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Blocks & Units Introduction 

The present SLM on Decision Theory and Bayesian Analysis consists of eleven units 

with three blocks. 

 The Unit - 1 – Introduction to Decision Theory & Bayesian Analysis, is the first 

unit of present self-learning material, which describes some basic concepts, along with their 

importance and scope with suitable examples. 

The Block - 1 – Basic Elements and Bayes Rules, is the first block, which is divided 

into three units, and deals with the fundamentals of decision theory. 

In Unit – 2 – Basic Elements, is mainly emphasising on the basic elements of 

decision theory to create a conceptual clarity. 

In Unit – 3 – Bayes and Minimax Rules, focuses mainly on a comparative study of 

Bayes and minimax rules, with a goal to make the real-world usefulness of these rules clear 

to learners. 

In Unit – 4 – Bayesian Interval Estimation, is being introduced the interval 

estimation from Bayesian perspective. Also, this unit compares the same with the classical 

approach. 

The Block - 2 – Optimality of Decision Rules is the second block with four units, and 

focuses on equipping the learner with the knowledge about the optimality criteria for decision 

rules in Bayesian framework. 

In Unit – 5 – Admissibility and Completeness, discusses the concept and criteria for 

admissibility and completeness of decision rules. The object of this exercise is to give the 

learner a sight to ensure the goodness of decisions. 

In Unit – 6 – Minimaxity and Multiple decision Problem has been introducing the 

problem of minimaxity, and the problem of making the decisions out of different available 

options. 
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Unit – 7 – Bayesian Decision Theory explores the decision theory in a Bayesian 

manner. So this unit discusses different aspects from a Bayesian perspective. 

Unit – 8 – Bayesian Inference dealt with the problem of inference in Bayesian 

Scenario. 

The Block - 3 – Bayesian Analysis has three units.  This block comprises 

Unit – 9 – Prior and Posterior Distributions, focuses on giving an insight about the 

prior and posterior distribution to the learner. After this one will find oneself ready to choose 

a suitable prior necessary for performing the Bayesian analysis. 

In Unit – 10 – Bayesian Inference Procedures, discussed the inferential procedures 

in addition to Unit-8 of Block-2. 

Unit – 11 – Bayesian Robustness, discussed the concept of Bayesian robustness and 

focuses on explaining how this concept helps the Bayesians to ensure the firmness of their 

decisions. Furthermore, this unit discusses the MCMC methods for Bayesian calculations.

At the end of every block/unit the summary, self-assessment questions and further 

readings are given.  

MScSTAT/MASTAT-301(N)/4



 U.P. Rajarshi Tandon Open 
University, Prayagraj 

19
22
38
66

/MASTAT – 301N 
Decision Theory & 
Bayesian Analysis 

MScSTAT – 301N 

Unit – 1  :  Introduction to Decision Theory & Bayesian Analysis 
Unit – 2  : Basic Elements 
Unit – 3  : Bayes and Minimax Rules 
Unit – 4  : Bayesian Interval Estimation 

Block: 1   Basic Elements and Bayes Rules  

MScSTAT/MASTAT-301(N)/5



Block & Units Introduction 

The present block of this SLM consists of three units. 

The Block - 1 –Basic Elements and Bayes Rules, is the first block, which is divided 

into three units, 

In Unit – 2 –Basic Elements, the main emphasis is given to the basic elements of 

Bayesian theory 

The Unit – 3 –Bayes and Minimax Rules, is focusing mainly on related rules. 

In Unit – 4 – Bayesian Interval Estimation, is being introduced the interval 

estimation in Bayesian context. 

At the end of every block/unit the summary, self-assessment questions and further 

readings are given.  

The Unit - 1 – Introduction to Decision Theory & Bayesian Analysis, is the first unit of 

present self-learning material, which describes some basic concepts, along with their 

importance and scope with suitable examples. 
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UNIT – 1:   INTRODUCTION TO DECISION THEORY & 

 BAYESIAN ANALYSIS 

Structure 

1.1    Introduction 

1.2    Objectives 

1.3    Various Aspects of Decision Making 

1.4    Bayes theorem and Bayesian Data Analysis 

1.5     Self- Assessment Exercise 

1.6    Summary 

1.7    Further Reading 

1.1    Introduction 

The world is full of uncertainty and making a good decision in this uncertainty has 

always been a challenge for the decision makers. This Unit explores a bit about a few most 

popular and broader classes of decision policies and their basis. 

Decision theory is the study of how decisions are being made by individuals and 

groups. Understanding how good decisions are made in various situations is important to 

their respective professional fields such as mathematics, statistical analysis, psychology, 

philosophy, scientific research, politics, economics, marketing and many more, wherever 

decisions are being made. At its core, the decision theory is the study of individual’s logic 

and the thought processes on decisions. This can aid in researchers and business 

professionals' understanding of consumers that how and why they make certain selections. 

For example, some decision-making models can help businesses predict what products 

consumers may choose based on which may pose more utility for an individual.  

Hence, Decision theory i.e. the theory of rational choice is a branch of probability and 

all related fields like economics, marketing, politics, social sciences, psychology, and analytic 

philosophy that uses the tools of expected utility and probability to model how individuals 

should behave rationally under the situations of uncertainty. It differs from 

the cognitive and behavioral sciences in that it is prescriptive and concerned with 

identifying optimal decisions for a rational agent, rather than describing how people really do 

make decisions. Despite this, the field is extremely important to the study of real human 
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behavior by social scientists, as it lays the foundations for the rational agent models used 

to mathematically model and analyze individuals in fields such 

as sociology, economics, criminology, cognitive science, and political science. 

1.2      Objectives 

After studying this unit, you should be able to 

• Concept of decision theory as a subject

• Explain types of decisions.

• Classify the decision problems from the perspective of a statistician.

• Define various decision policies of importance.

• Describe Bayesian criteria for decision making.

1.3      Various Aspects of Decision Making 

Our life is full of uncertainty and hence our decisions are always depending on our 

experience. In order to make better decisions we always try to take help of more and more 

information. Consider an example where the game being played only has a maximum of two 

possible moves per player each turn. Then, obvious policy of a player will be of maximizing 

the benefits, and the moves of the opponent will aim to minimize the gains of the first player. 

Thus, the decision-making process 3 considers all the possible observations or information. 

And hence it involves the making of a decision to a categorical proposition, intended to 

achieve goals. 

Statistical decision theory and Bayesian analysis are related at several levels. First, 

they are both needed to solve real decision problems, each embodying a description of one of 

the key elements of a decision problem. At a deeper level, Bayesian analysis and decision 

theory provide unified outlooks towards statistics; they give a foundational framework for 

thinking about statistics and for evaluating proposed statistical methods. The relationships 

(both conceptual and mathematical) between Bayesian analysis and statistical decision theory 

are so strong that it is somewhat unnatural to learn one without the other. Nevertheless, major 

portions of each have developed separately. On the Bayesian side, there is an extensively 

developed Bayesian theory of statistical inference (both subjective and objective versions). 

This theory recognizes the importance of viewing statistical analysis conditionally (i.e., 
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treating observed data as known rather than unknown), even when no loss function is to be 

incorporated into the analysis. There is also a well-developed (frequentist) decision theory, 

which avoids formal utilization of prior distributions and seeks to provide a foundation for 

frequentist statistical theory. The central thread of this material will be Bayesian decision 

theory. 

Bayesian analysis and, especially, decision theory also have split personalities about 

their practical orientation. Both can be discussed at a very practical level, and yet they also 

contain some of the most difficult and elegant theoretical developments in statistics. This 

self-learning material contains a fair amount of material of each type. There is extensive 

discussion on how to actually do Bayesian decision theory and Bayesian inference, including 

how to construct prior distributions and loss functions, as well as how to utilize them. At the 

other extreme, introductions are given to some of the beautiful theoretical developments in 

these areas. 

Decision theory, as its name implies, is concerned with the problem of making good 

decisions and Statistical decision theory is particularly concerned with the making of good 

decisions in the presence of statistical knowledge which sheds light on some of the factors 

responsible for uncertainties involved in the decision problem. In this regard the reader 

should be aware of some of the decision-making approaches being used by the decision 

makers.  

The optimistic approach would be the one that evaluates each decision alternative in 

terms of the best payoff that can occur. The decision alternative that is recommended is the 

one that provides the best possible payoff. For a problem in which maximum profit is desired, 

the optimistic approach would lead the decision maker to choose the alternative 

corresponding to the largest profit. For problems involving minimization, this approach leads 

to choosing the alternative with the smallest payoff. Similarly, the conservative approach 

evaluates each decision alternative in terms of the worst payoff that can occur. The decision 

alternative recommended is the one that provides the best of the worst possible payoffs. For a 

problem in which the output measure is profit, the conservative approach would lead the 

decision maker to choose the alternative that maximizes the minimum possible profit that 

could be obtained. For problems involving minimization, this approach identifies the 

alternative that will minimize the maximum payoff. Another one is, minimax regret 

approach to decision making where one would choose the decision alternative that 
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minimizes the maximum state of regret that could occur over all possible states of nature. 

This approach is neither purely optimistic nor purely conservative.  

As an example, consider a situation of a soft drink company deciding whether or not 

to market a new flavor. Two of the many parameters affecting its decision are the proportion 

of people for which the new flavor will prove effective (say θ1), and the proportion of the 

market the new flavor will capture (say θ2). Both of these will be generally unknown, though 

typically on ground experiments can be conducted to obtain statistical information about both 

of them. This problem is one of decision theory in that here the ultimate purpose is to decide 

whether or not to market the new flavor, how much to market, what price to charge, what 

color should be used, what size of packing be launched, etc. 

Classical statistics is focused towards the use of sample information (the observations 

received after the statistical investigation) in making inferences about unknown parameters. 

Such classical inferences are, for most of the part, made without regard to the use to which 

they are to be put. On the other hand, in decision theory, an attempt is to be made to combine 

the sample information with other relevant aspects of the problem in order to make the best 

decision. In addition to the sample information received after the statistical investigation, two 

other types of information are also typically relevant. The first one is the knowledge of 

various possible consequences of the decisions. Often this knowledge can be quantified by 

considering the risk involved or more specifically by determining the loss that would be 

incurred for each possible decision and for the various possible values of θ. (Statisticians 

seem to be pessimistic creatures who think in terms of losses. Decision theorists in economics 

and business talk instead in terms of gains (utility). As our orientation will be mainly 

statistical, we will use the loss function terminology. Note that a gain is just a negative loss, 

so there is no real difference between the two approaches.) 

The incorporation of a loss function into statistical analysis was first studied 

extensively by Abraham Wald; see Wald (1950), which also reviews earlier work in decision 

theory. In the soft drink example, the losses involved in deciding whether or not to market the 

product will be complicated functions of θ), and many other factors. A somewhat simpler 

situation to consider is that of estimating θ), for use, say, in an advertising campaign. The loss 

in underestimating θ) arises from making the product appear worse than it really is (adversely 

affecting sales), while the loss in overestimating θ) would be based on the risks of possible 

penalties for misleading advertising. The second source of non-sample information that is 

useful to consider is called prior information. This is information about 0 arising from 
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sources other than the statistical investigation. Generally, prior information comes from past 

experience about similar situations involving similar θ. In the product example, for instance, 

there is probably a great deal of information available about θ) from different but similar pain 

relievers. 

In literature, decision theory has been broadly classified as follows: 

Normative decision theory, which is concerned with identification of optimal 

decisions where optimality is often determined by considering an ideal situation i.e. the 

decision maker is able to calculate the risks with perfect accuracy and is in some sense 

fully rational. The practical application of this prescriptive approach (how people ought 

to make decisions) is called decision analysis and is aimed at finding tools, methodologies, 

and software (decision support systems) where risks are well-known in advance to help 

people make better decisions.  

Descriptive decision theory is concerned with describing observed behaviors with 

some scope of variability often under the assumption that those making decisions are 

behaving under some consistent rules. Like these rules may, for instance, have stochastic 

transitivity axioms type an axiomatic framework or a procedural framework (like Amos 

Tversky's elimination by aspects model), or reconciling the Von Neumann-Morgenstern 

axioms with behavioral violations of the expected utility hypothesis, or they may explicitly 

give a functional form for inconsistent (with respect to some independent factor like 

time) utility functions (e.g. Laibson's quasi-hyperbolic discounting).  

Prescriptive decision theory is concerned with predictions about behavior that positive 

decision theory produces to allow for further tests of the kind of decision-making that occurs 

in practice. In recent decades, there has also been increasing interest in "behavioral decision 

theory", contributing to a re-evaluation of what useful decision-making requires. 

In statistics we refer to another approach (sometimes treated as modern approach), 

based on prior information, and observations as well as the assessment of the risk associated 

with each decision, called the Bayesian Decision Making. This approach, unlike the 

classical decision theory which uses minimax type approaches, makes use of the Bayesian 

procedures and the famous Bayes’ theorem. 

MScSTAT/MASTAT-301(N)/11



Bayes' Theorem is named after the Reverend Thomas Bayes, a statistician and 

philosopher of 18th century. Bayes used conditional probability to provide an algorithm that 

uses evidence to calculate limits on an unknown parameter. We know that for any two 

disjoint events A and B, the conditional probability is defined as P(A│B) = P(B∩A)/P(B) 

provided P(B)>0 and if E1, E2, E3 ,… are mutually disjoint events each with non-zero 

probability of occurrence, then using Bayes' theorem for is stated mathematically as: 
Bayes Theorem: Let an event A occur only if one of the hypotheses say E1, E2, E3 ,… En is 

true. If the prior probabilities of these hypotheses are respectively P(E1), P(E2), P (E3)  ,…, 

P(En). The conditional probabilities P(A│E1), P(A│E2), P(A│E3),…, P(A│En) are also 

known. The posterior P(Ei│A), i=1, 2,…,n is given by  

P(Ei│A)= P(A│Ei)P(Ei)/[∑i=1,2,…,n P(A│Ei)P(Ei)] 

provided at least one P(Ei)>0, i=1, 2,…n.

Proof: We have 

P(AEi) = P(A│Ei)P(Ei) = P(Ei│A)P(A) 

Hence, 

P(Ei│A)= P(A│Ei)P(Ei)/P(A) 

Now, 

P(A) = ∑i=1,2,…,n P(AEi) = ∑i=1,2,…,n P(A│Ei)P(Ei) 

Thus, 

P(Ei│A)= P(A│Ei)P(Ei)/[∑i=1,2,…,n P(A│Ei)P(Ei)]. (QED) 

Thus, this theorem enables the user to move backward in the light of presently 

available observations and the prior information about the unknown parameter. The whole 

theory of Bayesian Statistics is based on this fundamental theorem.  

Bayesian Statistics is a theory in statistics based on the Bayesian interpretation of 

probability i.e. probability expresses some degree of belief in an event. This degree of belief 

may be based on prior knowledge about the event, obtained as the results of previous 

experiments, or on personal beliefs (called subjectivity) about the event. 

AN EXTENSION OF BAYES THEOREM 

1.4    Bayes’ Theorem and Bayesian Statistics 
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Another use of this theorem is in computing the probabilities of some future event that 

depends on some current event which further depends on n mutually exclusive events such 

that at least any one of them certainly occurs. 

Bayes Theorem for Future Events: Consider a future event C such that the P(C│A) is the 

probability of materialization of some future event C, given the probabilities P(C, A ∩ E1), 

P(C, A ∩ E2), …, P(C, A ∩ En) is given by 

P(C│A) = [∑i=1,2,…,n P(C │ A ∩ Ei) P(A│Ei) P(Ei)]/[∑i=1,2,…,n P(A│Ei)P(Ei)] 

Proof: We know that event C occurs after A which further depends on events Ei, i =1, 2,…, 

n. 

Thus, 

P(C│A) = ∑i=1,2,…,n P(C ∩ Ei │A) 

= ∑i=1,2,…,n P(C │A ∩ Ei) P( Ei │A) 

= [∑i=1,2,…,n P(C│A ∩ En) P(A│Ei) P(Ei)]/[∑i=1,2,…,n P(A│Ei)P(Ei)] 

Hence the theorem. 

MISCELLANEOUS EXAMPLES 

Example 1. A bag contains 3 black(B) and 4 red (R) balls. Two balls are drawn at random 

one at a time without replacement. What is the probability that the first ball selected is black 

if the second ball is known to be red. 

Solution: Let B1 be the event of the first ball being black (BB, BR).  

Let B2 be the event of the first ball being red i.e. (RB,RR). 

Let A be the event of second ball being red i.e. (BR,RR). 

We are to find P(B1│A). 

Now see that A can happen with B1 or B2 i.e. 

A= (A  B1) 2) 

P(A∩B1) = P(B1) P(A│B1) 
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Similarly, 

P(A∩B2) = P(B2) P(A│B2) 

P(A)= P(A∩B1) + P(A∩B2) 

So, the required Probability i.e. P(B1│A) = P(A│B1)/P(A) 

Example 2. There are 4 bags, each containing 6 white balls and 3 black balls, and 3 bags 

each containing 2 white 4 black balls. A black ball is drawn, what is the chance for it coming 

from the first group?  

Solution: Here, 4+3 i.e. 7 bags out of which 4 belong to the first group and 3 to the second 

group. Hence, P1 = 4/7, P2 = 3/7. 

If a bag is selected from the first group the chance of drawing a black ball is 3/9 i.e. 

1/3. If it is drawing n from the second group, chance is 4/6 i.e. 2/3.  

Thus p1=1/3 , p2= 2/3  

 Required probability = p1P1/(p1P1+p2P2) 

= (1/3)(4/7)/{(1/3)(4/7)+(2/3)(3/7)} 

= (2/5). 

Example 3. There are 3 bags and they contain 2 white and 3 black balls; 4 white and 1 black 

ball respectively. The Probability of selecting each bag is same. A bag is selected at random 

and a ball is drowned from it. (i) Find the chance that a white ball is drown.  

(ii) If it is known that the ball is white, what is the probability that it came from second bag? 

Solution: Let A be the required event of getting one white ball and let Bi=1,2,3 be the events of 

selecting the ith bag. So, 

P(B1) = The probability that the first bag is selected =1/3 
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Similarly, P(B2) = P(B3) = 1/3. 

P(A│B2) = The probability that a white ball is drawn while first bag is selected 

= 2C1/5C1=2/5. 

Similarly, P(A│B2) =3/5, and P(A│B3) =4/5. 

(i) P(A)= The probability that white ball is drawn from any of the bags 

=Σi=1,2,3 P(Bi) P(A│Bi) 

=P(B1)P(A│B1)+ P(B2)P(A│B2)+P(B3)P(A│B3) 

 (ii)   P(B2│A) = P(B2∩A)/P(A) 

      = P(B2)P(A│B2)/P(A) 

      = P(B2)P(A│B2)/{ Σi=1,2,3 P(Bi) P(A│Bi)} 

       = 

= 

Example 4. There three boxes containing respectively 1 white, 2 red, 3 black balls; 2 white, 3 

red, 1 black ball and 3 white, 1 red, 2 black balls. A box is chosen at random and from it two 

balls are drawn at random. The two balls are one red and one white. What is the probability 

that they come from the (a) first box, (b) second box, (c) third box? 

Solution:  Let A be the event of getting two balls one red and one white and left B1, B2, B3 be 

the events of being first box, second box and third box. 

 P(B1) = the probability that the first box is selected = 1/3 
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 P (B2) = the probability that the second box is selected=1/3 

 P(B3) = the probability that the third box is selected = 1/3  

 P(A│B1) = the probability that two balls one red and one white are coming from first box 

=1C1x2C1/6C2

 Similarly,  P(A│B2) =   

and                P(A│B3) = 

           Now, probability that the first box is selected and two balls are one red and one white 

i.e. P(B1│A)  

By Bayes Theorem we get, 

P(B1│A) =

=   =

Similarly, P(B2│A) = 

 And, P(B3│A) = 

= 
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Remark: Obviously the sum of 2/11, 6/11, and 3/11 is unity. 

Example 5. The probability that a person can hit a target is 3/5 and the probability that 

another person can hit the same target is 2/5 But the first person can fire & shoots in the time 

and the second persons fires 10 shoots. They fire together. What is the probability that the 

second person shoots the target.  

Solution: Let A denote the event of shooting the target and B1 denote the event that the first 

person shoots the target and B2 denote the event that the first person shoots the target. 

Thus, P(B1│A) is the probability that the first person shoots the target. 

Now, with the given data we have, 

P(A│B1) = 3/5 and P(A│B2) =2/5. 

The ratio of the shoots of the first person to those of the second person in the time is 8/10 i.e. 

4/5. 

Thus, we have, 

 P(B1) = (4/5) P(B2) 

Then, by Bayes Theorem, 

P(B2│A) = 

=

Example 6.  A bag contains 10 balls, either black or white, but it is not known how many of 

each. A ball is then drawn at random and is found white, what is the probability that the bag 

contains at least 5 white balls alternately? 
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Solution: The number of white balls may be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 i.e. there are ten 

possible outcomes  

Let Ai=1,2,…,10 be the event that the number of white balls is i.  

P(Ai) = pi, where i=1,2,3,4,.......10. 

Let B represent the event of drawing a white ball, then 

P(B│ )= i/10 

and P(Ai ∩B) = P(B│Ai) P(Ai) pi 

Thus, the probability of ith white balls originally is 

 P(Ai│B) =   

B)/ 

= ((i/10)*pi)/(∑i=1,2,…,10(i/10*pi)) 

=(i*pi)/( ) 

So, the required probability = ( )/ ( ) 

= 45/55=9/11 (if we take pi=1/10 for each i). 

Example 7. There are three similar coins, one of which is ideal and other two are biased. The 

chances of head are respectively 1/3 and 2/3. A coin is selected at random and tossed twice. If 

head occurs both times. Find the probability that the ideal coin was selected. 

Solution: Let A be the event of getting head by tossing the selected coins twice. Also, let B1,

B2, and B3 be the events of selecting first (say ideal), second and third coin, respectively. 

If the coin is tossed once then the probability of getting head = 1/2 

The probability that the first coin is selected = P (B1) = 1/3 

Similarly, P(B2) = P(B3) = 1/3.  
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P(A│B1) = The probability when first coin is selected and head occurs in both tosses =1/2 

×1/2 =1/4  

Similarly, P(A│B2) =1/3×1/3=1/9 and  P(A│B3)=2/3 ×2/3=4/9 

Thus, the required probability i.e. P(B1│A) 

= P(B1) P(A│B1) / (

 =

=

=1/4/(1/4+1/9+|4/9) 

=1/4×36/29=9/29. 

1.5      Self- Assessment Exercise 

1. Discuss about various real-world situations and decision policies used by the decision

makers. 

2. State Bayes theorem and explain how it helps in decision making.

1.6      Summary 

In our day-to-day life we come across a number of decision-making situations. And 

there we take a decision that suits most to our objectives. Different situations and logics 

affect our decisions. In section 1.3, some of the most popular situations have been discussed. 

Section 1.4 explains the basis of such a policy in Bayesian sense followed by a few exercises, 

summary of the unit and a list of suggested readings. 

1.7      Further Reading 

• Berger, J.O. (1985). Statistical Decision Theory-Fundamental concepts and methods,

Springer Verlag.
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UNIT-2: BASIC ELEMENTS 

Structure 

2.1       Introduction 

2.2       Objectives 

2.3       Decision Theoretic Problem as a Game Problem and Basic Elements 

   2.3.1     Game Theory and Decision Theory 

   2.3.2        Decision Function and Risk Function 

   2.3.3        Randomization 

2.4      Optimal Decision Rules 

2.5      Unbiasedness 

2.6      Invariance Ordering 

2.7      Self- Assessment Exercise 

2.8      Summary 

2.9      Further Reading 

2.1    Introduction 

Decision Theory is the study of the reasoning underlying any decision. Statistical 

Decision theory may be considered as the theory of making decisions in the presence of 

statistical knowledge. In fact, all the problems of statistical inference i.e. of point estimation 

to testing of statistical hypothesis, may be looked upon as problem of making decisions in the 

face of uncertainty. In section 2.3, we shall consider a game problem to make the decision 

theoretic problem and related concepts clear. Section 2.4 discusses the concept of optimality 

of decision rules. Next in section 2.5 the concept of unbiasedness is covered in detail. Section 

2.6, discusses the concept of invariance ordering followed by some exercises on these topics, 

summary of the unit and suggested readings. 

Before moving ahead, some concepts should be made very much clear to the reader. 

The first element of the decision problem that the reader should be known, is the alternative 

forms or values that may be assumed by the particular characteristic, say θ, under study. In 

decision theory, the set of all possible values of this characteristic θ is usually denoted by Θ, 
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is termed as the space of the possible states of nature. The next element that the reader should 

know is the decision space D i.e. the set of all possible decisions d (or actions) relevant to the 

problem under study. 

Now in taking the decision d when θ is the true state of nature, the decision maker 

may or may not make some error. In any case, the amount of this error is treated as the loss 

incurred (with respect to decision d, when the true state of nature is θ). Thus, this loss may be 

denoted by L(θ, d). This is called the loss function and this function L is depending upon θ 

and d. This is the third element of any decision problem. In particular cases, this loss incurred 

may be 0, otherwise it is a non-negative valued function. 

Fourth element that the reader should know is the observable random variables that 

provide a basis for making decision. It may be assumed that there are a few random variables 

X1, X2,..., Xn whose joint distribution is specified by the parameter/s θ, Fθ being their joint 

distribution function. To make some decision on some problem, we take a set of observations 

on the random variables say x1, x2, ..., xn and decision that seems appropriate in the light of 

these observations is then taken.  

2.2 Objectives 

After studying this unit, you should be able to 

• Explain the basic decision theoretic terms

• Explain the decision problem as a game problem

• Explain the decision problem from the perspective of a statistician

• Define various components and topics of importance

• Describe Bayes and minimax criteria

• Describe the admissibility of decision rules

• Describe the invariance ordering

2.3 Decision Theoretic Problem as a Game Problem and Basic Elements 

Suppose, you want to buy a new mobile phone. How do you decide which one is best 

for you and from where to buy it? That is a decision problem. Now suppose that you have, 

anyhow finalized the mobile you are willing to have.  
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Then, Decision Theory is the study of the reasoning underlying this decision. It is 

closely related to the well-known theory of games. In this chapter, firstly a decision problem 

has been explained as a game problem. Then it is explained from the perspective of a 

statistician.  Various elements/components along with some other topics of importance have 

also been defined in this section. Next this chapter is focused on Bayes and minimax criteria 

and their description. 

2.3.1       Game Theory and Decision Theory: 

Basic Elements: the elements of decision theory are similar to those of the theory of 

games. In particular, decision theory may be considered as the theory of two-person game, in 

which nature takes the role of one of the players. The so-called normal form of a zero-sum 

two-person game, henceforth to be referred to as a game, consists of three basic elements: 

1. A non-empty set, Θ, of possible states of nature, sometimes referred to as the

parameter space. 

2. A non-empty set, a, of action available to the statistician.

3. A loss function, L (θ, a), a real-valued function defined on Θ X а.

A game in mathematical sense is just such a triplet (Θ, a, L), and any such triplet 

defines a game, which is interpreted as follows. 

Nature choose a point θ in Θ, and the statistician, without being informed of the 

choice nature has made, chooses an action a in a. as a consequence of these two choices, the 

statistician loses an amount L (θ, a). [the function L (θ, a) may take negative values. A 

negative loss may be interpreted as a gain, but throughout this book L (θ, a) represented the 

loss to the statistician if he takes action a when θ is the ‘’ true state of nature’’.] Simple 

through this definition may be, its scope is quite broad, as the following example illustrated. 

Example2.1:  Odd or Even:  two contestants simultaneously put up either one or two 

fingers. One of the players, call him player I, wins if the sum of the digits showing is odd, 

and the other player, player II, wins if the sum of the digits showing is even. The winner in all 

cases receives in dollars the sum of the digits showing, this being paid to him by the loser. 

To create a triplet (Θ, a, L), out of this game we give player I the label ‘’nature’’ and 

the player II the label ‘’statistician’’. Each of these players has two possible choices, so that 
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Θ= {1, 2} =a, in which ‘’1’’ and ‘’2’’ stands for the decision to put up one and two fingers, 

respectively. The loss function is given by the table 1.1.  

Thus L (1, 1) =-2

Table 2.1 

L (1, 2) =3, L (2, 1) =3 and L (2, 2) =-4   it is quite clear that this is a game in the 

sense described in the first paragraph. This example is discussed later, in which it is shown 

that one of the players has a distinct advantage over the other. Can you tell which one it is? 

Which player would you rather be?  

Example 2.2:   Consider the game (Θ, a, L) in which  , a =  and the loss 

function L is given by the table 1.2: 

(Table 2.2) 

‘Statistician’ 

a1   a2 

 ‘Nature’           4 1 

   -3            0 

In game theory, in which the player choosing a point from Θ is assumed to me

intelligent and his winnings in the game are given by the function L (loss function of the 

statistician or gain function of the nature), the only ‘’rational’’ choice for him is . No matter

what his opponent does, he will gain more if he chooses than if he chooses .thus it is 

clear that the statistician should choose action  instead of action  , for he will lose only 

one instead of four. This is the only reasonable things for him to do. 
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Now, suppose that the function L does not reflect the winning of nature or that nature 

chooses a state without any clear objective in mind. Then we can no longer state categorically 

that the statistician should choose action if nature happens to chooses , the statistician 

will prefer take action . 

2.3.2 Decision Function & Risk Function 

To give a mathematical structure to this process of information gathering, we suppose 

that statistician before making a decision is allowed to look at the observed value of a random 

variable or vector, X, whose distribution depends on the true state of nature, θ. The sample 

space denoted as 𝔛is taken to be (a Borel subset of) a finite dimensional Euclidean space, and

the probability distributions of X are supposed to be defined on the Borel subsets, β of 𝔛.

thus, for each θ є Θ there is a probability measure defined on β, a corresponding 

cumulative distribution function  which represents the distribution function of X 

when θ is the true state of the nature (the parameter) 

A statistical decision problem or a statistical game is a game (Θ, a, L) coupled with an

experiment involving a random variable X whose distribution depends on the state θЄΘ 

chosen by nature. 

On the basis of the outcome of the experiment X=x (x is the observed value of X), the

statistician chooses an action d(x)є a .such a function d, which maps the sample space  𝔛 in to 

a, is an elementary strategy for the statistician in this situation .The loss is now the random 

quantity L (θ, d(x)).The expected value of L (θ, d(x)) when θ is the true state of nature is 

called the risk function. 

……………………..  (2.1) 

and represented the average loss to the statistician when the true state of nature θ and the 

statistician used the function d. 

Definition 2.1: Any function d(x) that maps the sample space 𝔛 in to a, is called a non-

randomized decision rule or a non-randomized decision function, provided the risk function 

R (θ, d) exists and is finite for all θєΘ. The class of all non-randomized decision rules is 

denoted by D. 

MScSTAT/MASTAT-301(N)/25



…………… (2.2) 

        With such an understanding, D consists of those functions d for which  is for 

each θєΘ a Lebesgue integrable function of x. In particular, D contains all simple functions. 

On the other hand, the expectation in (2.2) may be taken as the Riemann or the Riemann-

Stieltjes integral.  

………  (2.2) 

In that case D would contain only functions d for which  is for each θєΘ 

continuous on a set of probability one under 

Example 2.1: the game of ‘’odd or even’’ may be extended to a statistical decision problem. 

Suppose that before the game is played the player called ‘’the statistician’’ is allowed to ask 

the player called ‘’nature’’ how many fingers he intends to put up and that nature must 

answer truthfully with probability 3/4. The statistician therefore observes a random variable 

X (the answer nature gives) taking the value 1 or 2. If θ=1 is the true state of nature 

. Similarly, = . There are exactly four 

possible functions from 𝔛 = {1,2} in to, a = {1,2}. There are the four decision rules, 

   ; 

   ; 

   ; 

   . 

Rules and ignore the value of X, rule  reflects the belief of the statistician that 

the nature is telling the truth, and rule , that nature is not telling the truth. The risk Table 

(2.1) is given as: 

(Table 2.1) 

D 

Θ R(θ,d) 
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It is a custom, which we steadfastly observe, that the choice of a decision function 

should depend only on the risk function  and no other wise on the distribution of the 

random variable . 

         Notice that the original game (Θ, a, L) has been replaced by a new game (Θ, D, R), in 

which the space D and the function R have an underlying structure, depending on a, L, and 

the distribution of X, whose expectation must be the main objective of decision theory. 

A ‘’classical’’ mathematical statistics consists three important categories: 

1. Consists of two points, : decision theoretic problems in which 

consists of exactly two points are called problem of testing hypothesis. 

Consider the special case in which Θ is the real line and suppose that the loss 

function for some fixed number  given by the formulas: 

and 

  Where and  are positive numbers. Here we would like to take action 

 and action .the space D of decision rule consists of those functions 

d from the sample space in  with the property that  is well-defined 

for all values of θєΘ. The risk function in this case is , 

In this case probabilities of making two types of error are involved. For

,  is the probability of making the error of taking action when we should 

take action and θ is the true state of nature. Similarly, for 
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 , is the probability of making the error of taking 

action when we should take action and θ is the true state of nature. 

2. Consists of k points,   these decision theoretic problems are 

called multiple decision problems. For an example an experimenter is to judge which of 

treatments has a greater yield on the basis of an experiment.  

He may (a) decide treatment 1 is better, (b) decide treatment 2 is better, or (c) withhold 

judgment until more data are available. In this exp. k=3 

3. Consists of a real line,

such decision theoretic problems are referred to in a board sense as point estimation of a real

parameter. Consider the special case in which Θ is also a real line and suppose that the loss 

function is given by the formula,    

  ,

Where, c is some positive constant. A decision function d, in this case a real–valued 

function defined on a sample space, may be considered as an ‘’estimate’’ of the true unknown 

state of nature θ. It is the statistician desire to choose the function d to minimize the risk 

function.   

 , 

The criterion arrived here is that of choosing an estimate with a small mean squared 

error in some sense. 

2.3.3 Randomization 

  It is often useful to recognize explicitly that in any decision problem, the statistician 

may wish to choose a decision from D by means of an auxiliary randomization procedure of 

some short, such as by tossing a coin. In other words, the statistician may wish to make a 

mixed or randomized decision δ by assigning probabilities  to the elements 
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 of decisions from D and then one of the decisions δ on the basis of these 

probabilities is chosen. 

More generally, a randomized decision for the statistician in a game (Θ, a, L) is a 

probability distribution over  (it is understood that a fixed σ-field of subsets of containing 

the individual points of is given). If P is probability distribution over  and Z is a random 

variable taking values is .whose distribution is given by P, the expected or average loss in 

the use of randomized decision P is, 

………………..  (3.1) 

Provided it exists. This formula is to be regarded as an extension of the domain of 

definition of the function  from  to the sample space of randomized decisions, for each 

element a є  may, and shall, be regarded as the probability distribution degenerate at a ,that 

is, the distribution giving probability one to point a. the space of randomized decisions, P, for

which exists and is finite for all θ є Θ is denoted by  . 

With this definition, the game (Θ, , L) is to be considered as the game (Θ, a, L) in 

which the statistician is allowed randomization.   contains all the probability distributions 

giving mass one to a finite number of points of  

By analogy, we may extend the game (Θ, D, R) to (Θ, , R) where  is a space 

containing probability distribution over D. if δ denotes a probability distribution over D, R(θ 

,δ) is defined analogously to (3.1) as, 

…………….  (3.2) 

Where Z is a random variable taking values in D, whose distribution is given by δ. 

Definition: 3.1: Any probability distribution δ on the space of non-randomized 

function, D, is called a randomized decision function or a randomized decision rule, provided 

the risk function (3.2) exists and is finite for all θ є Θ. The space of all randomized decision 

rule is denoted by D*. D* contains all the probability distributions giving mass one to a finite 

number of points of D. 
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The space D of non-randomized decision rules may, and shall, be considered as a 

subset of the space D* of randomized decision rules D є D* by identifying a point d є D with 

the probability distribution δ є D* degenerate at point d. 

One advantage in the extension of the definition of L (θ, ·) from  and the 

definition of R (θ, ·) from D to D* is that these functions become linear on and D*, 

respectively. In other words, if ,  and 

And 

……………. (3.3) 

Similarly, if ,  and .then 

……………..  (3.4) 

Example 3.1:  Let the game be defined as, 

Θ           4          1            3 

          1          4            3 

If nature chooses , action  is preferable to action .if, on the other hand, nature 

chooses , action  is preferable to action  thus  is preferred to either of the other action 

under the proper circumstances. However, suppose the statistician flips a fair coin to choose 

between actions  and ; that is suppose the statistician’s decision is to choose if the coin 

comes up heads and choose if the coin comes up tails. This decision, denoted by δ, is a 

randomized decision; such decisions allow the actual choice of the action in  to be left to a 

random mechanism and the statistician chooses only the probabilities of the various 

outcomes. In game theory δ would be called a mixed strategy. The randomized decision δ 
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chooses action  with probability ½, action  with probability ½, action  with probability 

zero. The expected loss in the use of δ is given by, 

Because it is understood that the choice between strategies is to be made on the basis 

of expected loss only,  is certainly to be preferred to  for no matter what the true state of 

nature, the expected loss is smaller if we use δ than if we use . 

“If randomized decisions are allowed and the choice between strategies is based on 

expected loss only, the statistician should never take action .’’ 

2.4  Optimal Decision Rules 

Humans have always been involved in situations where decisions must be made that 

best fit the circumstances. The decision taken may or may not affect and be affected by other 

decision makers. The best decision may depend on one or more objectives of the decision 

maker. The decision may concern a static situation or a situation that evolves in time. Thus, 

rules for optimal decisions using some forms of quantitative models have been developed and 
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applied in several disciplines including economics, management science, cybernetic and 

social systems. Two types of model formulations have been most common e.g. static and 

dynamic, or deterministic and stochastic. In the former case the role of time is explicitly 

introduced in the specification, whereas in the latter the probabilistic variations in data are of 

great interest. The theory of decision-making in a stochastic environment has many facets 

that are different from deterministic theory. Some of these aspects are: 

(a) the information structure available, 

(b) the forms of probability distribution, 

(c) the conditional nature of the state observed, 

(d) the criteria of optimality accepted 

      and (e) the types of validation tests adopted. 

The first aspect deals with the question of the relative cost and value of a particular 

kind of quantitative information in selecting or updating an optimal solution. Pertinent 

questions here are of the following types: When is information incomplete? What are the 

gains from cooperation or otherwise in team decisions? How can one optimally discriminate 

between two channels of information? 

The second aspect deals with the robustness of any optimal solution selected. How 

sensitive is the optimal solution to any departure from the assumption of normality? When is 

a mixed strategy preferable over a pure strategy? In what situations posterior distributions 

may help improve the optimal strategies? 

The third aspect is concerned with the forecasting component, distinct from the 

regulating component of the optimal solution vector. 

This aspect is particularly important in dynamic environments, when the conditional 

means and conditional variances of the state variable may change our time, due to the 

underlying stochastic process and hence Kalman-filtering and other techniques of state 

estimation and forecasting must be built into the system. 

The fourth aspect deals with the criteria of acceptability of an optimal solution. Unlike 

deterministic systems, we have here several plausible criteria that are applied in empirical 
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studies. These criteria share however some common features e.g., (a) a measure of risk 

aversion, (b) an assumption about the underlying probabi1ity distribution and the existence of 

its parameters and (c) an ordering among feasible solutions whether optimal or not. 

The fifth aspect deals with the empirical validation of an optimal solution in terms of 

the observed pattern of behaviour. When samples are available for the two sets of solutions, 

the observed and the optimal, statistical testing of a null hypothesis proves to be useful in 

suggesting a direction. If the null hypothesis is that the two solutions are identical and it is 

rejected in a statistical sense, the fact that a best rule usually does not exist, a general method, 

which has been proposed for arriving at a decision rule, is frequently satisfactory. 

Concept of optimality in Bayesian sense is discussed, in detail, in Unit 6. 

2.5 Unbiasedness 

Suppose the problem is such that for each θ there exist a unique correct decision and 

that each decision is correct for some θ. Assume further that  for all d 

wherever some decision is correct for both . Then the loss  depends only the 

actual decision taken, say d’ and the correct decision d. thus the loss can be denoted by L(d, 

d’) and this function measures how for a past d and d’ are. Under these assumptions a 

decision function δ(x) is said to be unbiased w.r.t. the loss L if for all θ and d’       

……………  (3.5) 

Where the subscript θ contains the distribution w.r.t. which the expectation can take 

and where d is the correct decision for θ. Thus, δ is unbiased if on the average δ(x) closer to 

the correct decision than to any wrong one. Extending this definition, δ is said to be L-

unbiased for an arbitrary decision problem for all θ and θ’.   

…………  (3.6) 

Example 3.2: In two decision problem, let and be the set of θ values for 

which and  are correct decisions. Assume that 
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So that (3.6) reduced to 

With reverse inequality holding for

Since the unbiasedness contains (3.6) reduces to,  

           And          

Example 3.3: In the problem of estimating the real valued function  with square of the 

error as loss, the condition of unbiasedness become, 

 For all θ and θ’…………. (3.7) 

Let 

       For all θ and θ’ 

If  is continuous over Ω and which is not continuous in any open subset of Ω, 

and that  is continuous function of θ for each estimate  of  . Thus 

(3.2) reduces to, 

Or 
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If θ is neither a relative minimum or maximum of  it follows that there exist 

points θ’ arbitrary chosen θ both such that, 

    Hence 

Thus  is unbiased if . Proved

2.6  Invariance Ordering 

Generally, an invariant is a quantity that remains constant during the execution of a 

given operation or transformation. In other words, none of the allowed operations changes the 

value of the invariant. For example, any two scalar quantities the result is invariant with 

respect to product i.e. axb equal bxa. In statistics this property is helpful in attempting the 

given problem using a more preferred form out of many available order invariant forms.  

2.7 Self-Assessment Exercise 

1. Discuss the decision theoretic problem as a game problem using an example from your

surroundings. 

2. Explain the concept of optimal Bayes rules with example.

2.8 Summery 

In this unit, section 2.3 consists of the basics of Decision Theory Problem as a Game 

Problem and sections 2.4, 2.5 and 2.6 discuss about some Basic Elements of decision theory 

namely optimal decision rules, unbiasedness, and invariance ordering. In next unit we will 

learn more about the structures of Bayes problems. 

2.9 Further Readings 

• Berger, J.O. (1985). Statistical Decision Theory - Fundamental Concepts and

Methods, Springer Verlag.

• Degroot, M. H. (1971). HPD Statistical Decisions, McGraw-Hill.

• Ferguson, T.S. (1967). Mathematical Statistics- A Decision Theoretic Approach,

Academic Press.
• Lindley, D.V. (1965). Introduction to Probability and Statistical Inference from

Bayesian View Point, Cambridge University Press.
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UNIT-3: BAYES AND MINIMAX RULE 

Structure 

3.1 Introduction 

3.2     Objectives 

3.3      Bayes and Minimax Principles 

3.4      Generalized Bayes Rule and Extended Bayes Rule 

3.5      Limits of Bayes Rule 

3.6     Self-Assessment Exercise 

3.7     Summary 

3.8     Further Reading 

3.1    Introduction 

Bayes principle refers to the notion of a distribution on the parameter space Θ called a 

prior distribution. 

3.2     Objectives 

After studying this unit, you should be able to 

• Define Bayes Principle

• Define Decision rules

• Identify Minimax rules for decision theoretic problems.

3.3 Bayes and Minimax Principles 

1. Bayes Principle: The Bayes principle involves the notion of a distribution on the

parameter space Θ called a prior distribution. Two things are needed of a prior distribution τ 

on Θ. First, we may able to speak of the Bayes risk of a decision rule δ w.r.t. a prior 

distribution τ, namely 

 …………………..  (3.8) 
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Where T is a r.v. over Θ having distribution τ. Second, we need to be able to speak of the 

joint distribution T and X and of the conditional distribution of T, given X, the latter being 

called the posterior distribution of the parameter given the observations. We denote the space 

of prior distribution as . 

Definition. 3.2:  A decision rule  is said to be Bayes w.r.t. the prior distribution τ є  if     

………… (3.9) 

The value on the R.H.S. is known as the minimum Bayes risk. Bayes risk may not exist even 

if the minimum Bayes risk is defined and finite. 

Definition. 3.3:  Let Є . A decision rule  is said to be Bayes w.r.t. the prior 

distribution τє  if  

  ………………..  (3.10) 

2. Minimax Principle:  An essentially different type of ordering of the decision rule may be

obtained by ordering the rules according to the worst that could happen to the statistician. In 

other words, a rule  is preferred to a rule  if 

A rule that is most preferred in this ordering is called a minimax decision rule. 

Definition. 3.4: A decision rule  is said to be minimax if

 ……………………. (3.11) 

The value on the R.H.S. of (3.11) is called the minimax value or upper value of the game. 

Proposition. 3.1: A decision rule  is said to be minimax if and only if   

 ………………..    (3.12) 

For all θ’εΘ and δε
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Proof:  let

for

Hence  minimizes the          for

Thus,   And  is minimax. 

Conversely, let    

Proved 

Definition. 3.5: Let Є . A decision rule  is said to be  - minimax if 

………………….   (3.13) 

More simply,  is Є-minimax if for all 

  …………………  (3.14) 

Definition. 3.6: A distribution is said to be least favorable if

 ………………..  (3.15) 

The value on the R.H.S. of (3.15) is called the maximin value or lower value of the game. 

Geometrical Interpretation for Finite Θ: we give a geometric interpretation of the 

fundamental problem of decision theory in the case in which the parameter space Θ is finite.  
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Suppose that Θ contains k points,  and consider the set S, to be called 

the risk set, contained in k-dimensional Euclidian space of points of the form 

 where δ ranges through

…………. (3.16) 

If k=2 this set may easily be plotted in the plane. 

Definition. 3.7: A set S should be convex if whenever 

 are elements of S, the point 

are also elements of S , 

Lemma. 3.1:  The risk set S is convex subset of . 

Proof: Let y and y’ be arbitrary point of S. according to the definition of S, there exist a 

decision rules δ and δ’ in  for which

And j =1, 2,....., k .let α be an arbitrary number such that and 

consider . Clearly . (as convex combination of d.f is also a d.f ) 

Proved 

Definition. 3.8: let A be a set. The convex hull of a set A is the smallest convex set 

containing A or the intersection of all convex sets containing A.     

Thus, S defined above is the convex hull of the set , where 

 ……… (3.17) 
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Because the risk function contains all the pertinent information about a decision rule 

as for as we concerned, the risk set S contains all the information about a decision problem. 

For a given decision problem  for Θ finite the risk set S is convex; conversely, for 

any convex set S in k-dimensional space there is a decision problem,  in which Θ 

consists of k points, whose risk set is the set S. 

Bayes Rules:   Let be a probability distribution on Θ. See points that yield 

the same expected risk. 

           ,   …………… (3.18) 

are equivalent in the ordering given by the principle for the prior 

distribution . Thus, all points on the plane  for any real number b 

are equivalent. Every such plane is perpendicular to the vector from the origin to the points 

 and because is non negative the slope of the line of the interaction of the 

plane  with the coordinate planes cannot be positive. The quantity b can best be 

visualized by noting that the point of interaction of the diagonal line  with 

the plane  must occur at 

Fig (3.1) 

To find the Bayes rules we find the infimum of those values of b, call it , for which 

the plane  intersected the set S. decision rule corresponding to points in the 
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intersection are Bayes rule with respect to the prior distribution . There may 

be many Bayes rules or there may not be any Bayes rules. 

Fig (3.2)      Fig (3.3) 

Minimax Rules: 

         The minimax risk for a fixed δ is Any point yєS that give 

rise to the same value of  are equivalent in the ordering given by minimax principle. 

Thus, all points on the boundary of that set 

for any real number c are 

equivalent. To find the minimax rules we find the infimum of those values of c, call it , 

such that the set  intersects S. any decision rule δ, whose associated risk point is an element 

of the intersection , is minimax decision rule. Of course, minimax decision rule do 

not exist when the set S does not contains its boundary points.  

A minimax strategy for nature which is otherwise called a ‘’least favorable 

distribution’’ may also be visualized geometrically. A strategy for nature is a prior 

distribution  Because the minimum Bayes risk ϒ  is  where 

 in the intersection of the line  and  the plane, tangent to 

and below S, and perpendicular to , a least favorable distribution is the

choice of  that makes this intersection as for up the line as possible. It is 
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clear that is not greater than , the minimax risk is .This distribution must be least 

favorable. 

Fig (3.4) 

Since 

where Z is a r.v. taking values in D with d.f δ. 

is such that  then 

where Z is a r.v. taking values in D with d.f . 

Obviously    for all dε D 

ϒ

ϒ   ………………… (3.19) 

Also 

 Z is a r.v. taking values in D with d.f . 

         ϒ
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         ϒ   …………………..  (3.20) 

From (4.19) and (4.20) 

          ϒ  …………………. (3.21) 

            Equation (3.21) states that none of the mixed strategy (randomized decision rule) can 

reduce the risk below the minimum value which can be attained from the non-randomized 

decision D. if Bayes risk ϒ  is finite and is attained for a randomized decision rules , 

then it follows from the above comments that this risk must be attained for some non- 

randomized decision D. 

            Thus, if a Bayes rule with respect to a prior distribution τ exits, there exist a non- 

randomized Bayes rule w.r.t. τ. Therefore, one definite computational advantage that the 

Bayes approach has over the minimax approach to decision theory problem is that the search 

for good decision rules may be restricted to the class of non- randomized decision rules. 

Example. 3.4:  Let  and let the loss function be

L(0,0) = L(1,1)=0 ,  L(1,0)=L(0,1)=1.     Suppose that the statistician observes the r.v. X with 

discrete distribution 

(I) Describe the set of all non- randomized decision rules. 

(II) Plot the risk set S in the plane. 

(III) Find the minimax and Bayes decision rules. 

Sol:   set of all non- negative integers 

Let A be any finite subset of N.          d:𝔛  = {0,1} 

Thus, D contains only two types of functions 
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The cardinality of D is C 

is risk function of d. 

  ……………………. (3.22) 

  ……………………. (3.23) 

  ……………………. (3.24) 

  ……………………. (3.25) 

   Where Z is a r.v. taking values in D with d.f δ. 

Let A ={0} ,{0,1}, Φ 

 R(1,δ)       (0, 1) 

 (0, 1)            

S

(0,1/2)  ,  (1/2,1/4)  ,  (0,1)     (p,1-p)

(1,1/2)   ,  (1/2,3/4) ,  (1,0)     

(0,0)  D       

(1,0) =  R(0,δ),  

Fig (3.5) 

Thus, minimax decision rule  at point D 
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i.e line  and intersection of 

Line  is 

Where

So, corresponding to

A Bayes decision rule which minimizes (3.23) can be found. 

To find a Non-Randomized Rule: 

Let A= {1, 3, 5, 7 …}       

Thus, there exist a non-randomized Bayes decision rule such 

that . A minimax decision rule is  choosing, 

         =1  if x

This rule is also Bayes rule with 
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Example. 3.5: consider the statistical decision problem. 

Let 

re the probabilities Fig (3.8)      

that δ will lead to a decision when  and   respectively, suppose 

, 0  is the prior probability. 

…….. (3.33)   

Where, 
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Example. 3.6:

A randomized strategy δ  is represented as a number , with understanding that 

is taken with probability q and  with 1-q 

Similarly, 

 (Fig 3.6) 

Which is nearly a line segment joining (-2, 3) and (3, -4) minimax strategy occurs when,  

The minimax risk is 

Thus, minimax rule is 

And this is also Bayes rule since, 

(Fig 3.6) 

(-2, 3) 

 Minim ax strategy  

  S 

 (3, -4) 
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Example. 3.7:

(Fig 3.7) 

Line  is  

Line PQ intersects  at 

  Thus 

The Minimax risk at 

Thus  corresponding to this 

Minimum is attained by 

 R ( ) 

 S     Q 

R (

Minimax   P 

Decision  
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Thus  is also bayes w.r.to 

And minimum Bayes risk 

Also  is non- randomized bayes rule w.r.to τ as 

Thus is randomized Bayes rule and  is non-randomized Bayes rule w.r.to 

Thus, minimax Bayes risk is   . 

Given the prior distribution τ, we want to choose a non –randomized decision rule d D that 

minimizes Bayes risk, 

  A choice of θ by the distribution τ (θ), followed by a choice of X from the 

distribution , determines a joint distribution of θ and X, which in turn, can be 

determined by first choosing X according to its marginal distribution, 

   ………………………    (3.26) 

and then choosing θ according to the conditional distribution of θ, given X=x, τ . Hence 

by a change of integration we may write, 
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  ……………….  (3.27) 

Given that these operations are legal, it is easy to describe a Bayes decision rule. 

To find a function d(x) that minimizes the double integral (3.27), we may minimize the inside 

integral separately for each x; that is, we may find for each x the action, call it d(x), that 

minimizes  

Thus, the Bayes decision rule minimizes the posterior conditional expected loss, given the 

observations. 

Non–Negative Loss Function: 

    Suppose that the distribution of the parameter θ in some decision problem is τ (θ). Let a be 

a given constant ( 0), and let  be a real valued function over parameter space Θ=Ω, such 

that 

Consider a new loss function  which is defined in terms of the original loss function L by 

relation  

  …………………  (3.28) 

For any decision d D, let Υ (τ, d) denote the risk which results from the original loss function 

L. 

 ………  (3.29) 

And let   ……………  (3.30) 

Then for any two decisions 

 …………….. (3.31) 
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In particular, a decision d* is Bayes w.r.to τ in the original problem with loss function L (θ, 

d) if and only if d* is a Bayes w.r.to τ in the new problem with loss function .

Now consider 

 We can replace L now by a new loss function  which is defined 

as, 

Then loss function  has the following property 

    …………..  (3.32) 

It has been found convenient in many problems to role with non-negative loss function of this 

type, although the use of such function makes it appear that the statistician must continually 

choose decisions from which he can never realize a positive gain. 

3.4  Generalized Bayes Rules and Extended Bayes Rules 

Definition.3.9: A rule δ is said to be limit of Bayes rules , if for almost all x 

 (In the sense of distribution) for non-randomized decision rules this definition 

becomes  if   for almost all x. 

Definition 3.10: A rule  is said to be generalized Bayes rules if there exist a measure τ on 

Θ (or non-decreasing function on θ if Θ is real), such that 

 takes on a finite minimum value when 

Definition 3.11: A rule  is said to be extended Bayes rules if  is - Bayes for every . 

In other words,  is extended Bayes rules if for every  there exist a prior distribution τ 

such that  is - Bayes w.r.to τ i.e 
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Example 3.8:  let  and let 

  The joint p.d.f of (θ, x) 

Posterior density of θ given x, 

The Bayes rule w.r.to  is posterior mean i.e  

The Bayes risk, 

Thus d(x)=x is not Bayes. 

But 

Theorem 3.1: for any constants a, b >0, let be a decision rule such that  

where  denote the conditional p.d.f of X for
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The value of  may be either  if . Then for any other decision 

function δ we have 

Proof:     let 

Then

  ………………. (3.34) 

(3.34) will be minimum if 

Thus 

Finding a decision function δ which minimize the linear combination 

is equivalent to finding a set  for which the integral 

 is minimized. This integral will be minimized if the set includes every 

point x ε S (sample space) for which the integral is negative and excludes every point x ε S 

for which the integral is positive. 

Remark:  the posterior distribution of   given X=x , denoted as α(x) is given by, 
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Provided limit exists, where 

Posterior risk of 

       Similarly, 

We choose  if (i.e  is Bayes rule) posterior risk of  posterior risk of . i.e 

Thus 

Let    then, 

For testing 

i.e choosing with prob. 0 and with prob.1.

     Or 

For each θ we have a d.f. of r.v. X as F . Let G (θ) is the d.f. of r.v. θ. Then,  

Provided such , exist and also limit exists. If and are 

continuous. 
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       Where 

Since  is assumed to be continuous, then 

Similarly,  

The posterior density of  given x (when observation X=x is taken.) 

This is a continuous version of Bayes theorem. 

3.5      Limit of Bayes Rules 

Limiting Bayes’ Method: Suppose  is not admissible, and without loss of generality we 

may assume σ=1. Then there exists  such that 

R (θ, δ) is a continuous function of θ for every δ, so that there exist 

such that 

  (as in Theorem 4.3) 
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Let   be the average Bayes risk of  with respect to prior distribution  and let 

 be the Bayes risk of the Bayes decision rule with respect to  Thus by exp. 3.11 

for σ=1 

………………  (4.15) 

By Lebesgue dominated convergence theorem, as the integral 

 As T , the integral converges to and the 

R.H.S  thus there exist  such that,  , which contradicts the fact 

that  is the Bayes risk for . 

where

by F C R bound . ………….. (4.16) 

In the present case 

Suppose now δ is any estimator satisfying 

…............ (4.17) 

and hence,   f …………… (4.18) 

We shall then show that (4.18) ⇒  for all θ. i.e δ is unbiased. 

MScSTAT/MASTAT-301(N)/56



1. Since  the function b is bounded. 

2. From the fact that  so that b is non-increasing. 

3. Next, there exists a sequence of  and such that 

    For suppose that were bounded away from 0 as θ ,

 then  cannot be bounded 

as θ , which contradicts 1. 

4. Analogically it is seen that there exist a square and such that 

Thus as with inequality (4.18). Thus 

follows from 2. 

Since 

This proves that  is admissible and minimax. This is unique admissible and minimax 

estimator. Because if δ’ is any other estimator such that  . Then let 

Which contradicts that δ is admissible. Thus δ=δ’ with prob. 1. 

3.6  Self-Assessment Exercise 

1. Clearly differentiate between Bayes and Minimax Principles.

2. Discuss the concepts of Generalized Bayes Rule, Extended Bayes Rule and Limits of

Bayes Rule along with their usefulness.

3.7  Summary 

 This unit explains the concepts of various structures of decision rules and hence 

enables the reader to make use of them in various decision-making situations. Section 3.3 

discusses in detail about the Bayes and Minimax decision policies. Section 3.4, 3.5 and 3.6 
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cover the concepts of Generalized Bayes Rule, Extended Bayes Rule, and Limits of Bayes 

Rule. 
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UNIT-4: BAYESIAN INTERVAL ESTIMATION 

Structure 

4.1     Introduction 

4.2     Objectives 

4.3     Bayesian Interval Estimation 

4.4     Credible Intervals 

4.5     HPD Intervals 

4.6    Comparison with Classic Confidence Intervals 

4.7    Self- Assessment Exercise 

4.8     Summary 

4.9     Further Reading 

4.1    Introduction 

Estimation is the method of drawing conclusions regarding an unknown population 

parameter with the help of a sample from that population. If a single value for unknown 

parameter is provided then we call it point estimate. Unlike point estimates, which are single-

value estimates of an unknown population parameter, interval estimates are likely to contain 

the value of interest to a certain probability i.e. a point estimate, even if it is calculated 

according to the best formula available, needs some extra information before it is safe to 

exploit, so we require an interval which contains the true value of the parameter. Confidence 

intervals are the most well-known of the various forms of statistical intervals. Some more 

related terms to this classical approach are defined in summary section. This is a common 

approach to inference and is used to present a confidence set for parameter under study. The 

Bayesian analogue of a classical confidence set is called a credible set. 

From decision theoretic point of view, the proble of interval estimation can be expressed 

as follows: 

“Suppose that we want to find an interval estimate [c1, c2] of a parameter θ ϵ Θ, where 

the sample values or observations X = (X1, X2, ..., Xn) have a joint density function f (x1, x2, 

..., xn; θ) such that θ ϵ Θ. Clearly, we need to have [c1, c2] ϵ F, the class of all possible 

intervals containing the possible values of parameter of population under study, which is 

assumed here as θ”. 
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This concept in decision theoretic way is explored later in this unit. 

4.2       Objectives 

After studying this unit, you should be able to 

• Concept of Bayesian Interval estimation

• Differentiate between confidence interval and credible interval

• Define the HPD intervals and credible sets.

• Obtain suitable techniques to derive the HPD regions.

• Solve problem of deriving HPD regions.

4.3 Bayesian Interval Estimation 

Here, we will start with exploring the interval estimation problem as a decision 

problem. Suppose that we want to find an interval estimate [d1, d2] of a parameter θ, where 

the sample values X=(X1, X2, ..., X3) have a joint density function f(x1, x2, ..., x3; θ) st θϵΘ. 

Clearly, we must have [d1, d2]ϵ D, the class of all conceivable intervals containing the 

possible values of the unknown parameter θ. 

Obviously, the simple loss function will be given by 

Here, the risk i.e. expected loss can be made zero for all θ if we take the trivial 

decision rule for which interval is decided by infimum of θ and supremum of θ. But this 

interval will be useless. So, we impose the restriction over the length of the interval and shall 

confine our search to the class of decision rules satisfying this restriction strictly. 

In this way we may obtain a desirable decision rule i.e. a family of confidence sets. 

And such a process of obtaining interval estimator based on Bayes rule is called Bayesian 

interval estimation. 

4.4         Credible Intervals 

In Bayesian approach, a credible interval is an interval in the domain of a posterior 

probability distribution, within which the value of the unknown parameter falls with certain 

probability.  
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In choosing a credible set for θ, it is usually described to try to minimize its size. To 

do this one should include in the set only those points with the largest posterior density i.e the 

most likely values of θ. 

Definition: A  credible set for θ is subset of Θ such that, 

Since the posterior distribution is an actual prob. distribution on Θ, one can speak of 

the probability that θ is C. this is in contrast to classical confidence procedures, which can 

only be interpreted in term of coverage probability that is the probability that the random 

variable X will be such the confidence set C(X) contains θ. 

  In choosing a credible set for θ, it is usually describe to try to minimize its size. To 

do this one should include in the set only those points with the largest posterior density i.e the 

most likely values of θ. 

Definition: The  HPD credible set (HPD region) for θ is the subset C of Θ of 

the form 

 Is the largest constant such that, 

4.5         HPD Intervals 

Example: Let ( ) be a random sample from N ( ). Let the prior p.d.f of θ be N 

( ). Find the HDD regions for θ. 
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Solution:

Let 
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4.6 Comparison with Classic Confidence Interval 

In classical approach we consider that a parameter has one particular true value, and 

conduct an experiment whose resulting conclusion, irrespective of the true value of the 

parameter, will be correct with at least some minimum probability; while in Bayesian 

approach we say that the parameter's value is fixed but has been chosen from some 

probability distribution, called the prior probability distribution. This "prior" might be known 

or it might be an assumption drawn out of experience of the experimenter or otherwise. 

Clubbing this prior with the observed information Bayesians obtain the "posterior." Bayesian 

approaches can summarize their uncertainty by giving a range of values on the posterior 

probability distribution that includes 95% of the probability and this is called a "95% 

credibility interval.  

Suppose that we want to find an interval estimate [c1, c2] of a parameter θ ϵ Θ, where 

the sample values or observations X = (X1, X2, ..., Xn) have a joint density function f (x1, x2, 

..., xn; θ) such that θ ϵ Θ. Clearly, we need to have [c1, c2] ϵ F, the class of all possible 

intervals containing the possible values of parameter of population under study, which is 

assumed here as θ.  
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In decision theoretic context, for some decision function is now δ (X) = [δ1 (X), δ2 

(X)], where, 

PθϵΘ [δ1 (X) ≤ θ ≤ δ2 (X)] ≥ (1- α) 

Here, (1- α) is called the size of confidence interval, which refers to the confidence 

coefficient of the respective confidence interval. 

Now, consider a loss function, say, 

L[δ(X), θ] = 

Then, the corresponding risk associated with this decision i.e. of δ (X), for a particular 

value of parameter θ is: 

r[ δ(X)│θ ϵ Θ] = E X│θ L [δ(X), θ] 

= 1- PθϵΘ [δ1 (X) ≤ θ ≤ δ2 (X)] 

Bayesian confidence interval, on the same lines can be defined as follows: 

Let ξ (θ) be a prior probability distribution of parameter θ, which is a random variable in 

Bayesian context.   

Then, the posterior risk associated with decision rule δ (X); X being the given 

observations is given by: 

r*[ d(X)] = 1- PθϵΘ│x [δ1 (X) ≤ θ ≤ δ2 (X)] 

   =  ≤ α 

here,  is the posterior distribution of θ given observations X = (X1, X2, ..., Xn). 

Thus, the Bayesian confidence interval of θ is [δ1 (X), δ2 (X)], where 

PθϵΘ│x [δ1 (X) ≤ θ ≤ δ2 (X)] ≥ (1- α). 

Clearly, δ1 (X) and δ2 (X) are called respectively, the lower and upper limits of this 

confidence interval and the difference of these limits is termed as the length of respective 

confidence interval [δ1 (X), δ2 (X)]. 

Obviously, an optimum decision rule would be the one that will provide the minimum 

length of this confidence interval i.e. [δ2 (X) - δ1 (X)], with respect to the following constraint 

on the confidence coefficient: 

PθϵΘ│x [δ1 (X) ≤ θ ≤ δ2 (X)] ≥ (1- α) 
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Example: Suppose we are interested in confidence intervals of a particular length, say, l. 

Here a decision rule is δ (X) = [δ1 (X), δ2 (X)], where 

[δ2 (X) - δ1 (X)] = l for all X. 

Recall the above-mentioned loss function i.e. 

L[δ(X), θ] = 

And the respective Bayes posterior risk is given by 

r*[ d(X)] = 1- PθϵΘ│x [δ1 (X) ≤ θ ≤ δ2 (X)] 

   =  ≤ α 

Therefore, the Bayes confidence interval is given by δ (X) = [δ1 (X), δ2 (X)], where 

δ1(X) and δ2(X) are such that 

for all other confidence intervals [ ] of same length i.e. l. 

4.7 Self-Assessment Exercises 

1. Clearly differentiate between the Bayesian and classical interval estimation.

2. Discuss the concept of HPD intervals and its importance.

3. Let (X1, X2, ..., Xn) be a random sample from Poisson (λ) population such that parameter λ

is a random variate following Gamma distribution Gam (α, β). Find a Bayesian confidence 

interval for parameter λ. 

4. Let (X1, X2, ..., Xn) be a random sample from N (λ, 1) population such that parameter λ is a

random variate following Uniform distribution Unit f (-1, 1). Find an optimum confidence 

interval for parameter λ and compare it with the respective Bayesian confidence interval. 
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5. Define the concept of Bayesian Confidence interval as a problem of decision theoretic

problem. 

4.8 Summary 

This unit aims in section 4.3, 4.4 and 4.5 at enabling the reader with the concept of 

interval estimation and to obtain the interval estimates from Bayesian point of view. And in 

section 4.6, the reader learns the difference between the classical and Bayesian approaches of 

interval estimations. 

Some basic terms are defined as follows: 

Parameter is the characteristic of the population. 

Confidence Interval (CI) is an interval which is expected to typically contain 

the parameter being estimated. 

Confidence band is used in statistical analysis to represent the uncertainty in an estimate of a 

curve or function. 

Confidence region is a higher dimensional generalization of a confidence interval. 

Credence or degree of belief is a statistical term that expresses how much a person believes 

that a proposition is true. 

Credible interval a Bayesian alternative for interval estimation 

Margin of error is a statistic expressing the amount of random sampling error in the results 

of a survey and is the CI halfwidth. 

p-value is the observed level of significance and hence is a function of the observed sample 

results 

Prediction interval is an estimate of an interval in which a future observation will fall, with 

a certain probability, given what has already been observed. 

Robust confidence interval is a robust modification of confidence intervals, meaning that 

one modifies the non-robust calculations of the confidence interval so that they are not badly 

affected by outlying or aberrant observations in a data-set. 
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Now, we will have a quick look at some of the most desired properties of intervals, 

which are as follows: 

When applying standard statistical procedures, there will often be standard ways of 

constructing confidence intervals. These will have been devised so as to meet certain 

desirable properties, which will hold given that the assumptions on which the procedure relies 

are true. These desirable properties may be described as: validity, optimality, and invariance. 

Of the three, "validity" is most important, followed closely by "optimality". 

"Invariance" may be considered as a property of the method of derivation of a confidence 

interval, rather than of the rule for constructing the interval. In non-standard applications, 

these same desirable properties would be sought: 

Validity 

This means that the nominal coverage probability (confidence level) of the confidence 

interval should hold, either exactly or to a good approximation. 

Optimality 

This means that the rule for constructing the confidence interval should make as much 

use of the information in the data-set as possible. 

One way of assessing optimality is by the width of the interval so that a rule for 

constructing a confidence interval is judged better than another if it leads to intervals whose 

widths are typically shorter. 

Invariance 

In many applications, the quantity being estimated might not be tightly defined as 

such. 

For example, a survey might result in an estimate of the median income in a 

population, but it might equally be considered as providing an estimate of the logarithm of 

the median income, given that this is a common scale for presenting graphical results. It 

would be desirable that the method used for constructing a confidence interval for the median 

income would give equivalent results when applied to constructing a confidence interval for 

the logarithm of the median income: Specifically, the values at the ends of the latter interval 

would be the logarithms of the values at the ends of former interval. 

Robustness 
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In statistics, robust measures or methods are the methods that quantify the statistical 

dispersion in a sample of numerical data while resisting outliers. The most common 

such robust statistics are the interquartile range (IQR) and the median absolute

deviation (MAD). These are contrasted with conventional or non-robust measures of scale, 

such as sample standard deviation, which are greatly influenced by outliers. 

These robust statistics are particularly used as estimators of a scale parameter, and 

have the advantages of both robustness and superior efficiency on contaminated data, at the 

cost of inferior efficiency on clean data from distributions such as the normal distribution. To 

illustrate robustness, the standard deviation can be made arbitrarily large by increasing 

exactly one observation (it has a breakdown point of 0, as it can be contaminated by a single 

point), a defect that is not shared by robust statistics. 

A Robust Confidence Interval is a robust modification of confidence intervals, 

meaning that one modifies the non-robust calculations of the confidence interval so that they 

are not badly affected by outlying or aberrant observations in a data-set. 

In the process of weighing 1000 objects, under practical conditions, it is easy to 

believe that the operator might make a mistake in procedure and so report an incorrect mass 

(thereby making one type of systematic error). Suppose there were 100 objects and the 

operator weighed them all, one at a time, and repeated the whole process ten times. Then the 

operator can calculate a sample standard deviation for each object, and look for outliers. Any 

object with an unusually large standard deviation probably has an outlier in its data. These 

can be removed by various non-parametric techniques. If the operator repeated the process 

only three times, simply taking the median of the three measurements and using σ would give 

a confidence interval. The 200 extra weighing served only to detect and correct for operator 

error and did nothing to improve the confidence interval. With more repetitions, one could 

use a truncated mean, discarding the largest and smallest values and averaging the rest. 

A bootstrap calculation could be used to determine a confidence interval narrower than that 

calculated from σ, and so obtain some benefit from a large amount of extra work. 

These procedures are robust against procedural errors which are not modeled by the 

assumption that the balance has a fixed known standard deviation σ. In practical applications 

where the occasional operator error can occur, or the balance can malfunction, the 
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assumptions behind simple statistical calculations cannot be taken for granted. Before trusting 

the results of 100 objects weighed just three times each to have confidence intervals 

calculated from σ, it is necessary to test for and remove a reasonable number of outliers 

(testing the assumption that the operator is careful and correcting for the fact that he is not 

perfect), and to test the assumption that the data really have a normal distribution with 

standard deviation σ. 

Various interpretations of a confidence interval can be given (taking the 95% confidence 

interval as an example in the following). 

• The confidence interval can be expressed in terms of a long-run frequency in repeated

samples (or in resampling): "Were this procedure to be repeated on numerous samples, 

the proportion of calculated 95% confidence intervals that encompassed the true value of 

the population parameter would tend toward 95%." 

• The confidence interval can be expressed in terms of probability with respect to a

single theoretical (yet to be realized) sample: "There is a 95% probability that the 95% 

confidence interval calculated from a given future sample will cover the true value of the 

population parameter." This essentially reframes the "repeated samples" interpretation as 

a probability rather than a frequency. 

• The confidence interval can be expressed in terms of statistical significance, e.g.:

"The 95% confidence interval represents values that are not statistically 

significantly different from the point estimate at the .05 level." 

Note that 

• A 95% confidence level does not mean that 95% of the sample data lie within the

confidence interval. 

• A 95% confidence level does not mean that there is a 95% probability of the

parameter estimate from a repeat of the experiment falling within the confidence interval 

computed from a given experiment. 

Further, note that; Confidence intervals and hypothesis tests are both inferential statistical 

methods that use a sample to approximate a population distribution. They are closely related 

and share some key characteristics: 

• Underlying Methodology: Both use the same underlying methodology.
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• Statistical Significance: They always agree on statistical significance.

• Confidence Level and Significance Level: The relationship between the two is that

the confidence level is equal to 1 minus the significance level (alpha). 

Thus, an interval estimate can be looked at as an implicit test of a null hypothesis. If 

the hypothesized value is within the obtained interval the null hypothesis is accepted (i.e., no 

significant difference). If the hypothesized value is outside the obtained interval, the null 

hypothesis of no difference is rejected. 

Clearly, a confidence interval can be defined as the range of parameters at which the 

true parameter can be found at a confidence level. For instance, a 95% confidence interval 

constitutes the set of parameter values where the null hypothesis cannot be rejected when 

using a test of size 5%. 

4.9 Further Readings 

• Fisher, R.A. (1956) Statistical Methods and Scientific Inference. Oliver and Boyd,

Edinburgh.

• Gemerman, D and Lopes, H. F. (2006) Markov Chain Monte Carlo: Stochastic

Simulation for Bayesian Inference, Chapman Hall.

• Hacking, I. (1965) Logic of Statistical Inference. Cambridge University Press,

Cambridge.

• Illowsky, Barbara. Introductory statistics. Dean, Susan L., 1945-, Illowsky, Barbara.,

OpenStax College. Houston, Texas.

• Kahneman, D.; Tversky, A. (1982). Judgement under Uncertainty: Heuristics and

Biases. Cambridge University Press.

• Kalos, Malvin H.; Whitlock, Paula A. (2008). Monte Carlo Methods. Wiley-VCH.

• Keeping, E.S. (1962) Introduction to Statistical Inference. D. Van Nostrand, Princeton,

NJ.

• Lee, P.M. (1997) Bayesian Statistics: An Introduction, Arnold.
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• Leonard, T. and Hsu, J.S.J. (1999) Bayesian Methods, Cambridge University Press.

• Lindley, D.V. (1965). Introduction to probability and statistical inference from Bayesian

view point, Cambridge university press.

• Mazhdrakov, M.; Benov, D.; Valkanov, N. (2018). The Monte Carlo Method.

Engineering Applications. ACMO Academic Press.

• Robert, C.P. (1994). The Bayesian Choice: A Decision Theoretic Motivation, Springer.

• Robert, C.P. and Casella, G. (2004) Monte Carlo Statistical Methods, Springer Verlag.

• Ross, S.M. (2023) Simulation, Elsevier Inc.

• Rubinstein, R. Y.; Kroese, D. P. (2007). Simulation and the Monte Carlo

Method (2nd ed.). New York: John Wiley & Sons.
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Block & Units Introduction 

The present block of this SLM has four units. 

The Block - 2 – Optimality of Decision Rules is the second block with four units, 

which impasses about the different rules. 

In Unit – 5 – Admissibility and Completeness is discussed with respect to Bayes rule 

and prior distribution minimal complete class. 

In Unit – 6 – Minimaxity and Multiple decision Problem has been introduced, along 

with complete class theorem and admissibility rules. Equalizer rules have been discussed and 

maximin and minimax strategies have been explained. 

Unit – 7 – Bayesian Decision Theory dealt with theorem on optimal Bayes decision 

function, Relationship of Bayes and minimax decision rules and least favorable distributions. 

Unit – 8 – Bayesian Inference dealt with Bayesian sufficiency, On informative 

Priors, Improper prior densities 

At the end of every block/unit the summary, self-assessment questions and further 

readings are given.  
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UNIT-5: ADMISSIBILITY AND COMPLETENESS 

Structure 
5.1    Introduction 

5.2     Objectives 

5.3      Admissibility 

5.4      Completeness 

5.5      Minimal Complete Class 

5.6     Separating and Supporting Hyperplane Theorems 

5.7     Self-Assessment Exercises 

5.8    Summary 

5.9     Further Readings 

5.1    Introduction 

Admissibility refers to a set of rules for making a decision such that no other rule 

exists which is always better than the defined rules. 

5.2     Objectives 

After studying this unit, you should be able to 

• Define admissibility of a set of rules.

• Check for admissibility with respect to Bayes’ rules.

• Define completeness and minimal complete class.

5.3     Admissibility 

Theorem 4.2: Assume that and a Bayes rule w.r.to the prior 

distribution  exists. If  for    j=1,2,…,k, then  is admissible. 

Proof: Suppose that  is inadmissible, then there exists a 
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which is better than . That is, 

Because, all  are positive 

The strict inequality showing that is not Bayes w.r.to . This is a 

contradiction. 

The following counter example shows that is not necessarily admissible if the 

hypothesis  for    j=1,2,…,k is violated. 

Example 4.1:  let  as follows: 

Bayes rule w.r.to (1,0) 

Let the prior distribution, 
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S 

1 2

Thus, any decision rule that minimizes  and that achieved the minimum 

value =1=  will be a Bayes rule w.r.to prior (1, 0). 

Thus, the rule is Bayes w.r.to (1, 0). that and are 

Bayes rules w.r.to (1,0). But  is not admissible since 

and . 

Definition 4.5: A point  in (one dimensional Euclidian space) is said to be in support of 

a distribution τ on the real line if for ε the interval has positive 

probability, 

Theorem 4.3: let  and assume that  is a continuous function of θ for all . If 

 is a Bayes rule w.r.to a probability distribution τ on the real line, for which  is 

finite and if the support of τ is the whole real line, then  is admissible. 

Proof: As before, assume that  is not admissible. Then, there exists a for which 

. 

. 

Since  is continuous in θ for all δ. Let 

…………………. (4.1) 
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For     

Whenever

Or ……………. (4.2) 

Or        

Thus,     whenever 

Letting T denote the r.v. whose d.f is τ 

That is  be not Bayes rule, which is a contradiction. 
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Definition 4.6: A set, S, k- dimensional Euclidian space,  , is said to be bounded from

below if there exists a finite number M, such that for every 

 ……….. (4.3) 

Thus, a set S is bounded from below if for each fixed j,1≤j≤k the coordinate  is bounded 

below as y ranges through S.  

Definition 4.7: Let  be a point in  The lower quant ant at , denoted by  is defined as 

the set 

………………. (4.4) 

is a set of risk points as good as  and  is the set of risk points better than . 

is the smallest closed set containing S. 

Definition 4.8: A point is said to be a lower boundary point of a convex set S⊂

if . The set of lower boundary points of a convex set is defined by λ(S). 

Definition 4.9: A convex set S⊂  is said to be closed from below if λ(S) ⊂S. 

Theorem 4.4: Suppose that  and the risk set S is bounded from below and 

closed from below. For every prior distribution for which for all 

j=1,…,k, a Bayes rule w.r.t.  exists. 

Proof: Let  be a distribution over Θ for which  for all j and let B denote 

the set of all numbers of the form  , where 

Because S is bounded from below, so is B; let  be the g. l. b. of B. in a sequence of 

points   for which 
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Each  implies that each sequence  is bounded above. Thus, there exists a 

finite limit point  of the sequence and . We now show that λ(S). 

Since is a limit point of points of S, and { . Furthermore 

 for if y’ is any point of  other than  itself,  so that if  

 There would exist point y of S for which . This contradicts the assumption 

that  is the lower bound of B. Thus 

implying that λ(S). 

Theorem 4.5: Suppose that  and the risk set S is bounded from below and 

closed from below, the class of decision rules, 

…………  (4.5)  

Then, a minimal complete class. 

Proof: First, we shall show that  is a complete class. Let δ be any rule not in  and let, 

is non empty, convex, 

[Since closer of convex set is convex and the intersection of two convex sets is convex.] and 

bounded below. Thus  is non empty (by theorem 4.4). Let  ; then 

further y ε because . Finally  because 

Thus, because S is closed from below, there exists a  for which 

and which is better than δ since, 

 This proves  is complete. 
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Since every rule in  is admissible. Hence no proper subset of should be complete. 

Because, every complete class must contain all admissible rules, thus is minimal 

complete. 

5.4 Completeness 

After the all discussion, now we are ready to learn the following definitions and 

theorems: 

Definition: A class C of decision rules is said to be complete if, for any decision rule δ not in 

C, there is a decision rule δ' in C, which does not have less risk than δ. 

Definition: A class C of decision rules is said to be minimal complete if C is complete and if 

no proper subset of C is complete. 

5.4        Minimal Complete Class 

Definition: A class C of decision rules is said to be complete if, for any decision rule δ not in 

C, there is a decision rule δ' in C, which does not have less risk than δ. 

Definition: A class C of decision rules is said to be minimal complete if C is complete and if 

no proper subset of C is complete. 

5.6 Separating and Supporting Hyper Plane Theorems 

Lemma 4.2: If S is closed convex set of  and 0∉S, then there exists a vector P∈  such 

that  for all  ε S. 

Proof: For every real number  let  is the sphere of radius α centered at origin. 

Let A be the set of all real  for which   intersects S, 

Because the Lemma is trivial if S is empty, we consider that S is non 

empty. Hence A is non empty. Let a = g l b of A.  a is finite because A is non empty and 

positive because S is closed and0∉S. 
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1. is non empty. As α  from above  is a decreasing intersection of non-

empty compact sets whose limit  is therefore non empty. 

2. For all Let f(β) denote the square of the distance from the 

origin to the part  for a fixed 

………………… (4.6) 

(4.6)  where, 

 …………………… (4.7) 

Because, , it is clear that  further 

since ∈ S ,where  from the convexity of S. it is clear that  cannot 

be  without contradicting the fact that no point of S is closer to the origin than P. 

 equivalently, 

 # 

Lemma 4.3: If S is convex subset of , A is open subset of  and 

Theorem 4.6: (Supporting Hyper Plane Theorem): If S is closed convex sub set of 

 and  is not an interior point of S (i.e. either

or  is a boundary point of S), then there exists a vector , P

Such that  for all x ε S. 

Proof: Because  is not an interior point of S,  is not an interior point of  by Lemma (4.3). 

Hence there is a sequence  for which . We shall translate the origin to   

successively and applying Lemma (4.2). Let 
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  Then  closed convex set, and  . From Lemma (4.2) there exists a vector 

 such that  for all  or

 . Let  . Then  because unit sphere in  is compact, there 

exists a limit point P of a subsequence . 

Hence , but for all x ε S 

 as was to be proved. 

Theorem 4.7: (Separating Hyper Plane Theorem):  Let and  be disjoint convex 

subsets of  then there exists a vector  such that  for all x ε  and y ε

Proof: Let 

1. S is convex. Let elements of S and let 0 . We are to show 

that . Let  such that 

  Then, 

2. For if , there could be point  such that 

(x-y) = 0 ⇒ x = y contradicts that  and  are disjoint. 

3. From Theorem (4.6) there exists a vector  such that for all Z ε . 

Thus  completing the proof. 

Lemma 4.4: If S is a convex sub set of  and Z is a k-dimensional random vector for which 

E (Z) exists and is finite, then EZ∈S. 

Proof:  Let Y=Z-EZ and let S’ be the translation of S by E Z, i.e 

. Thus S’ is convex and EY=0. We will 
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show that . We prove by induction method. The Lemma is trivially true for k=0 in 

which case Y is degenerate at zero. Now suppose the Lemma is true for k-1. We are to show 

that Lemma is true for k

Suppose  then by Theorem (4.6) there exists a vector  such that 

for all Y ε S’. Let U= . The r.v. U has expectation 0, and 

then with probability one Y lies in the hyper plane . Let 

Then S’’ is convex subset of (k-1) dimensional Euclidian 

space for which 

. Since which is contradiction of the 

assumption 0  S’. # 

Corollary: S is a convex hull of 

Lemma 4.5: (Jensen’s Inequality): Let f(x) be a convex real-valued function defined on 

a non-empty convex subset of  and let Z be a k-dimensional random-vector with finite 

expectation E Z for which 

Then E(Z)∈S and  …………. (4.8) 

Proof: for k=1, the point is on the boundary of the convex set . 

Hence there exists a supporting hyper plane (straight line) at 

 Call this 

Because  is on this line. It may be written as, 
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  And because this line is never above the curve y=f(x) we have,  

f(x) 

[EZ, f (EZ)] 

EZ 

Thus, theorem is true for k=1. Suppose theorem is true for k-1, we prove for k

Since EZ ε S, the point  is boundary point of the convex set  defined 

(4.9) hence by supporting hyper plane theorem, there exists -dimensional vector 

 such that, 

 . (4.10) 

We note that;   cannot be negative, for letting  the inequality (4.10) will not be 

satisfied. Replacing 

 and Z with random vector Z. 

 ……………. (4.11) 

If  taking the expectation. 

If  (4.11) ⇒ the random vector 

is non-negative and EU=0⇒P[U=0] = 1 that gives all its 

mass to the (k-1) dimensional convex set  by induction 

method, theorem is proved. 
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Theorem 4.8: Let â be a convex subset of  and let L (θ, a) be a convex function of a ε â for 

all θ ε Θ there exist a ε  and a c such that , then for every P ε â*, there 

exist  such that  for all θ ε Θ. 

Proof: P ε â* and Z be a random vector with values in â when distribution is given by P. then 

EZ infinite since, 

 By definition of 

Remark: If the loss is convex, we can always concern with non-randomized decision rules. 

The non-randomized decision rules form a complete class. 

Example 4.2:   â is convex set. 

is convex loss function. 

X has b= (2, θ) 

) 
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Let  be a randomized decision rule choosing with prob. and 

with prob. 

Obvious, 

as the maximum value of . Thus, the inequality is always true. 

5.7 Self-Assessment Exercises 

1. If g is a continuous and concave function on the interval I and X is a r.v. whose values are

in I, with certainty, then E[g(X)] ≤ g[E(X)], provided expectations exist. 

2. State and prove supporting and separating hyper plane theorems along with their uses.

5.8 Summary 

Section 5.3 discusses the about the concept of admissibility. Concepts of 

completeness and minimal complete class and related results have been covered in sections 

5.4 and 5.5. Separating and Supporting Hyperplane Theorems and some others important 

results and their derivations are given in section 5.6. 

5.9 Further Readings 

• Berger, J.O. (1993) Statistical Decision Theory and Bayesian Analysis, Springer Verlag.

• Bernando, J.M. and Smith, A.F.M. (1994). Bayesian Theory, John Wiley and Sons.

• Luenberger, David G. (1969). Optimization by Vector Space Methods. New York: John

Wiley & Sons. p. 133.
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UNIT-6:  MINIMAXITY AND MULTIPLE DECISION 

 PROBLEM 

Structure 

6.1         Introduction 

6.2         Objectives 

6.3         Minimax Theorem 

6.4        Complete Class Theorem 

6.5        Equalizer Rules and Examples 

6.6        Multiple decision Problems 

6.7  Continuous form of Bayes Theorem, its Sequential Nature, and Need in 

Decision Making 

6.8      Wolfowitz Generalization of FCR Bound and Sequential Estimation and 

Testing  

6.9    Self-Assessment Exercises 

6.10  Summary 

6.11 Further Readings 

6.1    Introduction 

If for a given decision problem (Θ, D, R) with finite Θ, the risk set S is bounded from 

below and closed from below, then the class of all Bayes rules is complete and admissible 

Bayes rules form a minimal complete class. Minimax theorems state that a wide variety of 

two-person zero-sum games have values and are strictly determined. A multiple decision 

problem is a problem in which only a finite set of actions (more than 2), is available. 

6.2 Objectives 

After studying this unit, you should be able to 

• Define the minimax theorem.
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• State the complete class theorem.

• Define multiple decision problems.

• State the continuous form of Bayes’ theorem.

6.3 Minimax Theorem 

As discussed in earlier sections, now we learn the concept of minimax theorems, 

which state that a wide variety of two-person zero-sum games have values and are strictly 

determined. In particular, if parametric space is finite (and certain technical conditions hold), 

then the game has a value and is strictly determined i.e. these theorem state that the game has 

a value and that minimax rules exist. 

6.4 Complete Class Theorem 

Theorem 4.9: (converse of theorem 4.2): If δ is admissible and Θ is finite, then δ is Bayes 

w.r.to some prior distribution τ. 

Proof: If δ is admissible, then  whereas S⊂ . And x ε 

S. thus, because  -{x} and S are disjoint convex sets, there exists a vector P  such that 

 for all  -{x}, and z ε S. If some coordinate  of vector P were negative then 

by taking y so that  sufficiently negative, we would have . Hence  for all 

j. we may normalize P so that . Because P is now a probability 

Distribution over Θ and  for all Z ε S, δ is a Bayes rule w.r.to P. 

Theorem 4.10:  (Complete Class Theorem): If for a given decision problem (Θ, D, R) 

with finite Θ, the risk set S is bounded from below and closed from below, then the class of 

all Bayes rules is complete and admissible Bayes rules form a minimal complete class. 

Example 4.3:

 (Note that loss function is convex in a, for each θ) 
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1. Represent the class D rules as a subset of the plane.

2. Find the class of all non-randomized rules.

3. Find minimax Bayes rules.

Solution: 

Let with the interpretation that we estimate θ to be x when H is 

observed and y when T is observed. 

    This is a square in the plane (x, y). 

 ……………….. (4.12) 

 …………….. (4.13) 

Let (p) and (1-p) be the probability distribution i.e choosing with prob.

(p) and choosing with prob. (1-p). 
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 ………… (4.14) 

Set of Bayes rules which minimizes (4.14) will be obtained as, 

& 

Then the set of Bayes rules are, 

Now to find minimax Bayes rule, we should have (4.12) = (4.13) for 

Hence (0.52, 0.48) is prior distribution function (0.91, 0.23) is Bayes rule and since 

for this (x, y) risk is constant have (0.91, 0.23) is minimax Bayes rule. 

Admissibility of  for Estimating Normal Mean: 

First Proof: (The Limiting Bayes Method): 
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 Suppose  is not admissible, and without loss of generality we may assume σ =1. 

Then there exists  such that 

R (θ, δ) is a continuous function of θ for every δ, so that there exist 

such that 

  (as in Theorem 4.3) 

Let   be the average Bayes risk of  with respect to prior distribution 

and let  be the Bayes risk of the Bayes decision rule with respect to  Thus by exp. 

3.11 for σ=1 

            ………………  (4.15) 

By Lebesgue dominated convergence theorem, as the integral 

 As T , the integral converges to and the 

R.H.S  thus there exist  such that,  , which contradicts the fact 

that  is the Bayes risk for . 

Second Proof:  (The Information Inequality Method): 

where

by F C R bound. ………….. (4.16) 

In the present case 
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Suppose now δ is any estimator satisfying 

…............ (4.17) 

and hence,   f  …………… (4.18) 

We shall then show that (4.18) ⇒  for all θ. i.e δ is unbiased. 

1. Since  the function b is bounded. 

2. From the fact that  so that b is non-increasing. 

3. Next, there exists a sequence of  and such that 

    For suppose that were bounded away from 0 as θ ,

 then  can not be bounded 

as θ , which contradicts 1. 

4. Analogically it is seen that there exist a square and such that 

Thus as with inequality (4.18). Thus 

follows from 2. 

Since 

This proves that is admissible and minimax. This is unique admissible and minimax 

estimator. Because if δ’ is any other estimator such that . Then let 

Which contradicts that δ is admissible. Thus δ=δ’ with prob. 1. 
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The equalizer rule for exact minimax estimation and then proceeds to minimax 

hypothesis testing (also known as minimax detection). 

The Equalizer Rule: 

Suppose Ө is the parameter space and let Ө*Ө be a specific loss function. The 

risk of an estimator  is defined as  where the expectation is taken over the i.i.d. 

random sample from the underlying distribution parameterized by the true parameter . Let 

be the prior distribution over the parameter space Ө. The Bayes risk of an estimator with 

respect to prior is defined as- 

The posterior risk of an estimator with respect to prior is and data X is defined as- 

The Bayes rule estimator with respect to prior  is the estimator  that minimizes the 

posterior risk  at every X. 

The Equalizer Rule asserts that an estimator is minimax if it is the Bayes rule with 

respect to some prior and achieves the constant risk for all underlying parameter . 

A minimax strategy for player 2 is a strategy that minimizes the 

i.e. the strategy for which  

The R.H.S. is the minimax value of the game and denoted by . 

- A maximin strategy for player 1 is a randomized strategy  that 

maximizes , i.e. the strategy for which 

The R.H.S. is the maximin value of the game and denoted by . 

6.5 Equalizer Rules 
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A strategy  is equalizer for 1 if . A 

strategy  is an equalizer for player 2 if ( . 

Theorem: If both the player 1 and 2 have equalizer strategies, then the game has a value and 

the equalizer strategies are the maximin and the minimax strategies. 

Proof:  If   and are the equalizer strategies then 

, and 

=

Hence . Game has the value 

Example: Binomial Distribution. 

Suppose  Consider the Beta prior 

The posterior distribution of  conditioned on X is then ~

Under the squared error loss function = , the bayes rule is the posterior mean: 

Taking  , we have 

which is a constant function with respect to the underlying parameter . Subsequently, by the 

equalizer rule we claim that the minimax estimator for  is 

= . 
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A multiple decision problem is a problem in which only a finite set of actions (more than 2), 

is available. 

(NOTE: For more details on this section please refer to Unit 1 of Block 1.) 

6.7          Continuous Form of Bayes Theorem, Its Sequential Nature, Its 

 Need in Decision Making 

Consider a decision problem specified a parameter Θ whose value are in Θ (parameter 

space), a decision space D, and loss function L. we shall suppose that before the statistician 

chooses the decision in D, he will be permitted to observe sequentially the values of a 

sequence of r.v’s we shall suppose also that for any given value Θ=θ, these 

observations are independent and identically distributed. It is then said that the observations 

are a sequential random sample. We shall suppose that the conditional p.d.f. of each 

observation  when Θ=θ is  and that the cost of observing the values , in turn is C. 

A sequential decision function or sequential decision procedure has two components. 

One component may be called as sampling plan or stopping rule. The statistician first 

specifies whether a decision should choose without any observations or whether at least one 

observation should be taken. If at least one observation is to be taken, the statistician 

specifies, for every possible set of observed values 

whether sampling should stop and a decision in D chosen without further observations 

or whether another value  should be observed. 

The second component of sequential decision procedure may be called a decision

rule. If no observations are to be taken, the statistician specifies a decision that is to be 

chosen. If at least one observation is to be taken, the statistician specifies the decision 

that is to be chosen for each possible set of observed values 

 after which the sampling might be terminated. 

Let S denote the sample space of any particular observation . For n=1, 2… We shall 

let  (with n factors) be the sample space of the n observations 

6.6 Multiple Decision Problems 
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and we shall let  be the sample space of the infinite sequence of observations 

A sampling plan in which at least one observation is to be taken can be characterized 

by a sequence of subsets  (n=1, 2…) which have the following interpretations:  

Sampling is terminated after the values  have been observed if 

. Another value  is observed if  If there is some value r 

for which or more generally if for n=1, 2… r] =0 then the 

sampling must stop after at most r observations have been taken. The specification of the sets 

 for any value of n such that  then become irrelevant never the less, it is convenient 

to assume that the sets  will be defined for all values of n. 

Each stopping sets  can be regarded not only as a subset of  but also as the subset 

of for any value of r and as a subset of . When is regarded as a subset 

of  ,  is a cylinder set. In other words if  and if  is any  

other set in  such that,  , i=1,2……..n then  regarded as of the values 

of the final r-n components. 

Suppose that at least one observation is to be taken with a given sampling plan, and 

let N denote the random total number of observations which will be taken before sampling is 

terminated. We shall [N=n] denote the set of points  for which [N=n]. in other 

words, suppose that the value  are observed in sequence, then sampling 

will be terminated after the value has been observed (and not before) if and only if 

 hence [N=1] =  and for 

Similarly, we shall let denote the subset of for which 

the events and [N=n] involve only the observations . Hence 

these events are subset of . Also, they can be regarded as subsets of  furthermore, 

events involve the observations , and it can be regarded as 

subsets of  for any value of r,
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For any prior p.d.f ξ of θ, we shall let denote the marginal p.d.f of the 

observations 

 ……….. (6.1) 

Furthermore, we shall let denote the marginal joint d.f of . 

Hence, for any event , 

  ……………  (6.2) 

We can write the following equation: 

= 

…………… (6.3) 

The decision rule of a sequential decision procedure is characterized by a decision 

rule and the sequence of functions  with the following property: for any 

point , the function  satisfies a decision . If the sampling 

plan specifies that an immediate decision in D is to be selected without any sampling then the 

decision is chosen. If on the other hand, the sampling plan satisfies that at least one 

observation is to be taken and if the observed value satisfies the condition 

then sampling is terminated and the decision is 

chosen. The value of the function  need only be specified on the subset [N=n] ⊂ . A 

procedure involving a fixed number of observations n can always be obtained by adopting a 

sampling plan in which [N=j] =Φ, the empty set for j=1… n-1 and in which [N=n] = . In 

general we can also consider sampling plans for which the probability is 1 that sampling will 

eventually be terminated. In other words, we shall assume that, 

 ……………… (6.4) 

[It need not be assumed that there is some finite upper bound n such that  ] 
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Risk of a Sequential Decision Procedure 

The total risk of a sequential decision procedure which at least one 

observation is to be taken is, 

…………………. (6.5) 

Here ξ is posterior p.d.f of Θ after the values  have been 

observed. Alternatively, 

In the development of theory of sequential statistical decision problem, we shall have 

little need to refer to any specified value ξ  of the posterior p.d.f of Θ. 

However, we shall often have to refer to the entire posterior distribution as represented by its 

generalized p.d.f. therefore we shall denote the p.d.f simply by . 

. Where  is

For every p.d.f of θ. Let  be defined as follows: 

……………… (6.7) 

In other words,  is the minimum risk from an immediate decision without any 

further observations when the p.d.f of θ is . 

A Bayes sequential decision procedure or an optimal sequential decision procedure is 

a procedure δ for which the risk ρ (ξ, δ) is minimized. Wherever a decision in D is chosen 
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after sampling is terminated, that decision rule Bayes decision against the posterior 

distribution of Θ. For any such procedure δ which specifies that at least one observation is to 

be taken, we now have 

 …………. (6.8) 

Further, more for the procedure  which specifies that can immediate decision in D 

should be chosen without any observations we must have,   

  ………………… (6.9) 

Example 6.1:   

Suppose X is discrete r.v.’s for which 

              0 1 

Suppose the cost per observation is C, let the prior distribution of θ is 

Solution:

Similarly,  
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Thus, after an observation has been taken, either the value of θ becomes known or else the 

distribution of θ remains good as it was before the observation was taken. 

Without any observation is taken. 

If the Bayes decision is chosen when  , the expected loss is bξ. 

If one observation is taken then the expected loss will be 

Now, 

Similarly,

The expected loss  when the Bayes decision is chosen after n 

observations  have been taken, 

 Total risk for the optimal procedure when exactly n observations taken, 

assume ρ (1) ρ (0)  
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  ………………… (6.10) 

and  …………………… (6.11) 

6.8    Wolfowitz Generalization of FCR Bound and Sequential Estimation 

  and Testing: 

A sequential provides a set of stopping rules  which are 

designate the Borel σ-field on n-dimensional Euclidian space; assigning to 

 an integral value so that if  we terminate sampling after the 

 observation otherwise, is observed. Consider the σ-field   generated by 

 a stopping rule R for a sequential procedure can be conveniently described 

by a sequence of sets  where, for each n=1,2,….. Sampling is 

continued as by as consecutive vectors  , n=1,2,….. do not enter one of the sets 

. In another words, the sample size N (a random variable) is N= least integral n, n  such 

that ε

Define sets,

The sets  is the set of all sample points which leads to stopping at N=n. The estimation rule 

for estimating a function g ( ) is given by a sequence of functions  such that 

 for all n=1,2… and if N=n then the estimate of g is . 

Lemma 9.1: [ ]: let be a sequence of i.i.d random 

variables, distributed with some distribution, satisfying E . For any sequential rule 

yielding EN

 …………………. (9.2) 

Proof: let ( ) be the sequence of stopping regions. Then, 
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 …………. (9.2) 

Now, 

Since  is measure and , therefore  is independent of  thus 

 ………………. (9.3) 

Now from (9.1) 

 …. (9.4) 

(This is permitted as E ) 

      From (9.3) 

# 

Alternative Proof: Define a r.v.  such that 
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0 

Clearly,  depends only on . Also 

Hence (9.5) 

Now, 

Therefore, exists and we may change the order of operation of expectation and 

summation sign in (9.5). Hence, 

Note: Lemma 9.1 holds if only we assume  and the assumption 

that 

Lemma 9.2: Let  be a sequence of i.i.d random variables, having a common d.f. 

F(x) with mean zero and variance 
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for any sequential stopping rule with E(N)  , if 

  ………… (9.5) 

Proof: As before, 

 By Lemma 9.1 

Now 

But 

 for j i,   (i=1, 2, 3…) as 

 is independent 

The rearrangement is guaranteed by condition 

Then # 

Alternative Proof: Let  be defined as in Alternative proof of Lemma 9.1. Then 

MScSTAT/MASTAT-301(N)/105



=    (9.6) 

= . 

Hence the order of operation of summation and expectation in (9.6) can be interchanged. 

Now 

Again 

= 

=2

as . # 

Generalization of FCR bound for Sequential estimation 

Theorem 9.1:  [ ]: Let  be a sequence of i.i.d random variables, 

whose common density with respect to measure μ belong to a family 

 on which the following regularity conditions are satisfied: 

1. Θ contains an interval in a Euclidian k-space.

2. is differentiable w.r.to θ on Θ.
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3. . 

4. . 

5.

Let ( ) be the sequence of stopping regions  associated with a given 

sequential procedure. Let be an estimable and differential function on Θ. Let 

 be unbiased estimator of  satisfying the following conditions: 

6.

7.  converges uniformly on Θ, where 

………………. (9.6) 

Proof: Let N be the sample size associated with the given sequential procedure. Let 

These are i.i.d r.v’s and 1-4 guarantee that E S  and   by 

condition 4 and the assumption 

 ……… (9.7) 

Furthermore, according to condition 5 
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 ……………. (9.8) 

 ……… (9.8) 

Consider the expectation, 

Where is unbiased estimator of . According to (9.7) and by Schwartz 

inequality we have 

               For all θ ε Θ ……………… (9.10) 

The quantity  is the variance of under the 

sequential procedure. Further 6 & 7 allow the differentiation under the integral sign in, 

 ……………………… (9.11) 

From (9.9) (9.10) & (9.11) 
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# 

Optimality Criterion of Sequential Procedure: 

1. Subject to the condition  (m is a fixed integral bound) for all θ, minimize 

the variance of the best unbiased estimator that is,  uniformly in θ (if such 

an estimator exist.) 

2. Subject to the condition 

minimize expected 

sample size 

3. Minimizes the expected cost of sampling plus expected loss, that is,

C

Generally, there is no sequential estimator that can satisfy 3 uniformly in θ. In case 2, 

De  have shown that a fixed sample size procedure in the 

binomial case does not minimize w.r.to all sequential procedure uniformly in θ, 

0  subject to the condition that . 

Sequential Estimation of the Mean of Normal Population 

           Let  be i.i.d r.v’s with mean μ and variance , both unknown as an estimate 

of μ, we choose , the sample mean. The problem now is to choose n. Let us assume that the 

loss incurred is A , where A is known constant and let each observation cost one 

unit. Then we wish to choose n to minimize, 

 ……………………. (9.12) 

We have,   

So that  
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 ……………….. (9.13) 

Treating as continuous function n we have for minimax, 

 …………………. (9.14) 

At the value n that minimizes (9.13), for this value of n 

 ……….. (9.15) 

So that the loss due to the error of estimation is thrice the size of the sample, that is 

thrice the cost of sampling. Of course, this presupposes the knowledge of σ. If we do not 

know σ, we cannot compute 

When σ is not known, we have the following sequential sampling procedure R: 

 ……………. (9.16) 

Where,  

We may write this inequality, 

 …… (9.17) 

Lemma 9.3: Rule R terminates with probability 1. 

Proof: It is sufficient to show that, 
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Or 

Now        

 …………….(9.18) 

Since, 

As          therefore (9.18) tends to zero as n . 

Lemma 9.4: For any fixed n,   is independent of  and hence, 

  ………. (9.19) 

Proof:  Define 

Then r.v’s and independent i=1,2…..

Let us write, 
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It follows that is independent of for i=2,…,n this is the same as saying is 

independent of 

Let us now compute the average loss for R. 
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Proposition: For large 

Proof: We have,  for 

 Where, # 

Theorem 9.2: Let  be i.i.d  r.v’s such that  set 

and for two constants  define the random quantity 

N as the smallest n for which 

thus there exist  such that, 

  ………………. (9.20) 

Proof: The assumption implies that . Let us suppose that 

then there exists such that  in fact if 

then in particular but 

 and we have  which is a contradiction. 

Thus for  ……… (9.21) 

With  and ε, there exist a positive integer m such that, 
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 ……………….. (9.22) 

For such m we have, 

…. (9.23) 

Clearly, 

Now we assert that,   

 ………. (9.24) 

This is because, if for some we suppose that 

this inequality together 

would imply  which is a contradiction to the first part of (9.24). 
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Thus, 

# 

Theorem 9.3: Let  be the m.g.f of Z, and let it be assumed to exist for all t, 

where  then a necessary and sufficient condition that there exist a ) 

such that  is that  and that Z takes on both positive and negative values 

with positive probability. 

Proof: To prove the sufficiency, we observe that 

Unless Z=0 [since  exists for all t, it is differentiable any 

number of times]. Thus is convex function of t. Now by assumption there exists a value 

Z’  such that  therefore  implies 

 ………….. (9.25) 

and similar argument shows that 

The assume a minimum value at the unique point for which 

so that unless 

Since wherever  

 It must follow that there exist a  such that 
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To prove the condition is necessary, suppose that and 

let . Thus  let  for any we can 

find positive number C such that 

 Then, 

   ……………… (9.26) 

And hence, 

Since ε is arbitrary,  

We see that, 

and hence has no solution other than t=0. A similar argument shows that, if 

 then , for all t > 0,  has no solution 

other than t=0.  # 

Theorem 9.4:  [Fundamental Inequality]: 

   For a given θ and for all t such that  where ρ as in Theorem (9.2) 

…………….. (9.27)  

and if 

. 

Proof: Let the sequential procedure is defined in Theorem 9.2. Then since,   
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  ………..….. (9.28) 

……………………. (9.29) 

Since 

Since for N n,  then by (9.29) and Theorem (9.2) 

Where k (t) is positive and for fixed θ depends only on t. Letting as  we see that for all 

real t such that  equation (9.27) holds. 

Suppose now that Z takes on both positive and negative values so that   has a minimum 

value which is assumed at t=t* then it follows from (9.29) that for all t, 

  ……… (9.30) 

And hence 
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…………….. (9.31)  

Thus  

Or # 

OC and ASN function of SPRT 

For brevity we denote by L (θ) the OC (operating characteristic function) of SPRT. 

Let us consider the sequence  of independent r.v’s defined by 

satisfying the assumption of theorem (9.2) them if EZ 0, there exist one and only 

such that , this condition hold only for let us assume 

that . Since the distribution of Z depends on θ. Thus let us 

  ……………. (9.32) 

Or  ……………………. (9.33) 

 ………………. (9.34) 

……………. (9.35) 

1 = L(𝜃)  + ………………(9.36) 

Where represent the conditional expectations when we accept and reject the 

hypothesis respectively, 

  ………………… (9.37) 
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We now find the approximate expression for . Let us consider,  

instead of inequality . Thus if 

Similarly, 

When, where θ’ is value of θ for which 

. Then, 

For any real , we can determine the point in the plane with co-ordinate (θ, L (θ)). The 

locus of these points will be approximate graph of the O C Function. 

Expected Value of N i.e  or ASN (Average Sampling Number): 

We know that for 

 EZ 0  differentiating w.r.to h at h=0 
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 Denote the conditional expectation of the r.v’s provided  and  the 

conditional expectation of  provided 

If  according as accepting and rejecting hypothesis. 

If  we differentiate the fundamental Identity twice, we have, 

Taking the derivative at h=0 and using 

 And  we have 

Or 

Theorem 9.5: [ ] If SPRT is defined by ( ), where 

, then the error probabilities  satisfy, 
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 Where, 

If we set, then corresponding error probabilities satisfy, 

, and if 

 + 

Exp 9.1: Let be i.i.d r.v’s having N (θ, 1). The two simple hypotheses are, 

m.g.f of X is,

m.g.f of 2X is,

It follows that,  thus, 

For , 

We continue sampling as long as, 
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If 

6.9 Self-Assessment Exercises 

1. State and prove the minimax theorem.

2. Explain the role of complete class theorem in estimation theory.

3. Write a note on sequential nature of Bayes theorem and its need.

6.10 Summary 

In this unit, section 6.3 and 6.4 discusses the minimax theorem and complete class 

theorem, respectively. Equalizer rules are covered in section 6.5. The multiple decision 
problems are discussed in section 6.6. Section6.7 covers the continuous form of Bayes 

theorem and its sequential nature along with its need. 

6.11 Further Readings 

• Lee, P.M. (1997) Bayesian Statistics: An Introduction, Arnold.
• Leonard, T. and Hsu, J.S.J. (1999) Bayesian Methods, Cambridge University Press.
• Robert, C.P. and Casella, G. (2004) Monte Carlo Statistical Methods, Springer Verlag.
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UNIT-7: BAYESIAN DECISION THEORY 

Structure 

7.1 Introduction 

7.2      Objectives 

7.3   Basic Elements of Bayesian Decision Theory 

7.4 Optimal Bays Decision Function 

7.5 Relationship of Bays and Minimax Decision Rules 

7.6 Least Favourable Distribution 

7.7        Self-Assessment Exercises 

7.8        Summary 

7.9      Further Readings 

7.1    Introduction 

We encounter lots of decision problems in real life. For example, a mobile store might 

need to know whether a particular customer based on a certain age, is going to buy a mobile 

or not. Bayesian Decision Theory helps us in making decisions on whether to select a class 

with some probability or an opposite class with some other probability based on a certain 

feature. There is always some sort of risk attached to any decision we choose. The entire 

purpose of the Bayes Decision Theory is to help us select decisions that will cost us the least 

‘risk’. 

7.2 Objectives 

After studying this unit, you should be able to describe 

• Some basic elements of Bayesian Decision Theory

• Optimal Bayes Decision Function

• The Relationship of Bays and Minimax Decision Rules

• The idea of Least Favourable Distribution
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Mainly there are four elements of Bayesian Decision theory, namely Prior 

information, Likelihood (rather the joint distribution of the observations), Posterior and risk 

involved. In the Bayesian framework, we treat the unknown parameter, as a random variable. 

More specifically, we assume that we have some initial guess about the distribution of this 

unknown parameter. This distribution is called the prior distribution. After observing some 

data, we update the distribution of this unknown parameter (based on the prior distribution 

and thejoint distribution of the observations). This step is usually done using Bayes' theorem. 

That is why this decision theoretic approach is called the Bayesian decision theory. As there 

is always some sort of risk attached to any decision we make. The entire purpose of the Bayes 

Decision Theory is to help us select decisions that will cost us the least ‘expected risk’ or 

loss. 

If you’re declaring the average payoff for an insurance claim, and if you 

are linear in how you value money, that is, twice as much money is exactly twice as good, 

then one can prove that the optimal one-number estimate is the median of the posterior 

distribution. But in different situations, other measures of loss may apply. 

If you are advising a patient on his/her life expectancy, it is easy to imagine that 

large errors are far more problematic than small ones. And perhaps the loss increases as 

the square of how far off your single number estimate is from the truth. For example, if she 

is told that her average life expectancy is two years, and it is actually ten, then her estate 

planning will be catastrophically bad, and she will die in poverty. In the case when the loss 

is proportional to the quadratic error, one can show that the optimal one-number estimate 

is the mean of the posterior distribution. 

In Bayesian Decision Theory, a "loss function" is a mathematical function that 

quantifies the cost or penalty associated with making a particular decision when the true state 

of nature is known, essentially determining how much "loss" is incurred for each possible 

decision given the actual outcome; it plays a crucial role in choosing the optimal decision by 

minimizing the expected loss under the posterior probability distribution.  

Loss function: 

Some basic elements of Bayesian decision theory include: 

7.3 Basic Elements of Bayesian Decision Theory 
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Finally, in some cases, the penalty is 0 if you are exactly correct, but constant if 

you’re at all wrong. This is the case with the old saying that close only counts with 

horseshoes and hand grenades; i.e., coming close but not succeeding is not good enough. 

And it would apply if you want a prize for correctly guessing the number of jelly beans in a 

jar. Here, of course, instead of minimizing expected losses, we want to maximize the 

expected gain. If a Bayesian is in such a situation, then his/her best one-number estimate is 

the mode of his/her posterior distribution, which is the most likely value. 

There is a large literature on decision theory, and it is directly linked to risk 

analysis, which arises in many fields. Although it is possible for frequentists to employ a 

certain kind of decision theory, it is much more natural for Bayesians. 

Key points about loss functions in Bayesian Decision Theory: 

Function Definition: 

L(α, θ) represents the loss incurred when taking action "α" while the true state is "θ". 

Decision Making: 

By calculating the expected loss (also known as "risk") for each possible action 

based on the posterior probability, the Bayesian decision theory chooses the action that 

minimizes this expected loss.  

Some Popular Types of Loss Functions and Their Best Expected Values: 

• 0-1 Loss Function: It assigns a loss of 1 if the decision is incorrect and 0 if

correct. In this case the best estimate is provided by mode. Hence posterior

mode provides Bayes estimate in this case.

Statistically, for a 0-1 loss function is written as:

• Squared (or quadratic) Error Loss Function (SELF): It assigns more loss

to more deviation from true value; to be more specific it assigns squared

deviation as loss to the decision. Thus, the loss defined by the squared

difference between the predicted value and the true value is called squared

error loss.

Statistically, for a squared error loss function is written as:
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L(α, θ) = (α - θ)2

A popular modification of squared error loss function is: 

Weighted squared error loss function that assigns some weight for all θϵΘ, 

hence its general form is 

Lθ(α, θ) = ω(θ)(α - θ)2 where ω(θ) > 0 

Some other modifications are in terms of definition of ω(θ). 

Obviously, the loss is minimized with respect to mean. Hence, the Bayes 

estimate with respect to squared error loss is posterior mean. 

• Absolute Error Loss: It defines the loss as the absolute difference between

the predicted value and the true value. Hence, it assigns loss as per the

deviation from true value; to be more specific it assigns absolute deviation as

loss to the decision.

Statistically, for a absolute loss function is written as:

L(α, θ) = │α - θ│

A popular modification of absolute error loss function is: 

Weighted absolute error loss function that assigns some weight for all θϵΘ, 

hence its general form is 

Lθ(α, θ) = ω(θ)( │α - θ│) where ω(θ) > 0 

Some other modifications are in terms of definition of ω(θ). 

Obviously, the loss is minimized with respect to median. Hence, the Bayes 

estimate with respect to squared error loss is posterior median. 

Some of the other types of loss functions are: 

• Squared Logarithmic Loss function

• Bilinear Loss function

• Linex Loss function

• Modified Linex Loss function

• Entropy Loss function

• Intrinsic Loss function

• Balanced Loss function

• Weighted Balanced Loss function etc.

Importance of Choosing the Right Loss Function: 
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The choice of loss function directly impacts the optimal decision made by the 

Bayesian model, as it reflects the relative severity of different types of errors in the 

context of the problem. 

• Subjective Probability: A mathematical concept that Bayesian methods use to make

decisions. A detailed description of subjectivity is already covered in earlier sections. 

• Prior Probability: Represents information about an uncertain parameter before data

collection. A detailed description of subjectivity is already covered in earlier sections. 

• Bayesian Risk Analysis: Bayesian risk analysis is a statistical method that

uses Bayes' theorem to assess risk by incorporating prior knowledge and updating 

probabilities based on new information, allowing for a more nuanced understanding of 

uncertainty when evaluating potential risks, particularly in situations with limited data; it's 

commonly used in fields like genetics, healthcare, and finance to calculate the probability of 

specific events occurring based on available evidences and prior information.  

Some of the applications of Bayesian risk analysis are as follows: 

• Genetic Counseling: 

Assessing the risk of inheriting a genetic disease based on family history and 

genetic testing results.  

• Medical Diagnosis: 

Calculating the probability of a disease given test results, especially when 

dealing with uncertain or incomplete information.  

• Insurance Risk Assessment: 

Evaluating the likelihood of large claims based on historical data and other 

factors.  

• Cybersecurity Risk Analysis: 

Assessing the probability of cyber threats considering prior knowledge about 

system vulnerabilities and potential attacks.  

Benefits of Bayesian risk analysis: 

• Incorporates Prior Knowledge: Allows for the integration of expert 

opinions and existing data into the analysis.  
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• Adapts To New Information: Continuously updates risk assessments 

as new data becomes available.  

• Quantifies Uncertainty: Provides a clear measure of the uncertainty 

associated with risk estimates through probability distributions. 

7.4 Optimal Bayes Decision Function 

Admissibility is a useful criterion when searching for optimal decision rules as the 

optimal decision rule gives the minimum error. For example, knowing that an estimator is 

inadmissible is clearly bad in that another estimator with lower risk is guaranteed to exist. 

One of the most popular examples of an inadmissible estimator is given by James and Stein 

(1961). A detailed discussion on the optimality is already given in section 2.4 and 2.5 of 

Block 1.  

An "Optimal Bayes Decision Function" refers to a decision rule in statistics and 

machine learning that minimizes the expected loss (or risk) by selecting the class with the 

highest posterior probability given the observed data, essentially choosing the class that is 

most likely to be true based on the available information, according to Bayes' theorem; it is 

considered the optimal decision rule because it yields the lowest possible error rate under the 

given conditions.  

Key points about the Optimal Bayes Decision Function: 

• Based on Posterior Probability: 

The core principle is to classify a data point to the class with the highest posterior 

probability, which is calculated using Bayes' theorem: P(Class | Data) = (P(Data | 

Class) * P(Class)) / P(Data).  

• Minimizing Expected Loss: 

This decision rule aims to minimize the expected loss associated with making a 

wrong classification, where the loss function defines the cost of misclassifying each 

class.  

• Decision Boundary: 
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In visualization, the optimal Bayes decision function is represented by a decision 

boundary that separates the feature space into regions where each class is most likely 

to occur.  

• Practical Challenges: 

While theoretically optimal, implementing the Bayes decision function in real-world 

scenarios can be challenging because it often requires knowing the exact probability 

distributions of the data, which are usually not fully known.  

Formula for a simple binary classification problem: 

• If P(Class 1 | Data) > P(Class 2 | Data), then classify as Class 1. 

• If P(Class 1 | Data) < P(Class 2 | Data), then classify as Class 2. 

An "Optimal Bayes Decision Function" refers to a decision rule in statistics and 

machine learning that minimizes the expected loss (or risk) by selecting the class with the 

highest posterior probability, given an observed data point, essentially choosing the action 

that minimizes the conditional expected loss based on the posterior distribution of the class 

labels given the data; it is considered the optimal decision rule under Bayesian decision 

theory.  

Key points about the Optimal Bayes Decision Function: 

• Based on Posterior Probability: 

The core principle is to classify a data point to the class with the highest 

posterior probability, which is the probability of a class label given the 

observed data.  

• Minimizes Expected Loss: 

This decision rule is designed to minimize the average expected loss (risk) 

across all possible data points, considering the cost associated with making 

incorrect classifications.  

• Mathematical Representation: 

For a classification problem with classes C1, C2, ..., Cn and a data point x, the 

optimal Bayes decision function would be: 
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• Decision Rule:  

Assign x to the class Ci where P(Ci | x) is the maximum, meaning choose the 

class with the highest posterior probability. 

• Formula: 

o g*(x) = argmax_{Ci} P(Ci | x) 

Important Considerations: 

• Prior Probability: 

To calculate the posterior probability, the prior probability of each class is 

needed, which represents the initial belief about the class distribution before 

seeing any data.  

• Conditional Probability (Likelihood): 

The likelihood function, which is the probability of observing the data given a 

particular class, is also crucial for computing the posterior probability.  

• Loss Function: 

The choice of the loss function (cost of misclassification) can impact the 

optimal decision rule.  

Practical Challenges: 

• Estimating Probabilities: 

In real-world applications, it can be difficult to accurately estimate the 

required probabilities (prior and conditional) from limited data.  

• Computational Complexity: 

Calculating the posterior probability for complex models can be 

computationally expensive.  

7.5 Relationship of Bayes and Minimax Decision Rule 

This section explores some interesting results to develop an understanding about the 

relationship between Bayes and minimax decision rules. Minimax is a decision rule used 
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in decision theory, game theory, statistics, etc for minimizing the possible loss for 

a maximum loss scenario. When dealing with gains, it is referred to as "maximin" – to 

maximize the minimum gain. Hence, in this approach one tries to guard against the highest 

possible risk in a pessimist’s wayi.e. by trying to keep the smallest of the highest possible 

risks. This can be proved that such a rule always exists. Whereas a Bayes rule is the decision 

rule in the class of decision rules that has the smallest average risk. Hence it is obvious that if 

the Bayes rule has constant risk, then it is minimax. 

In decision theory, a Bayes decision rule is based on minimizing the expected loss 

with respect to a specific prior probability distribution, while a minimax decision rule aims to 

minimize the maximum possible loss across all possible states of nature, essentially choosing 

the strategy that performs best in the worst-case scenario; therefore, a minimax decision rule 

can be considered as a Bayes rule with respect to a "least favorable" prior distribution, where 

the prior represents the most pessimistic possible scenario about the unknown parameters.  

Key points about the relationship: 

• Prior information: 

The key difference lies in how prior information is handled: Bayes rules incorporate 

specific prior beliefs about the unknown parameters, while minimax rules do not 

assume any prior knowledge and instead focus on the worst-case scenario.  

More on priori selection has already been discussed in text. 

• Risk minimization: 

A Bayes rule minimizes the "Bayes risk" (expected loss under a specific prior), while 

a minimax rule minimizes the "maximin risk" (the maximum possible loss across all 

possible states).  

• Least favorable prior: 

In some cases, a minimax decision rule can be found by identifying a "least favorable 

prior" - a prior distribution that leads to a Bayes rule which also minimizes the 

maximum possible loss.  

When to use which rule: 

• Bayes rule: 
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Use when you have strong prior information about the problem and 

want to incorporate that knowledge into your decision making.  

• Minimax rule: 

Use when you have little to no prior information about the problem 

and want to protect against the worst possible outcome.  

7.6 Least Favourable Distributions 

Let for some decision problem, δ1 and δ2 be two Bayes rules w.r.t. prior distributions 

g1 and g2 , respectively. Then, g1 is called least favourable prior distribution if 

r(g1,δ1)≥r(g2,δ2) irrespective of g2. 

A prior distribution maximizing the risk function in a statistical problem of decision 

making. Suppose that, based on a realization of a random variable X with values in a sample 

space (X, Fx, Pθ), θ∈Θ, one has to choose a decision d from a decision space (D, FD); it is 

assumed here that the unknown parameter θ is a random variable taking values in a sample 

space (Θ, FD, πt), t∈T. Let L(θ,d) be a function representing the loss incurred by adopting the 

decision d if the true value of the parameter is θ. An a priori distribution πt from the 

family {πt:t∈T} is said to be least favourable for a decision d in the statistical problem of 

decision making using the Bayesian approach if 

Sup t∈T R(gt, d) = R(gt*, d) 

Where, R(gt, d) = 

is the risk function, representing the mean loss incurred by adopting the decision d. 

A least-favourable distribution gt* makes it possible to calculate the "greatest" (on the 

average) loss R(gt*,d) incurred by adopting d. In practical work one is guided, as a rule, not 

by the least-favourable distribution, but, on the contrary, strives to adopt a decision that 

would safeguard one against maximum loss when θ varies; this implies a search for a 

minimax decision d* minimizing the maximum risk, 

Sup t∈T R(gt, d*) 
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1. If there exist a prior g for some unknown parameter say, µ and let δg be a Bayes rule

corresponding to g and if r(g,δg)≥supµr(µ,δg); then (i) δg is a minimax rule, (ii) g is the least 

favourable prior distribution. 

2. Define the concept of optimal Bayes decision functions.

7.8 Summary 

In section 7.3, some basic elements of Bayesian decision theory have been discussed. 

Section 7.4 discusses about the optimality criteria for decision functions. Section 7.5 explores 

the relationship between Bayes and Minimax Decision Rules. Then, section 7.6 defines the 

Least Favourable Distribution.  

Some of the basic elements of Bayesian decision theory are defined briefly here under: 

Loss function: Used to describe overestimation and underestimation in analysis. 

Subjective probability: A mathematical concept that Bayesian methods use to make 

decisions.  

Prior probability: Represents information about an uncertain parameter before data 

collection.  

Expected loss: Also called risk, the expected loss can be minimized by choosing the 

action that minimizes the conditional risk.  

Bayesian or inverse Probability: Bayesian statisticians use probability theory to 

formulate models and make predictions.  

Bayesian risk analysis: A method of combining probabilities to calculate the 

probability of having or not having a disease-causing mutation.  

7.10 Further Readings 

• Aït-Sahalia, Y. and Hansen, L.P. (Eds) (2010) Handbook of financial econometrics, Vol

2, North Holland Pub.

• Berger, J.O. (1985). Statistical decision theory-Fundamental concepts and methods,

Springer Verlag.

7.7 Self-Assessment Exercise 
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• Gemerman, D and Lopes, H. F. (2006) Markov Chain Monte Carlo: Stochastic

Simulation for Bayesian Inference, Chapman Hall.

• Jeffreys, Sir Harold. 1961. Theory of Probability: 3rd Edition. Clarendon Press.

• Kass, Robert E, and Adrian E Raftery. 1995. “Bayes Factors.” Journal of the American

Statistical Association 90 (430): 773–95.

• Kahneman, D.; Tversky, A. (1982). Judgement under Uncertainty: Heuristics and Biases.

Cambridge University Press.

• Kalos, Malvin H.; Whitlock, Paula A. (2008). Monte Carlo Methods. Wiley-VCH.

• Least-favourable distribution. Encyclopedia of Mathematics. URL:

http://encyclopediaofmath.org/index.php?title=Least-favourable_distribution & oldid =

47598 

• Lehmann; E.L., "Testing statistical hypotheses" , Wiley (1986).

• Leonard, T. and Hsu, J.S.J. (1999) Bayesian Methods, Cambridge University Press.

• Lindley, D.V. (1965). Introduction to probability and statistical inference from Bayesian

view point, Cambridge university press.

• Mazhdrakov, M.; Benov, D.; Valkanov, N. (2018). The Monte Carlo Method.

Engineering Applications. ACMO Academic Press.

• Robert, C.P. (1994). The Bayesian Choice: A Decision Theoretic Motivation, Springer.

• Robert, C.P. and Casella, G. (2004) Monte Carlo Statistical Methods, Springer Verlag.

• Ross, S.M. (2023) Simulation, Elsevier Inc.

• Zacks; S., "Theory of statistical inference”, Wiley (1971)
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UNIT-8: BAYESIAN INFERENCE 

Structure 

8.1     Introduction 

8.2     Objectives 

8.3     Bayesian Sufficiency 

8.4     Improper Prior Densities 

8.5     Natural Conjugate Bayesian Density 

8.6     HPD Regions and Bayesian Inference for Normal Populations 

8.7     Empirical Bayes Procedures 

8.8     Posterior Odd Ratio and Bayesian Testing of Hypothesis 

8.9      Self-Assessment Exercises 

8.10 Summary 

8.11 Further Readings 

8.1    Introduction 

Estimation is used to come to some conclusions regarding an unknown population 

parameter with the help of a sufficiently large sample from that population. Having obtained 

the estimate of unknown parameter from a given sample, the problem is, "Can we make some 

reasonable probability statements about the unknown parameter a in the population, from 

which the sample has been drawn". To answer such questions, we use the technique of 

Interval estimation. Classical approach covers such problems in confidence interval 

estimation whereas in modern or subjective approach Bayesian interval estimation covers 

such problems. 

8.2     Objectives 

After studying this unit, you should be able to 

• Define the concept of sufficiency in Bayesian sense

• Explore the use of different priors.
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• Test the hypothesis in Bayesian’s way

• Elaborate the empirical Bayes Procedures.

8.3 Bayesian Sufficiency 

Kolmogorov, Raifa Scefferetc have discussed various statistical concepts from 

Bayesian point of view in detail. But here we will discuss the concept of sufficiency first in 

classical sense and then in Bayesian sense. Consider, (X,ζ) is a measurable space carrying a 

family of probability measures on parametric space Θ. Then, classical sufficiency is defined 

as the conditional probability on ζ given any sub σ-field is independent of parameter in Θ, but 

in Bayesian sense given any prior ξ on (Θ, A), the posterior on Θ is the same as ζ stA is a σ-

field. Because of the compelling reasons to perform a conditional analysis and the 

alternatives of using Bayesian machinery to do so there have been attempts to use the 

Bayesian approach even when no (or minimal) prior information is available. What is needed 

in such situation is a Non-Informative Prior, by which is meant a prior which contains no 

information about θ (or more crudely which ‘faros’ no possible values of θ over others.) for 

example, in testing between two simple hypothesis, the prior which gives probability ½ to 

each of the hypothesis is clearly non-informative. 

Example:  Suppose the parameter of interest is normal mean θ, so that the parameter 

space . If non-informative prior density is desired, it seems reasonable to give 

equal weights to all possible values of θ. unfortunately, if  is chosen, the π has 

infinite mean   and is not proper density. Nevertheless, such π can be 

successfully worked with the choice of c is unimportant, so that typically the non-informative 

prior clearly for this problem is chosen to be π(θ)=1 this is often called the informative 

density on R and was intersected and used by Laplace (1812). 

As in the above example, it will frequently happen that natural non-informative prior 

is an Improper Prior, namely which has infinite mass. 

Example:  instead of considering θ, suppose the problem has been parameterized in terms 

of , this is one-to-one information and should have no bearing on the ultimate answer.   

But if π (θ) is the density of θ, then the correspondently for η is, 
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 Hence if the non-informative prior of θ is chosen to be constant, we 

should choose the non-informative prior of η to be conditional to  to maintain 

consistency. Thus, we maintain consistency and choose both the non-informative prior 

Non Informative Priors for Location and Scale Parameters: 

Example:  Suppose that  and Θ are subsets of , and that the density of X is of the form 

depend on . The density then said to be a location density, and θ is 

called a location parameter. (Sometimes a location vector when ). The  

fixed, is an example of location density. 

To derive a non-informative prior for this situation, imagine that, insisted of observing 

X, we observe the random variable Y=X+C. C  . Define . It is clear that Y has 

density .  

If now , Thus, the sample space and parameter space for (Y, η) problem are 

also . The (X, Θ) & (Y, η) problems are identical and sensitive and it seems reasonable to 

in sets that they have the same non-informative prior. 

Letting π and π* denote the non-informative priors in the (X, Θ) and (Y, η) problems 

respectively, the above arguments implies that π and π* should be equal i.e 

For any set A in . Since η=θ+C, it should be true that 

      …………………..  (1) 

Any π satisfying relation (1) is said to be Location Invariant Prior. 

Assuming that, the prior has a density then, 
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This conclusion is that π must be constant function. It convenient to choose the 

constant to be 1, so the non-informative prior density for a location parameter is 

A one-dimensional scale density is a density of the form,  where . The 

parameter  is called a scale parameter. The  

known as scale density. 

To derive a non-informative prior for this situation, imagine that, instead of observing 

X, we observe the random variable Y=CX C

Define , can easy calculation show that the density of Y is . If 𝔵=R or 

(0, ) then the sample and parameter space for the (X, ) problems are the same as there for 

the (Y, η) problem. The two problems are thus identical in structure, which again indicates 

that they should have the same non-informative prior. Letting π and π* denote the priors in 

the (X, ) and (Y, η) problem, respectively, this means that the equality,  

. Since η , it should also be true that 

, 

. Putting these together, it follows that π should satisfy, 

And any distribution π for which this is true is called scale invariant. 
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. Setting for convenience, and nothing that above equality must hold for 

all , it follows that a reasonable non-informative for a scale parameter is π . 

Non-Informative Prior in General Setting: 

 For more general problem, various (somewhat ad hoe) suggestive have been advance 

for determining a non-informative prior. The most widely used method is that of Jeffrey’s 

method which is as follows: 

If  is a vector, Jeffrey’s suggest the use of 

Where  

Example:  A location-scale density is a density of the form  where θ  are 

the unknown parameters. is crucial example of location-scale density Working 

with , = (θ, σ). Fisher informative matrix is, 
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This is the non-informative prior ultimately recommended by Jeffrey’s non-

informative prior is that it is not affected by restriction on the parameter space. Thus, if it is 

known that Θ  , the Jeffrey’s non-informative prior is still π (θ) =1. 

Example:  let ( ) be a random sample from N ( ) let the non-informative prior 

of  be ( )   and assumed to be independent. Find the posterior 

. 

Solution:  

   Put 
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Let 

8.4 Improper Prior Densities 

After a detailed discussion in preceding section, it is very much clear that in Bayesian 

procedures, we update the observed information with the help of prior information called 

prior densities. But sometimes this information is not integrable or does not have a finite 

integral, but we as statistician must make use of this. Such prior densities are termed as 

improper prior densities. Examples of improper priors include: The uniform distribution on 

an infinite interval (i.e., a half-line or the entire real line). The beta distribution for α=0, β=0. 

8.5 Natural Conjugate Bayesian Density 

The concept, of Natural Conjugate Bayesian Density or conjugate prior, was 

introduced by Howard Raiffa and Robert Schlaifer in their work on Bayesian decision theory. 

A similar concept had been discovered independently by George Alfred Barnard.  
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In Bayesian probability theory, if the posterior distribution is in the same probability 

distribution family as the prior probability distribution , the prior and posterior are then 

called Conjugate Distributions, and the prior is called a Conjugate Prior. For example, 

beta prior is a conjugate prior for a binomial population. Similarly, gamma is for Poisson 

population. 

8.6 HPD Regions and Bayesian Inference for Normal Populations 

Highest posterior density (HPD) regions are a key tool in Bayesian statistics for 

parameter estimation and inference. They represent the most probable values of a parameter 

given observed data, providing a concise summary of the posterior distribution. 

In Bayesian inference, an HPD (Highest Posterior Density) region refers to a specific 

range of parameter values within a posterior distribution that contains a specified probability 

mass, where every point inside the region has a higher posterior density than any point 

outside it; essentially, it represents the most likely range of values for a parameter given the 

observed data, based on the Bayesian framework, particularly when dealing with normally 

distributed populations.  

Key points about HPD regions: 

Interpretation: 

Unlike traditional confidence intervals in frequentist statistics, an HPD region 

directly reflects the probability of a parameter value lying within that range, given the 

observed data and the prior belief about the parameter.  

Here, Interval estimates i.e. estimates of parameters that include an allowance for 

sampling uncertainty – have long been touted as a key component of statistical analyses. 

There are several kinds of interval estimates, but the most popular are confidence intervals 

(CIs): intervals that contain the true parameter value in some known proportion of repeated 

samples, on average. The width of confidence intervals is thought to index the precision of an 

estimate; CIs are thought to be a guide to which parameter values are plausible or reasonable; 

and the confidence coefficient of the interval (e.g., 95 %) is thought to index the plausibility 

that the true parameter is included in the interval. We can show in a number of examples that 

CIs do not necessarily have any of these properties, and can lead to unjustified or arbitrary 
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inferences. For this reason, we caution against relying upon confidence interval theory to 

justify interval estimates, and suggest that other theories of interval estimation should be used 

instead. 

Smallest Credible Region: 

Among all credible regions (regions with a certain probability mass) for a given 

parameter, the HPD region is the smallest one, meaning it encompasses the most likely 

values while minimizing the included area that has lower posterior density.  

Calculation: 

To find an HPD region, you need to plot the posterior distribution and identify the 

continuous range of values that enclose the desired probability mass, where the density 

within that range is higher than anywhere else on the distribution.  

Normal Distribution Application: 

When analyzing data from a normal population with unknown mean (µ) and standard 

deviation (σ) in a Bayesian setting, you would calculate the posterior distribution of µ based 

on your prior belief and the observed data, and then identify the HPD region for µ to 

represent the most likely range of values for the population mean.  

How to calculate an HPD Region: 

Obtain the Posterior Distribution: 

Using Bayes' theorem, calculate the posterior probability distribution for the 

parameter of interest (e.g., the population mean) given your prior distribution and the 

observed data.  

Sort the Posterior Density: 

Order the possible values of the parameter from lowest to highest based on their 

posterior probability density.  

Identify the HPD Region: 
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Find the continuous range of values that encompasses the desired probability mass 

(e.g., 95%) where the posterior density within that range is higher than anywhere else on the 

distribution.  

Important Considerations: 

Computational Complexity: 

Calculating HPD regions can be computationally intensive, especially for complex 

models, and often requires numerical methods to find the precise boundaries of the region. 

Visual interpretation: 

Visualizing the posterior distribution with the HPD region overlaid can provide 

valuable insights into the likely values of the parameter and the uncertainty associated with 

the estimate. 

For more on these topics, please refer to section 4.5 of Block 1. 

8.7 Empirical Bayes Procedures 

The purpose here is to give a simple introduction to empirical Bayes methods. 

Empirical Bayes methods are the procedures in which the prior probability distribution is 

estimated from the data itself. Thus, this approach stands in contrast to standard Bayesian 

methods, for which the prior distribution is fixed before any data are observed. Empirical 

Bayes methods have been around for quite a long time. Their roots can be traced back to 

work by von Mises in the 1940's, but the first major work must be attributed to Robbins 

(1955).These procedures further can be classified into "parametric empirical Bayes 

procedures" and "non-parametric empirical Bayes procedures". The major difference is that 

the parametric approach specifies a parametric family of prior distributions, while the non-

parametric approach leaves the prior completely unspecified. For example, if n iid 

observations are taken from fλ(.) and the prior distribution for the parameter λ is g(.), then the 

empirical Bayes estimate of parameter λ using the posterior mean is 

E[λ│xn]=( xn+1) m( xn+1)/m(xn) (m(.) is the marginal distribution of Xi=1,2,3,...,n) 

=( xn+1)(number of xi equal to ( xn+1))/(number of xi equal to xn) 
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In particular, if the sample is (0,4,2,8,7,4,0,9,3), then nth observation is 3 then the empirical 

Bayes estimate of parameter λ is (3+1)(2)/(1)=8. 

8.8  Posterior Odd Ratio and Bayesian Testing of Hypothesis 

Let an event A occurs with probability P[A], then the ratio P[A]/(1-P[A]) is called 

odds in favour of A (say O[A]) and (1-P[A])/P[A] is called odds against A. Hence, in usual 

notations, using Bayes theorem, we get O(H0│x) = P(H0│x)/ P(H1│x) called posterior odds 

on H0. Which gives O(H0│x) = O(H0) P(x│ H0)/ P(x│ H1) i.e. O(H0│x)/ O(H0)= P(x│ H0)/ 

P(x│ H1) called the Bayes Factor in favour of H0 (say B01) which is the ratio of two 

conditional probabilities of data in hand. Jeffreys recommended the following table for 

testing of hypothesis using Bayes Factors: 

Value of Log10 (B10) Description 

0-0.5 Not substantial evidence against H0

0.5-1 Substantial evidence against H0 

1-2 Strong evidence against H0 

>2 Decisive evidence against H0 

8.9 Self-Assessment Exercises 

1. Explain the concept of Bayes factor and its role in statistical inference.

2. Test H0: λ=2 against H1: λ≠2 using single observation from Pois(λ) st λ is a Gamma

(2,3) variate. 

3. Define Natural Conjugate Bayesian Densities with examples. Also, state the

properties of these densities. 
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8.10 Summary 

This unit starts with a detailed discussion over Bayesian Sufficiency and Improper 

Prior Densities, then section 8.5 further explores Natural Conjugate Bayesian Densities. Next 

the unit covers HPD Regions and Bayesian Inference for Normal Populations. Then a bit of 

Empirical Bayes Procedures and Posterior Odd Ratio along with their use in Bayesian 

Testing of Hypothesis is discussed at the end. 
Here, we mainly try to focus on Robust Bayesian analysis, also called Bayesian 

sensitivity analysis, that investigates the robustness of answers from a Bayesian analysis to 

uncertainty about the precise details of the analysis. Robust Bayes methods acknowledge that 

it is sometimes very difficult to come up with precise distributions to be used as priors. 

Likewise, the appropriate likelihood function that should be used for a particular problem 

may also be in doubt. In a robust Bayes approach, a standard Bayesian analysis is applied to 

all possible combinations of prior distributions and likelihood functions selected from classes 

of priors and likelihoods considered empirically plausible by the analyst. In this approach, a 

class of priors and a class of likelihoods together imply a class of posteriors by pair-wise 

combination through Bayes rule. 

8.11 Further Readings 

• Bernardo, J.; Smith, A. F. M. (1994). Bayesian Theory. John Wiley.

• Gelman, A.; Carlin, J.; Stern, H.; Rubin, D. (1995). Bayesian Data Analysis.

London: Chapman & Hall.

• Lee, P. M. (2012). Bayesian Statistics: an introduction. Wiley.

• Olive, D. J. (2008). Applied robust statistics. online electronic book.

• Pratt JW, Raiffa H, Schlaifer R. Introduction to statistical decision theory. Cambridge:

MIT Press; 1995.

• Reichenbach H. The theory of probability. Berkeley: University of California Press;

1949. 

• Steiger JH, Fouladi RT. Non centrality interval estimation and the evaluation of

statistical models. In: Harlow L, Mulaik S, Steiger J, editors. What if there were no

significance tests? Mahwah, New Jersey: Erlbaum; 1997. pp. 221–257.
• Winkler, Robert (2003). Introduction to Bayesian Inference and Decision (2nd ed.).

Probabilistic.
• Venn, J. (1888). The logic of chance (third edition). London: Macmillan.
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Block & Units Introduction 

The present block of this SLM has three units. 

The Block - 3 – Bayesian Analysis has three units.  This block comprises. 

Unit – 9 – Prior and Posterior Distributions, comprises the A detailed note on prior 

and posterior distributions. 

In Unit – 10 – Bayesian Inference Procedures, we have discussed the theory of 

Bayesian Inferential procedures. 

Unit – 11 – Bayesian Robustness, gives the idea of Bayesian robustness.

At the end of every block/unit the summary, self-assessment questions and further 

readings are given.  
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UNIT-9: PRIOR AND POSTERIOR DISTRIBUTIONS 

Structure 

14.1      Introduction 

14.2 Objectives 

14.3      Subjective Probability its Existence and Interpretation 

14.4 Subjective Determination of Prior and Posterior Distribution 

14.5 Improper Priors, Non-Informative Priors, Invariant Priors 

14.6 Conjugate Prior Families and their Construction 

14.7 Self-Assessment Exercise 

14.8 Summary 

14.9 Further Readings 

9.1        Introduction 

There are two main approaches to statistical learning: frequentist approach (or 

classical methods) and modern approach (or Bayesian methods). It is important to understand 

both approaches. At the risk of oversimplifying, the difference is this:  

1). In frequentist approach, the probabilities are interpreted as long run frequencies 

and the goal is to create procedures with long run frequency guarantees. Thus, here the 

probability is limiting relative frequency. Whereas, in Bayesian inference, probabilities are 

interpreted as subjective degrees of belief and the goal is to state and analyze your beliefs. 

Thus, probability is the subjective degree of belief. 

2). In classical i.e. frequentist approach, parameter is treated as a constant, whereas in 

modern i.e. Bayesian approach parameter (unknown population characteristic) is a random 

variable and follows some distribution known earlier (called prior distribution) i.e. in 

Bayesian belief even population characteristics are not considered to be constant and they are 

random variables following some distribution which usually is known to the experimenter 

before conducting experiment so we call it prior distribution. 
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3). In frequentist approach, probability statements are about procedures, and in 

Bayesian approach the probability statements are about the parameters. 

4). Furthermore, in former approach, frequentist tries to guarantee the findings 

whereas later approach does not guarantee anything. 

There are, in fact, many flavours of Bayesian approach. Like subjective Bayesians 

interpret probability strictly as personal degrees of belief, whereas objective Bayesians try to 

find prior distributions that formally express ignorance with the hope that the resulting 

posterior is, in some sense, objective; similarly, empirical Bayesians estimate the prior 

distribution from the data and frequentist Bayesians are those who use Bayesian methods 

only when the resulting posterior has good frequency behavior. Thus, the distinction between 

Bayesian and frequentist inference can be somewhat unlit. 

In Bayesian theory, a very important concept is of Subjective probability. It is a type 

of probability derived from an individual's personal judgment or own experience about 

whether a specific outcome is likely to occur. It may or may not contain any formal 

calculations; hence generally it only reflects the subject's opinions and past experience. Thus, 

subjective probabilities differ from person to person and contain a high degree of personal 

bias. In Bayesian context it plays an important role as here the theory makes use of posterior 

density (i.e. the density obtained by updating prior density in presence of observations from 

the population under study about the problem or hypothesis) which highly depends on the 

prior. In this unit, different types of priors have been discussed. 

9.2 Objectives 

After studying this unit, you should be able to 

• Concepts and methods of Bayesian inference.

• Some subtle issues related to Bayesian inference.

• Define the concept of subjectivity

• Choose a suitable prior for different cases

• Obtain the conjugate prior
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9.3   Subjective Probability its Existence and Interpretation 

Prior information is based on investigator’s experience, intuition, and theoretical ideas. It 

may be contained in samples of historical data obtained by a reasonable scientific experiment, 

from introspection, or casual observations. Prior distribution provides specific, formalized 

statement of currently assumed knowledge in probabilities terms. A distinctive feature of the 

Bayesian approach is the introduction of a prior density to represent prior information about 

the possible values of the parameters of a model. It’s introduction permits use of Bayes 

theorem to obtain exact finite sample posterior densities and draw inference about the models 

and making decisions when the loss functions are available. 

In the Bayesian approach prior information about the parameter(s) of a model is 

represented by an appropriately chosen probability density (or mass) function. We must be 

careful in choosing a prior information. It may also be considered a tool which provides a 

unified inferential procedure having acceptable frequentist properties. It is not necessary that 

a chosen prior distribution may represent any kind of investigator’s belief in this distribution. 

Furthermore, the terms prior probability distribution and posterior distribution suggest 

probabilistic initial and final state of information. These terms may not be necessarily 

interpreted in a chronological sense. In fact, any additional information other than the current 

data may be defined as prior information. It is important to be careful in choosing a prior pdf 

to represent prior information. For example, the probability of success in Bernoullian trials 

has a range (0,1 ) and, therefore, we must choose some pdf defined over the range (0,1 ). On 

the other hand, the variance of a normal distribution may have a range (0,∞). 

Ideally prior distribution should provide specific, formalized statement of currently 

assumed knowledge in probabilistic terms. As the available prior information is not precise 

enough to determine an exact prior distribution, we may have many probability distributions 

which may represent the available information. Some of the reasons for not being able to 

specify exact prior information are time, finances, and patience (willingness) to gather and 

analyse necessary and relevant information Obviously, there is no unique way of choosing a 

prior distribution and that the resulting inference/ decision may be influenced by the chosen 

prior distribution. The effect may be negligible, moderate, or enormous and there is always a 

possibility of obtaining the final answer with the help of distorted prior distribution.  
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According to Diaconis and Ylvisaker (1985), there are three distinct Bayesian 

approaches for selection of prior distributions. The classical Bayesian approach considers 

flat priors to represent objectivity in the analysis. Such priors are generally known as nil, 

vague, diffuse, reference, or non-informative priors and there is no clear cut public policy 

or a method to construct or define a unique objective prior. 

There are a number of situations for which it would be very difficult to find even two 

people who would agree on the appropriateness of any specific probability distribution. In 

such a situation, the statistician's assignment of probabilities must be highly subjective 

and must reflect his own information and beliefs. We shall now discuss in detail the 

conditions under which the statistician can represent his information and beliefs in terms 

of probability distributions. The world is an uncertain place, and the outcome of future 

events is mostly unpredictable. But we always try to become surer about the future. For 

this we need information about the event of interest that is about to occur in future like it 

may rain tomorrow or it may not; you might be hired after a job interview, or you might 

not. Many scenarios are simply too complex to describe even theoretically and do not 

allow for repeated experimentation that could be used to assess the chances favouring 

them. So, here we work with our own belief which may or may not be based on some 

facts. And such an estimate of the likelihood of an event is called subjective probability, 

which may be the only option available in such cases. Thus, subjective probability is 

determining the likelihood of an event based on one's opinion or belief and not on any 

observations or calculations. 

Clearly, In Bayesian approach the probabilities may not always be empirical or 

objective, so that subjective probabilities or weights may also be conceived. 

An excellent bibliography on the concept of subjective probability is given by Kyburg 

and Smokier (1964), who also reprint important papers by Ramsey (1926), de Finetti 

(1937), Koopman (1940), and many more. Savage (1954) gives a thorough development 

of subjective probability and produces a highly informative bibliography. 

9.4   Subjective Determination of Prior and Posterior Distribution 

There are always 50%-50% chances that the fair coin will land with a head and tail 

up, but one can predict the output of flipping a coin on the basis of one’s belief. For example, 
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one may decide that the distribution in some condition is 60%-40%. This will work as the 

prior distribution for Bayesian analysis in this case. And this belief gets updated in presence 

of observations then the updated distribution is called the posterior distribution. In this case, 

this may become 55%-45% after updation using Bayes theorem. 

9.5 Improper Priors, Non-Informative Priors, Invariant Priors 

Here, we will start with discussing the case of complete ignorance. 

The objective notion of probability, also called ‘logical’ or ‘necessary’, is that P(EAI) 

represents a degree of belief in the event E based on information I. Note that an individual 

may not choose it as his personal degree of belief. It is a unique objective measure of the 

degree to which E is logically obtained by the evidence. Furthermore, it does not require E to 

be repeatable. The objective probability is applicable to parameters in statistical models 

where posterior distributions are constructed and inferences afe drawn using the Bayes 

theorem. The inferences for Θ, thus obtained, are logically implied by the data and prior 

information. 

If we consider Bayes theorem as a device to improve the accuracy of specifying the 

probability then if any substantive prior information is available, we may regard the prior 

distribution as instead a posterior distribution. Thus, it should be possible to deduce prior 

from posterior using Bayes theorem in reverse to arrive at a state of no information. The 

objective approach, therefore, starts with the task of finding logically consistent and realistic 

representation of “complete” prior ignorance about Θ. 

According to Poincare (1905) who was a subjectivist, complete ignorance cannot exist 

because absolute ignorance cannot provide any probability at all. Thus in Poincare’s terms, if 

the depth of ignorance of an investigator is great then there is sense in which his beliefs 

approximate to some ideal (if unattainable) state of total ignorance. 

According to Jaynes (2003), an objectivist, the natural starting point in translating a 

number of pieces of prior information uniquely into a prior probability assignment is the state 

of complete ignorance just as zero is the natural starting point in adding a column of 

numbers. in fact, complete ignorance is an ideal limiting case of real prior information just as 

a perfect triangle is an ideal limiting case of real triangles made by surveyors. 
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Rev. Thomas Bayes (1763) and Laplace (1774) expressed complete ignorance by 

assigning uniform prior probability distribution for the unknown parameter(s) of the model. 

Laplace said “when the probability of simple event is unknown, we may suppose all values 

between 0 and 1 equally likely.” 

Quite often, the derivation of the prior distribution based on information other than 

the currently available data is not possible. Moreover, the statistician may be required to 

employ as little subjective inputs as possible so the conclusion may appear solely based on 

sample from population under study.  A non-informative prior is one in which information to 

an important question in Bayesian inference is: where does one get the prior? One school of 

thought, called subjectivism says that the prior should reflect our subjective opinion about 

parameter (before the data are collected). This may be possible in some cases but is 

impractical in complicated problems especially when there are many parameters. Moreover, 

injecting subjective opinion into the analysis is contrary to the goal of making scientific 

inference as objective as possible. An alternative is to try to define some sort of “non-

informative prior.” An obvious candidate for a non-informative prior is to use a flat prior 

proportional to constant. In the Bernoulli example, taking g(θ) = 1 leads to updated 

distribution of parameter called posterior distribution π(θ│observations) as Beta (. , .), which 

seems very reasonable. But such autocratic or unfettered use of flat priors raises some 

questions. 

Most of the times, these priors are based on one’s belief hence they may not hold the 

form of some distribution and hence become improper. Mathematically, their integral does 

not equal unity. Such priors are called improper priors (as discussed earlier in block 1). These 

priors may be lead to badly behaved posteriors and paradoxes.  

In another situation, if the experimenter does not have any prior information or idea 

about the distribution of the unknown parameter, then the prior that represents this situation 

of complete initial ignorance is called a non-informative prior. In such situations, one may 

refer to the suggestion of Laplace that take uniform distribution as prior in absence of 

sufficient reason for assigning unequal probabilities to the values of the unknown parameter 

in the parametric space.  
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The uniform prior is invariant under linear transformations of Θ but not under other one to 

one transformation. Real valued functions such as  or sinh Θ do not have uniform 

densities. If we are completely ignorant about the value of Θ , however, then we seem to be 

equally ignorant about the value of . Advocates of non-informative priors respond to this 

lack of invariance by arguing that the appropriate non-informative prior for Θ must depend 

not only on the mathematical form of parameter space but also on the role of Θ, in indexing 

the sampling densities f(xAΘ) . The uniform prior is appropriate for location parameter Θ but 

not for or sinhΘ, since these are no more location parameters. However, there are 

strong objections to the dependence of non-informative priors on sampling models. For 

example, why should the model of ignorance about Θ depend upon what statistical 

experiment eventually be carried out to provide information about Θ ? A variety of 

experiments may be feasible as in the case of tossing of a coin. 

The above approach applies only to statistical problems. What do we do, if we 

are completely ignorant about a quantity which is not a statistical parameter? 

Jeffreys’ Non-Informative Prior 

A variety of such rules have been proposed but two of the most popular rules are first 

due to Laplace (discussed earlier) and second-one is due to H. Jeffrey. Jeffrey suggested a 

thumb rule for determining a non-informative prior for a scale parameter (say µ) as follows: 

Rule 1: If µ [a,b], where a and b are finite or infinite then take the prior 

g(µ)=constant. 

Rule 2: If µ (0,∞), assume (log µ) to be uniformly distributed over the whole real line 

and take g . 

Here, if µ is replaced with any linear transformation λ = c µ+d for any choice of c(≠0) 

and d; then rule 1 suggests the non-informative prior g(λ)=constant i.e. rule 1 is invariant 

with respect to linear transformations, similarly rule 2 is invariant under exponential 

transformation λ=µk such that k≠0. 

Jeffreys’ Non-informative Invariant Prior 
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Example 1. (Improper Uniform Prior) 

Let us consider the uniform prior for the standard deviation σ of the normal 

distribution. If we take g(σ) = c, σ > 0 and consider the transformation µ= log σ. This 

transformation makes µϵ . The Jacobian of transformation 

Since it accounts for the rate of change 

µ= h(σ) = log σ gives h-1(µ)=σ= exp(µ) 

so, g(µ)=g(h-1(µ)) =g(σ) =c exp(µ) 

The resulting prior makes a strong statement about values that are a-priori more likely 

than others and therefore, does not represent lack of information. 

Example 2. (Proper Uniform Prior) 

Let Θ be the probability of success in a Bernouli trial. The Bayes-Laplace prior for Θ  

is U(0,1), that is , g(Θ) =1, for Θϵ[0,1]. Consider the transformation 

Φ= Θ/(1- Θ), where Φϵ[0,∞]. If we write Φ=h(Θ) = Θ /(1- Θ), then 

(Φ) =Φ/ (1+ Φ ). 

Hence 

g(Φ) = g( (Φ)) = = . 

This result clearly shows a serious departure from the fact that no prior information 

about Θ implies no prior information about a simple transformation of Θ . 
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Quite often a prior distribution is chosen which satisfies specified summaries. It is 

usually advocated that in absence of an exact prior information and hence a prior distribution, 

we may consider the most convenient choice supported by the summaries. For example, if the 

prior mean and variance of a scalar parameter are given then the most convenient choice is 

the normal distribution or if the parameter is positive, we could easily fit some other member 

of exponential family like gamma distribution or Weibull distribution or some other member 

having those moments. However, choosing, any other proper prior distribution may not lead 

to analytically tractable posterior distribution. In general, if our prior distribution happens to 

be such that the posterior is easy to summarize, irrespective of actual observed data, than it 

can be considered as a convenient choice. Here, analytical tractability means that posterior 

distribution is easily determined using product of likelihood function and prior distribution 

(the normalizing constant, which happens to be the marginal distribution of the data, is not 

formally required to be evaluated. Also, analytical tractability implies that if the prior is so 

chosen that prior and posterior belong to the same family of distributions then posterior 

summaries like expectation and probabilities, are easy to obtain. Such prior are called 

conjugate priors.  

A conjugate prior is an algebraic convenience, giving a closed-form expression for the 

posterior; otherwise, numerical integration may be necessary. Further, conjugate priors may 

give intuition by more transparently showing how a likelihood function updates a prior 

distribution. 

In Bayesian probability theory, if, given a likelihood function, the posterior 

distribution is in the same probability distribution family as the prior probability distribution, 

the prior and posterior are then called conjugate distributions with respect to that likelihood 

function and the prior is called a conjugate prior for the likelihood function. 

Conjugate Family: Suppose Ῥ={f(x│θ); θ ϵ Θ} is a family of distributions of the random 

variable X indexed by the parameter θ. Further, suppose that the prior distribution of θ is a 

member of some parametric family of distributions Ԍ, with the property, in the relation to Ῥ, 

that the posterior distribution of θ is also a member of Ԍ. If this is so, we say that Ԍ is a 

family of conjugate prior distributions relative to Ῥ. This property of prior distribution is also 

known as closure property with respect to sampling from Ῥ i.e. conjugacy. 

9.6 Conjugate Prior Families and Their Construction 
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               The conjugate priors are sometimes called objective because the sampling 

distribution f(x│θ) completely determines the class of prior distributions. However, 

subjective Bayesians suspect use of conjugate type priors since they are justified on technical 

grounds and not obtained by fitting the available   

In addition to the discussion on conjugate priors in preceding blocks, here we will 

learn more about the conjugate priors. These priors are sometimes called objective priors 

because the sampling distribution completely determines the class of prior distributions. 

Thumb Rule for Constructing a Conjugate Prior: 

Here we will learn a thumb rule for constructing a conjugate prior. Suppose t(x) is a 

sufficient statistic for the parameter µ. Then, using Neyman factorization theorem we can 

write the likelihood as L(x,µ)=k(t(x),µ)h(x) st x=(x1,x2,...,xn) and k(t(x)) is the kernel of 

likelihood. Replace all the terms that are functions of sample in the kernel, by prior 

hyperparameters to get the conjugate prior. 

Example: Let (x1,x2,...,xn) be a sample from Gamma(m,µ) with m>0 known, giving the 

kernel to be k(t(x),µ)=µ-nm exp(-t/µ). Therefore, the respective conjugate prior is  

g(µ)=cµ-aexp(b/µ) 

which is inverted Gamma (a-1, b) with hyperparameters ‘a’ and ‘b’. 

The concept, as well as the term "conjugate prior", was firstly introduced by Howard 

Raiffa and Robert Schlaifer (1961) in their work on Bayesian decision theory. A similar 

concept had been discovered independently by George Alfred Barnard (1954). Howard 

Raiffa and Robert Schlaifer (1961) and George Alfred Barnard (1954) have advocated that 

the modern Bayesian approach allows the priors to have characteristics like closure under 

sampling (conjugacy) and specification of hyperparameter values according to some specific 

criteria. The third approach is followed by subjective Bayesian, depends on elicitation of 

prior distributions based on pre-existing logical knowledge in the area of investigation. This 

logic may depend upon some previous investigations or from non-scientific experts may be 

without any insight. In fact, most Bayesians follows a approach that may combine previous 

knowledge to be as objective as possible, subjective choice, etc along with mathematical 

convenience. 
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Example: Suppose a lot containing 1000 bulbs containing µ fuse bulbs. The past experience 

suggests that 5% of the bulbs supplied in the lot are fused. Suppose we are told that each bulb 

of being fuse is 0.05 and that this occurs independently. Suppose a random sample of 10 

bulbs is taken from this lot, and let X be the number of defectives in the sample. Then, find 

the posterior distribution for µ with respect to a suitable prior. 

Solution: Here, the distribution of X given µ, is hypergeometric distribution i.e. 

P(X=x│µ) = (µCx)(1000-µC10-x)/(1000C10);   x = 0,1,2,...,10 

 Here, the natural prior for µ is g(µ) = Binomial (1000, 0.05). So, the joint distribution 

of X and µ is 

P(X=x,µ) =  P(X=x│µ) g(µ) 

= {(µCx)(1000-µC10-x)/(1000C10)}{ (1000Cµ)(0.05) 
µ(1-0.05)1000-µ} 

= {(10Cx)(990Cµ-x) (0.05) 
µ(1-0.05)1000-µ }    

where, x=0,1,2,...,10 and µ=x, x+1, ..., x+990 

Note that there are x fuse bulbs and (10-x) are working bulbs in the sample. The 

minimum possible value for µ is x and the maximum value is (990+x). 

The marginal pmf of x, say m(x), is obtained by summing over range of µ i.e. 

   m(x) = 

= 

= ; x=0,1,2,...,10 

which is Bin(10, 0.05) distribution. And hence the posterior distribution of µ is 

π(µ│x) = st µ=x, x+1, ..., x+990 

i.e. posterior distribution is Bin (990, 0.05) distribution having a range from x to 

(990+x). 
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Following table provides a list of some popular natural conjugate priors: 

Distribution Prior Posterior 

Bernoulli (p) Beta (α, β) Beta (α+x, β-x+1) 

Binomial (n, p) Beta (α, β) Beta (α+x, β+n-x) 

Poisson (λ) Gama(α, β) Gama(α+x, β+1) 

NegBin(r,p) Beta (α, β) Beta (α+r, β+x) 

Gama(λ,β) Gama(α, β) Gama(α+λ, β+x) 

Uniform(0,θ) Pareto(α, β) Pareto (α+n, max (β, x1, x2,...,xn) 

N(µ,σ2) N(θ,λ2) N{(σ2θ+xλ2) ( σ2+λ2)-1, (σ2λ2)(σ2+λ2)-1} 

9.7 Self-Assessment Exercises 

1. Prepare a list of conjugate prior families in different cases and verify.

2. Explain the concepts of Improper Priors, Non-Informative Priors, Invariant Priors along

with their merits and demerits. 

3. Explain the concept of subjectivity and explain the related issues.

9.8 Summary 

This Unit covers some very interesting and important concepts of Bayesian approach 

like subjectivity, Improper Priors, Non-Informative Priors, Invariant Priors and conjugate 

prior families. Also, the thumb rule for constructing a conjugate prior for given case equips 

the learner to handle the situation in a relatively more mathematically tractable way. 

Fisher criticized Student (W.S. Gosset ) for his use of uniform prior on a binomial 

parameter saying that his prior does not imply a uniform prior on the binomial parameter 
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raised to the fifth power. Student replied that he has no concern about the fifth power of 

parameter, an irrelevant transformation.  

C.R. Rao (1987) comments “The choice of metric naturally depends on a particular 

problem under investigation, and invariance may or may not be relevant.” James Berger 

(1985) remarks “The major problem with invariance concerns the amount of invariance that 

can be used.” Zellner (1997) is satisfied with invariance of the priors with respect to relevant 

transformations. 

Box and Tiao (1973) and Bernardo (1976b) have argued that a non-informative prior 

should be regarded as a reference prior, i.e., a prior which is convenient to use as a standard 

in analysing statistical data. The obvious question is “why should one choose a single prior as 

a standard, in particular, uniform prior? They say that non-informative priors are suitable 

reference standards because they produce reference posterior distributions which 

approximately describe the kind of inferences which we are entitled to make with relevant 

initial information. Their argument is based on the assumption that little initial information 

should be, modelled by a non-informative prior, at least as good to some proper prior with a 

high degree of uncertainty. 

Another argument in favour of uniform prior is that when the data are sufficiently 

informative so that likelihood function is sharply peaked then it really does not matter what 

prior is used since all reasonably smooth prior densities will lead to approximately the same 

posterior density. The uniform density, in most cases, is convenient to simplify calculations 

of the posterior. This argument supports the uniform prior only in those cases where it 

produces approximately the same conclusions as the highly imprecise prior constructed from 

a sufficiently large class of prior densities. If the data are highly informative, the uniform 

prior may produce reasonable inferences. 

            Non-informative priors have strong implications for behaviour and, therefore, should 

not be considered non-informative. Furthermore, they may not represent the prior 

probabilities when the non-informative priors are improper. The basic problem is that no 

precise probability distribution can adequately represent ignorance since complete ignorance 

can be properly modelled by the vacuous probabilities and near-ignorance by near vacuous 
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probabilities. Walley (1991) thinks that non-informative priors are used and defended due to 

some combination of the following: 

(i) The problem of little or no information is important in theory and is common in practice. 

(ii) A belief in the philosophy that any state of uncertainty, even complete ignorance can be 

represented by some precise probability distribution. 

(iii) Some desirable property such as invariance holds for a non-informative prior. 

(iv) They do not require assessments of prior information from the user. 

(v) Objective statistical methods require objective or logical prior probabilities. 

(vi) In some important problem, inferences based on non-informative prior are numerically 

identical to classical inferences such as confidence intervals. This may give the impression 

that a Bayesian could reproduce the ‘successes’ of frequentist inferences, and therefore 

conform that non-informative priors give reasonable answers. 

(vii) Adopting a uniform prior density allows us to interpret normalized likelihood function 

as a posterior density which makes computation simple. 

A variety of rules have been developed for obtaining priors to express little or no 

information regarding the parameter Θ. Jeffrey’s invoked invariance, Box and Tiao 

recommended priors such that likelihoods are data translated, Akaike (1978) and Geisser 

(1979) formulated procedures involving the predictive distribution and Kullback-Keibler 

divergence measures, respectively. Bernardo (1979) used the notion of maximizing entropy 

in the limit, whereas, Zellner (1977) maximized the Shannon’s information of the data 

relative to that of prior. 
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UNIT-10: BAYESIAN INFERENCE PROCEDURES 

Structure 

10.1 Introduction 
10.2 Objectives 
10.3 Bayesian Inference 
10.4 Credible sets 
10.5 Testing of hypothesis 
10.6  Generalized Bayes Procedures, Admissibility and Minimaxity of Bayes 
10.7  Self-Assessment Exercises 
10.8 Summary 
10.9  Further Readings 

10.1    Introduction 

The Bayesian approach to inference usually refers to prior, posterior and predictive 

distributions to obtain estimates of unknown parameters, compare models and test 

hypotheses. Bayesian methods are now becoming widely accepted as a way to solve applied 

problems of real world. In this unit a few aspects of Bayesian inference are discussed to equip 

the learners with some basic understanding of these topics.  

10.2    Objectives 

After studying this unit, you should be able to 

• Explain the Bayesian approach to inference

• Define Credible sets

• Differentiate between credible interval and confidence intervals

• Perform testing of hypothesis in Bayesian sense

• Define Generalized Bayes Procedures, Admissibility and minimaxity of Bayes

10.3   Bayesian Inference 

Bayesian inference techniques specify how one should update one’s beliefs upon 

observing data. Bayesian updating is particularly important in the dynamic analysis of a 
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sequence of data. Thus, Bayesian inference plays an important role in statistics. Bayesian 

inference has found application in a wide range of activities, 

including science, engineering, philosophy, sports etc. More detailed theory of Bayesian 

Inferential procedures and examples are given in Block 1 and 2. 

Example 1: (Minimax solution) Let X ~ Bernoulli(p), p ϵ {Θ={0.25, 0.5}} and ₳={a1, a2}. 

Let the loss function be defined as follows. 

Θ↓       ₳→ a1 a2

p1 = 0.25 1 4 

p2 = 0.5 3 2 

The set of decision rules includes four functions: δi=1,2,3,4, defined by δ1(0) = δ1(1)= δ2(0)= 

δ3(1) = a1; and δ2(1)= δ3(0)= δ4(0)= δ4(1)=a2

Thus, the risk function takes the following values: 

i R(p1, δi) R(p2, δi) MaxΘ R(p, δi) Mini MaxΘ R(p, δi) 

1 1 3 3 

2 1.75 2.5 2.5 2.5 

3 3.25 2.5 3.25 

4 4 2 4 

Thus, the minimax solution is δ2(x)  . 

Example 2: (Squared error loss function) Let a single observation is taken randomly from 

binomial (n, p) population and let the prior distribution of p be g(p) = 1 for 0 < p < 1. Then, 

under L(p, δ(x)) =[p-δ(x)]2,  estimate the unknown parameter p. 

Solution: Obviously, here the PMF is 
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P{X=x│p} = nCx px (1-p)n-x; x=0, 1, 2, ..., n and 0 < p < 1 

And the given prior pdf of parameter p is 

g(p) =1, 0 < p < 1 

So, the joint distribution of X and p is 

H(x, p) = P{X=x│p}.g(p) 

= nCx px (1-p)n-x.1 

= nCx px (1-p)n-x 

So, the posterior density is 

π(p│x) = ; where M(x) is the marginal distribution of x. 

Thus, the Bayes estimator of unknown parameter p is 

E[p│x]= 

 = 

10.4     Credible Sets 

We have already discussed Bayesian credible intervals and how to incorporate them 

in problem-specific contextual information from the prior information and in Bayesian 

analysis it is of interest to find the optimal set, i.e. the smallest set with required posterior 

probability, with respect to each prior in the class, called a credible set. Thus, Bayesian 
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credible sets can be treated as the correct name for Bayesian "confidence intervals" 

(discussed earlier). More specifically, if any set , wrt a posterior  has the credible 

probability , then A is called a credible set for θ. More 

specifically, in Bayesian statistics, a credible interval is an interval used to characterize 

a probability distribution under study. It is defined such that an unobserved value of the 

parameter has a particular probability α to fall within it. For example, consider an experiment 

that determines the distribution of possible values of the underlying parameter say θ, if the 

probability that θ lies between c1 and c2 is 0.95, then (c1, c2) is a 95% credible interval. 

Credible intervals are typically used to characterize posterior probability distributions 

or predictive probability distributions. Their generalization to disconnected or multivariate 

sets is called credible region. 

Credible intervals are a Bayesian analog to confidence intervals in frequentist 

statistics. The two concepts arise from different philosophies: Bayesian intervals treat their 

bounds as fixed and the estimated parameter as a random variable, whereas frequentist 

confidence intervals treat their bounds as random variables and the parameter as a fixed 

value. Also, Bayesian credible intervals use (and indeed, require) knowledge of the situation-

specific prior distribution, while the frequentist confidence intervals do not. 

Thus, credible regions are not unique; any given probability distribution has an 

infinite number of credible regions of probability of interest say, α. For example, in univariate 

case, some of the multiple definitions for a suitable interval or region are: 

• The smallest interval, sometimes called the highest density (HD) intervals. This

interval will necessarily include the median whenever α>0.5. Besides, when the 

distribution is unimodal, this interval will include the mode. 

• The smallest region, sometimes called the highest density region (HDR). For a

multimodal distribution, this is not necessarily an interval as it can be disconnected. This 

region will always include the mode. 

• A quantile-based interval (QBI), which are computed by taking the inter-

quantile interval for some θ belonging to (0,1-α). For instance, the median interval of 
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probability α is the interval where the probability of being below the interval is as likely 

as being above it. It is sometimes also called the equi-tailed interval, and it will always 

include the median. Many other QBIs can also be defined, such as the least interval, or 

the highest interval. These intervals may be more suited for bounded variables. 

One may define the interval for which the mean is the central point, assuming that the 

mean exists. 

HDR can easily be generalized to the multivariate case, and are bounded by 

probability density contour lines. They will always contain the mode, but not necessarily 

the mean, the coordinate-wise median, nor the geometric median. 

Credible intervals can also be estimated through the use of simulation techniques such 

as Markov chain Monte Carlo (discussed in next unit). 

Note that if there is an 80% probability that Θ falls in the credible interval [0.7089, 

0.9142]. Written out, P(Θ ∈ [0.7089, 0.9142]) = 0.8. Then this is correct because Θ is not a 

random variable. 

Interpretation of confidence interval in the same manner is left as an exercise for the 

Readers. For this they should always keep the following in mind: 

“Interval estimates are the estimates of parameters that include an allowance for 

sampling uncertainty – have long been touted as a key component of statistical analyses. 

There are several kinds of interval estimates, but the most popular are confidence intervals 

(CIs): intervals that contain the true parameter value in some known proportion of repeated 

samples, on average. The width of confidence intervals is thought to index the precision of an 

estimate; CIs are thought to be a guide to which parameter values are plausible or reasonable; 

and the confidence coefficient of the interval (e.g., 95 %) is thought to index the plausibility 

that the true parameter is included in the interval”. 

10.5 Testing of Hypothesis 

This topic has already been covered under the topic “Posterior Odd Ratio and 

Bayesian Testing of Hypothesis” in detail in Block 2. In brief, the testing procedure can be 

particularly defined as (in decision theoretic format): 
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For testing 

i.e choosing with prob. 0 and with prob.1.

     Or 

Some other concepts like equalizer rules, and Wald’s procedure for testing another 

comparatively easier approach is based on odds ratios based approach namely Bayes factor. 

Let an event A occurs with probability P[A], then the ratio P[A]/(1-P[A]) is called 

odds in favour of A (say O[A]) and (1-P[A])/P[A] is called odds against A. Hence, in usual 

notations, using Bayes theorem, we get O(H0│x)= P(H0│x)/ P(H1│x) called posterior odds 

on H0. Which gives O(H0│x)= O(H0) P(x│ H0)/ P(x│ H1) i.e. O(H0│x)/ O(H0)= P(x│ H0)/ 

P(x│ H1) called the Bayes Factor in favour of H0 (say B01) which isthe ratio of two 

conditional probabilities of data in hand. Jeffreys recommended the following table for 

testing of hypothesis using Bayes Factors: 

Value of Log10 (B10) Description 

0-0.5 Not substantial evidence against H0

0.5-1 Substantial evidence against H0 

1-2 Strong evidence against H0 

>2 Decisive evidence against H0 

10.6 Generalized Bayes Procedures, Admissibility and Minimaxity of 
Bayes 

These topics have already been covered in detail in Block 1 and Block 2. Now recall 

that, 

Definition 3.9: A rule δ is said to be limit of Bayes rules , if for almost all x 
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 (In the sense of distribution) for non-randomized decision rules this definition 

becomes  if   for almost all x. 

Definition 3.10: A rule  is said to be generalized Bayes rules if there exist a measure τ on 

Θ (or non-decreasing function on θ if Θ is real), such that 

 takes on a finite minimum value when 

Definition 3.11: A rule  is said to be extended Bayes rules if  is - Bayes for every . 

In other words,  is extended Bayes rules if for every  there exist a prior distribution τ 

such that  is - Bayes w.r.to τ i.e 

Example 3.8:  let  and let 

  The joint p.d.f of (θ, x) 

Posterior density of θ given x, 

The Bayes rule w.r.to  is posterior mean i.e  

The Bayes risk, 
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Thus d(x)=x is not Bayes. 

But 

Miscellaneous Examples 
Example: Suppose  = ( X1, X2, …….Xn) is a random sample of size n from N(0, ) the 

prior distribution of  is Jeffreys’ non-informative prior g( )  1/ , so that g  is an 

Inverted-Gamma . If we consider the loss to be squared error in log , i.e 

L( ,a) , 

the Bayes estimate of  is a exp (E(log )), where expectation is taken with respect to 

g( . 

since, 

E(log |x)= exp log d

exp (-z) log dz , 

, 

logS- , 

                Where ( )  log  (Jahnke and 

Emde, 1945). For large n, we have a . If we had used SELF to estimate , 

the Bayes estimate of  would have been E(

          On the other hand, if we had used invariant loss function L( ,the 

Bayes estimate of will be 

/

Example (Ferguson, 1967). Suppose  ( , , ……. ) is a random sample from the 

Pareto density 
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f ,           known. 

Using the conjugate prior for the parameter , find the Bayes estimate of  when the loss 

function is  

(i) L ( ,     n

(ii)  L (

(iii) L ( , n

Solution. The likelihood function of , given , is 

exp . 

     Since min  is the sufficient statistic for , the conjugate prior for 

is g( ) . 

The posterior pdf for  is 

g ,   min

(i) The Bayes estimate under L( ) is 

a . 

Since E , 

and E , 

Hence            a 
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10.7 Self-Assessment Exercises 

1. Define the concept of credible sets and their role in inference.

2. Define the relationship between credible sets and testing process.

10.8 Summary 

Though most of the topics in this unit have already been covered but still this unit 

gives a sight to explore those topics in the light of credible sets. Here a few points learnt in 

this unit are 

The basic problem of decision theory is the following: Given a space of actions ₳, and 

a loss function L(θ, δ), find a decision function δ in Ɗ such that the risk R(θ, δ) is "minimum" 

in some sense for all θ e Θ.  

Reasonably smooth prior densities will lead to approximately the same posterior 

density. The uniform density, in most cases, is convenient to simplify calculations of the 

posterior. The argument supports the uniform prior only in those cases where it produces 

approximately the same conclusions as the highly imprecise prior constructed from a 

sufficiently large class of prior densities. If the data are highly informative, the uniform prior 

may produce reasonable inferences. 

    In a classic paper, Neyman (1937) laid the formal foundation for confidence intervals. 

It is easy to describe the practical problem that Neyman saw CIs as solving. Suppose a 

researcher is interested in estimating a parameter θ. Neyman suggests that researchers 

perform the following three steps: 

a. Perform an experiment, collecting the relevant data.

b. Compute two numbers – the smaller of which we can call L, the greater U – forming

an interval (L, U) according to a specified procedure.

c. State that L<θ<U – that is, that θ is in the interval.
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This recommendation is justified by choosing an procedure for step (b) such that in 

the long run, the researcher’s claim in step (c) will be correct, on average, X% of the time. A 

confidence interval is any interval computed using such a procedure. 
Suppose you have iid samples x = (x1, ..., xn) from some distribution with unknown 

parameter Θ. You are in the Bayesian setting, so you have chosen a prior distribution for the 

RV Θ. A 100(1 − α)% credible interval for Θ is an interval [a, b] such that the probability 

(over the randomness in Θ) that Θ lies in the interval is 1 − α:  
P(Θ ∈ [a, b]) = 1 − α 

If we’ve chosen the appropriate conjugate prior for the sampling distribution (like 

Beta for Bernoulli), the posterior is easy to compute. Say the CDF of the posterior is FY . 

Then, a 100(1 − α)% credible interval is given by  
[FY

-1 (α/2), FY
-1 (1- α/2)] 

Note that in frequentist’s approach 95% confidence interval means that with a large 

number of repeated samples, 95% of such calculated confidence intervals would include the 

true value of the parameter. In frequentist terms, the parameter is fixed (cannot be considered 

to have a distribution of possible values) and the confidence interval is random (as it depends 

on the random sample). 

Bayesian credible intervals differ from frequentist confidence intervals by two major aspects: 
• Credible intervals are intervals whose values have a (posterior) probability density,

representing the plausibility that the parameter has those values, whereas confidence

intervals regard the population parameter as fixed and therefore not the object of

probability. Within confidence intervals, confidence refers to the randomness of the very

confidence interval under repeated trials, whereas credible intervals analyses the

uncertainty of the target parameter given the data at hand.
• Credible intervals and confidence intervals treat nuisance parameters in radically

different ways.
For the case of a single parameter and data that can be summarized in a single sufficient 

statistic, it can be shown that the credible interval and the confidence interval coincide if the 
unknown parameter is a location parameter, with a prior that is a uniform flat distribution and 

also if the unknown parameter is a scale parameter, has a Jeffreys' prior — the latter 

following because taking the logarithm of such a scale parameter turns it into a location 

parameter with a uniform distribution. But these are distinctly special (albeit important) 

cases; in general, no such equivalence can be made. 

MScSTAT/MASTAT-301(N)/175



10.9      Further Readings 

• Aït-Sahalia, Y. and Hansen, L.P. (Eds) (2010) Handbook of financial econometrics, Vol

2, North Holland Pub.
• Berger, J.O. (1993) Statistical Decision Theory and Bayesian Analysis, Springer Verlag.

• Bolstad, William M.; Curran, James M. (2016). "Comparing Bayesian and Frequentist

Inferences for Mean". Introduction to Bayesian Statistics (Third ed.). John Wiley &

Sons. pp. 237–253.
• Gemerman, D and Lopes, H. F. (2006) Markov Chain Monte Carlo: Stochastic

Simulation for Bayesian Inference, Chapman Hall.

• Jaynes, E. T. (1976). "Confidence Intervals vs Bayesian Intervals", in Foundations of

Probability Theory, Statistical Inference, and Statistical Theories of Science, (W. L.

Harper and C. A. Hooker, eds.), Dordrecht: D. Reidel, pp. 175 et seq

• Kahneman, D.; Tversky, A. (1982). Judgement under Uncertainty: Heuristics and

Biases. Cambridge University Press.

• Kalos, Malvin H.; Whitlock, Paula A. (2008). Monte Carlo Methods. Wiley-VCH.

• Lee, P.M. (1997) Bayesian Statistics: An Introduction, Arnold.

• Leonard, T. and Hsu, J.S.J. (1999) Bayesian Methods, Cambridge University Press.

• Lindley, D.V. (1965). Introduction to probability and statistical inference from Bayesian

view point, Cambridge university press.

• Mazhdrakov, M.; Benov, D.; Valkanov, N. (2018). The Monte Carlo Method.

Engineering Applications. ACMO Academic Press.

• Robert, C.P. (1994). The Bayesian Choice: A Decision Theoretic Motivation, Springer.

• Robert, C.P. and Casella, G. (2004) Monte Carlo Statistical Methods, Springer Verlag.

• Ross, S.M. (2023) Simulation, Elsevier Inc.

• Rubinstein, R. Y.; Kroese, D. P. (2007). Simulation and the Monte Carlo

Method (2nd ed.). New York: John Wiley & Sons.

MScSTAT/MASTAT-301(N)/176



Unit-11: Bayesian Robustness 

Structure 
11.1       Introduction 

11.2       Objectives 

11.3      Ideas of Bayesian Robustness 

11.4      Asymptotic Expansion for Posterior Density 

11.5      Bayesian Calculations 

11.6      Monto Carlo Integration 

11.7      Markov Chain Monto Carlo Techniques 

11.8      Self-Assessment Exercises 

11.9  Summary 

11.10  Further Readings 

11.1    Introduction 

Bayesian analysis, also called Bayesian sensitivity analysis, is a type of sensitivity 

analysis applied to the outcome from Bayesian inference or Bayesian optimal decisions. 

Robust Bayesian analysis, also called Bayesian sensitivity analysis, investigates the 

robustness of answers from a Bayesian analysis to uncertainty about the precise details of the 

analysis. Robust Bayes methods acknowledge that it is sometimes very difficult to come up 

with precise distributions to be used as priors. Likewise, the appropriate likelihood function 

that should be used for a particular problem may also be in doubt. In a robust Bayes 

approach, a standard Bayesian analysis is applied to all possible combinations of prior 

distributions and likelihood functions selected from classes of priors and likelihoods 

considered empirically plausible by the analyst. In this approach, a class of priors and a class 

of likelihoods together imply a class of posteriors by pair-wise combination through Bayes 

rule. 

11.2     Objectives 

After studying this unit, you should be able to 
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• Define the idea of Bayesian Robustness.

• Define Markov Chain Monte Carlo (MCMC) techniques.

• List the methods involved in Monte Carlo integration.

11.3 Ideas of Bayesian Robustness 

Broadly robustness defines the sensitivity of the estimates. Bayesian analysis, also 

called Bayesian sensitivity analysis, is a type of sensitivity analysis applied to the outcome 

from Bayesian inference or Bayesian optimal decisions. Robust Bayesian analysis, also called 

Bayesian sensitivity analysis, investigates the robustness of answers from a Bayesian analysis 

to uncertainty about the precise details of the analysis. Robust Bayes methods acknowledge 

that it is sometimes very difficult to come up with precise distributions to be used as priors. 

Likewise, the appropriate likelihood function that should be used for a particular problem 

may also be in doubt. In a robust Bayes approach, a standard Bayesian analysis is applied to 

all possible combinations of prior distributions and likelihood functions selected from classes 

of priors and likelihoods considered empirically plausible by the analyst. In this approach, a 

class of priors and a class of likelihoods together imply a class of posteriors by pair-wise 

combination through Bayes rule. Robust Bayes also uses a similar strategy to combine a class 

of probability models with a class of utility functions to infer a class of decisions, any of 

which might be the answer given the uncertainty about best probability model and utility 

function. In both cases, the result is said to be robust if it is approximately the same for each 

such pair. If the answers differ substantially, then their range is taken as an expression of how 

much (or how little) can be confidently inferred from the analysis. 

Robust Bayesian analysis, also called Bayesian sensitivity analysis, investigates the 

robustness of answers from a Bayesian analysis to uncertainty about the precise details of the 

analysis. An answer is robust if it does not depend sensitively on the assumptions and 

calculation inputs on which it is based. Robust Bayes methods acknowledge that it is 

sometimes very difficult to come up with precise distributions to be used as priors. Likewise 

the appropriate likelihood function that should be used for a particular problem may also be 

in doubt. In a robust Bayes approach, a standard Bayesian analysis is applied to all possible 

combinations of prior distributions and likelihood functions selected from classes of priors 

and likelihoods considered empirically plausible by the analyst. In this approach, a class of 
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priors and a class of likelihoods together imply a class of posteriors by pairwise combination 

through Bayes' rule. Robust Bayes also uses a similar strategy to combine a class of 

probability models with a class of utility functions to infer a class of decisions, any of which 

might be the answer given the uncertainty about best probability model and utility function. 

In both cases, the result is said to be robust if it is approximately the same for each such pair. 

If the answers differ substantially, then their range is taken as an expression of how much (or 

how little) can be confidently inferred from the analysis. 

Although robust Bayes methods are clearly inconsistent with the Bayesian idea that 

uncertainty should be measured by a single additive probability measure and that personal 

attitudes and values should always be measured by a precise utility function, they are often 

accepted as a matter of convenience (e.g., because the cost or schedule do not allow the more 

painstaking effort needed to get a precise measure and function). Some analysts also suggest 

that robust methods extend the traditional Bayesian approach by recognizing incertitude as of 

a different kind of uncertainty. Analysts in the latter category suggest that the set of 

distributions in the prior class is not a class of reasonable priors, but that it is rather a 

reasonable class of priors. The idea is that no single distribution is reasonable as a model of 

ignorance, but considered as a whole, the class is a reasonable model for ignorance. 

Robust Bayes methods are related to important and seminal ideas in other areas of 

statistics such as robust statistics and resistance estimators. The arguments in favor of a 

robust approach are often applicable to Bayesian analyses. For example, some criticize 

methods that must assume the analyst is "omniscient" about certain facts such as model 

structure, distribution shapes and parameters. Because such facts are themselves potentially 

in doubt, an approach that does not rely too sensitively on the analysts getting the details 

exactly right would be preferred. 

There are several ways to design and conduct a robust Bayes analysis, including the 

use of (i) parametric conjugate families of distributions, (ii) parametric but non-conjugate 

families, (iii) density-ratio (bounded density distributions), (iv) ε-contamination, 

mixture, quantile classes, etc., and (v) bounds on cumulative distributions. Although 

calculating the solutions to robust Bayesian problems can, in some cases, be computationally 

intensive, there are several special cases in which the requisite calculations are, or can be 

made, straightforward. 
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11.4      Asymptotic Expansion for Posterior Density 

A framework for Bayesian inference: - Additional information which may update 

beliefs about are usually in the form of observed data  The information 

regarding  contained in the data is represented by the likelihood function. Bayes’ theorem 

can also be used to update beliefs about a parameter θ after data are observed. The updated 

beliefs are represented by the posterior distribution. The posterior distribution, which 

summarizes all the information available about  after observing data, is the primary focus of 

Bayesian inference. 

Beliefs about an unknown parameter  are also represented probabilistically in 

Bayesian statistics. A subjective estimate can be made of the probability that the value of is 

, say, that is, of the probability , for some value . 

If you are certain that , then . However, the value of  is 

rarely known with certainty. Instead, there will be other values of  that are possible. Usually, 

the possible values of  are all values in some continuous interval. For example, if  is a 

proportion, then the true value of could potentially be any value in the interval . 

However, for simplicity, first suppose that can only be one of a set of discrete values 

. For each possible value , the probability  can be estimated 

subjectively, so that represents beliefs about whether or not . If 

 is estimated for all possible values of , then these probabilities will form a 

probability distribution for . This probability distribution gives a probabilistic representation 

of all the available knowledge about the parameter θ, and is known as the prior distribution, 

or simply the prior. 

Suppose that the random variable  has some distribution with unknown parameter . 

If it were known that the value of  is , then the distribution of  would be known exactly. 

If  is discrete then, conditional on , the (conditional) probability mass function 
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 can be written down. Similarly, if  is continuous, the conditional probability 

density function  can be written down. 

Given an observation  on a discrete random variable , the value of the conditional 

p.m.f.  can be calculated for each possible value  of θ. Since a value is 

defined for each possible value of , these values can be viewed as values of a function of , 

which can be written . This function is called the likelihood function, or simply the 

likelihood. It represents how likely the possible values of θ are for the observed data . 

More generally, in a statistical inference problem, the data consist of  independent 

observations on . In this case, the likelihood is of the following form: 

 if   is discrete, 

 if   is continuous. 

11.5 Bayesian Calculation 

Suppose a 30-year-old man has a positive blood test for a prostate cancer marker 

(PSA). Assume this test is also approximately 90% accurate. In this situation, the individual 

would like to know the probability that he has prostate cancer, given the positive test, but the 

information at hand is simply the probability of testing positive if he has prostate cancer, 

coupled with the knowledge that he tested positive. Bayes theorem offers a way to reverse 

conditional probabilities and, hence, provides a way to answer these questions. 

Bayesian probability is one of the major theoretical and practical frameworks for 

reasoning and decision making under uncertainty. The historical roots of this theory lie in the 

late 18th, early 19th century, with Thomas Bayes and Pierre-Simon de Laplace. 

In its raw form, Bayes Theorem is a result in conditional probability, stating that for 

two random quantities and , 

, 
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where  denotes a probability distribution, and  a conditional distribution. 

Where  represents data and  represents parameters in a statistical model, Bayes Theorem 

provides the basis for Bayesian inference. The 'prior' distribution  (epistemological 

uncertainty) is combined with 'likelihood'  to provide a 'posterior' distribution 

(updated epistemological uncertainty): the likelihood is derived from an aleatory sampling 

model  but considered as function of  for fixed . 

11.6  Monto Carlo Integration 

Monte Carlo methods are numerical techniques which rely on random sampling to 

approximate their results. Monte Carlo integration applies this process to the numerical 

estimation of integrals. Monte Carlo integration uses random sampling of a function to 

numerically compute an estimate of its integral. 

One of the earliest applications of random numbers was in the computation of 

integrals. Let g(x) be a function and suppose we wanted to compute θ where 

To compute the value of θ, note that if U is uniformly distributed over (0, 1), then we 

can express θ as  

θ = E [g(U)] 

If U1, U2, ... ,Uk are independent uniform (0,1) random variables, it thus follows that 

the random variables g(U1), g(U2), ..., g(Uk) are independent and identically distributed 

random variables having mean θ. Therefore, by the strong law of large numbers, it follows 

that, with probability 1, 
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Hence, we can approximate θ by generating a large number of random numbers ui and 

taking as our approximation the average value of g(ui). This approach to approximating 

integrals is called the Monte Carlo approach. 

If we wanted to compute 

then, by making the substitution y = (x − a)/(b − a), dy = dx/(b − a), we see that 

where h(y) = (b − a)  g(a + [b − a]y). Thus, we can approximate θ by continually generating 

random numbers and then taking the average value of h evaluated at these random numbers. 

Similarly, if we wanted 

we could apply the substitution y = 1/(x + 1), dy = −dx/(x + 1)2 = −y2 dx, to obtain the 

identity 

where 

h(y) =g(y-1 – 1)/y2 

Similarly, the utility of using random numbers to approximate integrals becomes more 

apparent in the case of multidimensional integrals.  

Inverse Transform Sampling Method: 
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Most common problem in using Monte Carlo techniques is generating random 

samples. And the foremost answer to this problem is inverse transform method. Inverse 

transform sampling method (also known as inversion sampling, the inverse probability 

integral transform, the inverse transformation method, or the Smirnov transform) is a basic 

method for pseudo-random number sampling, i.e., for generating sample numbers 

at random from any probability distribution given its cumulative distribution function. 

Inverse transformation sampling takes uniform samples of a number say u between 0 

and 1, interpreted as a probability, and then returns the smallest number x ϵ Ω such that F(x) 

≥ u for the cumulative distribution function F of a random variable. For example, suppose we 

want to generate an observation from F being the distribution of exponential distribution with 

mean µ. Here, F(x) = 1- exp(x/µ). We will follow the steps given below to  

Step 1: Generate a random observation from Uniform (0, 1), say u. 

Step 2: Calculate x=µ{Loge(1-u)} 

This x will be an observation from exponential (µ). Repeat step 1 and step 2 for ‘n’ 

times to generate a random sample of size ‘n’. 

The Acceptance–Rejection Technique: 

Main issue with the above-mentioned technique is that using this technique for a 

complex distribution function is not easy. In all such cases another random number 

generation technique namely, acceptance–rejection technique may be useful. The 

acceptance–rejection technique is defined as follows: 

In Acceptance–Rejection sampling, first we sample a point on the x-axis from the 

proposal distribution. Then, we draw a vertical line at this x-position, up to the maximum y-

value of the probability density function of the proposal distribution. And then sample 

uniformly along this line from 0 to the maximum of the probability density function. If the 

sampled value is greater than the value of the desired distribution at this vertical line, reject 

the x-value and return to starting step; else the x-value is a sample from the desired 

distribution. 
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This algorithm can be used to sample from the area under any curve, regardless of 

whether the function integrates to 1. In fact, scaling a function by a constant has no effect on 

the sampled x-positions.  

Step by step process of acceptance–rejection method is as follows:

Step 1: Simulate the value of Y, having probability mass function qj. 

Step 2: Generate a random number U. 

Step 3: If U < pY /cqY , set X = Y and stop. Otherwise, return to Step 1. 

Example: (The Estimation of π) Suppose that the random vector (X,Y) is uniformly 

distributed in the square of area centred at the origin. That is, it is a random point in the 

region specified in Fig. 3.1. Let us consider now the probability that this random point in the 

square is contained within the inscribed circle of radius 1  

Note that since (X, Y) is uniformly distributed in the square, it follows that 

P{(X,Y) is in the circle} = P{X2 + Y2 ⩽ 1} 

= Area of the circle/Area of the square = π/4 
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Hence, if we generate a large number of random points in the square, the proportion 

of points that fall within the circle will be approximately π/4. Now if X and Y were 

independent and both were uniformly distributed over (−1,1), their joint density would be 

f (x,y) = f (x)f (y) = 1/4, st (−1 ⩽ x ⩽ 1, −1 ⩽ y ⩽ 1) 

Since the density function of (X,Y) is constant in the square, it thus follows (by 

definition) that (X,Y) is uniformly distributed in the square. Now if U is uniform on (0, 1), 

then 2U is uniform on (0, 2), and so 2U − 1 is uniform on (−1,1). Therefore, if we generate 

random numbers U1 and U2, set X = 2U1 − 1 and Y = 2U2 − 1, and define 

Then, E [I] = P{X2 + Y2 ⩽ 1} = π/4 

Hence we can estimate π/4 by generating a large number of pairs of random numbers 

u1,u2 and estimating π/4 by the fraction of pairs for which (2u1 −1)2 +(2u2 −1)2 ⩽1. 

11.7 Markov Chain Monto Carlo Techniques 

Markov Chain Monte Carlo (MCMC) techniques are methods for sampling from 

probability distributions using Markov chains. MCMC methods are used in data modeling for 

Bayesian inference and numerical integration. MCMC techniques aim to construct cleverly 

sampled chains which draw samples which are progressively more likely realizations of the 

distribution of interest. Here, Monte Carlo methods are numerical techniques which rely on 

random sampling to approximate their results. Monte Carlo integration applies this process to 

the numerical estimation of integrals. Monte Carlo integration uses random sampling of a 

function to numerically compute an estimate of its integral. Suppose that we want to integrate 

the one-dimensional function  from to : 

We can approximate this integral by averaging samples of the function f at uniform 

random points within the interval. Given a set of N uniform random variables 
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with a corresponding pdf of , the Monte Carlo estimator for computing  is 

The random variable  can be constructed by warping a canonical random 

number uniformly distributed between zero and one, 

Markov chain - Monte Carlo technique. 

Markov Chain Monte Carlo (MCMC) techniques are methods for sampling from 

probability distributions using Markov chains. MCMC methods are used in data modeling for 

Bayesian inference and numerical integration. Monte Carlo techniques are sampling methods. 

Direct simulation: Let be a random variable with distribution ; then the 

expectation is given by: 

which can be approximated by drawing samples from and then evaluating 

. 

Thus, MCMC techniques aim to construct cleverly sampled chains which (after a burn in 

period) draw samples which are progressively more likely realizations of the distribution of 

interest; the target distribution. Following section discusses a few MCMC algorithms: 

1. Gibbs Sampling: The simplest MCMC algorithm is called the Gibbs sampler. When

it is possible to directly sample iteratively from all of the complete conditionals, the

resulting MCMC algorithm is a Gibbs sampler. Thus, this method requires all the

conditional distributions of the target distribution to be sampled exactly. When

drawing from the full-conditional distributions is not straightforward other samplers-

within-Gibbs are used. Gibbs sampling is popular partly because it does not require

any 'tuning'. Algorithm structure of the Gibbs sampling highly resembles that of the

coordinate ascent variational inference in that both algorithms utilize the full-

conditional distributions in the updating procedure.
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Algorithm of Gibbs Sampler: 

Given (Θ(0), X(0)) 

1. Draw Θ(1) ∼ p(Θ│ X(0), Y)

2. Draw X(1) ∼  p(X│ Θ (1), Y)

Continuing in this fashion, the Gibbs sampler generates a sequence of random 

variables, 

{Θ (g), X(g)}g = 1, 2, ..., G; which converges to p(Θ, X|Y). 

As the situation varies from this simple case, the experimenter switches to 

other versions of Gibbs sampler or some other methods. 

2. Metropolis–Hastings algorithm: This method generates a Markov chain using a

proposal density for new steps and a method for rejecting some of the proposed

moves. It is actually a general framework which includes as special cases the very

first and simpler MCMC (Metropolis algorithm) and many more recent alternatives

listed below:

In some cases, one or more of the conditional distributions cannot be 

conveniently sampled, and thus the Gibbs sampler does not apply. For example, in 

models that are nonlinear in the parameters, parameter conditional distribution may be 

unrecognizable. In other cases, the distribution might be known, but there are not 

efficient algorithms for sampling from it. In these cases, a very general approach 

known as the Metropolis–Hastings algorithms will often apply. To generate samples 

from π(Θ), a Metropolis–Hastings algorithm requires the researcher to specify a 

recognizable proposal or candidate density q(Θ(g+1)│ Θ(g+1)). In most cases this 

distribution will depend critically on the other parameters, the state variables and the 

previous draws for the parameter being drawn. Similarly, a few extensions of 

Metropolis–Hastings algorithm like Metropolis-adjusted Langevin algorithm and 

other methods that rely on the gradient (and possibly second derivative) of the log 

target density to propose steps that are more likely to be in the direction of higher 

probability density. Also, Pseudo-marginal Metropolis–Hastings, the method that 

replaces the evaluation of the density of the target distribution with an unbiased 

estimate and is useful when the target density is not available analytically, e.g. latent 

variable models. 
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Implementing Metropolis–Hastings requires only drawing from the proposal, drawing 

a uniform random variable, and evaluating the acceptance criterion.  Intuitively, this 

algorithm “decomposes” the unrecognizable conditional distribution into two parts: a 

recognizable distribution to generate candidate points and an unrecognizable part 

from which the acceptance criteria arises. The acceptance criterion insures that the 

algorithm has the correct equilibrium distribution. Continuing in this manner, the 

algorithm generates samples with required distribution as limiting distribution. 

The Metropolis–Hastings algorithm significantly extends the number of 

applications that can be analyzed as the complete conditionals conditional density 

need not be known in closed form. A number of points immediately emerge like 

Gibbs sampling is a special case of Metropolis–Hastings and that the acceptance 

probability is always one and the algorithm always moves. As Gibbs sampling is a 

special case of Metropolis, one can design algorithms consisting of Metropolis–

Hastings or Gibbs steps as it is really only Metropolis. The case with both Metropolis 

and Gibbs steps is generally called a hybrid algorithm. Also, the Metropolis–Hastings 

algorithm allows the functional form of the density to be non-analytic, for example, 

which occurs when pricing functions require the solution of partial or ordinary 

differential equations. One only has to evaluate the true density at two given points. 

Furthermore, there is an added advantage when there are constraints in the parameter 

space one can just reject these draws. Alternatively, sampling can be done conditional 

on specific region. This provides a convenient approach for analyzing parameter 

restrictions imposed by economic models. 

Algorithm of Metropolis-Hastings method: 

Step 1: Draw Θ(g+1) from the proposal density q(Θ(g+1)│ Θ(g)) 

Step 2: Accept Θ(g+1) with probability α (Θ(g), Θ(g+1)) 

where, 

α (Θ(g), Θ(g+1)) = Min [{π (Θ(g+1)/q(Θ(g+1)│Θ(g))/ π (Θ(g)/q(Θ(g)│Θ(g+1))}, 1] 
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1. Define the concept MCMC techniques.

2. Obtain the value of pi using any simulation method.

3. Solve the following integrals:

(i)  

(ii) 

Also compare your results with exact values and comment. 

11.9 Summary 

Robustness is the property of being strong and healthy in constitution. When it is 

transposed into a system, it refers to the ability of tolerating perturbations that might affect 

the system's functional body. In the same line robustness can be defined as "the ability of a 

system to resist change without adapting its initial stable configuration" or Robustness in the 

small refers to situations wherein perturbations are small in magnitude, which considers that 

the "small" magnitude hypothesis can be difficult to verify because "small" or "large" 

depends on the specific problem. Conversely, "Robustness in the large problem" refers to 

situations wherein no assumptions can be made about the magnitude of perturbations, which 

can either be small or large. Furthermore, robustness has two dimensions: resistance and 

avoidance. 

Asymptotic Expansion often occur when an ordinary series is used in a formal 

expression that forces the taking of values outside of its domain of convergence. Usually, in 

scientific applications, only a finite number of coefficients are known. Typically, as 

n increases, these coefficients settle into a regular behaviour determined by the nearest 

radius-limiting singularity. Asymptotic Expansion for Posterior Density is also focused on 

obtaining the convergence on sequence of respective estimates for the unknown parameters 

of population under study. 

Bayesian Calculations, Monto Carlo techniques and Markov Chain Monto Carlo 

Techniques are used to handle so many real-world problems where conducting a real 

experiment is either not feasible or too expensive. Also, all those problems whose analytical 

solution is not easily achievable can very easily be solved using these techniques with a given 

11.8    Self-Assessment Exercises 
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level of confidence. Further, Markov chain Monte Carlo methods are used to study 

probability distributions that are too complex or too highly dimensional to study with analytic 

techniques alone. 
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Notes
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