
Uttar Pradesh Rajarshi Tandon

Open University

BLOCK-1

Unit 1 Software Engineering Fundamentals

Unit 2 Software Process

Unit 3 Project Management Concept

BLOCK-2

Unit 1 Software Process and Project Metrics
Unit 2 Software Project Planning

Unit 3 Risk Analysis And Management

BLOCK-3

Unit 1 Software Quality Assurance
Unit 2 Software Configuration Management

Unit 3 Analysis Concepts and Principles

BLOCK-4

Unit 1 Design Concept and Principle

Unit 2 Software Testing

Unit 3 Types of Software Testing

Unit 4 Re Engineering

Unit 3 Case

Master in Computer
Science

MCS-104
Software Engineering

3-48

49-96

97-146

147-240

MCS-104/1

MCS-104/2

Uttar Pradesh Rajarshi Tandon

Open University

Block

1
Unit 1 Software Engineering Fundamentals

Unit 2 Software Process

Unit 3 Project Management

Master in Computer

Science

MCS -104
Software Engineering

7-18

19-38

39-48

MCS-104/3

Course Design Committee

Dr. Ashutosh Gupta Chairman
Director (In-charge)
School of Computer and Information Science, UPRTOU Prayagraj

Prof. R. S. Yadav
Department of Computer Science and Engineering
MNNIT Allahabad, Prayagraj

Ms. Marisha
Assistant Professor (Computer Science)
School of Science, UPRTOU Prayagraj

Mr. Manoj Kumar Balwant
Assistant Professor (computer science)
School of Sciences, UPR TOU Prayagraj

Course Preparation Committee

Dr. Pooja Yadav
Assistant Professor, Dept. of CS & IT
MJP Rohilkhand University, Bareilly (UP)

Dr. Ashutosh Gupta
Associate Professor, Dept. of CS & IT
MJP Rohilkhand University, Bareilly (UP)

Mr. Manoj Kumar Balwant

Assistant Professor (computer science)
School of Sciences, UPR TOU Prayagraj

© UPRTOU, Prayagraj. 2019

ISBN: 978-93-83328-19-2

Member

Member

Member

Author

Editor

Coordinator

All Rights are reserved. No part of this work may be reproduced in any form, by

mimeograph or any other means, without permission in writing from the Uttar

Pradesh Rajarshi Tondon Open University, Prayagraj.

Printed and Published by Dr. Arun Kumar Gupta Registrar, Uttar Pradesh
Rajarshi Tandon Open University, 2019.

Printed By : K.C.Printing & Allied Woks, Panchwati,Mathura -281003.
MCS-104/4

BLOCK INTRODUCTION

In this section we discuss the overview of this block's content. This block

consists of the following units:

Unit 1 Software Engineering Fundamentals

Software engineering is an engineering branch associated with

development of software product using well-defined scientific principles,

methods and procedures. The outcome of software engineering is an

efficient and reliable software product.

Unit 2 Software Process

Software development life cycle (SDLC) models describe phases of the

software cycle and the order in which these phases are executed. Each

phase produces deliverables required by

the next phase in the life cycle. The software development models are the

various processes or methodologies that are being selected for the

development of the project depending on the project's aims and goals.

There are many development life cycle models that have been developed

in order to achieve different required objectives. The models specify the

various stages of the process and the order in which they are carried out.

The SDLC aims to produce high quality software that meets or exceeds

customer expectations, reaches completion within times and cost

estimates.

Unit 3 Project Management Concept

A Software Project is the complete procedure of software development

from requirement gathering to testing and maintenance, carried out

according to the execution methodologies, in a specified period of time to

achieve intended software product.

MCS-104/5

MCS-104/6

UNIT-1

SOFTWARE ENGINEERING FUNDAMENTALS

Structure

1.0 Introduction

1.1 Objective

1.2 Definition Of Software Engineering

1.3 Components Of Computer

1.4 Software Characteristics

1.5 Software Applications

1.6 Summary

1. 7 Exercise

1.0 INTRODUCTION

Software Engineering is the discipline that aims to provide
methods and procedures for developing software systems. Software
engineering focuses on the process with the aim that the quality of product
developed using a process is influenced mainly by the process. It is the
application of science and mathematics by which the capabilities of
computer equipment are made useful to humans via computer programs,
procedure and associated documentation

1.1 OBJECTIVE

Objectives of this unit are:

(a) to apply knowledge of modules ,tools, procedure ,methods,
paradigms.

(b) to design and conduct experiments, as well as to analyse and
interpret data.

(c) to identify, formulate, and solve engineering problems.

(d) to communicate effectively.

(e) the broad education necessary to understand the impact of
engineering solutions in a global, economic, environmental, and
societal context.

(t) to use the techniques, skills, and modem engineering tools necessary
for engineering practice.

MCS-104/7

1.2 DEFINITION OF SOFTWARE ENGINEERING

Software engineering is essentially a set of steps that comprises of
process, methods and tools. It is defined not as a branch of engineering but
rather a discipline whose aim is the production of quality software that
satisfies the user's need and is delivered on time and within budget.

It can also be defined as -

"A systemization of the process of the software development in order to
ensure the best solution in the most economical way".

1.2.1 Elements of Software Engineering

The following are the major elements of software engineering:

• Methods

• Procedures

• Tools

• Paradigms

Methods: A method is a procedure for producing some result. It is

sometimes also referred to as a technique. Methods generally demand

some formal notation and processes.

Procedure: A procedure is a mechanism that combines tools and/or
methods to produce a particular product. Algorithms are example of
procedures.

Tools: Tools are the automated system that increases accuracy,
efficiency, productivity, or equality of the end product.

Paradigm: It refers to a particular approach for building software such
as the object oriented paradigm.

1.2.2 Evolution of software engineering

From its beginnings in the 1940s, writing software has evolved

into a profession concerned with how best to maximize the quality of
software and of how to create it. Quality refers to its stability, speed,

usability, testability, readability, size, cost, security, and number of flaws
or "bugs", as well as to less measurable qualities like elegance,
conciseness, and customer satisfaction, among many other attributes. How
best to create high quality software is a separate and controversial problem
covering software design principles, so-called "best practices" for writing
code, as well as broader management issues such as optimal team size,
process, how best to deliver software on time and as quickly as possible,
work-place "culture," hiring practices, and so forth. All this falls under the
broad rubric of software engineering.

MCS-104/8

1945 to 1965: The Origins

The term software engineering first appeared in the late 1950s and
early 1960s. Programmers have always known about civil, electrical,
and computer engineering and debated what engineering might mean
for software.

The NATO Science Committee sponsored two conferences on
software engineering in 1968 and 1969, which gave the field its
initial boost. Many believe these conferences marked the official
start of the profession of software engineering.

1965 to 1985: The Software Crisis

Software engineering was spurred by the so-called software crisis of
the 1960s, 1970s, and 1980s, which identified many of the problems
of software development. Many software projects ran over budget
and schedule. Some projects caused property damage.

A few projects caused loss of life. The software crisis was originally
defined in terms of productivity, but evolved to emphasize quality. Some
used the term software crisis to refer to their inability to hire enough
qualified programmers.

• Cost and Budget Overruns: The OS/360 operating system was a
classic example. This decade-long project from the 1960s eventually
produced one of the most complex software systems at the time.
OS/360 was one of the first large (1000 programmer's software
projects). Fred Brooks claims in The Mythical Man Month that he
made a multi-million dollar mistake of not developing a
coherent architecture before starting development.

• Property Damage: Software defects can cause property damage.
Poor software security allows hackers to steal identities, costing
time, money, and reputations.

• Life and Death: Software defects can kill. Some embedded
systems used in radiotherapy machines failed so catastrophically that
they administered lethal doses of radiation to patients. The most
famous of these failures is the Therac-25 incident.

Peter G. Neumann has kept a contemporary list of software problems
and disasters. The software crisis has been fading from view,
because it is psychologically extremely difficult to remain in crisis
mode for a protracted period (more than 20 years). Nevertheless,
software - especially real-time embedded software - remains risky
and is pervasive, and it is crucial not to give in to complacency. Over
the last 10-15 years Michael A. Jackson has written extensively
about the nature of software engineering, has identified the main
source of its difficulties as lack of specialization, and has suggested
that his problem frames provide the basis for a "normal practice" of
software engineering, a prerequisite if software engineering is to

become an engineering science. MCS-104/9

1985 to 1989: No Silver Bullet

For decades, solving the software cns1s was paramount to
researchers and companies producing software tools. The cost of
owning and maintaining software in the 1980s was twice as
expensive as developing the software.

• During the 1990s, the cost of ownership and maintenance increased
by 30% over the 1980s.

• In 1995, statistics showed that half of surveyed development projects
were operational, but were not considered successful.

• The average software project overshoots its schedule by half.

• Three-quarters of all large software products delivered to the
customer are failures that are either not used at all, or do not meet the
customer's requirements.

1990 to 1999: Prominence of the Internet

The rise of the Internet led to very rapid growth in the demand for
international information display/e-mail systems on the World Wide
Web.

Programmers were required to handle illustrations, maps,
photographs, and other images, plus simple animation, at a rate
never before seen, with few well-known methods to optimize image
display/storage (such as the use of thumbnail images).

The growth of browser usage, running on the HTML language,
changed the way in which information-display and retrieval was
organized. The widespread network connections led to the growth
and prevention of international computer viruses on MS Windows
computers, and the vast proliferation of spam e-mail became a major
design issue in e-mail systems, :flooding communication channels
and requiring semi-automated pre-screening. Keyword-search
systems evolved into web-based search engines, and many software
systems had to be re-designed, for international searching, depending
on search engine optimization (SEO) techniques. Human natural­
language translation systems were needed to attempt to translate the
information flow in multiple foreign languages, with many software
systems being designed for multi-language usage, based on design
concepts from human translators. Typical computer-user bases went
from hundreds, or thousands of users, to, often, many-millions of
international users.

2000 to Present: Lightweight Methodologies

With the expanding demand for software in many smaller
organizations, the need for inexpensive software solutions led to the
growth of simpler, faster methodologies that developed running
software, from requirements to deployment, quicker & easier. The
use of rapid-prototyping evolved to entire lightweightMCS-104/10

methodologies, such as Extreme Programming (XP), which
attempted to simplify many areas of software engineering, including
requirements gathering and reliability testing for the growing, vast
number of small software systems. Very large software systems still
used heavily-documented methodologies, with many volumes in the
documentation set; however, smaller systems had a simpler, faster
alternative approach to managing the development and maintenance
of software calculations and algorithms, information
storage/retrieval and display.

1.2.3 Current Trends in Software Engineering

Software engineering is a young discipline, and is still developing.

The directions in which software engineering is developing include:

Aspects

Aspects help software engineer's deal with quality attributes by providing

tools to add or remove boilerplate code [boilerplate code refers to sections of

code that have to be included in many places with little or no alteration.] from

many areas in the source code. Aspects describe how all objects or

functions should behave in particular circumstances. For

example, aspects can add debugging, logging, or locking control into all

objects of particular types. Researchers are currently working to

understand how to use aspects to design general-purpose code. Related

concepts include generative programming and templates.

Agile

Agile software development guides software development projects that

evolve rapidly with changing expectations and competitive markets.

Ggroups of this method believe that heavy, document-driven processes

(like TickIT, CMM and ISO 9000) are fading in importance. Some people

believe that companies and agencies export many of the jobs that can be

guided by heavy-weight processes. Related concepts include extreme

programming, scrum, and lean software development.

Experimental

Experimental software engineering is a branch interested in

devising experiments on software, in collecting data from the experiments,

and in devising laws and theories from this data. Groups of this method

advocate that the nature of software is such that we can advance the

knowledge on software through experiments only.

Model-driven

Model driven design develops textual and graphical models as primary

design artifacts. Development tools are available that use model

MCS-104/11

transformation and code generation to generate well-organized code

fragments that serve as a basis for producing complete applications.

Software product lines

Software product lines are a systematic way to produce families of
software systems, instead of creating a succession of completely
individual products. This method emphasizes extensive, systematic,
formal code reuse, to try to industrialize the software development
process.

Check Your Progress 1:

When you know programming, what is the need to learn software

engineering concepts?

13COMPONENTSOFCOMPUTER

There are three basic components of Computer System. These are
hardware, software and user.

Components of Computer

I

Hardware Software User

I

I I

CPU Peripherals
Application

-

Software

,-
Input System

Devices Software

Output

Devices

Figure 1.1 Components of computer

1.3.1 Hardware: Hardware is the tangible unit of the computer system.

Hardware refers to all the physical components of a computer. It includes

all input devices, processing devices, storage devices, and output devices.
The keyboard, mouse, motherboard, monitor, hard disk, cables, and printer

are all examples of hardware. You use hardware to provide input to a
computer and also to get the desired output. Hardware needs software for
the controlling itself. There are several parts of the hardware.

1.3.2 Software: Software is

(1) Instructions (computer programs) that when executed provide
desired function and performance,MCS-104/12

(2) Data structures that enable the programs to adequately manipulate
information, and

(3) Documents that describe the operation and use of the programs.

It is the essential component of computer system. Software gives
"intelligence" to the computer. Software is a collection of program which
drives the hardware in solving a problem. Software is kept on a secondary
storage. Software's are classified into 2 categories: -

(a) System Software: - It includes the computer programs that run a
computer system itself or that assist the computer in running
application program. They control and support computer system.
End user never uses system software directly.

(b) Application Software: - Application software is the main program
for various applications written by programmers under an
organization to solve any particular problem. All the software, which
users actually use, is application software. For example- MS Word,
excel, PowerPoint, Tally etc. Application software can be product
based or project based :

a. Products:-These software are developed by software developers
then launched in the marked for the end users e.g. MS office,
Tally, Photoshop etc.

b. Project: - (Custom software) these software are developed by
software development companies on the demand of any client.

They cannot be purchased from open market. They are the
property of the specific organization e.g. banking software of
bank, railway reservation software, billing software of any
agency etc.

1.3.3 User: - User is the essential component of the computer. Anyone

who is using the computer is computer user. Computer user can be
manager, student, teacher, administrator or any lay person.

Check Your Progress 2:

Can you differentiate computer software and computer program?

1.4 SOFTWARE CHARACTERISTICS

To gain an understanding of, it is important to examine the
characteristics of software that make it different from other things that
human beings build. When hardware is built, the human creative process
is ultimately translated in to a physical form. If we build a new computer,
our initial sketches, formal design drawings, and bread boarded prototype
evolve into a physical product.

MCS-104/13

Software is a logical rather than a physical system element. Therefore,
software has characteristics that are considerably different than those of
hardware:

1. Software is developed or engineered; it is not manufactured in the

classical sense.

Although some similarities exist between software development and
hardware manufacture, the two activities are fundamentally different. In
both activities, high quality is achieved through good design, but the
manufacturing phase for hardware can introduce quality problems that are
non-existent for software. Both activities are dependent on people, but the
relationship between people applied and work accomplished is entirely
different. Both activities require the construction of a "product" but the
approaches are different. Software costs are concentrated in engineering.
This means that software projects cannot be managed as if they were
manufacturing projects.

2. Software doesn't "wear out."

The relationship indicates that hardware exhibits relatively high failure
rates early in its life; defects are corrected and the failure rate drops to a
steady-state level for some period of time. As time passes, however, the
failure rate rises again as hardware components suffer from the
cumulative effects of dust, vibration, abuse, temperature extremes, and
many other environmental maladies. Stated simply, the hardware begins
to wear out.

Software is not susceptible to the environmental maladies that cause
hardware to wear out. Another aspect of wear illustrates the difference
between hardware and software. When a hardware component wears out,
it is replaced by a spare part. There are no software spare parts. Every
software failure indicates an error in design or in the process through
which design was translated into machine executable code. Therefore,
software maintenance involves considerably more complexity than
hardware maintenance.

3. Most software continues to be custom built.

In the software world, it is something that has only begun to be achieved

on a broad scale. A software component should be designed and

implemented so that it can be reused in many different programs. In the

1960s, we built scientific subroutine libraries that were reusable in a

broad array of engineering and scientific applications. Today, we have

extended our view of reuse to encompass not only algorithms but also

data structure. Modem reusable components encapsulate both data and the

processing applied to the data, enabling the software engineer to create

new applications from reusable parts.

A software product can be judged by what it offers and how well it can be

used. This software must satisfy on the following grounds:

MCS-104/14

Operational

This tells us how well software works in operations. It can be measured
on:

• Budget

• Usability

• Efficiency

• Correctness

• Functionality

• Dependability

• Security

• Safety

Transitional

This aspect is important when the software is moved from one platform to
another:

• Portability

• Interoperability

• Reusability

• Adaptability

Maintenance

This aspect briefs about how well software has the capabilities to maintain
itself in the ever-changing environment :

• Modularity

• Maintainability

• Flexibility

• Scalability

1.5 SOFTWARE APPLICATION

Software engineering is the application of engineering to the

design, development, implementation and maintenance of software in a
systematic method. Software's are being developed in almost every area
of life for automation. Software may be applied in any situation for which
a pre-specified set of procedural steps has been defined.

The following software areas indicate the breadth of potential
applications:

• System software.

System software is a collection of programs written to service other
programs. Some system software (e.g., compilers, editors, and file MCS-104/15

management utilities) process complex, but determinate, information
structures. Other systems applications (e.g., operating system
components, drivers, telecommunications processors) process largely
indeterminate data. In either case, the system software area is
characterized by heavy interaction with computer hardware; heavy
usage by multiple users; concurrent operation that requires scheduling,
resource sharing, and sophisticated process management; complex
data structures; and multiple external interfaces.

• Real-time software.

Software that monitors/analyses/controls real-world events as they
occur is called real time. Elements of real-time software include a data
gathering component that collects and formats information from an
external environment, an analysis component that transforms
information as required by the application, a control/output component
that responds to the external environment, and a monitoring
component that coordinates all other components so that real-time
response (typically ranging from 1 millisecond to 1 second) can be
maintained.

• Business software.

Business information processmg 1s the largest single software
application area. Discrete "systems" (e.g., payroll, accounts
receivable/payable, inventory) have evolved into management
information system (MIS) software that accesses one or more large
databases containing business information. Applications in this area
restructure existing data in a way that facilitates business operations or
management decision making. In addition to conventional data
processing application, business software applications also encompass
interactive computing (e.g., point-of-sale transaction processing).

• Engineering and scientific software.

Engineering and scientific software have been characterized by
"number crunching" algorithms. Applications range from astronomy
to volcanology, from automotive stress analysis to space shuttle
orbital dynamics, and from molecular biology to automated
manufacturing. However, modem applications within the
engineering/scientific area are moving away from conventional
numerical algorithms. Computer-aided design, system simulation, and
other interactive applications have begun to take on real-time and even
system software characteristics.

• Embedded software.

Intelligent products have become commonplace in nearly every
consumer and industrial market. Embedded software resides in read­
only memory and is used to control products and systems for the
consumer and industrial markets. Embedded software can perform
very limited and esoteric functions (e.g., keypad control for a
microwave oven) or provide significant function and control

MCS-104/16

capability (e.g., digital functions in an automobile such as fuel control,
dashboard displays, and braking systems).

• Personal computer software.

The personal computer software market has burgeoned over the past
two decades. Word processing, spread-sheets, computer graphics,
multimedia, entertainment, database management, personal and
business financial applications, external network, and database
access are only a few of hundreds of applications.

• Web-based software.

The Web pages retrieved by a browser are software that incorporates
executable instructions (e.g., COi, HTML, Perl, or Java), and data
(e.g. hypertext and a variety of visual and audio formats). In essence,
the network becomes a massive computer providing an almost
unlimited software resource that can be accessed by anyone with a
modem.

• Artificial intelligence software.

Artificial intelligence (Al) software makes use of non-numerical
algorithms to solve complex problems that are not amenable to
computation or straightforward analysis. Expert systems, also called
knowledge based systems, pattern recognition (image and voice),
artificial neural networks, theorem proving, and game playing are
representative of applications within this category.

Here is the list of some application of software's in some areas:

• Business Process Re-Engineering

• Communication Networks

• Computer Graphics

• Cooperative Work Support

• e-commerce

• Education

• Training

• Embedded Systems Programming

• m-Commerce

• Medical Informatics

• Mobile and Wireless Computing

• Multimedia Systems

• Parallel and Distributed Systems

• Real Time Systems

• W eh-based Simulation

• Workflow Modelling

• others

MCS-104/17

Check Your Progress 3:

What are the challenges in software?

1.6 SUMMARY

This section covered about software, its types, characteristics and
application area of software. And also explain software engineering, its
evaluation, and current trends of this field.

1.7 EXERCISE

(1) Define the term software and software engineering. What are the
objectives of software engineering?

(2) What is software engineering? How is it different from other
traditional engineering branches?

(3) Define the types of software. What are the characteristics of
software?

(4) What are the attributes of good software?
(5) Write some applications of software.

MCS-104/18

Structure

UNIT-2

SOFTWARE PROCESS

2.0 Introduction

2.1 Objective

2.2 Definition of Software Process

2.3 Software Process Models

2.3.1. Waterfall Model

2.3.2 Prototype Model

2.3.3 Spiral Model

2.3.4 Incremental Model

2.4 Concurrent Development Model

2.5 Summary

2.6 Exercise

2.0 INTRODUCTION

The development lifecycle of software Comprises of four major

stages namely Requirement Elicitation, Designing, Coding and Testing. A

software process model is the basic framework which gives a workflow

from one stage to the next. This workflow is a guideline for successful

planning, organization and final execution of the software project.

Generally we have many different techniques and methods used to

software development life cycle. Project and most real world models are

customized adaptations of the generic models while each is designed for a

specific purpose or reason, most have similar goals and share many

common tasks.

Software processes performed during software Development and evolution

are becoming rather complex and resource intensive. They involve people

who execute actions with the primary goal to create quality software in

accordance with the previously set user requirements. Only structured,

carefully guided and documented software processes can lead to the stated MCS-104/19

goal. Constant monitoring and improvement of Software processes is
therefore of a significant interest for organizational performing software
development and maintenance. In order to improve the process an
objective description and evolution of the existing process is needed.

In contrast to software life cycle models, software process models often
represent a networked sequence of activities, objects, transformations, and
events that embody strategies for accomplishing software evolution. Such
models can be used to develop more precise and formalized descriptions of
software life cycle activities. Their power emerges from their utilization of
a sufficiently rich notation, syntax, or semantics, often suitable for
computational processing. Software process networks can be viewed as
representing multiple interconnected task chains. Task chains represent a
non-linear sequence of actions that structure and transform available
computational objects (resources) into intermediate or finished products.

Non-linearity implies that the sequence of actions may be non­
deterministic, iterative, accommodate multiple/parallel alternatives, as well
as partially ordered to account for incremental progress. Task actions in
turn can be viewed a non-linear sequences of primitive actions which
denote atomic units of computing work, such as a user's selection of a
command or menu entry using a mouse or keyboard.

2.1 OBJECTIVE

Objectives of this unit are:

a) To introduce the concept of software process and software process
models.

b) To describe a number of different process models and when they may
be used.

c) To describe outline process models for requirements engineering,
software development, testing and evolution.

d) To describe the pros and cons of each model

2.2 SOFTWARE DEVELOPMENT LIFECYCLE

SDLC, Software Development Life Cycle, is a process used by software
industry to design, develop and test high quality software. The SDLC aims
to produce high quality software that meets or exceeds customer

expectations, reaches completion within times and cost estimates. The
software development life cycle (SDLC) is a framework defining tasks
performed at each step in the software development process. ISO/IEC
12207 is an international standard for software life-cycle processes. It aims
to be the standard that defines all the tasks required for developing and
maintaining software. SDLC is a process followed for a software project,
within a software organization. It consists of a detailed plan describing
how to develop, maintain, replace and alter or enhance specific software.
The life cycle defines a methodology for improving the quality of software
and the overall development process. MCS-104/20

A typical Software Development life cycle consists of the following stages
as shown in figure 2.1:

Stage 1: Planning and Requirement Analysis: Requirement analysis is
the most important and fundamental stage in SDLC. It is performed by the
senior members of the team with inputs from the customer, the sales

department, market surveys and domain experts in the industry. This
information is then used to plan the basic project approach and to conduct
product feasibility study in the economical, operational, and technical
areas.

Planning for the quality assurance requirements and identification of the
risks associated with the project is also done in the planning stage. The
outcome of the technical feasibility study is to define the various technical
approaches that can be followed to implement the project successfully
with minimum risks.

Planning

Development Defining

Testing Designing

Building

Figure 2.1 : Stages of SDLC

Stage 2: Defining Requirements: Once the requirement analysis is done

the next step is to clearly define and document the product requirements

and get them approved from the customer or the market analysts. This is

done through 'SRS' - Software Requirement Specification document

which consists of all the product requirements to be designed and

developed during the project life cycle.

Stage 3: Designing the product architecture: SRS is the reference for

product architects to come out with the best architecture for the product to

be developed. Based on the requirements specified in SRS, usually more

than one design approach for the product architecture is proposed and

documented in a DDS - Design Document Specification. This DDS is

reviewed by all the important stakeholders and based on various

parameters as risk assessment, product robustness, design modularity , MCS-104/21

budget and time constraints , the best design approach is selected for the

product.

A design approach clearly defines all the architectural modules of the

product along with its communication and data flow representation with

the external and third party modules (if any). The internal design of all the

modules of the proposed architecture should be clearly defined with the

minutes of the details in DDS.

Stage 4: Building or Developing the Product: In this stage of SDLC the

actual development starts and the product is built. The programming code

is generated as per DDS during this stage. If the design is performed in a

detailed and organized manner, code generation can be accomplished

without much hassle.

Developers have to follow the coding guidelines defined by their

organization and programming tools like compilers, interpreters,

debuggers etc. are used to generate the code. Different high level

programming languages such as C, C++, Pascal, Java, and PHP are used

for coding. The programming language is chosen with respect to the type

of software being developed.

Stage 5: Testing the Product: This stage is usually a subset of all

the stages as in the modem SDLC models, the testing activities are

mostly involved in all the stages of SDLC. However this stage refers

to the testing only stage of the product where products defects are

reported, tracked, fixed and retested, until the product reaches the

quality standards defined in the SRS.

Stage 6: Deployment in the Market and Maintenance: Once the product

is tested and ready to be deployed it is released formally in the appropriate

market. Sometime product deployment happens in stages as per the

organizations' business strategy. The product may first be released in a

limited segment and tested in the real business environment (UAT- User

acceptance testing).

Then based on the feedback, the product may be released as it is or with

suggested enhancements in the targeting market segment. After the

product is released in the market, its maintenance is done for the existing

customer base.

2.3 SOFTWARE PROCESS MODELS

There is various software process models defined and designed
which are followed during software development process. These models
are also referred as "Software Development Life Cycle Models". Each

MCS-104/22

process model follows a Series of steps unique to its type, in order to
ensure success in process of software development.
Following are the most important and popular SDLC models followed in
the industry:

• Waterfall Process Model: The Classical Life Cycle or the Waterfall
Process Model was the first process model to present a sequential
framework, describing basic stages that are mandatory for a
successful software development model. It formed the basis for most
software development standards and consists of the following
phases: Requirements elicitation, Designing, Implementation and
Testing.

• Prototype Model: In Prototype Model, the user is given a "look and
feel" of the system using a prototype. The prototype for the system
to be developed is built, tested and reworked as necessary. Prototype
process model is suitable for dynamic environment where
requirements change rapidly. The process begins with gathering
main functional requirements; this is followed by a quick design
leading to the development of a prototype. The prototype is then
evaluated by users and customers. Developers rework on the
prototype until the customer and users are satisfied.

• Incremental Development Model: In incremental development
process, customers identify, in outlined the services to be provided
by the system. They identify which of the services are most
important and which are least important to them. A number of
delivery increments are then defined which each increment
providing a subset of functional requirements. The highest priority
functional requirements are delivered first.

• Spiral Model: In Spiral model, instead of presenting a sequence of
activities with some backtracking from one activity to the other, the
process model followed a spiral organization of activities. It
combines characteristics of both prototype and waterfall process
model. The model is divided into some task regions, which are as
follows: Customer Communication, Planning, Risk Analysis, and
Engineering, Construction and release and Customer evaluation. The
distinctive feature of this model is that each stage is controlled by a
specific risk management criteria ensuring decision making using
critical factors.

• Rapid Application Development Model: The RAD model is an
adaptation of the classical model for achieving rapid development
using component based construction. If requirements are well
understood with a well constrained project scope, the RAD process
enables delivery of the fully function system. The model is
considered to be incremental development model and that have
emphasis on short development cycle.

• Rational Unified Process Model (RUP): The RUP provides
dynamic, static and practice perspectives of a product. The RUP MCS-104/23

provides each team member with the guidelines, templates and tool
mentors necessary for the entire team to take full advantage of the
best practices. The software lifecycle is broken into cycles, each
cycle working on a new generation of the product.

• The V-Model: The V-Model is an extension to the Waterfall Model
in that it does not follow a sequential mode of execution rather it
bends upward after the coding phase to form V shape.

• Concurrent Engineering Model: The concurrent development
model sometimes called concurrent engineering model can be
represented schematically as a series of frame work activities,
software engineering action and task, and their associated status.
Provide a schematic representation of one software engineering task
with in the modelling activities for the concurrent process model.
The activity-modelling may be in any one of the states noted at any
given time. Similarly, other activities or task can be represented in
an analogous manner. All activities exist concurrently but reside in
different states .its first iteration and exist in the waiting changes
state. The modelling activities which existed in none state while
initial communication was completed, now makes a transition into
the under development state. If, however, the customer indicates that
changes in requirements must be made, the modeling activities
moves from the under development states into the awaiting changes
states. The concurrent process model defines a series of events that
will trigger transition from state to state for each of the software
engineering activities, actions, or tasks.

• Confident Software Development Process Model: The Confident
process model which we have proposed has seven phases, namely;
Feasibility study/Requirement, Requirement Based Analysis,
Logical Design, Confident Code, Logical Testing, Implementation &
Deployment, and Maintenance. It is a flexible model not restricting
the developers enabling them to move both Front and back from any
given stage to any other stage during its lifecycle. Each phase is
further divided into sub phases, each specifying a criterion which has
to be met to move to the next phase.

• The Formal model: The formal methods model encompasses a set
of activities that leads to formal mathematical specification of
computer software formal methods enable a software engineer to
specify, develop, and verify a computer-based system by applying a
rigorous. When formal methods are used during development, they
provide a mechanism for eliminating many of the problem that are
difficult to overcome using other software engineering cardiogram

2.3.1 WATERFALL MODEL

The Waterfall Model was first Process Model to be introduced. It is also
referred to as a linear-sequential life cycle model. It is very simple to

MCS-104/24

understand and use. In a waterfall model, each phase must be completed
before the next phase can begin and there is no overlapping in the phases.

Waterfall model is the earliest SDLC approach that was used for software
development . The waterfall Model illustrates the software development
process in a linear sequential flow; hence it is also referred to as a linear­
sequential life cycle model. This means that any phase in the development
process begins only if the previous phase is complete. In waterfall model

phases do not overlap.

Waterfall Model design

Waterfall approach was first SDLC Model to be used widely in Software
Engineering to ensure success of the project. In "The Waterfall" approach,
the whole process of software development is divided into separate
phases. In Waterfall model, typically, the outcome of one phase acts as the

input for the next phase sequentially as shown in figure 2.2.

Requirement

Analysis

System Design

Implementation

Integration &

Testing

Deployment

Figure 2.2: Stages of Waterfall Model

The sequential phases in Waterfall model are:

Maintenance

• Requirement Gathering and analysis: All possible requirements of
the system to be developed are captured in this phase and
documented in a requirement specification doc.

• System Design: The requirement specifications from first phase are
studied in this phase and system design is prepared. System Design
helps in specifying hardware and system requirements and also helps
in defining overall system architecture.

MCS-104/25

• Implementation: With inputs from system design, the system is first
developed in small programs called units, which are integrated in the
next phase. Each unit is developed and tested for its functionality
which is referred to as Unit Testing.

• Integration and Testing: All the units developed in the
implementation phase are integrated into a system after testing of
each unit. Post integration the entire system is tested for any faults
and failures.

• Deployment of system: Once the functional and non-functional
testing is done, the product is deployed in the customer environment
or released into the market.

• Maintenance: There are some issues which come up in the client
environment. To fix those issues patches are released. Also to
enhance the product some better versions are released. Maintenance
is done to deliver these changes in the customer environment.

All these phases are cascaded to each other in which progress is seen as
flowing steadily downwards (like a waterfall) through the phases. The
next phase is started only after the defined set of goals are achieved for
previous phase and it is signed off, so the name "Waterfall Model". In this
model phases do not overlap.

Waterfall Model Application

Every software developed is different and requires a suitable SDLC
approach to be followed based on the internal and external factors. Some
situations where the use of Waterfall model is most appropriate are:

• Requirements are very well documented, clear and fixed.

• Product definition is stable.

• Technology is understood and is not dynamic.

• There are no ambiguous requirements.

• Ample resources with required expertise are available to support the
product.

• The project is short.

Advantage of Waterfall Model:

• Simple and easy to understand.
• Work well for smaller projects where requirements are very well

understood.
• Easy to manage due to rigidity of model. Each phase has its specific

deliverables and review process.
• Easy to arrange task.
• Clearly defined stages.
• Phases are processed and completed one at a time.
• Process and results are well documented.

MCS-104/26

Disadvantage of Waterfall Model:

• High amount of risk and uncertainty.

• Poor model for long and on-going projects.

• Not a good model for object-oriented projects and complex
projects.

• It is very difficult to measure progress within stages.

• Cannot accommodate changing requirements. i.e. it is very
difficult to go back and change something that was not well­
documented or thought upon in the concept stage.

• No working software is produced until late in the life cycle.

• Not suitable for the projects where requirements are at a moderate
to high risk of changing.

2.3.2 PROTOTYPE MODEL

The Software Prototyping refers to building software application
prototypes which display the functionality of the product under
development but may not actually hold the exact logic of the original
software.

Software prototyping is becoming very popular as a software development
model, as it enables to understand customer requirements at an early stage
of development. It helps get valuable feedback from the customer and
helps software designers and developers understand about what exactly is
expected from the product under development.

What is Software Prototyping?

• Prototype is a working model of software with some limited
functionality.

• The prototype does not always hold the exact logic used in the actual
software application and is an extra effort to be considered under
effort estimation.

• Prototyping is used to allow the users evaluate developer proposals
and try them out before implementation.

• It also helps understand the requirements which are user specific and
may not have been considered by the developer during product
design.

Stepwise approach of Software prototype

Following is the stepwise approach to design a software prototype as
depicted in figure 2.3:

MCS-104/27

• Basic Requirement Identification: This step involves

understanding the very basics product requirements especially in

terms of user interface. The more intricate details of the internal

design and external aspects like performance and security can be

ignored at this stage.

• Developing the initial Prototype: The initial Prototype is developed

in this stage, where the very basic requirements are showcased and

user interfaces are provided. These features may not exactly work in

the same manner internally in the actual software developed and the

workarounds are used to give the same look and feel to the customer

in the prototype developed.

• Review of the Prototype: The prototype developed is then

presented to the customer and the other important stakeholders in the

project. The feedback is collected in an organized manner and used

for further enhancements in the product under development.

• Revise and enhance the Prototype: The feedback and the review

comments are discussed during this stage and some negotiations

happen with the customer based on factors like, time and budget

constraints and technical feasibility of actual implementation. The

changes accepted are again incorporated in the new Prototype

developed and the cycle repeats until customer expectations are met.

Prototypes can have horizontal or vertical dimensions. Horizontal

prototype displays the user interface for the product and gives a broader

view of the entire system, without concentrating on internal functions. A

vertical prototype on the other side is a detailed elaboration of a specific

function or a sub system in the product.

The purpose of both horizontal and vertical prototype is different.

Horizontal prototypes are used to get more information on the user

interface level and the business requirements. It can even be presented in

the sales demos to get business in the market. Vertical prototypes are

technical in nature and are used to get details of the exact functioning of

the sub systems. For example, database requirements, interaction and data

processing loads in a given sub system.

Software Prototyping Types

There are different types of software prototypes used in the industry.

Following are the major software prototyping types used widely:

• Throwaway/Rapid Prototyping: Throwaway prototyping is also

called as rapid or close ended prototyping. This type of prototyping

uses very little efforts with minimum requirement analysis to build a

prototype. Once the actual requirements are understood, theMCS-104/28

prototype is discarded and the actual system is developed with a

much clear understanding of user requirements.

• Evolutionary Prototyping: Evolutionary prototyping also called as

breadboard prototyping is based on building actual functional

prototypes with minimal functionality in the beginning. The

prototype developed forms the heart of the future prototypes on top

of which the entire system is built. Using evolutionary prototyping

only well understood requirements are included in the prototype and

the requirements are added as and when they are understood.

• Incremental Prototyping: Incremental prototyping refers to

building multiple functional prototypes of the various sub systems

and then integrating all the available prototypes to form a complete

system.

• Extreme Prototyping: Extreme prototyping is used in the web

development domain. It consists of three sequential phases. First, a

basic prototype with all the existing pages is presented in the html

format. Then the data processing is simulated using a prototype

services layer. Finally the services are implemented and integrated to

the final prototype. This process is called Extreme Prototyping used

to draw attention to the second phase of the process, where a fully

functional UI is developed with very little regard to the actual

services.

Software Prototyping Application

Software Prototyping is most useful in development of systems having

high level of user interactions such as online systems. Systems which need

users to fill out forms or go through various screens before data is

processed can use prototyping very effectively to give the exact look and

feel even before the actual software is developed.

Software that involves too much of data processing and most of the

functionality is internal with very little user interface does not usually

benefit from prototyping. Prototype development could be an extra

overhead in such projects and may need lot of extra efforts.

MCS-104/29

Refine

Customer

Suggestions

Requirements

Gathering

Design

Customer

Evaluation of

The prototype

Implement

Build

Proto�e

Acceptance by Customer

Figure 2.3: Prototype Model

Software prototyping is used in typical cases and the decision should be

taken very carefully so that the efforts spent in building the prototype add

considerable value to the final software developed. The model has its own

pros and cons discussed as below.

Following table lists out the pros and cons of the Model:

Advantages of Prototype Model

• Increased user involvement m the product even before

implementation

• Since a working model of the system is displayed, the users get a

better understanding of the system being developed.

• Reduces time and cost as the defects can be detected much earlier.

• Quicker user feedback is available leading to better solutions.

• Missing functionality can be identified easily. Confusing or difficult

functions can be identified
MCS-104/30

Disadvantages of Prototype Model

• Risk of insufficient requirement analysis owmg to too much

dependency on prototype

• Users may get confused in the prototypes and actual systems.

• Practically, this methodology may increase the complexity of the

system as scope of the system may expand beyond original plans.

• Developers may try to reuse the existing prototypes to build the

actual system, even when it's not technically feasible

• The effort invested in building prototypes may be too much if not

monitored properly

2.3.3 SPIRAL MODEL

The spiral model combines the idea of iterative development with the

systematic, controlled aspects of the waterfall model.

Spiral model is a combination of iterative development process model and

sequential linear development model i.e. waterfall model with very high

emphasis on risk analysis. It allows for incremental releases of the

product, or incremental refinement through each iteration around the

spiral.

Spiral Model design

The spiral model has four phases. A software project repeatedly passes

through these phases in iterations called Spirals.

• Identification: This phase starts with gathering the business

requirements in the baseline spiral. In the subsequent spirals as the

product matures, identification of system requirements, subsystem

requirements and unit requirements are all done in this phase.

• This also includes understanding the system requirements by

continuous communication between the customer and the system

analyst. At the end of the spiral the product is deployed in the

identified market.

• Design: Design phase starts with the conceptual design in the

baseline spiral and involves architectural design, logical design of

modules, physical product design and final design in the subsequent

spirals.

• Construct or Build: Construct phase refers to production of the

actual software product at every spiral. In the baseline spiral when the

product is just thought of and the design is being developed a POC

MCS-104/31

(Proof of Concept) is developed in this phase to get customer

feedback.

Then in the subsequent spirals with higher clarity on requirements

and design details a working model of the software called build is

produced with a version number. These builds are sent to customer

for feedback.

• Evaluation and Risk Analysis: Risk Analysis includes identifying,

estimating, and monitoring technical feasibility and management

risks, such as schedule slippage and cost overrun. After testing the

build, at the end of first iteration, the customer evaluates the software

and provides feedback.

Based on the customer evaluation, software development process

enters into the next iteration and subsequently follows the linear

approach to implement the feedback suggested by the customer. The

process of iterations along the spiral continues throughout the life of

the software.

Following, figure 2.4, is a diagrammatic representation of spiral model

listing the activities in each phase:

I - . I -

�umu�tive cost
11 •

I

3. Conffliltt or Build
'Pt'91tffS

I

2.Dtsip

4, Ev, 1.11tion end Risk Anar,,sis Ltd ntlflcttion

Figure 2.4: Stages of Spiral Model MCS-104/32

Spiral Model Application

Spiral Model is very widely used in the software industry as it is in synch
with the natural development process of any product i.e. learning with
maturity and also involves minimum risk for the customer as well as the
development firms. Following are the typical uses of Spiral model:

• For medium to high-risk projects.

• Long-term project commitment because of potential changes to
economic priorities as the requirements change with time.

• Customer is not sure of their requirements.

• Requirements are complex and need evaluation to get clarity.

• New product line which should be released in phases to get enough
customer feedback.

• Significant changes are expected m the product during the
development cycle.

Advantages of Spiral Model

• Development can be divided into smaller parts and more risky parts
can be developed earlier which helps better risk management.

• Users see the system early.

• Requirement can be captured more accurately

• Allows for extensive use of prototypes.

• Changing requirements can be accommodated

Disadvantages of Spiral Model

• Management is more complex.

• End of projects may not be known early.

• Not suitable for small and low risk projects and could be extensive
for small projects.

• Process is complex.

• Spiral may go indefinitely.

• Large number of intermediate stages reqmres excessive
documentation.

2.3.4 INCREMENTAL MODEL

Incremental model are broken down into multiple standalone modules of
software development cycle. These cycles are further divided into smaller
and more manageable iterations as depicted in figure 2.5.

The incremental build model is a method of software development where
the model is designed, implemented and tested incrementally (a little more
is added each time) until the product is finished. It involves both MCS-104/33

development and maintenance. The product is defined as finished when it
satisfies all of its requirements. This model combines the elements of the
waterfall model with the iterative philosophy of prototyping.

The product is decomposed into a number of components, each of which
are designed and built separately (termed as builds). Each component is
delivered to the client when it is complete. This allows partial utilisation
of product and avoids a long development time. It also creates a large
initial capital outlay with the subsequent long wait avoided. This model of
development also helps ease the traumatic effect of introducing
completely new system all at once.

Qi
Q,+
Q+Q

Q,+ -

-

Incremental

Model

QJ+ QJ:�

Figure 2.5: Basic Concept of Incremental model

Each iteration passes through the requirements, design, coding and

testing phases as depicted in figure 2.6 .

. And each subsequent release of the system adds function to the previous

release until all designed functionality has been implemented.

I Analysis H Design H code H test I Increment- I

I Analysis �esi� code 1--.1 test I ___ __

I Analysis H -Design 1-1 code H test Increment-3

Increment Model

Figure 2.6: Stages of Incremental Model

The system is put into production when the first increment is delivered.

The first increment is often a core product where the basic requirements

are addressed, and supplementary features are added in the next

increments. Once the core product is analyzed by the client, there is plan

development for the next increment. MCS-104/34

Characteristics of Incremental module includes

• System development is broken down into many mini development
projects

• Partial systems are successively built to produce a final total system

• Highest priority requirement is tackled first

• Once the incremented portion id developed, requirements for that
increment are frozen

Incremental Phases Activities performed in incremental phases

Requirement Requirement and specification of the software

Analysis are collected

Design
Some high-end function are designed during

this stage

Code Coding of software is done during this stage

Test
Once the system is deployed, it goes through

the testing phase

When to use Incremental models?

• Requirements of the system are clearly understood

• When demand for early release of product arises

• When team resources are not very well skilled or trained

• When high-risk features and goals are involved

• Such model is more in use for web application and product based
compames

Advantages of Incremental Model

• Software will be generated quickly during the software life cycle

• It is flexible and less expensive to change requirements and scope

• Thought the development stages changes can be done

• This model is less costly compared to others

• Customer can respond to each built

• Errors are easy to be identified

Disadvantages of Incremental Model

• It requires a good planning designing

• Problems might cause due to system architecture as such not all
requirements collected up front for the entire software life cycle

• Each iteration phase is rigid and does not overlap each other
MCS-104/35

• Rectifying a problem in one unit requires correction in all the units
and consumes a lot of time

2.4 CONCURRENT DEVELOPMENT MODEL

The concurrent development model is also called concurrent

engineering. Project managers who track project status in terms of the

major phases have no idea of the status of their projects. These are

examples of trying to track extremely complex sets of activities using

overly simple models. Note that although project is in the coding phase,

there are personnel on the project involved in activities typically

associated with many phases of development simultaneously. For

example, personnel are writing requirements, designing, coding, testing,

and integration testing. Software engineering process models by

Humphrey and Kellner have shown the concurrency that exists for

activities occurring during any one phase. Kellner's more recent work uses

state charts to represent the concurrent relationship existent among

activities associated with a specific event (e.g., a requirements change

during late development), but fails to capture the richness of concurrency

that exists across all software development and management activities in

the project. Most software development process models are driven by

time; the later it is, the later in the development process you are. A

concurrent process model is driven by user needs, management decisions,

and review results.

The concurrent process model can be represented schematically as a series

of major technical activities, tasks, and their associated states. For

example, the engineering activity defined for the spiral model is

accomplished by invoking the following tasks: prototyping and/or analysis

modelling, requirements specification, and design.

The activity-analysis-may be in any one of the states noted at any given

time. Similarly, other activities can be represented in an analogous

manner. All activities exist concurrently but reside in different states. For

example, early in a project the customer communication activity has

completed its first iteration and exists in the awaiting changes state. The

analysis activity now makes a transition into the under development state.

If, however, the customer indicates that changes in requirements must be

made, the analysis activity moves from the under development state into

the awaiting changes state.

MCS-104/36

None

[)
Represents a state of a

... ._ ______ .., software engineered activity

Figure2. 7: A Concurrent Process Model

As shown in figure 2.7, the concurrent process model defines a series of
events that will trigger transitions from state to state for each of the
software engineering activities. For example, during early stages of
design, an inconsistency in the analysis model is uncovered. This
generates the event analysis model correction which will trigger the
analysis activity from the done state into the awaiting changes state.
The concurrent process model is often used as the paradigm for the
development of client/server applications. A client/server system is
composed of a set of functional components. When applied to
client/server, the concurrent process model defines activities in two
dimensions: a system dimension and a component dimension. System
level issues are addressed using three activities: design, assembly, and use.
The component dimension is addressed with two activities: design and
realization.
Concurrency is achieved in two ways:

• System and component activities occur simultaneously and can be
modelled using the state-oriented approach described previously;

• A typical client/server application is implemented with many
components, each of which can be designed and realized
concurrently. MCS-104/37

In reality, the concurrent process model is applicable to all types of
software development and provides an accurate picture of the current
state of a project. Rather than confining software engineering
activities to a sequence of events, it defines a network of activities.
Each activity on the network exists simultaneously with other
activities. Events generated within a given activity or at some other
place in the activity network trigger transitions among the states of
an activity.

2.5 SUMMARY

This was about the various SDLC models available and the
scenarios in which these SDLC models are used. We have discussed all
the popular SDLC models is used in the industry, Waterfall model is
sequential type. Sequential means that the next phase can start only after
the completion of first phase. Such models are suitable for projects with
very clear product requirements and where the requirements will not
change dynamically during the project completion.

Spiral models are more accommodative in terms of change and are
suitable for projects where the requirements are not so well defined, or
the market requirements change quite frequently. Software Prototyping is
most useful in development of systems having high level of user
interactions and Incremental model is more in use for web application.

2.6 EXERCISE

(1) Explain the waterfall model. Explain its application area and
drawback of waterfall model.

(2) List four reasons why it is difficult to improve software process.

(3) What is the advantage of using prototype software development
model instead of waterfall model?

(4) How does the risk factor affect the spiral model of software
development?

(5) Write some application of spiral model.

(6) What is incremental model? Write some characteristics and
advantages of it.

(7) What are the different phases of traditional system development life
cycle?

MCS-104/38

UNIT-3

PROJECT MANAGEMENT CONCEPTS

Structure

3.0 Introduction

3.1 Objective

3.2 Need Of Project Management

3.3 The Management Spectrum

3.3.1 The People

3.3.2 The Product

3.3.3 The Process

3.3.4 The Project

3.4 Summary

3.5 Exercise

3.0 INTRODUCTION

Software development is a not a new stream in world business but

there's very little experience in building software products. A project is

well-defined task, which is a collection of several operations done in order

to achieve a goal. The most important is that the technology changes and

advances so frequently and rapidly that experience of one product may not

be applied to the other one. All such business and environmental

constraints bring risk in software development hence it is essential to

manage software projects efficiently.

3.1 OBJECTIVE

The main objectives and principles behind good project management are

as follows:

• Agree exactly what a project is meant to do and what it is meant to

deliver.

• Agree the scope, timescales, cost and quality of a project.

• Maintain a schedule and project plan.

• Deliver the agreed outcomes of the project to the right scope,

timescales, cost and quality. MCS-104/39

• Provide communications, reports and progress updates throughout

the lifecycle of the project.

• Manage risks, issues and dependencies.

• Manage policies, processes, tools, frameworks, techniques, people

and relationships to a successful project outcome.

3.2 NEED OF PROJECT MANAGEMENT

Software project management is the important task of planning, directing,

motivating, and coordinating a group of professionals to accomplish

software development. Software project management uses many concepts

from management in general, but it also has some concerns unique to

software development. One such concern is project visibility. The lack of

visibility of the software product during software development makes it

hard to manage. In many other fields, it is easy to see progress or lack of

progress. Many software projects get stalled at 90 percent complete. Ask

any programmer if that bug that he or she found is the last bug in the

software, and the answer will almost always be an emphatic yes. Many of

the techniques in software management are aimed at overcoming this lack

of visibility.

0

I....�
Scope

/ �

Quality

Figure 3.1: Triple constraints for software projects

It is an essential part of software organization to deliver quality product,

keeping the cost within client's budget constrain and deliver the project as

per scheduled. There are several factors, both internal and external, which

may impact this triple constrain triangle as shown in figure 3.1. Any of

three factors can severely impact the other two.

Therefore, software project management is essential to incorporate user

requirements along with budget and time constraints. MCS-104/40

Who does it? Everyone "manages" to some extent, but the scope of

management activities varies with the person doing it. A software engineer

manages her day-to-day activities, planning, monitoring, and controlling

technical tasks. Project managers plan, monitor, and control the work of a

team of software engineers. Senior managers coordinate the interface

between the business and the software professionals.

Importance of Project Management: Building computer software is a

complex undertaking, particularly if it involves many people working over

a relatively long time. That's why software projects need to be managed.

A project plan is produced as management activities commence. The plan

defines the process and tasks to be conducted, the people who will do the

work, and the mechanisms for assessing risks, controlling change, and

evaluating quality.

Steps of Project Management: Understand the four P's-people, product,

process, and project. People must be organized to perform software work

effectively. Communication with the customer must occur so that product

scope and requirements are understood. A process must be selected that is

appropriate for the people and the product. The project must be planned by

estimating effort and calendar time to accomplish work tasks: defining

work products, establishing quality checkpoints, and establishing

mechanisms to monitor and control work defined by the plan.

3.3 THE MANAGEMENT SPECTRUM

There are four P's of project management as shown in figure 3.2.

• The People

• The Product

• The Process

• The Project

The point to emphasize is that each of the P's is important and it is the

synergy of all four working together that yields the successful

management of software products. This also the time to remind students

that it is customer for whom the product is being developed. Process

framework activities are populated with tasks, milestones, work products,

and quality assurance checkpoints regardless of the project size. To avoid

project failure developers need react to warning signs and focus their

attention on practices that are associated with good project management.

MCS-104/41

PROJECT

MANAGEMENT

Figure 3.2: Management Spectrum

3.3.1 THE PEOPLE

Companies that manage their people wisely prosper in the long run. To be
effective the project team must be organized in a way that maximizes each
person's skills and abilities. Effective managers focus on problem solving
and insist on high product quality. Software teams may be organized in
many different ways. Two factors in selecting a team organizational model
are desired level of communication among its members and difficulty
level of the problems to be solved. Hierarchically organized teams can
develop routine software applications without much communication
among the team members. Teams having a more democratic style
organization often develop novel applications more efficiently. It is

important for students to understand that the larger the team, the greater
the effort required to ensure effective communication and coordination of
team member efforts.

Five categories of The People:

• Stakeholders / Players

The software process (and every software project) is populated by players
who can be categorized into one of five constituencies:

• Senior managers - define business issues that often have significant
influence on the projectMCS-104/42

• Project (technical) managers - plan, motivate, organize, and control
the practitioners who do the work

• Practitioners - deliver the technical skills that are necessary to
engineer a product or application

• Customers - specify the requirements for the software to be
engineered and other stakeholders who have a peripheral interest in
the outcome

• End users - interact with the software once it is released for
production use.

• Team Leaders

Project management is a people-intensive activity, and for this reason,
competent practitioners often make poor team leaders. They simply don't
have the right mix of people skills.

There is a simple model of leadership which includes-

• Motivation. The ability to encourage (by "push or pull") technical
people to produce to their best ability.

• Organization. The ability to mould existing processes (or invent new
ones) that will enable the initial concept to be translated into a final
product.

• Ideas or innovation. The ability to encourage people to create and
feel creative even when they must work within bounds established

for a particular software product or application.

The characteristics that define an effective project manager emphasize
four key traits:

• Problem solving

• Managerial identity

• Achievement

• Influence and team building

• The Software Team

There are almost as many human organizational structures for software
development as there are organizations that develop software. For better or
worse, organizational structure cannot be easily modified. However, the

organization of the people directly involved in a new software project is
within the project manager's purview.

There are three types of generic team organizations:

• Democratic decentralized (DD). This software engineering team has
no permanent leader. Rather, "task coordinators are appointed for
short durations and then replaced by others who may coordinate
different tasks." Decisions on problems and approach are made by
group consensus. Communication among team members is
horizontal. MCS-104/43

• Controlled decentralized (CD). This software engineering team has
a defined leader who coordinates specific tasks and secondary
leaders that have responsibility for subtasks. Problem solving
remains a group activity, but implementation of solutions is
partitioned among subgroups by the team leader. Communication
among subgroups and individuals is horizontal. Vertical
communication along the control hierarchy also occurs.

• Controlled Centralized (CC). Top-level problem solving and
internal team coordination are managed by a team leader.
Communication between the leader and team members is vertical.

There are seven project factors that should be considered when planning
the structure of software engineering teams:

• The difficulty of the problem to be solved.

• The size of the resultant program(s) in lines of code or function
points.

• The time that the team will stay together (team lifetime).

• The degree to which the problem can be modularized.

• The required quality and reliability of the system to be built.

• The rigidity of the delivery date.

• The degree of sociability (communication) required for the project.

• Coordination and Communication Issues

There are many reasons that software projects get into trouble. The
scale of many development efforts is large, leading to complexity,
confusion, and significant difficulties in coordinating team members.

Uncertainty is common, resulting in a continuing stream of changes
that ratchets the project team. Interoperability has become a key
characteristic of many systems. New software must communicate with
existing software and conform to predefined constraints imposed by
the system or product.

3.3.2 THE PRODUCT

The first project management activity is the determination of software
scope. This is essential to ensure the product developed is the product
requested by the customer. It is sometimes helpful to remind students that
unless developers and customers agree on the scope of the project there is
no way to determine when it ends (or when they will get paid). Regardless
of the process model followed, a problem must be decomposed along
functional lines into smaller, more easily managed sub-problems.

The scope of the software development must be established and bounded:

MCS-104/44

• Context - How does the software to be built fit into a larger system,
product, or business context, and what constraints are imposed as a
result of the context?

• Information objectives - What customer-visible data objects are
produced as output from the software? What data objects are
required for input?

• Function and performance - What functions does the software
perform to transform input data into output? Are there any special
performance characteristics to be addressed?

Software project scope must be unambiguous and understandable at both
the managerial and technical levels.

Problem decomposition is also referred to as partitioning or problem
elaboration. It sits at the core of software requirements analysis.

There are two major areas of problem decomposition: first, the
functionality that must be delivered; second; the process that will be used
to deliver it.

3.3.3 THE PROCESS

The generic phases that characterize the software process-definition,
development, and support-are applicable to all software. The problem is
to select the process model that is appropriate for the software to be
engineered by a project team.

Once a process model is chosen, it needs to be populated with the
minimum set of work tasks and work products. A void process overkill. It
is important to remind students that framework activities are applied on
every project, no matter how small. Work tasks may vary, but not the
common process framework. Process decomposition can occur
simultaneously with product decomposition as the project plan evolves.

The project manager must decide which process model is most appropriate
for

• The customers who have requested the product and the people who
will do the work,

• The characteristics of the product itself, and

• The project environment in which the software team works.

When a process model has been selected, the team then defines a
preliminary project plan based on the set of common process framework
activities. Once the preliminary plan is established, process decomposition
begins. That is, a complete plan, reflecting the work tasks required to
populate the framework activities must be created. The result is a complete
plan reflecting the work tasks required to populate the framework

MCS-104/45

activities. Project planning begins as a melding of the product and the
process based on the various framework activities.

The Product and the Process

Project planning begins with the melding of the product and the process.
Each function to be engineered by the software team must pass through
the set of framework activities that have been defined for a software
organization. Assume that the organization has adopted the following set
of framework activities:

• Customer communication-tasks required to establish effective
requirements elicitation between developer and customer.

• Planning-tasks required to define resources, timelines, and other
project related information.

• Risk analysis-tasks required to assess both technical and
management risks.

• Engineering-tasks required to build one or more representations of
the application.

• Construction and release-tasks required to construct, test, install,
and provide user support (e.g., documentation and training).

• Customer evaluation-tasks required to obtain customer feedback
based on evaluation of the software representations created during
the engineering activity and implemented during the construction
activity.

If there is a more complex project, which has a broader scope and more
significant business impact, such a project might require the following
work tasks for the customer communication activity:

• Review the customer request.

• Plan and schedule a formal, facilitated meeting with the customer.

• Conduct research to specify the proposed solution and existing
approaches.

• Prepare a ''working document" and an agenda for the formal
meeting.

• Conduct the meeting.

• Jointly develop mini-specs that reflect data, function, and behavioral
features of the software.

• Review each mini-spec for correctness, consistency, and lack of
ambiguity.

• Assemble the mini-specs into a scoping document.

• Review the scoping document with all concerned.

• Modify the scoping document as required.MCS-104/46

3.3.4 THE PROJECT

In order to manage a successful software project, we must understand

what can go wrong so that problems can be avoided and how to do it right.

There are ten signs that indicate that an information systems project is in

risk:

• Software people don't understand their customer's needs.

• The product scope is poorly defined.

• Changes are managed poorly.

• The chosen technology changes.

• Business needs change [or ill-defined].

• Deadlines are unrealistic.

• Users are resistant.

• Sponsorship is lost [or was never properly obtained].

• The project team lacks people with appropriate skills.

• Managers [and practitioners] avoid best practices and lessons

learned.

There are few approaches to avoid the above problems:

• Start on the right foot. This is accomplished by working hard (very

hard)to understand the problem that is to be solved and then setting

realistic objects and expectations for everyone who will be involved

in the project. It is reinforced by building the right team and giving

the team the autonomy, authority, and technology needed to do the

job.

• Maintain momentum. Many projects get off to a good start and then

slowly disintegrate. To maintain momentum, the project manager

must provide incentives to keep turnover of personnel to an absolute

minimum, the team should emphasize quality in every task it

performs, and senior management should do everything possible to

stay out of the team's way.

• Track progress. For a software project, progress is tracked as work

products (e.g., specifications, source code, sets of test cases) are

produced and approved (using formal technical reviews) as part of a

quality assurance activity. In addition, software process and project

measures can be collected and used to assess progress against

averages developed for the software development organization.

MCS-104/47

• Make smart decisions. In essence, the decisions of the project
manager and the software team should be to "keep it simple."
Whenever possible, decide to use commercial off-the-shelf software

or existing software components, decide to avoid custom interfaces

when standard approaches are available, decide to identify and then
avoid obvious risks, and decide to allocate more time than you think
is needed to complex or risky tasks.

• Conduct a post-mortem analysis. Establish a consistent mechanism
for extracting lessons learned for each project. Evaluate the planned

and actual schedules, collect and analyse software project metrics,

get feedback from team members and customers, and record findings

in written form.

3.4 SUMMARY

This chapter covers the basic concept of project management, its
need and its spectrum. And the role of people, process, product and
project. And also explain the role of team, team leader in any project, the
organisation of a team and the characteristics of a leader.

3.5 EXERCISE

(1) What is the need to manage the software project?

(2) Define the concept of Project management and its spectrum.

(3) How People play a vital role in the management of people?

(4) Which type of risk encounter during information system project and
also explain how they can be overcome?

(5) What is the role of team leader in a team? Which type of qualities a
team leader hold?

(6) What is the role of team and team work? How a team can be
organised during the project? Which type of points considered at the
time of making team.

MCS-104/48

Master in Computer
Science

Uttar Pradesh Rajarshi Tandon

Open University

MCS-104
Software Engineering

Block

2
Unit 1 Software Process and Project Metrics

Unit 2 Software Project Planning

Unit 3 Risk Analysis And Management

53-66

67-82

83-96

MCS-104/49

Course Design Committee

Dr. Ashutosh Gupta Chairman
Director (In-charge)
School of Computer and Information Science, UPRTOU Prayagraj

Prof. R. S. Yadav
Department of Computer Science and Engineering
MNNIT Allahabad, Prayagraj

Ms. Marisha
Assistant Professor (Computer Science)
School of Science, UPRTOU Prayagraj

Mr. Manoj Kumar Balwant
Assistant Professor (computer science)
School of Sciences, UPR TOU Prayagraj

Course Preparation Committee

Dr. Pooja Yadav
Assistant Professor, Dept. of CS & IT
MJP Rohilkhand University, Bareilly (UP)

Dr. Ashutosh Gupta
Associate Professor, Dept. of CS & IT
MJP Rohilkhand University, Bareilly (UP)

Mr. Manoj Kumar Balwant

Assistant Professor (computer science)
School of Sciences, UPR TOU Prayagraj

© UPRTOU, Prayagraj. 2019

ISBN: 978-93-83328-19-2

Member

Member

Member

Author

Editor

Coordinator

All Rights are reserved. No part of this work may be reproduced in any form, by

mimeograph or any other means, without permission in writing from the Uttar

Pradesh Rajarshi Tondon Open University, Prayagraj.

Printed and Published by Dr. Arun Kumar Gupta Registrar, Uttar
Pradesh Rajarshi Tandon Open University, 2019.

Printed By : K.C.Printing & Allied Works, Panchwati, Mathura -281003.
MCS-104/50

Overview

In this section we discuss the overview of this block's content. This block
consists of the following units:

Unit 1 Software Process and Project Metrics

Measurement is fundamental to any engineering discipline, and software
engineering is no exception. Measurement enables us to gain insight by

providing a mechanism for objective evaluation. Measures are often

collected by software engineers.

Metrics are also used to pinpoint problem areas so that remedies can be
developed and the software process can be improved. Software metrics are
analysed and assessed by software managers.

Unit 2 Software Project Planning

Software managers do the planning using information solicited from
customers and software engineers and software metrics data collected
from past projects. Software project planning actually encompasses all of
the estimation activities like-your attempt to determine how much
money, how much effort, how many resources, and how much time it will
take to build a specific software-based system or product.

Unit 3 Risk Analysis And Management

Risk analysis and management are a series of steps that help a software
team to understand and manage uncertainty. Many problems can plague a
software project. A risk is a potential problem-it might happen, it might

not. But, regardless of the outcome, it's a really good idea to identify it,
assess its probability of occurrence, estimate its impact, and establish a
contingency plan should the problem actually occur.

MCS-104/51

MCS-104/52

UNIT-1

SOFTWARE PROCESS AND PROJECT

METRICS

Structure

1.0 Introduction

1.1 Objective

1.2 Reasons to Measure

1.3 Measures, Metric and Indicators

1.4 Software Measurement

1.5 Size-Oriented Metric

1.6 Function-Oriented Metric

1.7 Extended Function Point Metric

1.8 Summary

1.9 Exercise

1.0 INTRODUCTION

Software process and product metrics are quantitative measures
that enable software people to gain insight into the efficacy of the software
process and the projects that are conducted using the process as a
framework. Basic quality and productivity data are collected. These data
are then analysed, compared against past averages, and assessed to
determine whether quality and productivity improvements have occurred.

If you don't measure, judgement can be based only on subjective
evaluation. With measurement, trends (either good or bad) can be spotted,
better estimates can be made, and true improvement can be accomplished

over time. Begin by defining a limited set of process, project, and product
measures that are easy to collect. These measures are often normalized
using either size- or function-oriented metrics. The result is analysed and
compared to past averages for similar projects performed within the

organization. Trends are assessed and conclusions are generated. A set of
software metrics that provide insight into the process and understanding of
the project.

Within the context of software project management, we are concerned
primarily with productivity and quality metrics-measures of software
development "output" as a function of effort and time applied and

MCS-104/53

measures of the "fitness for use" of the work products that are produced.
For planning and estimating purposes, our interest is historical.

1.1 OBJECTIVE

Objectives of this unit are:

a) to improve product quality and development-team productivity.

b) Concerned with productivity and quality measures

• measures of SW development output as function of effort and time

• measures of usability

c) Identify quantifiable questions and the related indicators that will use to
help to achieve the measurement goals.

d) to identify the data elements that will collect to construct the indicators
that help answer to the questions raise in the mind.

e) Define the measures to be used, and make these definitions operational.

f) to Identify the actions that will take to implement the measures.

g) to prepare a plan for implementing the measures.

1.2 REASONS TO MEASURE

There are four reasons for measuring software processes, products, and
resources:

1 To characterize

ii To evaluate

111 To predict

iv To improve

We characterize to gain understanding of processes, products, resources,
and environments, and to establish baselines for comparisons with future
assessments. We evaluate to determine status with respect to plans.
Measures are the sensors that let us know when our projects and processes
are drifting off track, so that we can bring them back under control. We
also evaluate to assess achievement of quality goals and to assess the

impacts of technology and process improvements on products and
processes.

We predict so that we can plan. Measuring for prediction involves gaining
understandings of relationships among processes and products and
building models of these relationships, so that the values we observe for
some attributes can be used to predict others. We do this because we want
to establish achievable goals for cost, schedule, and quality-so that
appropriate resources can be applied. Predictive measures are also the
basis for extrapolating trends, so estimates for cost, time, and quality can

MCS-104/54

be updated based on current evidence. Projections and estimates based on
historical data also help us analyse risks and make design/cost trade-offs.
We measure to improve when we gather quantitative information to help
us identify roadblocks, root causes, inefficiencies, and other opportunities
for improving product quality and process performance.

Software Process

In order for software to be consistently well engineered, its development
must be conducted in an orderly process. It is sometimes possible for a
small software product to be developed without a well-defined process.
However, for a software project of any substantial size, involving more
than a few people, a good process are essential. The process can be viewed
as a road map by which the project participants understand where they are
going and how they are going to get there.

Thus, as depicted in figure 1.1, the software process is the set of activities
and associated results that produce a software project.

Analyse and specify software requirements

Design and Implement software product

Test that Product meets requirements

Deploy, Maintain And Enhance the product

Figure 1.1: Software Process

The first two steps of the process are often referred to, respectively, as the
"what and how" of software development. The "Analyse and Specify" step
defines what the problem is to be solved; the "Design and Implement" step
entails how the problem is solved.

Software Process Characteristics

The following are the software process characteristics:

a) Understand ability

b) Visibility

c) Robustness

d) Reliability

e) Acceptability

f) Maintainability

g) Rapidity
MCS-104/55

h) Supportability

Project Metrics

Software process metrics are used for strategic purposes. Software project
measures are tactical. That is, project metrics and the indicators derived
from them are used by a project manager and a software team to adapt
project work flow and technical activities.

The first application of project metrics on most software projects occurs
during estimation. Metrics collected from past projects are used as a basis
from which effort and time estimates are made for current software work.
As a project proceeds, measures of effort and calendar time expended are
compared to original estimates. The project manager uses these data to
monitor and control progress.

As technical work commences, other project metrics begin to have
significance. Production rates represented in terms of pages of
documentation, review hours, function points, and delivered source lines
are measured. In addition, errors uncovered during each software
engineering task are tracked. As the software evolves from specification
into design, technical metrics are collected to assess design quality and to
provide indicators that will influence the approach taken to code
generation and testing.

The intent of project metrics is twofold.

First, these metrics are used to minimize the development schedule by
making the adjustments necessary to avoid delays and mitigate potential
problems and risks.

Second, project metrics are used to assess product quality on an on-going
basis and, when necessary, modify the technical approach to improve
quality.

As quality improves, defects are minimized, and as the defect count goes
down, the amount of rework required during the project is also reduced.

This leads to a reduction in overall project cost.

Another model of software project metrics suggests that every project
should measure:

• Inputs- measures of the resources (e.g., people, environment)
required to do the work.

• Outputs- measures of the deliverables or work products created
during the software engineering process.

• Results- measures that indicate the effectiveness of the deliverables.

In actuality, this model can be applied to both process and project. In the
project context, the model can be applied recursively as each framework
activity occurs. Therefore the output from one activity becomes input to
the next. Results metrics can be used to provide an indication of the
usefulness of work products as they flow from one framework activity to
the next.

MCS-104/56

Check Your Progress I.What is the difference between Process
Metric and Product Metric?

1.3 MEASURES, METRIC AND INDICATORS

Although the terms measure, measurement, and metrics are often
used interchangeably, it is important to note the subtle differences between
them. Because measure can be used either

a noun or a verb, definitions of the term can become confusing.

Within the software engineering context, a measure provides a
quantitative indication of the extent, amount, dimension, capacity, or size
of some attribute of a product or process. Measurement is the act of
determining a measure.

As per the IEEE Standard Glossary of Software Engineering Terms
[IEE93]:

"A quantitative measure of the degree to which a system, component, or

process possesses a given attribute. "

When a single data point has been collected, a measure has been
established. Measurement occurs as the result of the collection of one or
more data points.

Software metric relates the individual measures in some way e.g., the
average number of errors found per review or the average number of
errors found per person-hour expended on reviews.

A software engineer collects measures and develops metrics so that
indicators will be obtained. An indicator is a metric or combination of

metrics that provide insight into the software process, a software project,
or the product itself. An indicator provides insight that enables the project

manager or software engineers to adjust the process, the project, or the
process to make things better. For example, four software teams are
working on a large software project.

Each team must conduct design reviews but is allowed to select the type of
review that it will use. Upon examination of the metric, errors found per

person-hour expended, the project manager notices that the two teams
using more formal review methods exhibit an errors found per person-hour
expended that is 40 prevent higher than the other teams. Assuming all
other parameters equal, this provides the project manager with an indicator

that formal review methods may provide a higher return on time
investment than another, less formal review approaches. She may decide
to suggest that all teams use the more formal approach. The metric
provides the manager with insight. And insight leads to informed decision
making.

MCS-104/57

Metrics in the process and project domains:

Measurement is commonplace in the engineering world. We measure
power consumption, weight, physical dimensions, temperature, voltage,
signal-to-noise ratio, etc. Unfortunately, measurement is far less common
in the software engineering world. We have trouble agreeing on what to
measure and trouble evaluating measures that are collected.

Metrics should be collected so that process and product indicators can be
ascertained. Process indicators enable a software engineering organization
to gain insight into the efficacy of an existing process. They enable
managers and practitioners to assess what works and what doesn't.
Process metrics are collected across all projects and over long periods of
time. Their intent is to provide indicators that lead to long-term software
process improvement.

Project indicators enable a software project manager to

(1) Assess the status of an on-going project,

(2) Track potential risks,

(3) Uncover problem areas before they go "critical,"

(4) Adjust work flow or tasks, and

(5) Evaluate the project team's ability to control quality of software work
products.

Process Metrics and Software Process Improvement:

The only rational way to improve any process is to measure specific

attributes of the process, develop a set of meaningful metrics based on

these attributes, and then use the metrics to provide indicators that will

lead to a strategy for improvement.

We measure the efficacy of a software process indirectly. That is, we

derive a set of metrics based on the outcomes that can be derived from the

process. Outcomes include measures of errors uncovered before release of

the software, defects delivered to and reported by end-users, work

products delivered, human effort expended, calendar time expended,

schedule conformance, and other measures. We also derive process

metrics by measuring the characteristics of specifics software engineering

tasks.

Grady argues that there are "private and public" uses for different types of

process data. Because it is natural that individual software engineers might

be sensitive to the use of metrics collected on an individual basis; these

data should be private or the individual and serve as an indicator for the

individual only. Public metrics generally assimilate information that

originally was private to individuals and teams.
MCS-104/58

Check Your Progress 2.

What is the difference between a measure and an indicators?

1.4 SOFTWARE MEASUREMENT

Measurements in the physical world can be categorized in two

ways:

Direct measures (e.g., the length of a bolt) and

Indirect measures (e.g., the "quality" of bolts produced, measured by

counting rejects).

Category: Software metrics can be categorized similarly

Direct measures of the software engineering process include cost and

effort applied. Direct measures of the product include lines of code (LOC)

produced, execution speed, memory size, and defects reported over some

set period of time.

Indirect measures of the product include functionality, quality,

complexity, efficiency, reliability, maintainability, and many other "­

abilities".

The cost and effort required to build software, the number of lines of code

produced, and other direct measures are relatively easy to collect, as long

as specific conventions for measurement are established in advance.

However, the quality and functionality of software or its efficiency or

maintainability are more difficult to assess and can be measured only

indirectly.

We have already partitioned the software metrics domain into process,

project, and product metrics. We have also noted that product metrics that

are private to an individual are often combined to develop project metrics

that are public to a software team. Project metrics are then consolidated to

create process metrics that are public to the software organization as a

whole. But how does an organization combine metrics that come from

different individuals or projects?

To illustrate, we consider a simple example. Individuals on two different

project teams record and categorize all errors that they find during the

software process. Individual measures are then combined to develop team

measures. Team A found 342errors during the software process prior to

release. Team B found 184 errors. All other things being equal, which

team is more effective in uncovering errors throughout the process?

Because we do not know the size or complexity of the projects, we cannot MCS-104/59

answer this question. However, if the measures are normalized, it is

possible to create software metrics that enable comparison to broader

organizational averages.

Check Your Progress 3.

What is meant by measurement and metrics?

1.5 SIZE-ORIENTED METRICS

Size-oriented software metrics are derived by normalizing quality

and/or productivity measures by considering the size of the software that

has been produced. If a software organization maintains simple records, a

table of size-oriented measures, such as the one shown in figure 1.2, can

be created. The table lists each software development project that has been

completed over the past few years and corresponding measures for that

project. Referring to the table entry for project alpha: 12,100 lines of code

were developed with 24 person-months of effort at a cost of $168,000. It

should be noted that the effort and cost recorded in the table represent all

software engineering activities (analysis, design, code, and test), not just

coding. Further information for project alpha indicates that 365 pages of

documentation were developed, 134 errors were recorded before the

software was released, and 29 defects were encountered after release to the

customer within the first year of operation. Three people worked on the

development of software for project alpha.

In order to develop metrics that can be assimilated with similar metrics

from other projects, we choose lines of code as our normalization value.

From the rudimentary data contained in the table, a set of simple size­

oriented metrics can be developed for each project:

• Errors per KLOC (thousand lines of code).

• Defects per KLOC.

• $ perLOC.

• Page of documentation per KLOC.

MCS-104/60

Prolect LOC Effort $(000) Pp. doc. Errors

alpha 12,100 24 168 365 134

beta 27,200 62 440 1224 321

gamma 20,200 43 314 1050 256

.

.

.

........

Figurel.2: Size oriented Matrix

In addition, other interesting metrics can be computed:

• Errors per person-month.

• LOC per person-month.

• $ per page of documentation.

Defects People

29
86 5

64 6

-............

Size-oriented metrics are not universally accepted as the best way to
measure the process of software development. Most of the controversy
swirls around the use of lines of code as a key measure. Proponents of the
LOC measure claim that LOC is an "artefact" of all software development
projects that can be easily counted, that many existing software estimation
models use LOC or KLOC as a key input, and that a large body of
literature and data predicated on LOC already exists. On the other hand,
opponents argue that LOC measures are programming language
dependent, that they penalize well-designed but shorter programs, that
they cannot easily accommodate nonprocedural languages, and that their
use in estimation requires a level of detail that may be difficult to achieve.

Check Your Progress 4.

Write the any two advantages ofLOC.

1.6 FUNCTION-ORIENTED METRICS

Function-oriented software metrics use a measure of the

functionality delivered by the application as a normalization value. Since

'functionality' cannot be measured directly, it must be derived indirectly

using other direct measures. Function-oriented metrics were first proposed

by Albrecht, who suggested a measure called the function point. Function

points are derived using an empirical relationship based on countable

measures of software's information domain and assessments of software

complexity. MCS-104/61

Function points are computed by completing the table shown in figure 1.3.

Five information domain characteristics are determined and counts are

provided in the appropriate table location. Information domain values are

defined in the following manner:

1. Number of user inputs. Each user input that provides distinct

application oriented data to the software is counted. Inputs should be

distinguished from inquiries, which are counted separately.

2. Number of user outputs. Each user output that provides application

oriented information to the user is counted. In this context output

refers to reports, screens, error messages, etc. Individual data items

within a report are not counted separately.

3. Number of user inquiries. An inquiry is defined as an on-line input that

results in the generation of some immediate software response in the

form of an on-line output. Each distinct inquiry is counted.

4. Number of files. Each logical master file is counted.

5. Number of external interfaces. All machine readable interfaces (e.g.,

data files on storage media) that are used to transmit information to

another system are counted.

Weighting factor

Measurement parameter Count Simple Average Complex
Number of user inputs □ x 3 4 6 = □
Number of user outputs □ x 4 5 7 = □
Number of user inquiries □ x 3 4 6 = □
Numberoffiles □ x 7 10 15 = □
Number of external interfaces □ x 5 7 10 = □
Count total D

Figurel.3: Computing Function Point

Once these data have been collected, a complexity value is associated with
each count. Organizations that use function point methods develop criteria

MCS-104/62

for determining whether a particular entry is simple, average, or complex.
Nonetheless, the determination of complexity is somewhat subjective.

To compute function points (FP), the following relationship is used:

FP = count total x [0.65 + 0.01 x L(Fi)] (4-1)

Where count total is the sum of all FP entries obtained from Figure

The Fi (i = 1 to 14) are "complexity adjustment values" based on responses
to following questions:

1. Does the system require reliable backup and recovery?

2. Are data communications required?

3. Are there distributed processing functions?

4. Is performance critical?

5. Will the system run in an existing, heavily utilized operational
environment?

6. Does the system require on-line data entry?

7. Does the on-line data entry require the input transaction to be built
over multiple screens or operations?

8. Are the master files updated on-line?

9. Are the inputs, outputs, files, or inquiries complex?

10. Is the internal processing complex?

11. Is the code designed to be reusable?

12. Are conversion and installation included in the design?

13. Is the system designed for multiple installations m different
organizations?

14. Is the application designed to facilitate change and ease of use by the
user?

Each of these questions is answered using a scale that ranges from O (not

important or applicable) to 5 (absolutely essential). The constant values in
Equation (4-1) and the weighting factors that are applied to information
domain counts are determined empirically.

Once function points have been calculated, they are used in a manner

analogous to LOC as a way to normalize measures for software
productivity, quality, and other attributes:

• Errors per FP.

• Defects per FP.

• $ per FP.

• Pages of documentation per FP.

• FP per person-month.
MCS-104/63

Check Your Progress 5.

What are the measuring parameters of function oriented metrics?

1.7 EXTENDED FUNCTION POINT METRICS

The function point measure was originally designed to be applied
to business information systems applications. To accommodate these
applications, the data dimension was emphasized to the exclusion of the
functional and behavioural dimensions. For this reason, the function point
measure was inadequate for many engineering and embedded systems. A
number of extensions to the basic function point measure have been
proposed to remedy this situation. A function point extension called
feature points, is a superset of the function point measure that can be
applied to systems and engineering software applications.

The feature point measure accommodates applications in which
algorithmic complexity is high. Real-time, process control and embedded
software applications tend to have high algorithmic complexity and are
therefore amenable to the feature point. To compute the feature point,

information domain values are again counted and weighted. In addition,
the feature point metric counts anew software characteristic-algorithms.
An algorithm is defined as "a bounded computational problem that is
included within a specific computer program". Inverting a matrix,
decoding a bit string, or handling an interrupt are all examples of
algorithms.

Another function point extension for real-time systems and engineered
products has been developed by Boeing. The Boeing approach integrates
the data dimension of software with the functional and control dimensions
to provide a function-oriented measure amenable to applications that
emphasize function and control capabilities. Called the 3D function point,
characteristics of all three software dimensions are "counted, quantified,
and transformed" into a measure that provides an indication of the
functionality delivered by the software. The data dimension is evaluated in
much the same way. Counts of retained data and external data are used
along with measures of complexity to derive a data dimension count. The
functional dimension is measured by considering "the number of internal
operations required to transform input to output data". For the purposes of

3D function point computation, a "transformation" is viewed as a series of
processing steps that are constrained by a set of semantic statements. The
control dimension is measured by counting the number of transitions
between states. A state represents some externally observable mode of
behaviour, and a transition occurs as a result of some event that causes the
software or system to change its mode of behaviour. For example, a
wireless phone contains software that supports auto dial functions. To
enter the auto-dial state from a resting state, the user presses an Auto key
on the keypad. This event causes an LCD display to prompt for a code that
will indicate the party to be called. Upon entry of the code and hitting the

MCS-104/64

Dial key (another event), the wireless phone software makes a transition to
the dialling state. When computing 3D function points, transitions are not
assigned a complexity value.

To compute 3D function points, the following relationship is used:

index =I+ 0 + Q + F + E + T + R

where I, 0, Q, F, E, T, and R represent complexity weighted values for the
elements discussed already: inputs, outputs, inquiries, internal data
structures, external files, transformation, and transitions, respectively.

Semantic
statements

1-5 6-10 11+

Processing
steps

1-10 Low Low Average

11-20 Low Average High

21+ Average High High

Figurel.4: Determining the complexity of a transformation for 3D function
points

Each complexity weighted value is computed usmg the following
relationship:

Complexity weighted value = Ni!Wil + NiaWia + Nm Wih

Where Nit, Nia, and Nm represent the number of occurrences of element i
(e.g., outputs)for each level of complexity (low, medium, high); and Wit,

Wia, and W ih are the corresponding weights. The overall complexity of a
transformation for 3D function points is shown in above figure 1.4.

It should be noted that function points, feature points, and 3D function
points represent the same thing-"functionality" or "utility" delivered by
software. In fact, each of these measures results in the same value if only

the data dimension of an application is considered. For more complex real­
time systems, the feature point count is often between 20 and 35 percent
higher than the count determined using function points alone.

The function point, like the LOC measure, is controversial. Proponents
claim that FP is programming language independent, making it ideal for MCS-104/65

applications using conventional and nonprocedural languages; that it is
based on data that are more likely to be known early in the evolution of a
project, making FP more attractive as an estimation approach. Opponents
claim that the method requires some "sleight of hand" in that computation
is based on subjective rather than objective data; that counts of the
information domain can be difficult to collect after the fact; and that FP
has no direct physical meaning-it's just a number.

1.8 SUMMARY

This section covers the discussion about Software Process and Project
Metrics, its characteristics, and also discuss Measures, reasons behind
software measure, its pros and cons, Software Metric and Indicators, types
of Metric like Size-Oriented Metric, Function-Oriented Metric, Extended
Function Point.

1.9 EXERCISE

(1) Define the term metrics. What are the types of metrics?

(2) What are the advantages and disadvantages of size measure?

(3) What is LOC? How it is used for project estimation?

(4) What is Software Process? Write the characteristics of software
Process.

(5) Define Software Measures in detail.

(6) What is FP? How to compute Function Point? How it is used for
project estimation?

MCS-104/66

UNIT-2

SOFTWARE PROJECT PLANNING

Structure

2.0 Introduction

2.1 Objective

2.2 Need of Software Project Planning

2.3 Project Planning Objectives

2.4 Software project Estimation

2.5 Decomposition techniques

2.6 Problem Based Estimation

2.7 Process Based Estimation

2.8 Empirical Estimation Models

2.9 The COCOMO Model

2.10 Summary

2.11 Exercise

2.0 INTRODUCTION

Process and project metrics can provide historical perspective
and powerful input for the generation of quantitative estimates.
Past experience can aid immeasurably as estimates are developed
and reviewed. Because estimation lays a foundation for all other
project planning activities and project planning provides the road
map for successful software engineering, we would be ill-advised
to embark without it.

2.1 OBJECTIVE

Objectives of this unit are:

a) to provide a framework for manager to make reasonable estimates of
resources, costs and schedules

b) to provide the knowledge to make products easier to use.

c) to reduce the time it takes to get a new product to market.

MCS-104/67

2.2 NEED OF SOFTWARE PROJECT PLANNING

Software project management begins with a set of activities that are
collectively called project planning. Before the project can begin, the
manager and the software team must estimate the work to be done, there
sources that will be required, and the time that will elapse from start to
finish. Whenever estimates are made, we look into the future and accept
some degree of uncertainty as a matter of course.

To quote Frederick Brooks [BR075]: " . . . our techniques of estimating
are poorly developed. More seriously, they reflect an unvoiced assumption
that is quite untrue, i.e., that all will go well because we are uncertain
of our estimates, software managers often lack the courteous stub
bornnessto make people wait for a good product. "

Although estimating is as much art as it is science, this important activity
need not be conducted in a haphazard manner. Useful techniques for time
and effort estimation do exist.

Important: Would you build a house without knowing how much you
were about to spend? Of course not, and since most computer-based
systems and products cost considerably more to build than a large house, it
would seem reasonable to develop an estimate before you start creating
the software.

Steps: Estimation begins with a description of the scope of the product.
Until the scope is "bounded" it's not possible to develop a meaningful
estimate. The problem is then decomposed into a set of smaller problems
and each of these is estimated using historical data and experience as
guides. It is advisable to generate your estimates using at least two
different methods. Problem complexity and risk are considered before a
final estimate is made.

If we want to ensure that we have done it right? That's hard, because you
won't really know until the project has been completed. However, if you
have experience and follow a systematic approach, generate estimates
using solid historical data, create estimation data points using at least two
different methods, and factor in complexity and risk, you can feel
confident that you've given it your best shot.

Observations on Estimating for Planning:

Estimation of resources, cost, and schedule for a software engineering
effort requires experience, access to good historical information, and the
courage to commit to quantitative predictions when qualitative
information is all that exists. Estimation carries inherent risk and this risk
leads to uncertainty.

Project complexity has a strong effect on the uncertainty inherent in
planning. Complexity, however, is a relative measure that is affected by
familiarity with past effort. The first-time developer of a sophisticated e­
commerce application might consider it to be exceedingly complex.
However, a software team developing its tenth e-commerce Web site

MCS-104/68

would consider such work run of the mill. A number of quantitative
software complexity measures have been proposed. Such measures are
applied at the design or code level and are therefore difficult to use during
software planning. However, other, more subjective assessments of
complexity can be established early in the planning process.

Project size is another important factor that can affect the accuracy and
efficacy of estimates. As size increases, the interdependency among
various elements of the software grows rapidly. Problem decomposition,

an important approach to estimating, becomes more difficult because
decomposed elements may still be formidable. To paraphrase Murphy's
law: "What can go wrong will go wrong"-and if there are more things
that can fail, more things will fail.

The degree of structural uncertainty also has an effect on estimation risk.
In this context, structure refers to the degree to which requirements have
been solidified, the ease with which functions can be compartmentalized,
and the hierarchical nature of the information that must be processed.

The availability of historical information has a strong influence on
estimation risk. By looking back, we can emulate things that worked and
improve areas where problems arose. When comprehensive software
metrics are available for past projects, estimates can be made with greater
assurance, schedules can be established to avoid past difficulties, and
overall risk is reduced.

Risk is measured by the degree of uncertainty in the quantitative estimates
established for resources, cost, and schedule. If project scope is poorly
understood or project requirements are subject to change, uncertainty and
risk become dangerously high. The software planner should demand
completeness of function, performance, and interface definitions
(contained in a System Specification). The planner, and more important,
the customer should recognize that variability in software requirements
means instability in cost and schedule.

However, a project manager should not become obsessive about
estimation. Modem software engineering approaches take an iterative

view of development. In such approaches, it is possible to revisit the
estimate and revise it when the customer makes changes to requirements.

Check Your Progress 1.

What is the difference between feasibility study and planning?

2.3 PROJECT PLANNING OBJECTIVES

Project planning is the very important activity. Its major objectives are:

(A) Provide a framework

The objective of software project planning is to provide a framework
that enables the manager to make reasonable estimates of resources,
cost, and schedule. These estimates are made within a limited time MCS-104/69

frame at the beginning of a software project and should be updated
regularly as the project progresses. In addition, estimates should
attempt to define best case and worst case scenarios so that project
outcomes can be bounded.

(B) Determination of software scope

The first activity in software project planning is the determination of
software scope. Function and performance allocated to software
during system engineering should be assessed to establish a project
scope that is unambiguous and understandable at the management
and technical levels. A statement of software scope must be
bounded. Software scope describes the data and control to be
processed, function, performance, constraints, interfaces, and
reliability. Functions described in the statement of scope are
evaluated and in some cases refined to provide more detail prior to
the beginning of estimation. Because both cost and schedule
estimates are functionally oriented, some degree of decomposition is
often useful. Performance considerations encompass processing and
response time requirements. Constraints identify limits placed on the
software by external hardware, available memory, or other existing
systems.

a) Obtaining information necessary for scope:

Things are always somewhat hazy at the beginning of a software
project. A need has been defined and basic goals and objectives
have been enunciated, but the information necessary to define
scope has not yet been delineated.

b) Preliminary meeting or interview:

The most commonly used technique to bridge the communication
gap between the customer and developer and to get the
communication process started is to conduct a preliminary
meeting or interview.

i. Set-1: The first set of context-free questions focuses on the
customer, the overall goals and benefits. For example, the
analyst might ask:

• Who is behind the request for this work?

• Who will use the solution?

• What will be the economic benefit of a successful
solution?

• Is there another source for the solution?

ii. Second Set: The next set of questions enables the analyst to
gain a better understanding of the problem and the customer to
voice any perceptions about a solution:

• How would you (the customer) characterize "good"
output that would be generated by a successful solution?MCS-104/70

• What problem(s) will this solution address?

• Can you show me (or describe) the environment in which
the solution will be used?

• Will any special performance issues or constraints affect
the way the solution is approached?

iii. Third Set: The final set of questions focuses on the
effectiveness of the meeting with propose the following list:

• Are you the right person to answer these questions? Are
answers "official"?

• Are my questions relevant to the problem that you have?

• Am I asking too many questions?

• Can anyone else provide additional information?

• Should I be asking you anything else?

Check Your Progress 2.

What are the steps involved in identification of project scope and
objectives?

2.4 SOFTWARE PROJECT ESTIMATION

Effective software project estimation is one of the most
challenging and important activities in software development. Proper
project planning and control is not possible without a sound and reliable
estimate. As a whole, the software industry doesn't estimate projects well
and doesn't use estimates appropriately. We suffer far more than we
should as a result and we need to focus some effort on improving the
situation. Under-estimating a project leads to under-staffing it, under­
scoping the quality assurance effort, and setting too short a schedule. For
those who figure on avoiding this situation by generously padding the
estimate, over-estimating a project can be just about as bad for the
organization! If you give a project more resources than it really needs
without sufficient scope controls it will use them. The project is then
likely to cost more than it should, take longer to deliver than necessary,
and delay the use of your resources on the next project.

The four basic steps in software project estimation are:

a) Estimate the size of the development product.

i By analogy

ii By counting product features and using an algorithmic approach

b) Estimate the effort in person-months or person-hours.

i Use your organization's own historical data

MCS-104/71

ii Use a mature and generally accepted algorithmic approach such
as Barry Boehm's COCOMO model or the Putnam Methodology

c) Estimate the schedule in calendar months.

d) Estimate the project cost in dollars (or local currency)

To achieve reliable cost and effort estimates, a number of options arise:

a) Delay estimation until late in the project (obviously, we can
achievel00% accurate estimates after the project is complete!).

b) Base estimates on similar projects that have already been completed.

c) Use relatively simple decomposition techniques to generate project
cost and effort estimates.

d) Use one or more empirical models for software cost and effort
estimation.

The Trouble with Estimates

a) Estimating size is the most difficult (but not impossible)step
intellectually, and is often skipped in favour of going directly to

estimating a schedule.

b) Customers and software developers often don't really recognize that
software development is a process of gradual refinement.

c) Organizations often don't collect and analyse historical data on their
performance on development projects.

d) It is often difficult to get a realistic schedule accepted by management
and customers.

Check Your Progress 3.

How do you estimate the effort for your project?

2.5 DECOMPOSITION TECHNIQUES

Software project estimation is a form of problem solving, and in
most cases, the problem to be solved is too complex to be considered in
one piece. For this reason, we decompose the problem, re-characterizing it
as a set of smaller problems.

The decomposition approach is in two different points of view:
decomposition of the problem and decomposition of the process.
Estimation uses one or both forms of partitioning. But before an estimate
can be made, the project planner must understand the scope of the
software to be built and generate an estimate of its "size."

Software Sizing

The accuracy of a software project estimate is predicated on a number
of things:

MCS-104/72

a. The degree to which the planner has properly estimated the size of
the product to be built;

b. The ability to translate the size estimate into human effort,
calendar time, and dollars (a function of the availability of reliable
software metrics from past projects);

c. The degree to which the project plan reflects the abilities of the
software team;and

d. The stability of product requirements and the environment that
supports the software engineering effort.

There are four different approaches to the sizing problem:

a. "Fuzzy logic" sizing

b. Function point sizing

c. Standard component sizing

d. Change sizing

AUTOMATED ESTIMATION TOOLS

The decomposition techniques sections are available as part of a wide
variety of software tools. These automated estimation tools allow the

planner to estimate cost and effort and to perform "what-if' analyses for
important project variables such as delivery date or staffing.

Although many automated estimation tools exist, all exhibit the same
general characteristics and all perform the following six generic functions:

a. Sizing of project deliverables. The "size" of one or more software

work products is estimated. Work products include the external

representation of software (e.g., screen, reports), the software itself

(e.g., KLOC), functionality delivered (e.g., function points),

descriptive information (e.g. documents).

b. Selecting project activities. The appropriate process framework is

selected and the software engineering task set is specified.

c. Predicting staffing levels. The number of people who will be

available to do the work is specified. Because the relationship

between people available and work (predicted effort) is highly

nonlinear, this is an important input.

d. Predicting software effort. Estimation tools use one or more

models that relate the size of the project deliverables to the effort

required to produce them.

e. Predicting software cost. Given the results of step 4, costs can be

computed by allocating labour rates to the project activities noted

in step 2.

MCS-104/73

f. Predicting software schedules. When effort, staffing level, and

project activities are known, a draft schedule can be produced by

allocating labour across software engineering activities based on

recommended models for effort distribution

Check Your Progress 4.

Which software project sizing approach develop estimates of the
information domain characteristics?

2.6 PROBLEM-BASED ESTIMATION

Lines of code and function points were described as measures from which

productivity metrics can be computed. LOC and FP data are used in two

ways during software project estimation:

(1) As an estimation variable to "size" each element of the software and

(2) As baseline metrics collected from past projects and used in

conjunction with estimation variables to develop cost and effort

projections.

LOC and FP estimation are distinct estimation techniques. Yet both have a

number of characteristics in common. The project planner begins with a

bounded statement of software scope and from this statement attempts to

decompose software into problem functions that can each be estimated

individually. LOC or FP is then estimated for each function. Alternatively,

the planner may choose another component for sizing such as classes or

objects, changes, or business processes affected.

Baseline productivity metrics (e.g., LOC/pm or FP/pm9) are then applied

to the appropriate estimation variable, and cost or effort for the function is

derived. Function estimates are combined to produce an overall estimate

for the entire project. It is important to note, however, that there is often

substantial scatter in productivity metrics for an organization, making the

use of a single baseline productivity metric suspect. In general, LOC/pm

or FP/pm averages should be computed by project domain. That is,

projects should be grouped by team size, application area, complexity, and

other relevant parameters. Local domain averages should then be

computed. When a new project is estimated, it should first be allocated to

a domain, and then the appropriate domain average for productivity should

be used in generating the estimate.

The LOC and FP estimation techniques differ in the level of detail

required for decomposition and the target of the partitioning. When LOC

MCS-104/74

is used as the estimation variable, decomposition is absolutely essential

and is often taken to considerable levels of detail value that can be tied to

past data and used to generate an estimate. Regardless of the estimation

variable that is used, the project planner begins by estimating a range of

values for each function or information domain value. Using historical

data or intuition, the planner estimates an optimistic, most likely and

pessimistic size value for each function or count for each information

domain value. An implicit indication of the degree of uncertainty is

provided when a range of values is specified.

A three-point or expected value can then be computed. The expected value

for the estimation variable (size), S, can be computed as a weighted

average of the optimistic, most likely (sm), and pessimistic (Spess)

estimates.

For example, S = (Sopt + 4sm + Spess)/6 (5-1)

gives heaviest credence to the "most likely" estimate and follows a beta

probability distribution. We assume that there is a very small probability

the actual size result will fall outside the optimistic or pessimistic values.

Once the expected value for the estimation variable has been determined,

historical LOC or FP productivity data are applied. Are the estimates

correct? The only reasonable answer to this question is: "We can't be

sure." Any estimation technique, no matter how sophisticated, must be

cross-checked with another approach. Even then, common sense and

experience must prevail.

Check Your Progress 5.

What is beta probability distribution?

2.7 PROCESS-BASED ESTIMATION

The most common technique for estimating a project is to base the

estimate on the process that will be used. That is, the process is

decomposed into a relatively small set of tasks and the effort required to

accomplish each task is estimated. Like the problem-based techniques,

process-based estimation begins with a delineation of software functions

obtained from the project scope. A series of software process activities

must be performed for each function. Functions and related software

process activities may be represented as part of a table similar to the one

presented in figure 2.1

MCS-104/75

11/. � �

ICommon process '/.Ji ·$ * -� f
:0. � ,:

·"l I
framework activities � � i �1 ·$

t; � � i �
"'

I

Software engineering tasks

Product functions

Text input

Editing and formatting

Automatic copy edit

Page layout capability

Automatic indexing and TOC

File management

Document production

Figure 2.1: Melding the Problem and the Process

Once problem functions and process activities are melded, the planner

estimates the effort (e.g., person-months) that will be required to

accomplish each software process activity for each software function.

These data constitute the central matrix of the table in Figure 2.1.

Average labour rates (i.e., cost/unit effort) are then applied to the effort

estimated for each process activity. It is very likely the labour rate will

vary for each task. Senior staff heavily involved in early activities is

generally more expensive than junior staff involved in later design tasks,

code generation, and early testing.

Costs and effort for each function and software process activity are

computed as the last step. If process-based estimation is performed

independently of LOC or FP estimation, we now have two or three

estimates for cost and effort that may be compared and reconciled. If both

sets of estimates show reasonable agreement, there is good reason to

believe that the estimates are reliable. If, on the other hand, the results of

these decomposition techniques show little agreement, further

investigation and analysis must be conducted.

Check Your Progress 6

On which base d Process-based estimation techniques require problem

decomposition

MCS-104/76

2.8 EMPIRICAL ESTIMATION MODELS

An estimation model for computer software uses empirically derived
formulas to predict effort as a function of LOC or FP. Values for LOC or
FP are estimated using the approach. But instead of using the tables
described in those sections, the resultant values for LOC or FP are plugged
into the estimation model.

The empirical data that support most estimation models are derived from a
limited sample of projects. For this reason, no estimation model is
appropriate for all classes of software and in all development
environments. Therefore, the results obtained from such models must be
used judiciously.

The Structure of Estimation Models

A typical estimation model is derived using regression analysis on data
collected from past software projects. The overall structure of such models
takes the form-

E =A+ B x (evf

Where A, B, and C are empirically derived constants, E is effort in person­
months, and ev is the estimation variable (either LOC or FP). In addition
to the relationship noted in Equation, the majority of estimation models
have some form of project adjustment component that enables E to be
adjusted by other project characteristics (e.g., problem complexity, staff
experience, development environment).

Among the many LOC-oriented estimation models proposed in the
literature are

E = 5.2 x (KLOC)° -91Walston-Felix model

E = 5.5 + 0.73 x (KLOC)1 .16 Bailey-Basili model

E = 3 .2 x (KLOC)1 -05 Boehm simple model

E = 5.288 x (KLOC)1 -047 Doty model for KLOC> 9

FP-oriented models have also been proposed. These include

E = -13.39 + 0.0545 FP Albrecht and Gaffney model

E = 60.62 x 7.728 x 10-8 FP3Kemerer model

E = 585.7 + 15.12 FP Matson, Barnett, and Mellichamp model

A quick examination of these models indicates that each will yield a
different result for the same values ofLOC or FP. The implication is clear.
Estimation models must be calibrated for local needs.

Check Your Progress 7

On Which, Empirical estimation models are typically based .
MCS-104/77

2.9 COCOMO MODEL

The Constructive Cost Model (COCOMO) is an algorithmic software cost
estimation model developed by Barry W. Boehm. The model uses a basic
regression formula with parameters that are derived from historical project
data and current as well as future project characteristics.

First published in Boehm's 1981 book Software Engineering Economics as
a model for estimating effort, cost, and schedule for software projects. It
drew on a study of 63 projects at TRW Aerospace where Boehm was
Director of Software Research and Technology. The study examined
projects ranging in size from 2,000 to 100,000 lines of code, and
programming languages ranging from assembly to PL/I. These projects
were based on the waterfall model of software development which was the
prevalent software development process in 1981.

References to this model typically call it COCOMO 81. In 1995
COCOMO II was developed and finally published in 2000 in the book
Software Cost Estimation with COCOMO II. COCOMO II is the
successor of COCOMO 81 and is better suited for estimating modem
software development projects. It provides more support for modem
software development processes and an updated project database. The
need for the new model came as software development technology moved
from mainframe and overnight batch processing to desktop development,
code reusability, and the use of off-the-shelf software components.

COCOMO consists of a hierarchy of three increasingly detailed and
accurate forms.

The first level, Basic COCOMO is good for quick, early, rough
order of magnitude estimates of software costs, but its accuracy
is limited due to its lack of factors to account for difference in
project attributes (Cost Drivers). Intermediate COCOMO takes
these Cost Drivers into account and Detailed COCOMO
additionally accounts for the influence of individual project
phases.

Basic COCOMO

Basic COCOMO computes software development effort (and cost) as a
function of program size. Program size is expressed in estimated
thousands of source lines of code (SLOC, KLOC).

COCOMO applies to three classes of software projects:

a) Organic projects - "small" teams with "good" experience working
with "less than rigid" requirements

b) Semi-detached projects - "medium" teams with mixed experience
working with a mix of rigid and less than rigid requirements

MCS-104/78

c) Embedded projects - developed within a set of "tight" constraints.
It is also combination of organic and semi-detached projects.
(Hardware, software, operational,)

The basic COCOMO equations take the form

Effort Applied (E) = ab (KLOC) bb[person-months]

Development Time (D) = Cb (Effort Applied) db [months]

People required (P) = Effort Applied/ Development Time [count]

Where, KLOC is the estimated number of delivered lines (expressed in
thousands) of code for project. The coefficients ab,�. cband � are given
in the following table:

Software project ab � Cb db

Organic 2.4 1.05 2.5 0.38

Semi-detached 3.0 1.12 2.5 0.35

Embedded 3.6 1.20 2.5 0.32

Basic COCOMO is good for quick estimate of software costs. However it
does not account for differences in hardware constraints, personnel quality
and experience, use of modem tools and techniques, and so on.

Intermediate COCOMO

Intermediate COCOMO computes software development effort as
function of program size and a set of "cost drivers" that include subjective
assessment of product, hardware, personnel and project attributes. This
extension considers a set of four "cost drivers", each with a number of
subsidiary attributes:-

a) Product attributes

• Required software reliability

• Size of application database

• Complexity of the product

b) Hardware attributes

• Run-time performance constraints

• Memory constraints

• Volatility of the virtual machine environment

• Required turnabout time

c) Personnel attributes

• Analyst capability

• Software engineering capability

• Applications experience

• Virtual machine experience MCS-104/79

• Programming language experience

d) Project attributes

• Use of software tools

• Application of software engineering methods

• Required development schedule

Each of the 15 attributes receives a rating on a six-point scale that ranges
from "very low" to "extra high" (in importance or value). An effort
multiplier from the table below applies to the rating. The product of all
effort multipliers results in an effort adjustment factor (EAF). Typical
values for EAF range from 0.9 to 1.4.

The Intermediate COCOMO formula now takes the form:

E=ai (KLoC) (bi).EAF

Where E is the effort applied in person-months, KLoC is the estimated
number of thousands of delivered lines of code for the project, and EAF is
the factor calculated above. The coefficient ai and the exponent bi are
given in the next table.

Software project ai bi

Organic 3.2 1.05

Semi-detached 3.0 1.12

Embedded 2.8 1.20

The Development time D calculation uses E in the same way as in the

Basic COCOMO.

Detailed COCOMO

Detailed COCOMO incorporates all characteristics of the intermediate
version with an assessment of the cost driver's impact on each step
(analysis, design, etc.) of the software engineering process.

The detailed model uses different effort multipliers for each cost driver
attribute. These Phase Sensitive effort multipliers are each to determine
the amount of effort required to complete each phase. In detailed
COCOMO, the whole software is divided in different modules and then
we apply COCOMO in different modules to estimate effort and then sum
the effort.

In detailed COCO MO, the effort is calculated as function of program size
and a set of cost drivers given according to each phase of software life
cycle. A Detailed project schedule is never static. The five phases of
detailed COCOMO are:-

• Plan and requirement.

• System design.

MCS-104/80

• Detailed design.

• Module code and test.

• Integration and test.

Check Your Progress 8.

Write the advantages of COCOMO.

2.10 SUMMARY

This unit covers a small discussion about Software Project Planning, its
objective, Basic steps of Software project Estimation, Decomposition
techniques, Automated Estimation tools, Problem Based Estimation,
Process Based Estimation, Empirical Estimation Models, COCOMO I
and II Model.

2.11 EXERCISE

(1) What is Software Project Planning? What is the objective of
Software Project Planning?

(2) Explain the COCOMO for software cost estimation.

(3) Discuss the techniques for estimating project duration and
determining the staffing pattern.

(4) Explain Software Project Estimation Techniques.

(5) Write short note on the Decomposition techniques.

(6) Define Empirical Estimation Models in detail.

(7) Estimate the effort required to develop software for a simple module
that produces 15 screens, 10 reports and will require around 100
software components. Assume average complexity and average
developer/ environment maturity. Use the Application Composition
Model of COCOMO-11 with Object Points. State any assumptions
you make.

MCS-104/81

MCS-104/82

UNIT-3

RISK ANALYSIS AND MANAGEMENT

Structure

3.0 Introduction

3.1 Objective

3.2 What Is Risk?

3.3 Software Risk

3.4 Risk Identification

3.5 Risk Reduction

3.6 Risk Projection

3. 7 Risk Refinement

3.8 Risk Mitigation, Monitoring and Management

3.9 Summary

3.10 Exercise

3.0 INTRODUCTION

Software is a difficult undertaking. Lots of things can go wrong,
and frankly, many often do. It's for this reason that being prepared­
understanding the risks and taking proactive measures to avoid or manage
them-is a key element of good software project management.
Recognizing what can go wrong is the first step, called "risk
identification." Next, each risk is analysed to determine the likelihood that

it will occur and the damage that it will do if it does occur. Once this
information is established, risks are ranked, by probability and impact.
Finally, a plan is developed to manage those risks with high probability
and high impact.

Risk mitigation, monitoring, and management (RMMM) plan or a set of

risk information sheets is produced. How do I ensure that I've done it
right? The risks that are analysed and managed should be derived from
thorough study of the people, the product, the process, and the project. The
RMMM should be revisited as the project proceeds to ensure that risks are
kept up to date. Contingency plans for risk management should be
realistic.

3.1 OBJECTIVE

Objectives of this unit are:

a) to identify the risks and determine if they may be avoided. MCS-104/83

b) to achieve and maintain reduced cost of risk.

c) to evaluate and assess all risks ofloss.

d) to develop and maintain risk management policies.

e) to Identify total assets and resources of organizations.

f) to Calculate values of assets and resources.

3.2 WHAT IS RISK?

In general Risk is:

• First, risk concerns future happenings. Today and yesterday are
beyond active concern, as we are already reaping what was
previously sowed by our past actions. The question is, can we,
therefore, by changing our actions today, create an opportunity for a
different and hopefully better situation for ourselves tomorrow.

• Second, that risk involves change, such as in changes of mind,
opinion, actions, or places.

• Third, risk involves choice, and the uncertainty that choice itself
entails.

When risk is considered in the context of software engineering,
Charette's three conceptual underpinnings are always in evidence-

• The future is our concern- what risks might cause the software
project to go awry?

• Change is our concern- how will changes in customer
requirements, development technologies, target computers, and all
other entities connected to the project affect timeliness and overall
success?

• Last, we must grapple with choices-what methods and tools should
we use, how many people should be involved, how much emphasis

on quality is "enough"?

Everyone involved in the software process-managers, software
engineers, and customers-participate in risk analysis and management.

As per Peter Drucker, "While it is futile to try to eliminate risk, and
questionable to try to minimize it, it is essential that the risks taken be the

right risks". Before we can identify the "right risks" to be taken during a
software project, it is important to identify all risks that are obvious to

both managers and practitioners.

There are two risk strategies- Reactive and Proactive. The majority of
software teams rely solely on reactive risk strategies. At best, a reactive
strategy monitors the project for likely risks. Resources are set aside to

deal with them, should they become actual problems. More commonly, the
software team does nothing about risks until something goes wrong. Then,

MCS-104/84

the team flies into action in an attempt to correct the problem rapidly. This
is often called a fire fighting mode.

When this fails, "crisis management" takes over and the project is in real
danger. A considerably more intelligent strategy for risk management is to
be proactive. A proactive strategy begins long before technical work is
initiated. Potential risks are identified, their probability and impact are
assessed, and they are ranked by importance. Then, the software team
establishes a plan for managing risk. The primary objective is to avoid
risk, but because not all risks can be avoided, the team works to develop a
contingency plan that will enable it to respond in a controlled and effective
manner.

Check Your Progress 1.

Give the two important characteristics of the risk management?

3.3 SOFTWARE RISK

Although there has been considerable debate about the proper definition
for software risk, there is general agreement that risk always involves two
characteristics

• Uncertainty-the risk may or may not happen; that is, there are no
100% probable risks.

• Loss-if the risk becomes a reality, unwanted consequences or
losses will occur.

When risks are analysed, it is important to quantify the level of uncertainty
and the degree of loss associated with each risk. To accomplish this,
different categories of risks are considered.

Project risks threaten the project plan. That is, if project risks become real,
it is likely that project schedule will slip and that costs will increase.
Project risks identify potential budgetary, schedule, personnel (staffing
and organization), resource, customer, and requirements problems and
their impact on a software project. Project complexity, size, and the degree
of structural uncertainty were also defined as project (and estimation) risk
factors.

Technical risks threaten the quality and timeliness of the software to be

produced.

If a technical risk becomes a reality, implementation may become difficult
or impossible. Technical risks identify potential design, implementation,

interface, verification, and maintenance problems. In addition,
specification ambiguity, technical uncertainty, technical obsolescence, and
"leading-edge" technology are also risk factors.

Technical risks occur because the problem is harder to solve than we
thought it would be. Business risks threaten the viability of the software to
be built. Business risks often jeopardize the project or the product. MCS-104/85

Candidates for the top five business risks are

i Building an excellent product or system that no one really wants
(market risk)

ii Building a product that no longer fits into the overall business
strategy for the company (strategic risk)

iii Building a product that the sales force doesn't understand how to sell

iv Losing the support of senior management due to a change in focus or
a change in people (management risk)

v Losing budgetary or personnel commitment (budget risks). It is
extremely important to note that simple categorization won't always
work.

Some risks are simply unpredictable in advance.

Another general categorization of risks has been proposed by Charette­

Known risks are those that can be uncovered after careful evaluation of
the project plan, the business and technical environment in which the
project is being developed, and other reliable information sources (e.g.,
unrealistic delivery date, lack of documented requirements or software
scope, poor development environment).

Predictable risks are extrapolated from past project experience (e.g., staff
turnover, poor communication with the customer, dilution of staff effort as
on-going maintenance requests are serviced).

Unpredictable risks are the joker in the deck. They can and do occur, but
they are extremely difficult to identify in advance.

Check Your Progress 2.

What is the difference between the "Known Risks" and Predictable Risks"

?

3.4 RISK IDENTIFICATION

Risk identification is a systematic attempt to specify threats to the project
plan (estimates, schedule, resource loading, etc.). By identifying known
and predictable risks, the project manager takes a first step toward
avoiding them when possible and controlling them when necessary.

There are two distinct types of risks for each of the categories: generic
risks and product-specific risks. Generic risks are a potential threat to
every software project. Product-specific risks can be identified only by
those with a clear understanding of the technology, the people, and the
environment that is specific to the project at hand. To identify product­
specific risks, the project plan and the software statement of scope are

MCS-104/86

examined and an answer to the following question is developed: "What
special characteristics of this product may threaten our project plan?"

One method for identifying risks is to create a risk item checklist. The
checklist can be used for risk identification and focuses on some subset of
known and predictable risks in the following generic subcategories:

• Product size- risks associated with the overall size of the software to
be built or modified.

• Business impact- risks associated with constraints imposed by
management or the marketplace.

• Customer characteristics- risks associated with the sophistication of
the customer and the developer's ability to communicate with the
customer in a timely manner.

• Process definition- risks associated with the degree to which the
software process has been defined and is followed by the
development organization.

• Development environment- risks associated with the availability and
quality of the tools to be used to build the product.

• Technology to be built- risks associated with the complexity of the
system to be built and the "newness" of the technology that is
packaged by the system.

• Staff size and experience- risks associated with the overall technical
and project experience of the software engineers who will do the
work.

The risk item checklist can be organized in different ways. Questions
relevant to each of the topics can be answered for each software project.
The answers to these questions allow the planner to estimate the impact of
risk. A different risk item checklist format simply lists characteristics that
are relevant to each generic subcategory.

Assessing Overall Project Risk

The following questions have derived from risk data obtained by
surveying experienced software project managers in different part of the
world:

1. Have top software and customer managers formally committed to

support the project?

2. Are end-users enthusiastically committed to the project and the
system/product to be built?

3. Are requirements fully understood by the software engmeenng
team and their customers?

4. Have customers been involved fully in the definition of
requirements?

5. Do end-users have realistic expectations? MCS-104/87

6. Is project scope stable?

7. Does the software engineering team have the right mix of skills?

8. Are project requirements stable?

9. Does the project team have experience with the technology to be
implemented?

10. Is the number of people on the project team adequate to do the job?

11. Do all customer/user constituencies agree on the importance of the
project and on the requirements for the system/product to be built?

Risk Components and Drivers

The risk components are defined in the following manner:

• Performance risk- the degree of uncertainty that the product will
meet its requirements and be fit for its intended use.

• Cost risk- the degree of uncertainty that the project budget will be
maintained.

• Support risk- the degree of uncertainty that the resultant software
will be easy to correct, adapt, and enhance.

• Schedule risk- the degree of uncertainty that the project schedule
will be maintained and that the product will be delivered on time.

The impact of each risk driver on the risk component is divided into one of
four impact categories-

a) Negligible

b) Marginal

c) Critical

d) Catastrophic

3.5 RISK REDUCTION

Generate reliability specifications, including quantitative requirements
defining the acceptable levels of failure. There are types of functional
reliability requirements:

• Checking requirements identify checks to ensure that incorrect
data is detected before it leads to a failure.

• Recovery requirements are geared to help the system recover after
a failure has occurred.

• Redundancy requirements specify redundant features of the
system to be included.

• Process requirements for reliability specify the development
process to be used may also be included.

MCS-104/88

3.6 RISK PROJECTION

Risk projection, also called risk estimation, attempts to rate each risk in
two ways-the likelihood or probability that the risk is real and the
consequences of the problems associated with the risk, should it occur.

The project planner, along with other managers and technical staff,
performs four risk projection activities:

a. Establish a scale that reflects the perceived likelihood of a risk,

b. Delineate the consequences of the risk,

c. Estimate the impact of the risk on the project and the product, and

d. Note the overall accuracy of the risk projection so that there will be
no misunderstandings.

Developing a Risk Table

A risk table provides a project manager with a simple technique for risk
projection. A sample risk table is illustrated in figure 3.1.

A project team begins by listing all risks in the first column of the table.
This can be accomplished with the help of the risk item checklists. Each
risk is categorized in the second column. The probability of occurrence of
each risk is entered in the next column of the table. The probability value
for each risk can be estimated by team members individually. Individual
team members are polled in round-robin fashion until their assessment of
risk probability begins to converge.

Risks Category Probability Impact RMMM

Size estimate may be significan�y low PS 60% 2

Larger number of users than planned PS 30% 3

Less reuse than planned PS 70% 2

End-users resist system BU 40% 3

Delivery deadline will be tightened BU 50% 2

Funding will be lost cu 40% 1

Customer will change requirements PS 80% 2

Technology will not meet expectations TE 30% 1

Lack of training on tools DE 80% 3

Staff inexperienced ST 30% 2

Staff turnover will be high ST 60% 2

•

•

•

.... --- -

-._.
-

........

Figure3.1: Sample risk table prior to sorting

Next, the impact of each risk is assessed. Each risk component is assessed
using the characterization, and an impact category is determined. The MCS-104/89

categories for each of the four risk components-performance, support,
cost, and schedule-are averaged to determine an overall impact value.

Very high

Impact

Disregard
risk factor

Figure3.2: Risk and management concern

Once the first four columns of the risk table have been completed, the
table is sorted by probability and by impact. High-probability, high-impact
risks percolate to the top of the table, and low-probability risks drop to the
bottom. This accomplishes first-order risk prioritization. The project
manager studies the resultant sorted table and defines a cut-off line. The
cut-off line (drawn horizontally at some point in the table) implies that
only risks that lie above the line will be given further attention. Risks that
fall below the line are re-evaluated to accomplish second-order
prioritization. Risk impact and probability have a distinct influence on
management concern. A risk factor that has a high impact but a very low
probability of occurrence should not absorb a significant amount of
management time, as shown in figure 3.2, However, high-impact risks
with moderate to high probability and low-impact risks with high
probability should be carried forward into the risk analysis steps that
follow.

All risks that lie above the cut-off line must be managed. The column
labelled RMMM contains a pointer into a Risk Mitigation, Monitoring and
Management Plan or alternatively, a collection of risk information sheets
developed for all risks that lie above the cut-off.

MCS-104/90

Risk probability can be determined by making individual estimates and
then developing a single consensus value. Risk drivers can be assessed on
a qualitative probability scale that has the following values: impossible,
improbable, probable, and frequent. Mathematical probability can then be
associated with each qualitative value

Assessing Risk Impact

Three factors affect the consequences that are likely if a risk does occur:
its nature, its scope, and its timing. The nature of the risk indicates the
problems that are likely if it occurs. For example, a poorly defined
external interface to customer hardware (a technical risk) will preclude
early design and testing and will likely lead to system integration
problems late in a project. The scope of a risk combines the severity Gust
how serious is it?) with its overall distribution (how much of the project
will be affected or how many customers are harmed?). Finally, the timing
of a risk considers when and for how long the impact will be felt. In most
cases, a project manager might want the "bad news" to occur as soon as
possible, but in some cases, the longer the delay, the better.

The following steps are recommended to determine the overall
consequences of a risk:

1. Determine the average probability of occurrence value for each risk
component.

2. Determine the impact for each component based on the criteria shown.

3. Complete the risk table and analyse the results as described in the
preceding sections.

The overall risk exposure, RE, is determined using the following
relationship:

RE=Px C

where P is the probability of occurrence for a risk, and C is the cost to the
project should the risk occur.

The software team defines a project risk in the following manner:

Risk identification: Only 70 percent of the software components
scheduled for re use will, in fact, be integrated into the application. The
remaining functionality will have to be custom developed.

Risk probability: 80% (likely).

Risk impact: 60 reusable software components were planned. If only 70
percent can be used, 18 components would have to be developed from
scratch (in addition to other custom software that has been scheduled for
development). Since the average component islO0 LOC and local data
indicate that the software engineering cost for each LOC is $14.00,the
overall cost (impact) to develop the components would be 18 x 100 x 14 =
$25,200.

Risk exposure: RE = 0.80 x 25,200 ~ $20,200.Risk exposure can be
computed for each risk in the risk table, once an estimate of the cost of the MCS-104/91

risk is made. The total risk exposure for all risks (above the cut-off in the
risk table) can provide a means for adjusting the final cost estimate for a
project.

It can also be used to predict the probable increase in staff resources
required at various points during the project schedule.

The risk projection and analysis techniques are applied iteratively as the
software project proceeds. The project team should re visit the risk table at
regular intervals, re-evaluating each risk to determine when new
circumstances cause its probability and impact to change. As a
consequence of this activity, it may be necessary to add new risks to the
table, remove some risks that are no longer relevant, and change the
relative positions of still others.

Risk Assessment

At this point in the risk management process, we have established a set of
triplets of the form:

[ri, Ii, xi]

Where ri is risk, Ii is the likelihood (probability) of the risk, and xi is the
impact of the risk. During risk assessment, we further examine the
accuracy of the estimates that were made during risk projection, attempt to
rank the risks that have been uncovered, and begin thinking about ways to
control and/or avert risks that are likely to occur.

Referent point (cost wlue, time value)

Project lenninalion wil occur

Projected cost overrun

Figure 3.3: Risk referent level

MCS-104/92

For assessment to be useful, a risk referent level must be defined. For most
software projects, the risk components discussed earlier-performance,
cost, support, and schedule-also represent risk referent levels. That is,
there is a level for performance degradation, cost overrun, support
difficulty, or schedule slippage (or any combination of the four) that will
cause the project to be terminated. If a combination of risks create

problems that cause one or more of these referent levels to be exceeded,
work will stop. In the context of software risk analysis, a risk referent
level has a single point, called the referent point or break point, as shown
in figure 3.3, at which the decision to proceed with the project or terminate
it (problems are just too great) are equally weighted. In reality, the referent

level can rarely be represented as a smooth line on a graph. In most cases
it is a region in which there are areas of uncertainty; that is, attempting to
predict a management decision based on the combination of referent
values is often impossible.

Therefore, during risk assessment, we perform the following steps:

a. Define the risk referent levels for the project.

b. Attempt to develop a relationship between each (ri, li, xi) and each
of the referent levels.

c. Predict the set of referent points that define a region of termination,
bounded by a curve or areas of uncertainty.

d. Try to predict how compound combinations of risks will affect a
referent level.

Check Your Progress 3.

What is risk impact?

3.7 RISK REFINEMENT

During early stages of project planning, a risk may be stated quite
generally. As time passes and more is learned about the project and the
risk, it may be possible to refine the risk into a set of more detailed risks,
each somewhat easier to mitigate, monitor, and manage.

One way to do this is to represent the risk in condition-transition­
consequence (CTC) format. That is, the risk is stated in the following

form:

Given that <condition> then there is concern that (possibly)
<consequence>.

Using the CTC format for the reuse risk noted, we can write:

Given that all reusable software components must conform to specific
design standards and that some do not conform, then there is concern that
(possibly) only 70 percent of the planned reusable modules may actually
be integrated into the as-built system, resulting in the need to custom
engineer the remaining 30 percent of components. MCS-104/93

This general condition can be refined in the following manner:

Sub-condition 1. Certain reusable components were developed by a third
party with no knowledge of internal design standards.

Sub-condition 2. The design standard for component interfaces has not
been solidified and may not conform to certain existing
reusable components.

Sub-condition 3. Certain reusable components have been implemented in a
language that is not supported on the target environment.

The consequences associated with these refined sub-conditions remains
the same (i.e.,30 percent of software components must be customer
engineered), but the refinement helps to isolate the underlying risks and
might lead to easier analysis and response.

Check Your Progress 4.

What is CTC format?

3.8 Risk Mitigation, Monitoring and Management

All of the risk analysis activities presented to this point have a single
goal-to assist the project team in developing a strategy for dealing with
risk. An effective strategy must consider three issues:

• Risk avoidance
• Risk monitoring
• Risk management and contingency planning

If a software team adopts a proactive approach to risk, avoidance is always
the best strategy. This is achieved by developing a plan for risk mitigation.
For example, assume that high staff turnover is noted as a project risk, rl.
Based on past history and management intuition, the likelihood, 11, of high
turnover is estimated to be 0.70 (70 percent, rather high) and the impact,
xl, is projected at level 2. That is, high turnover will have a critical impact
on project cost and schedule.

To mitigate this risk, project management must develop a strategy for
reducing turnover. Among the possible steps to be taken are

• Meet with current staff to determine causes for turnover (e.g., poor
working conditions, low pay, and competitive job market).

• Mitigate those causes that are under our control before the project
starts.

• Once the project commences, assume turnover will occur and
develop techniques to ensure continuity when people leave.

• Organize project teams so that information about each development

activity is widely dispersed.
• Define documentation standards and establish mechanisms to be sure

that documents are developed in a timely manner.
MCS-104/94

• Conduct peer reviews of all work (so that more than one person is
"up to speed").

• Assign a backup staff member for every critical technologist.

As the project proceeds, risk monitoring activities commence. The project
manager monitors factors that may provide an indication of whether the
risk is becoming more or less likely. In the case of high staff turnover, the
following factors can be monitored:

• General attitude of team members based on project pressures.
• The degree to which the team has jelled.
• Interpersonal relationships among team members.
• Potential problems with compensation and benefits.
• The availability of jobs within the company and outside it.

In addition to monitoring these factors, the project manager should
monitor the effectiveness of risk mitigation steps. For example, a risk
mitigation step noted here called for the definition of documentation
standards and mechanisms to be sure that documents are developed in a
timely manner. This is one mechanism for ensuring continuity, should a
critical individual leave the project. The project manager should monitor
documents carefully to ensure that each can stand on its own and that each
imparts information that would be necessary if a newcomer were forced to
join the software team somewhere in the middle of the project.

Risk management and contingency planning assumes that mitigation
efforts have failed and that the risk has become a reality. Continuing the
example, the project is well underway and a number of people announce
that they will be leaving. If the mitigation Strategy has been followed,
backup is available, information is documented, and knowledge has been
dispersed across the team. In addition, the project manager may
temporarily refocus resources to those functions that are fully staffed,
enabling newcomers who must be added to the team to "get up to speed."
Those individuals who are leaving are asked to stop all work and spend
their last weeks in "knowledge transfer mode." This might include video­
based knowledge capture, the development of "commentary documents,"
and/or meeting with other team members who will remain on the project.

It is important to note that RMMM steps incur additional project cost. For
example, spending the time to "backup" every critical technologist costs
money. Part of risk management, therefore, is to evaluate when the
benefits accrued by the RMMM steps are outweighed by the costs

associated with implementing them. In essence, the project planner
performs a classic cost/benefit analysis. If a risk aversion step for high
turnover will increase both project cost and duration by an estimated 15
percent but the predominant cost factor is "backup," management may
decide not to implement this step. On the other hand, if the risk aversion

steps are projected to increase costs by 5 percent and duration by only 3
percent management will likely put all into place.

MCS-104/95

For a large project, 30 or 40 risks may identify. If between three and seven
risk management steps are identified for each, risk management may
become a project in itselfl For this reason, we adapt the Pareto 80-20 rule
to software risk. Experience indicates that 80 percent of the overall project
risk (i.e., 80 percent of the potential for project failure) can be accounted
for by only 20 percent of the identified risks. The work performed during
earlier risk analysis steps will help the planner to determine which of the
risks reside in that 20 percent (e.g., risks that lead to the highest risk
exposure). For this reason, some of the risks identified, assessed, and
projected may not make it into the RMMM plan-they don't fall into the
critical 20 percent (the risks with highest project priority).

Check Your Progress 5.

What are the three phases of Risk management?

3.9SUMMARY

This section covers about risk, its analysis, and strategies to manage it.
Although technical issues are a primary concern both early on and
throughout all project phases, risk management must consider both
internal and external sources for cost, schedule, and technical risk. Early
and aggressive detection of risk is important because it is typically easier,
less costly, and less disruptive to make changes and correct work efforts
during the earlier, rather than the later, phases of the project.

Risk management can be divided into three parts: defining a risk
management strategy; identifying and analyzing risks; and handling
identified risks, including the implementation of risk mitigation plans
when needed. At last discuss about the RMMM.

3.10 EXERCISE

(1) What Is Risk? What is Risk management mean? What are the factors
that lead to Risk?

(2) Explain elaborately the various strategies and steps involved in risk
management

(3) What are four impacts of the project risk?

4) Give the Important characteristics of the risk management?

(5) What are the three phases of Risk management? Explain them.

(6) What are the ways of identifying the potential risks?

(7) Define the various steps under risk analysis.

(8) What Is Risk mitigation, Monitoring and Management Plan?

MCS-104/96

Master in Computer
Science

Uttar Pradesh Rajarshi Tandon

Open University

MCS-104
Software Engineering

Block

3
Unit 1 Software Quality Assurance

Unit 2 Software Configuration Management

Unit 3 Analysis Concepts and Principles

101-112

113-126

127-146

MCS-104/97

Course Design Committee

Dr. Ashutosh Gupta Chairman
Director (In-charge)
School of Computer and Information Science, UPRTOU Prayagraj

Prof. R. S. Yadav
Department of Computer Science and Engineering
MNNIT Allahabad, Prayagraj

Ms. Marisha
Assistant Professor (Computer Science)
School of Science, UPRTOU Prayagraj

Mr. Manoj Kumar Balwant
Assistant Professor (computer science)
School of Sciences, UPR TOU Prayagraj

Course Preparation Committee

Dr. Pooja Yadav
Assistant Professor, Dept. of CS & IT
MJP Rohilkhand University, Bareilly (UP)

Dr. Ashutosh Gupta
Associate Professor, Dept. of CS & IT
MJP Rohilkhand University, Bareilly (UP)

Mr. Manoj Kumar Balwant

Assistant Professor (computer science)
School of Sciences, UPR TOU Prayagraj

© UPRTOU, Prayagraj. 2019

ISBN: 978-93-83328-19-2

Member

Member

Member

Author

Editor

Coordinator

All Rights are reserved. No part of this work may be reproduced in any form, by

mimeograph or any other means, without permission in writing from the Uttar

Pradesh Rajarshi Tondon Open University, Prayagraj.

Printed and Published by Dr. Arun Kumar Gupta Registrar, Uttar
Pradesh Rajarshi Tandon Open University, 2019.

Printed By : K.C.Printing & Allied Works, Panchwati, Mathura -281003.
MCS-104/98

http://softwaretestingfundamentals.com/software-quality-control/

Overview

In this section we discuss the overview of this block's content. This block
consists of the following units:

Unit 1 Software Quality Assurance

Software Quality Assurance encompasses the entire software development
life cycle and the goal is to ensure that the development and/or

maintenance processes are continuously improved to produce products
that meet specifications/requirements.

The process of Software Quality Control (SQC) is also governed by
Software Quality Assurance (SQA).

Unit 2 Software Configuration Management

The purpose of Software Configuration Management is to establish and

maintain the integrity of the products of the software project throughout
the project's software life cycle. Software Configuration Management
involves identifying configuration items for the software project,
controlling these configuration items and changes to them, and recording
and reporting status and change activity for these configuration items

Unit 3 Analysis Concepts and Principles

Requirements analysis allows the software engineer to refine the software
allocation and build models of the data, functional, and behavioural
domains that will be treated by software. And the software requirements
specification provides the developer and the customer with the means to
assess quality once software is built.

MCS-104/99

MCS-104/100

UNIT-1

SOFTWARE QUALITY ASSURANCE

Structure

1.0 Introduction

1.1 Objective

1.2 Principle of Software Quality Assurance

1.3 Basic concept of Quality

1.4 Quality Control

1.5 Quality Assurance

1.6 Cost of Quality

1. 7 Software Review

1.8 Formal Technique review

1.9 Software Reliability

1.10 Summary

1.11 Exercise

1.0 INTRODUCTION

It's not enough to talk the talk by saying that software quality is

important, we should:

i Explicitly define what is meant when you say "software quality,"

ii Create a set of activities that will help ensure that every software
engineering work product exhibits high quality,

iii Perform quality assurance activities on every software project,

iv Use metrics to develop strategies for improving your software
process and, as a consequence, the quality of the end product.

1.1 OBJECTIVE

The various objectives of SQA are as follows:

a) Quality management approach.

b) Measurement and reporting mechanisms.

c) Effective software-engineering technology.

MCS-104/101

d) A procedure to assure compliance with software-development
standards where applicable.

e) A multi-testing strategy is drawn.

t) Formal technical reviews that are applied throughout the software
process.

1.2 PRINCICPLE OF SOFTWARE QUALITY

ASSURANCE

For our purposes, software quality is defined as

"Conformance to explicitly stated functional and performance
requirements, explicitly documented development standards, and implicit
characteristics that are expected of all professionally developed
software. "

There is little question that this definition could be modified or extended.
In fact, a definitive definition of software quality could be debated
endlessly. The definition serves to emphasize three important points:

1. Software requirements are the foundation from which quality is
measured. Lack of conformance to requirements is lack of quality.

2. Specified standards define a set of development criteria that guide the
manner in which software is engineered. If the criteria are not
followed, lack of quality will almost surely result.

3. A set of implicit requirements often goes unmentioned (e.g., the desire
for ease of use and good maintainability). If software conforms to its
explicit requirements but fails to meet implicit requirements, software
quality is suspect.

A Software Quality Assurance Plan is created to define a software team's
SQA strategy. During analysis, design, and code generation, the primary
SQA work product is the formal technical review summary report. During
duplicate testing, test plans and procedures are produced. Other work
products associated with process improvement may also be generated.

SQA encompasses-

1. A quality management approach

2. Effective software engineering technology (methods and tools)

3. Formal technical reviews that are applied throughout the software
process

4. A multi-tiered testing strategy

5. Control of software documentation and the changes made to it

6. A procedure to ensure compliance with software development
standards

7. Measurement and reporting mechanisms.

MCS-104/102

Software quality is:

1. The degree to which a system, component, or process meets
specified requirements.

2. The degree to which a system, component, or process meets
customer or user needs or expectations.

Software quality assurance is:

1. A planned and systematic pattern of all actions necessary to
provide adequate confidence that an item or product conforms to
established technical requirements.

2. A set of activities designed to evaluate the process by which the
products are developed or manufactured. Contrast with quality
control.

SQA Activities

Software quality assurance is composed of a variety of tasks associated
with two different constituencies-the software engineers who do
technical work and an SQA group that has responsibility for quality
assurance planning, oversight, record keeping, analysis, and reporting.

Software engineers address quality by applying solid technical methods
and measures, conducting formal technical reviews, and performing well­
planned software testing.

i. Prepares an SQA plan for a project. The plan is developed during
project planning and is reviewed by all interested parties. Quality
assurance activities performed by the software engineering team
and the SQA group are governed by the plan. The plan identifies
• evaluations to be performed
• audits and reviews to be performed
• standards that are applicable to the project
• procedures for error reporting and tracking
• documents to be produced by the SQA group
• amount of feedback provided to the software project team

ii. Participates in the development of the project's software process
description. The software team selects a process for the work to be
performed. The SQA group reviews the process description for
compliance with organizational policy, internal software standards,
externally imposed standards (e.g., ISO-9001), and other parts of
the software project plan.

111. Reviews software engineering activities to verify compliance with
the defined software process. The SQA group identifies,
documents, and tracks deviations from the process and verifies that
corrections have been made.

1v. Audits designated software work products to verify compliance

with those defined as part of the software process. The SQA
group reviews selected work products; identifies, documents, and

tracks deviations; verifies that corrections have been made; and
periodically reports the results of its work to the project manager.

MCS-104/103

v. Ensures that deviations in software work and work products are

documented and handled according to a documented procedure.
Deviations may be encountered in the project plan, process
description, applicable standards, or technical work products.

vi. Records any noncompliance and reports to senior management.
Noncompliance items are tracked until they are resolved.

The objectives of SQA activities

Software development (process-oriented):

i. Assuring an acceptable level of confidence that the software will
conform to functional technical requirements.

ii. Assuring an acceptable level of confidence that the software will
conform to managerial scheduling and budgetary requirements.

iii. Initiating and managing of activities for the improvement and
greater efficiency of software development and SQA activities.
This means improving the prospects that the functional and
managerial requirements will be achieved while reducing the costs
of carrying out the software development and SQA activities.

Software maintenance (product-oriented):

i. Assuring with an acceptable level of confidence that the software
maintenance activities will conform to the functional technical
requirements.

ii. Assuring with an acceptable level of confidence that the software
maintenance activities will conform to managerial scheduling and
budgetary requirements.

iii. Initiating and managing activities to improve and increase the
efficiency of software maintenance and SQA activities. This
involves improving the prospects of achieving functional and
managerial requirements while reducing costs.

Elements of SQA

• Standards

• Reviews and Audits

• Testing

• Error/defect collection and analysis

• Change management

• Education

• Vendor management

• Security management

• Safety

• Risk management
MCS-104/104

SQA Goals

• Requirements quality. The correctness, completeness, and
consistency of the requirements model will have a strong influence
on the quality of all work products that follow.

• Design quality. Every element of the design model should be
assessed by the software team to ensure that it exhibits high quality
and that the design itself conforms to requirements.

• Code quality. Source code and related work products (e.g., other
descriptive information) must conform to local coding standards and
exhibit characteristics that will facilitate maintainability.

• Quality control effectiveness. A software team should apply limited
resources in a way that has the highest Likelihood of achieving a
high quality result.

• ISO 9001:2000 Standard ISO 9001:2000 is the quality assurance
standard that applies to software engineering. The standard contains
20 requirements that must be present for an effective quality
assurance system. The requirements delineated by ISO 9001 :2000
address topics such as management responsibility, quality system,
contract review, design control, document and data control, product
identification and traceability, process control, inspection and
testing, corrective and preventive action, control of quality records,
internal quality audits, training, servicing, and statistical techniques.

Check Your Progress 1.

What are the activities associated with SQA group?

1.3 BASIC CONCEPT OF QUALITY

The American Heritage Dictionary defines quality as "a
characteristic or attribute of something." As an attribute of an item, quality
refers to measurable characteristics- things we are able to compare to
known standards such as length, colour, electrical properties, and
malleability. However, software, largely an intellectual entity, is more
challenging to characterize than physical objects.

Nevertheless, measures of a program's characteristics do exist. These
properties include cyclomatic complexity, cohesion, number of function
points, lines of code, and many others.

When we examine an item based on its measurable characteristics, two
kinds of quality may be encountered: quality of design and quality of
conformance.

Quality of design refers to the characteristics that designers specify for an

item. The grade of materials, tolerances, and performance specifications
all contribute to the quality of design. As higher-grade materials are used,
tighter tolerances and greater levels of performance are specified, the
design quality of a product increases, if the product is manufactured
according to specifications. MCS-104/105

Quality of conformance is the degree to which the design specifications
are followed during manufacturing. Again, the greater the degree of
conformance, the higher is the level of quality of conformance.

In software development, quality of design encompasses requirements,
specifications, and the design of the system. Quality of conformance is an
issue focused primarily on implementation. If the implementation follows
the design and the resulting system meets its requirements and
performance goals, conformance quality is high.

But are quality of design and quality of conformance the only issues that
software engineers must consider? Robert Glass argues that a more
"intuitive" relationship is in order:

User satisfaction = compliant product + good quality +

Delivery within budget and schedule

At the bottom line, Glass contends that quality is important, but if the user
isn't satisfied, nothing else really matters. DeMarco reinforces this view
when he states: "A product's quality is a function of how much it changes
the world for the better." This view of quality contends that if a software

product provides substantial benefit to its end-users, they may be willing
to tolerate occasional reliability or performance problems.

Check Your Progress 2.

What are the measures of software quality?

1.4 QUALITY CONTROL

Variation control may be equated to quality control. But how do
we achieve quality control? Quality control involves the series of

inspections, reviews, and tests used throughout the software process to
ensure each work product meets the requirements placed upon it. Quality
control includes a feedback loop to the process that created the work

product. The combination of measurement and feedback allows us to tune
the process when the work products created fail to meet their
specifications.

This approach views quality control as part of the manufacturing process.
Quality control activities may be fully automated, entirely manual, or a

combination of automated tools and human interaction. A key concept of
quality control is that all work products have defined, measurable
specifications to which we may compare the output of each process. The
feedback loop is essential to minimize the defects produced.

Check Your Progress 3.

What is Software Quality Control?

MCS-104/106

1.5 QUALITY ASSURANCE

Quality assurance consists of the auditing and reporting functions
of management. The goal of quality assurance is to provide management
with the data necessary to be informed about product quality, thereby
gaining insight and confidence that product quality is meeting its goals. Of
course, if the data provided through quality assurance identify problems, it
is management's responsibility to address the problems and apply the
necessary resources to resolve quality issues.

Check Your Progress 4.

What is the need of quality assurance?

1.6 COST OF QUALITY

The cost of quality includes all costs incurred in the pursuit of
quality or in performing quality-related activities. Cost of quality studies
are conducted to provide a baseline for the current cost of quality, identify
opportunities for reducing the cost of quality, and provide a normalized
basis of comparison. The basis of normalization is almost always dollars.
Once we have normalized quality costs on a dollar basis, we have the
necessary data to evaluate where the opportunities lie to improve our
processes. Furthermore, we can evaluate the effect of changes in dollar­
based terms. Quality costs may be divided into costs associated with
prevention, appraisal, and failure.

Prevention costs include

• quality planning

• formal technical reviews

• test equipment

• training

Appraisal costs include activities to gain insight into product condition the
"first time through" each process. Examples of appraisal costs include:

• in-process and inter-process inspection

• equipment calibration and maintenance

• testing

Failure costs are those that would disappear if no defects appeared before
shipping a product to customers. Failure costs may be subdivided into
internal failure costs and external failure costs. Internal failure costs are
incurred when we detect a defect in our product prior to shipment. Internal
failure costs include

• rework
MCS-104/107

• repair

• failure mode analysis

External failure costs are associated with defects found after the product
has been shipped to the customer. Examples of external failure costs are

• complaint resolution

• product return and replacement

• help line support

• warranty work

Check Your Progress 5.

What are the components of the Cost of Quality?

1.7 SOFTWARE REVIEW

Software reviews are a "filter" for the software engineering
process. That is, reviews are applied at various points during software
development and serve to uncover errors and defects that can then be
removed. Software reviews "purify" the software engineering activities
that we have called analysis, design, and coding.

Freedman and Weinberg describe the need for reviews this way:

"Technical work needs reviewing for the same reason that pencils need
erasers: To err is human. The second reason we need technical reviews is

that although people are good at catching some of their own errors, large
classes of errors escape the originator more easily than they escape

anyone else. "

A review - any review - is a way of using the diversity of a group of
people to:

i Point out needed improvements in the product of a single person or
team;

ii Confirm those parts of a product in which improvement is either not

desired or not needed;

iii Achieve technical work of more uniform, or at least more
predictable, quality than can be achieved without reviews, in order to
make technical work more manageable.

Many different types of reviews can be conducted as part of software
engineering. Each has its place. An informal meeting around the coffee
machine is a form of review, if technical problems are discussed. A formal
presentation of software design to an audience of customers, management,
and technical staff is also a form of review. A formal technical review is

MCS-104/108

the most effective filter from a quality assurance standpoint; Conducted by
software engineers (and others) for software engineers.

Check Your Progress 6.

What is the need to review software and when review is required?

1.8 FORMAL TECHNICAL REVIEWS

A formal technical review is a software quality assurance activity
performed by software engineers (and others). The objectives of the FTR

are

i To uncover errors in function, logic, or implementation for any
representation of the software

ii To verify that the software under review meets its requirements

iii To ensure that the software has been represented according to
predefined Ostandards

iv To achieve software that is developed in a uniform manner

v To make projects more manageable

In addition, the FTR serves as a training ground, enabling junior engineers
to observe different approaches to software analysis, design, and

implementation. The FTR also serves to promote backup and continuity
because a number of people become familiar with parts of the software
that they may not have otherwise seen. The FTR is actually a class of
reviews that includes walkthroughs, inspections, round-robin reviews and
other small group technical assessments of software. Each FTR is
conducted as a meeting and will be successful only if it is properly
planned, controlled, and attended. In the sections that follow, guidelines
similar to those for a walkthrough are presented as a representative formal
technical review.

The Review Meeting

Regardless of the FTR format that is chosen, every review meeting should
abide by the following constraints:

• Between three and five people (typically) should be involved in the
review.

• Advance preparation should occur but should require no more than
two hours of work for each person.

• The duration of the review meeting should be less than two hours.

Given these constraints, it should be obvious that an FTR focuses on a
specific (and small) part of the overall software. For example, rather than
attempting to review an entire design, walkthroughs are conducted for
each component or small group of components. By narrowing focus, the
FTR has a higher likelihood of uncovering errors.

MCS-104/109

Review Reporting and Record Keeping

During the FTR, a reviewer (the recorder) actively records all issues that
have been raised. These are summarized at the end of the review meeting
and a review issues list is produced. In addition, a formal technical review
summary report is completed.

A review summary report answers three questions:

i What was reviewed?

ii Who reviewed it?

iii What were the findings and conclusions?

The review summary report is a single page form. It becomes part of the
project historical record and may be distributed to the project leader and
other interested parties.

Review Guidelines

Guidelines for the conduct of formal technical reviews must be established
in advance, distributed to all reviewers, agreed upon, and then followed. A
review that is uncontrolled can often be worse that no review at all. The
following represents a minimum set of guidelines for formal technical
reviews:

i Review the product, not the producer

11 Set an agenda and maintain it

iii Limit debate and rebuttal

1v Enunciate problem areas

v Take written notes

v1 Limit the number of participants and insist upon advance preparation

vii Develop a checklist for each product that is likely to be reviewed

viii Allocate resources and schedule time for FTRs

ix Conduct meaningful training for all reviewers

x Review your early reviews

Check Your Progress 7.

What are the differences between reviews and formal technical reviews?

1.9 SOFTWARE RELIABILITY

There is no doubt that the reliability of a computer program is an
important element of its overall quality. If a program repeatedly and
frequently fails to perform, it matters little whether other software quality
factors are acceptable.

MCS-104/110

Software reliability, unlike many other quality factors, can be measured
directed and estimated using historical and developmental data. Software
reliability is defined in statistical terms as "the probability of failure-free
operation of a computer program in a specified environment for a
specified time". To illustrate, program Xis estimated to have a reliability
of 0.96 over eight elapsed processing hours. In other words, if program X
were to be executed 100 times and require eight hours of elapsed
processing time, it is likely to operate correctly (without failure) 96 times
out of 100.

Whenever software reliability is discussed, a pivotal question arises: What
is meant by the term failure? In the context of any discussion of software
quality and reliability, failure is non-conformance to software
requirements. Yet, even within this definition, there are gradations.
Failures can be only annoying or catastrophic. One failure can be
corrected within seconds while another requires weeks or even months to
correct. Complicating the issue even further, the correction of one failure
may in fact result in the introduction of other errors that ultimately result
in other failures.

Measures of Reliability and Availability

Early work in software reliability attempted to extrapolate the
mathematics of hardware reliability theory to the prediction of software
reliability. Most hardware-related reliability models are predicated on
failure due to wear rather than failure due to design defects. In hardware,
failures due to physical wear are more likely than a design-related failure.
Unfortunately, the opposite is true for software. In fact, all software
failures can be traced to design or implementation problems; wear does
not enter into the picture.

There has been debate over the relationship between key concepts in
hardware reliability and their applicability to software. Although an
irrefutable link has yet be established, it is worthwhile to consider a few
simple concepts that apply to both system elements. If we consider a
computer-based system, a simple measure of reliability is meantime­
between-failure (MTBF), where

MTBF = MTTF + MTTR

The acronyms MTTF and MTTR are mean-time-to-failure and mean-time­
to-repair, respectively. Many researchers argue that MTBF is a far more
useful measure than defects/KLOC or defects/FP. stated simply, an end­
user is concerned with failures, not with the total error count. Because
each error contained within a program does not have the same failure rate,
the total error count provides little indication of the reliability of a system.
For example, consider a program that has been in operation for 14 months.
Many errors in this program may remain undetected for decades before
they are discovered. The MTBF of such obscure errors might be 50 or
even 100 years. Other errors, as yet undiscovered, might have a failure
rate of 18 or 24 months. Even if every one of the first category of errors

MCS-104/111

(those with long MTBF) is removed, the impact on software reliability is
negligible.

In addition to a reliability measure, we must develop a measure of
availability. Software availability is the probability that a program is
operating according to requirement sat a given point in time and is defined
as

Availability = [MTTF I (MTTF + MTTR)] x 100%

The MTBF reliability measure is equally sensitive to MTTF and MTTR.
The availability measure is somewhat more sensitive to MTTR, an indirect
measure of the maintainability of software.

Check Your Progress 8.

How we can measure the reliability and availability of any software?

1.10 SUMMARY

This chapter covers a brief discussion about Software Quality, and
its role, everyone involved in the software engineering process is
responsible for quality. If a software team stresses quality in all software
engineering activities, it reduces the amount of rework that it must do.
That results in lower costs, and more importantly, improved time-to­
market. Before software quality assurance activities can be initiated, it is
important to define 'software quality' at a number of different levels of
abstraction. Once you understand what quality is, a software team must
identify a set of SQA activities that will filter errors out of work products
before they are passed on.

1.11 EXERCISE

(1) How do we define Software Quality? What is Software Quality
Control? What are the components of the Cost of Quality?

(2) What is Software Quality Assurance? What activities are required to
perform SQA?

(3) Define the terms:

(4)

(5)

(6)

(7)

(8)

(a) Quality of Design (b) Quality of Conformance

What are the factors of Software Quality? Define.

What is the role of Software Quality in software?

What is Software Reliability? How can we Measures Reliability and
Availability?

Explain the objective of SQA activities.

Define the Software Reviews and Formal Technical Review. Are
both term same or different with each other? Explain.

MCS-104/112

UNIT-2

SOFTWARE CONFIGURATION

MANAGEMENT

Structure

2.0 Introduction

2.1 Objective

2.2 Principle of Software Configuration Management

2.3 Baseline of SCM

2.4 Software Configuration items

2.5 SCM process

2.6 Version Control

2. 7 Change Control

2.8 Configuration Audit

2.9 Status Reporting

2.10 Summary

2.11 Exercise

2.0 INTRODUCTION

Software configuration management (SCM) is a set of activities
designed to control change by identifying the work products that are likely
to change, establishing relationships among them, defining mechanisms
for managing different versions of these work products, controlling the
changes imposed, and auditing and reporting on the changes made.

Change is inevitable when computer software is built. And change
increases the level of confusion among software engineers who are
working on a project. Confusion arises when changes are not analysed
before they are made, recorded before they are implemented, reported to
those with a need to know, or controlled in a manner that will improve
quality and reduce error.

2.1 OBJECTIVE

The objectives of this unit are:

a) Continuous control of product specifically built situations

b) Improvement of quality MCS-104/113

c) Active monitoring of changes instead of being driven by changes

d) Cost-effective project management

e) Accurate definition of items affected by a change (i.e. design
documents, contracts, parts and tools)

f) Complete design requirements per end-product

g) Traceability between multi-level contract changes

h) Elimination of data duplication, allowing for segregated data
responsibility

i) Continuous recording of the product specific design/build situation
and deviation reporting

2.2 PRINCIPLE OF SOFTWARE CONFIGURATION

MANAGEMENT

As per Babich:

"Configuration management is the art of identifying, organizing, and

controlling modifications to the software being built by a programming

team. The goal is to maximize productivity by minimizing mistakes. "

Software configuration management (SCM) is an umbrella activity that is

applied throughout the software process. Because change can occur at any

time, SCM activities are developed to,

i Identify change

ii Control change,

iii Ensure that change is being properly implemented, and

iv Report changes to others who may have an interest.

It is important to make a clear distinction between software support and

software configuration management. Support is a set of software

engineering activities that occur after software has been delivered to the

customer and put into operation. Software configuration management is a

set of tracking and control activities that begin when a software

engineering project begins and terminate only when the software is taken

out of operation.

A primary goal of software engineering is to improve the ease with which

changes can be accommodated and reduce the amount of effort expended

when changes must be made.

The output of the software process is information that may be divided into

three broad categories: MCS-104/114

i Computer programs (both source level and executable forms)

ii Documents that describe the computer programs (targeted at both

technical practitioners and users)

iii Data (contained within the program or external to it)

The items that comprise all information produced as part of the software

process are collectively called a software configuration.

As the software process progresses, the number of software configuration

items (SCis) grows rapidly. A System Specification spawns a Software

Project Plan and Software Requirements Specification. These in turn

spawn other documents to create a hierarchy of information. If each SCI

simply spawned other SCis, little confusion would result. Unfortunately,

another variable enters the process-change. Change may occur at any

time, for any reason.

What is the origin of these changes? The answer to this question is as

varied as the changes themselves. However, there are four fundamental

sources of change:

• New business or market conditions dictate changes in product

requirements or business rules.

• New customer needs demand modification of data produced by

information systems, functionality delivered by products, or services

delivered by a computer-based system.

• Reorganization or business growth/downsizing causes changes in

project priorities or software engineering team structure.

• Budgetary or scheduling constraints cause a redefinition of the

system or product.

Check Your Progress 1.

What is the Origin of changes that are requested for software?

2.3 BASELINE OF SCM

Change is a fact of life in software development. Customers want

to modify requirements. Developers want to modify the technical

approach. Managers want to modify the project strategy. Why all this

modification? The answer is really quite simple. As time passes, all

constituencies know more (about what they need, which approach would

be best, how to get it done and still make money). This additional

knowledge is the driving force behind most changes and leads to a

MCS-104/115

statement of fact that is difficult for many software engmeenng

practitioners to accept: Most changes are justified!

A baseline is a software configuration management concept that helps us

to control change without seriously impeding justifiable change.

The IEEE defines a baseline as:

"A specification or product that has been formally reviewed and agreed

upon, that thereafter serves as the basis for further development, and that

can be changed only through formal change control procedures. "

One way to describe a baseline is through analogy: Consider the doors to

the kitchen in a large restaurant. One door is marked OUT and the other is

marked IN. The doors have stops that allow them to be opened only in the

appropriate direction.

If a waiter picks up an order in the kitchen, places it on a tray and then

realizes he has selected the wrong dish, he may change to the correct dish

quickly and informally before he leaves the kitchen.

If, however, he leaves the kitchen, gives the customer the dish and then is

informed of his error, he must follow a set procedure:

i Look at the check to determine if an error has occurred

ii Apologize profusely

iii Return to the kitchen through the in-door

iv Explain the problem, and so forth

A baseline is analogous to the kitchen doors in the restaurant. Before a

software configuration item becomes a baseline, change may be made

quickly and informally. However, once a baseline is established, we

figuratively pass through a swinging one way door. Changes can be made,

but a specific, formal procedure must be applied to evaluate and verify

each change.

In the context of software engineering, a baseline is a milestone in the

development of software that is marked by the delivery of one or more

software configuration items and the approval of these SCis that is

obtained through a formal technical review.

Check Your Progress 2.

What is the need for baseline?

MCS-104/116

2.4 SOFTWARE CONFIGURATION ITEMS

We have already defined a software configuration item as

information that is created as part of the software engineering process. In

the extreme, a SCI could be considered to be a single section of a large

specification or one test case in a large suite of tests. More realistically, an

SCI is a document, an entire suite of test cases, or a named program

component (e.g., a C++ function or an Ada package).In addition to the

SCis that are derived from software work products; many software

engineering organizations also place software tools under configuration

control. That is, specific versions of editors, compilers, and other CASE

tools are "frozen" as part of the software configuration. Because these

tools were used to produce documentation, source code, and data, they

must be available when changes to the software configuration are to be

made. Although problems are rare, it is possible that a new version of a

tool (e.g., a compiler) might produce different results than the original

version. For this reason, tools, like the software that they help to produce,

can be base lined as part of a comprehensive configuration management

process.

In reality, SCis are organized to form configuration objects that may be

catalogued in the project database with a single name. A configuration

object has a name, attributes, and is "connected" to other objects by

relationships. Referring to figure 2.1, the configuration objects, Design

Specification, data model, component N, source code and Test

Specification are each defined separately. However, each of the objects is

related to the others as shown by the arrows. A curved arrow indicates a

compositional relation. That is, data model and component N are part of

the object Design Specification. A double-headed straight arrow indicates

an interrelationship. If a change were made to the source code object, the

interrelationships enable a software engineer to determine what other

objects (and SCis) might be affected.

MCS-104/117

Design specification

data design ---1--­

architectural design
module design ----11----­

interface design

Test specification

test plan
test procedure
test cases

Data model

Component N

interface description
algorithm description
POL

Source code

Figure 2.1: Configuration Objects

Check Your Progress 3.

What to identify as configuration items and how?

2.5 SCM PROCESS

Software configuration management is an important element of
software quality assurance. Its primary responsibility is the control of
change. However, SCM is also responsible for the identification of
individual SCis and various versions of the software, the auditing of the

MCS-104/118

software configuration to ensure that it has been properly developed, and
the reporting of all changes applied to the configuration.

Any description of SCM introduces a set of complex questions:

• How does an organization identify and manage the many existing
versions of a program in a manner that will enable change to be
accommodated efficiently?

• How an organization control changes does before and after software
is released to a customer?

• Who has responsibility for approving and ranking changes?
• How can we ensure that changes have been made properly?
• What mechanism is used to apprise others of changes that are made?

These questions lead us to the definition of five SCM tasks: identification,
version control, and change control, configuration auditing, and reporting.

To control and manage software configuration items, each must be
separately named and then organized using an object-oriented approach.

Two types of objects can be identified: basic objects and aggregate

objects. A basic object is a "unit of text" that has been created by a
software engineer during analysis, design, code, or test. For example, a
basic object might be a section of a requirements specification, a source
listing for a component, or a suite of test cases that are used to exercise the
code. An aggregate object is a collection of basic objects and other
aggregate objects.

Conceptually, it can be viewed as a named (identified) list of pointers that
specify basic objects such as data model and component N. Each object
has a set of distinct features that identify it uniquely: a name, a
description, a list of resources, and a "realization." The object name is a
character string that identifies the object unambiguously.

Check Your Progress 4.

What are the Objectives of SCM Process?

2.6 VERSION CONTROL

Version control combines procedures and tools to manage different
versions of configuration objects that are created during the software
process.

Clemm describes version control in the context of SCM:

"Configuration management allows a user to specify alternative

configurations of the software system through the selection of appropriate

versions. This is supported by associating attributes with each software

version, and then allowing a configuration to be specified by describing

the set of desired attributes. "

These "attributes" mentioned can be as simple as a specific version
number that is attached to each object or as complex as a string of Boolean MCS-104/119

variables (switches) that indicate specific types of functional changes that
have been applied to the system.

One representation of the different versions of a system is the evolution
graph presented in figure 2.2. Each node on the graph is an aggregate
object, that is, a complete version of the software. Each version of the
software is a collection of SCis (source code, documents, data), and each
version may be composed of different variants. To illustrate this concept,
consider a version of a simple program that is composed of entities 1, 2, 3,
4, and 5.Entity 4 is used only when the software is implemented using

colour displays. Entity 5 is implemented when monochrome displays are
available.

Variants

Entities

Versions

Figure 2.2: Object pool representation of components, variants, and
versions

Therefore, two variants of the version can be defined:

(1) Entities 1, 2, 3, and 4;

(2) Entities 1, 2, 3, and 5.

To construct the appropriate variant of a given version of a program, each
entity can be assigned an "attribute-tuple"-a list of features that will
define whether the entity should be used when a particular variant of a
software version is to be constructed. One or more attributes is assigned
for each variant. For example, a colour attribute could be used to define
which entity should be included when colour displays are to be supported.

MCS-104/120

Another way to conceptualize the relationship between entities, variants
and versions (revisions) is to represent them as an object pool. Referring
to figure, the relationship between configuration objects and entities,
variants and versions can be represented in a three-dimensional space. An
entity is composed of a collection of objects at the same revision level. A
variant is a different collection of objects at the same revision level and
therefore coexists in parallel with other variants.

A new version is defined when major changes are made to one or more
objects. A number of different automated approaches to version control
have been proposed over the past decade. The primary difference in
approaches is the sophistication of the attributes that are used to construct
specific versions and variants of a system and the mechanics of the
process for construction.

2.7 CHANGE CONTROL

The reality of change control in a modem software engineering
context has been summed up beautifully by James Bach:

"Change control is vital. But the forces that make it necessary also make
it annoying. We worry about change because a tiny perturbation in the
code can create a big failure in the product. But it can also fvc a big
failure or enable wonderful new capabilities. We worry about change
because a single rogue developer could sink the project; yet brilliant ideas
originate in the minds of those rogues, and a burdensome change control
process could effectively discourage them from doing creative work. "

Bach recognizes that we face a balancing act. Too much change control
and we create problems. Too little, and we create other problems.

For a large software engineering project, uncontrolled change rapidly
leads to chaos. For such projects, change control combines human
procedures and automated tools to provide a mechanism for the control of
change. A change request is submitted and evaluated to assess technical
merit, potential side effects, overall impact on other configuration objects
and system functions, and the projected cost of the change. The results of
the evaluation are presented as a change report, which is used by a Change
Control Authority (CCA) - a person or group who makes a final decision
on the status and priority of the change. An Engineering Change Order

(ECO) is generated for each approved change. The ECO describes the
change to be made, the constraints that must be respected, and the criteria
for review and audit. The object to be changed is "checked out" of the
project database, the change is made, and appropriate SQA activities are
applied. The object is then "checked in" to the database and appropriate
version control mechanisms are used to create the next version of the
software.

The "check-in" and "check-out" process implements two important
elements of change control - access control and synchronization control.
Access control governs which software engineers have the authority to

access and modify a particular configuration object. Synchronization MCS-104/121

control helps to ensure that parallel changes, performed by two different
people, don't overwrite one another. Access and synchronization control
flow are illustrated schematically in figure 2.3.

Based on an approved change request and ECO, software engineers check­
out a configuration object.

Configuration object
(modified version)

Configuration object
(extracted version)

lock

Configuration object
(baseline version)

Ownership
info

Configuration object
(baseline version)

,..
clarl.e

Figure 2.3: Access and synchronization control

An access control function ensures that the software engineer has authority
to check out the object, and synchronization control locks the object in the
project database so that no updates can be made to it until the currently
checked-out version has been replaced. Note that other copies can be
checked-out, but other updates cannot be made. A copy of the base lined
object, called the extracted version, is modified by the software engineer.
After appropriate SQA and testing, the modified version of the object is
checked in and the new baseline object is unlocked.

Prior to an SCI becoming a baseline, only informal change control need be
applied. The developer of the configuration object (SCI) in question may
make whatever changes are justified by project and technical

MCS-104/122

requirements. Once the object has undergone formal technical review and
has been approved, a baseline is created. Once an SCI becomes a baseline,
project level change control is implemented. Now, to make a change, the
developer must gain approval from the project manager or from the CCA
if the change affects other SCis. In some cases, formal generation of
change requests, change reports, and ECOs is dispensed with. However,
assessment of each change is conducted and all changes are tracked and
reviewed.

When the software product is released to customers, formal change control
is instituted. The formal change control procedure has been outlined in
figure 2.4

Need for change is recognized
•

Change request from user
•

Developer evaluates
•

Change report is generated
•

Change control authority decides

Request is queued for action, ECO generated Change request is denied

•
Assign individuals to configuration objects

•
"Check out" configuration objects (items)

•
Make the change

•
Review (audit) the chfge

"Check in" the configuration items that have
been changed

•
Establish a baseline for f sting

Perform quality assurance and testing
activities

•
"Promote" changes for inclusion in next

release (revision)

Rebuild appropriate version ol software
Review (audit) the change to all configuration

items

•
Include changes in new version

•
Distribute the new version

User is informed

Figure 2.4: The Change Process MCS-104/123

The change control authority plays an active role in the second and third
layers of control. Depending on the size and character of a software
project, the CCA may be composed of one person-the project manager -
or a number of people. The role of the CCA is to take a global view, that
is, to assess the impact of change beyond the SCI in question.

Check Your Progress 5.

What is the difference between version control and change control?

2.8 CONFIGURATION AUDIT

Identification, version control, and change control help the

software developer to maintain order in what would otherwise be a chaotic

and fluid situation. However, even the most successful control

mechanisms track a change only until an ECO is generated. How can we

ensure that the change has been properly implemented? The answer is

twofold: (1) formal technical reviews and (2) the software configuration

audit.

The formal technical review focuses on the technical correctness of the

configuration object that has been modified. The reviewers assess the SCI

to determine consistency with other SCis, omissions, or potential side

effects. A formal technical review should be conducted for all but the most

trivial changes. A software configuration audit complements the formal

technical review by assessing a configuration object for characteristics that

are generally not considered during review.

The audit asks and answers the following questions:

i Has the change specified in the ECO been made? Have any

additional modifications been incorporated?

ii Has a formal technical review been conducted to assess technical

correctness?

iii Has the software process been followed and have software

engineering standards been properly applied?

iv Has the change been "highlighted" in the SCI? Have the change date

and change author been specified? Do the attributes of the

configuration object reflect the change?

v Have SCM procedures for noting the change, recording it, and

reporting it been followed?

vi Have all related SCis been properly updated?

MCS-104/124

In some cases, the audit questions are asked as part of a formal technical

review. However, when SCM is a formal activity, the SCM audit is

conducted separately by the quality assurance group.

Check Your Progress 6.

What are the requirements of internal auditing?

2.9 STATUS REPORTING

Configuration status reporting (sometimes called status

accounting) is an SCM task that answers the following questions:

i What happened?

ii Who did it?

iii When did it happen?

iv What else will be affected?

Each time an SCI is assigned new or updated identification, a CSR entry is

made. Each time a change is approved by the CCA, a CSR entry is made.

Each time a configuration audit is conducted, the results are reported as

part of the CSR task. Output from CSR may be placed in an on-line

database, so that software developers or maintainers can access change

information by keyword category.

In addition, a CSR report is generated on a regular basis and is intended to

keep management and practitioners appraised of important changes.

Configuration status reporting plays a vital role in the success of a large

software development project. When many people are involved, it is likely

that "the left hand not knowing what the right hand is doing" syndrome

will occur. Two developers may attempt to modify the same SCI with

different and conflicting intents. A software engineering team may spend

months of effort building software to an obsolete hardware specification.

The person who would recognize serious side effects for a proposed

change is not aware that the change is being made. CSR helps to eliminate

these problems by improving communication among all people involved.

Check Your Progress 7.

How to write effective weekly status report?

2.10 SUMMARY

SCM is the process that defines how to control and manage change. MCS-104/125

Software configuration management is a set of activities that have been

developed to manage change throughout the life cycle of computer
software. SCM can be viewed as a software quality assurance activity that
is applied throughout the software process.

The need for an SCM process is acutely felt when there are many
developers and many versions of the software. Suffice to say that in a

complex scenario where bug fixing should happen on multiple production
systems and enhancements must be continued on the main code base,
SCM acts as the backbone which can make this happen.

This chapter covers about the SCM, its objectives, features, Baseline,
SCM activities, Software Configuration Items Configuration Audit and
Status Report.

2.11 EXERCISE

(1) What is SCM? What are the Features supported by SCM?

(2) What is SCM Process? What are the Objectives ofSCM Process?

(3) List the SCM Activities.

(4) Define distinction between SCM and Software Support.

(5) Describe the various Software Configuration Management Tasks.

(6) Explain Software Configuration Item

(7) What Is Base line criteria in SCM? Also write its role in SCM.

(8) Define configuration Audit and Status Reporting?

(9) Define the Version Control and Change Control in detail.

MCS-104/126

UNIT-3

ANALYSIS CONCEPTS AND PRINCIPLES

Structure

3.0 Introduction

3.1 Objective

3.2 Analysis Concepts and Principles

3.3 Requirement Elicitation for Software analysis principles

3.4 The Information Domain

3.5 Modelling

3.6 Partitioning

3. 7 Essential and Implementation Views

3.8 Specification

3.9 Specification Principles

3.10 Representation

3.11 The Software Requirement Specification

3.12 Summary

3.13 Exercise

3.0 INTRODUCTION

Requirements analysis provides the software designer with a
representation of information, function, and behaviour that can be
translated to data, architectural, interface, and component-level designs.

Initially, the analyst studies the System Specification and the Software
Project Plan. It is important to understand software in a system context
and to review the software scope that was used to generate planning
estimates. Next, communication for analysis must be established so that
problem recognition is ensured. The goal is recognition of the basic
problem elements as perceived by the customer/users.

3.1 OBJECTIVE

The objectives of this unit are:

a) to understand the problem before beginning to create the analysis

model
MCS-104/127

b) to develop prototypes to help user to understand how human-
machine interactions

c) record the origin of and the reasons for every requirement

d) use multiple views of requirements

e) prioritize requirements

a) work to eliminate ambiguity

t) to explain about the User interface design.

g) to introduce the concept of data acquisition system.

h) to know about the monitoring and control system and defining to
implement them.

3.2 ANALYSIS CONCEPTS AND PRINCIPLES

Requirements analysis is a software engineering task that bridges
the gap between system level requirements engineering and software
design as shown in figure 3 .1. Requirements engineering activities result
in the specification of software's operational characteristics (function,
data, and behaviour), indicate software's interface with other system
elements, and establish constraints that software must meet.

Software requirements analysis may be divided into five areas of effort:

i Problem recognition

ii Evaluation and synthesis

iii Modelling

iv Specification

v Review

Problem evaluation and solution synthesis is the next major area of effort
for analysis. The analyst must define all externally observable data
objects, evaluate the flow and content of information, define and elaborate
all software functions, understand software behaviour in the context of
events that affect the system, establish system interface characteristics,
and uncover additional design constraints. Each of these tasks serves to
describe the problem so that an overall approach or solution may be
synthesized.

System
Engineering

Software
Design

Figure 3.1: Analysis as a bridge between system engineering and software

design MCS-104/128

Once problems have been identified, the analyst determines what
information is to be produced by the new system and what data will be
provided to the system.

Upon evaluating current problems and desired information (input and
output), the analyst begins to synthesize one or more solutions. To begin,
the data objects, processing functions, and behaviour of the system are
defined in detail. Once this information has been established, basic
architectures for implementation are considered.

The process of evaluation and synthesis continues until both analyst and
customer feel confident that software can be adequately specified for
subsequent development steps.

Throughout evaluation and solution synthesis, the analyst's primary focus
is on "what," not "how." What data does the system produce and consume,
what functions must the system perform, what behaviours does the system
exhibit, what interfaces are defined and what constraints apply?

During the evaluation and solution synthesis activity, the analyst creates
models of the system in an effort to better understand data and control
flow, functional processing, operational behaviour, and information
content. The model serves as a foundation for software design and as the
basis for the creation of specifications for the software.

Detailed specifications may not be possible at this stage. The customer
may be unsure of precisely what is required. The developer maybe unsure
that a specific approach will properly accomplish function and
performance. For these, and many other reasons, an alternative approach
to requirements analysis, called prototyping, may be conducted.

Check Your Progress 1.

What are the Objectives of Requirement Analysis ?

3.3 REQUIREMENT ELICITATION FOR

SOFTWARE ANALYSIS PRINCIPLES

Before requirements can be analysed, modelled, or specified they
must be gathered through

an elicitation process. A customer has a problem that may be amenable to

a computer-based solution. A developer responds to the customer's request
for help.

Initiating the Process

The most commonly used requirements elicitation technique is to conduct
a meeting or interview. The first meeting between a software engineer (the
analyst) and the customer can be likened to the awkwardness of a first date
between two adolescents. Neither person knows what to say or ask; both
are worried that what they do say will be misinterpreted; both are thinking
about where it might lead; both want to get the thing over with, but at the MCS-104/129

same time, both want it to be a success. Yet, communication must be
initiated. The analyst may start by asking context-free questions. That is, a
set of questions that will lead to a basic understanding of the problem, the
people who want a solution, the nature of the solution that is desired, and
the effectiveness of the first encounter itself.

The first set of context-free questions focuses on the customer, the overall
goals, and the benefits. For example, the analyst might ask:

• Who is behind the request for this work?

• Who will use the solution?

• What will be the economic benefit of a successful solution?

• Is there another source for the solution that you need?

These questions help to identify all stakeholders who will have interest in
the software to be built. In addition, the questions identify the measurable
benefit of a successful implementation and possible alternatives to custom
software development. The next set of questions enables the analyst to
gain a better understanding of the problem and the customer to voice his
or her perceptions about a solution:

• How would you characterize "good" output that would be generated
by a successful solution?

• What problem(s) will this solution address?

• Can you show me (or describe) the environment in which the
solution will be used?

• Will special performance issues or constraints affect the way the
solution is approached?

The final set of questions focuses on the effectiveness of the meeting.
Gause and Weinberg call these meta-questions and propose the following
(abbreviated) list:

• Are you the right person to answer these questions? Are your
answers "official"?

• Are my questions relevant to the problem that you have?

• Am I asking too many questions?

• Can anyone else provide additional information?

• Should I be asking you anything else?

Facilitated Application Specification Techniques

Too often, customers and software engineers have an unconscious "us and
them "mind-set. Rather than working as a team to identify and refine
requirements, each constituency defines its own "territory" and
communicates through a series of memos, formal position papers,
documents, and question and answer sessions. History has shown that this
approach doesn't work very well. Misunderstandings abound, important

MCS-104/130

information is omitted, and a successful working relationship is never
established. It is with these problems in mind that a number of
independent investigators have developed a team-oriented approach to
requirements gathering that is applied during early stages of analysis and
specification, Called facilitated application specification techniques
(FAST), this approach encourages the creation of a joint team of
customers and developers who work together to identify the problem,
propose elements of the solution, negotiate different approaches and
specify a preliminary set of solution requirements. FAST has been used
predominantly by the information systems community, but the technique
offers potential for improved communication in applications of all kinds.

Many different approaches to FAST have been proposed. Each makes use
of a slightly different scenario, but all apply some variation on the
following basic guidelines:

• A meeting is conducted at a neutral site and attended by both
software engineers and customers.

• Rules for preparation and participation are established.

• An agenda is suggested that is formal enough to cover all important
points but informal enough to encourage the free flow of ideas.

• A "facilitator" (can be a customer, a developer, or an outsider)
controls the meeting.

• A "definition mechanism" (can be work sheets, flip charts, or wall
stickers or an electronic bulletin board, chat room or virtual forum)
is used.

• The goal is to identify the problem, propose elements of the solution,
negotiate different approaches, and specify a preliminary set of
solution requirements in an atmosphere that is conducive to the
accomplishment of the goal.

To better understand the flow of events as they occur in a typical FAST
meeting, we present a brief scenario that outlines the sequence of events
that lead-up to the meeting, occur during the meeting, and follow the
meeting.

Initial meetings between the developer and customer occur and basic
questions and answers help to establish the scope of the problem and the
overall perception of a solution. Out of these initial meetings, the
developer and customer write a one- or two-page "product request." A
meeting place, time, and date for FAST are selected and a facilitator is
chosen. Attendees from both the development and customer/user
organizations are invited to attend. The product request is distributed to all
attendees before the meeting date.

ANALYSIS PRINCIPLES

Over the past two decades, a large number of analysis modelling methods
have been developed. Investigators have identified analysis problems and MCS-104/131

their causes and have developed a variety of modelling notations and
corresponding sets of heuristics to overcome them. Each analysis method
has a unique point of view.

However, all analysis methods are related by a set of operational
principles:

• The information domain of a problem must be represented and
understood.

• The functions that the software is to perform must be defined.

• The behaviour of the software (as a consequence of external events)
must be represented.

• The models that depict information function and behaviour must be
partitioned in a manner that uncovers detail in a layered (or
hierarchical) fashion.

• The analysis process should move from essential information toward
implementation detail.

By applying these principles, the analyst approaches a problem
systematically. The information domain is examined so that function may
be understood more completely. Models are used so that the
characteristics of function and behaviour can be communicated in a
compact fashion. Partitioning is applied to reduce complexity. Essential
and implementation views of the software are necessary to accommodate
the logical constraints imposed by processing requirements and the
physical constraints imposed by other system elements.

In addition to these operational analysis principles, a set of guiding
principles for requirements engineering are:

• Understand the problem before you begin to create the analysis
model. There is a tendency to rush to a solution, even before the
problem is understood. This often leads to elegant software that
solves the wrong problem!

• Develop prototypes that enable a user to understand how
human/machine interaction will occur. Since the perception of the
quality of software is often based on the perception of the
"friendliness" of the interface, prototyping (and the iteration that
results) are highly recommended.

• Record the origin of and the reason for every requirement. This is the
first step in establishing traceability back to the customer.

• Use multiple views of requirements. Building data, functional, and
behavioural models provide the software engineer with three
different views. This reduces the likelihood that something will be
missed and increases the likelihood that inconsistency will be
recognized.

• Rank requirements. Tight deadlines may preclude the

implementation of every software requirement. If an incrementalMCS-104/132

process model is applied, those requirements to be delivered in the
first increment must be identified.

• Work to eliminate ambiguity. Because most requirements are
described in a natural language, the opportunity for ambiguity
abounds. The use of formal technical reviews is one way to uncover
and eliminate ambiguity.

Check Your Progress 2.

What are the Difficulties in Elicitations?

3.4 THE INFORMATION DOMAIN

All software applications can be collectively called data
processing. Interestingly, this term contains a key to our understanding of
software requirements. Software is built to process data, to transform data
from one form to another; that is, to accept input, manipulate it in some
way, and produce output. This fundamental statement of objective is true
whether we build batch software for a payroll system or real-time
embedded software to control fuel flow to an automobile engine.

It is important to note, however, that software also processes events. An
event represents some aspect of system control and is really nothing more
than Boolean data-it is either on or off, true or false, there or not there.
For example, a pressure sensor detects that pressure exceeds a safe value
and sends an alarm signal to monitoring software. The alarm signal is an
event that controls the behaviour of the system.

Therefore, data (numbers, text, images, sounds, video, etc.) and control
(events) both reside within the information domain of a problem.

The first operational analysis principle requires an examination of the
information domain and the creation of a data model.

The information domain contains three different views of the data and
control as each is processed by a computer program:

a. Information content and relationships (the data model),

b. Information flow, and

c. Information structure.

To fully understand the information domain, each of these views should be
considered. Information content represents the individual data and control
objects that constitute some larger collection of information transformed
by the software. For example, the data object, pay check, is a composite of
a number of important pieces of data: the payee's name, the net amount to
be paid, the gross pay, deductions, and so forth. Therefore, the content of
pay check is defined by the attributes that are needed to create it.
Similarly, the content of a control object called system status might be
defined by a string of bits. Each bit represents a separate item of

MCS-104/133

information that indicates whether or not a particular device is on- or off­
line.

Data and control objects can be related to other data and control objects.
For example, the data object pay check has one or more relationships with
the objects timecard, employee, bank, and others. During the analysis of
the information domain, these relationships should be defined.

Information flow represents the manner in which data and control change
as each move through a system. Referring to figure 3.2, input objects are
transformed to intermediate information (data and/or control), which is

further transformed to output.

Along this transformation path (or paths), additional information may be
introduced from an existing data store (e.g., a disk file or memory buffer).
The transformations applied to the data are functions or sub-functions that

a program must perform. Data and control that move between two
transformations (functions) define the interface for each function.

Input
object(sj

�

Intermediate
data and control

Output
objecljsj

►

Figure 3.2: Information flow and transformation

Information structure represents the internal organization of various data

and control items. Are data or control items to be organized as an n­

dimensional table or as a hierarchical tree structure? Within the context of

the structure, what information is related to other information? Is all

information contained within a single structure or are distinct structures to

be used? How does information in one information structure relate to

information in another structure? These questions and others are answered

by an assessment of information structure. It should be noted that data

structure, a related concept discussed later in this book, refers to the design

and implementation of information structure within the software.

MCS-104/134

3.5 MODELLING

We create functional models to gain a better understanding of the
actual entity to be built. When the entity is a physical thing (a building, a
plane, a machine), we can build a model that is identical in form and shape
but smaller in scale. However, when the entity to be built is software, our
model must take a different form. It must be capable of representing the
information that software transforms, the functions (and sub-functions)
that enable the transformation to occur, and the behaviour of the system as
the transformation is taking place.

The second and third operational analysis principles require that we build
models of function and behaviour.

Functional models -Software transforms information, and in order to
accomplish this, it must perform at least three generic functions: input,
processing, and output. When functional models of an application are
created, the software engineer focuses on problem specific functions. The
functional model begins with a single context level model (i.e., the name
of the software to be built). Over a series of iterations, more and more
functional detail is provided, until a thorough delineation of all system
functionality is represented. Behavioural models. Most software responds
to events from the outside world. This stimulus/response characteristic
forms the basis of the behavioural model. A computer program always
exists in some state-an externally observable mode of behaviour (e.g.,
waiting, computing, printing, polling) that is changed only when some
event occurs.

For example, software will remain in the wait state until

i An internal clock indicates that some time interval has passed,

ii An external event (e.g., a mouse movement) causes an interrupt, or

iii An external system signals the software to act in some manner.

A behavioural model creates a representation of the states of the software
and the events that cause software to change state. Models created during
requirements analysis serve a number of important roles:

• The model aids the analyst in understanding the information,
function, and behaviour of a system, thereby making the
requirements analysis task easier and more systematic.

• The model becomes the focal point for review and, therefore, the key
to a determination of completeness, consistency, and accuracy of the
specifications.

• The model becomes the foundation for design, providing the
designer with an essential representation of software that can be
"mapped" into an implementation context.

Although the modelling method that is used is often a matter of personal
(or organizational) preference, the modelling activity is fundamental to
good analysis work .. MCS-104/135

Check Your Progress 3.

What are the objectives of Analysis modelling?

3.6 PARTITIONING

Problems are often too large and complex to be understood as a
whole. For this reason, we tend to partition (divide) such problems into
parts that can be easily understood and establish interfaces between the
parts so that overall function can be accomplished. The fourth operational

analysis principle suggests that the information, functional, and
behavioural domains of software can be partitioned. In essence,
partitioning decomposes a problem into its constituent parts.

Conceptually, we establish a hierarchical representation of function or
information and then partition the uppermost element by

a. Exposing increasing detail by moving vertically in the

hierarchy or

b. Functionally decomposing the problem by moving horizontally

in the hierarchy.

The software allocation for Safe Home (derived as a consequence of
system engineering and FAST activities) can be stated in the following
paragraphs:

Safe Home software enables the homeowner to configure the security
system when it is installed, monitors all sensors connected to the security
system, and interacts with the homeowner through a keypad and function
keys contained in the Safe Home control panel shown in figure 3.3:

SafeHome software

Configure system Monitor sensors Interact with user

Horizontal partitioning

Figure 3.3: Horizontal partitioning of Safe Home function

During installation, the Safe Home control panel is used to "program" and

configure the system. Each sensor is assigned a number and type, a master

password is programmed for arming and disarming the system, and

telephone number(s) are input for dialling when a sensor event occurs.

When a sensor event is recognized, the software invokes an audible alarm

MCS-104/136

attached to the system. After a delay time that is specified by the

homeowner during system configuration activities, the software dials a

telephone number of a monitoring service, provides information about the

location, reporting the nature of the event that has been detected. The

telephone number will be redialled every 20 seconds until telephone

connection is obtained.

All interaction with Safe Home is managed by a user-interaction

subsystem that reads input provided through the keypad and function keys,

displays prompting messages on the LCD display, display system status

information on the LCD display. Keyboard interaction takes the following

form.

The requirements for Safe Home software may be analysed by partitioning

the information, functional, and behavioural domains of the product. To

illustrate, the functional domain of the problem will be partitioned. Figure

3 .3 illustrates a horizontal decomposition of Safe Home software. The

problem is partitioned by representing constituent Safe Home software

functions, moving horizontally in the functional hierarchy. Three major

functions are noted on the first level of the hierarchy. The sub functions

associated with a major Safe Home function may be examined by

exposing detail vertically in the hierarchy, as illustrated in figure 3.4.

Moving downward along a single path below the function monitor

sensors, partitioning occurs vertically to show increasing levels of

functional detail. The partitioning approach that we have applied to Safe

Home functions can also be applied to the information domain and

behavioural domain as well. In fact, partitioning of information flow and

system behaviour will provide additional insight into software

requirements. As the problem is partitioned, interfaces between functions

are derived. Data and control items that move across an interface should

be restricted to inputs required to perform the stated function and outputs

that are required by other functions or system elements.

MCS-104/137

SafeHome software

Configure system Monitor sensors

Read
sensor
status

Poll for
sensor event

Identify
event
type

Activate/
deactivate

sensor

Adivate
alarm fundions

Activate
audible
alarm

Interact with user

Dial
phone
number

Figure 3.4: Vertical partitioning of Safe Home function

Check Your Progress 4.

What is the difference between horizontal and vertical partitioning?

3.7 ESSENTIAL

VIEWS

AND IMPLEMENTATION

An essential view of software requirements presents the functions
to be accomplished and information to be processed without regard to
implementation details. For example, the essential view of the Safe Home
function read sensor status does not concern itself with the physical form
of the data or the type of sensor that is used. In fact, it could be argued that
read status would be a more appropriate name for this function, since it
disregards details about the input mechanism altogether. Similarly, an
essential data model of the data item phone number (implied by the
function dial phone number) can be represented at this stage without
regard to the underlying data structure (if any) used to implement the data
item. By focusing attention on the essence of the problem at early stages
of requirements engineering, we leave our options open to specify
implementation details during later stages of requirements specification
and software design.

MCS-104/138

The implementation view of software requirements presents the real world
manifestation of processing functions and information structures. In some
cases, a physical representation is developed as the first step in software
design. However, most computer-based systems are specified in a manner
that dictates accommodation of certain implementation details. A Safe
Home input device is a perimeter sensor (not a watch dog, a human guard,
or a booby trap). The sensor detects illegal entry by sensing a break in an
electronic circuit. The general characteristics of the sensor should be noted
as part of a software requirements specification. The analyst must
recognize the constraints imposed by predefined system elements (the
sensor) and consider the implementation view of function and information
when such a view is appropriate.

We have already noted that software requirements engineering should
focus on what the software is to accomplish, rather than on how
processing will be implemented. However, the implementation view
should not necessarily be interpreted as a representation of how. Rather,
an implementation model represents the current mode of operation; that is,
the existing or proposed allocation for all system elements. The essential
model (of function or data) is generic in the sense that realization of

function is not explicitly indicated.

Check Your Progress 5.

How SRS can prevent from risk.

3.8 SPECIFICATION

There is no doubt that the mode of specification has much to do
with the quality of solution. Software engineers who have been forced to
work with incomplete, in consistent or misleading specifications have
experienced the frustration and confusion that invariably results. The
quality, timeliness, and completeness of the software suffer as a
consequence.

Check Your Progress 6.

Who should be writing Software requirements specifications

3.9 SPECIFICATION PRINCIPLES

Specification, regardless of the mode through which we
accomplish it, may be viewed as a representation process. Requirements
are represented in a manner that ultimately leads to successful software
implementation. A number of specification principles, adapted from the

work of Balzer and Goodman, can be proposed:

1. Separate functionality from implementation.

MCS-104/139

2. Develop a model of the desired behaviour of a system that
encompasses data and the functional responses of a system to
various stimuli from the environment.

3. Establish the context in which software operates by specifying the
manner in which other system components interact with software.

4. Define the environment in which the system operates and indicate
how "a highly intertwined collection of agents react to stimuli in
the environment produced by those agents".

5. Create a cognitive model rather than a design or implementation
model. The cognitive model describes a system as perceived by its
user community.

6. Recognize that "the specifications must be tolerant of
incompleteness and augmentable." A specification is always a
model-an abstraction-of some real (or envisioned) situation that
is normally quite complex. Hence, it will be incomplete and will
exist at many levels of detail.

7. Establish the content and structure of a specification in a way that
will enable it to be amenable to change.

This list of basic specification principles provides a basis for representing
software requirements. However, principles must be translated into

realization.

Check Your Progress 7.

Why is SRS also known as the black box specification of system ?

3.10 REPRESENTATION

We have already seen that software requirements may be specified in a
variety of ways. However, if requirements are committed to paper or an
electronic presentation medium (and they almost always should be!) a
simple set of guidelines is well worth following:

Representation format and content should be relevant to the problem. A
general outline for the contents of a Software Requirements Specification
can be developed. However, the representation forms contained within the
specification are likely to vary with the application area. For example, a

specification for a manufacturing automation system might use different

symbology, diagrams and language than the specification for a
programming language compiler. Information contained within the
specification should be nested. Representations should reveal layers of
information so that a reader can move to the level of detail required.
Paragraph and diagram numbering schemes should indicate the level of
detail that is being presented. It is sometimes worthwhile to present the
same information at different levels of abstraction to aid in understanding.

Diagrams and other notational forms should be restricted in number and
consistent in use. Confusing or inconsistent notation, whether graphical or

MCS-104/140

symbolic, degrades understanding and fosters errors. Representations
should be revisable. The content of a specification will change. Ideally,
CASE tools should be available to update all representations that are
affected by each change.

Investigators have conducted numerous studies on human factors
associated with specification. There appears to be little doubt that
symbology and arrangement affect understanding. However, software
engineers appear to have individual preferences for specific symbolic and
diagrammatic forms. Familiarity often lies at the root of a person's
preference, but other more tangible factors such as spatial arrangement,
easily recognizable patterns, and degree of formality often dictate an
individual's choice.

Check Your Progress 8.

Benefits to a well-written Software Requirement Specification

3.11 THE SOFTWARE RE QUIREMEN SPECIFICATION

The Software Requirements Specification is produced at the
culmination of the analysis task. The function and performance allocated
to software as part of system engineering are refined by establishing a
complete information description, a detailed functional description, a
representation of system behaviour, an indication of performance
requirements and design constraints, appropriate validation criteria, and
other information pertinent to requirements.

In addition it also contains non-functional requirements. Non-functional
requirements impose constraints on the design or implementation (such
as performance engineering requirements, quality standards, or design
constraints).

Software requirements specification establishes the basis for agreement
between customers and contractors or suppliers (in market-driven projects,
these roles may be played by the marketing and development divisions) on
what the software product is to do as well as what it is not expected to do.
Software requirements specification permits a rigorous assessment of
requirements before design can begin and reduces later redesign. It should
also provide a realistic basis for estimating product costs, risks, and
schedules.

The software requirements specification document enlists enough and
necessary requirements that are required for the project development. To
derive the requirements we need to have clear and thorough understanding
of the products to be developed or being developed. This is achieved and
refined with detailed and continuous communications with the project
team and customer till the completion of the software. The SRS may be
one of a contract deliverable Data Item Descriptions or have other forms
of organizationally-mandated content.

An example organization of an SRS is as follows: MCS-104/141

• Introduction

• Purpose

• Definitions

• System overview

• References

• Overall description

• Product perspective

• System Interfaces

• User Interfaces

• Hardware interfaces

• Software interfaces

• Communication Interfaces

• Memory Constraints

• Operations

• Site Adaptation Requirements

• Product functions

• User characteristics

• Constraints, assumptions and dependencies

• Specific requirements

• External interface requirements

• Functional requirements

• Performance requirements

• Design constraints

• Standards Compliance

• Logical database requirement

• Software System attributes

• Reliability

• Availability

• Security

• Maintainability

• Portability

• Other requirements

Characteristics of SRS:

An SRS should be:
MCS-104/142

a. Correct: An SRS is correct if, and only if, every requirement stated
therein is one that the software shall meet. Traceability makes this
procedure easier and less prone to error.

b. Unambiguous: An SRS is unambiguous if, and only if, every
requirement stated therein has only one interpretation. As a
minimum, this requires that each characteristic of the final product
be described using a single unique term.

c. Complete: An SRS is complete if, and only if, it includes the
following elements:

i) All significant requirements, whether relating to functionality,
performance, design constraints, attributes, or external interfaces. In
particular any external requirements imposed by a system
specification should be acknowledged and treated.

ii) Definition of the responses of the software to all realizable classes of
input data in all realizable classes of situations. Note that it is
important to specify the responses to both valid and invalid input
values.

iii) Full labels and references to all figures, tables, and diagrams in the
SRS and definition of all terms and units of measure.

d. Consistent: Consistency refers to internal consistency. If an SRS
does not agree with some higher-level document, such as a system
requirements specification, then it is not correct. An SRS is
internally consistent if, and only if, no subset of individual
requirements described in it conflict.

Ranked for importance or stability

An SRS is ranked for importance and/or stability if each requirement in it
has an identifier to indicate either the importance or stability of that
particular requirement. Typically, all of the requirements that relate to a
software product are not equally important. Some requirements may be
essential, especially for life-critical applications, while others may be
desirable. Each requirement in the SRS should be identified to make these
differences clear and explicit-

a. Verifiable: An SRS is verifiable if, and only if, every requirement
stated therein is verifiable. A requirement is verifiable if, and only if,
there exists some finite cost-effective process with which a person or

machine can check that the software product meets the requirement.
Non verifiable requirements include statements such as "works
well", "good human interface", and "shall usually happen". These

requirements cannot be verified because it is impossible to define the
terms "good", "well", or "usually".

b. Modifiable: An SRS is modifiable if, and only if, its structure and
style are such that any changes to the requirements can be made
easily, completely, and consistently while retaining the structure and
style. Modifiability generally requires an SRS to

I Have a coherent and easy-to-use organization with a table of
contents, an index, and explicit cross-referencing; MCS-104/143

ii Not be redundant (i.e., the same requirement should not appear in
more than one place in the SRS);

iii Express each requirement separately, rather than intermixed with
other requirements.

c. Traceable: An SRS is traceable if the origin of each of its
requirements is clear and if it facilitates the referencing of each
requirement in future development or enhancement documentation.
The following two types of traceability are recommended:

i. Backward traceability (i.e., to previous stages of
development). This depends upon each requirement explicitly
referencing its source in earlier documents.

ii. Forward traceability (i.e., to all documents spawned by the
SRS). This depends upon each requirement in the SRS having a
unique name or reference number.

Check Your Progress 9.

What are the characteristics of SRS?

3.12 SUMMARY

In this section we cover the topics software requirement analysis and
specification, their principle, objectives, goal, and characteristics,
Modelling, Partitioning -vertical and horizontal both, their benefits and
about information domain. A software engineer who takes these principles
to heart is more likely to develop a software specification that will provide
an excellent foundation for design. A Software requirements
specification (SRS), a requirements specification for a software system, is
a description of the behaviour of a system to be developed and may
include a set of use cases that describe interactions the users will have
with the software. We also cover the topics like objectives, goal, and
characteristics of Software requirement analysis and specification,
Modelling, Partitioning -vertical and horizontal both, their benefits and
about information domain.

3.13 EXERCISE

(1) What is requirement analysis? What is the role of requirement
analysis?

(2) Explain Analysis Modelling Approaches with example.

(3) What is horizontal partitioning? What are the benefits of horizontal
partitioning?

(4) What is vertical partitioning? What are the advantages of vertical
partitioning?

MCS-104/144

(5) Explain software Requirement Specification. What are the
Objectives of Requirement Analysis ?

(6) What are the characteristics of SRS?

(7) What are the Difficulties in Elicitations?

(8) What are the difference between requirements definition and
requirement specification .

MCS-104/145

MCS-104/146

Uttar Pradesh Rajarshi Tandon

Open University

Block

4
Unit 1 Design Concept and Principle

Unit 2 Software Testing

Unit 3 Types of Software Testing

Unit 4 Re Engineering

Unit 5 Case

Master in Computer
Science

MCS-104
Software Engineering

151-170

171-184

185-200

201-216

217-240

MCS-104/147

Course Design Committee

Dr. Ashutosh Gupta Chairman
Director (In-charge)
School of Computer and Information Science, UPRTOU Prayagraj

Prof. R. S. Yadav
Department of Computer Science and Engineering
MNNIT Allahabad, Prayagraj

Ms. Marisha
Assistant Professor (Computer Science)
School of Science, UPRTOU Prayagraj

Mr. Manoj Kumar Balwant
Assistant Professor (computer science)
School of Sciences, UPR TOU Prayagraj

Course Preparation Committee

Dr. Pooja Yadav
Assistant Professor, Dept. of CS & IT
MJP Rohilkhand University, Bareilly (UP)

Dr. Ashutosh Gupta
Associate Professor, Dept. of CS & IT
MJP Rohilkhand University, Bareilly (UP)

Mr. Manoj Kumar Balwant

Assistant Professor (computer science)
School of Sciences, UPR TOU Prayagraj

© UPRTOU, Prayagraj. 2019

ISBN: 978-93-83328-19-2

Member

Member

Member

Author

Editor

Coordinator

All Rights are reserved. No part of this work may be reproduced in any form, by

mimeograph or any other means, without permission in writing from the Uttar

Pradesh Rajarshi Tondon Open University, Prayagraj.

Printed and Published by Dr. Arun Kumar Gupta Registrar, Uttar Pradesh
Rajarshi Tandon Open University, 2019.

Printed By : K.C.Printing & Allied Works, Panchwati, Mathura -281003.
MCS-104/148

Overview

In this section we discuss the overview of this block's content. This block
consists of the following units:

Unit 1 Design Concept and Principle

Software design is the process of implementing software solution. One of
the main input of software design is the software requirements
analysis (SRA).The design concepts provide the software designer with a
foundation from which methods can be applied. Furthermore, a software
design may be platform-independent or platform-specific, depending upon
the availability of the technology used for the design. If design is proper
according to the need of customer then the chances of error is reduce.

Unit 2 Software Testing

In software development, software testing play a vital role. After coding
and before delivered to the customer, software is tested according to the
need or requirement of customer

In this unit several testing are defined which are used to test the software.
And once software is error free and maintains all the requirements of
customer then delivered to the customer.

Unit 3 Types of Software Testing

Testing is necessary for successful execution of software before delivered
to the customer. In this section, we describe different types of software
testing. These software testing are applied to achieve different objectives
when testing a software application.

Unit 4 Re Engineering

This section covers how old/existing software can be improved and
performed effectively. The objective of re-engineering is to improve the
system structure to make it easier to understand and maintain .Which type
of activities involved in the software re-engineering process and to explain
the problems of re-engineering. Also describes reverse and forward
engineering and their need as well as benefits.

Unit5 CASE

A CASE (Computer Aided Software Engineering) tool is a generic term
used to denote any form of automated support for software engineering. In
a more restrictive sense, a CASE tool means any tool used to automate
some activity associated with software development. Many CASE tools
are available. Some of these CASE tools assist in phase related tasks such
as specification, structured analysis, design, coding, testing, etc. CASE
plays an interesting role in the software development life cycle.

MCS-104/149

MCS-104/150

UNIT-1

DESIGN CONCEPT AND PRINCIPLE

Structure

1.0 Introduction

1.1 Objectives

1.2 Design Principle

1.3 Abstraction

1.4 Refinement

1.5 Modularity

1.6 Software Architecture

1.7 Control Hierarchy

1.8 Structural Partitioning

1.9 Data Structure

1.10 Software Procedure

1.11 Information Hiding

1.12 Effective Modular design

1.13 Cohesion

1.14 Coupling

1.15 Summary

1.16 Exercise

1.0 INTRODUCTION

A software design creates meaningful engineering representation

(or model) of some software product that is to be built. Designers must

strive to acquire a repertoire of alternative design information and learn to

choose the elements that best match the analysis model. A design model

can be traced to the customer's requirements and can be assessed for

quality against predefined criteria. During the design process the software

requirements model (data, function, and behaviour) is transformed into

design models that describe the details of the data structures, system

architecture, interfaces, and components necessary to implement the

system. Each design product is reviewed for quality before moving to the

next phase of software development. MCS-104/151

Software Design

• Encompasses the set of principles, concepts, and practices that lead
to the development of a high quality system or product

• Design principles establish and overriding philosophy that guides the
designer as the work is performed

• Design concepts must be understood before the mechanics of design
practice are applied

• Goal of design engineering is to produce a model or representation

that is bug free (firmness), suitable for its intended uses
(commodity), and pleasurable to use (delight)

• Software design practices change continuously as new methods,
better analysis, and broader understanding evolve.

1.1 OBJECTIVE

The objectives of this unit are:

a) to introduce the process of software design

b) to describe the different stages in this design process

c) to show how object-oriented and functional design strategies are

complementary

d) to discuss some design quality attributes

1.2 DESIGN PRINCIPLE

Developing design is a cumbersome process as most expansive
errors are often introduced in this phase. Moreover, if these errors get
unnoticed till later phases, it becomes more difficult to correct them.
Therefore, a number of principles are followed while designing the
software. These principles act as a framework for the designers to follow a
good design practice.

Corresepond to
anlaysis model

Ensure minimal
conceptual

(semantic) Errors

Represent
correspondence
between software a
Real world problem

Principles of Software Design

Figure 1.1: Principles of Design

Programming
paradigm

Uniform and
integrated

Degrade gently

Code Reuse

Prototyping

MCS-104/152

Some of the commonly used design principles as mentioned in figure 1.1
are as following.

i. Software design should correspond to the analysis model: Often a
design element corresponds to many requirements, therefore, we
must know how the design model satisfies all the requirements
represented by the analysis model.

ii. Choose the right programming paradigm: A programming
paradigm describes the structure of the software system.
Depending on the nature and type of application, different
programming paradigms such as procedure oriented, object­
oriented, and prototyping paradigms can be used. The paradigm
should be chosen keeping constraints in mind such as time,
availability of resources and nature of user's requirements.

iii. Software design should be uniform and integrated: Software
design is considered uniform and integrated, if the interfaces are
properly defined among the design components. For this, rules,
format, and styles are established before the design team starts
designing the software.

iv. Software design should be flexible: Software design should be
:flexible enough to adapt changes easily. To achieve the :flexibility,
the basic design concepts such as abstraction, refinement, and
modularity should be applied effectively.

v. Software design should ensure minimal conceptual (semantic)
errors: The design team must ensure that major conceptual errors
of design such as ambiguousness and inconsistency are addressed

in advance before dealing with the syntactical errors present in the
design model.

vi. Software design should be structured to degrade gently: Software
should be designed to handle unusual changes and circumstances,
and if the need arises for termination, it must do so in a proper
manner so that functionality of the software is not affected.

vii. Software design should represent correspondence between the

software and real-world problem: The software design should be
structured in such a way that it always relates with the real-world
problem.

viii. Software reuse: Software engineers believe on the phrase: 'do not
reinvent the wheel'. Therefore, software components should be
designed in such a way that they can be effectively reused to
increase the productivity.

ix. Designing for testability: A common practice that has been
followed is to keep the testing phase separate from the design and
implementation phases. That is, first the software is developed
(designed and implemented) and then handed over to the testers
who subsequently determine whether the software is fit for MCS-104/153

distribution and subsequent use by the customer. However, it has
become apparent that the process of separating testing is seriously
flawed, as if any type of design or implementation errors are found
after implementation, then the entire or a substantial part of the
software requires to be redone. Thus, the test engineers should be
involved from the initial stages. For example, they should be
involved with analysts to prepare tests for determining whether the
user requirements are being met.

x. Prototyping: Prototyping should be used when the requirements
are not completely defined in the beginning. The user interacts
with the developer to expand and refine the requirements as the
development proceeds. Using prototyping, a quick 'mock-up' of the
system can be developed. This mock-up can be used as effective

means to give the users a feel of what the system will look like and
demonstrate functions that will be included in the developed
system. Prototyping also helps in reducing risks of designing
software that is not in accordance with the customer's
requirements.

Design Concepts

• Abstraction - allows designers to focus on solving a problem
without being concerned about irrelevant lower level details
(procedural abstraction - named sequence of events and data
abstraction - named collection of data objects)

• Software Architecture - overall structure of the software
components and the ways in which that structure provides
conceptual integrity for a system

o Structural models - architecture as organized collection of
components

o Framework models
architectural patterns

attempt to identify repeatable

o Dynamic models - indicate how program structure changes as
a function of external events

o Process models - focus on the design of the business or
technical process that system must accommodate

o Functional models - used to represent system functional
hierarchy

• Design Patterns - description of a design structure that solves a
particular design problem within a specific context and its impact
when applied

• Separation of concerns - any complex problem is solvable by
subdividing it into pieces that can be solved independently

MCS-104/154

• Modularity - the degree to which software can be understood by
examining its components independently of one another

• Information Hiding - information (data and procedure) contained
within a module is inaccessible to modules that have no need for
such information

• Functional Independence - achieved by developing modules with
single-minded purpose and an aversion to excessive interaction
with other models

o Cohesion - qualitative indication of the degree to which a
module focuses on just one thing

o Coupling - qualitative indication of the degree to which a
module is connected to other modules and to the outside world

• Refinement - process of elaboration where the designer provides
successively more detail for each design component

• Aspects - a representation of a cross-cutting concern that must be
accommodated as refinement and modularization occur

• Refactoring - process of changing a software system in such a
way internal structure is improved without altering the external
behaviour or code design.

Design considerations

There are many aspects to consider in the design of a piece of software.
The importance of each consideration should reflect the goals and
expectations that the software is being created to meet. Some of these
aspects are:

i. Compatibility - The software is able to operate with other products
that are designed for interoperability with another product. For
example, a piece of software may be backward-compatible with an
older version of itself.

ii. Extensibility - New capabilities can be added to the software
without major changes to the underlying architecture.

iii. Modularity - the resulting software involves well defined,
independent components which indicate to better maintainability.
The components could be then implemented and tested in isolation
before being integrated to form a desired software system. This
allows division of work in a software development project.

iv. Fault-tolerance - The software is resistant to and able to recover
from component failure.

v. Maintainability - A measure of how easily bug fixes or functional
modifications can be accomplished. High maintainability can be
the product of modularity and extensibility.

MCS-104/155

vi. Reliability (Software durability) - The software is able to perform a
required function under stated conditions for a specified period of
time.

vii. Reusability - The ability to use some or all the aspects of the pre­
existing software in other projects with little to no modification.

viii. Robustness - The software is able to operate under stress or tolerate
unpredictable or invalid input. For example, it can be designed
with resilience to low memory conditions.

ix. Security - The software is able to withstand and resist hostile acts
and influences.

x. Usability - The software user interface must be usable for its target
user/audience. Default values for the parameters must be chosen so
that they are a good choice for the majority of the users.

xi. Performance - The software performs its tasks within a time-frame
that is acceptable for the user, and does not require too much
memory.

xii. Portability - The software should be usable across a number of
different conditions and environments.

xiii Scalability - The software adapts well to increasing data or number
of users.

Top-down and bottom-up approaches of designing:

Top-down and bottom-up are both strategies of information processing
and knowledge ordering, used in a variety of fields including software,
humanistic and scientific theories and management and organization. In
practice, they can be seen as a style of thinking and teaching.

A top-down approach (also known as stepwise design and in some cases
used as a synonym of decomposition) is essentially the breaking down of a
system to gain insight into its compositional sub-systems. In a top-down
approach an overview of the system is formulated, specifying but not
detailing any first-level subsystems. Each subsystem is then refined in yet
greater detail, sometimes in many additional subsystem levels, until the
entire specification is reduced to base elements. A top-down model is
often specified with the assistance of "black boxes", these make it easier to
manipulate. However, black boxes may fail to elucidate elementary
mechanisms or be detailed enough to realistically validate the model. Top
down approach starts with the big picture. It breaks down from there into
smaller segments.

A bottom-up approach is the piecing together of systems to give rise to
more complex systems, thus making the original systems sub-systems
of the emergent system. Bottom-up processing is a type of information
processing based on incoming data from the environment to form a
perception. Information enters the eyes in one direction (input), and is

MCS-104/156

then turned into an image by the brain that can be interpreted and
recognized as a perception (output). In a bottom-up approach the
individual base elements of the system are first specified in great
detail. These elements are then linked together to form larger
subsystems, which then in tum are linked, sometimes in many levels,
until a complete top-level system is formed. This strategy often
resembles a "seed" model, whereby the beginnings are small but
eventually grow in complexity and completeness. However, "organic
strategies" may result in a tangle of elements and subsystems,
developed in isolation and subject to local optimization as opposed to
meeting a global purpose. In the software development process, the
top-down and bottom-up approaches play a key role. +-[poy968

Check Your Progress 1.

List out the elements of design model.

1.3 ABSTRACTION

Abstraction refers to a powerful design tool, which allows software
designers to consider components at an abstract level, while neglecting the
implementation details of the components. IEEE defines abstraction as 'a
view of a problem that extracts the essential information relevant to a
particular purpose and ignores the remainder of the information.' The
concept of abstraction can be used in two ways: as a process and as an
entity. As a process, it refers to a mechanism of hiding irrelevant details
and representing only the essential features of an item so that one can
focus on important things at a time. As an entity, it refers to a model or
view of an item.

Each step in the software process is accomplished through various levels
of abstraction. At the highest level, an outline of the solution to the
problem is presented whereas at the lower levels, the solution to the
problem is presented in detail. For example, in the requirements analysis
phase, a solution to the problem is presented using the language of
problem environment and as we proceed through the software process, the
abstraction level reduces and at the lowest level, source code of the
software is produced.

I Abstraction I
l

I I I

Functional abstraction Data abstraction Control abstraction

Figure 1.2: Types of abstraction MCS-104/157

There are three commonly used abstraction mechanisms in software

design, namely, functional abstraction, data abstraction and control

abstraction as shown in figure 1.2. All these mechanisms allow us to

control the complexity of the design process by proceeding from the

abstract design model to concrete design model in a systematic manner.

a. Functional abstraction: This involves the use of parameterized

subprograms. Functional abstraction can be generalized as

collections of subprograms referred to as 'groups'. Within these

groups there exist routines which may be visible or hidden. Visible

routines can be used within the containing groups as well as within

other groups, whereas hidden routines are hidden from other groups

and can be used within the containing group only.

b. Data abstraction: This involves specifying data that describes a data

object. For example, the data object window encompasses a set of

attributes (window type, window dimension) that describe the

window object clearly. In this abstraction mechanism, representation

and manipulation details are ignored.

c. Control abstraction: This states the desired effect, without stating

the exact mechanism of control. For example, if and while

statements in programming languages (like C and C++) are

abstractions of machine code implementations, which involve

conditional instructions. In the architectural design level, this

abstraction mechanism permits specifications of sequential

subprogram and exception handlers without the concern for exact

details of implementation.

Check Your Progress 2.

What are different levels of abstraction?

1.4 REFINEMENT

Stepwise refinement is a top-down design strategy used for

decomposing a system from a high level of abstraction into a more

detailed level (lower level) of abstraction. At the highest level of

abstraction, function or information is defined conceptually without

providing any information about the internal workings of the function or

internal structure of the data. As we proceed towards the lower levels of

abstraction, more and more details are available.

Software designers start the stepwise refinement process by creating a

sequence of compositions for the system being designed. Each

MCS-104/158

composition is more detailed than the previous one and contains more

components and interactions. The earlier compositions represent the

significant interactions within the system, while the later compositions

show in detail how these interactions are achieved.

To have a clear understanding of the concept, let us consider an example

of stepwise refinement. Every computer program comprises input,

process, and output.

1. INPUT

Get user's name (string) through a prompt.

Get user's grade (integer from O to 10) through a prompt and validate.

2. PROCESS

3. OUTPUT

This is the first step in refinement. The input phase can be refined further

as given here.

1. INPUT Get user's name through a prompt.

Get user's grade through a prompt.

While (invalid grade)

Ask again:

2. PROCESS

3. OUTPUT

Stepwise refinement can also be performed for PROCESS and OUTPUT

phase.

Check Your Progress 3.

What is stepwise refinement?

1.5 MODULARITY

The real power of partitioning comes if a system is partitioned into

modules so that the modules are solvable and modifiable separately. It will

be even better if the modules are also separately compliable (then, changes

in a module will not require recompilation of the whole system). A system

is considered modular if it consists of discreet components so that each

component can be implemented separately, and a change to one

component has minimal impact on other components.

MCS-104/159

Modularity is a clearly a desirable property in a system. Modularity helps

in system debugging. Isolating the system problem to a component is

easier if the system is modular. In system repair, hanging a part of the

system is easy as it affects few other parts and in system building, a

modular system can be easily built by "putting its modules together."

A software system cannot be made modular by simply chopping it into a

set of modules. For modularity, each module needs to support a well­

defined abstraction and have a clear interface through which it can interact

with other modules. Modularity is where abstraction and partitioning come

together. For easily understandable and maintainable systems, modularity

is clearly the basic objective; partitioning and abstraction can be viewed as

concepts that help achieve modularity.

As figure 1.3 represents, Modularity is achieved by dividing the software

into uniquely named and addressable components, which are also known

as modules. A complex system (large program) is partitioned into a set of

discrete modules in such a way that each module can be developed

independent of other modules. After developing the modules, they are

integrated together to meet the software requirements.

Figure 1.3: Modules in Software Programs

Larger the number of modules a system is divided into, greater will be the
effort required to integrate the modules. Modularizing a design helps to

plan the development in a more effective manner, accommodate changes
easily, conduct testing and debugging effectively and efficiently, and
conducts maintenance work without adversely affecting the functioning of
the software.

MCS-104/160

Check Your Progress 4.

How can we evaluate a design method to determine if it will lead to efficient
modularity?

1.6 SOFTWARE ARCHITECTURE

Software architecture refers to the structure of the system, which is
composed of various components of a program/ system, the attributes
(properties) of those components and the relationship amongst them. The
software architecture enables the software engineers to analyse the
software design efficiently. In addition, it also helps them in decision­
making and handling risks. The software architecture does the following:

• Provides an insight to all the interested stakeholders that enable them
to communicate with each other

• Highlights early design decisions, which have great impact on the
software engineering activities (like coding and testing) that follow
the design phase

• Creates intellectual models of how the system is organized into
components and how these components interact with each other.

Currently, software architecture is represented in an informal and
unplanned manner. Though the architectural concepts are often
represented in the infrastructure (for supporting particular architectural
styles) and the initial stages of a system configuration, the lack of an
explicit independent characterization of architecture restricts the
advantages of this design concept in the present scenario.

Software architecture comprises two elements of design model, namely,
data design and architectural design.

Check Your Progress 5.

How are the architectural designs analysed? Explain.

1.7 CONTROL HIERARCHY

Control structure is a program structure that represents the
organization of a program component and implies a hierarchy of control.

Hierarchy of modules represents the control relationships. A super­
ordinate module controls another module. A subordinate module is
controlled by another module.

Measures relevant to control hierarchy: depth, width, fan-in, fan-out as
shown in figure 1.4.

MCS-104/161

Fan-out

Depth

Figurel.4: Structure of Hierarchy

Check Your Progress 6.

Explain width, depth, fan-in, fan-out in control hierarchy

1.8 STRUCTURAL PARTITIONING

Program structure is partitioned horizontally and vertically as
figure 1.5 shown. Horizontal partitioning defines separate branches for
each major program function - input, process, and output. Vertical
partitioning (aka factoring) defines control (decision-making) at the top
and work at the bottom.

When the architectural style of a design follows a hierarchical nature, the
structure of the program can be partitioned either horizontally or
vertically. In horizontal partitioning, the control modules are used to
communicate between functions and execute the functions. Structural
partitioning provides the following benefits.

• The testing and maintenance of software becomes easier.
• The negative impacts spread slowly.
• The software can be extended easily.

MCS-104/162

Function 1 Function3

Decision-marking
Modules

Modules

(a) Horizontal Partitioning (b) Vertical Partitioning

Figurel.5: Horizontal and Vertical Partitioning

Besides these advantages, horizontal partitioning has some disadvantage
also. It requires more data to permit across the module interface, which
makes the control flow of the problem more complex. This usually
happens in cases where data moves rapidly from one function to another.

In vertical partitioning, the functionality is distributed among the modules­
-in a top-down manner. The modules at the top level called control
modules perform the decision-making and do little processing whereas the
modules at the low level called worker modules perform all input,
computation and output tasks.

Check Your Progress 7.

What are the benefits of horizontal partitioning?

1.9DATASTRUCTURE

Data structure is a representation of the logical relationship among

individual elements of data. Because the structure of information will
invariably affect the final procedural design, data structure is as important
as program structure to the representation of software architecture.

Data structure dictates the organization, methods of access, degree of
associativity, and processing alternatives for information. Entire texts have
been dedicated to these topics, and a complete discussion is beyond the
scope of this book. However, it is important to understand the classic
methods available for organizing information and the concepts that

underlie information hierarchies.

The organization and complexity of a data structure are limited only by the
ingenuity of the designer. There are, however, a limited number of classic MCS-104/163

data structures that form the building blocks for more sophisticated
structures.

A scalar item is the simplest of all data structures. As its name implies, a
scalar item represents a single element of information that may be

addressed by an identifier; that is, access may be achieved by specifying a
single address in memory. The size and format of a scalar item may vary
within bounds that are dictated by a programming language. For example,
a scalar item may be a logical entity one bit long, an integer or floating
point number that is 8 to 64 bits long, or a character string that; is
hundreds or thousands of bytes long.

When scalar items are organized as a list or contiguous group, a sequential
vector is formed. Vectors are the most common of all data structures and
open the door to variable indexing of information. When the sequential
vector is extended to two, three, and ultimately, an arbitrary number of

dimensions, an n-dimensional space is created. The most common n­
dimensional space is the two-dimensional matrix. In many programming
languages, an n- dimensional space is called an array.

Items, vectors, and spaces may be organized in a variety of formats. A
linked list is a data structure that organizes non-contiguous scalar
items ... vectors, or spaces in a manner (called nodes) that enables them to
be processed as a list. Each node contains the appropriate data
organization (e.g., a vector) and one or more pointers that indicate the
address in storage of the next node in the list. Nodes may be added at any
point in the list by redefining pointers to accommodate the new list entry.

Other data structures incorporate or are constructed using the fundamental
data structures just described. For example, a hierarchical data structure is
implemented using multilinked lists that contain scalar items, vectors, and
possibly, n-dimensional spaces. A hierarchical structure is commonly
encountered in applications that require information categorization and
associativity.

It is important to note that data structures, like program structure, can be
represented at different levels of abstraction. For example, a stack is a
conceptual model of a data structure that can be implemented as a vector
or a linked list. Depending on the level of design detail, the internal
workings of a stack may or may not be specified.

Check Your Progress 8.

Application area of hierarchical data structure.

1.10 SOFTWARE PROCEDURE

Program structure defines control hierarchy without regard to the
sequence of processing and decisions. Software procedure focuses on the

MCS-104/164

processing details of each module individually. Procedure must provide a
precise specification of processing, including sequence of events, exact
decision points, repetitive operations, and even data organization and
structure.

There is, of course, a relationship between structure and procedure. The

processing indicated for each module must include a reference to all
modules sub ordinate to the module being described.

1.11 INFORMATION HIDING

Modules should be specified and designed in such a way that the
data structures and processing details of one module are not accessible to
other modules. They pass only that much information to each other, which
is required to accomplish the software functions. The way of hiding
unnecessary details is referred to as information hiding as shown in figure
1.6. IEEE defines information hiding as 'the technique of encapsulating
software design decisions in modules in such a way that the module's

interfaces reveal as little as possible about the module's inner workings;
thus each module is a 'black box' to the other modules in the system.

Information Hiding

I AfJorithems

I Data structure

I Details of external interface

I Resource Alocalion policy

Secert -----.... A Spedic design decision

Figurel.6: Information Hiding

MCS-104/165

Information hiding is of immense use when modifications are required
during the testing and maintenance phase. Some of the advantages
associated with information hiding are listed below:

i. Leads to low coupling

ii. Emphasizes communication through controlled interfaces

iii. Decreases the probability of adverse effects

iv. Restricts the effects of changes in one component on others
v. Results in higher quality software.

Check Your Progress 9.

Why information hiding is important?

1.12 EFFECTIVE MODULAR DESIGN

Effective modular design is the direct outgrowth of

• Modularity

• Information hiding

Effective modular design is measured by:

• Cohesion

• Coupling

Criteria to evaluate Efficiency:

There are five criteria that enable us to evaluate a design method with
respect to its ability to define an effective modular system:

i. Modular decomposability- If a design method provides a systematic
mechanism for decomposing the problem into sub-problems, it will
reduce the complexity of the overall problem, thereby achieving an
effective modular solution.

ii. Modular composability- If a design method enables existing
(reusable) design components to be assembled into a new system, it
will yield a modular solution that does not reinvent the wheel.

iii. Modular understand ability- If a module can be understood as a
standalone unit (without reference to other modules), it will be easier
to build and easier to change.

iv. Modular continuity- If small changes to the system requirements
result in changes to individual modules, rather than system wide
changes, the impact of change-induced side effects will be
minimized.

MCS-104/166

v. Modular protection- If an aberrant condition occurs within a module
and its effects are constrained within that module, the impact of
error-induced side effects will be minimized.

Design heuristics for effective modularity

i. Evaluate the "first iteration" of the program structure to reduce
coupling and improve cohesion.

ii. Attempt to minimize structures with high fan-out; strive for fan-in as
depth increases.

iii. Keep the scope of effect of a module within the scope of control of
that module.

iv. Evaluate module interfaces to reduce complexity and redundancy
and improve consistency.

v. Define modules whose function is predictable, but avoid modules
that are overly restrictive.

vi. Strive for "controlled entry" modules by avoiding "pathological
connections.

Check Your Progress 10.

What is the benefit of modular design?

1.13 COHESION

Cohesion is a measure that defines the degree of intra-dependability within
elements of a module. The greater the cohesion, the better is the program
design. Measure of how well module fits together. A component should
implement a single logical function or single logical entity. All the parts
should contribute to the implementation.

There are many levels of cohesion as described below:

i. Coincidental cohesion: the parts of a component are not related
but simply bundled into a single component. Harder to understand
and not reusable.

ii. Logical association: similar functions such as input, error
handling, etc. put together. Functions fall in same logical class.
May pass a flag to determine which ones executed. Interface
difficult to understand. Code for more than one function may be
intertwined, leading to severe maintenance problems. Difficult to
reuse.

iii. Temporal cohesion: all of statements activated at a single time,
such as start up or shut down, are brought together. Initialization,
clean up. Functions weakly related to one another, but more
strongly related to functions in other modules so may need to
change lots of modules when do maintenance.

MCS-104/167

iv. Procedural cohesion: a single control sequence, e.g., a loop or
sequence of decision statements. Often cuts across functional lines.
May contain only part of a complete function or parts of several
functions. Functions still weakly connected, and again unlikely to
be reusable in another product.

Communicational cohesion: operate on same input data or produce
same output data. May be performing more than one function.
Generally acceptable if alternate structures with higher cohesion
cannot be easily identified. Still problems with reusability.

v. Sequential cohesion: output from one part serves as input for
another part. May contain several functions or parts of different
functions.

vi. Informational cohesion: performs a number of functions, each
with its own entry point, with independent code for each function,
all performed on same data structure. Different than logical
cohesion because functions not intertwined.

vii. Functional cohesion: each part necessary for execution of a single
function. e.g., compute square root or sort the array. Usually
reusable in other contexts. Maintenance easier.

viii. Type cohesion: modules that support a data abstraction. Not
strictly a linear scale. Functional much stronger than rest while
first two much weaker than others. Often many levels may be
applicable when considering two elements of a module. Cohesion
of module considered as highest level of cohesion that is applicable
to all elements in the module.

Check Your Progress 11.

How should software be designed considering cohesion?

1.14 COUPLING

Coupling is a measure that defines the level of inter-dependability among
modules of a program. It tells at what level the modules interfere and

interact with each other. The lower the coupling, the better the program.
Coupling is an indication of the strength of interconnections between
program units. Highly coupled have program units dependent on each
other. Loosely coupled are made up of units that are independent or almost
independent. Modules are independent if they can function completely
without the presence of the other. Obviously, can't have modules
completely independent of each other. Must interact so that can produce
desired outputs. The more connections between modules, the more
dependent they are in the sense that more info about one module is
required to understand the other module.

MCS-104/168

Three factors:

• Number of interfaces

• Complexity of interfaces

• Type of info flow along interfaces

Want to minimize number of interfaces between modules, minimize the
complexity of each interface, and control the type of info flow. An
interface of a module is used to pass information to and from other
modules.

In general, modules tightly coupled if they use shared variables or if they
exchange control info. Loose coupling if info held within a unit and
interface with other units via parameter lists. Tight coupling if shared
global data. If need only one field of a record, don't pass entire record.
Keep interface as simple and small as possible.

Two types of information flow: data or control.

• Passing or receiving back control info means that the action of the
module will depend on this control info, which makes it difficult to
understand the module.

• Interfaces with only data communication result in lowest degree of
coupling, followed by interfaces that only transfer control data.
Highest if data is hybrid.

Types of Coupling, ranked highest to lowest:

i. Content coupling: if one directly references the contents of the
other. When one module modifies local data values or instructions
in another module. (Can happen in assembly language) if one
refers to local data in another module. If one branches into a local

label of another.

ii. Common coupling: access to global data. Modules bound together

by global data structures.

iii. Control coupling: passing control flags (as parameters or global)
so that one module controls the sequence of processing steps in

another module.

iv. Stamp coupling: similar to common coupling except that global
variables are shared selectively among routines that require the

data. E.g., packages in Ada. More desirable than common coupling
because fewer modules will have to be modified if a shared data

structure is modified. Pass entire data structure but need only parts

ofit.

v. Data coupling: use of parameter lists to pass data items between
routines.

How does one determine the cohesion level of a module? There is no

mathematical formula that can be used. We have to use our judgment for
this. A useful technique for determining if a module has functional
cohesion is to write a sentence that describes, fully and accurately, the
function or purpose of the module. The following tests can, then, be made:

MCS-104/169

• If the sentence must be a compound sentence, if it contains a comma,
or it has more than one verb, the module is probably performing
more than one function, and it probably has sequential or
communicational cohesion.

• If the sentence contains words relating to time, like "first," "next,"
"when," and "after", the module, probably, has sequential or
temporal cohesion.

• If the predicate of the sentence does not contain a single specific
object following the verb (such as "edit all data"), the module
probably has logical cohesion.

• Words like "initialize," and "clean up" imply temporal cohesion.

Modules with functional cohesion can always be described by a simple
sentence. However, if a description is a compound sentence, it does not
mean that the module does not have functional cohesion. Functionally
cohesive modules can also be described by compound sentences. If we
cannot describe it using a simple sentence, the module is not likely to have
functional cohesion.

1.15 SUMMARY

Check Your Progress 12.

List the coupling factors.

In This section we discuss about the important role of designing in SDLC.
and different type of characteristics , concepts, aspects, approaches of
designing may be used for better programing . Which type of data
structure, architecture is used in different stage. How module can be
correlate and tie with each other and how data can be flow among the
entire module. And for all purpose how can we improve the basic of
designing of software.

1.16 EXERCISE

(1) Define design process. List the principles of a software design.

(2) What are the benefits of modular design?

(3) What is a cohesive module? What are the different types of
Cohesion?

(4) What is coupling? What are the various types of coupling?

(5) What are the common activities in design process?

(6) What is horizontal partitioning and define the benefits of horizontal
partitioning?

(7) What is vertical partitioning? What are the advantages of vertical
partitioning?

(8) What is the difference between top-down design and bottom-up
design?

MCS-104/170

Structure

2.0 Introduction

2.1 Objective

2.2 Role of Testing

2.3 Principles

2.4 Unit testing

2.5 Integration testing

UNIT-2

TESTING

2.6.1 Top down Integration

2.6.2 Bottom Up Integration

2.6 System testing

2.7 Summary

2.8 Exercise

2.0 INTRODUCTION

Testing begins at the component level and works outward toward
the integration of the entire computer-based system. Different testing
techniques are appropriate at different points in time. The developer of the
software conducts testing and may be assisted by independent test groups
for large projects. Testing and debugging are different activities.
Debugging must be accommodated in any testing strategy.

2.1 OBJECTIVE

Software Testing has different goals and objectives. The major
objectives of Software testing are as follows:

• Finding defects which may get created by the programmer while
developing the software.

• Gaining confidence in and providing information about the level of
quality.

• To prevent defects.

• To make sure that the end result meets the business and user
requirements.

MCS-104/171

• To ensure that it satisfies the BRS that is Business Requirement
Specification and SRS that is System Requirement Specifications.

• To gain the confidence of the customers by providing them a quality
product.

2.2 ROLE OF TESTING

Organizing for Software Testing

• The role of the Independent Test Group (ITO) is to remove the
conflict of interest inherent when the builder is testing his or her own
product.

• The developer should do no testing at all.

• Software is tossed "over the wall" to people to test it mercilessly.

• Testers are not involved with the project until it is time for it to be
tested.

• The developer and ITGC must work together throughout the
software project to ensure that thorough tests will be conducted.

Software Testing Strategy for Traditional Software Architectures

• Unit Testing - makes heavy use of testing techniques that exercise
specific control paths to detect errors in each software component
individually.

• Integration Testing - focuses on issues associated with verification
and program construction as components begin interacting with one
another.

• Validation Testing - provides assurance that the software validation
criteria (established during requirements analysis) meets all
functional, behavioural, and performance requirements.

• System Testing - verifies that all system elements mesh properly and

that overall system function and performance has been achieved.

Software Testing Strategy for Object-Oriented Architectures

• Unit Testing - components being tested are classes not modules

• Integration Testing - as classes are integrated into the architecture
regression tests are run to uncover communication and collaboration
errors between objects .

• Systems Testing - the system as a whole is tested to uncover
requirement errors.

Strategic Testing Issues

• Specify product requirements in a quantifiable manner before testing
starts.

MCS-104/172

• Specify testing objectives explicitly.

• Identify categories of users for the software and develop a profile for
each.

• Develop a test plan that emphasizes rapid cycle testing.

• Build robust software that is designed to test itself.

• Use effective formal reviews as a filter prior to testing.

• Conduct formal technical reviews to assess the test strategy and test
cases.

• Develop a continuous improvement approach for the testing process.

TEST PLAN: A test plan is a document detailing a systematic approach to
testing a system such as a machine or software. The plan typically
contains a detailed understanding of the eventual work flow. A test plan
documents the strategy that will be used to verify and ensure that a
product or system meets its design specifications and other requirements.
A test plan is usually prepared by or with significant input from test
engineers.

Elements of Test Plan: There are three major elements that should be
described in the test plan:

1. Test coverage: Test coverage in the test plan states what
requirements will be verified during what stages of the product
life. Test Coverage is derived from design specifications and other
requirements, such as safety standards or regulatory codes, where
each requirement or specification of the design ideally will have
one or more corresponding means of verification. Test coverage
for different product life stages may overlap, but will not
necessarily be exactly the same for all stages. For example, some
requirements may be verified during Design Verification test, but
not repeated during Acceptance test. Test coverage also feeds back
into the design process, since the product may have to be designed
to allow test access.

11. Test methods: Test methods in the test plan state how test
coverage will be implemented. Test methods may be determined
by standards, regulatory agencies, or contractual agreement, or
may have to be created new. Test methods also specify test
equipment to be used in the performance of the tests and establish
pass/fail criteria. Test methods used to verify hardware design
requirements can range from very simple steps, such as visual
inspection, to elaborate test procedures that are documented
separately.

111. Test responsibilities: Test responsibilities include what
organizations will perform the test methods and at each stage of
the product life. This allows test organizations to plan, acquire or
develop test equipment and other resources necessary to implement
the test methods for which they are responsible. Test MCS-104/173

responsibilities also includes, what data will be collected, and how
that data will be stored and reported (often referred to as
"deliverables"). One outcome of a successful test plan should be a
record or report of the verification of all design specifications and
requirements as agreed upon by all parties.

Testability

Software testability defines how easily a computer program can be tested.

There are some metric to measure the testability. The checklist that
follows provides a set of characteristics that lead to testable software.

• Operability

• Observability

• Controllability

• Decomposability

• Simplicity

• Stability

• Understandability

Attributes of a Good Test:

• High probability of finding an error

• Not redundant

• Should be best of breed

• Neither too simple nor too complex

Method of testing

Software testing methods are traditionally divided into white- and black­
box testing.

In White-box testing or glass box testing tests internal structures or
workings of a program, as opposed to the functionality exposed to the end­
user. In white-box testing an internal perspective of the system, as well as
programming skills, are used to design test cases. While white-box testing
can be applied at the unit, integration and system levels of the software
testing process, it is usually done at the unit level.

Black-box testing treats the software as a "black box", examining
functionality without any knowledge of internal implementation, without
seeing the source code. The testers are only aware of what the software is
supposed to do, not how it does it.

One advantage of the black box technique is that no programming
knowledge is required. Because they do not examine the source code,
there are situations when a tester writes many test cases to check
something that could have been tested by only one test case, or leaves

MCS-104/174

some parts of the program untested. This method of test can be applied to
all levels of software testing: unit, integration, system and acceptance.

There is one more box testing that is grey box testing. Grey-box testing
involves having knowledge of internal data structures and algorithms for
purposes of designing tests, while executing those tests at the user, or
black-box level. The tester is not required to have full access to the
software's source code.

Levels of Testing

Different levels of testing are used in the testing process; each level of
testing aims to test different aspects of the system.

There are generally three recognized levels of testing:

• unit testing

• integration testing

• system testing

Client+-------------------+ Acceptance
Needs Testing

! l
Requirements System

l
To�-

□••ig• lnJratioo

l
To�-

J, Code
Testing

Figure 2.1: Levels of testing

These different levels (figure 2.1) of testing attempt to detect different
types of faults.

Unit testing is, essentially, for verification of the code produced during the
coding phase, hence the goal is to test the internal logic of the modules.

In integration testing, many unit-tested modules are combined into
subsystems, which are then tested. The goal here is to see if the modules
can be integrated properly.

In system testing and acceptance testing, the entire software system is
tested. The reference document for this process is the requirements
document, and the goal is to see if the software meets its requirements. MCS-104/175

Check Your Progress 1.

What are the reasons behind to perform white box testing?

2.3 PRINCIPLES

Software testing is an extremely creative and intellectually
challenging task. When testing follows the principles given below, the
creative element of test design and execution rivals any of the preceding
software development steps.

i. Testing shows the presence of bugs: Testing an application can only
reveal that one or more defects exist in the application, however,
testing alone cannot prove that the application is error free.

Therefore, it is important to design test cases which find as many
defects as possible.

ii. Exhaustive testing in impossible: Unless the application under test
(UAT) has a very simple logical structure and limited input, it is not
possible to test all possible combinations of data and scenarios. For
this reason, risk and priorities are used to concentrate on the most
important aspects to test.

iii. Early testing: The sooner we start the testing activities the better we
can utilize the available time. As soon as the initial products, such
the requirement or design documents are available, we can start
testing. It is common for the testing phase to get squeezed at the end
of the development lifecycle, i.e. when development has finished, so
by starting testing early, we can prepare testing for each level of the
development lifecycle. Another important point about early testing is
that when defects are found earlier in the lifecycle, they are much
easier and cheaper to fix. It is much cheaper to change an incorrect
requirement than having to change functionality in a large system
that is not working as requested or as designed!

iv. Defect clustering: During testing, it can be observed that most of the
reported defects are related to small number of modules within a
system. i.e. small number of modules contain most of the defects in
the system. This is the application of the Pareto Principle to software
testing: approximately 80% of the problems are found in 20% of the
modules.

v. The pesticide paradox: If you keep running the same set of tests
over and over again, chances are no more new defects will be
discovered by those test cases. Because as the system evolves, many
of the previously reported defects will have been fixed and the old
test cases do not apply anymore. Anytime a fault is fixed or a new
functionality added, we need to do regression testing to make sure
the new changed software has not broken any other part of the
software. However, those regression test cases also need to change to

MCS-104/176

reflect the changes made in the software to be applicable and
hopefully fine new defects.

vi. Testing is context dependent: Different methodologies, techniques
and types of testing is related to the type and nature of the
application. For example, a software application in a medical device
needs more testing than games software. More importantly a medical
device software requires risk based testing, be compliant with
medical industry regulators and possibly specific test design
techniques. By the same token, a very popular website needs to go
through rigorous performance testing as well as functionality testing
to make sure the performance is not affected by the load on the
servers.

vii Absence of errors fallacy: Just because testing didn't find any
defects in the software, it doesn't mean that the software is ready to
be shipped. Were the executed tests really designed to catch the most
defects? or where they designed to see if the software matched the
user's requirements? There are many other factors to be considered
before making a decision to ship the software.

Other principles to note are:

• Testing must be done by an independent party.

• Assign best personnel to the task.

• Test for invalid and unexpected input conditions as well as valid
conditions

• Keep software static during test.

• Provide expected test results if possible.

Check Your Progress 2.

What are the Basic Principles of Software Testing?

2.4 UNIT TESTING

Unit testing compromises the set of tests performed by an
individual programmer prior to integration of the unit into a larger system.
The situation is illustrated as follows:

Coding and debugging
Testing

Unit Testing--•► Integration

A program unit is usually small enough programmer who developed it can
test it in great detail, and certainly in greater detail the will be possible
when the unit is integrated into an evolving software product.

There are four categories of tests that a programmer will typically perform
on a program unit:

MCS-104/177

i. Functional test cases involve exercising the code with nominal input

values for which the expected results are known, as well as boundary

values (minimum values, maximum values, and values on and just

outside the functional boundaries) and special values such as

logically related inputs, lxl matrices, the identity matrix, files of

identical elements, and empty files.

ii. Performances testing determines the amount of execution time

spend in various parts of the unit, program throughout, response

time, and device utilization by the program unit. A certain amount of

performance tuning may be done during unit testing. However,

caution must be exercised to avoid expending too much effort on

fine-tuning of a program unit that contributes little to the overall

performance of the entire system. Performance testing is most

productive at the subsystem and system levels.

iii. Stress tests are those tests designed to intentionally break the unit. A

great deal can be learned about the strengths and limitations of a

program by examining the manner in which a program unit breaks.

iv. Structure tests are concerned with exercising the internal logic of a

program and traversing particular execution paths. Some authors

refer collectively to functional, performance, and stress testing as

"black box" testing, while structure testing is referred to as "white

box" or "glass box". The major activities in structural attesting are

deciding which path to exercise, deriving test data to exercise those

and measuring the test coverage achieved when the test case are

exercised.

Check Your Progress 3.

What errors are commonly found during Unit Testing?

2.5 INTEGRATION TESTING

Integration testing is a software testing methodology used to test
individual software components or units of code to verify interaction
between various software components and detect interface defects.
Components are tested as a single group or organized in an iterative
manner. After the integration testing has been performed on the
components, they are readily available for system testing.

Integration is a key software development life cycle (SDLC) strategy.
Generally, small software systems are integrated and tested in a single
phase, whereas larger systems involve several integration phases to build a
complete system, such as integrating modules into low-level subsystems

MCS-104/178

for integration with larger subsystems. Integration testing encompasses all
aspects of a software system's performance, functionality and reliability.

Most unit-tested software systems are comprised of integrated components
that are tested for error isolation due to grouping. Module details are
presumed accurate, but prior to integration testing, each module is
separately tested via partial component implementation, also known as a
stub.

The two main integration testing strategies are as follows:

• Bottom-Up: Involves low-level component testing, followed by
high-level components. Testing continues until all hierarchical
components are tested. Bottom-up testing facilitates efficient error
detection.

• Top-Down: Involves testing the top integrated modules first.
Subsystems are tested individually. Top-down testing facilitates
detection of lost module branch links.

The purpose of integration testing is to verify functional, performance, and
reliability requirements placed on major design items.

Bottom-up integration is the traditional strategy to integrate the
components of a software system into a functioning whole. Bottom-up

integration consists of unit testing, followed by subsystem testing,
followed by testing of the entire system. Unit testing has the goal of
discovering errors in the individual modules of the system. Modules are
tested in isolation from one another in an artificial environment known as
a "test harness," which consists of the driver programs and data necessary
to exercise the modules. Unit testing should be as exhaustive as possible
to ensure that each representative handled by each module has been tested.
Unit testing is eased by a system structure that is composed of small,
loosely coupled modules.

A subsystem consists of several modules that communicate with each
other through well-defined interfaces. Normally, a subsystem implements
a major segment operation of the interfaces between modules in the
subsystem. Both control and of subsystem testing: lower level subsystems
are successively combined to form higher-level subsystems. In most
software systems, exhaustive testing of subsystem capabilities is not
feasible due to the combinational complexity of the module interfaces;
therefore, test cases must be carefully chosen to exercise the interfaces in
the desired manner.

System testing is concerned with subtleties in the interfaces, decision
logic, control flow, recovery procedures, throughput, capacity, and timing
characteristics of the entire system. Careful test planning is required to
determine the extent and nature of system testing to be performed and to
establish criteria by which the results will be evaluated.

Disadvantages of bottom-up testing include the necessity to write and
debug test harness for the modules and subsystems, and the level of
complexity that results from combining modules and subsystems into MCS-104/179

larger and larger units. The extreme case of complexity results when each
module is unit tested in isolation and "big bang" approach to integration
testing. The main problem with big-bang integration is the difficulty of
isolating the sources of error.

Test harnesses provide data environments and calling sequences for the
routines and subsystems that are being tested in isolation. Test harness
preparation can amount to 50 per cent or more of the coding and
debugging effort for a software product.

Top-down integration starts with the main routine and one or two
immediately subordinate routines in the system structure. After this top­
level, when "skeleton" has been thoroughly tested, it becomes the test
harness for its immediately subordinate routines. Top-down integration
requires the use of program stubs to simulate the effect of lower-level
routines that are called by those being tested.

2.5.1 TOP-DOWN INTEGRATION

Method

• The control module is implemented and tested first.

• Imported modules are represented by surrogate modules.

• Surrogates have the same interfaces as the imported modules and
simulate their input/output behaviour.

• After the test of the control module, all other modules of the
software systems are tested in the same way; i.e. their operations are
represented by surrogate procedures until the development has
progressed enough to allow implementation and testing of the
operations.

• The test advances stepwise with the implementation.
Implementation and phases merge, and the integration test of
subsystems becomes superfluous.

The advantages

• Design errors are detected as early as possible, saving development
time and costs because corrections in the module design and be made
before their implementation.

• The characteristics of a software system are evident from the start,
which enables a simple test of the development state and the
acceptance by the user.

• The software system can be tested thoroughly from the start with test
cases without providing (expensive) test environments.

MCS-104/180

The drawbacks

• Strict top-down testing proves extremely difficult because designing
usable surrogate objects can prove very complicated, especially for
complex operations.

• Errors in lower hierarchy levels are hard to localize.

2.5.2 BOTTOM-UP INTEGRATION

Method

• Bottom-up testing inverts the top-down approach.

• First those operations are tested that require no other program
components; then their integration to a module is tested.

• After the module test the integration of multiple (tested) modules to
a subsystem is tested, until finally the integration of the subsystems,
i.e., the overall system, can be tested.

The advantages

• The advantages of bottom-up testing prove to be the drawbacks of
top-down testing (and vice versa).

• The bottom-up test method is solid and proven. The objects to be
tested are known in full detail. It is often simpler to define relevant
test cases and test data.

• The bottom-up approach is psychologically more satisfying because
the tester can be certain that the foundations for the test objects have
been tested in full detail.

The drawbacks

• The characteristics of the finished product are only known after the
completion of all implementation and testing, which means that
design errors in the upper levels are detected very late.

• Testing individual levels also inflicts high costs for providing a
suitable test environment.

Check Your Progress 4.

What are the approaches of integration testing?

2.6 SYSTEM TESTING

System testing is the type of testing to check the behaviour of a
complete and fully integrated software product based on the software
requirements specification (SRS) document. The main focus of this testing
is to evaluate Business / Functional / End-user requirements.

MCS-104/181

This is black box type of testing where external working of the software is
evaluated with the help of requirement documents & it is totally based on
Users point of view. For this type of testing do not required knowledge of
internal design or structure or code.

This testing is to be carried out only after System Integration Testing is
completed where both Functional & Non-Functional requirements are

verified.

In the integration testing testers are concentrated on finding bugs/defects
on integrated modules. But in the Software System Testing testers are
concentrated on finding bugs/defects based on software application
behaviour, software design and expectation of end user.

Importance of system testing

• In Software Development Life Cycle the System Testing is perform
as the first level of testing where the System is tested as a whole.

• In this step of testing check if system meets functional requirement
or not.

• System Testing enables you to test, validate and verify both the
Application Architecture and Business requirements.

• The application/System is tested in an environment that particularly
resembles the effective production environment where the
application/software will be lastly deployed.

Entry Criteria for System Testing:

• Unit testing should be finished.

• Integration of modules should be fully integrated.

• As per the specification document software development is
completed.

• Testing environment is available for testing (similar to Staging
environment)

Steps of System testing

Step 1) First & important step is preparation of System Test Plan

Step 2) Second step is to creation Test Cases

Step 3) Creation oftest data which used for System testing.

Step 4) Automated test case execution.

Step 5) Execution of normal test case & update test case if using any test
management tool.

Step 6) Bug Reporting, Bug verification & Regression testing.

Step 7) Repeat testing life cycle (if required).

MCS-104/182

Types of System Testing

There are more than 50 types of System Testing. Below are some types of
system testing used in any software development-

• Usability Testing - Usability testing mainly focuses on the user's
ease to use the application, :flexibility in handling controls and ability

of the system to meet its objectives

• Load Testing - Load testing is necessary to know that a software
solution will perform under real life loads.

• Regression Testing - Regression testing involves testing done to
make sure none of the changes made over the course of the
development process have caused new bugs. It also makes sure no
old bugs appear from the addition of new software modules over
time.

• Recovery Testing - Recovery testing is done to demonstrate a
software solution is reliable, trustworthy and can successfully recoup

from possible crashes.

• Migration Testing - Migration testing is done to ensure that the
software can be moved from older system infrastructures to current
system infrastructures without any issues.

• Functional Testing - Also known as functional completeness
testing, functional testing involves trying to think of any possible
missing functions. Testers might make a list of additional
functionalities that a product could have to improve it during
functional testing.

• Hardware/Software Testing - IBM refers to Hardware/Software
testing as "HW /SW Testing". This is when the tester focuses his/her
attention on the interactions between the hardware and software
during system testing.

Check Your Progress 5.

What do system testing do?

2.7SUMMARY

In this section we discuss why we used testing the software, how
we can we test, what type of case, criteria and approaches are used to
developed the software. Software testing helps in finalizing the software

application or product against business and user requirements. It is very
important to have good test coverage in order to test the software
application completely and make it sure that it's performing well and as
per the specifications.

While determining the test coverage the test cases should be designed well
with maximum possibilities of finding the errors or bugs. The test cases
should be very effective. This objective can be measured by the number of MCS-104/183

defects reported per test cases. Higher the number of the defects reported
the more effective are the test cases.

Once the delivery is made to the end users or the customers they should be
able to operate it without any complaints. In order to make this happen the
tester should know as how the customers are going to use this product and
accordingly they should write down the test scenarios and design the test
cases. This will help a lot in fulfilling all the customer's requirements.

Software testing makes sure that the testing is being done properly and
hence the system is ready for use. Good coverage means that the testing
has been done to cover the various areas like functionality of the
application, compatibility of the application with the OS, hardware and
different types of browsers, performance testing to test the performance of
the application and load testing to make sure that the system is reliable and
should not crash or there should not be any blocking issues. It also
determines that the application can be deployed easily to the machine and
without any resistance. Hence the application is easy to install, learn and
use.

2.8 EXERCISE

(1) What is the difference between black-box testing and white-box
testing?

(2) Define the different type of system testing?

(3) Write down the advantages and disadvantages of top down
integration testing.

(4) Write down the advantages and disadvantages of bottom up
integration testing.

(5) What are the testing principles the software engineer must apply
while performing the software testing?

MCS-104/184

UNIT-3

TYPES OF TESTING

Structure

3.0 Introduction

3.1 Objective

3.2 Types of Testing

3.2.1 Installation Testing

3.2.2 Compatibility Testing

3.2.3 Sanity and Smoke Testing

3.2.4 Regression Testing

3.2.5 Validation Testing

3.2.6 Alpha Testing

3.2.7 Beta Testing

3.2.8 Acceptance Testing

3.2.9 Recovery Testing

3.2.10 Security Testing

3.2.11 Stress Testing

3.2.12 Performance Testing

3.3 Summary

3.4 Exercise

3.0 INTRODUCTION

Testing should systematically uncover different classes of errors in
a minimum amount of time and with a minimum amount of effort. A
secondary benefit of testing is that it demonstrates that the software

appears to be working as stated in the specifications. The data collected
through testing can also provide an indication of the software's reliability
and quality. But, testing cannot show the absence of defect -- it can only
show that software defects are present.

3.1 OBJECTIVE

The objectives of this unit are:

a) meets the requirements that guided its design and development. MCS-104/185

b) works as expected.

c) can be implemented with the same characteristics.

d) satisfies the needs of stakeholders.

3.2 TYPES OF TESTING

There are several types of testing. Some are as follows:

• Installation Testing

• Compatibility Testing

• Sanity and Smoke Testing

• Regression Testing

• Validation Testing

• Alpha Testing

• Beta Testing

• Acceptance Testing

• Recovery Testing

• Security Testing

• Stress Testing

• Performance Testing

3.2 .1 INSTALLATION TESTING

This type of testing assures that the system is installed correctly

and working at actual customer's hardware.

Check Your Progress 1.

What are the steps carried out in installation testing?

3.2.2 COMPATIBILITY TESTING

A common cause of software failure is a lack of

its compatibility with other application software, operating systems , or

target environments that differ from the original. Compatibility testing is

one of the test types performed by testing team. Compatibility testing

checks if the software can be run on different hardware, operating system,

bandwidth, databases, web servers, application servers, hardware

MCS-104/186

https://en.wikipedia.org/wiki/Computer_compatibility
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Operating_system

peripherals, emulators, different configuration, processor, different

browsers and different versions of the browsers etc.,

3.2.3 SANITY AND SMOKE TESTING

Sanity testing determines whether it is reasonable to proceed with
further testing. Smoke testing consists of minimal attempts to operate the
software, designed to determine whether there are any basic problems that
will prevent it from working at all.

Check Your Progress 2.

What are the benefits of Smoke Testing?

3.2.4 REGRESSION TESTING

When some errors occur in a program then these are rectified. For
rectification of these errors, changes are made to the program. Due to
these changes some other errors may be incorporated in the program.

Therefore, all the previous test cases are tested again. This type of testing
is called regression testing.

In a broader context, successful tests (of any kind) result in the discovery
of errors, and errors must be corrected. Whenever software is corrected,
some aspect of the software configuration (the program, its
documentation, or the data that supports it) is changed. Regression testing
is the activity that helps to ensure that changes (due to testing or for other
reasons) do not introduce unintended behavior or additional errors.

Regression testing may be conducted manually, by re-executing a subset
of all test cases or using automated capture/playback tools.
Capture/playback tools enable the software engineer to capture test cases
and results for subsequent playback and comparison.

The regression test suite (the subset of tests to be executed) contains three
different classes oftest cases:

• A representative sample of tests that will exercise all software
functions.

• Additional tests that focus on software functions that are likely to be

affected by the change.

• Tests that focus on the software components that have been changed.

• As integration testing proceeds, the number of regression tests can
grow quite large.

Therefore, the regression test suite should be designed to include only
those tests that address one or more classes of errors in each of the major
program functions. It is impractical and inefficient to re-execute every test
for every program function once a change has occurred.

MCS-104/187

https://en.wikipedia.org/wiki/Sanity_testing
https://en.wikipedia.org/wiki/Smoke_testing_(software)

Check Your Progress 3.

List the steps for regression test.

3.2.5 VALIDATION TESTING

Validation is the process of evaluating software during or at the

end of the development process to determine whether it satisfies specified

requirements.

A product can pass while verification, as it is done on the paper and no

running or functional application is required. But, when same points which

were verified on the paper is actually developed then the running

application or product can fail while validation. This may happen because

when a product or application is built as per the specification but these

specifications are not up to the mark hence they fail to address the user

requirements.

Advantages of Validation:

• During verification if some defects are missed then during validation

process it can be caught as failures.

• If during verification some specification is misunderstood and

development had happened then during validation process while

executing that functionality the difference between the actual result

and expected result can be understood.

• Validation is done during testing like feature testing, integration

testing, system testing, load testing, compatibility testing, stress

testing, etc.

• Validation helps in building the right product as per the customer's

requirement and helps in satisfying their needs.

Validation is basically done by the testers during the testing. While

validating the product if some deviation is found in the actual result from

the expected result then a bug is reported or an incident is raised.

If the validation tests are carried out by a third party, they are known as

independent validation and verification. The developer needs to provide

the user manual to the third party tester. This manual should clearly

contain the standard working conditions of the software. The user manual

should have the various working conditions of the software, so that the

tester can simulate real-life conditions. These third party organizations

submit a validation report to the developer after the software is tested. The

developer, upon receipt of this report, makes the desired changes to the

MCS-104/188

software, and again tests it to check whether the customer needs are met or

not.

Software validation testing is an important part of the software

development life cycle (SDLC), apart from verification, debugging, and

certification. Validation testing ensures that the software meets the quality

standards set by the customer, and that the product meets customer

requirements.

Check Your Progress 4.

What are the conditions that exist

3.2.6 ALPHA TESTING

Alpha testing is a type of acceptance testing; performed to identify all
possible issues/bugs before releasing the product to everyday users or
public. The focus of this testing is to simulate real users by using black
box and white box techniques. The aim is to carry out the tasks that a
typical user might perform. Alpha testing is carried out in a lab
environment and usually the testers are internal employees of the
organization. To put it as simple as possible, this kind of testing is called
alpha only because it is done early on, near the end of the development of
the software, and before beta testing as in figure 3 .1.

Figure 3.1: Position of Alpha & Beta Testing

Entry Criteria for Alpha testing:

• Software requirements document or Business requirements
specification

• Test Cases for all the requirements

• Testing Team with good knowledge about the software application

• Test Lab environment setup

• QA Build ready for execution MCS-104/189

• Test Management tool for uploading test cases and logging defects

• Traceability Matrix to ensure that each design requirement has at
least one test case that verifies it

Exit Criteria for Alpha testing

• All the test cases have been executed and passed.

• All severity issues need to be fixed and closed

• Delivery of Test summary report

• Make sure that no more additional features can be included

• Sign off on Alpha testing

Advantages of Alpha Testing:

• Provides better view about the reliability of the software at an early
stage

• Helps simulate real time user behaviour and environment.

• Detect many showstopper or serious errors

• Ability to provide early detection of errors with respect to design and
functionality

Disadvantages of Alpha Testing:

• In depth functionality cannot be tested as software is still under
development stage. Sometimes developers and testers are dissatisfied
with the results of alpha testing.

Check Your Progress 5.

Which testing is performed for Virtual Environment?

3.2.7 BETA TESTING

Beta Testing of a product is performed by "real users" of the software

application in a "real environment" and can be considered as a form of

external user acceptance testing.

Beta version of the software is released to a limited number of end-users

of the product to obtain feedback on the product quality. Beta testing

reduces product failure risks and provides increased quality of the product

through customer validation.

It is the final test before shipping a product to the customers. Direct

feedback from customers is a major advantage of Beta Testing. This

testing helps to tests the product in real time environment.

MCS-104/190

Types of Beta Testing

There are different types of Beta tests, and they are as follows:

• Traditional Beta testing: Product is distributed to the target market,

and related data is gathered in all aspects. This data can be used for

Product improvement.

• Public Beta Testing: Product is publicly released to the outside

world via online channels and data can be gathered from anyone.

Based on feedback, product improvements can be done. For

example, Microsoft conducted the largest of all Beta Tests for its OS

-- Windows 8 before officially releasing it.

• Technical Beta Testing: Product is released to the internal group of

an organization and gathers feedback/data from the employees of the

organization.

• Focused Beta: Product is released to the market for gathering

feedback on specific features of the program. For example, important

functionality of the software.

• Post release Beta: Product is released to the market and data is

gathered to make improvements for the future release of the product.

Entrance criteria for Beta Testing:

• Sign off document on Alpha testing

• Beta version of the software should be ready

• Environment ready to release the software application to the public

• Tool to capture real time faults

Exit Criteria for Beta Testing:

• All major and minor issues are closed

• Feedback report should be prepared from public

• Delivery of Beta test summary report

Advantages Beta Testing

• Reduces product failure risk via customer validation.

• Beta Testing allows a company to test post-launch infrastructure.

• Improves product quality via customer feedback

• Cost effective compared to similar data gathering methods

• Creates goodwill with customers and increases customer satisfaction

Disadvantages Beta Testing
MCS-104/191

• Test Management is an issue. As compared to other testing types

which are usually executed inside a company in a controlled

environment, beta testing is executed out in the real world where you

seldom have control.

• Finding the right beta users and maintaining their participation could

be a challenge

Comparison of Alpha and Beta Testing

Alpha Testing Beta Testing

Alpha testing performed by Beta testing is performed by Clients
Testers who are usually internal or End Users who are not employees
employees of the organization of the organization

Alpha Testing performed at Beta testing is performed at client
developer's site location or end user of the product

Reliability and security testing
Reliability, Security, Robustness are

are not performed in-depth
Alpha Testing

checked during Beta Testing

Alpha testing involves both the
Beta Testing typically uses black box

white box and black box
techniques

testing

Beta testing doesn't require any lab
Alpha testing requires lab environment or testing environment.
environment or testing Software is made available to the
environment public and is said to be real time

environment

Long execution cycle may be Only few weeks of execution are
required for Alpha testing required for Beta testing

Critical issues or fixes can be
Most of the issues or feedback is

addressed by developers
collected from Beta testing will be

immediately in Alpha testing
implemented in future versions of the

product

Beta testing also concentrates on
Alpha testing is to ensure the quality of the product, but gathers
quality of the product before users input on the product and
moving to Beta testing ensures that the product is ready for

real time users.

MCS-104/192

Check Your Progress 6.

How beta testing improve product quality?

3.2.8 ACCEPTANCE TESTING

Acceptance testing is a formal type of software testing that is
performed by end user when the features have been delivered by
developers. The aim of this testing is to check if the software confirms to
their business needs and to the requirements provided earlier.

Acceptance Criteria

Acceptance criteria are defined on the basis of the following attributes

• Functional Correctness and Completeness

• Data Integrity

• Data Conversion

• Usability

• Performance

• Timeliness

• Confidentiality and Availability

• Installability and Upgradability

• Scalability

• Documentation

Acceptance Test Plan -Attributes

The acceptance test activities are carried out in phases. Firstly, the basic
tests are executed, and if the test results are satisfactory then the
execution of more complex scenarios are carried out.

The Acceptance test plan has the following attributes:

• Introduction

• Acceptance Test Category

• operation Environment

• Test case ID

• Test Title

• Test Objective

• Test Procedure

• Test Schedule

• Resources
MCS-104/193

The acceptance test activities are designed to reach at one of the
conclusions:

1. Accept the system as delivered

2. Accept the system after the requested modifications have been made

3. Do not accept the system

Acceptance Test Report -Attributes

The Acceptance test Report has the following attributes:

• Report Identifier

• Summary of Results

• Variations

• Recommendations

• Summary of To-do List

• Approval Decision

Check Your Progress 7.

List acceptance test plan attribute.

3.2.9 RECOVERY TESTING

Many computer-based systems must recover from faults and
resume operation within a pre-specified time. In some cases, a system may
be fault tolerant; that is, processing faults must not cause overall system
function to cease. In other cases, a system failure must be corrected within
a specified period or severe economic damage will occur.

Recovery testing is a system test that forces the software to fail in a variety
of ways and verifies that recovery is properly performed. It the recovery is
automated (performed by system itself), re-initialization mechanisms, data

recovery, and restart are each evaluated for correctness. If the recovery
requires human intervention, the mean time to repair is evaluated to
determine whether it is within acceptable limits.

Recovery testing is a type of non-functional testing technique performed

in order to determine how quickly the system can recover after it has gone
through system crash or hardware failure. Recovery testing is the forced
failure of the software to verify if the recovery is successful.

Steps of Recovery Plan:

• Determining the feasibility of the recovery process.

• Verification of the backup facilities.

MCS-104/194

• Ensuring proper steps are documented to verify the compatibility of
backup facilities.

• Providing Training within the team.

• Demonstrating the ability of the organization to recover from all
critical failures.

• Maintaining and updating the recovery plan at regular intervals.

Check Your Progress 8.

What is non-functional testing?

3.2.10 SECURITY TESTING

Any computer-based system that manages sensitive information or
causes actions that can harm or benefit individuals is a target for improper
or illegal penetration.

Security testing attempts to verify that protection mechanism built into a
system will protect it from unauthorized penetration. During security
testing, the tester plays the role of the individual who desires to penetrate
the system. The tester may attack the system with custom software
designed to break down any defences that have been constructed; may
overwhelm the system, thereby denying service to others; may purposely
cause system errors, hoping to find the key to system entry; and so on.

Given enough time and resources, good security testing will ultimately
penetrate a system. The role of the system designer is to make penetration
cost greater than the value of the information that will be obtained in order
to deter potential threats.

The prime objective of security testing is to find out how vulnerable a
system may be and to determine whether its data and resources are

protected from potential intruders. Online transactions have increased
rapidly of late making security testing as one of the most critical areas of
testing for such web applications. Security testing is more effective in
identifying potential vulnerabilities when performed regularly.

Normally, security testing has the following attributes:

• Authentication

• Authorization

• Confidentiality

• Availability

• Integrity

• Non-repudiation

• Resilience
MCS-104/195

Why Security Testing

System testing, in the current scenario, is a must to identify and address
web application security vulnerabilities to avoid any of the following:

• Loss of customer trust.

• Disturbance to your online means of revenue generation/collection.

• Website downtime, time loss and expenditures in recovering from
damage.

• Cost associated with securing web applications against future
attacks.

• Related legal implications and fees for having lax security measures
in place.

Check Your Progress 9.

What is the need of security testing?

3.2.11 STRESS TESTING

Stress testing refers to the testing of software or hardware to
determine whether its performance is satisfactory under any extreme and
unfavourable conditions, which may occur as a result of heavy network
traffic, process loading, under-clocking, overclocking and maximum
requests for resource utilization.

Most systems are developed under the assumption of normal operating
conditions. Thus, even if a limit is crossed, errors are negligible if the
system undergoes stress testing during development.

Stress tests are designed to confront program functions with abnormal
situations. Stress testing executes a system in a manner that demands
resources in abnormal quantity, frequency, or volume. For example,

i. Special tests may be designed that generate 10 interrupts are

seconds, when one or two is the average rate;

ii. Input data rates may be increased by an order of magnitude to

determine how input functions will respond;

iii. Test cases that require maximum memory or other resources may

be executed;

iv. Test cases that may cause excessive hunting for disk resident data

may be created; or

v. Test cases that may cause thrashing in a virtual operating system

may be designed. The testers attempt to break the program.

MCS-104/196

Context of Stress testing:

• Software: Stress testing emphasizes availability and error handling
under extremely heavy loads to ensure software does not crash due
to insufficient resources. Software stress testing focuses on identified
transactions to break transactions, which are heavily stressed during
testing, even when a database has no load. The stress testing process
loads concurrent users beyond normal system levels to find the
system's weakest link.

• Hardware: Stress testing ensures stability in normal computing
environments.

• Websites: Stress testing determines the limitations of any of the site's
functionalities.

• CPU: Modifications such as over volting, under volting, under
locking and over locking are verified to determine whether they can
withstand heavy loads by running a CPU-intensive program to test
for system crashes or hangs. CPU stress testing is also known as
torture testing.

Benefits of Stress Testing

The most significant benefit of stress testing is that you can check the
application to see whether it works under any type of stress. Stress testing
can uncover many loopholes or weaknesses like memory leaks and even
race conditions. Race conditions are the conflicts you will sometimes see,
when two tests run concurrently.

A memory leak usually occurs when the test uses the allocated memory
and it does not return the said memory space for the memory allocation.
This will lead to system failure, as the available memory is eaten up
completely. Stress testing may not be a proper type of software testing
system. In many cases, many different tests are capable of knowing a
software application's ability to perform well in a real-time ambiance.

Stress testing can provide you with the necessary data that is hard to find
anywhere else.

Check Your Progress 10.

Write some benefits of stress testing.

3.2.12 PERFORMANCE TESTING

Performance testing, a non-functional testing technique performed
to determine the system parameters in terms of responsiveness and
stability under various workload. Performance testing measures the quality
attributes of the system, such as scalability, reliability and resource usage.

Performance Testing Goal:

The focus of Performance testing is checking a software program for MCS-104/197

• Speed - Determines whether the application responds quickly

• Scalability - Determines maximum user load the software

application can handle.

• Stability - Determines if the application is stable under varying loads

Performance Testing Techniques:

• Load testing - It is the simplest form of testing conducted to

understand the behaviour of the system under a specific load. Load
testing will result in measuring important business critical
transactions and load on the database, application server, etc., are

also monitored.

• Soak testing - Soak Testing also known as endurance testing, is
performed to determine the system parameters under continuous
expected load. During soak tests the parameters such as memory
utilization is monitored to detect memory leaks or other performance
issues. The main aim is to discover the system's performance under
sustained use.

• Spike testing - Spike testing is performed by increasing the number
of users suddenly by a very large amount and measuring the
performance of the system. The main aim is to determine whether
the system will be able to sustain the workload.

Attributes of Performance Testing:

• Speed

• Scalability

• Stability

• Reliability

Common Performance Problems

• Long Load time

• Poor response time

• Poor scalability

• Bottlenecking

Performance Testing Process

i. Identify your testing environment

ii. Identify the performance acceptance criteria

iii. Plan & design performance tests

iv. Configuring the test environment

v. Implement test design

vi. Analyse, tune and retest

MCS-104/198

Check Your Progress 11.

Give any three types of performance test.

3.3 SUMMARY

In this unit lots of testing are defined. This is not necessary to use all the
testing in single software. Every testing has its own characteristics,
requirement and limitations. These testing are used according to the need
and requirements of software as well as testing team.

3.4 EXERCISE

(1) What is the need of security testing?

(2) Explain the techniques of performance testing.

(3) What is the difference between alpha testing and beta testing?

(4) Distinguish between verification and validation.

MCS-104/199

MCS-104/200

Structure

4.0 Introduction

4.1 Objective

UNIT-4

REENGINEERING

4.2 Concept of Re-Engineering

4.3 Concept of Reverse Engineering

4.4 Concept of Restructuring

4.5 Concept of Forward Engineering

4.6 Summary

4. 7 Exercise

4.0 INTRODUCTION

The essence of software re-engineering is to improve or transform
existing software so that it can be understand, controlled, and used a new.
The need for software re-engineering has increased greatly, as heritage
software systems have become obsolescent in terms of their architecture,
the platforms on which they run, and their suitability and stability to
support evolution to support changing needs. Software re-engineering is

important for recovering and reusing existing software assets, putting high
software maintenance costs under control, and establishing a base for
future software evolution. Basically, re-engineering is taking existing
legacy software that has become expensive to maintain or whose system
architecture or implementation are obsolete, and redoing it with current
software and/or hardware technology. The difficulty lies in the
understanding of the existing system. Usually requirements, design and
code documentation is no longer available, or is very out of date, so it is
unclear what functions are to be moved. Often the system contains
functions that are no longer needed, and those should not be moved to the
new system.

4.1 OBJECTI VE

The objectives of this unit are:

a) to obtain quantum gains m the performance of the process m
terms of time, cost, output, quality
to customers

MCS-104/201

b) to simplify and streamline the process

c) to obtain dramatic improvement
effectiveness.

m

4.2 CONCEPT OF RE-ENGINEERING

operational

Re-engineering is the examination, analysis and alteration of an
existing software system to reconstitute it in a new form, and the
subsequent implementation of the new form. The process typically
encompasses a combination of other processes such as reverse
engineering, re-documentation, restructuring, translation, and forward
engineering. The goal is to understand the existing software (specification,
design, implementation) and then to re-implement it to improve the
system's functionality, performance or implementation.

• Abstraction level - ideally want to be able to derive design
information at the highest level possible

• Completeness - level of detail provided at a given abstraction level

• Interactivity - degree to which humans are integrated with
automated reverse engineering tools

• Directionality - one-way means the software engineer doing the
maintenance activity is given all information extracted from source
code, two-way means the information is fed +to a reengineering tool
that attempts to regenerate the old program

• Extract abstractions - meaningful specification of processing
performed is derived from old source code

Re-engineering Objectives

The number of large systems being built from scratch is diminishing,

while the number of legacy systems in use is very high. While the

functionality of existing systems remains constant, the context of new

systems, such as the application environment, system level hardware and

software, are different. Enhancements to the functionality of the existing

systems may also be needed, but although the re-engineering effort may

configured for enhancements, they should not be incorporated until after

the re-engineering is complete. This allows for comparison of

functionality between the existing system and the new system. The

problem is that systems currently in use, "legacy" systems, have become

lacking in good design structure and code organization, making changes to

the software difficult and costly. Corporations do not want to "trash" these

systems because there are many built in subtle business application

MCS-104/202

processes that have evolved over time that would be lost. Often the

developers of the legacy systems are not available to verify or explain this

information; the only source is the current software code. The original

expense of developing the logic and components of the software systems

should not be wasted, so reuse through re-engineering is desired. The

challenge in software re-engineering is to take existing systems and instil

good software development methods and properties, generating a new

target system that maintains the required functionality while applying new

technologies. Although specific objectives of a re-engineering task are

determined by the goals of the corporations, there are four general re­

engineering objectives:

• Preparation for functional enhancement

• Improve maintainability

• Migration

• Improve reliability

Goals of Reengineering

• Port to other Platform- when hardware or software support becomes

obsolete

• Design extraction- to improve maintainability, portability, etc.

• Exploitation of New Technology- new language features, standards,

libraries, etc. It is used when tools to support restructuring are

readily available

Software Reengineering Activities

• Inventory analysis - sorting active software applications by business

criticality, longevity, current maintainability, and other local criteria

helps to identify reengineering candidates

• Document restructuring- need to decide to live with weak

documentation, update poor documents if they are used, or fully

rewrite the documentation for critical systems focusing on the

"essential minimum"

• Reverse engineering - process of design recovery - analyzing a

program in an effort to create a representation of the program at

some abstraction level higher than source code

• Code restructuring - source code is analysed and violations of

structured programming practices are noted and repaired, the revised

code also needs to be reviewed and tested

• Data restructuring - usually requires full reverse engmeenng, MCS-104/203

current data architecture is dissected and data models are defined,
existing data structures are reviewed for quality

• Forward engineering - also called reclamation or renovation,
recovers design information from existing source code and uses this
information to reconstitute the existing system to improve its overall
quality and/or performance

The complete lifecycle of Software Re-Engineering includes:

• Product Management: Risks analysis, root cause analysis, business
analysis, requirements elicitation and management, product planning
and scoping, competitive analysis

• Research and Innovation: Definition of a problem, data gathering
and analysis, identifying a solution and developing best-of-breed or
innovative algorithms, verification of quality for data and results,
patent preparation

• Product Development: Technology analysis and selection, software
architecture and design, data architecture, deployment architecture,
prototyping and production code development, comprehensive
software testing, data quality testing, and product packaging and
deployment preparation

• Product Delivery and Support: Hardware/Platform analysis and
selection, deployment and release procedures definition, installations
and upgrades, tracking support issues, organizing maintenance
releases.

• Project Management: Brings efficiency and productivity to your
software re-engineering project by utilizing modem, practical
software project management, software quality assurance, data
quality assurance, and advanced risk management techniques.

Software Development Levels of Abstraction in Re-engineering

Levels of Abstraction that underlie the software development process also
underlie the re-engineering process. Each level corresponds to a phase in
the development life cycle and defines the software system at a particular
level of detail (or abstraction) is depicted in figure 4.1.

MCS-104/204

Requirements

Design

Implementation

Figure 4.1: Levels of Abstraction

General Model for Software Re-engineering

(Alteration)

Reverse re-think Forward

Engineering
ceptual

,. Engineering

(Abstraction) efinement)
re-specify

Requirements

re-design

Design ► Design

re-code

Im lementation JI,- Im I ementati on

Existing system ◄compare ►

'fanctionalizy
Target System

quality

Figure 4.2: General Model for Software Re­

engineering

MCS-104/205

Re-engineering starts with the source code of an existing legacy system

and concludes with the source code of a target system as depicted in figure

4.2. This process may be as simple as using a code translation tool to

translate the code from one language to another (FORTRAN to C) or from

one operating system to another (UNIX to DOS). On the other hand, the

re-engineering task may be very complex, using the existing source code

to recreate the design, identify the requirements in the existing system then

compare them to current requirements, removing those no longer

applicable, restructure and redesign the system (using object-oriented

design), and finally code the new target system.

Re-engineering advantages

• Reduced risk: There is a high risk in new software development.

There may be development problems, staffing problems and

specification problems

• Reduced cost: The cost of re-engineering is often significantly less

than the costs of developing new software.

Generic Reengineering Process

As represented in figure 4.3, re-engineering process is defined as-

• Requirement analysis: analyse on which parts of your requirements

have changed

• Model capture: reverse engineer from the source-code into a more

abstract form, typically some form of a design model

• Problem detection: identify design problems in that abstract model

• Problem resolution: propose an alternative design that will solve the

identified problem

• Program transformations: make the necessary changes to the code,

so that it adheres to the new design yet preserves all the required

functionality

MCS-104/206

Origin�

program

Program
docwnentation

Modularised

program
Orig�data

Program
ioodularisation

reengmeenng

structure
'

Structured
program

Figure 4.3: Re-engineering process

Re-engineering cost factors

• The quality of the software to be re-engineered

• The tool support available for re-engineering

Reengineered
data

• The extent of the data conversion which is required

• The availability of expert staff for re-engineering

Re-engineering Phases and Tasks

There is a core process that every organization should follow when re­
engineering. Reengineering poses its own technical challenges and
without a comprehensive development process will waste time and money.
Automation and tools can only support this process, not pre-empt it. The
re-engineering process can be broken into five phases and associated
tasks, starting with the initial phase of determining the feasibility and cost MCS-104/207

effectiveness of reengineering, and concluding with the transition to the
new target system.

These five reengineering development phases are:

• Re-engineering Team Formation

• Project Feasibility Analysis

• Analysis and Planning

• Re-engineering Implementation

• Testing and Transition

Check Your Progress].

When to Re-Engineer?

4.3 CONCEPT OF REVERSE ENGINEERING

Reverse engineering is the process of analysing a subject system to
identify the system's components and their interrelationships and create
representations of the system in another form or at a higher level of
abstraction. In reverse engineering, the requirements and the essential
design, structure and content of the legacy system must be recaptured as
depicted in figure 4.4 . In addition to capturing technical relationships and
interactions, information and rules about the business application and
process that have proved useful in running the business must also be
retrieved. This involves extracting design artefacts and building or
synthesizing abstractions that are less implementation dependent. The key
objectives in reverse engineering are to generate alternative views, recover
lost information, detect side effects, synthesize higher abstractions, and
facilitate reuse. The effectiveness of this process will affect the success of
the reengineering project. Reverse engineering does not involve changes
to the system or creating a new system, it is the process of examination
without changing its overall functionality.

Principles of reverse engineering

• Systematic process of acquiring important design factors and
information regarding engineering aspects from an existing product

• A process which analyses a product/technology to find out the
design aspects and its functions

• A kind of analysis which engages an individual in a process of
constructive learning of design and its functionality of systems and
products

Reverse Engineering Activities

• Understanding data

MCS-104/208

o internal data structures - program code is examined with the
intention of grouping related program variables

o database structure - often done prior to moving from one
database paradigm to another (e.g. flat file to relational)

• Understanding processing - source code is analysed to at varying
levels of detail (system, program, component, pattern, statement) to
understand procedural abstractions and overall functionality

• To detect side effects

System
infonnation

store

• To assist migration to a case environment

• To develop similar or competitive products

Goals of reverse engineering:

• Cope with complexity

• Need techniques to understand large, complex systems

• Recover lost information

• Extract what changes have been made and why

• Detect side effects

• Help understand ramifications of changes

• Synthesize higher abstractions

• Identify latent abstractions in software

• Facilitate reuse

• Detect candidate reusable artefacts and components

Uses of Reverse Engineering

Program stucture
diagrams

Traceability
matrices

• Interfacing. Reverse engineering can be used when a system is
required to interface to another system and how both systems would
negotiate is to be established. Such requirements typically exist for
interoperability. MCS-104/209

• Military or commercial espionage. Learning about an enemy's or
competitor's latest research by stealing or capturing a prototype and
dismantling it. It may result in development of similar product, or
better countermeasures for it.

• Improve documentation shortcomings. Reverse engineering can be
done when documentation of a system for its design, production,
operation or maintenance have shortcomings and original designers
are not available to improve it. Reverse engineering of software can
provide the most current documentation necessary for understanding
the most current state of a software system.

• Obsolescence. Integrated circuits often seem to have been designed
on obsolete, proprietary systems, which means that when those
systems can no longer be maintained, the only way to incorporate the
functionality into new technology is to reverse-engineer the existing
chip and then re-design it using newer tools, and using the
understanding gained, as a guide. Another obsolescence originated

problem which can be solved by reverse engineering is the need to
support existing, legacy devices which are no longer supported by
their OEM. This problem is particularly critical in military
operations.

• Software modernization - often knowledge is lost over time, which
can prevent updates and improvements. Reverse engineering is
generally needed in order to understand the 'as is' state of existing or
legacy software in order to properly estimate the effort required to
migrate system knowledge into a 'to be' state. Much of this may be
driven by changing functional, compliance or security requirements.

• Product security analysis. To examine how a product works, what
are specifications of its components, estimate costs and identify
potential patent infringement. Acquiring sensitive data by

disassembling and analysing the design of a system component.
Intent may be to remove copy protection, circumvention of access
restrictions.

• Bug fvcing. To fix legacy software this is no longer supported by its
creators.

• Creation of unlicensed/unapproved duplicates, such duplicates are
called sometimes clones in the computing domain.

• Academic/learning purposes. Reverse engineering for learning
purposes may be understand the key issues of an unsuccessful design
and subsequently improve the design.

• Competitive technical intelligence. Understand what one's
competitor is actually doing, versus what they say they are doing.

• Saving money, when one finds out what a piece of electronics is
capable of, it can spare a user from purchase of a separate product.

MCS-104/210

• Repurposing, in which opportunities to repurpose stuff that is
otherwise obsolete can be incorporated into a bigger body of utility.

Reverse engineering of machines

As computer-aided design (CAD) has become more popular, reverse
engineering has become a viable method to create a 3D virtual model of
an existing physical part for use in 3D CAD, CAM, CAE or other
software. The reverse-engineering process involves measuring an object
and then reconstructing it as a 3D model. The physical object can be
measured using 3D scanning technologies like CMMs, laser scanners,
structured light digitizers, or Industrial CT Scanning (computed
tomography). The measured data alone, usually represented as a point
cloud, lacks topological information and is therefore often processed and
modelled into a more usable format such as a triangular-faced mesh, a set
of NURBS surfaces, or a CAD model.

Hybrid Modelling is commonly used term when NURBS and parametric
modelling are implemented together. Using a combination of geometric
and freeform surfaces can provide a powerful method of 3D modelling.
Areas of freeform data can be combined with exact geometric surfaces to
create a hybrid model. A typical example of this would be the reverse
engineering of a cylinder head, which includes freeform cast features, such
as water jackets and high tolerance machined areas.

Reverse engineering is also used by businesses to bring existing physical
geometry into digital product development environments, to make a digital
3D record of their own products, or to assess competitors' products. It is
used to analyse, for instance, how a product works, what it does, and what
components it consists of, estimate costs, and identify potential patent
infringement, etc. Value engineering is a related activity also used by
businesses. It involves de-constructing and analysing products, but the
objective is to find opportunities for cost cutting.

Reverse engineering of software

The term reverse engineering as applied to software means different things
to different people. Reverse engineering is the process of analysing a
subject system to create representations of the system at a higher level of
abstraction. It can also be seen as "going backwards through the
development cycle". In this model, the output of the implementation phase
(in source code form) is reverse-engineered back to the analysis phase, in
an inversion of the traditional waterfall model. Another term for this
technique is program comprehension.

Reverse engineering is a process of examination only: the software system
under consideration is not modified (which would make it re-engineering).
Software anti-tamper technology like obfuscation is used to deter both
reverse engineering and re-engineering of proprietary software and
software-powered systems.

In practice, two main types of reverse engineering emerge. MCS-104/211

In the first case, source code is already available for the software, but
higher-level aspects of the program, perhaps poorly documented or
documented but no longer valid, are discovered.

In the second case, there is no source code available for the software, and
any efforts towards discovering one possible source code for the software
are regarded as reverse engineering. This second usage of the term is the
one most people are familiar with. Reverse engineering of software can
make use of the clean room design technique to avoid copyright
infringement.

On a related note, black box testing in software engineering has a lot in
common with reverse engineering. The tester usually has the API, but
their goals are to find bugs and undocumented features by bashing the
product from outside.

Other purposes of reverse engineering include security auditing, removal
of copy protection, circumvention of access restrictions often present in
consumer electronics, customization of embedded systems (such as engine
management systems), in-house repairs or retrofits, enabling of additional
features on low-cost "crippled" hardware (such as some graphics card
chip-sets), or even mere satisfaction of curiosity.

Reverse engineering of protocols

Protocols are sets of rules that describe message formats and how
messages are exchanged (i.e., the protocol state-machine). Accordingly,
the problem of protocol reverse-engineering can be partitioned into two
sub problems; message format and state-machine reverse-engineering.

The message formats have traditionally been reverse-engineered through a
tedious manual process, which involved analysis of how protocol
implementations process messages, but recent research proposed a number
of automatic solutions. Typically, these automatic approaches either group
observed messages into clusters using various clustering analyses, or
emulate the protocol implementation tracing the message processing.

There has been less work on reverse-engineering of state-machines of
protocols. In general, the protocol state-machines can be learned either
through a process of offline learning, which passively observes
communication and attempts to build the most general state-machine
accepting all observed sequences of messages, and online learning, which
allows interactive generation of probing sequences of messages and
listening to responses to those probing sequences. In general, offline
learning of small state-machines is known to be NP-complete, while
online learning can be done in polynomial time.

Other components of typical protocols, like encryption and hash functions,
can be reverse-engineered automatically as well. Typically, the automatic

MCS-104/212

approaches trace the execution of protocol implementations and try to
detect buffers in memory holding unencrypted packets.

Reverse engineering of Hardware

Hardware reverse engineering involves taking apart a device to see how it
works. For example, if a processor manufacturer wants to see how a
competitor's processor works, they can purchase a competitor's processor,
disassemble it, and then make a processor similar to it. However, this
process is illegal in many countries. In general, hardware reverse
engineering requires a great deal of expertise and is quite expensive.

Benefits of Reverse Engineering for Software Maintenance

• Corrective change: abstraction of unnecessary detail gives greater
insight into the parts of the program to be corrected. And it is
easier to identify defective program components and the source of
residual errors

• Adaptive/perfective change: Eases understanding of system's
omponents and their interrelationships, showing where new
requirements fit and how they relate to existing components. It
Extracted information when be used during enhancement of the
system or for the development of another product

• Preventive change: It brings benefit to future maintenance of a
system

Check Your Progress2.

What are the main objectives ofreverse engineering?

4.4 CONCEPT OF RESTRUCTURING

Software restructuring is recognized as a promising method to
improve logical structure and understand ability of a software system
which is composed of modules with loosely-coupled elements. There are
several methods of restructuring an ill-structured module at the software
maintenance phase. The methods identify modules performing multiple
functions and restructure such modules. For identifying the multi-function
modules, the notion of the tightly-coupled module that performs a single
specific function is formalized. This method utilizes information on data
and control dependence, and applies program slicing to carry out the task
of extracting the tightly-coupled modules from the multi-function module.
The identified multi-function module is restructured into a number of
functional strength modules or an informational strength module. The
module strength is used as a criterion to decide how to restructure. The
methods can also be readily automated and incorporated in a software tool.

Restructuring involves examining the existing system and rewriting parts
of it to improve its overall structure. Restructuring may be particularly
useful when changes are confined to part of the system. Only this part MCS-104/213

need be restructured. Other parts need not be changed or revalidated. If a

program is written in a high-level language, it is possible to restructure
that program automatically although the computer time required to do so
may be great.

A Theorem has been given on the basis for program restructuring. It says
that, any program may be rewritten in terms of simple IF-THEN-ELSE
conditionals and WHILE loops and that unconditional GOTO statements
were not required.

Method

Step 1. Construct a program flow graph.

Step 2. Apply simplification and transformation techniques to the graph to
construct while loops and simple conditional statements.

It may well be that a combination of automatic and manual system
restructuring is the best approach. The control structure could be

improved automatically and this makes the system easier to understand.
The abstraction and data structures of the program may then be
discovered, documented and improved using a manual approach.
Decisions on whether to restructure or rewrite a program can only be made
on a case-by-case basis.

Some of the factors which must be taken into account are

• Is a significant proportion of the system stable and not subject to
frequent change? If so, this suggests restructuring rather than
rewriting as it is only really necessary to restructure that part of the
program which is to be changed.

• Does the program rely on obsolete support software such as
compilers, etc.? If so, this suggests it should be rewritten in a
modem language as the future availability of the support software
cannot be guaranteed.

• Are tools available to support the restructuring process? If not,
manual restructuring is the only option.

System restructuring offers an opportunity to control maintenance costs
and I believe that it will become increasingly important. The rate of
change of hardware development means that many embedded software
systems which are still in use must be changed as the hardware on which

they execute cannot be supported.

Types of Restructuring

• Code restructuring

• Program logic modelled using Boolean algebra and senes of
transformation rules are applied to yield restructured logic

MCS-104/214

• Create resource exchange diagram showing data types, procedure
and variables shared between modules, restructure program
architecture to minimize module coupling

• Data restructuring

• Analysis of source code

• Data redesign

• Data record standardization

• Data name rationalization

• File or database translation

Check Your Progress3.

How does restructuring help in maintaining a program?

4.5 CONCEPT OF FORWARD ENGINEERING

Forward engineering is the process of building from a high-level
model or concept to build in complexities and lower-level details. This

type of engineering has different principles in various software and
database processes.

Generally, forward engineering is important in IT because it represents the
'normal' development process. For example, building from a model into
an implementation language. This will often result in loss of semantics, if
models are more semantically detailed, or levels of abstraction.

Forward engineering is thus related to the term 'reverse engineering,'

where there is an effort to build backward, from a coded set to a model, or
to unravel the process of how something was put together.

It's crucial to note, though, that reverse engineering is also a term widely
used in IT to describe attempts to take a software product or other
technology apart and inspect how it works. In this type of contrast,
forward engineering would be a logical 'forward-moving' design, where
reverse engineering would be a form of creative deconstruction.

Some experts provide specific examples of forward engineering, including

the use of abstract database models or templates into physical database
tables. Other examples include a situation where developers or others

make models or diagrams into concrete code classes, or specific code
modules.

Check Your Progress4.

How forward engineering is related to reverse engineering?
MCS-104/215

4.6 SUMMARY

In this section we discuss Re-engineering involves adding effort to make
them easier to maintain. The system may be re-structured and re­
documented. When system changes are mostly confined to part of the
system then re-engineer that part and how re-engineering reduced the cost
and risk. Also define forward engineering as well as Reverse engineering
which is the process of deriving the system design and specification from
its source code .

4.7 EXERCISE

(1) What is Reengineering? And what are the objectives of
reengineering. What are the common mistakes made when beginning
reengineering?

(2) Why does reengineering take so long?

(3) What is the main difficulty in reengineering in general?

(4) Write the advantages ofre-engineering.

(5) Define the activities of Re-engineering.

(6) How Reverse and Forward Engineering is related with Re­
engineering. explain.

(7) Write the goals of reverse engineering. Also write its advantages.

(8) Write Short Notes on-

Forward Engineering, Restructuring

MCS-104/216

UNIT-5

CASE: Computer Aided Software Engineering

Structure

5.0 Introduction

5.1 Objective

5.2 Tools: What is CASE?

5.3 Building Blocks of CASE

5.4 A Taxonomy of CASE Tools

5.5 Integrated CASE Environments

5.6 The Integration Architecture

5.7 The CASE Repository

5.8 Summary

5.9 Exercise

5.0 INTRODUCTION

CASE tools are a class of software that automate many of the
activities involved in various life cycle phases. For example, when
establishing the functional requirements of a proposed application,
prototyping tools can be used to develop graphic models of application
screens to assist end users to visualize how an application will look after
development. Subsequently, system designers can use automated design
tools to transform the prototyped functional requirements into detailed
design documents. Programmers can then use automated code generators
to convert the design documents into code. Automated tools can be used
collectively, as mentioned, or individually. For example, prototyping tools
could be used to define application requirements that get passed to design
technicians who convert the requirements into detailed designs in a
traditional manner using flowcharts and narrative documents, without the
assistance of automated design software.

5.1 OBJECTIVE

The objectives of this unit are:

a) to identify the role of CASE tools in the software development
process.

b) to identify the criteria for selecting a CASE tool.

c) to identify the benefits and limitations of CASE tools. MCS-104/217

5.2 Tools: What is CASE?

Computer-aided software engineering (CASE) is the application of
a set of tools and methods to a software system with the desired end result
of high-quality, defect-free, and maintainable software products. It also
refers to methods for the development of information systems together
with automated tools that can be used in the software development
process.

Reasons for using case tools:

The primary reasons for using a CASE tool are:

• To increase productivity

• To help produce better quality software at lower cost

Types of tools for CASE are:

• Business process engineering tools.

• Process modelling and management tool

• Project planning tools

• Risk analysis tools

• Project management tools

• Requirement tracing tools

• Metrics management tools

• Documentation tools

• System software tools

• Quality assurance tools

• Database management tools

• Software configuration management tools

• Analysis and design tools

• Interface design and development tools

• Prototyping tools

• Programming tools

• Web development tools

• Integration and testing tools

• Static analysis tools

• Dynamic analysis tools

• Test management tools

MCS-104/218

• Client/Server testing tools

• Re-engineering tools

Benefits of CASE

Every program you create using the Program Generator automatically
includes such as:

• Data Dictionary

• User defined codes

• Vocabulary overrides

• Action code security

• Business unit security

• Standard function exits

• Function exit and option exit security

• Cursor sensitive help

• Program help

• DREAM Writer

• Processing options

Classification of CASE Tools:

Existing CASE tools can be classified along 4 different dimensions:

1. Life-cycle support

2. Integration dimension

3. Construction dimension

4. Knowledge-based CASE dimension

Applications

• A CASE repository is a system developers' database. It is a place
where developers can store system models, detailed descriptions and
specifications, and other products of system development. Synonyms
include dictionary and encyclopedia.

• Forward engineering requires the systems analyst to draw system
models, either from scratch or from templates. The resulting models
are subsequently transformed into program code.

• Reverse engineering allows a CASE tool to read existing program
code and transform that code into a representative system model that
can be edited and refined by the systems analyst.

However, tools that are concerned with analysis and design, and with
using design information to create parts (or all) of the software product,

MCS-104/219

are most frequently thought of as CASE tools. CASE applied, for instance,
to a database software product, might normally involve:

• Modelling business/ real-world processes and data flow

• Development of data models in the form of entity-relationship
diagrams

• Development of process and function descriptions

Major Risk Factors: Common CASE risks and associated controls
include:

• Inadequate standardization: Linking CASE tools from different
vendors (design tool from Company X, programming tool from

Company Y) may be difficult if the products do not use standardized
code structures and data classifications. File formats can be
converted, but usually not economically. Controls include using
tools from the same vendor, or using tools based on standard
protocols and insisting on demonstrated compatibility. Additionally,

if organizations obtain tools for only a portion of the development
process, they should consider acquiring them from a vendor that has
a full line of products to ensure future compatibility if they add more
tools.

• Unrealistic expectations: Organizations often implement CASE
technologies to reduce development costs. Implementing CASE
strategies usually involves high start-up costs. Generally,

management must be willing to accept a long-term payback period.
Controls include requiring senior managers to define their purpose
and strategies for implementing CASE technologies.

• Slow implementation: Implementing CASE technologies can
involve a significant change from traditional development
environments. Typically, organizations should not use CASE tools
the first time on critical projects or projects with short deadlines
because of the lengthy training process. Additionally, organizations

should consider using the tools on smaller, less complex projects and
gradually implementing the tools to allow more training time.

• Weak repository controls: Failure to adequately control access to
CASE repositories may result in security breaches or damage to the
work documents, system designs, or code modules stored in the

repository. Controls include protecting the repositories with
appropriate access, version, and backup controls.

Workbenches: Workbenches integrate two or more CASE tools and
support specific software-process activities. Hence they achieve:

• A homogeneous and consistent interface (presentation integration).

• Seamless integration of tools and tool chains (control and data
integration).

MCS-104/220

An example workbench is Microsoft's Visual Basic programming
environment. It incorporates several development tools: a GUI builder,
smart code editor, debugger, etc. Most commercial CASE products tended
to be such workbenches that seamlessly integrated two or more tools.
Workbenches also can be classified in the same manner as tools; as
focusing on Analysis, Development, Verification, etc. as well as being
focused on upper case, lower case, or processes such as configuration
management that span the complete life-cycle.

Environments: An environment is a collection of CASE tools or
workbenches that attempts to support the complete software process. This
contrasts with tools that focus on one specific task or a specific part of the
life-cycle.

CASE environments are classified as follows:

• Toolkits. Loosely coupled collections of tools. These typically build
on operating system workbenches such as the Unix Programmer's
Workbench or the VMS VAX set. They typically perform
integration via piping or some other basic mechanism to share data
and pass control. The strength of easy integration is also one of the
drawbacks. Simple passing of parameters via technologies such as
shell scripting can't provide the kind of sophisticated integration that
a common repository database can.

• Fourth generation. These environments are also known as 4GL
standing for fourth generation language environments due to the fact
that the early environments were designed around specific languages
such as Visual Basic. They were the first environments to provide
deep integration of multiple tools. Typically these environments
were focused on specific types of applications. For example, user­
interface driven applications that did standard atomic transactions to
a relational database. Examples are lnformix 4GL, and Focus.

• Language-centred. Environments based on a single often object­
oriented language such as the Symbolic Lisp Genera environment or
Visual Works Smalltalk from Parcplace. In these environments all
the operating system resources were objects in the object-oriented
language. This provides powerful debugging and graphical
opportunities but the code developed is mostly limited to the specific
language. For this reason, these environments were mostly a niche
within CASE. Their use was mostly for prototyping and R&D
projects. A common core idea for these environments was the
model-view-controller user interface that facilitated keeping multiple
presentations of the same design consistent with the underlying
model. The MVC architecture was adopted by the other types of
CASE environments as well as many of the applications that were
built with them.

• Integrated. These environments are an example of what most IT
people tend to think of first when they think of CASE. Environments
such as IBM's AD/Cycle, Andersen Consulting's FOUNDATION, MCS-104/221

the ICL CADES system, and DEC Cohesion. These environments
attempt to cover the complete life-cycle from analysis to
maintenance and provide an integrated database repository for
storing all artefacts of the software process. The integrated software
repository was the defining feature for these kinds of tools. They
provided multiple different design models as well as support for
code in heterogeneous languages. One of the main goals for these
types of environments was "round trip engineering": being able to
make changes at the design level and have those automatically be
reflected in the code and vice versa. These environments were also
typically associated with a particular methodology for software
development.

• Process-centred. This is the most ambitious type of integration.
These environments attempt to not just formally specify the analysis
and design objects of the software process but the actual process
itself and to use that formal process to control and guide software
projects. Examples are East, Enterprise II, Process Wise, Process
Weaver, and Arcadia. These environments were by definition tied to
some methodology since the software process itself is part of the
environment and can control many aspects of tool invocation.

In practice, the distinction between workbenches and environments
was :flexible. Visual Basic for example was a programming
workbench but was also considered a 4GL environment by many.
The features that distinguished workbenches from environments
were deep integration via a shared repository or common language
and some kind of methodology (integrated and process-centred
environments) or domain (4GL) specificity.

Components of CASE Tools

CASE tools can be broadly divided into the following parts based on their
use at a particular SDLC stage as depicted in figure 5 .1:

• Central Repository - CASE tools require a central repository, which
can serve as a source of common, integrated and consistent

information. Central repository is a central place of storage where
product specifications, requirement documents, related reports and
diagrams, other useful information regarding management are stored.
Central repository also serves as data dictionary.

• Upper Case Tools - Upper CASE tools are used in planning, analysis
and design stages ofSDLC.

• Lower Case Tools - Lower CASE tools are used in implementation,
testing and maintenance.

• Integrated Case Tools - Integrated CASE tools are helpful in all the
stages of SDLC, from Requirement gathering to Testing and
documentation.

MCS-104/222

CASE tools can be grouped together if they have similar functionality,
process activities and capability of getting integrated with other tools.

Planning

Analysis

Design

Implementation

Testing

Maintenance

Figure 5.1: CASE Tool components

Check Your Progress 1.

How CASE tools are useful?

5.3 BUILDING BLOCKS OF CASE

Computer aided software engineering can be as simple as a single
tool that supports a specific software engineering activity or as complex as
a complete "environment" that encompasses tools, a database, people,
hardware, a network, operating systems, standards, and myriad other
components. The building blocks for CASE are illustrated in figure. Each
building block forms a foundation for the next, with tools sitting at the top
of the heap. It is interesting to note that the foundation for effective CASE
environments has relatively little to do with software engineering tools
themselves. Rather, successful environments for software engineering are

built on an environment architecture that encompasses appropriate
hardware and systems software. In addition, the environment architecture
must consider the human work patterns that are applied during the

software engineering process.

MCS-104/223

CASE tools

Figure 5.2: Building blocks of CASE

The building blocks depicted in figure 5.2 represent a comprehensive
foundation for the integration of CASE tools. However, most CASE tools
in use today have not been constructed using all these building blocks. In
fact, some CASE tools remain "point solutions." That is, a tool is used to
assist in a particular software engineering activity (e.g., analysis
modelling) but does not directly communicate with other tools, is not tied
into a project database, is not part of an integrated CASE environment
(ICASE). Although this situation is not ideal, a CASE tool can be used
quite effectively, even if it is a point solution.

Here are the Building blocks of CASE:

• Environment Architecture. The environment architecture, composed
of the hardware platform and operating system support including
networking and database management software, lays the groundwork
for CASE but the CASE environment itself demands other building
blocks.

• Portability Services. A set of portability services provides a bridge
between CASE tools and their integration framework and the
environment architecture. These portability services allow the CASE
tools and their integration framework to migrate across different

hardware platforms and operating systems without significant
adaptive maintenance.

MCS-104/224

• Integration Framework. It is a collection of specialized programs
that enables individual CASE tools to communicate with one another
and to create a project database.

• Case Tools. Case tools are used to assist software-engineering
activities (such as analysis modelling, code generation, etc.) by
either communicating with other tools, the project database
(integrated CASE environment), or as point solutions.

• Operating system

• Hardware platform

There are relative levels of CASE integration as depicted in figure 5.3.

0
Individual lool
(point solution)

Dalo exchange

Tool bridges &
partnerships

Single source

IPSE

Figure 5.3: Integration options

At the low end of the integration spectrum is the individual tool. When

individual tools provide facilities for data exchange, the integration level
is improved slightly. Such tools produce output in a standard format that
should be compatible with other tools that can read the format. In some
cases, the builders of complementary CASE tools work together to form a
bridge between the tools. Using this approach, the synergy between the
tools can produce end products that would be difficult to create using
either tool separately. Single-source integration occurs when a single
CASE tools vendor integrates a number of different tools and sells them as
a package. Although this approach is quite effective, the closed
architecture of most single-source environments precludes easy addition of
tools from other vendors.

MCS-104/225

At the high end of the integration spectrum is the integrated project
support environment (IPSE). Standards for each of the building blocks
described previously have been created. CASE tool vendors use IPSE
standards to build tools that will be compatible with the IPSE and

therefore compatible with one another.

Check Your Progress 2.

How portability services works?

5.4 A TAXONOMY OF CASE TOOLS

A number of risks are inherent whenever we attempt to categorize
CASE tools. There is a subtle implication that to create an effective CASE
environment, one must implement all categories of tools-this is simply
not true. Confusion can be created by placing a specific tool within one
category when others might believe it belongs in another category. In
addition, simple categorization tends to be flat-that is, we do not show
the hierarchical interaction of tools or the relationships among them. But
even with these risks, it is necessary to create taxonomy of CASE tools­
to better understand the breadth of CASE and to better appreciate where
such tools can be applied in the software engineering process.

CASE tools can be classified by function, by their role as instruments for
managers or technical people, by their use in the various steps of the
software engineering process, by the environment architecture (hardware
and software) that supports them, or even by their origin or cost.

• Business process engineering tools- By modeling the strategic
information requirements of an organization, business process
engineering tools provide a "meta-model" from which specific

information systems are derived. Rather than focusing on the
requirements of a specific application, business information is
modeled as it moves between various organizational entities within a
company. The primary objective for tools in this category is to

represent business data objects, their relationships, and how these
data objects flow between different business areas within a company.

• Process modeling and management tools- If an organization works

to improve a business (or software) process, it must first understand
it. Process modeling tools (also called process technology tools) are
used to represent the key elements of a process so that it can be
better understood. Such tools can also provide links to process

descriptions that help those involved in the process to understand the
work tasks that are required to perform it. Process management tools

provide links to other tools that provide support to defined process
activities.

MCS-104/226

• Project planning tools- Tools in this category focus on two primary
areas: software project effort and cost estimation and project
scheduling. Estimation tools compute estimated effort, project
duration, and recommended number of people for a project. Project
scheduling tools enable the manager to define all project tasks (the
work breakdown structure), create a task network (usually using
graphical input), represent task interdependencies, and model the
amount of parallelism possible for the project.

• Risk analysis tools- Identifying potential risks and developing a plan
to mitigate, monitor, and manage them is of paramount importance
in large projects. Risk analysis tools enable a project manager to
build a risk table by providing detailed guidance in the identification
and analysis of risks.

• Project management tools- The project schedule and project plan
must be tracked and monitored on a continuing basis. In addition, a

manager should use tools to collect metrics that will ultimately
provide an indication of software product quality. Tools in the
category are often extensions to project planning tools.

• Requirements tracing tools- When large systems are developed,
things "fall into the cracks." That is, the delivered system does not
fully meet customer specified requirements. The objective of
requirements tracing tools is to provide a systematic approach to the
isolation of requirements, beginning with the customer request for
proposal or specification. The typical requirements tracing tool
combines human interactive text evaluation with a database

management system that stores and categorizes each system
requirement that is "parsed" from the original RFP or specification.

• Metrics and management tools- Software metrics improve a
manager's ability to control and coordinate the software engineering
process and a practitioner's ability to improve the quality of the
software that is produced. Today's metrics or measurement tools
focus on process and product characteristics. Management-oriented
tools capture project specific metrics that provide an overall
indication of productivity or quality. Technically oriented tools
determine technical metrics that provide greater insight into the

quality of design or code.

• Documentation tools- Document production and desktop publishing
tools support nearly every aspect of software engineering and
represent a substantial "leverage" opportunity for all software
developers. Most software development organizations spend a
substantial amount of time developing documents, and in many cases
the documentation process itself is quite inefficient. It is not unusual
for a software development organization to spend as much as 20 or
30 percent of all software development effort on documentation. For

MCS-104/227

this reason, documentation tools provide an important opportunity to
improve productivity.

• System software tools- CASE is a workstation technology.
Therefore, the CASE environment must accommodate high-quality
network system software, object management services, distributed
component support, electronic mail, bulletin boards, and other
communication capabilities.

• Quality assurance tools- The majority of CASE tools that claim to
focus on quality assurance are actually metrics tools that audit source

code to determine compliance with language standards. Other tools
extract technical metrics in an effort to project the quality of the
software that is being built.

• Database management tools- Database management software serves
as a foundation for the establishment of a CASE database
(repository) that we have called the project database. Given the
emphasis on configuration objects, database management tools for
CASE are evolving from relational database management systems to
object oriented database management systems.

• Software configuration management tools- Software configuration
management lies at the kernel of every CASE environment. Tools
can assist in all five major SCM tasks-identification, version
control, change control, auditing, and status accounting. The CASE
database provides a mechanism for identifying each configuration
item and relating it to other items; the change control process can be
implemented with the aid of specialized tools; easy access to
individual configuration items facilitates the auditing process; and
CASE communication tools can greatly improve status accounting.

• Analysis and design tools- Analysis and design tools enable a
software engineer to create models of the system to be built. The
models contain a representation of data, function, and behavior and
characterizations of data, architectural, component-level, and
interface design. One By performing consistency and validity
checking on the models, analysis and design tools provide a software
engineer with some degree of insight into the analysis representation
and help to eliminate errors before they propagate into the design, or
worse, into implementation itself.

• PRO/SIM tools- PRO/SIM (prototyping and simulation) tools
provide the software engineer with the ability to predict the behavior
of a real-time system prior to the time that it is built. In addition,
these tools enable the software engineer to develop mock-ups of the
real-time system, allowing the customer to gain insight into the
function, operation and response prior to actual implementation.

MCS-104/228

• Interface design and development tools- Interface design and
development tools are actually a tool kit of software components
(classes) such as menus, buttons, window structures, icons, scrolling
mechanisms, device drivers, and so forth. However, these tool kits
are being replaced by interface prototyping tools that enable rapid
onscreen creation of sophisticated user interfaces that conform to the
interfacing standard that has been adopted for the software.

• Prototyping tools- A variety of different prototyping tools can be
used. Screen painters enable a software engineer to define screen
layout rapidly for interactive applications. More sophisticated CASE
prototyping tools enable the creation of a data design, coupled with
both screen and report layouts. Many analysis and design tools have
extensions that provide a prototyping option. PRO/SIM tools
generate skeleton Ada and C source code for engineering (real-time)
applications. Finally, a variety of fourth generation tools have
prototyping features.

• Programming tools- The programming tools category encompasses
the compilers, editors, and debuggers that are available to support
most conventional programming languages. In addition, object­
oriented programming environments, fourth generation languages,
graphical programming environments, application generators, and
database query languages also reside within this category.

• Web development tools - The activities associated with Web
engineering are supported by a variety of tools for Web App
development. These include tools that assist in the generation of text,
graphics, forms, scripts, applets, and other elements of a Web page.

• Integration and testing tools- In their directory of software testing
tools, Software Quality Engineering defines the following testing
tools categories:

o Data acquisition-tools that acqmre data to be used during
testing.

o Static measurement-tools that analyze source code without
executing test cases.

o Dynamic measurement-tools that analyze source code during
execution.

o Simulation-tools that simulate function of hardware or other
externals.

o Test management-tools that assist in the planning,
development, and control of testing.

MCS-104/229

o Cross-functional tools-tools that cross the bounds of the
preceding categories.

o It should be noted that many testing tools have features that span
two or more of the categories.

• Static analysis tools- Static testing tools assist the software engineer
in deriving test cases. Three different types of static testing tools are
used in the industry: code based testing tools, specialized testing
languages, and requirements-based testing tools. Code-based testing
tools accept source code (or PDL) as input and perform a number of
analyses that result in the generation of test cases. Specialized testing
languages (e.g., ATLAS) enable a software engineer to write
detailed test specifications that describe each test case and the
logistics for its execution. Requirements-based testing tools isolate
specific user requirements and suggest test cases (or classes of tests)
that will exercise the requirements.

• Dynamic analysis tools- Dynamic testing tools interact with an
executing program, checking path coverage, testing assertions about
the value of specific variables, and otherwise instrumenting the
execution flow of the program. Dynamic tools can be either intrusive
or nonintrusive. An intrusive tool changes the software to be tested
by inserting probes (extra instructions) that perform the activities just
mentioned. Nonintrusive testing tools use a separate hardware
processor that runs in parallel with the processor containing the
program that is being tested.

• Test management tools- Test management tools are used to control
and coordinate software testing for each of the major testing steps.
Tools in this category manage and coordinate regression testing,
perform comparisons that ascertain differences between actual and
expected output, and conduct batch testing of programs with
interactive human/computer interfaces. In addition to the functions
noted, many test management tools also serve as generic test drivers.
A test driver reads one or more test cases from a testing file, formats
the test data to conform to the needs of the software under test, and
then invokes the software to be tested.

• Client/server testing tools- The c/s environment demands specialized
testing tools that exercise the graphical user interface and the
network communications requirements for client and server.

• Reengineering tools- Tools for legacy software address a set of
maintenance activities that currently absorb a significant percentage
of all software-related effort.

MCS-104/230

These tools are limited to specific programming languages and require
some degree of interaction with the software engineer.

Check Your Progress 3.

Name some CASE tools useful during Testing.

5.5 INTEGRATED CASE ENVIRONMENTS

Although benefits can be derived from individual CASE tools that
address separate software engineering activities, the real power of CASE
can be achieved only through integration. The benefits of integrated CASE
(I-CASE) include

• Smooth transfer of information (models, programs, documents, data)
from one tool to another and one software engineering step to the
next;

• A reduction in the effort required to perform umbrella activities such
as software configuration management, quality assurance, and
document production;

• An increase in project control that is achieved through better
planning, monitoring, and communication; and

• Improved coordination among staff members who are working on a
large software

Project.

But I-CASE also poses significant challenges. Integration demands
consistent representations of software engineering information,
standardized interfaces between tools, a homogeneous mechanism for
communication between the software engineer and each tool, and an
effective approach that will enable I-CASE to move among various
hardware platforms and operating systems. Comprehensive I-CASE
environments have emerged more slowly than originally expected.
However, integrated environments do exist and are becoming more
powerful as the years pass.

The term integration implies both combination and closure. I-CASE
combines a variety of different tools and a spectrum of information in a
way that enables closure of communication among tools, between people,
and across the software process. Tools are integrated so that software
engineering information is available to each tool that needs it; usage is
integrated so that a common look and feel is provided for all tools; a
development philosophy is integrated, implying a standardized software
engineering approach that applies modem practice and proven methods.

MCS-104/231

To define integration in the context of the software engineering process, it
is necessary to establish a set of requirements for I-CASE: An integrated
CASE environment should

• Provide a mechanism for sharing software engineering information
among all tools contained in the environment.

• Enable a change to one item of information to be tracked to other
related information items.

• Provide version control and overall configuration management for
all software engineering information.

• Allow direct, non-sequential access to any tool contained in the
environment.

• Establish automated support for the software process model that has
been chosen, integrating CASE tools and software configuration

items (SC Is) into a standard work breakdown structure.

• Enable the users of each tool to experience a consistent look and feel
at the human/computer interface.

• Support communication among software engineers.

• Collect both management and technical metrics that can be used to
improve the process and the product.

To achieve these requirements, each of the building blocks of a CASE
architecture must fit together in a seamless fashion. The foundation
building blocks-environment architecture, hardware platform, and
operating system-must be "joined" through a set of portability services to
an integration framework that achieves these requirements.

A CASE environment facilitates the automation of the step-by-step
methodologies for software development. In contrast to a CASE environment, a
programming environment is an integrated collection of tools to support only the
coding phase of software development

Check Your Progress 4.

Describe the importance of an integrated environment.

5.6 THE INTEGRATION ARCHITECTURE

A software engineering team uses CASE tools, corresponding methods,

and a process framework to create a pool of software engineering

information. The integration framework facilitates transfer of information

into and out of the pool. To accomplish this, the following architectural

MCS-104/232

components must exist: a database must be created; an object management

system must be built; a tools control mechanism must be constructed; a

user interface must provide a consistent pathway between actions made by

the user and the tools contained in the environment. Most models of the

integration framework represent these components as layers as depicted in

figure 5.4.

The user interface layer incorporates a standardized interface tool kit with

a common presentation protocol. The interface tool kit contains software

for human/computer interface management and a library of display

objects. Both provide consistent mechanisms for communication between

the interface and individual CASE tools. The presentation protocol is the

set of guidelines that gives all CASE tools the same look and feel. Screen

layout conventions, menu names and organization, icons, object names,

the use of the keyboard and mouse, and the mechanism for tools access are

all defined as part of the presentation protocol.

User interface layer
Interface tool kit
Presentation protocol

Tools management services
- -

CASE

tool

Shared repository layer
CASE database
Access control functions

17
Tools layer

I

- - -

Figure 5.4: Architectural model for the integration framework

MCS-104/233

The tools layer incorporates a set of tools management services with the
CASE tools themselves. Tools management services (TMS) control the
behaviour of tools with in the environment. If multitasking is used during
the execution of one or more tools, TMS performs multitask
synchronization and communication, coordinates the flow of information
from the repository and object management system into the tools,
accomplishes security and auditing functions, and collects metrics on tool
usage.

In essence, software in this layer of the framework architecture provides
the mechanism for tools integration. Every CASE tool is "plugged in to"
the object management layer. Working in conjunction with the CASE
repository, the OML provides integration services-a set of standard
modules that couple tools with the repository. In addition, the OML
provides configuration management services by enabling the identification

of all configuration objects, performing version control, and providing
support for change control, audits, and status accounting. The shared
repository layer is the CASE database and the access control functions that
enable the object management layer to interact with the database.

Check Your Progress 5.

How user interface layer works?

5.7 THE CASE REPOSITORY

Webster's Dictionary defines the word repository as "anything or
person thought of as a centre of accumulation or storage." During the early
history of software development, the repository was indeed a person-the
programmer who had to remember the location of all information relevant
to software project, who had to recall information that was never written
down and reconstruct information that had been lost. Sadly, using a person

as "the centre for accumulation and storage", does not work very well.
Today, the repository is a "thing"-a database that acts as the centre for
both accumulation and storage of software engineering information. The
role of the software engineer is to interact with the repository using CASE
tools that are integrated with it.

The Role of the Repository in CASE

The repository for a CASE environment is the set of mechanisms and data

structures that achieve data/tool and data/data integration. It provides the
obvious functions of a database management system, but in addition, the
repository performs or precipitates the following functions:

• Data integrity includes functions to validate entries to the repository,
ensure consistency am

MCS-104/234

• ong related objects, and automatically perform "cascading"
modifications when a change to one object demands some change to
objects related to it.

• Information sharing provides a mechanism for sharing information
among multiple developers and between multiple tools, manages and
controls multiuser access to data and locks or unlocks objects so that
changes are not inadvertently overlaid on one another.

• Data/tool integration establishes a data model that can be accessed
by all tools in the I-CASE environment, controls access to the data,
and performs appropriate configuration management functions.

• Data/data integration is the database management system that relates
data objects so that other functions can be achieved.

• Methodology enforcement defines an entity-relationship model
stored in the repository that implies a specific paradigm for software

engineering; at a minimum, the relationships and objects define a set
of steps that must be conducted to build the contents of the
repository.

• Document standardization is the definition of objects in the database
that leads directly to a standard approach for the creation of software
engineering documents.

Types of Things to be stored:

The types of things to be stored in the repository include:

• The problem to be solved.

• Information about the problem domain.

• The system solution as it emerges.

• Rules and instructions pertaining to the software process
(methodology) being followed.

• The project plan, resources, and history.

• Information about the organizational context.

Case Repository Contents:

• Enterprise information

o Organizational structure

o Business area analyses System

o Business functions

o Business rules

o Process models (scenarios)

o Information architecture

• Application design

o Methodology rules

o Graphical representations MCS-104/235

o System diagrams

o Naming standards

o Referential integrity rules

o Data structures

o Process definitions

o Class definitions

o Menu trees Estimates;

o Performance criteria

o Timing constraints

o Screen definitions

o Report definitions

o Logic definitions

o Behavioural logic

o Algorithms

o Transformation rules

• Construction

o Source code; Object code

o build instructions

o Binary images

o Configuration dependencies

o Change information

• Validation and verification

o Test plan; Test data cases

o Regression test scripts

o Test results

o Statistical analyses

o Software quality metrics

• Project management information

o Project plans

o Work breakdown structure

o Schedules

o Resource loading; Problem reports

o Change requests; Status reports

MCS-104/236

o Audit information

• System documentation

o Requirements documents

o External/internal designs

o User manuals

The DBMS features in CASE:

• Non-redundant data storage

• High-level access

• Data independence

• Transaction control

• Security

• Ad hoc data queries and reports

• Openness

• Multiuser support

The special features of CASE:

• Storage of sophisticated data structures.

• Integrity enforcement.

• Semantics-rich tool interface.

• Process/project management.

Check Your Progress 6.

What are the functions performed by repository in an integrated CASE
environment.

5.8SUMMARY

In this chapter we discuss about the CASE tools, uses and
application area of CASE tools, CASE environment, CASE Repository.
All aspects of the software development life cycle can be supported by
software tools, and so the use of tools from across the spectrum can,
arguably, be described as CASE; from project management software
through tools for business and functional analysis, system design, code
storage, compilers, translation tools, test software, and so on.

5.9 EXERCISE

(1) What is CASE and CASE tools? Why we use CASE tool.

(2) What is CASE environment? Differentiate CASE environment and a
programming environment.

(3) Explain the Benefits of CASE.

(4) Write short notes on CASE Repository.

(5) What are the advantages and drawbacks of CASE? MCS-104/237

Rough Work

MCS-104/238

Rough Work

MCS-104/239

Rough Work

MCS-104/240

	dec new block-1
	dec new block-2
	What is the difference between a measure and an indicators?

	dec new block-3
	What are the differences between reviews and formal technical reviews?
	What is the difference between horizontal and vertical partitioning?
	Who should be writing Software requirements specifications

	Benefits to a well-written Software Requirement Specification

	dec new block-4
	3.2 .1 INSTALLATION TESTING
	What are the steps carried out in installation testing?
	3.2.2 COMPATIBILITY TESTING
	3.2.3 SANITY AND SMOKE TESTING
	Acceptance Criteria
	Acceptance Test Plan - Attributes
	Acceptance Test Report - Attributes
	(1) What is Reengineering? And what are the objectives of reengineering. What are the common mistakes made when beginning reengineering?
	(2) Why does reengineering take so long?
	(3) What is the main difficulty in reengineering in general?
	(4) Write the advantages of re-engineering.
	(5) Define the activities of Re-engineering.

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

