marks ";

 cin>>avg;

}

void student::display()

{

 cout<<"\n\t\t\tStudent record";

 cout<<"\n STUDENT NAME : "<<sname;

 cout<<"\n STUDENT ROLL NUMBER : "<<rno;

 cout<<"\n STUDENT AVERAGE MARKS : "<<avg;

}

void main()

{

 clrscr();

 student s1,*ptr;

 ptr=&s1; R
IL

-0
85

MCS-102/117

 s1.input();

 ptr->display();

 s1.display();

 getch();

}

Output:

ENTER STUDENT RECORD

Enter Student name Sanjay

Enter Roll Number 101

Enter average marks 56.5

 Student record

STUDENT NAME : Sanjay

STUDENT ROLL NUMBER : 101

STUDENT AVERAGE MARKS : 56.5

 Student record

STUDENT NAME : Sanjay

STUDENT ROLL NUMBER : 101

STUDENT AVERAGE MARKS : 56.5

In the above example, we have stored the reference of one object
into pointer to class. Once reference is assigned, we may call the methods
either with -> (arrow) operator through pointer or with . (dot) operator
with object. Nut here no dynamic memory allocation is done. We are just
referring existing memory.

Using Pointers with Objects (allocating memory):
If we wish to allocate new memory t pointer then we have to

allocate it with new operator and delete operator will be used to de-
allocate the memory.

Syntax will be

R
IL

-0
85

MCS-102/118

className object, *ptrName;

ptrName=new ClassName;

 ptrName->Method();

 delete ptrName;

For accessing methods or other members, we have to use -> operator
instead of dot operator.

Example 5.6 Program to show the dynamic memory allocation to
pointer to class.

#include<iostream.h>

#include<conio.h>

#include<stdio.h>

#include<string.h>

class student

{

 private:

 char sname[50];

 int rno;

 float avg;

 public:

 void input();

 void display();

};

void student::input()

{

 cout<<"\n ENTER STUDENT RECORD \n";

 cout<<" Enter Student name ";

 gets(sname);

 cout<<" Enter Roll Number ";

 cin>>rno;

 cout<<" Enter average marks "; R
IL

-0
85

MCS-102/119

 cin>>avg;

}

void student::display()

{

 cout<<"\n\t\t\tStudent record";

 cout<<"\n STUDENT NAME : "<<sname;

 cout<<"\n STUDENT ROLL NUMBER : "<<rno;

 cout<<"\n STUDENT AVERAGE MARKS : "<<avg;

}

void main()

{

 clrscr();

 student *ptr;

 ptr=new student();

 ptr->input();

 ptr->display();

 delete ptr;

 getch();

}

Output:

ENTER STUDENT RECORD

Enter Student name Rohan Garg

Enter Roll Number 105

Enter average marks78.5

 Student record

STUDENT NAME : Rohan Garg

STUDENT ROLL NUMBER : 105

STUDENT AVERAGE MARKS : 78.5
 R

IL
-0

85

MCS-102/120

In the above example, we have allocated memory of student class to
pointer. It will allocate memory for object of student class and the
reference of that object will be stored in pointer. So this time pointer is
storing the new address. And that memory is allocated at runtime. Once
the task is over, we should de-allocate the memory. Once reference is
assigned, we may call the methods either with -> (arrow) operator through
pointer.

Check Your Progress

What happens when delete is used for a NULL pointer?

5.11 PASSING OBJECTS AS ARGUMENTS

There may be situation when we need to send the objects in the
functions for some purpose. In that case, like other variables, we may send
the objects as parameter. We just have to specify the name of the class as
data type in parameter list.

Example 5.7 Program to find and display the greater of two students
on the basis of their average marks.

#include<iostream.h>

#include<conio.h>

#include<stdio.h>

class student

{

 private:

 char sname[50];

 int rno;

 float avg;

 public:

 void input();

 float getavg()

 { R
IL

-0
85

MCS-102/121

 return avg;

 }

 void display()

 {

 cout<<"\n\t\t\tStudent record";

 cout<<"\n STUDENT NAME : "<<sname;

 cout<<"\n STUDENT ROLL NUMBER : "<<rno;

 cout<<"\n STUDENT AVERAGE MARKS : "<<avg;

 }

};

void student::input()

{

 cout<<"\n ENTER STUDENT RECORD \n";

 cout<<" Enter Student name ";

 gets(sname);

 cout<<" Enter Roll Number ";

 cin>>rno;

 cout<<" Enter average marks ";

 cin>>avg;

}

void compare(student s1, student s2);

void main()

{

 student s1,s2;

 clrscr();

 s1.input();

 s2.input();

 compare(s1,s2);

 getch();

}

R
IL

-0
85

MCS-102/122

void compare(student s1,student s2)

{

 if(s1.getavg()>s2.getavg())

 s1.display();

 else

 s2.display();

}

Output:

ENTER STUDENT RECORD

Enter Student name Priya

Enter Roll Number 123

Enter average marks 87.5

ENTER STUDENT RECORD

Enter Student name Sanjay

Enter Roll Number 101

Enter average marks 56.5

 Student record

STUDENT NAME : Sanjay

STUDENT ROLL NUMBER : 101

STUDENT AVERAGE MARKS : 56.5

In the above example, we have defined the compare function. This
function takes two objects as parameter. In its definition, it compares the
average marks of the students via getavg() method and display the record
of student who scores higher marks.

Check Your Progress

 Is it compulsory that If an object is passed to a function then it must
be returned the function? R

IL
-0

85

MCS-102/123

5.12 RETURN AN OBJECT FROM THE
FUNCTION

Object is the instance of the class. Like we return any scalar value
(int, char etc.) from method, we may also return an object from the
function. We have to specify the name of the class as return type in the
function definition. Return statement will be same as in other cases of
returning values.

Example 5.8 Program to find the greater of two students on the
basis of their average marks. And display the record after
returning.

#include<iostream.h>

#include<conio.h>

#include<stdio.h>

class student

{

 private:

 char sname[50];

 int rno;

 float avg;

 public:

 void input();

 float getavg()

 {

 return avg;

 }

 void display()

 {

 cout<<"\n\t\t\tStudent record";

 cout<<"\n STUDENT NAME : "<<sname;

 cout<<"\n STUDENT ROLL NUMBER : "<<rno;

 cout<<"\n STUDENT AVERAGE MARKS : "<<avg;

 }

R
IL

-0
85

MCS-102/124

};

void student::input()

{

 cout<<"\n ENTER STUDENT RECORD \n";

 cout<<" Enter Student name ";

 gets(sname);

 cout<<" Enter Roll Number ";

 cin>>rno;

 cout<<" Enter average marks ";

 cin>>avg;

}

student compare(student s1, student s2);

void main()

{

 student s1,s2,max;

 clrscr();

 s1.input();

 s2.input();

 max=compare(s1,s2);

 max.display();

 getch();

}

student compare(student s1,student s2)

{

 student max;

 if(s1.getavg()>s2.getavg())

 max=s1;

 else

 max=s2;

 return max;

} R
IL

-0
85

MCS-102/125

Output:

ENTER STUDENT RECORD

Enter Student name Priya

Enter Roll Number 123

Enter average marks 37.5

ENTER STUDENT RECORD

Enter Student name Sanjay

Enter Roll Number 101

Enter average marks 56.5

 Student record

STUDENT NAME : Sanjay

STUDENT ROLL NUMBER : 101

STUDENT AVERAGE MARKS : 56.5

In the above example, we have defined the compare function. This
function takes two objects as parameter and return one object of the same
class. In its definition, it compares the average marks of the students via
getavg() method and return the record of student who scores higher marks.
After returning the object in the main(), we display the record. This is
done in such a manner because, at times, we need object to be processed
after returning object.

Check Your Progress

Which error will be produced if a local object is returned by reference
outside a function?

5.13 FRIEND FUNCTIONS

Data hiding is one of the most important features of OOPs. It
restricts the accessing of private members of the class via object. In such a
scenario, we may access the private data member by returning value R

IL
-0

85

MCS-102/126

through public method. But we may access only one value via on method.
For accessing multiple values, we have to define such multiple methods.
Besides this, that method may be accessed via any object anywhere
because that has to be public.

There may be situations, where we may need to access private data
members to be accessed but only once for some particular purpose. In
such scenarios, we may define friend functions. These functions may
access private data members of the class as well.

Friend function becomes mandatory when we need private data
members of more than two objects from different classes at same time. It
helps us in writing complicated code as well.

Friend function is defined and declared like a normal function. One
additional thing we have to do, that is we have to declare that function
followed by friend keyword inside the class in which we have to define it
as friend. One method may be friend in more than one class as well. After
declaring any function friend inside the class, that function may access the
private members of that class via object but only inside the definition of
that friend function only.

One important point to remember is that friend function will be
accessed like normal function. It cannot be access with class name or
object name like methods.

Syntax : The general syntax of Friend Function is as follows:

class class_name

{

 friend return_type function_name(argument/s);

}

Example 5.9 Program to find the greater of two students on the
basis of their average marks via friend function. And display the
record after returning.

#include<iostream.h> R
IL

-0
85

MCS-102/127

#include<conio.h>

#include<stdio.h>

class student

{

 private:

 char sname[50];

 int rno;

 float avg;

 public:

 friend student compare(student s1, student s2); // friend function
declaration

 void input();

 void display()

 {

 cout<<"\n\t\t\tStudent record";

 cout<<"\n STUDENT NAME : "<<sname;

 cout<<"\n STUDENT ROLL NUMBER : "<<rno;

 cout<<"\n STUDENT AVERAGE MARKS : "<<avg;

 }

};

void student::input()

{

 cout<<"\n ENTER STUDENT RECORD \n";

 cout<<" Enter Student name ";

 gets(sname);

 cout<<" Enter Roll Number ";

 cin>>rno;

 cout<<" Enter average marks ";

 cin>>avg;

}

student compare(student s1, student s2); // normal function declaration

R
IL

-0
85

MCS-102/128

void main()

{

 student s1,s2,max;

 clrscr();

 s1.input();

 s2.input();

 max=compare(s1,s2); // calling friend function like normal function

 max.display();

 getch();

}

student compare(student s1,student s2)

{

 student max;

 if(s1.avg>s2.avg) // accessing private members due to friend function

 max=s1;

 else

 max=s2;

 return max;

}

Output:

ENTER STUDENT RECORD

Enter Student name Priya

Enter Roll Number 123

Enter average marks 37.5

ENTER STUDENT RECORD

Enter Student name Sanjay

Enter Roll Number 101

Enter average marks 56.5

R
IL

-0
85

MCS-102/129

 Student record

STUDENT NAME : Sanjay

STUDENT ROLL NUMBER : 101

STUDENT AVERAGE MARKS : 56.5

In the above example, we have defined the compare function. This
function takes two objects as parameter and return one object of the same
class. In its definition, it compares the average marks of the students. But
this function does not need any public method for accessing private value
of the class as compare is declared as friend inside the student class.

Then compare function compare two private members via object and
return the record of student who scores higher marks. After returning the
object in the main(), we display the record.

Function as Friend function in two class :
One function may be declared as friend in two classes as well. For that we
just have to declare that function in both classes.

Example: 5.10 Program to compare the names of student and
teacher for equality and display the message according.

#include<iostream.h>

#include<conio.h>

#include<stdio.h>

#include<string.h>

class teacher; // declaration of class as it has to be used before its definition
in friend

class student

{

 private:

 char sname[50];

 int rno;

 float avg;

 public:

 friend void compare(student s, teacher t); // normal function as friend

R
IL

-0
85

MCS-102/130

declaration

 void input();

};

void student::input()

{

 cout<<"\n ENTER STUDENT RECORD \n";

 cout<<" Enter Student name ";

 gets(sname);

 cout<<" Enter Roll Number ";

 cin>>rno;

 cout<<" Enter average marks ";

 cin>>avg;

}

class teacher

{

 private:

 char tname[50];

 int tid;

 float salary;

 public:

 friend void compare(student s, teacher t); // normal function as friend
declaration

 void input();

};

void compare(student s, teacher t); // normal function declaration

void teacher::input()

{

 cout<<"\n ENTER TEACHER RECORD \n";

 cout<<" Enter teacher name ";

 gets(tname); R
IL

-0
85

MCS-102/131

 cout<<" Enter ID ";

 cin>>tid;

 cout<<" Enter Salary ";

 cin>>salary;

}

void main()

{

 student s;

 teacher t;

 clrscr();

 s.input();

 t.input();

 compare(s,t); // friend function calling

 getch();

}

void compare(student s,teacher t) // friend function definition

{

 if(strcmp(s.sname,t.tname)==0)

 cout<<"\n name of teacher and student is equal";

 else

 cout<<"\n name of teacher and student is different";

}

Output:

ENTER STUDENT RECORD

Enter Student name Priya

Enter Roll Number 123

Enter average marks 37.5

ENTER TEACHER RECORD

R
IL

-0
85

MCS-102/132

Enter Student name Amit Saxena

Enter ID 5967

Enter Salary 57000

name of teacher and student is different

In the above example, we have defined the compare function. This
function takes two objects as parameter and compares the name of student
with name of teacher. As we need to access the private member of both
classes, we have introduced this function as friend inside both classes.

One point to remember during friend declaration in multiple classes is
that, we have to declare the other classes before their definition as we have
to use them in friend function declaration.

Check Your Progress

 Which rule will not affect the friend function?

5.14 FRIEND CLASS

Like friend functions, we may use friend classes in C++. If we
want to access the private members of one class to be accessed in any
other class via object, we may declare that class as friend in the first class.

Example 5.11 Program to compare the names of student and
teacher for equality and display the message accordingly with the
help of friend class only.

#include<iostream.h>

#include<conio.h>

#include<stdio.h>

#include<string.h>

class teacher; // normal class declaration

class student

{

 friend teacher; // teacher class declaration as friend in student class

 private: R
IL

-0
85

MCS-102/133

 char sname[50];

 int rno;

 float avg;

 public:

 void input();

};

void student::input()

{

 cout<<"\n ENTER STUDENT RECORD \n";

 cout<<" Enter Student name ";

 gets(sname);

 cout<<" Enter Roll Number ";

 cin>>rno;

 cout<<" Enter average marks ";

 cin>>avg;

}

class teacher

{

 private:

 char tname[50];

 int tid;

 float salary;

 public:

 void compare(student s); // normal method with student as parameter

 void input();

};

void teacher::input()

{

 cout<<"\n ENTER TEACHER RECORD \n";

 cout<<" Enter teacher name ";

R
IL

-0
85

MCS-102/134

 gets(tname);

 cout<<" Enter ID ";

 cin>>tid;

 cout<<" Enter Salary ";

 cin>>salary;

}

void teacher::compare(student s)

{

 if(strcmp(s.sname,tname)==0) //accessing private member of student due
to friend class

 cout<<"\n name of teacher and student is equal";

 else

 cout<<"\n name of teacher and student is different";

}

void main()

{

 student s;

 teacher t;

 clrscr();

 s.input();

 t.input();

 t.compare(s);

 getch();

}

Output:

ENTER STUDENT RECORD

Enter Student name Priya

Enter Roll Number 123

R
IL

-0
85

MCS-102/135

Enter average marks 37.5

ENTER TEACHER RECORD

Enter Student name Amit Saxena

Enter ID 5967

Enter Salary 57000

name of teacher and student is different

In the above example, we have declared teacher class as friend class inside
the student class. After declaring this, teacher class may access the private
members of the student class via student class object. We have to
remember that teacher is the friend of student so teacher may access the
private members of student but student is not the friend class inside the
teacher so student class cannot access the private members of the teacher
class.

Check Your Progress

What is the need of forward declaration of a class?

5.15 CONSTANT PARAMETERS AND
MEMBER FUNCTIONS

Formal parameters may be modified inside the method definition.
If method call is call by reference, it will be reflected back in formal
parameter. If method call is call by value, it will not be reflected back in
the actual parameters.

But there may be situation when, we want to restrict the changes in
formal parameters. This can be done with the help of constant parameter.
If we have defined any parameter as const, it cannot be changed in the
method definition. If we try to change its value inside that method,
compiler will produce the error.

Example 5.12 Program to store the student record and then update
the average marks of the student.

#include<iostream.h>

R
IL

-0
85

MCS-102/136

#include<conio.h>

#include<stdio.h>

class student

{

 private:

 char sname[50];

 int rno;

 float avg;

 public:

 void input();

 void updateavg(const float a)

 {

 avg=avg+a;

 }

 void display()

 {

 cout<<"\n\t\t\tStudent record";

 cout<<"\n STUDENT NAME : "<<sname;

 cout<<"\n STUDENT ROLL NUMBER : "<<rno;

 cout<<"\n STUDENT AVERAGE MARKS : "<<avg;

 }

};

void student::input()

{

 cout<<"\n ENTER STUDENT RECORD \n";

 cout<<" Enter Student name ";

 gets(sname);

 cout<<" Enter Roll Number ";

 cin>>rno;

 cout<<" Enter average marks ";

 cin>>avg;

}

 R
IL

-0
85

MCS-102/137

void main()

{

 student s;

 clrscr();

 s.input();

 s.display();

 float x;

 cout<<"\n\n Enter the marks to be increased ";

 cin>>x;

 s.updateavg(x);

 s.display();

 getch();

}

Output:

ENTER STUDENT RECORD

Enter Student name Sanjay

Enter Roll Number 101

Enter average marks 80.2

 Student record

STUDENT NAME : Sanjay

STUDENT ROLL NUMBER : 101

STUDENT AVERAGE MARKS : 80.2

Enter the marks to be increased 6.0

 Student record

STUDENT NAME : Sanjay

STUDENT ROLL NUMBER : 101

STUDENT AVERAGE MARKS : 86.2

R
IL

-0
85

MCS-102/138

In the above example, average marks are updated through updateavg()
method. But we have defined parameter x as constant in its definition, so
we cannot change the value of x inside that method else it will produce
compile time error.

Check Your Progress

The constants are also called as_______________

5.16 STRUCTURES AND CLASSES

C++ is the object oriented language and it is also known as
extension of C language. So it supports both class and structure.

There is a difference class and structure. Members in the class are
private by default while members in the structure are public by default.
We may change the visibility of member in both class and structures.
Unlike structures in C language, we may define methods inside the
structures. But they will be public by default too.

5.17 STATIC MEMBERS

Earlier, we have defined variables as of 4 types in C++ language.
We have already gone through local and global variables.

If we declare any data member inside the class, it will be known as
instance variable because it will consume separately memory for each
object. As memory is allocated differently, values may be different too.

There may be scenarios, where we may need the common values
for all objects. In that case, we need class variables. Class variables are
those variables which consumes memory only once for all object of that
class and updating value by one object will affect all other objects of that
class. Such class variable are declared with the help of static keyword.

If we specify static keyword before any data member, it will be
treated as static data member. It will consume memory only once
irrespective of number of objects of that class. Such data member may be
accessed via :: (scope resolution operator) via class name rather than
object name. If it is public, it may be accessed outside the class as well.

Example 5.13 Program to store two student’s record with common
school name.

#include<iostream.h> R
IL

-0
85

MCS-102/139

#include<conio.h>

#include<stdio.h>

#include<string.h>

class student

{

 private:

 char sname[50];

 int rno;

 float avg;

 public:

 static char schoolname[20];

 void input();

 void display()

 {

 cout<<"\n\t\t\tStudent record";

 cout<<"\n STUDENT NAME : "<<sname;

 cout<<"\n STUDENT ROLL NUMBER : "<<rno;

 cout<<"\n STUDENT AVERAGE MARKS : "<<avg;

 cout<<"\n SCHOOL NAME : "<<schoolname;

 }

};

void student::input()

{

 cout<<"\n ENTER STUDENT RECORD \n";

 cout<<" Enter Student name ";

 gets(sname);

 cout<<" Enter Roll Number ";

 cin>>rno;

 cout<<" Enter average marks ";

 cin>>avg;

}

R
IL

-0
85

MCS-102/140

char student::schoolname[20];

void main()

{

 student s1,s2;

 strcpy(student::schoolname,"My School");

 clrscr();

 s1.input();

 s2.input();

 s1.display();

 s2.display();

 getch();

}

Output:

ENTER STUDENT RECORD

Enter Student name Sanjay

Enter Roll Number 101

Enter average marks 56.5

ENTER STUDENT RECORD

Enter Student name Amit

Enter Roll Number 105

Enter average marks 86.2

 Student record

STUDENT NAME : Sanjay

STUDENT ROLL NUMBER : 101

STUDENT AVERAGE MARKS : 56.5

SCHOOL NAME :My School

 Student record R
IL

-0
85

MCS-102/141

STUDENT NAME : Sanjay

STUDENT ROLL NUMBER : 105

STUDENT AVERAGE MARKS : 86.2

SCHOOL NAME :My School

Static & Non-Static data members in C++ Class

Sno Static data members Non-Static data members

1.
Consumes memory in

context of class.

Consumes memory in context of

object.

2.
Consumes memory only

once.

Consumes memory separately for

each object.

3.
Memory is allocated at the

time of class loading.

Memory is allocated at the time

of object instantiation.

4.
Memory is de-allocated at the

end of program.

Memory is de-allocated at the end

of block.

5.
Values are common for all

objects of that class.

Values may be different for all

objects of that class.

6.
Also known as class

variables.
Also known as instance variable.

7.
May access with class

reference.
May access with object reference.

Static Function Members
Like static data members, we may define static methods. They may be
accessed via class names. But we have to remember that static methods
cannot access non-static members directly. They are generally used to
access static data members or to perform some operation which are
irrelevant to objects or non-static data members. Static members may be
accessed with :: operator via class name.

Example of static method is already defined in the Example-02.

R
IL

-0
85

MCS-102/142

Static & Non-Static methods

Sno Static methods Non-Static Methods

1. Can access with class reference.
Can access with object

reference.

2.
They cannot access non-static

members.

They cannot access static

members.

Check Your Progress

Which function can be called without using an object of a class in C++.

5.18 SUMMARY
In This chapter we discussed about the main characteristics of

OOPs, how to create class and object, what is the use of pointer and how
we can use it and also when and where we should use friend class also the
importance of static members and the difference between static and non-
static members.

5.19 EXERCISE
Q1. Explain the implementation of class and objects in C++ with

example.

Q2. What are static data members and static methods? How they are
different from non-static members. Differentiate with example.

Q3. What is pointers in C++? Explain in regard of classes with
example.

Q4. What is friend function? How it is different from friend class?

Q5. Write a program in C++ to store two employee records. Compare
them on the basis of their salary and display the record who earns
higher salary.

Q6. Write a program in C++ to store 10 records of employees through
objects. Find and display the record of any employee on the basis
of employee ID. Record should contain employee ID, name,
address and salary.

Q7. Write a program in C++ to store 10 records of employees through
objects. Arrange them in ascending order on the basis of their roll
number. Records should also store their name and average marks.

R
IL

-0
85

MCS-102/143

Q8. Write a program in C++ to store 10 records of employees through
objects. Arrange them in ascending order on the basis of their roll
number. Records should also store their name and average marks.
Implement this via friend function.

Q9. Write a program in C++ to store 10 records of books. Find and
display the record of book which is the costliest book.

Q10. Write a program in C++ to store two records of teachers. Swap
them. Each record should contain teacher’s ID, name, address and
subject.

 R
IL

-0
85

MCS-102/144

UNIT-6 OBJECT INITIALIZATION AND
CLEAN-UP

Structure :
6.1 Introduction

6.2 Objective

6.3 Constructor

6.4 Destructor

6.5 Constructor Overloading

6.6 Order of construction and destruction

6.7 Constructor with default argument

6.8 Nameless objects

6.9 Dynamic initialization through constructor

6.10 Constructor with dynamic operations

6.11 Constant object and constructor

6.12 Static data members with constructors and destructors

6.13 Nested classes

6.14 Summary

6.15 Exercise

6.1 INTRODUCTION

 In this unit, we will focus on constructor and destructor.
Constructors are special class functions which performs initialization of
every object. The Compiler calls the Constructor whenever an object is
created. Constructors initialize values to object members after storage is
allocated to the object. Whereas, Destructor on the other hand is used to
destroy the class object.

6.2 OBJECTIVE

 The main objective of this unit is to define the need of constructor
and destructor. And also defined the type of the constructor and the way
how they can be used.

6.3 CONSTRUCTOR
A constructor is a special type of member function that initialises

an object automatically when it is created. Compiler identifies a given

R
IL

-0
85

MCS-102/145

member function is a constructor by its name and the return type.
Constructor has the same name as that of the class and it does not have
any return type. The constructor is generally public.

There are some characteristics of constructor:

• Its name is same as the class name.

• It never returns a value not even void.

• It is executed once for each object.

• It is called separately for each object.

• It may be parameterized.

• It may be overloaded.

• It may be static.

TYPE OF CONSTRUCTOR-
• Implicit Default constructor: An implicit default constructor, which

is used to set the state of its objects with default values.

• Default constructor/ non-parameterized constructor: A default
constructor is a constructor without any parameters.

• Parameterized constructor: Parameterized constructor is used to
pass user defined values in object state.

• Dynamic constructor: Dynamic constructor is used to allocate the
memory where size of memory will be finalized at runtime.

• Copy constructor: Copy constructor is used to create a clone of
existing object with separate allocated memory.

Example 6.1 Program to create constructor in student class and use
it

#include<iostream.h>

#include<conio.h>

#include<stdio.h>

#include<string.h>

class student

{

 private:

 char sname[50]; R
IL

-0
85

MCS-102/146

 int rno;

 float avg;

 public:

 student(); // non-parameterised constructor declaration

 void input();

 void display();

};

student::student() // non-parameterised constructor definition

{

 cout<<"\n Non-parameterised constructor called";

 strcpy(sname,"UNKNOWN");

 rno=0;

 avg=0.0f;

}

void student::input()

{

 cout<<"\n ENTER STUDENT RECORD \n";

 cout<<" Enter Student name ";

 gets(sname);

 cout<<" Enter Roll Number ";

 cin>>rno;

 cout<<" Enter average marks ";

 cin>>avg;

}

void student::display()

{

 cout<<"\n\t\t\tStudent record";

 cout<<"\n STUDENT NAME : "<<sname; R
IL

-0
85

MCS-102/147

 cout<<"\n STUDENT ROLL NUMBER : "<<rno;

 cout<<"\n STUDENT AVERAGE MARKS : "<<avg;

}

void main()

{

 clrscr();

 student s1,s2;

 s1.input();

 s1.display(); //displays values given as input

 s2.display(); //displays constructor values

 getch();

}

Output:

Non parameterised constructor called

Non Parameterised constructor called

ENTER STUDENT RECORD

Enter Student name Rahul

Enter Roll Number 101

Enter average marks 57.5

 Student record

STUDENT NAME : Rahul

STUDENT ROLL NUMBER : 101

STUDENT AVERAGE MARKS : 57.5

 Student record

STUDENT NAME : UNKNOWN

STUDENT ROLL NUMBER : 0

STUDENT AVERAGE MARKS : 0

In the above example, constructor is called once for s1 object and once for
s2 object. Values of s1 object will be updated via input method. But values

R
IL

-0
85

MCS-102/148

of s2 object are not updated here so it will display the same values by
display method.

If we have not specified any constructor in the class, compiler will define
its own constructor to allocate memory to object with garbage values.

How constructor works?
In the above example, student() is a public constructor. It is non-
parameterised in nature. As soon as object is declared at runtime,
constructor is called automatically be compiler. It will be called separately
for each object. Its definition is like other methods but its purpose is to
assign some values in some data members of the class before using them
via object. If multiple objects are declared in C++, constructor is called in
FIFO (First In First Out) order.

Example 6.2 Program to create parameterised constructor in
student class and use it.

#include<iostream.h>

#include<conio.h>

#include<stdio.h>

#include<string.h>

class student

{

 private:

 char sname[50];

 int rno;

 float avg;

 public:

 student(char n[50], int r, float a);

 void input();

 void display();

};

student::student(char n[50], int r, float a) // non-parameterised
constructor

{ R
IL

-0
85

MCS-102/149

 cout<<"\n Parameterised constructor called";

 strcpy(sname,n);

 rno=r;

 avg=a;

}

void student::input()

{

 cout<<"\n ENTER STUDENT RECORD \n";

 cout<<" Enter Student name ";

 gets(sname);

 cout<<" Enter Roll Number ";

 cin>>rno;

 cout<<" Enter average marks ";

 cin>>avg;

}

void student::display()

{

 cout<<"\n\t\t\t Student record";

 cout<<"\n STUDENT NAME : "<<sname;

 cout<<"\n STUDENT ROLL NUMBER : "<<rno;

 cout<<"\n STUDENT AVERAGE MARKS : "<<avg;

}

void main()

{

 clrscr();

 student s("Rahul",101,57.50f);

 s.display(); //displays constructor values

 getch();

R
IL

-0
85

MCS-102/150

}

Output:

Parameterised constructor called

 Student record

STUDENT NAME : Rahul

STUDENT ROLL NUMBER : 101

STUDENT AVERAGE MARKS : 57.5

In the above example, we have defined parameterised constructor. It will
be called when we have passed parameters during declaration of that
object.

Example 6.3 Program to create copy parameterised constructor in
student class and use it

#include<iostream.h>

#include<conio.h>

#include<stdio.h>

#include<string.h>

class student

{

 private:

 char sname[50];

 int rno;

 float avg;

 public:

 student(); // non-parameterised constructor declaration

 student(student &s); // copy constructor declaration

 void input();

 void display();

};

 R
IL

-0
85

MCS-102/151

student::student() // non-parameterised constructor

{

 cout<<"\n Non-parameterised constructor called";

 strcpy(sname,"UNKNOWN");

 rno=0;

 avg=0.0f;

}

student::student(student &s) // copy-constructor definition

{

 cout<<"\n Non-parameterised constructor called";

 strcpy(sname,s.sname);

 rno=s.rno;

 avg=s.avg;

}

void student::input()

{

 cout<<"\n ENTER STUDENT RECORD \n";

 cout<<" Enter Student name ";

 gets(sname);

 cout<<" Enter Roll Number ";

 cin>>rno;

 cout<<" Enter average marks ";

 cin>>avg;

}

void student::display()

{

 cout<<"\n\t\t\tStudent record";

 cout<<"\n STUDENT NAME : "<<sname;

R
IL

-0
85

MCS-102/152

 cout<<"\n STUDENT ROLL NUMBER : "<<rno;

 cout<<"\n STUDENT AVERAGE MARKS : "<<avg;

}

void main()

{

 clrscr();

 student s1;

 s1.input();

 student s2(s1); // copy-constructor calling

 s1.display(); //displays values given as input

 s2.display(); //displays copy constructor values

 getch();

}

Output:

Non parameterised constructor called

ENTER STUDENT RECORD

Enter Student name Amit

Enter Roll Number 101

Enter average marks 78.5

Non Parameterised constructor called

 Student record

STUDENT NAME : Amit

STUDENT ROLL NUMBER : 101

STUDENT AVERAGE MARKS : 78.5

 Student record

STUDENT NAME : Amit

STUDENT ROLL NUMBER : 101

STUDENT AVERAGE MARKS : 78.5

R
IL

-0
85

MCS-102/153

In the above example, we have defined s1 object via son-
parameterised constructor. Then we have cloned the s1 object into s2
object via copy constructor.

Keep in mind that parameter in copy-constructor is always call by
reference as reference variable.

One more to be remember thing during copy-constructor is that
while defining copy constructor, we also have to define non-parameterised
/ parameterised / both constructor. It is required because copy constructor
will clone the object into new object so initially we need an object to be
cloned.

Check Your Progress

What happens when a class with parameterized constructors and having
no default constructor is used in a program and we create an object that
needs a zero-argument constructor?

6.4 DESTRUCTOR

Destructor is the special method of the class which de-allocated the
memory of the object. It will be automatically (implicitly) called. Its name
is same as the class name with ~ symbol at the starting of destructor name.
It cannot be parameterised. It cannot be overloaded. It is generally used
when we have allocated memory to any of the data member as pointer.

If pointers are not used as data member for memory allocation,
destructor is of very rare use.

Example 6.4 Program to create constructor & destructor in student
class and use it.

#include<iostream.h>

#include<conio.h>

#include<stdio.h>

#include<string.h>

class student

{

 private:

R
IL

-0
85

MCS-102/154

 char sname[50];

 int rno;

 float avg;

 public:

 student(); // constructor declaration

 ~student(); // destructor declaration

 void input();

 void display();

};

student::student() // non-parameterised constructor definition

{

 cout<<"\n Non-parameterised constructor called.\n";

 strcpy(sname,"UNKNOWN");

 rno=0;

 avg=0.0f;

}

student::~student() // destructor definition

{

 cout<<"\n\n Destructor of student class is called";

}

void student::input()

{

 cout<<"\n ENTER STUDENT RECORD \n";

 cout<<" Enter Student name ";

 gets(sname);

 cout<<" Enter Roll Number ";

 cin>>rno;

 cout<<" Enter average marks "; R
IL

-0
85

MCS-102/155

 cin>>avg;

}

void student::display()

{

 cout<<"\n\t\t\tStudent record";

 cout<<"\n STUDENT NAME : "<<sname;

 cout<<"\n STUDENT ROLL NUMBER : "<<rno;

 cout<<"\n STUDENT AVERAGE MARKS : "<<avg;

}

void main()

{

 clrscr();

 student s1;

 s1.display();

 getch();

}

Output:

Non-parameterised constructor called

 Student record

STUDENT NAME : UNKNOWN

STUDENT ROLL NUMBER : 0

STUDENT AVERAGE MARKS : 0

Destructor of the student class is called

Check Your Progress

When is the destructor of a global object called?

 R
IL

-0
85

MCS-102/156

6.5 CONSTRUCTOR OVERLOADING

Constructor can be overloaded in a similar way as function
overloading. Overloaded constructors have the same name (name of the
class) but different number of arguments. Depending upon the number and
type of arguments passed, specific constructor is called. Since, there are
multiple constructors present, argument to the constructor should also be
passed while creating an object.

Example 6.5 Program to implement constructor overloading in
C++

#include<iostream.h>

#include<conio.h>

#include<stdio.h>

#include<string.h>

class student

{

 private:

 char sname[50];

 int rno;

 float avg;

 public:

 student(); // non-parameterised constructor declaration

 student(char n[50], int r, float a); // paremeterised constructor
declaration

 student(student &s); // copy constructor declaration

 void input();

 void display();

};

student::student() // non-parameterised constructor definiton

{

 cout<<"\n Non-parameterised constructor called";

R
IL

-0
85

MCS-102/157

 strcpy(sname,"UNKNOWN");

 rno=0;

 avg=0.0f;

}

student::student(char n[50], int r, float a) // parameterised constructor
definiton

{

 cout<<"\n Parameterised constructor called";

 strcpy(sname,n);

 rno=r;

 avg=a;

}

student::student(student &s) // copy-constructor definition

{

 cout<<"\n Non-parameterised constructor called";

 strcpy(sname,s.sname);

 rno=s.rno;

 avg=s.avg;

}

void student::input()

{

 cout<<"\n ENTER STUDENT RECORD \n";

 cout<<" Enter Student name ";

 gets(sname);

 cout<<" Enter Roll Number ";

 cin>>rno;

 cout<<" Enter average marks ";

 cin>>avg;

R
IL

-0
85

MCS-102/158

}

void student::display()

{

 cout<<"\n\t\t\tStudent record";

 cout<<"\n STUDENT NAME : "<<sname;

 cout<<"\n STUDENT ROLL NUMBER : "<<rno;

 cout<<"\n STUDENT AVERAGE MARKS : "<<avg;

}

void main()

{

 clrscr();

 student s1;

 s1.input(); //non-parameterised constructor call

 student s2("Mudit", 151,59.5f); //parameterised constructor call

 student s3(s1); //copy constructor call

 s1.display(); //displays values given as input

 s2.display(); //displays parameterised-constructor values

 s3.display(); //displays copy constuctor calues

 getch();

}

Output:

Non parameterised constructor called

ENTER STUDENT RECORD

Enter Student name Rahul

Enter Roll Number 101

Enter average marks 57.5

Parameterised constructor called

Non Parameterised constructor called R
IL

-0
85

MCS-102/159

 Student record

STUDENT NAME : Rahul

STUDENT ROLL NUMBER : 101

STUDENT AVERAGE MARKS : 57.5

 Student record

STUDENT NAME : Mudit

STUDENT ROLL NUMBER : 151

STUDENT AVERAGE MARKS : 59.5

 Student record

STUDENT NAME : Rahul

STUDENT ROLL NUMBER : 101

STUDENT AVERAGE MARKS : 57.5

In the above we have defined non-parameterised, parameterised
and copy constructor. They will be invoked on the basis of their parameter
list.

Check Your Progress

If the constructors are overloaded by using the default arguments, which
problem may arise?

6.6 ORDER OF CONSTRUCTION AND
DESTRUCTION

When a class object is created using constructors, the execution
order of constructors is:

• First of all constructors of Virtual base classes are invoked.
Sequence will be done in the order that they appear in the base list.

• Thereafter, constructors of non-virtual base classes are invoked as
in the declaration order.

• Constructors of class members are invoked in the declaration
order.

R
IL

-0
85

MCS-102/160

• The body of the constructor is executed.

Check Your Progress

Which destructor is called first?

6.7 CONSTRUCTOR WITH DEFAULT
ARGUMENT

Default constructor is also known as non-parameterised
constructor. If we have not defined any constructor, compiler will generate
its own internal default constructor with garbage values.

We may also specify some parameters in parameterised
constructor. If we wish to specify some default values in parameterised
constructor, we may do it. It was also possible in the function as default
parameters. Default parameters in constructor will be used only if, no
values are specified at object declaration section.

Example 6.6 Program to implement constructor with default
argument in C++

#include<iostream.h>

#include<conio.h>

#include<stdio.h>

#include<string.h>

class student

{

 private:

 char sname[50];

 int rno;

 float avg;

 public:

 student(char n[50], int r, float a=0.0f); // default parameter in third
parameter

 void input(); R
IL

-0
85

MCS-102/161

 void display();

};

student::student(char n[50], int r, float a) // parameterised constructor

{

 cout<<"\n Parameterised constructor called";

 strcpy(sname,n);

 rno=r;

 avg=a;

}

void student::input()

{

 cout<<"\n ENTER STUDENT RECORD \n";

 cout<<" Enter Student name ";

 gets(sname);

 cout<<" Enter Roll Number ";

 cin>>rno;

 cout<<" Enter average marks ";

 cin>>avg;

}

void student::display()

{

 cout<<"\n\t\t\tStudent record";

 cout<<"\n STUDENT NAME : "<<sname;

 cout<<"\n STUDENT ROLL NUMBER : "<<rno;

 cout<<"\n STUDENT AVERAGE MARKS : "<<avg;

}

void main()

R
IL

-0
85

MCS-102/162

{

 clrscr();

 student s1("Mudit", 151,59.5f);

 student s2("Anshul", 152); // calling default parameter as third
parameter

 s1.display();

 s2.display();

 getch();

}

Output:

Parameterised constructor called

Parameterised constructor called

 Student record

STUDENT NAME : Mudit

STUDENT ROLL NUMBER : 151

STUDENT AVERAGE MARKS : 59.5

 Student record

STUDENT NAME : Anshul

STUDENT ROLL NUMBER : 152

STUDENT AVERAGE MARKS : 0

In the above example, we have assigned 0.0f as default argument in
parameterised constructor. In case of first object, average marks are passed
during object creation so all 3 parameters will be sent to constructor
definition.

In second object creation, we have passed only two parameters, so third
value be considered as default argument in constructor.

Check Your Progress

In C++ ………………. creates objects, even though it was not defined
in the class. R
IL

-0
85

MCS-102/163

6.8 NAMELESS OBJECTS

Nameless objects are also known as anonymous objects. These are
the object which is declared without any name. Such objects are used to
call constructor of that class for some processing. They may also be used
as returning statement after updating object values.

Example 6.7 Program create anonymous object.

#include<iostream.h>

#include<conio.h>

#include<stdio.h>

#include<string.h>

class student

{

 private:

 char sname[50];

 int rno;

 float avg;

 public:

 student(char n[50], int r, float a);

 void display();

};

student::student(char n[50], int r, float a) // parameterised constructor

{

 cout<<"\n Parameterised constructor called";

 strcpy(sname,n);

 rno=r;

 avg=a;

 display();

}

R
IL

-0
85

MCS-102/164

void student::display()

{

 cout<<"\n\t\t\tStudent record";

 cout<<"\n STUDENT NAME : "<<sname;

 cout<<"\n STUDENT ROLL NUMBER : "<<rno;

 cout<<"\n STUDENT AVERAGE MARKS : "<<avg;

}

void main()

{

 clrscr();

 student("Anshul", 152, 85.5f); //anonymous object

 getch();

}

Output:

Parameterised constructor called

 Student record

STUDENT NAME : Anshul

STUDENT ROLL NUMBER : 152

STUDENT AVERAGE MARKS : 85.5

6.9 DYNAMIC INITIALIZATION THROUGH
CONSTRUCTOR

Parameterised constructor may be literal (fixed) values at the time
of object declaration. It may also be processed or user input values. In
input or processed values case, such initialization will be known as
dynamic initialization through constructor.

Example 6.8 Program create anonymous object

#include<iostream.h> R
IL

-0
85

MCS-102/165

#include<conio.h>

#include<stdio.h>

#include<string.h>

class student

{

 private:

 char sname[50];

 int rno;

 float avg;

 public:

 student(char n[50], int r, float a);

 void display();

};

student::student(char n[50], int r, float a) // parameterised constructor

{

 cout<<"\n Parameterised constructor called";

 strcpy(sname,n);

 rno=r;

 avg=a;

}

void student::display()

{

 cout<<"\n\t\t\tStudent record";

 cout<<"\n STUDENT NAME : "<<sname;

 cout<<"\n STUDENT ROLL NUMBER : "<<rno;

 cout<<"\n STUDENT AVERAGE MARKS : "<<avg;

}

void main()

R
IL

-0
85

MCS-102/166

{

 clrscr();

 char name[50];

 int rno;

 float avg;

 cout<<"\n ENTER STUDENT RECORD \n";

 cout<<" Enter Student name ";

 gets(name);

 cout<<" Enter Roll Number ";

 cin>>rno;

 cout<<" Enter average marks ";

 cin>>avg;

 student s(name,rno,avg); // actual arguments for dynamic
initialization

 s.display();

 getch();

}

Output:

ENTER STUDENT RECORD

Enter Student name Mudit Kapoor

Enter Roll Number 101

Enter average marks 55.5

Parameterised constructor called

 Student record

STUDENT NAME : Mudit Kapoor

STUDENT ROLL NUMBER : 101

STUDENT AVERAGE MARKS : 55.5

In the above example, we have sent arguments which are not fixed
at compile time. We may also do some calculations during assignment in
constructor.

R
IL

-0
85

MCS-102/167

6.10 CONSTRUCTOR WITH DYNAMIC
OPERATIONS

Dynamic constructors are those constructors which involves
Dynamic initialization in their definition. For this we must have any
pointer as data member in the class.

Suppose we want to store the marks in multiple subjects but we
number of subjects are not fixed at compile time then we may use such
dynamic constructor. These are most used in case of linked list, tree and
graph related problems.

Example 6.9 Program to implement dynamic constructor

#include<iostream.h>

#include<conio.h>

#include<stdio.h>

#include<string.h>

class student

{

 private:

 char sname[50];

 int rno;

 int *marks;

 int subjects;

 float avg;

 public:

 student(); // Constructor definition

 ~student(); // Destructor definition

 void input();

 void calculate();

 void display();

};

R
IL

-0
85

MCS-102/168

student::student() // Dynamic constructor definition

{

 cout<<"\n Dynamic constructor called";

 cout<<"\n\n Enter number of subjects ";

 cin>>subjects;

 marks=new int[subjects]; // runtime memory allocation

}

student::~student() // destructor definition

{

 delete marks; // runtime memory de-allocation

}

void student::input()

{

 cout<<"\n ENTER STUDENT NAME : ";

 gets(sname);

 cout<<"\n ENTER STUDENT ROLL NUMBER : ";

 cin>>rno;

 for(int i=0;i<subjects;i++)

 {

 cout<<"\t\tSubject "<<i+1<<" : ";

 cin>>*(marks+i);

 }

}

void student::calculate()

{

 int sum=0;

 for(int i=0;i<subjects;i++)

 { R
IL

-0
85

MCS-102/169

 sum=sum+*(marks+i);

 }

 avg=(float)sum/subjects;

}

void student::display()

{

 cout<<"\n\t\t\tStudent record";

 cout<<"\n STUDENT NAME : "<<sname;

 cout<<"\n STUDENT ROLL NUMBER : "<<rno;

 cout<<"\n NUMBER OF SUBJECTS : "<<subjects;

 for(int i=0;i<subjects;i++)

 {

 cout<<"\n\t\tSubject "<<i+1<<" : "<<*(marks+i);

 }

 cout<<"\n STUDENT AVERAGE MARKS : "<<avg;

}

void main()

{

 clrscr();

 student s;

 s.input();

 s.calculate();

 s.display();

 getch();

}

Output:

Dynamic constructor called

Enter number of subject 4

R
IL

-0
85

MCS-102/170

ENTER STUDENT NAME : Rohit Singh

ENTER STUDENT ROLL NUMBER : 101

 Subject 1 : 78

 Subject 2 : 86

 Subject 3 : 79

 Subject 4 : 90

 Student record

STUDENT NAME : Rohit Singh

STUDENT ROLL NUMBER : 101

NUMBER OF SUBJECT : 4

 Subject 1 : 78

 Subject 2 : 86

 Subject 3 : 79

 Subject 4 : 90

STUDENT AVERAGE MARKS : 83.25

In the above example, we have allocated memory at runtime via
constructor, so it is called dynamic constructor. One important thing is
that, in such cases we should de-allocate memory through destructor.

Check Your Progress

Which type of construction of object s called in which allocation of
memory to objects at the time of their construction?

6.11 CONSTANT OBJECT AND CONSTRUCTOR

Like constant variable, C++ also supports constant object. Once we
have defined any object as constant, its values cannot be modified. Only
constructor and destructor can modify the values of object, no other
method can change the values of object. Constructors and destructors can
never be declared as const. They are always allowed to modify an object
even if the object is const.

If we have defined const object then they may call only const methods else
the will give warning.

R
IL

-0
85

MCS-102/171

Example 6.10 Program to implement constant object

#include<iostream.h>

#include<conio.h>

#include<stdio.h>

#include<string.h>

class student

{

 private:

 char sname[50];

 int rno;

 float avg;

 public:

 student(char n[50], int r, float a);

 void display() const; // declaring const method

};

student::student(char n[50], int r, float a) // parameterised constructor

{

 cout<<"\n Parameterised constructor called";

 strcpy(sname,n);

 rno=r;

 avg=a;

}

void student::display() const // defining const method

{

 cout<<"\n\t\t\tStudent record";

 cout<<"\n STUDENT NAME : "<<sname;

 cout<<"\n STUDENT ROLL NUMBER : "<<rno;

R
IL

-0
85

MCS-102/172

 cout<<"\n STUDENT AVERAGE MARKS : "<<avg;

}

void main()

{

 clrscr();

 const student s("Nitin",101,60.5f); // defining const object

 s.display();

 getch();

}

Output:

Parameterised constructor called

 Student record

STUDENT NAME : Nitin

STUDENT ROLL NUMBER : 101

STUDENT AVERAGE MARKS : 60.5

In the above example, object is defined as const. so it cannot be updated, it
can only be read or displayed.

Const Methods
First of all, important point is that const methods are used to be called by
const object. Besides that const methods may be called by non-const
methods. You can declare a method of a class to be const. This must be
done both in the method's prototype and in its definition by coding the
keyword const after the method's parameter list.

Check Your Progress

Whenever const objects try to invoke non-const member functions, the
compiler___________

R
IL

-0
85

MCS-102/173

6.12 STATIC DATA MEMBERS WITH
CONSTRUCTORS AND DESTRUCTORS

Data members and methods may be defined as static. In that case
they will be called static data member and static method respectively.
Constructor cannot be defined as static.

As we know static members may access only static members but
non-static members may access static and non-static members both. Static
data members are loaded into memory at the time of program loading and
it is loaded only once.

Data members are declared as static to store common value for all
objects. We can’t declare static variables in a constructors.

Example 6.11 Program to count number of objects via static
members

#include<iostream.h>

#include<conio.h>

#include<stdio.h>

#include<string.h>

class student

{

 private:

 char sname[50];

 int rno;

 float avg;

 public:

 static int count; //static data member

 static void dispcount(); //static method

 student();

 ~student();

};

void student::dispcount()

R
IL

-0
85

MCS-102/174

{

 cout<<"\n Number of records till now : "<<count; //display records
count

}

student::student()

{

 strcpy(sname," ");

 rno=0;

 avg=0.0f;

 count++; // increase in the counting of records

}

student::~student()

{

 count--; // decrease in the count of records

}

int student::count=0; //defining static data member

void main()

{

 clrscr();

 student s1;

 s1.dispcount();

 student s2[10];

 student::dispcount();

 student s3;

 s1.dispcount();

 getch();

}

R
IL

-0
85

MCS-102/175

Output :

Number of records till now : 1

Number of records till now : 11

Number of records till now : 12

In the above example, it is shown that static data members will store one
value for all objects. And static methods may be called by object name and
class name both.

Check Your Progress

What are the characteristics of static data member?

6.13 NESTED CLASSES

A nested class is a class which is declared in another enclosing
class. A nested class is a member and as such has the same access rights as
any other member. The members of an enclosing class have no special
access to members of a nested class; the usual access rules shall be
followed.

Example 6.12 Program to student record with his temporarily and
permanent address

#include<iostream.h>

#include<conio.h>

#include<stdio.h>

#include<string.h>

class student

{

 private:

 char sname[50];

 int rno;

R
IL

-0
85

MCS-102/176

 float avg;

 class address //nested class definition

 {

 int houseno; //nested class data member

 char city[20]; //nested class data member

 public:

 void input() //nested class method

 {

 cout<<"\n\t\t Enter house number ";

 cin>>houseno;

 cout<<"\t\t Enter city ";

 gets(city);

 }

 void display() //nested class method

 {

 cout<<"\n\t\t House Number "<<houseno;

 cout<<"\n\t\t City "<<city;

 }

 };

 address temp; //nested class object

 address permanent; //nested class object

 public:

 void input();

 void display();

};

void student::input()

{

 cout<<"\n ENTER STUDENT RECORD \n";

 cout<<" Enter Student name ";

 gets(sname); R
IL

-0
85

MCS-102/177

 cout<<" Enter Roll Number ";

 cin>>rno;

 cout<<" Enter average marks ";

 cin>>avg;

 cout<<" Enter temporarily address ";

 temp.input(); //nested class’s object method call

 cout<<" Enter permanent address ";

 permanent.input(); //nested class’s object method call

}

void student::display()

{

 cout<<"\n\t\t\tStudent record";

 cout<<"\n STUDENT NAME : "<<sname;

 cout<<"\n STUDENT ROLL NUMBER : "<<rno;

 cout<<"\n STUDENT AVERAGE MARKS : "<<avg;

 cout<<"\n TEMPORARILY ADDRESS : ";

 temp.display(); //nested class’s object method call

 cout<<"\n PERMANENT ADDRESS ";

 permanent.display(); //nested class’s object method call

}

void main()

{

 clrscr();

 student s1;

 s1.input();

 s1.display();

 getch();

}

R
IL

-0
85

MCS-102/178

Output:

ENTER STUDENT RECORD

Enter Student name Amit

Enter Roll Number 101

Enter average marks 56.5

Enter temporarily address

 Enter house number 56

 Enter city Noida

Enter permanent address

 Enter house number 445

 Enter city Bareilly

 Student record

STUDENT NAME : Amit

STUDENT ROLL NUMBER : 101

STUDENT AVERAGE MARKS : 56.5

TEMPORARILY ADDRESS

 HOUSE NUMBER 56

 CITY Noida

PERMANENT ADDRESS

 HOUSE NUMBER 445

 CITY Bareilly

Nested Class Benefits
• Each individual class can be simple and straightforward.

• A class can focus on performing one specific task.

• The class is easier to write, debug, understand, and usable by other
programmers.

Check your Progress
Can a class contain another class in it ? R
IL

-0
85

MCS-102/179

6.14 SUMMARY

Constructor is a special method of the class which is used to
initialize the data members of the class once the object is created. The
most important thing with constructor is that it is executed implicitly for
each object separately. There are several types of constructors: implicit,
default, parameterised, copy and dynamic constructor. Like constructor
allocates the memory, opposite to this, C++ provides destructor to destroy
the objects. Dynamic constructors are used to allocate the memory in the
constructor as well.

C++ allows the anonymous objects too. This may be handy in
short notations for processing at times. C++ also supports static members
to be managed in context of class while non-static members are managed
in context of objects.

Sometimes problems are not too simple, they may be complicated.
In that case we may need some objects as data members. One of the
solution to that problem is nested class. With that, we may define class as
member inside the other class. In that case, inside class is known as nested
class. That nested class may be used only inside that parent class. Unlike
containership, they cannot be used in outside the parent class.

6.15 EXERCISE
Q1. What is constructor? Describe their types with example.

Q2. What is destructor? Explain with example.

Q3. Explain the constructor overloading with example.

Q4. What is nested class? Describe with example.

Q5. Write a program in C++ to create the employee class with
parameterised constructor. Employee class should contain
Employee ID, address, department and salary.

Q6. Write a program in C++ to create the books class. It should contain
ISBN, author, publication and price. Store 3 records of books by
input. Load one more record with copy constructor.

 R

IL
-0

85

MCS-102/180

MCS-102
C++ & OBJECT ORIENTED
PROGRAMMING

BLOCK

3
OPERATOR OVERLOADING AND INHERITENCE

UNIT-7 185

Operator Overloading

UNIT-8 207

Inheritance-Extending classes

Uttar Pradesh Rajarshi Tandon
Open University

R
IL

-0
85

MCS-102/181

Course Design Committee
Prof. Ashutosh Gupta Chairman
Director-In charge,
School of Computer and Information Science
UPRTOU, Prayagraj
Prof. U. S. Tiwari Member
Dept. of Computer Science
IIIT Prayagraj
Prof. R. S. Yadav Member
Department of Computer Science and Engineering
MNNIT-Allahabad, Prayagraj
Dr Marisha Member
Assistant Professor (Computer Science)
School of Science, UPRTOU, Prayagraj
Mr. Manoj K. Balwant Member
Assistant Professor (Computer Science)
School of Science, UPRTOU, Prayagraj

Course Preparation Committee
Author (Block 1) Dr Marisha

Assistant Professor (Computer Science)
School of Science, UPRTOU,
Prayagraj

Author (Blocks 2, 3 and 4) Er. Pooja Yadav
Assistant Professor
Dept. of Computer Science and IT
M.J.P. Rohilkhand University, Bareilly

Editor

Coordinator

 Prof. Ashutosh Gupta
Director (In-Charge)
School of Computer and Information Science
UPRTOU, Prayagraj

©All Rights are reserved. No part of this work may be reproduced in any
form, by mimeograph or any other means, without permission in writing
from the Uttar Pradesh Rajarshi Tondon Open University, Prayagraj.

Printed and Published by Dr. Arun Kumar Gupta Registrar, Uttar
Pradesh Rajarshi Tandon Open University, 2020.

Printed By : Chandrakala Universal Pvt. Ltd. 42/7 Jawahar Lal Neharu
Road, Prayagraj, 211002

©UPRTOU, Prayagraj
ISBN : 978-93-83328-98-7

Dr Marisha
Assistant Professor (Computer Science)
School of Science, UPRTOU, Prayagraj

R
IL

-0
85

MCS-102/182

BLOCK INTRODUCTION

In this section we discuss the overview of this block’s content. This block
consists of the following units:

Unit-7 : Operator Overloading
In this unit we’ll discuss about the concept and working of
polymorphism specially compile time polymorphism. Operator
Overloading is one of important concept which makes user defined data
types usable to perform variety of arithmetic, logical and much more
operations.

Unit-8 : Inheritance
In this unit we'll discuss each and everything about inheritance in C++,
specifically, what is inheritance and different ways to implement it types
of inheritance, containership and constructor and destructor in inheritance
with examples. Inheritance is one of the important concepts of C++. It
permits user to create a new class (derived class) from an existing class
(base class). The derived class inherits all the features from the base class
and can have additional features of its own.

R
IL

-0
85

MCS-102/183

R
IL

-0
85

MCS-102/184

UNIT-7 OPERATOR OVERLOADING

7.0 Introduction

7.1 Objective

7.2 Definition

7.3 Methods of Operator Overloading

7.4 Overload Unary Operator by using member function

7.5 Overload Unary Operator by using friend function

7.6 Overload Binary Operator by using Member function

7.7 Overload Binary Operator by using friend function

7.8 Rules for Overloading Operator

7.9 Type Conversion and its method

7.10 Summary

7.11 Exercise

7.0 INTRODUCTION

Operator overloading is one of the most important concept of
object oriented programing. It is a type of polymorphism, in which an
operator is overloaded to give user defined meaning to it. Operators are
used to perform operations on built-indata type like c=a+b, but can’t
perform operations on user define data type’s variable like
obj3=obj1+obj2. This is the main reason of origin of operator overloading
concept.

7.1 OBJECTIVE

The main objective of this unit is to define the main goals of
operator overloading is to make their code cheaper to write and easier to
understand. Operator overloading permits to redefine the working of
operator for user-defined types (objects, structures) without changing the
definition. It cannot be used for built-in types (int, float, char etc.).

7.2 DEFINITION

Operator overloading is a type of Compile time binding. It provide
extra functionality to the existing operators so that they also operate on
user defined data type’s variable i.e. objects. Like '+' operator can be
overloaded to perform addition on built-in data types, like Integer, float,
String (concatenation) etc. But this concept that allows programmer to

R
IL

-0
85

MCS-102/185

redefine the importance of operator when they operate on class objects is
known as operator overloading.

One of the difference between structure and class is:

typedef struct student {

int a,b;

}S1,S2,S3;

We can’t do

S3=S1+S2;

but

class employee {

int a,b;

}e1,e2,e3;

We can do:

e3=e1+e2;

with the help of operator overloading concept.

Check Your Progress

Which type of polymorphism is Operator Overloading?

7.3 METHODS OF OPERATOR OVERLOADING

There are two methods to perform Operator Overloading one is by
using member function and another is friend function.

There are 3 types of operators:

• Unary

• Binary

• Ternary

But we can’t overload ternary operator and to overload unary operator by
using member function no argument is passed but by using friend function R

IL
-0

85

MCS-102/186

one argument is passed. And to overload binary operator by using member
function one argument is passed and by using friend function two
arguments are passed.

Method /Operator Unary Binary

Member Function

(No. of argument =operand use -1)
0 1

Friend Function

(No. of argument =operand)
1 2

7.4 OVERLOAD UNARY OPERATOR BY
USING MEMBER FUNCTION

Syntax : The general syntax to overload unary operator by using member
function is as follows:

return-type operator operator _to _be _overloaded(List of
Arguments)

{

statement;

statement ;

return(expression); // it will not applicable if return type is void

}

operator is the keyword in C++, which indicate that operator _to _be
_overloaded is an operator.

Example 7.1 To overload pre increment ++ operator

#include<conio.h>

#include<iostream.h>

R
IL

-0
85

MCS-102/187

class sum

{

int a;

int b;

public:

void getdata()

{

 cout<< “ enter the value of a and b:”;

cin>>a>>b;

}

void display()

{

 cout<< “\na=”<<a<<”\nb=”<<b;

}

void operator++();

};

void sum::operator++()

{

a=++a;

b=++b;

}

void main()

{

clrscr();

sum s;

s.getdata();

s. operator ++();

s.display();

getch();

R
IL

-0
85

MCS-102/188

}

Output:

enter the value of a and b: 5 8

a=6

b=9

Check Your Progress

How to declare operator function?

7.5 OVERLOAD UNARY OPERATOR BY
USING FRIEND FUNCTION

Syntax : The general syntax to overload unary operator by using member
function is asfollows:

friend and operator is the keyword in C++, which indicate that operator
_to _be _overloaded is an operator which is overloaded by friend
function.

Example 7.2 To overload pre increment ++ operator

#include<conio.h>

friend return-type operator operator_to _be _overloaded (List of
Argument)

{

 statement;

 statement;

 return (expression); // it will not applicable if return type is void

}

R
IL

-0
85

MCS-102/189

#include<iostream.h>

class sum

{

int a,b;

public:

void getdata()

{

 cout<< “ enter the value of a and b:”;

 cin>>a>>b;

}

void display()

{

 cout<< “\na=”<<a<<” \nb=”<<b;

}

friend void operator++(sum &); // ++ operator as friend function
declaration

};

void operator++(sum &ob) // ++ operator as friend function definition

{

ob.a=++ob.a;

ob.b=++ob.b;

}

void main()

{

sum s;

clrscr();

s. getdata();

operator ++(s); //or we can use ++s;

s. display();

getch();

R
IL

-0
85

MCS-102/190

}

Output:

enter the value of a and b: 5 8

a=6

b=9

In this program we pass reference of object as an argument
because friend function is not call with object so object is passed to access
the member of class and if increment is perform in local area then it will
never reflect in outside function but reference variable is the alias name so
the reflection will be seen in outside function.

Check Your Progress

What is unary operator? How many arguments are passed in friend
function to overload unary operator.

7.6 OVERLOAD BINARY OPERATOR BY
USING MEMBER FUNCTION

Syntax : The general syntax to overload unary operator by using member
function is as follows:

return-type operator operator _to _be _overloaded (List of
Argument)

{

statement;

statement;

return(expression); // it will not applicable if return type is
void

}

operator is the keyword in C++, which indicate that operator _to _be
_overloaded is an operator. R

IL
-0

85

MCS-102/191

Example 7.3 To overload pre increment + operator

#include<conio.h>

#include<iostream.h>

class sum

{

int a;

int b;

public:

void getdata()

{

 cout<< “ enter the value of a and b:”;

cin>>a>>b;

}

void display()

{

 cout<< “\na=”<<a<<” \nb=”<<b;

}

void operator + (sum);

};

void sum::operator+(sum s1)

{

a=a+s1.a;

b=b+s1.b;

}

void main()

{

clrscr();

sum ob1,ob2;

ob1.getdata();

R
IL

-0
85

MCS-102/192

ob2.getdata();

ob1.operator +(ob2);

ob1. display();

getch();

}

Output:

enter the value of a and b: 4 5

enter the value of a and b: 7 8

a=11

b=13

Check Your Progress

In which type of operator overloading through a member function take one
explicit argument?

7.7 OVERLOAD BINARY OPERATOR BY
USING FRIEND FUNCTION

Syntax : The general syntax to overload unary operator by using member
function is as follows :

return-type operator operator _to _be _overloaded (List of
Argument)

{

statement;

statement;

return(expression); // it will not applicable if return type is
void

}

operator is the keyword in C++, which indicate that operator _to _be
_overloaded is an operator.

R
IL

-0
85

MCS-102/193

In case of binary operator overloading by using member function it is
compulsory to present object on R.H.S because i.e.

 X+Y which is equivalent to X . operator + (Y) , where X
and Y plays the role of object

So in this case 2+Y is not possible where Y is object and 2 is not a object
so it can’t be accessible operator function. This statement looks like
2.+operator (Y) . This can’t do .

By which we used friend function to overload binary operator in which we
pass both operand as argument. Like: operator + (X,Y)

And operator +(2,Y)

Example 7.4 To overload pre increment + operator

#include<conio.h>

#include<iostream.h>

class sum

{

int a;

int b;

public:

void getdata()

{

 cout<< “ enter the value of a and b:”;

cin>>a>>b;

}

void display()

{

 cout<< “\na=”<<a<<” \nb=”<<b;

}

friend sum operator + (sum, sum);

};

R
IL

-0
85

MCS-102/194

sumoperator + (sum s1,sum s2)

{

sum s3;

s3.a= s1.a+s2.a;

s3.b=s1.b+s2.b;

return(s3);

}

void main()

{

clrscr();

sum ob1,ob2,ob3;

ob1.getdata();

ob2.getdata();

ob3=ob1+ob2;

ob3. display();

getch();

}

Output:

enter the value of a and b : 4 5

enter the value of a and b : 7 8

a=11

b =13

In this, ob3=ob1+ob2 can also be used as ob3=operator (ob1, ob2); both
are equivalent.

Check Your Progress

In Which type of operator overloading through a member function, the left
hand operand must be an object of the relevant class.

R
IL

-0
85

MCS-102/195

7.8 RULES FOR OVERLOADING OPERATOR

(i) Only built-in or existing operators can be overload, not built –in
data type.

(ii) Syntax and Associativity can’t be change

(iii) Operators must be overloaded explicitly.

(iv) Definition or meaning of any operand should not be change. If
change then this code is confusing and, difficult to understand and
debug.

(v) Two methods i.e. by using member function and by using friend
function are used to overload any operator.

(vi) Some operators cannot be overload by using friend function and
even some cannot be overload by any of method.

(vii) List of operators that can be overload:

(viii) Following is the list of operators, which cannot be overloaded:

Operators that can be overloaded

+ - * / % ^ & |

~ ! = < > += -= *=

/= %= ^= &= |= << >> >>=

<<= = = != <= >= && || ++

-- ->* , -> [] () new delete

new[] delete[]

(ix) Following is the list of operators, which cannot be overloaded :

Operators that cannot be overloaded

. .* :: ?: sizeof

(x) There are some operators that can be overload by using member
function but can’t be overload by using friend function.

R
IL

-0
85

MCS-102/196

Assignment operator =

function call operator ()

subscriping operator []

class member access operator ->

7.9 TYPE CONVERSION AND ITS METHOD

The process of converting a value from one data type to another is
called a type conversion. Type conversion is of two types: implicit
conversion and explicit conversion. Implicit conversion is known as
automatic type conversion where the compiler automatically transforms
one fundamental data type into another.

Ex:- int x=5;

 float z;

 z=x;

But compiler can’t convert class type in to built-in type and also can’t
convert in to another user defined data type. This can be done only by
using casting operator.

This is known asexplicit type conversions, where the user uses a some
extra code forconversion and explicit conversion is known as type casting.

There are three types situation where data type conversions are between
incompatible types:-

• Basic to class type

• Class type to Basic type

• One Class type to another class type

Method :

One method is by using constructor and another is casting operator

Constructor_name(typename variable)

{……

}

R
IL

-0
85

MCS-102/197

There are 3 condition of casting operator those should be satisfied-

1) It must be a class member.

2) It must not specify a return type.

3) It must not have any arguments.

Since, it is a member, it is invoked by the object and therefore, the values
used for conversion inside the function belong to the object that invoked
the function. As a result function does not need an argument.

Syntax :

operator typename()

{

 statement
 ……

return(variable of type-name);

}
The above function converts a class type data to type-name.

7.9.1 BASIC TO CLASS TYPE CONVERSION

Example 7.5 Convert basic data type to class type data.

#include<conio.h>

#include<iostream.h>

class sum

{

int a;

intb;

public:

sum()

{

}

R
IL

-0
85

MCS-102/198

sum(int t)

{

a=t;

b=t+1;

}

void display()

{

cout<< “\na=”<<a;

cout<<“\nb=”<<b;

}

};

void main()

{

sum s;

clrscr();

int num=5;

s=num;

s. display();

getch();

}

Output:

a=5

b=6

Check Your Progress

To perform the conversion from any other data type or class to a class type,
a ………….. should be used in the destination class.

R
IL

-0
85

MCS-102/199

7.9.2 CLASS TO BASIC TYPE CONVERSION

Example 7.6 Convert class type data to basic data type

#include<conio.h>

#include<iostream.h>

class sum

{

public:

int a;

int b;

sum(int x, int y)

{

 a=x;

 b=y;

}

operator int();

};

sum :: operator int()

{

return int(a+b);

}

void main()

{

clrscr();

int add;

sum s(10,20);

add=s;

cout<<"add ="<<add;

getch();

}

Output:

R
IL

-0
85

MCS-102/200

add=30

Check Your Progress

The conversion from a class to any other type or any other class is done by
using ………….. in the source class.

7.9.3 CLASS TO CLASS TYPE CONVERSION

Example 7.7 Convert one class type data to another class type data

#include<conio.h>

#include<iostream.h>

class sub

{

public:

int a1;

int b1;

void display()

{

 cout<<"\n a1 ="<<a1;

 cout<<"\n b1 ="<<b1;

}

};

class sum

{

public:

int a;

int b;

sum(int x,int y)

{

 a=x;

R
IL

-0
85

MCS-102/201

 b=y;

}

operator sub() //type conversion by using casting operator

{

 sub s;

 s.a1=a;

 s.b1=b;

 return s;

}

};

void main()

{

clrscr();

sum ob1(10,20);

sub ob2;

ob2=ob1; //means ob2(ob1)

ob2.display();

getch();

}

Output:

a1=10

b1=20

Method-II :

Example 7.8 Convert one class type data to another class type data

#include<conio.h>

#include<iostream.h>

class sum

{

R
IL

-0
85

MCS-102/202

public:

int a,b;

sum(int x,int y)

{

 a=x;

 b=y;

}

};

class sub

{

public:

int a1,b1;

sub()

{

}

sub(sum s) //type conversion by using constructor

{

 a1=s.a;

b1=s.b;

}

void display()

{

 cout<<"a1 ="<<a1;

 cout<<"\nb1 ="<<b1;

}

};

void main()

{

clrscr();

sum ob1(10,20);

sub ob2; R
IL

-0
85

MCS-102/203

ob2=ob1; //means ob2(ob1)

ob2.display();

getch();

}

Output:

a1=10

b1=20

Check Your Progress

How many parameters does a conversion operator may take?

7.10 SUMMARY

 Operator overloading is one of the most helpful concept that
creates new way of working for objects without changing its syntax,
meaning, precedence and associativity with the help of Operator keyword
in any of the method: by using member function and friend function.

In this three type of type conversion is performed: basic to class, class to
basic and class to class with the help of constructor and type cast operator.

7.11 EXERCISE

1. What is operator overloading? Give some limitations of operator
overloading.

2. Write a program to overload a ‘<’ operator by using friend
function.

3. What is operator overloading explain its properties? Write
limitation of member function in binary Operator overloading.

4. List out the operators that cannot be overloaded.

5. What is the purpose of using operator function? Write its syntax.

6. What is the need of friend function, when member function is
already use in operator overloading.

R
IL

-0
85

MCS-102/204

7. Class Distance consists of length in feet and inches. Class Distance
contains

i) One default constructor

ii) One parameterized constructor

iii) Function getdata() to take the value of feet and inches.

iv) Function show() to display.

a) Overload < operator to compare two distances.

b) Overload += operator in the Distance class.

8. Write a program to-

a) Overload ++ pre increment operator (++c1) and – post
decrement operator (c2--) in class.

b) Overload == operator to compare two value.

9. Add two complex number by overloading + operator

a) Using Member function.

b) Using Friend Function.

 R
IL

-0
85

MCS-102/205

 R
IL

-0
85

MCS-102/206

UNIT-8 INHERITANCE : EXTENDING
CLASSES

8.1 Introduction

8.2 Objective

8.3 Definition

8.4 Access Specifier

8.5 Types of Derivation

8.6 Types of Inheritance

8.6.1 Single Inheritance

8.6.2 Multilevel Inheritance

8.6.3 Multiple Inheritance

8.6.4 Hierarchical Inheritance

8.6.5 Hybrid Inheritance

8.6.5.1 Virtual Base Class

8.7 Abstract Class

8.8 Data Member Initialisation

8.9 Constructor and Destructor in derived Class

8.10 Containership

8.11 Ambiguity in inheritance

8.12 Delegation

8.13 Summary

8.14 Exercise

8.1 INTRODUCTION

One of the most important concepts in object-oriented
programming is inheritance. Inheritance allows us to derive a new class
from old class which inherit the properties of old class.

8.2 OBJECTIVE

It provides the concept of reusability of code. And can easily
debug error and duplicate codes. Because one class inherit all the features
of existing class and add a new feature so this makes code cleaner,
understandable and extendable. R

IL
-0

85

MCS-102/207

8.3 DEFINITION

Inheritance is one of the key features of Object-Oriented
Programming in C++. Inheritance is the property in which new classes can
create from an existing class. A class can be derived from one/more class,
which means it can inherit data and functions from base classes and can
have additional features of its own.

New class is called derive class or child class or sub class and old class is
called base class or parent class or super class.

Syntax : The general syntax of inheritance is as follows:

class Derive _class : Access Specifier Base_class

{………..

statements

………….

}

Where access-specifier is of public, protected, or private, and base-class is
the name of an old defined class and Derived class is the name of new
class. If the access-specifier is not used, then it is private by default.

8.4 ACCESS SPECIFIER

During creation of derived class from a base class, different access
specifiers / visibility mode are used to inherit the data members of the base
class. There are three access specifiers-

• Public

• Private

• Protected

The data which is mention in public visibility mode can be
accessible by anywhere inside as well as outside the class but with the
help of associated object. The data which is mention in private visibility
mode can be used with in associated member function but can’t be
accessible outside the class, even with the help of associated object. The
data which is mention in protected visibility mode can be accessible by
inside as well as outside the class but only in just next derived class. But
even not accessible with the help of associated object. R

IL
-0

85

MCS-102/208

Check Your Progress

What is the difference between protected and private access specifiers in
inheritance?

8.5 TYPES OF DERIVATION

Derive class is derived from base class and this process is called
derivation. Derivation is of three types:

1. Public Derivation : When new class derives from old class in
public mode. Then the public member of the old class will become
public in the new class and protected members of the old class will
become protected in new class and private members of the old
class will become private in new class

2. Protected Derivation : When new class derives from old class in
protected mode. Then the public member of the old class will
become protected in the new class and protected members of the
old class will become protected in new class and private members
of the old class will become private in new class

3. Private Derivation : When new class derives from old class in
private mode. Then every members of the old class will become
Private in new class.

Base Class

Access

Specifier

Types of Derivation

Public Protected Private

Public Public Protected Private

Protected Protected Protected Private

Private
Not Accessible

(Hidden)

Not Accessible

(Hidden)

Not Accessible

(Hidden)

8.6 TYPES OF INHERITANCE

Inheritance is of five types :

1) Single Inheritance

2) Multilevel Inheritance

3) Multiple Inheritance

R
IL

-0
85

MCS-102/209

4) Hierarchical Inheritance

5) Hybrid Inheritance

8.6.1 SINGLE INHERITANCE

When one derive class is inherit from one base class, then this type
of inheritance is known as Single Inheritance.

Syntax : The general syntax of Single Inheritance is as follows:

class Base

{

….

…..

};

class Derive : access_specifier Base

{…

…

};

Example 8.1: Program for Single Inheritance

#include<iostream.h>

Base

Derive

R
IL

-0
85

MCS-102/210

#include<conio.h>

class abc

{

int a; //a is private so it cannot be inherited

public:

int b;

abc()

{

a=1;

b=2;

} //constructor is used for initialization

void display_a()

{

cout<<"a="<<a;

}

int get_a()

{

return a;

} //a is accessible to its member function

};

class xyz : public abc

{

int x;

public:

 int y;

 xyz(){x=3;y=4;}

 void display()

 {

display_a();

/* here display_a() is used bcoz a is private member and it can only be R
IL

-0
85

MCS-102/211

accessed through member function of class abc. */

cout<<"\nb="<<b;

cout<<"\nx="<<x;

cout<<"\ny="<<y;

 }

 void add()

 {

 int n;

 n=get_a()+b+x+y;

 cout<<"\naddition="<<n;

}

};

int main()

{

clrscr ();

abc ob1;

xyz ob2;

ob2.display();

ob2.add();

getch();

return 0;

}

Output:

a=1

b=2

x=3

y=4

addition=10

R
IL

-0
85

MCS-102/212

Check Your Progress

The ……………. inherits some or all of the properties of the ………..
class.

8.6.2 MULTILEVEL INHERITANCE

When derived class inherits from the base class and another
derived class inherits from this derived class, this form of inheritance is
known as Multilevel Inheritance. Because more than one classes are
derived at different level.

Syntax:The general syntax of Multilevel inheritanceis as follows:

class Base

{

….

…..

};

Base

Derive1

Derive2

R
IL

-0
85

MCS-102/213

class Derive 1 : access specifier Base

{…

…

};

class Derive 2 : access specifier Derive 1

{…

…

};

Example 8.2 : Program for Multilevel Inheritance

#include<iostream.h>

#include<conio.h>

class abc

{

int a; //a is private so it cannot be inherited

protected:

int b;

public:

 int get_a()

 {

 cout<<"enter the value of a=";

 cin>> a;

 return a;

 } //a is accessible to its member function

};

class xyz : public abc

R
IL

-0
85

MCS-102/214

{

int x,y;

public:

 int get_x()

 {

cout<<"enter the value of y=";

 cin>> y;

 b=2;

//protected data can be used either its original or its just next derive class

 x=y;

 return(x);

 }

};

class pqr: private xyz

{

int n;

public:

 void add()

 {

n=get_a()+get_x();

 }

 void display()

 {

cout<<"\naddition of two no. is="<<n;

 }

};

void main()

{

clrscr(); R
IL

-0
85

MCS-102/215

pqr ob;

ob.add();

ob.display();

getch();

}

Output:

enter the value of a=2

enter the value of y=3

addition is =5

Check Your Progress

Which Class is having highest degree of abstraction in multilevel
inheritance of 5 levels?

8.6.3 MULTIPLE INHERITANCE

When a derive class inherit from more than one base class than this
type of inheritance is known as Multiple Inheritance.

Base 2

Derive 2

Base 1

R
IL

-0
85

MCS-102/216

Syntax : The general syntax of multiple inheritanceis as follows:

class Base 1

{

….

…..

};

class Base 2

{…

…

};

class Derive : access specifier Base 1 , access specifier Base 2

{

…

};

Example 8.3: Program for Multiple Inheritance

#include<iostream.h>

#include<conio.h>

class abc

{

int a; //a is private so it cannot be inherited

public:

 int get_a()

 {

 cout<<"enter the value of a=";

R
IL

-0
85

MCS-102/217

 cin>> a;

 return a;

 } //a is accessible to its member function

};

class xyz

{

int x;

public:

 int get_x()

 {

 cout<<"enter the value of x=";

 cin>> x;

 return(x);

 }

};

class pqr: protected abc, private xyz

{

int n;

public:

 void add()

 {

n=get_a()+get_x();

 }

 void display()

 {

 cout<<"\naddition of two no. is="<<n;

 }

};

R
IL

-0
85

MCS-102/218

void main()

{

clrscr();

pqr ob;

ob.add();

ob.display();

getch();

}

Output:

enter the value of a =2

enter the value of x=3

addition of two no. is =5

Check Your Progress

What is the syntax of multiple inheritance?

8.6.4 HIERARCHICAL INHERITANCE

When more than one derive class inherit from one base class. This
form of inheritance is known as Hierarchical Inheritance.

Base

Derive 1 Derive 2

R
IL

-0
85

MCS-102/219

Syntax : The general syntax of hierarchichal inheritanceis as follows:

class Base

{

….

…..

};

class Derive 1 : access specifier Base

{

…

…

};

class Derive 2 : access specifier Base

{

…

…

};

Example 8.4 : Program for Hierarchical Inheritance

#include<iostream.h>

#include<conio.h>

class abc

{

int a; //a is private so it cannot be inherited

public:

 int get_a()

R
IL

-0
85

MCS-102/220

 {

 cout<<"\nenter the value of a=";

 cin>> a;

 return a;

 } //a is accessible to its member function

};

class xyz : private abc

{

int x,m;

public:

 int get_x()

 {

cout<<"enter the value of x=";

cin>> x;

return(x);

 }

 void add()

 {

m=get_a()+get_x();

 }

 void show()

 {

cout<<"\naddition of two no. is="<<m;

 }

};

class pqr : protected abc

{

int n,p;

public:

 int get_p() R
IL

-0
85

MCS-102/221

 {

cout<<"enter the value of p=";

cin>> p;

 return(p);

 }

 void sub()

 {

 n=get_a()-get_p();

 }

 void display()

 {

 cout<<"\nsubtraction of two no. is="<<n;

 }

};

void main()

{

clrscr();

xyz obx;

obx.add();

obx.show();

pqr obp;

obp.sub();

obp.display();

getch();

}

Output :

enter the value of a=2

enter the value of x=4

addition of two no. is =6

R
IL

-0
85

MCS-102/222

enter the value of a=9

enter the value of x=7

addition of two no. is =2

Check Your Progress

When a child class inherits traits from more than one parent class, this
type of inheritance is called _______________ inheritance.

8.6.5 HYBRID INHERITANCE

When derive class inherit from the base class with the combination
of two or more different type of inheritance. This form of inheritance is
known as Hybrid Inheritance.

Syntax : The general syntax of hybrid inheritanceis as follows :

 class Base 1

{

…

Base2

Derive1

Derive2

Base1

R
IL

-0
85

MCS-102/223

…

};

class Base 2

{

…

…

};

class Derive 1 : access specifier Base1, access specifier Base2

{

…

…

};

class Derive 2 : access specifier Derive 1

{

…

…

};

Example 8.5 : Program for Hybrid Inheritance

#include<iostream.h>

#include<conio.h>

class abc

{

int a; //a is private so it cannot be inherited

R
IL

-0
85

MCS-102/224

public:

 int get_a()

 {

 cout<<"\nenter the value of a=";

 cin>> a;

 return a;

 } //a is accessible to its member function

};

class xyz

{

int x;

public:

 int get_x()

 {

 cout<<"\nenter the value of x=";

 cin>> x;

 return(x);

 }

};

class pqr: protected abc, private xyz

{

int n;

public:

 void add()

 {

 n=get_a()+get_x();

 }

 int display()

 { R
IL

-0
85

MCS-102/225

 cout<<"\naddition of two no. is="<<n;

 return(n);

 }

};

class rst: private pqr

{

float avg;

public:

void show()

{

 add();

 avg=display()/2;

 cout<<"\naverage of two no. is="<<avg;

}

};

void main()

{

clrscr();

rst ob;

ob.show();

getch();

}

Output:

enter the value of a =3

enter the value of x=4

addition of two no. is =7

average of two no. is =3

R
IL

-0
85

MCS-102/226

Check Your Progress

How many types of inheritance should be used for hybrid ?

8.6.5.1 VIRTUAL BASE CLASS

When derive class inherit from the base class in the
implementation of combination of hierarchical inheritance and multiple
inheritance. Then in this type of inheritance an ambiguity can arise due to
multiple paths exist from the same base class to a derive class. This means
that a child class could have duplicate sets or more than one copy of
members inherited from a single base class. This problem is solved using
virtual base class. In this case when derive class is derived from base class
then we use virtual keyword either before the access specifier or after
access specifier (because place of virtual keyword is optional) and that
base class is known as virtual base class. When any class is made virtual,
so that the duplication is discarded even number of paths exist to the child
class.

Suppose you have two derived classes B and C that have a
common base class A, and you also have another class D that inherits
from B and C. You can declare the base class A as virtual to ensure
that B and C share the same sub object of A.

Syntax : The general syntax of virtual base classis as follows:

Base

Derive1 Derive2

Derive3

R
IL

-0
85

MCS-102/227

class Base

{

….

…..

};

class Derive 1 : Virtual access specifier Base

{

…

…

};

class Derive 2 : access specifier virtual Base

{

…

…

};

class Derive 3: access specifier Derive 1, access specifier
Derive 1

{

….

…..

};

Example 8.6 : Program for Virtual Base Class

#include<iostream.h>

#include<conio.h>

R
IL

-0
85

MCS-102/228

class abc

{

int a;

public:

abc()

{

a=1;

}

get_a()

{

return a;

}

/*

 void display()

{

cout<<"\na="<<a;

}

*/

};

class xyz : virtual public abc

{

int x;

public:

xyz()

{

x=2;

}

get_x()

{ R
IL

-0
85

MCS-102/229

return x;

}

/*

 void display()

{

 cout<<"\nb1="<<b1;

}

*/

};

class pqr : virtual public abc

{

int p;

public:

pqr()

{

p=3;

}

void get_p()

{

return p;

}

/*

 void display()

{

cout<<"\nb2="<<b2;

}

*/

};

R
IL

-0
85

MCS-102/230

class rst : public xyz , public pqr

{

int r;

 public:

 void add()

 {

 r=get_a()+get_x()+get_p();

 }

 void display()

 {

//A::display(); // ambiguity resolution

//B1::display();

//B2::display();

cout<<"\naddition of three numbers are="<<r;

 }

};

int main()

{

clrscr();

rst ob;

ob.add();

ob.display();

getch();

return 0;

}

Output:

addition of three numbers are =6

R
IL

-0
85

MCS-102/231

Check Your Progress

In Multi-path inheritance by which concept we can remove duplicate
set of records in child class?

8.7 ABSTRACT CLASS

An abstract class is a class that is designed to be specifically used
as a base class. And no object is created for this base class and no non-
static data members of an abstract class can be declared.

8.8 DATA MEMBER INITIALISATION

Initializer List is used to initialize data members of a class. The
member initializer list is inserted after the constructor name. It begins with
a colon (:), and then lists each variable to initialize along with the value
for that variable separated by a comma.

Syntax : The general syntax of virtual base classis as follows:

Constructor(argument list): initialisation section

{

argument section

}

Use of initialization list: Initialize the member of the class :

1. abc(int i , int j): a(i), b(j) { } // if i=1 & j=2 then a=1 & b=2

2. abc(int i , int j): b(i), a(j) { } // if i=1 & j=2 then b=1 & a=2

3. abc(int i , int j): a(i), b(a+j) {} // if i=1 & j=2 then a=1 & b=3

4. abc(int i , int j): b(i), a(b+j) {} //invalid

5. abc(int i , int j): a(i), {b=j;}

Example 8.7 : Program of Initialization list and constructor

#include<iostream.h>

R
IL

-0
85

MCS-102/232

#include<conio.h>

class abc

{

 int a;

 int b;

public:

abc(int i , int j): a(i), b(j)

{}

/*

use of Initializer list is optional as the constructor can also be written
as:

abc(int i, int j)

{

 a = i;

 b = j;

}

*/

 void display()

{

cout<<"\na="<<a<<"\nb="<<b;

}

};

void main()

{

clrscr();

abc oba (10, 15);

oba.display();

getch();

}

R
IL

-0
85

MCS-102/233

Output:

a=10

b=15

8.9 CONSTRUCTOR AND DESTRUCTOR IN
DERIVED CLASS

As earlier discuss that constructor plays a vital role in initializing
an object. Constructors cannot inherit, while applying inheritance; we
usually create objects of derived class. But, if a base class has a
parameterised constructor with one or more parameter, then value of these
parameters are passed with the help of initialiser list, which is associated
in derived class constructor so it is compulsory to have a constructor in
derived class and pass the arguments to the base class constructor. When
both the base class and derived class have constructors, the base class
constructor is executed first and then the constructor in the derived class is
executed.

The syntax of the derived class constructor contains two parts
separated by a colon (:). The first part defines the list of arguments that are
passed to the derived class constructor and the second part defines the base
class constructor call.

The order of exectution of constructor :

S.No Inheritance Syntax Order

1. Single class Base {….};

class Derive: public

Base{….};

first Base then Derive

2. Multilevel class Base {….};

class Derive: public

Base{…};

class Derive1: public

Derive{…};

first Base then Derive

then Derive1

3. Multiple class Base1 {….};

class Base2{….};

class Derive: public

first Base2 then Base1

then Derive1

R
IL

-0
85

MCS-102/234

Base2, public Base1{…};

• Depend on the order

in which they appear

in the declaration of

the derived class

derivation and at last

derive class

4. Hybrid class Base1 {….};

class Base2{….};

class Derive: public

Base2, virtual public

Base1{…};

first Base1 then Base2

then Derive1

• First priority given to

virtual base class then

Depend on the order

in which they appear

in the declaration of

the derived class

derivation and at last

derive class

In Inheritance each destructor is called in the reverse order of calling of
constructor. i.e. when derive class is destroyed, the derive destructor is
called first, then the destructor of base class is called.

Syntax : The general syntax of constructor of derived class is as follows:

class Base

{

….

 public:

 Base(..)

 {

 ….

 }

};

R
IL

-0
85

MCS-102/235

class Derive1 : access specifier Base

{

 …

 public:

 Derive1(….):Base (..)

 {

 …

 }

};

void main()

{

Derive1 obd(…);

….

…..

….

}

Example 8.8 : Program of Constructor and Destructor in a derive
class

#include<iostream.h>

#include<conio.h>

class abc

{

int a,b;

public:

abc(int a1,int b1)

{

a=a1; R
IL

-0
85

MCS-102/236

b=b1;

}

void disp()

{

cout<<"\na="<<a<<"\nb="<<b;

}

};

class xyz : public abc

{

int x,y;

public:

 xyz(int m,int n,int x1,int y1):abc(m,n)

 {

 x=x1;y=y1;

 }

 void display()

{

cout<<"\nx="<<x<<"\ny="<<y;

}

};

int main()

{

clrscr();

xyz ob(5,7,3,4);

ob.disp();

ob.display();

getch();

return 0;

} R
IL

-0
85

MCS-102/237

Output:

a=5

 b=7

x=3

 y=4

Check Your Progress

Can we pass parameters to base class constructor though derived class
or derived class constructor?

8.10 CONTAINERSHIP

When a class contains an object of a different class as a member
data. Ex: class A could contain an object of class B, class C and class C
contain an object of class D as amember. Class A becomes the container,
while class B becomes the contained class. Then all the public data
member and member functions(only) defined in contained class can be
executed in container class. Container ship is the substitute of inheritance.
In OOPs inheritance represents an “is-a” relationship, but Containership
represents a “has-a” relationship.

Class B

Class D

R
IL

-0
85

MCS-102/238

Example 8.9 : Program for Containership

#include<iostream.h>

#include<conio.h>

class abc

{

int a; //a is private so it cannot be inherited

public:

 int get_a()

 {

 cout<<"enter the value of a=";

 cin>> a;

 return a;

 } //a is accessible to its member function

};

class xyz

{

int x;

public:

 int get_x()

 {

 cout<<"enter the value of x=";

 cin>> x;

 return(x);

 }

};

class pqr

{ R
IL

-0
85

MCS-102/239

Check Your Progress

Can a class contain another class in it ?

 int n;

 abc oba;

 xyz obx;

public:

 void add()

 {

 n=oba.get_a()+obx.get_x();

 }

 void display()

 {

 cout<<"\naddition of two no. is="<<n;

 }

};

void main()

{

clrscr();

pqr ob;

ob.add();

ob.display();

getch();

}

Output:

enter the value of a=3

enter the value of x =4

addition of two no. is =7

R
IL

-0
85

MCS-102/240

8.11 AMBIGUITY IN INHERITANCE

When derive class create from the base class and both derive class
as well as base class contains the same name member function. In this
case, ambiguities can seem between different members with the same
name, from different classes. because priority always goes to the object
which is involve in calling the member function and in inheritance mostly
we create derive class object that’s why base class member function can’t
call because every time compiler found that member function within the
object class and can’t reach on base class section so the ambiguity arise .
But this type of ambiguity is resolve by using scope resolution operator
with class name.

Syntax : The general syntax of constructor of derived class is as follows :

class Base

{

….

public:

….

………

……….

fun_name();

};

class Derive1 : access specifier Base

{

…

public:

…

fun_name();

};

void main()

{

Derive1 ob;

ob.fun_name;

ob.Base::fun_name();

}

R
IL

-0
85

MCS-102/241

Example 8.10 : Program for Ambiguity resolution in inheritance

#include<iostream.h>

#include<conio.h>

class abc

{

public:

void display()

{

 cout<< “\n Hello world”;

 }

};

class xyz : public abc

{

public:

void display()

{

 cout<<" \nyou are welcome";

 }

};

void main()

{

clrscr();

xyz ob;

ob.display();

ob.abc::display();

getch();

}

R
IL

-0
85

MCS-102/242

Output:

you are welcome

hello world

Check Your Progress

By which operator we can resolve ambiguity of members; which are
available in both base and derive class.

8.12 DELEGATION
Delegation is simply passing a duty off to someone/something else.

• Delegation can be an alternative to inheritance.

• Delegation means that you use an object of another class as an
instance variable, and forward messages to the instance.

• It is better than inheritance for many cases because it makes you to
think about each message you forward, because the instance is of a
known class, rather than a new class, and because it doesn’t force
you to accept all the methods of the super class: you can provide
only the methods that really make sense.

• Delegation can be viewed as a relationship between objects where
one object forwards certain method calls to another object, called
its delegate.

• The primary advantage of delegation is run-time flexibility – the
delegate can easily be changed at run-time. But unlike inheritance,
delegation is not directly supported by most popular object-
oriented languages, and it doesn’t facilitate dynamic
polymorphism.

Example 8.11 Pprogram to illustrate delegation

classRealPrinter

{

 // the "delegate"

 voidprint() R
IL

-0
85

MCS-102/243

 {

 System.out.println("The Delegate");

 }

}

classPrinter

{

 // the "delegator"

 RealPrinter p = newRealPrinter();

 // create the delegate

 voidprint()

 {

 p.print(); // delegation

 }

}

publicclassTester

{

 // To the outside world it looks like Printer actually prints.

 publicstaticvoidmain(String[] args)

 {

 Printer printer = newPrinter();

 printer.print();

 }

}

Output:

When you delegate, you are simply calling up some class which knows what
must be done. You do not really care how it does it, all you care about is that
the class you are calling knows what needs doing

 R
IL

-0
85

MCS-102/244

8.13 SUMMARY

The ability of a class to inherit the properties and characteristics
from another class is called Inheritance. Inheritance is one of the most
important feature of Object Oriented Programming. The class that inherits
properties from another class is called Sub class or new or Derived Class.
The class whose properties are inherited by sub class is called Super class
or old class or Base Class. This unit defines about the inheritance, types of
derivation types of Inheritance, how Constructor and Destructor invoke
during inheritance.

8.14 EXERCISE

1. Explain different types of inheritance with block diagram and an
example for each.

2. Explain the importance and role of Access specifier.

3. What is the difference between friend class and containership?

4. When we should use containership and inheritance?

5. Write a program of Constructor in a derived class.

6. What is virtual base class and abstract class? Explain with help of
program.

7. How ambiguity that arises in multiple inheritance can be resolve?

8. Write a program of deriving a class ABC from an existing class
XYZ by the ‘protected derivation’ and use data member and
member function in public, protected and private visibility mode.

9. Write a program where derived class is a friend of base class.

10. Class student contains roll number, name and course as data
member and Input_student and display_student as member
function. A derived class exam is created from the class student
with publicly inherited. The derived class contains mark1, mark2,
mark3 as marks of three subjects and input_marks and
display_result as member function. Create an array of object of the
exam class and display the result of 5 students.

11. Base class ‘count’ contains a variable c. It contains a no argument
constructor, one argument constructor, a method to return c and a
operator overloading function for ++. Derived class ‘counter’
access the value of c from base class constructor through its
constructor and a operator overloading function for.

R
IL

-0
85

MCS-102/245

 R
IL

-0
85

MCS-102/246

MCS-102
C++ & OBJECT ORIENTED
PROGRAMMING

BLOCK

4
POLYMORPHISM, FILE HANDLING AND
OBJECT ORIENTED MODELLING

UNIT-9 251

Pointers, Virtual Functions and Polymorphism

UNIT-10 269

Working with Files

UNIT-11 289

Object Oriented Modelling

Uttar Pradesh Rajarshi Tandon
Open University

R
IL

-0
85

MCS-102/247

Course Design Committee
Prof. Ashutosh Gupta Chairman
Director-In charge,
School of Computer and Information Science
UPRTOU, Prayagraj
Prof. U. S. Tiwari Member
Dept. of Computer Science
IIIT Prayagraj
Prof. R. S. Yadav Member
Department of Computer Science and Engineering
MNNIT-Allahabad, Prayagraj
Dr Marisha Member
Assistant Professor (Computer Science)
School of Science, UPRTOU, Prayagraj
Mr. Manoj K. Balwant Member
Assistant Professor (Computer Science)
School of Science, UPRTOU, Prayagraj

Course Preparation Committee
Author (Block 1) Dr Marisha

Assistant Professor (Computer Science)
School of Science, UPRTOU,
Prayagraj

Author (Blocks 2, 3 and 4) Er. Pooja Yadav
Assistant Professor
Dept. of Computer Science and IT
M.J.P. Rohilkhand University, Bareilly

Editor

Coordinator

Prof. Ashutosh Gupta
Director (In-Charge)
School of Computer and Information Science
UPRTOU, Prayagraj

©All Rights are reserved. No part of this work may be reproduced in any
form, by mimeograph or any other means, without permission in writing
from the Uttar Pradesh Rajarshi Tondon Open University, Prayagraj.

Printed and Published by Dr. Arun Kumar Gupta Registrar, Uttar
Pradesh Rajarshi Tandon Open University, 2020.

Printed By : Chandrakala Universal Pvt. Ltd. 42/7 Jawahar Lal Neharu
Road, Prayagraj, 211002

©UPRTOU, Prayagraj
ISBN : 978-93-83328-98-7

Dr Marisha
Assistant Professor (Computer Science)
School of Science, UPRTOU, Prayagraj

R
IL

-0
85

MCS-102/248

BLOCK INTRODUCTION

In this section we discuss the overview of this block’s content. This block
consists of the following units:

Unit-9 : Pointers, Virtual Functions and Polymorphism
In this unit we'll discuss about pointers in C++, specifically, pointers to
derived class, this pointer with the help of proper program. Polymorphism
is one of the important concepts of C++. By using run time polymorphism
binding of function can be performed at run time.

Unit-10 : Working With Files
In this unit we'll discuss each and everything about File Handling in C++,
specifically, purpose of file handling and different ways to open and use
files with examples. It also defines different file modes and file pointers.

Unit-11 : Object Oriented Modelling
In this unit we'll discuss about modelling of object oriented approach. We
will discuss the graphical representation of object oriented system with
various examples.

 R
IL

-0
85

MCS-102/249

R
IL

-0
85

MCS-102/250

UNIT-9 POINTERS, VIRTUAL FUNCTIONS
AND POLYMORPHISM

Structure:

9.0 Introduction

9.1 Objective

9.2 Pointer to object

9.3 this pointer

9.4 Pointer to derived classes

9.5 Virtual function

9.6 Implementation of run time polymorphism

9.7 Pure virtual function

9.8 Summary

9.9 Exercise

9.0 INTRODUCTION

Polymorphism is an important feature of object oriented programming. It
is of two types:

1) Compile-Time Polymorphism – This is also known as static or
early binding. In early binding member function bind during
compile time or before run time.

2) Runtime Polymorphism – This is also known as dynamic or late
binding. In late binding member function bind during run time that
means after compilation.

This is achieved by pointer, one another special pointer is also used in
C++ that is this pointer.

9.1 OBJECTIVE

After studying this unit you should be able to understand the main
goals of pointers, virtual function and run time polymorphism is to work
in run time environment, avoid ambiguity and change the priority to the
address in comparison of type of pointer.

9.2 POINTER TO OBJECT

As we make pointer of basic data types, we can also create a
pointer of user define data type

R
IL

-0
85

MCS-102/251

like object. In the case of pointer to bject, pointers can access the members
by using pointer to member operator ‘->’.

Syntax : The general syntax of pointer to object is as follows:

class classname{

statement;

 statement ;

};

void main()

{

classname ob,*ptr;

ptr=&ob;

ptr->datamember;

ptr->member function;

}

Example 9.1 Program for pointer to object

#include<iostream.h>

#include<conio.h>

class ABC

{

int a;

float b;

public:

 int c;

 void input(int x, int y)

 {

R
IL

-0
85

MCS-102/252

a=x; b=y;

}

 void display()

 {

cout<<"a="<<a;

cout<<"\nb="<<b;

cout<<"\nc="<<c;

}

 void add()

 {

cout<<"\nadd="<<a+b+c;

}

};

int main()

{

clrscr();

ABC ob;

ABC *ptr; // pointer creation

ptr=&ob; // Assign the address of object to the pointer of that class

ptr->c=3;

ptr->input(1,2);

ptr->display();

ptr->add();

getch();

return 0;

}

Output:

a=1

b=2

R
IL

-0
85

MCS-102/253

c=3

add=6

ptr->c =3

or

 ob.c=3

both are equivalent .

When we use ptr then we use pointer to member operator. But we can use
pointer with dot operator as

ob. c =5

or

(*ptr).c=5

Both are equivalent.

Check Your Progress

Can pointers to object access the private members of the class?

9.3 THIS POINTER
In C++ one keyword i.e. ‘this’ is used as a special

pointer.Whenever any object is busy in calling then at that time location
or reference of that particular object is pointed by a special pointer which
is called this pointer or we can say in C++ every current objecthas access
to its own address through an important pointer called this pointer.

Syntax : The general syntax of this pointer is as follows:

class classname{

 statement;

 statement ;

 return type fun_name(){

this->data member;

this-> memberfunction();

R
IL

-0
85

MCS-102/254

 }

 }

Because data member and member function are associated with
the object. So Inside the class we can also use data member and member
function by using this pointer. like

this->a=2

this->getdata()

but friend function is not access with the help of this pointer because
friend function is not a member function.

Example 9.2 Program for this pointer

#include<iostream.h>

#include<conio.h>

class A

{

int a;

public:

 A(int x){a=x;}

 A(){}

 int display(){return a;}

 A greater (A &x)

 {

 if (x.a>a) return x;

 else return *this;

 }

};

int main()

{

clrscr(); R
IL

-0
85

MCS-102/255

A ob1(3),ob2(2),ob3;

ob3=ob1.greater(ob2);

cout<<"greater no. is="<<ob3.display();

getch();

return 0;

}

Output:

greater no. is =3

Check Your Progress

Explain this pointer with suitable program and also write down the output
of cout<<*this and cout<<this

9.4 POINTERTO DERIVED CLASSES

In the case of Inheritance we can create the pointer of base class as
well as derive class but base class pointer can access only those members
of derived class which are inherited by base class i.e. its own member.
And derived class pointer can also access its own as well as inherited data.
But In C++ base class pointer or pointers to objects of base class are types
compatible with pointer to object of derived class. And after that it can
access the member of derived class.

((derive_class_name *) base_ptr)->fun() ;

This shows the type compatibility of base class pointer with pointer to
object of derived class.

By this base class pointer can access the original members of derived
class.

Syntax : The general syntax of Pointer to derived class is as follows:

class Baseclassname

{

R
IL

-0
85

MCS-102/256

datamember;

 public:

void fun()

 {

 statement ;

 statement ;

 }

};

class Deriveclassname

{

 public:

 void memberfun()

 {

 statement ;

 statement ;

 }

};

void main()

{

Deriveclassname ob1,ptr1;

ptr1=&ob1;

ptr1->fun();

ptr1->memberfun();

}

Example 9.3 Program for Pointer to derived classes

#include<iostream.h>

#include<conio.h>

class base

R
IL

-0
85

MCS-102/257

{

public:

void display1(){cout<<"\nbase display()";}

void show1(){cout<<"\nbase show()";}

};

class derived : public base

{

public :

void display(){cout<<"\nderived display()";}

void show(){cout<<"\nderived show()"; }

};

int main()

{

clrscr();

base *bptr, obb;

derived obd,*dptr;

//dptr=&obb; // can’t do

dptr=&obd;

dptr->display1();

dptr->show1();

dptr->display();

dptr->show();

bptr=&obd;

((derived *) bptr)->display(); // type compatibility

((derived *) bptr)->show();

//bptr->show();// can’t do ;because show is not a member of base

getch();

return 0;

R
IL

-0
85

MCS-102/258

}

Output:

base display()

base show()

derived display()

derived show()

derived display()

derived show()

Check Your Progress

What is the meaning of compatibility in case of pointer to base class ?

9.5 VIRTUAL FUNCTION

When base class and derived class both have the same name data
member and member function then whenever base class pointer access
that member function or data member then it access only its own data
member or member function. similarly when derived class pointer access
that common name data member or member function then at that time it
access its own data member or function because in both time the priority
given to type of pointer, not the address assign to that pointer.

A virtual function is a function ofbase class that is declared using
the keyword virtual.

In C++ compile-time polymorphism is the concept of overloading,
where signatures of all same function should be different in terms of no.
of argument as well as type of argument. But runtime polymorphism is
the concept of function overriding that means same function name and
same signature.

Characteristics of Virtual Function:
• It must be a member of a class.

• It can’t be static.

• It should be declare/define in base class and in public visibility
mode. R

IL
-0

85

MCS-102/259

• It must be accessed by a pointer of object

• It can’t be friend of another class.

• Destructor can be virtual but Constructor can’t be virtual.

Syntax : The general syntax of virtual function is as follows:

class Baseclassname

{

datamember;

 public:

 virtual void memberfun()

 {

statement ;

 statement ;

 }

};

class Deriveclassname

{

 public:

 void memberfun()

 {

 statement ;

 statement ;

 }

};

void main()

{

Baseclassname ob,*ptr;

Deriveclassname ob1;

ptr=&ob;

ptr->memberfun(); R
IL

-0
85

MCS-102/260

ptr=&ob1;

ptr->memberfun();

}

Check Your Progress

What is the need of virtual function?

9.6 IMPLEMENTATION OF RUN TIME
POLYMORPHISM

Run time polymorphism is achieved only by base class pointer and
virtual function; which is define in base class and that function redefine in
derive class. When we give the address of base or derive class object to
base class pointer then just because of virtual function present in base
class the preference goes to the address assign to the pointer instead of
type of pointer.

base obb;

base *bptr;

derive obd;

//derive *dptr;

bptr=&obb;

bptr->fun(); // it invokes the fun() present in base class

If fun() is virtual function then

bptr = &obd;

bptr->fun(); // it invokes the fun() present in derive class

 just because when virtual function present in base class then priority shift
to the assigned address to the pointer not to the type of pointer.

R
IL

-0
85

MCS-102/261

Example 9.4 Program for virtual function

#include<iostream.h>

#include<conio.h>

class base

{

public:

 virtual void display(){cout<<"\nbase display()";}

 void show(){cout<<"\nbase show()";}

};

class derived : public base

{

public :

 void display(){cout<<"\nderived display()";}

 void show(){cout<<"\nderived show()";}

};

int main()

{

clrscr();

base *bp;

base B;

bp=&B

bp->display();

bp->show();

derived D;

bp=&D;

bp->display();

bp->show();

B.display();

B.show();

R
IL

-0
85

MCS-102/262

getch();

return 0;

}

Output:

base display()

base show()

derived display()

derived show()

base display()

base show()

In the above example show() is not a virtual function so in both
time when it is calling by base class pointer then both time show ()
function of base class is calling; because pointer is of base class but In
second case display() is a virtual function so in both time when it is
calling by base class pointer then both time display () function of that
class is calling which address is pass to the base class pointer.

B.display() and B.show() represent compile time binding not run
time binding. Because runtime polymorphism is achieved only by the
pointer of base class not by the object and dot operator of the class. In
both the case results are same but it is not the concept of run time
polymorphism.

Check your Progress

Explain the problem with overriding functions.

9.7 PURE VIRTUAL FUNCTION

If virtual function in base class is defined null or has no definition
and redefines in derived class, then this type of virtual function is called
Pure Virtual Function.Because of Null definition pure virtual function is
also called ‘Do- nothing –function’ and the class which contains pure
virtual function is also called Abstract Class. R

IL
-0

85

MCS-102/263

Abstract class have at least one pure function and that class used as a base
class for inheritance. But C++does not allow programmer to create object
for abstract class.

Syntax: The general syntax of Purevirtual function is as follows:

class Baseclassname

{

datamember;

 public:

virtual void memberfun() =0;

};

class Deriveclassname

{

 public:

 void memberfun()

 {

 statement ;

 statement ;

 }

};

void main()

{

Baseclassname *ptr;

Deriveclassname ob1;

ptr=&ob1;

ptr->memberfun();

}

We can change the virtual function area () in the base class to the
following − R

IL
-0

85

MCS-102/264

Example 9.5: Program for Pure Virtual function

#include<iostream.h>

#include<conio.h>

class base

{

public:

 virtual void display()=NULL;

 virtual void show()=0;

};

class derived : public base

{

public :

 void display()

 {

 cout<<"\nderived display()";

 }

 void show()

 {

 cout<<"\nderived show()";

 }

};

int main()

{

clrscr();

base *bp;

derived D;

bp=&D;

bp->display();

bp->show();

R
IL

-0
85

MCS-102/265

getch();

return 0;

}

Output:

derived display()

derived show()

Check Your Progress

Which is also called as abstract class?

9.8 SUMMARY

Runtime polymorphism is one of the important concept in which
any function bind dynamically at run time by using pointer of object and
this pointer help to represent the address of current object at particular
moment when that object is busy to invoke any function or access data
member .

9.9 EXERCISE

1) What is pure virtual function? What is the need of pure virtual
function?

2) What is dynamic binding?

3) How can we achieve runtime polymorphism?

4) Can we access derive class data members and member function by
using base class pointer? Explain in detail.

5) Can constructor and destructor bevirtual or not?

6) Which is the pointer which denotes the object calling the member
function?

7) Write a program to access and print class member’s variable ‘x’
and assign the value to ‘x’ in the function sum() and the value
which is assign is the local variable’s i.e. also ‘x’ which is pass
in function sum() R

IL
-0

85

MCS-102/266

8) Can we use This pointer Inside Static Member Function?

9) Can weuse This pointer in the Constructor? If yes then How?
Write a program and explain it.

10) Write a program with Student as abstract class and create derive
classes Engineering, Medicine and Science from base class
Student. Create the objects of the derived classes and process them
and access them using array of pointer of type base class Student.

11) Write a program using this pointer to find out the least number
obtained among three subjects. Use ternary operator.

12) Class polygon contains data member width and height and public
method set_value() to assign values to width and height. class
Rectangle and Triangle are inherited from polygon class. Both the
classes contain public method calculate_area() to calculate the area
of Rectangle and Triangle. Use base class pointer to access the
derived class object and show the area calculated.

13) Write a program to create a class shape with functions to find area
of and display the name of the shape and other essential
component of the class. Create derived classes circle, rectangle and
trapezoid each having overridden functions area and display. Write
a suitable program to illustrate virtual functions.

R
IL

-0
85

MCS-102/267

R
IL

-0
85

MCS-102/268

UNIT-10 WORKING WITH FILES

Structure

10.0 Introduction

10.1 Objective

10.2 Classes for file stream operations

10.3 Opening and closing a file

10.4 File pointers and their manipulations

10.5 File Modes

10.6 Sequential input and output operations

10.7 Error handling during file operations

10.8 Command line Arguments

10.9 Summary

10.10 Exercise

10.0 INTRODUCTION

Each and every collection of related data stored with a specific
format on a secondary storage device, is called a file. Very large data is
always stored in a file.

To communicate with files means to read or write from/on files,
program or software is required.

In C++ there are two types of communication between I/O device,
file and program.

(i) Communication between console and program.

(ii) Communication between program and files.

10.1 OBJECTIVE

After studying this unit you should be able to understand File
Handling, why we used files, how to open and close the file and different
operations/file modes and pointers that we can perform/used in files.

10.2 CLASSES FOR FILE STREAM
OPERATIONS

The I/O system provides an interface/link to the programmer
between program and file. This interface/link is known as stream. It refers R

IL
-0

85

MCS-102/269

to a sequence of bytes Stream is establish/connected when open operation
is performed and disconnected when close operation is performed. This
stream is responsible for transmit the data between file and program. For
input and output, there are two different streams called input stream and
output stream. The source stream that supplies data to the program is
called the input stream and the destination stream that receives output
from the program is called the output stream.

filebuf-It contains open () and close () as its member function. It is
derived from ios class and it is used to set the file buffer for read and write
operation.

ifstream- It contains open () and close () get(),getline(),read(),seekg(),
tellg() as its member function. And open () is used to open a file in input
mode. It is derived from istream and fstreambase class and it is used to
perform read operation.

ofstream- It contains open () and close (),put(),write(),seekp(),tellp()
as its member function. And open () is used to open a file in output mode.
It is derived from ostream and fstreambase class and it is used to perform
write operation.

fstream-It inherit all the function from istream, ostream through iostream
class . It contains open () and close () as its member function. And open(

R
IL

-0
85

MCS-102/270

) function by default works in input mode. It contains function for both
read and write operation.

Check Your Progress

What is the role of fstream.h header file in a program?

10.3 OPENING AND CLOSING A FILE

Before using a file 4 points are required to know:

• Name of a file

• Purpose to open a file

• Opening method

• Used Data structure

So before start to do work on files it is necessary to open a file. and in
C++ there are two methods to open a file:

• By using constructor

• By using open() function

10.3.1 BY USING CONSTRUCTOR

When file is open by using constructor then name of file is assign
to the object at the creation time.

Syntax :

class_name object(“file_name”);

Example 10.1: Program of open a file by using constructor

class file

{

public:

void fopen();

};

void file::fopen() R
IL

-0
85

MCS-102/271

{

char line1[100];

ofstream fout("exp.cpp");

fout<<"this is file handling program";

fout.close();

cout<<"\n In reading mode:";

ifstream fin("exp.cpp");

fin.getline(line1,5);

cout<<line1;

fin.close();

}

void main()

{

clrscr();

file obf;

obf.fopen();

getch();

}

Output:

In reading mode : this

10.3.2 BY USING OPEN () FUNCTION

When file is open by using open function then name of file is
assign to the open function as an argument at the time of function call.

Syntax :

class_name object;

object.open(“file_name”);

R
IL

-0
85

MCS-102/272

Example 10.2 : Program of open a file by using open function

#include<conio.h>

#include<iostream.h>

#include<fstream.h>

class file

{

public:

void fopenbyfun();

};

void file::fopenbyfun()

{

 char line1[100];

 ofstream fout;

 fout.open("abc1.cpp");

 fout<<"now we use open function for opening a new file";

 fout.close();

 ifstream fin;

 fin.open("abc1.cpp");

 fin.getline(line1,20);

 cout<<"\n\t"<<line1;

 fin.close();

 }

void main()

{

clrscr();

file obf;

obf.fopenbyfun();

getch();

}

R
IL

-0
85

MCS-102/273

Output:

now we use open fun

The difference between both methods is that if file is open by using
constructor then every object is connected to only one file. But in open
function any object is connected with different file at different time.

Check Your Progress

When we should use open function to open a file?

10.4 FILE POINTERS AND THEIR
MANIPULATIONS

In C++ two pointers are used to indicate the position in the file at
which the next input/output is to be present. In which one pointer is used
to ask or tell the location of current position in the file that pointer is
known as tellp/tellg. Another pointer is used to move the file pointer in a
file for some input /output operation like insertion modification, deletion,
searchingetc. and that pointer is known as seekp/seekg.

seekg()/seekp() have two arguments; one is offset and second is base
address and total no. of bytes movement is calculated as offset +base-
address

base address is defined by position

(i) ios::beg - Start from beginning. In this case pointer moves only in
forward direction. So offset is in the form of +x

eg: ob.seekg (x, ios::beg);

(ii) ios::cur - Start from current.In this case pointer moves in both
forward and backward direction. So offset is in the form of +x for
forward direction and –x for backward direction

 eg: ob.seekg (-x, ios::cur);

(iii) ios::end - Start from end of the file. In this case pointer moves in
backward

direction. So offset is in the form of –xfor backward direction.

eg:ob.seekg (-x, ios::end); R
IL

-0
85

MCS-102/274

i.e. to move to +xbyte position from beginning, and current and to move
to -xbyte position from current and end.

seekg(): It moves the file pointer to the specified position during input
operation.

Syntax:The general syntax of seekg() function is as follows :

ifstream ff;

ff.seekg(x,ios::beg);

seekp() : It moves the file pointer to the specified position during output
operation.

Syntax :The general syntax of seekp() function is as follows:

ofstream ff1;

ff1.seekp(x,ios::beg);

tellg():This function returns the file pointer’s current position during input
operation.

Syntax:The general syntax of tellg() function is as follows :

ifstream f;

int p=f.tellg();

tellp() : This function returns the file pointer’s current position during
output operation.

Syntax : The general syntax of tellp() function is as follows:

ofstream f1;

int pos=f1.tellp();

R
IL

-0
85

MCS-102/275

Check Your Progress

How to get the current position of the file pointer?

10.5 FILE MODES

File modes are used to define the purpose to open a file and it is
the second argument first one is file name.Different type offile mode
parametersand their meanings

ios::app- It is used to append to end of file

ios::ate-It is used to go to end of file for writing and move backward as
well as forward direction.

ios::binary-It is used to file open in binary mode

ios::in- It is used to open file for reading only

ios::out- It is used to open file for writing only

ios::nocreate- open fails if the file does not exist

ios::noreplace- open fails if the file already exist

ios::trunc delete the contents of the file if it exist

All these flags can be combined using the bitwise operator OR (|).

Example 10.3 : Program for file modes and file pointers

class file

{

 public: void fmode();

};

void file:: fmode()

{

 char line[250];

 fstream fb("new.txt",ios::ate| ios::cur | ios::app);

 fb<<"Today is very hot day "; R
IL

-0
85

MCS-102/276

 cout<<"pos="<<fb.tellp(); //to check the pointer pos

 fb.seekg(0); //for start point

 fb.getline(line,250);

 cout<<line;

 fb.close();

 }

void main()

{

file obf;

obf.fmode();

getch();

}

Output:

pos=23 Today is very hot day

Check Your Progress

What does the nocreate and noreplace flag ensure when they are used
for opening a file?

10.6 SEQUENTIAL INPUT AND OUTPUT
OPERATIONS

There are get() ,getline() and read()functions for input operations
and put() and write() are output operations

the function put() writes a single character to the associated stream.
Similarly,

the function get() reads a single character form the associated stream.

While write() and read()

R
IL

-0
85

MCS-102/277

Both functions have two arguments. The first is the address of variable
and the second is the size of that variable in bytes. The address of the
variable must be type cast to type char * (i.e., a pointer to character type.
)The data written to a file using write() can only be read accurately using
read().

Syntax : get()

streamobject.get(ch);

Syntax : getline()

streamobject.getline(char_array, length);

Syntax : put()

streamobject.put(ch);

Syntax : read()

streamobject.read((char *)&variable, sizeof(variable));

Syntax : write ()

streamobject.write((char *)& variable, sizeof(variable));

Example 10.4: Program for input and output operations by using
functions

#include<conio.h>

#include<iostream.h>

#include<fstream.h> R
IL

-0
85

MCS-102/278

class file

{

 public: void fkey();

};

void file::fkey()

{

char line1[100],c,ch;

ofstream fout("ep.txt");

cout<<"enter the string";

cin>>c; //enter by using keyboard

while(c!='\n')

{

fout.put(c); //writing in file char by char

cin.get(c); //enter by using keyboard

}

fout.close();

cout<<"\n In reading mode:\n";

ifstream fin("ep.txt");

while(fin.eof()==0)

{

fin.get(c); //read the char

cout<<c; //print the char

}

}

Output:

enter the string hello India

In reading mode:

hello India

R
IL

-0
85

MCS-102/279

Check Your Progress

What are put and get pointers?

Example 10.5 : Program for write()/read() function

#include<conio.h>

#include<iostream.h>

#include<fstream.h>

class binary

{

private:

int roll;

char name[30];

public:

void input()

{

 cout<<"\nenter your name:\t";

 cin>>name;

 cout<<"\nenter your rollno.:\t";

 cin>>roll;

 }

void output()

{

cout<<"\nNAME:"<<name;

cout<<"\nROLL NO:"<<roll;

}

};

R
IL

-0
85

MCS-102/280

void binary::create()

{

ofstream of; binary b1;

 of.open("BIN1.txt",ios::out|ios::in);

 b1.input();

 of.write((char*)&b1,sizeof(b1));

 of.close();

 ifstream iff;

 iff.open("BIN1.txt",ios::in|ios::out);

 iff.read((char*)&b1,sizeof(b1));

 while(iff.eof()==0)

{

 iff.read((char*)&b1,sizeof(b1));

 }

b1.output();

 iff.close();

 }

 void main()

 {

 clrscr();

 binary b;

 b.create();

 getch();

 }

Output:

enter your name: priya

enter your rollno.:11

NAME: priya

R
IL

-0
85

MCS-102/281

ROLL: 11

Check Your Progress

Is it possible for the objects to read and write themselves?

10.7 ERROR HANDLING DURING FILE
OPERATIONS

When user works on file then this is obvious to face lots of problem due to
several reasons:

• To perform read operation and file doesn’t exist.

• File extension is incorrect.

• Open a file with invalid file name

• Perform write operation and disk space if full

• Read /write operations does not appropriate with used stream and
their objects.

• Perform Read operation while file is at end.

There are few functions that are used for handling the error.

eof() - This function is used for detection of end of the file.

 It returns a non–zero value i.e. True value if end of file is
encounter.

 Otherwise zero i.e. False .

fail() - This function detect the failure of operation.

It returns a non–zero value i.e. True value if read or write
operation is failed

due to some reasons. R
IL

-0
85

MCS-102/282

 Otherwise zero i.e. False .

bad() - This function detect the unrecoverable error.

It returns a non–zero value i.e. True value if any unrecoverable
error is encounter.

 Otherwise zero i.e. False .

good() - It indicate that everything is fine

It returns a non–zero value i.e. True value if no error / problem is
encounter.

 Otherwise zero i.e. False .

If bad() or fail() returns true then good() return false but if good() returns
true then bad() or

fail () returns false.

Example 10.6: Program of error handling during file operation

class file

{

public: void err_handling();

};

void file::err_handling()

 {

 clrscr();

 char str[50];

 ifstream iff,ff;

 iff.open("test1.txt");

 if(iff.fail()!=0) //if i/p o/p operation is failed

 {

cout<<"file does not exist"; getch(); delay(1000);

 }

 if(iff.bad()!=0) //for unrecoverable error is occur

 {

cout<<"\nread/write operation is not perform;due to some
reason\n"; R

IL
-0

85

MCS-102/283

 getch();delay(100);

}

if(iff.good()!=0) //if there is no error

{

 cout<<"\nno error is occured so operation can be perform\n";

 getch();delay(100);

}

iff.close();

ff.open("abc.cpp");

while(ff.eof()==0) //for till file is not ending

{

ff.getline(str,50); //to read a line from file

 cout<<str<<"\n";

}

ff.close();

}

void main()

{

file obf;

obf.err_handling();

getch();

 }

Output:

file does not exist

read/write operation is not perform: due to some reason

this is file handling program

R
IL

-0
85

MCS-102/284

Check Your Progress

What is the meaning of 1 and 0 in fail() and good()?

10.8 COMMAND LINE ARGUMENTS

In C/C++ main() is the essential function. In normal function we
pass either the value or the address of the variable which hold particular
type of value, but not in main. But command line argument provide this
facility by which we can supply the argument to the main() function.

Syntax :

main(int argc,char* argv[])

Where argc is represent number of argument in command line , which is
called argument counter and argvis represent array of character type
points to command line argument , which is called argument vector. These
argument passed at the time of invoking the program by using the
command prompt.

eg: C:\> filename argument1 argument2

C:\> test x y

Where argc is 3  test x y

argv[0] test

argv[1]x

argv[2]y

First index argv[0] always points the program file i.e. test is the filename
in which this program is saved .

Example 10.7 : Program for commandline argument

#include<iostream.h>

#include<conio.h>

#include<stdio.h>

void main(int argc,char *argv[]) R
IL

-0
85

MCS-102/285

{

int i;

clrscr();

cout<<"argc="<<"\n"<<argc;

for(i=0;i<argc;i++)

{

cout<<"argv["<<i<<"]="<<argv[i];

cout<<"\n";

}

getch();

}

Output :

argc=6

argv[0]=C:\TURBOC3\BIN\COMMAND.EXE

argv[1]=p

argv[2]=q

argv[3]=r

argv[4]=s

argv[5]=t

File reading operation by using Command line argument.

Example 10.8 : Program to read the file

#include<conio.h>

#include<iostream.h>

#include<fstream.h>

int main(int argc, char* argv[])

R
IL

-0
85

MCS-102/286

{

 int x;

 char line1[50];

 clrscr();

 cout<<"\n total no. of arguments are:";

 cout<<"argc="<<argc<<endl;

 for(int i=1; i <argc; i++) // i=1, assuming files arguments are right
after the executable

 {

 cout<<"\nargv["<<i<<"]="<<argv[i];

 cout<<"\n";

 char *fn = argv[i]; //filename

 fstream f;

 f.open(fn,ios::out);

 f<<"now we use open function for opening a new file";

 f.close();

 f.open(fn,ios::in);

 f.getline(line1,20);

 cout<<"\n"<<line1;

 f.close();

 getch();

 }

return 0;

 }

Output:

total no. of arguments are :argc=2

argv[1]=cute.txt

now we use open fun

R
IL

-0
85

MCS-102/287

Check your Progress

What is the first argument of command line?

10.9 SUMMARY

In real world applications lots of works perform in files. A file is
used to read or write the data. For doing the same first of all, open the file
by using either open function or constructor, and perform the working and
after that close the file by using close function. The purpose of opening the
file is defined by file modes. And during the working to locate different
positions, file pointers are used and also used some functions for handling
the error during file operations.

10.10 EXERCISE

1. What are command line arguments?

2. How many methods are used to open a file?

3. What is the difference to open a file by using constructor and open
function?

4. What do you understand by File pointers?

5. What are file modes? Explain different type of file modes.

6. Write a C++ program to write number 1 to 100 in a data file
NOTES.TXT

7. Write a C++ program, which initializes a string variable to the
content " Surround yourself with only people who are going to lift
you higher." and outputs the string to the disk file OUT.TXT.

8. Write a user-defined function in C++ to read the content from a
text file “SHOW.TXT”, count and display the number of alphabets
present in it.

9. Write a function to count the number of blank present in a text file
named "SHOW.TXT".

10. Write a function to count number of words in a text file named
"DEMO.TXT".

11. Write a function in C++ to count and display the number of lines
not starting with alphabet 'A' present in a text file "DEMO.TXT".

R
IL

-0
85

MCS-102/288

UNIT-11 OBJECT ORIENTED MODELLING

11.1 Introduction

11.2 Objective

11.3 Need of Object Oriented Modelling

11.4 Principles of Modelling

11.5 Simulation of real life problems using OOPS : Example

11.6 Representation of problems using object and class diagrams at
design level

11.7 Summary

11.8 Exercise

11.1 INTRODUCTION

A model is an abstraction of something for the purpose of
understanding it before building it. Because, real systems that we want to
study are generally very complex. In order to understand the real system,
we have to simplify the system. So a model is an abstraction that hides the
non-essential characteristics of a system and highlights those
characteristics, which are pertinent to understand it. Efraim Turban
describes a model as a simplified representation of reality. A model
provides a means for conceptualization and communication of ideas in a
precise and unambiguous form. The characteristics of simplification and
representation are difficult to achieve in the real world, since they
frequently contradict each other. Thus modelling enables us to cope with
the complexity of a system.

Most modelling techniques used for analysis and design involve
graphic languages. These graphic languages are made up of sets of
symbols. As you know one small line is worth thousand words. So, the
symbols are used according to certain rules of methodology for
communicating the complex relationships of information more clearly
than descriptive text.

Modelling is used frequently, during many of the phases of the
software life cycle such as analysis, design and implementation.
Modelling like any other object-oriented development, is an iterative
process. As the model progresses from analysis to implementation, more
detail is added to it.

11.2 OBJECTIVE

After studying this unit you should be able to understand Object
Oriented Modelling/UML, its requirements and real life applications. And R

IL
-0

85

MCS-102/289

alsobrief introduction of designing methods and terminology used in
UML.

11.3 NEED OF OBJECT ORIENTED MODELLING

A model provides the blueprints of a system. Models may
encompass detailed plans. A good model includes those elements that
have broad effect and omits those minor elements that are not relevant to
the given level of abstraction. Every system may be described from
different aspects using different models, and each model is therefore a
semantically closed abstraction of the system. A model may be structural,
emphasizing the organization of the system, or it may be behavioural,
emphasizing the dynamics of the system.

Through modelling, we achieve four aims.

1. Models help us to visualize a system as it is or as we want it to be.

2. Models permit us to specify the structure or behaviour of a system.

3. Models give us a template that guides us in constructing a system.

4. Models document the decisions we have made.

Modelling is not just for big systems. Even the software equivalent
of a dog house can benefit from some modelling. However, it's definitely
true that the larger and more complex the system, the more important
modelling becomes, for one very simple reason: We build models of
complex systems because we cannot comprehend such a system in its
entirety.

There are limits to the human ability to understand complexity.
Through modelling, we narrow the problem we are studying by focusing
on only one aspect at a time. Furthermore, through modelling, we amplify
the human intellect. A model properly chosen can enable the modeller to
work at higher levels of abstraction.

Civil engineers build many kinds of models. Most commonly,
there are structural models that help people visualize and specify parts of
systems and the way those parts relate to one another. Depending on the
most important business or engineering concerns, engineers might also
build dynamic models- for instance, to help them to study the behavior of
a structure in the presence of an earthquake. Each kind of model is
organized differently, and each has its own focus.

In software, there are several ways to approach a model. The two
most common ways are from an algorithmic perspective and from an
object-oriented perspective. The traditional view of software development
takes an algorithmic perspective. In this approach, the main building block
of all software is the procedure or function. This view leads developers to
focus on issues of control and the decomposition of larger algorithms into
smaller ones. There's nothing inherently evil about such a point of view R

IL
-0

85

MCS-102/290

except that it tends to yield brittle systems. As requirements change (and
they will) and the system grows (and it will), systems built with an
algorithmic focus turn out to be very hard to maintain. The contemporary
view of software development takes an object-oriented perspective. In this
approach, the main building block of all software systems is the object or
class. Simply put, an object is a thing, generally drawn from the
vocabulary of the problem space or the solution space; a class is a
description of a set of common objects. Every object has identity (you can
name it or otherwise distinguish it from other objects), state (there's
generally some data associated with it), and behaviour (you can do things
to the object, and it can do things to other objects, as well).

For example, consider a simple three-tier architecture for a billing
system, involving a user interface, middleware, and a database. In the user
interface, you will find concrete objects, such as buttons, menus, and
dialog boxes. In the database, you will find concrete objects, such as tables
representing entities from the problem domain, including customers,
products, and orders.

In the middle layer, you will find objects such as transactions and
business rules, as well as higher-level views of problem entities, such as
customers, products, and orders. The object-oriented approach to software
development is decidedly a part of the mainstream simply because it has
proven to be of value in building systems in all sorts of problem domains
and encompassing all degrees of size and complexity. Furthermore, most
contemporary languages, operating systems, and tools are object-oriented
in some fashion, giving greater cause to view the world in terms of
objects. Object-oriented development provides the conceptual foundation
for assembling systems out of components using technology such as Java
Beans or COM+.

11.4 PRINCIPLES OF MODELLING

There four basic principles of modeling :

1. The choice of what models to create has a profound influence on
how a problem is attacked and how a solution is shaped.

In other words, choose your models well. The right models will
brilliantly illuminate the most wicked development problems,
offering insight that you simply could not gain otherwise; the
wrong models will mislead you, causing you to focus on irrelevant
issues. In software, the models you choose can greatly affect your
world view. If you build a system through the eyes of a database
developer, you will likely focus on entity-relationship models that
push behaviour into triggers and stored procedures. If you build a
system through the eyes of a structured analyst, you will likely end
up with models that are algorithmic-centric, with data flowing
from process to process. If you build a system through the eyes of
an object-oriented developer, you'll end up with a system whose R

IL
-0

85

MCS-102/291

architecture is centred around a sea of classes and the patterns of
interaction that direct how those classes work together. Any of
these approaches might be right for a given application and
development culture, although experience suggests that the object-
oriented view is superior in crafting resilient architectures, even for
systems that might have a large database or computational element.
That fact notwithstanding, the point is that each world view leads
to a different kind of system, with different costs and benefits.

2. Every model may be expressed at different levels of precision.

If you are building a high rise, sometimes you need a 30,000-foot
view- for instance, to help your investors visualize its look and
feel. Other times, you need to get down to the level of the studs-
for instance, when there's a tricky pipe run or an unusual structural
element. The same is true with software models. Sometimes, a
quick and simple executable model of the user interface is exactly
what you need; at other times, you have to get down and dirty with
the bits, such as when you are specifying cross-system interfaces
or wrestling with networking bottlenecks. In any case, the best
kinds of models are those that let you choose your degree of detail,
depending on who is doing the viewing and why they need to view
it. An analyst or an end user will want to focus on issues of what; a
developer will want to focus on issues of how. Both of these
stakeholders will want to visualize a system at different levels of
detail at different times.

3. The best models are connected to reality.

A physical model of a building that doesn't respond in the same
way as do real materials has only limited value; a mathematical
model of an aircraft that assumes only ideal conditions and perfect
manufacturing can mask some potentially fatal characteristics of
the real aircraft. It's best to have models that have a clear
connection to reality, and where that connection is weak, to know
exactly how those models are divorced from the real world. All
models simplify reality; the trick is to be sure that your
simplifications don't mask any important details.

4. No single model is sufficient. Every nontrivial system is best
approached through a small set of nearly independent models.

If you are constructing a building, there is no single set of
blueprints that reveal all its details. At the very least, you'll need
floor plans, elevations, electrical plans, heating plans, and
plumbing plans. The operative phrase here is "nearly independent."
In this context, it means having models that can be built and
studied separately but that are still interrelated. As in the case of a
building, you can study electrical plans in isolation, but you can
also see their mapping to the floor plan and perhaps even their
interaction with the routing of pipes in the plumbing plan. R

IL
-0

85

MCS-102/292

Check Your Progress

What Is Modelling? What Are The Advantages Of Creating A Model?

11.5 SIMULATION OF REAL LIFE
PROBLEMS USING OOPS : EXAMPLE

The Unified Modelling Language (UML) is a standard language
for writing software blueprints. The UML may be used to visualize,
specify, construct, and document the artifacts of a software intensive
system. The UML is appropriate for modelling systems ranging from
enterprise information systems to distributed Web-based applications and
even to hard real time embedded systems. It is a very expressive language,
addressing all the views needed to develop and then deploy such systems.
Even though it is expressive, the UML is not difficult to understand and to
use. Learning to apply the UML effectively starts with forming a
conceptual model of the language, which requires learning three major
elements: the UML's basic building blocks, the rules that dictate how these
building blocks may be put together, and some common mechanisms that
apply throughout the language.

The UML is only a language and so is just one part of a software
development method. The UML is process independent, although
optimally it should be used in a process that is use case driven,
architecture-centric, iterative, and incremental. The UML is a language for

• Visualizing
• Specifying
• Constructing
• Documenting

The artifacts of a software-intensive system.

The UML Is a Language

A language provides a vocabulary and the rules for combining words in
that vocabulary for the purpose of communication. A modelling language
is a language whose vocabulary and rules focus on the conceptual and
physical representation of a system. A modelling language such as the
UML is thus a standard language for software blueprints.

The UML Is a Language for Visualizing
For many programmers, the distance between thinking of an
implementation and then pounding it out in code is close to zero. You
think it, you code it. In fact, some things are best cast directly in code.
Text is a wonderfully minimal and direct way to write expressions and R

IL
-0

85

MCS-102/293

algorithms. In such cases, the programmer is still doing some modelling,
albeit entirely mentally. He or she may even sketch out a few ideas on a
white board or on a napkin.

The UML Is a Language for Specifying
In this context, specifying means building models that are precise,
unambiguous, and complete. In particular, the UML addresses the
specification of all the important analysis, design, and implementation
decisions that must be made in developing and deploying a software-
intensive system.

The UML Is a Language for Constructing
The UML is not a visual programming language, but its models can be
directly connected to a variety of programming languages. This means that
it is possible to map from a model in the UML to a programming language
such as Java, C++, or Visual Basic, or even to tables in a relational
database or the persistent store of an object-oriented database. Things that
are best expressed graphically are done so graphically in the UML,
whereas things that are best expressed textually are done so in the
programming language.

The UML Is a Language for Documenting
A healthy software organization produces all sorts of artifacts in addition
to raw executable code. These artefacts include (but are not limited to)

• Requirements

• Architecture

• Design

• Source code

• Project plans

• Tests

• Prototypes

• Releases

Depending on the development culture, some of these artifacts are treated
more or less formally than others. Such artifacts are not only the
deliverables of a project, they are also critical in controlling, measuring,
and communicating about a system during its development and after its
deployment. The UML addresses the documentation of a system's
architecture and all of its details. The UML also provides a language for
expressing requirements and for tests. Finally, the UML provides a
language for modelling the activities of project planning and release
management.

R
IL

-0
85

MCS-102/294

Check your Progress

What should be mentioned as attributes for conceptual modelling ?

11.5.1 BUILDING BLOCKS OF THE UML

The vocabulary of the UML encompasses three kinds of building blocks:

1. Things

2. Relationships

3. Diagrams

Things are the abstractions that are first-class citizens in a model;
relationships tie these things together; diagrams group interesting
collections of things.

Things in the UML
There are four kinds of things in the UML. These things are the basic
object-oriented building blocks of the UML. You use them to write well-
formed models.

1. Structural Things : Structural things are the nouns of UML
models. These are the mostly static parts of a model, representing
elements that are either conceptual or physical. In all, there are
seven kinds of structural things: classes, interfaces, collaborations,
use cases, active classes, components, and nodes.

2. Behavioural Things : Behavioural things are the dynamic parts of
UML models. These are the verbs of a model, representing
behaviour over time and space. In all, there are two primary kinds
of behavioural things: interaction and state machine.

3. Grouping Things : Grouping things are the organizational parts of
UML models. These are the boxes into which a model can be
decomposed. In all, there is one primary kind of grouping thing,
namely, packages.

4. An notational Things : An notationalthings are the explanatory
parts of UML models. These are the comments you may apply to
describe, illuminate, and remark about any element in a model.
There is one primary kind of an notational thing, called a note. A
note is simply a symbol for rendering constraints and comments
attached to an element or a collection of elements.

 R
IL

-0
85

MCS-102/295

Check your Progress

Which things are dynamic parts of UML models?

11.5.2 RELATIONSHIPS IN THE UML

There are four kinds of relationships in the UML :

1. Dependency

2. Association

3. Generalization

4. Realization

These relationships are the basic relational building blocks of the UML.
You use them to write well-formed models.

11.5.3 DIAGRAMS IN THE UML

A diagram is the graphical presentation of a set of elements, most
often rendered as a connected graph of vertices (things) and arcs
(relationships). You draw diagrams to visualize a system from different
perspectives, so a diagram is a projection into a system. For all but the
most trivial systems, a diagram represents an elided view of the elements
that make up a system. The same element may appear in all diagrams,
only a few diagrams (the most common case), or in no diagrams at all (a
very rare case). In theory, a diagram may contain any combination of
things and relationships. In practice, however, a small number of common
combinations arise, which are consistent with the five most useful views
that comprise the architecture of a software-intensive system.

The UML includes nine such diagrams:

1. Class diagram : A class diagram shows a set of classes, interfaces,
and collaborations and their relationships. These diagrams are the
most common diagram found in modelling object-oriented
systems. Class diagrams address the static design view of a system.
Class diagrams that include active classes address the static
process view of a system.

2. Object diagram : An object diagram shows a set of objects and
their relationships. Object diagrams represent static snapshots of
instances of the things found in class diagrams. These diagrams
address the static design view or static process view of a system as
do class diagrams, but from the perspective of real or prototypical
cases. R

IL
-0

85

MCS-102/296

3. Use case diagram : A use case diagram shows a set of use cases
and actors (a special kind of class) and their relationships. Use case
diagrams address the static use case view of a system. These
diagrams are especially important in organizing and modelling the
behaviours of a system.

4. Sequence diagram : Both sequence diagrams and collaboration
diagrams are kinds of interaction diagrams. An shows an
interaction, consisting of a set of objects and their relationships,
including the messages that may be dispatched among them.
Interaction diagrams address the dynamic view of a system. A
sequence diagram is an interaction diagram that emphasizes the
time-ordering of messages.

5. Collaboration diagram : Collaboration diagram is an interaction
diagram that emphasizes the structural organization of the objects
that send and receive messages. Sequence diagrams and
collaboration diagrams are isomorphic, meaning that you can take
one and transform it into the other.

6. State-chart diagram : A state-chart diagram shows a state
machine, consisting of states, transitions, events, and activities.
State-chart diagrams address the dynamic view of a system. They
are especially important in modelling the behaviour of an interface,
class, or collaboration and emphasize the event-ordered behaviour
of an object, which is especially useful in modelling reactive
systems.

7. Activity diagram : An activity diagram is a special kind of a state
chart diagram that shows the flow from activity to activity within a
system. Activity diagrams address the dynamic view of a system.
They are especially important in modelling the function of a
system and emphasize the flow of control among objects.

8. Component diagram : A component diagram shows the
organizations and dependencies among a set of components.
Component diagrams address the static implementation view of a
system. They are related to class diagrams in that a component
typically maps to one or more classes, interfaces, or collaborations.

9. Deployment diagram : A deployment diagram shows the
configuration of run-time processing nodes and the components
that live on them. Deployment diagrams address the static
deployment view of architecture. They are related to component
diagrams in that a node typically encloses one or more
components.

Check Your Progress

Which are the rules to be considered to form Collaboration diagrams?

R
IL

-0
85

MCS-102/297

11.5.4 ARCHITECTURE OF UML

Visualizing, specifying, constructing, and documenting a software-
intensive system demands that the system be viewed from a number of
perspectives. Different stakeholders- end users, analysts, developers,
system integrators, testers, technical writers, and project managers- each
bring different agendas to a project, and each looks at that system in
different ways at different times over the project's life. A system's
architecture is perhaps the most important artifact that can be used to
manage these different viewpoints and so control the iterative and
incremental development of a system throughout its life cycle.

Modelling a System’s Architecture
Architecture is the set of significant decisions about

• The organization of a software system
• The selection of the structural elements and their interfaces by

which the system is composed
• Their behavior, as specified in the collaborations among those

elements
• The composition of these structural and behavioral elements into

progressively larger subsystems

The architectural style that guides this organization: the static and
dynamic elements and their interfaces, their collaborations, and their
composition Software architecture is not only concerned with structure
and behavior, but also with usage, functionality, performance, resilience,
reuse, comprehensibility, economic and technology constraints and trade-
offs, and aesthetic concerns. The architecture of a software-intensive
system can best be described by five interlocking views. Each view is a

Vocabulary
functionality

System assembly
configuration
management

System topology
distribution

delivery
installation

Performance
scalability
throughput

Behaviour

Design View Implementation
View

Process View Deployment View

Use case
view

R
IL

-0
85

MCS-102/298

projection into the organization and structure of the system, focused on a
particular aspect of that system.

The use case view of a system encompasses the use cases that
describe the behaviour of the system as seen by its end users, analysts, and
testers. This view doesn't really specify the organization of a software
system. Rather, it exists to specify the forces that shape the system's
architecture. With the UML, the static aspects of this view are captured in
use case diagrams; the dynamic aspects of this view are captured in
interaction diagrams, statechart diagrams, and activity diagrams.

The design view of a system encompasses the classes, interfaces,
and collaborations that form the vocabulary of the problem and its
solution. This view primarily supports the functional requirements of the
system, meaning the services that the system should provide to its end
users. With the UML, the static aspects of this view are captured in class
diagrams and object diagrams; the dynamic aspects of this view are
captured in interaction diagrams, statechart diagrams, and activity
diagrams. The process view of a system encompasses the threads and
processes that form the system's concurrency and synchronization
mechanisms. This view primarily addresses the performance, scalability,
and throughput of the system. With the UML, the static and dynamic
aspects of this view are captured in the same kinds of diagrams as for the
design view, but with a focus on the active classes that represent these
threads and processes.

The implementation view of a system encompasses the components
and files that are used to assemble and release the physical system. This
view primarily addresses the configuration management of the system's
releases, made up of somewhat independent components and files that can
be assembled in various ways to produce a running system. With the
UML, the static aspects of this view are captured in component diagrams;
the dynamic aspects of this view are captured in interaction diagrams,
statechart diagrams, and activity diagrams.

The deployment view of a system encompasses the nodes that form
the system's hardware topology on which the system executes. This view
primarily addresses the distribution, delivery, and installation of the parts
that make up the physical system. With the UML, the static aspects of this
view are captured in deployment diagrams; the dynamic aspects of this
view are captured in interaction diagrams, statechart diagrams, and
activity diagrams.

Each of these five views can stand alone so that different
stakeholders can focus on the issues of the system's architecture that most
concern them. These five views also interact with one another- nodes in
the deployment view hold components in the implementation view that, in
turn, represent the physical realization of classes, interfaces,
collaborations, and active classes from the design and process views. The
UML permits you to express every one of these five views and their
interactions. R

IL
-0

85

MCS-102/299

11.6 REPRESENTATION OF PROBLEMS
USING OBJECT AND CLASS DIAGRAMS
AT DESIGN LEVEL

A class describes a collection of similar objects. It is a template
where certain basic characteristics of a set of objects are defined. A class
defines the basic attributes and the operations of the objects of that type.
Defining a class does not define any object, but it only creates a template.
For objects to be actually created, instances of the class are to be created
as per the requirement of the case.

Classes are built on the basis of abstraction, where a set of similar objects
is observed and their common characteristics are listed. Of all these, the
characteristics of concern to the system under observation are taken and
the class definition is made. The attributes of no concern to the system are
left out. This is known as abstraction. So, the abstraction is the process of
hiding superfluous details and highlighting pertinent details in respect to
the system under development.

ClassName

Attrubute-name1 : data-type1 = default-value1

Attrubute-name2 : data-type2 = default-value2

Operation-name1 (arguments2) : result-type1

Operation-name2 (arguments2) : result-type2

It should be noted that the abstraction of an object varies according
to its application. For instance, while defining a pen class for a stationery
shop, the attributes of concern might be the pen colour, ink colour, pen
type etc., whereas a pen class for a manufacturing firm would be
containing the other dimensions of the pen like its diameter, its shape and
size etc. Each application-domain concept from the real world that is
important to the application should be modelled as an object class. Classes
are arranged into hierarchies sharing common structure and behaviour and
are associated with other classes. This gives rise to the concept of
inheritance.

In OMT, classes are represented by a rectangular box which may
be divided into three parts as shown in Figure. The top part contains the
name of the class written in bold, middle part contains a list of attributes
and bottom part contains a list of operations by the optional details such as
type and default value. An object model should generally distinguish
independent base attributes from dependent derived attributes. A derived
attribute is that which is derived from other attributes. For example, age R

IL
-0

85

MCS-102/300

is a derived attribute, as it can be derived from date-of-birth and current-
date attributes. An operation is a function or transformation that may be
applied to or by objects in a class. Operations are listed in the third part of
the class box. Operations may or may not be shown; it depends on the
level of detail desired. Each operation may be followed by optional details
such as argument list and result type. The name and type of each argument
may be given. An empty argument list in parentheses shows explicitly that
there are no arguments. All objects in a class share the same operations.
Each operation has a target object as an implicit argument.

An operation may have arguments in addition to its target object,
which parameterize the operation. The behaviour of the operation depends
on the class of its target. An operation may be polymorphic in nature. A
polymorphic operation means that the same operation takes on different
forms in different/same classes. Overloading of operators, overloading of
functions and overriding of functions provided by object-oriented
programming languages are all examples of polymorphic operations. A
method is the implementation of an operation for a class. The method
depends only on the class of the target object.

Figure shows the class Book. Attributes of Book are title, author,
and publisher along with their data types. Operations on Book are open(),
close(), read().

BOOK

title : string

author : string

publisher : string

open()

close()

real()

PERSON

name : string

address : string

phone : string

changeName ()

changeAddress () R
IL

-0
85

MCS-102/301

changePhone ()

Now, let us formally define an object. An object is a concept, abstraction,
or thing with crisp boundaries and meaning for the problem at hand.

An object has the following four main characteristics :
• Unique identification

• Set of attributes

• Set of states

• Set of operations (behaviour)

Unique identification, we mean every object has a unique name by which
it is identified in the system. Set of attributes, we mean every object has a
set of properties in which we are interested in. Set of states we mean
values of attributes of an object constitute the state of the object. Every
object will have a number of states but at a given time it can be in one of
those states. Set of operations we mean externally visible actions an object
can perform. When an operation is performed, the state of the object may
change.

In other words, an object is an instance of an object class. Figure (rounded
box) represents an object instance in OMT. Object instance is a particular
object from an object class. The box may/may not be divided in particular
regions. Object instances can be used in instance diagrams, which are
useful for documenting test cases and discussing examples.

Attributes
An attribute is a data value held by objects in a class. Each attribute has a
value for each object instance. This value should be a pure data value, not
an object. Attributes are listed in the second part of the class box. Each
attribute name may be followed by the optional details. An object
modelshould generally distinguish independent base attributes from
dependent derived attributes

(Class Name)
ObjectName

(Book)
Physics

(Book)
Chemistry

(Book)
Mathematics

R
IL

-0
85

MCS-102/302

Operations
An operation is a function or transformation that may be applied to or by
objects in a class. All objects in a class share the same operations. Each
operation has a target object as an implicit argument. An operation may
have arguments in addition to its target object, which parameterize the
operation. The behaviour of the operation depends on the class of its
target.

A polymorphic operation means that the same operation takes on
different forms in different classes.

A method is the implementation of an operation for a class. The method
depends only on the class of the target object. Operations are listed in the
lower third of the class box. Each operation name may be followed by
optional details, such as argument list and result type. The name and type
of each argument may be given. An empty argument list in parentheses
shows explicitly that there are no arguments.

Check Your Progress

Which are part of class operation specification format?

Links and Associations
A link is a physical or conceptual connection between object instances. In
OMT, link is represented by a line labelled with its name as shown in
Figure

An association describes a group of links with common structure
and common semantics between two or more classes. Association is
represented by a line labelled with the association name in italics as shown
in Figure

Association names are optional. If the association is given a name, it
should be written above the line. Association names are italic. In case of a
binary association, the name reads in a particular direction (i.e. left to

(Class Name)
ObjectName

(Class Name)
ObjectName

Link-Name

(Class Name)

(Class Name)

Associsation-Name

R
IL

-0
85

MCS-102/303

right), but the binary association can be traversed in either direction. For
example, a pilot flies an airplane or an airplane is flown by a pilot. All the
links in an association connect objects from the same classes. Associations
are bidirectional in nature.

Multiplicity :
It specifies how many instances of one class may relate to a single
instance of an associated class. Multiplicity constrains the number of
related objects. There are special line terminators to indicate certain
common multiplicity values. A solid ball is the symbol for "many",
meaning zero, one or more. A hollow ball indicates "optional", meaning
zero or one. The multiplicity is indicated with special symbols at the ends
of association lines. In the most general case, multiplicity can be specified
with a number or set of intervals. If no multiplicity symbol is specified
that means a one-to-one association.

Exactly one

Many (zero or more) unlimited

 Optional (zero or one)

One or more

 Specific range

 Exact Number

Unlimited Number (Zero or

more)

NOTATIONS FOR MULTIPILICITY

Class

Class

Class

Class 1+

Class 1 - 6

Class 9

Class N

R
IL

-0
85

MCS-102/304

The rules of multiplicity are summarized below :
• Line without any ball indicates one-to-one association.
• Hollow ball indicates zero or one.
• Solid ball indicates zero, one or more.
• Numbers written on solid ball such as 1,2,6 indicates 1 or 2 or 6.
• Numbers written on solid ball such as 1+ indicates 1 or more, 2+

indicates 2 or more etc.
An association can be unary, binary, ternary or n-ary. Unary association is
between the same class as shown in Figure

A binary association is an association between two classes as shown in

Figure

Example of a binary association is “Person sits on a Chair”. One person
can sit at one chair. So multiplicity of this association is one-to-one as
shown. Example of a binary association is “Supplier supplies Parts”. One
supplier can supply many parts or one part can be supplied by

many suppliers. So multiplicity of this association is many-to-many as
shown in Figure

Another example of binary association is “Person possesses a Passport”.
Either a person can have one passport or no passport but one passport can
be with one person. So multiplicity of this association is one-to-optional as
shown in Figure

Associsation-

Class-Name

Person

Chair

Sits-on

Supplier

Parts

Supplies

Person

Passport

Possesses

teaches

Person

R
IL

-0
85

MCS-102/305

Another example of binary association is “Company employs Person”.
One company can employ zero, one or more persons but one person can
be employed in one company only (assume). So multiplicity of this
association is one-to-many as shown in Figure

Ternary association is an association among three classes. On the same
line, n-ary association is an association among n classes. The OMT
symbol for ternary and n-ary associations is a diamond with lines
connecting to related classes as shown in Figure. A name for the
association is optional and is written next to the diamond. An n-ary
associations cannot be subdivided into binary associations without losing
information.

ow let us consider the example of a ternary association. Programmers
develop Projects in (programming) Languages. One programmer can be
engaged in zero; one or more projects and can know zero, one or
languages. Similarly, one project can be developed by one or more
programmers and in one or more languages. So this association along with
its multiplicity is shown in Figure. Other examples of ternary and higher
order associations are “Teacher teaches Students in a Classroom”, “Doctor
diagnoses Patient in Room at a given Schedule” etc.

Company

Person

Employs

Class Class

Class

Programmer Project

Language

R
IL

-0
85

MCS-102/306

Association :
Association is a relationship between classes. There can be some
attributes, which cannot be associated with either of the two classes related
by an association. Such attributes are called as link attributes. A binary
association can have two roles, which may be written at the ends of the
association.

Other relationships between classes are aggregation and inheritance.
Aggregation specifies one object may be composed of other objects. It is a
part-whole relationship. Inheritance is a way to form new classes using
classes that have already been defined. Inheritance is intended to help
reuse existing code with little or no modification.

Check your Progress

What is multiplicity for an association?

Presentation of Contents
Link attributes

Sometimes, an attribute(s) cannot be associated with either of the two
classes associated by the association. In such cases, the attribute(s) is
associated with the association and is called as link attribute.

AccessBy
 File User

access-permission

Association Name

Class Name

Class Name

Attrubute Name-1
Attrubute Name-1

R
IL

-0
85

MCS-102/307

It is a property of the links in an association. The OMT notation for a link
attribute is a box attached to the association by a loop, One or more link
attributes may appear in the second region of the box. Sometime it is
possible, for one-to-one and one-to-may associations, to fold link
attributes into the class opposite to the "one" side. But as a rule, link
attributes should not be folded into a class because future flexibility is
reduced if the multiplicity of the association changes. Consider an
example as shown in Figure File is accessed by a User. So, the classes File
and User are related by association the association named “AccessedBy”.
Many users can access one file and one user can access many files.

So, multiplicity of the association is many-to-many. Now, the attribute
“access-permission” cannot be associated with either File class or with
User class. This attribute can be associated with the link as shown in
Figure. Hence, access-permission is link attribute.

It is also possible to model an association as a class such class is called as
link class as shown in Figure. Each link becomes one instance of the class.
The notation for this kind of association is the same as for a link attribute
and has a name and (optional) operations added to it.

Now, consider the example shown in Figure, where whole class is
associated with the link. In this example, the class Authorization is a link
class. It has one attribute “access-permission” and two methods
grantPermission() and changePermission().

 Class Name

Class Name

Class Name

Accessible By
 File User

Authorization
Access-permission
grantPermission ()
changePermission ()

R
IL

-0
85

MCS-102/308

Role Names
A role is one end of an association. A binary association can have two
roles, each of which may have a role name.

A role name is a name that uniquely identifies one end of an association.
Roles provide a way of viewing a binary association as a traversal from
one object to a set of associated objects. Each role on a binary association
identifies an object or set of objects associated with an object at the other
end. Figure shows how to represent roles in OMT methodology.

The use of role names is optional, but is often easier and less confusing to
assign role names instead of, or in addition to, association names. Role
names are necessary for associations between two objects of the same
class.

They are also useful to distinguish between two associations between the
same pair of classes. We can follow these two guidelines: All role names
on the far end of associations attached to a class must be unique. No role
name should be the same as an attribute name of the source class. It is also
possible to use role names for n-ary associations.

The role name is a derived attribute whose value is a set of related objects.
Use of role names provides a way of traversing associations from an
object at one end, without explicitly mentioning the association. For
example, consider the association ‘a person works for a company’, in this
employee and employer are role names for the classes Person and
Company respectively as shown in Figure.

Ordering

Usually the objects on the "many" side of an association have no explicit
order, and can be regarded as a set. Sometimes the objects on the many
side of an association have order. Writing {ordered} next to the
multiplicity dot as shown in Figure indicates an ordered set of objects of
an association.

ClassName

ClassName

RoleName
RoleName

AssociationName

Person Company
employee
employer
works-for

Class Name

Class Name

{Ordered}
AssociationName

R
IL

-0
85

MCS-102/309

Consider the example of association between Window class and Screen
class. A screen can contain a number of windows. Windows are explicitly
ordered. Only topmost window is visible on the screen at any time. Figure
shows this example.

Qualification

A qualifier is an association attribute. A qualified association relates two
object classes and a qualifier. The qualifier is a special attribute that
reduces the effective multiplicity of an association. One-to-many and
many-to-many associations may be qualified. Figure shows how to
represent a qualification.

The qualifier is drawn as a small box on the end of the association line
near the class it qualifies. The qualifier rectangle is part of the association,
not of class. The qualifier distinguishes among the set of objects at the
"many" end of an association. A qualified association can also be
considered a form of ternary association. The advantage of the
qualification is that it improves semantic accuracy and increases the
visibility of navigation paths.

For example, a person object may be associated to a Bank object as shown
in Figure. An attribute of this association is the accoutNo. The accountNo
is the qualifier of this association.

Aggregation
Aggregation is another relationship between classes. It is a tightly coupled
form of association with some extra semantics. It is the “part-whole” or
“a-part-of” relationship in which objects representing the component of
something are associated with an object representing the entire assembly.
Aggregations are drawn like associations, except a small hollow diamond
indicating the assembly end of the relationship as shown in Figure. The
class opposite to the diamond side is part of the class on the diamond side.

window Screen
{Ordered}
Visible-on

Class Name

Class Name

Qualifier

Bank Person accountNo

R
IL

-0
85

MCS-102/310

For example, a team is aggregation of players. This can be modelled as
shown in Figure. Aggregation can be fixed, variable or recursive.

• In a fixed aggregation number and subtypes are fixed i.e.
predefined.

• In a variable aggregation number of parts may vary but number of
levels is finite.

• A recursive aggregate contains, directly or indirectly, an instance
of the same aggregate. The number of levels is unlimited. For
example, as shown in Figure, a computer program is an
aggregation of blocks, with optionally recursive compound
statements. The recursion terminates with simple statement. Blocks
can be nested to arbitrary depth.

One more example of aggregation is shown in Figure. A company is
composed of zero, one or more divisions. A division is composed of zero,
one or more sections.

Another example of aggregation is shown in Figure. A document is
composed of zero, one or more paragraphs. A paragraph is composed of

ClassName

ClassName

Team Players

Program

Block

Compound
Statement

Simple
Statement

R
IL

-0
85

MCS-102/311

zero, one or more sentences. A sentence is composed of one or more
words. A word is composed of one or more characters.

Check Your Progress
Whatis the stronger form of aggregation and how it is represented?

Inheritance
The inheritance concept was invented in 1967 for Simula. Inheritance is a
way to form new classes using classes that have already been defined.
Inheritance is intended to help reuse existing code with little or no
modification. The new classes, known as derived classes (or child classes
or sub classes), inherit attributes and behaviour of the pre-existing classes,
which are referred to as base classes (or parent classes or super classes) as
shown in Figure.

The inheritance relationship of sub- and super classes gives rise to a
hierarchy. Inheritance is a “is-a” relationship between two classes.For
example, Student is a Person; Chair is Furniture; Parrot is a Bird etc. in all
these examples, first class (i.e. Student, Chair, Parrot) inherits properties
from the second class (i.e. Person, Furniture, Bird).

Document

Paragraph

Sentence

Word

Character

Company

Division

Section

R
IL

-0
85

MCS-102/312

Example of an inheritance : Manager is an Employee. Manager class
inherits features from Employee class as shown in Figure. There are
several reasons to use inheritance as enumerated below:

Inheritance for Specialization
One common reason to use inheritance is to create specializations of
existing classes. In specialization, the derived class has data or behaviour
aspects that are not part of the base class. For example, Square is a
Rectangle. Square class is specialization of Rectangle class. Similarly,
Circle is an Ellipse. Here also, Circle class is specialization of Ellipse
class. Another example, a BankAccount class might have data members
such as accountNumber, customerName and balance. An
InterestBearingAccount class might inherit BankAccount and then add
data member interestRate and interestAccrued along with behaviour for
calculating interest earned.

Another form of specialization occurs when a base class specifies that it
has a particular behaviour but does not actually implement the behaviour.
Each non-abstract, concrete class which inherits from that abstract class
must provide an implementation of that behaviour. This providing of
actual behaviour by a subclass is sometimes known as implementation or
reification. For example, there is a class Shape having operation area().
The operation area() cannot be implemented unless we have concrete
class. So, Shape class is abstract class. Rectangle is a Shape. Now,
Rectangle is a concrete class, which can implement the operation area().

Base/Parent Class
attributeName1
attributeName2

Operationname1 ()
Operationname2 ()

Derived/Sub Class
attributeName1
attributeName2

Operationname1 ()
Operationname2 ()

EMPLOYEE
EmpID
EmpName

getID ()
getName ()

MANAGER
department
phone

getDeptt ()
getPhone ()

R
IL

-0
85

MCS-102/313

Inheritance for Generalization
Generalization is reverse of specialization. For instance, a "fruit" is a
generalization of "apple", "orange", "mango" and many others. One can
consider fruit to be an abstraction of apple, orange, etc. Conversely, since
apples are fruit (i.e., an apple is-a fruit), apples may naturally inherit all
the properties common to all fruit, such as being a fleshy container for the
seed of a plant.

Another example: Vehicle is a generalization of Car, Truck, Bus etc. Car,
Truck, Bus etc. share some properties such as “number of wheels”, speed,
capacity etc. these common properties are abstracted out and put into
another class say Vehicle, which comes higher in the hierarchy.

Inheritance for Extension
In this case, inheritance extends the existing class functionalities by
adding new operations in the derived class. It can be distinguished from
generalization that the later must override at least one method from the
base and the functionality is tied to that of the base class. Extension simply
adds new methods to those of the base class and functionality is less
strongly tied to the existing methods of the base class. For example,
StringSet class inherits from Set class, which specializes for holding string
values. Such a class might provide additional methods for string related
operations – for instance - search by prefix, which returns a subset of all
the elements of the set that begin with a certain string value. These
operations are meaningful to the derived class but are not particularly
relevant to the base class.

Inheritance for Restriction
In this case, the derived class does not implement the functionality, which
a base class has. In other words, inheritance for restriction occurs when the
behaviour of the derived class is smaller or more restrictive than the
behaviour of the base class. For example, an existing class library provides
a double-ended queue (deque). Elements can be added or removed from
either end of the deque, but the programmer wishes to write a stack class,
enforcing the property that elements can be added or removed from only
one end of the stack. Here, the programmer can make the Stack class a
derived class of the existing Deque class and can modify or override the
undesired methods so that they produce an error message if used.

Inheritance for Overriding
When a class replaces the implementation of a method that it has inherited
is called overriding. Overriding introduces a complication: which version
of the method does an instance of the inherited class use the one that is
part of its own class, or the one from the parent (base) class. The answer
varies between programming languages, and some languages provide the
ability to indicate that a particular behaviour is not to be overridden.

R
IL

-0
85

MCS-102/314

Generalization and Inheritance
Generalization is the relationship between a class and one or more refined
versions of it. The class being refined is called the superclass and each
refined version is called a subclass. Attributes and operations common to a
group of subclasses are attached to the superclass and shared by each
subclass. Each subclass is said toinherit the features of its superclass.
Generalization is sometimes called the "is-a" relationship, because each
instance of a subclass is an instance of the superclass as well. The OMT
notation for generalization is shown in figure.

The notation for generalization is a triangle connecting a superclass to its
subclasses. The discriminator is an attribute of enumeration type that
indicates which property of an object is being abstracted by a particular
generalization relationship. Only one property should be discriminated at
once. The discriminator is an optional part of a generalization relationship.
It is not good to nest subclasses too deeply, because they can be very
difficult to understand.

Rules for a correct Object diagram :
An Object Diagram should comply with the following rules to be a correct
diagram:

• Attributes should be pure data values, not objects;

• No classes with the same names

• Associations should be at least between 2 classes

• No attributes & operations with the same names in one class

• Do not bury pointers or other object references inside objects as
attributes. Instead model these as associations;

• Link attributes must not be collapsed into classes;

• Every subclass has at least one superclass

• Each operation must have a target object as an implicit argument

• Object models should be documented;

ClassName

ClassName

ClassName

ClassName

Discriminator

R
IL

-0
85

MCS-102/315

Relationships : When you build abstractions, you'll discover that very few
of your classes stand alone. Instead, most of them collaborate with others
in a number of ways. Therefore, when you model a system, not only must
you identify the things that form the vocabulary of your system, you must
also model how these things stand in relation to one another.

In object-oriented modelling, there are three kinds of relationships that are
especially important: dependencies, which represent using relationships
among classes (including refinement, trace, and bind relationships);
generalizations, which link generalized classes to their specializations;
and associations, which represent structural relationships among objects.
Each of these relationships provides a different way of combining your
abstractions. Building webs of relationships is not unlike creating a
balanced distribution of responsibilities among your classes. Over-
engineer, and you'll end up with a tangled mess of relationships that make
your model incomprehensible; under-engineer, and you'll have missed a
lot of the richness of your system embodied in the way things collaborate.

A relationship is a connection among things. In object-oriented modelling,
the three most important relationships are dependencies, generalizations,
and associations. Graphically, a relationship is rendered as a path, with
different kinds of lines used to distinguish the kinds of relationships.

Dependency: A dependency is a using relationship that states that a
change in specification of one thing (for example, class Event) may affect
another thing that uses it (for example, class Window), but not necessarily
the reverse. Graphically, a dependency is rendered as a dashed directed
line, directed to the thing being depended on. Use dependencies when you
want to show one thing using another.

A dependency can have a name, although names are rarely needed unless
you have a model with many dependencies and you need to refer to or
distinguish among dependencies. More commonly, you'll use stereotypes
to distinguish different flavours of dependencies.

Generalization : A generalization is a relationship between a general
thing (called the superclass or parent)and a more specific kind of that thing
(called the subclass or child). Generalization is sometimes called an "is-a-
kind-of" relationship: o modelling (like the class BayWindow) is-a-kind-
of a more general thing (for example, the class Window). Generalization
means that objects of the child may be used anywhere the parent may

FimlChip
Name
playOn(C:Channel)
start()
stop()
reset()

Channel

dependency

R
IL

-0
85

MCS-102/316

appear, but not the reverse. In other words, generalization means that the
child is substitutable for the parent. A child inherits the properties of its
parents, especially their attributes and operations. Often- but not always-
the child has attributes and operations in addition to those found in its
parents. An operation of a child that has the same signature as an operation
in a parent overrides the operation of the parent; this is known as
polymorphism. Graphically, generalization is rendered as a solid directed
line with a large open arrowhead, pointing to the parent. Use
generalizations when you want to show parent/child relationships.

A class may have zero, one, or more parents. A class that has no parents
and one or more children is called a root class or a base class. A class that
has no children is called a leaf class. A class that has exactly one parent is
said to use single inheritance; a class with more than one parent is said to
use multiple inheritance.

Association : Associations and dependencies (but not generalization
relationships) may be reflective. An association is a structural relationship
that specifies that objects of one thing are connected to objects of another.
Given an association connecting two classes, you can navigate from an
object of one class to an object of the other class, and vice versa. It's quite
legal to have both ends of an association circle back to the same class.
This means that, given an object of the class, you can link to other objects
of the same class. An association that connects exactly two classes is
called a binary association. Although it's not as common, you can have
associations that connect more than two classes; these are called n-ary

Share
origin
move ()
resize ()
display ()

Rectangle

corner : point

Square

Circle

radius : Float

Polygon
Points : List
display ()

Base

Generaliz

leaf Class

R
IL

-0
85

MCS-102/317

associations. Graphically, an association is rendered as a solid line
connecting the same or different classes. Use associations when you want
to show structural relationships. Although an association may have a
name, you typically don't need to include one if you explicitly provide role
names for the association, or if you have a model with many associations
and you need to refer to or distinguish among associations. This is
especially true when you have more than one association connecting the
same classes.

Check Your Progress

By which termshigher-level and lower –level entities are designated in
generalization.

11.8 SUMMARY

Modelling gives us the ability to visualise the system before it is
implemented. It also gives the convection that system that is to be
implemented is analysed properly. There are various diagrams with which
we model our system. UML is the universal language for modelling of
object oriented systems. It also gives us the template to guide us in
constructing a system. We can easily simulate the real life problems of
object objected systems. Class diagram, object diagram, use case diagram
etc. are the various diagrams using in this process.

11.9 EXERCISE
1. Explain Object Oriented modelling with its need.

2. What are the principles of modelling?

3. How the real life problems are modelled in object oriented system.
Explain the basic building blocks used in this representation.

4. Give an example of object oriented system and represent it using
object oriented modelling.

5. Explain the class diagram and object diagram with example.

Person Company Works for

Name name direction

association

R
IL

-0
85

MCS-102/318

ROUGH WORK
R

IL
-0

85

MCS-102/319

ROUGH WORK
R

IL
-0

85

MCS-102/320

	Generalization and Inheritance
	Blank Page

