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BLOCK INTRODUCTION 

Real analysis is a mathematical discipline focused on the study of real numbers and real-valued 

functions. It involves a rigorous examination of fundamental concepts like limits, continuity, 

differentiation, integration, and the behavior of sequences and series of real numbers. Real analysis serves 

as the theoretical foundation of calculus and finds applications across various fields, including physics, 

engineering, and economics. The Riemann-Stieltjes integral is a significant extension of the Riemann 

integral, allowing for the integration of functions that are not necessarily continuous but possess bounded 

variation. Named after Bernhard Riemann and Thomas Stieltjes, this integral broadens the scope of 

integration to a wider class of functions, providing a more adaptable approach to integration. 

In addition to its role in extending integration concepts, the Riemann-Stieltjes integral plays a 

crucial role in probability theory and statistics. It is employed to define the expectations of random 

variables with respect to specific distribution functions, facilitating a deeper understanding of various 

probabilistic concepts and statistical methods. The Riemann-Stieltjes integral finds application in the 

theory of differential equations, where it is utilized to define the integral of functions multiplied by 

distributions. This application is particularly valuable in the study of systems characterized by 

discontinuous or singular inputs. 

In the first unit, we shall have discussed the Partition, lower and upper Riemann-Stieltjes sums, 

lower and upper Riemann-Stieltjes integrals, Definition of Riemann-Stieltjes integral, necessary and 

sufficient condition for Riemann-Stieltjes integrability, algebra of Riemann-Stieltjes integrable functions. 

In the second unit we shall discuss the Integral Function, primitive, fundamental theorem of integral 

calculus, integration by parts, Integration of vector-valued functions. In the third unit we shall discuss 

about Uniformly bounded sequence, uniform convergence of sequences, Uniform convergence of a series 

of function, Cauchy’s general principle of uniform convergence, test for uniform convergence. Power 

series, Cauchy’s theorem on limits, Radius of convergence, Uniform convergence of power series. Abel’s 

and Tauber’s theorems are discussed in details in unit fourth. 

 

 

 

 

 

 



 

 

 

 

 

 

 

UNIT 1 RIEMANN INTEGRAL 

Structure 

1.1 Introduction 

1.2 Objectives 

1.3 Partition of a closed Interval 

1.4 Lower Riemann Sum and Upper Riemann Sum 

1.5 Lower and Upper Riemann Integral 

1.6 Another definition of Riemann Integrable 

1.7 Lower and Upper Riemann-Stieltjes Sums 

1.8 Lower Riemann-Stieltjes Integral and Upper Riemann-Stieltjes Integral  

1.9 The Riemann-Stieltjes Integral 

1.10 The Riemann-Stieltjes Integral as a limit Sums 

1.11 Properties of Riemann-Stieltjes Integral 

1.12 Algebra of Riemann-Stieltjes Integrable Function 

1.13 Summary 

1.14 Terminal Questions 

 

1.1 INTRODUCTION 

In 1850 the german mathematician G.F.B. Riemann (1826-1866) gave a purely arithmatic approach to 



formulate and independent theory of integration. Riemann Theory lead others to invent others to invent 

other integration theories. The most significant being legesgue theory of integration. The Riemann integral 

is a fundamental concept in calculus that defines the definite integral of a function over a closed interval. 

It is named after the mathematician Bernhard Riemann, who introduced the integral in the mid-19th 

century. The Riemann integral is based on the idea of approximating the area under a curve by dividing 

the interval into smaller subintervals and forming rectangles whose areas approximate the area under the 

curve. As the width of the subintervals approaches zero, the sum of the areas of these rectangles converges 

to the Riemann integral of the function over the interval. In this unit we shall discuss the Riemann integral 

of real valued bounded functions defined on some closed interval. We shall also discuss refinemonts and 

extension of Riemann theory due to Thomas Jan stieltjes known Riemann-stieltjes integration. 

1.2 OBJECTIVES 

After reading this unit the learner should be able to understand about the: 

 Partition of a closed interval 

 lower Riemann sum and upper Riemann sum 

 lower and upper Riemann integral 

 lower and upper Riemann-Stieltjes Sums 

 Riemann –Stieltjes Integral and properties 

 Algebra of Riemann=Stieltjes Integrable Function 

 

1.3 PARTITION OF A CLOSED INTERVAL 

Let  ,I a b  be a closed and bounded interval then a finite set of real number 

 0 1 2 1, , ,......., ,n nP x x x x x  having the property that 

0 1 2 1............ n na x x x x x b         0Here       and  nx a x b   is called the partition of  ,a b . 

The closed sub-intervals        1 0 1 2 1 2 3 2 3 1, , , , , ,............, ,n n nI x x I x x I x x I x x    are 

called segments of the partition where i.e., length of  1 Here ,r r rI x x   The norm 

of a partition P is the maximum of defined as  max : 1,2,3,...,rP x r n    

i.e.,         1 0 2 1 3 2 1max , , ,...., n nP x x x x x x x x      . 

A portition is called a refinement of another partion P if and only if  i.e., every point P 

is used to build . 

If 1P  and  are any two partitions of  ,a b  then *

1 2P P P is called common refinement of 

 and . 

 

rx 1r r rx x x    rI

rx

*P *P P
*P

2P

1P 1P



1.4 LOWER RIEMANN SUM AND UPPER RIEMANN SUM 

Let be a bounded real valued function defined on  ,a b and let be 

a partition of  ,a b . Let infimum of in I   1 Here ,r r rI x x  

supremum of in rI  respectively, then  

 1 1 2 2 ........ n nm x m x m x       is called the lower-Riemann sum  

and  is called the upper-Riemann sum. 

Note: (1) Riemann sum is also known on Darbou sum. 

(2) is called oscillatory sum for the function corresponding to 

the partition P of . It is denoted by  i.e., . 

Here we are giving some important theorems with and without proof and definitions of riemann integral.  

Theorem.1. Let be a bounded function on . Let be a partition of . If is a refinement 

of P then and  

Theorem.2: Let P be a partion of . Let  and  be any two partion of  such that  

then  

Theorem.3: Let be a bounded function on and let P be a partition of . Then 

and . 

 

1.5 LOWER AND UPPER RIEMANN INTEGRAL 

Lower Riemann integral  

  

     
0

.  or lim , .
b b

a aP
f x dx L P f L P f f


     

Upper Riemann integral  

  

f  0 1 2 1, , ,..., ,n nP a x x x x x 

rm  f r

rM  f

 
1

,
n

r r

r

L P f m x


 

 
1

,
n

r r

r

U P f M x


   1 1 2 2 ..... n nM x M x M x      

x

     
1

, ,
n

r r r

r

U P f L P f M m x


    f

 ,a b  ,w P f      , , ,w P f U P f L P f   

f  ,a b P  ,a b *P

   *, ,L P f L P f    *, ,U P f U P f

 ,a b 1P 2P  ,a b 1 2P P P

   1 2, ,U P f L P f

,f g  ,a b  ,a b

     , , ,L P f g L P f L P g        , , ,U P f g U P f U P g  

     sup. of .  for all partitions ,
b

a
f x dx L P f a b

      infimum of ,  of all partitions of ,
b

a
f x dx U P f a b



   ,
b

a
f x dx U P f     or    

0
lim ,

b

a P
f U P f


 . 

Note: (I). If  ,
b b

a a
f f f R a b    i.e., is Riemann integrable  

(2)  

(3)  

(4)  

Theorem.4. Let be a bounded function defined on then for every such that 

and for a partition P of with . 

Theorem.5: A necessary and sufficient condition for R-integrability of a function on 

is for a partition P of such that for P and all its refinements . 

 

1.6 ANOTHER DEFINITION OF RIEMANN INTEGRABLE 

A function define on  ,a b is said to be Riemann integrable over  ,a b if and only if for 

every there exists a  and a number I such that for every partition 

 0 1, ,....., nP a x x x b   of with and for every hence of  

 

 
b

a
I f x dx    

i.e., I is R- integrable. 

Now, we shall discuss the riemann-stieltjes integral which is a refinement and extension of riemann 

theory. 

 

1.7 LOWER AND UPPER RIEMANN-STIELTJES SUMS 

Let be a real valued function defined on a closed interval and let be a monotonically 

increasing (real valued) function on . Let 
 
be a partition of with 

 

f

b b

a a
f f   

b b

a a
f f   

b b

a a
f f 

f  ,a b 0, 0   

 ,
b

a
U P f f    ,

b

a
L P f f    ,a b P 

 : ,f a b R  ,a b

0,    ,a b    0 , ,U P f L P f   

f

0  0 

 ,a b P    1,r r rx x 

  1

1

n

r r r

r

f x x I 



  

f  ,a b g

 ,a b  0 1 2, , ,...., nP a x x x x b    ,a b

 1, , 1,2,3,....,r r rI x x r n 



We taken as is monotonically increasing function. 

Let inf  

 

 

 

Then is called lower Riemann-stieltjes sums 

And is called upper Riemann-stieltjes sums. 

Theorem.6. Let be a bounded function on and let be a monotonically increasing (real valued) 

function on . Let P be a partition of . If is refinement of Pthen  

 

 

Proof: Let be a partition of . Let 

be a refinement of P. 

Let       

  

  

  

  

 respectively  

Then we have 

   

And  

Here has two subintervals more that P namely and respectively 

   1 , 1,2,....,r r rg g x g x r n    ,0rg  g

m    f x a x b 

  supM f x a x b  

  infr rm f x x I 

  supr rM f x x I 

 
1

, ,
n

r r

r

L P f g m g


 

 
1

, ,
n

r r

r

U P f g M g


 

f  ,a b g

 ,a b  ,a b *p

   , , *, ,L P f g L P f g

   *, , , ,U P f g U P f g

 0 1 2 1, , ,...., ,n nP a x x x x x b    ,a b

 *

0 1 2 1, , ,..., , , ,....r r nP x x x x y x x

 inf . of   in Ir rm f x

 sup. of   in Ir rM f x

   1' inf . of   in ,r rm f x x y

   1' sup. of   in ,r rM f x x y

   " inf . of   in ,r rm f x y x

   " sup. of   in ,r rM f x y x

' , "r r rM M M

' , "r r rm m m

*P  1,rx y  , ry x

       1

1

, , *, ,
n

r r r

r

U P f g U P f g M g x g x 



     



 

But  

  

 

 

 

Similarly  

  

Therefore, equation (2) and (3) give the required result. 

Theorem.7. Let  and be any two partitions of such that . Let g be monotonically 

function on then  

Proof: Let  

It means P contains more subintervals then and separately. 

  

  

And   

  

We know that  

   

Equations (1), (2),(3),(4) and (5) imply 

 

 i.e., Proved. 

Note: Here is defined on  we mean (i) be a set of reals. 

(ii) In future g will be understood monotonocally increasing (real valued) on 
 
unless otherwise stated. 

 

1.8 LOWER RIEMANN-STIELTJES INTEGRAL AND UPPER 

         1

1 1

' '' ___________ 1
n n

r r r r

r r

M g y g x m g x g y

 

 
      
 
 

       1' ''r r r rM g y g x M g x g y        

       1r r r rM g y g x M g x g y         

   1r r rM g x g x    

       1' ''r r r rM g y g x M g x g y              1r r rM g x g x    

     *, , , , __________ 2U P f g U P f g 

     , , *, , ___________ 3L P f g L P f g

1P 2P  ,a b 1 2P P P

 ,a b    1 2, , , ,U P f g L P f g

1 2P P P

1P 2P

     1, , , , ___________ 1U P f g U P f g 

     2, , , , ___________ 2U P f g U P f g

     1, , , , _____________ 3L P f g L P f g

     2, , , , _____________ 4L P f g L P f g

     , , , , _____________ 5L P f g U P f g



       2 1, , , , , , , ,L P f g L P f g U P f g U P f g  

   2 1, , , ,L P f g U P f g     1 2, , , ,U P f g L P f g

f  ,a b  : , ,f a b R R

 ,a b



RIEMANN-STIELTJES INTEGRAL 

Let be a bounded function and g be a monotonocally increasing function on  then lower-Riemann 

stieltjes integral of relative to on is the supermum of  i.e., 

. 

And upper Riemann-stieltjes integral of relative to g on is the infimum of  

i.e.,  

Theorem.8. Let be a bounded function and be monotonically increasing function on . Then 

 

Proof: We know if and be any two partitions of such that then we have 

 

Taking the supermum over all taking fixed, we get  

                             ………(2) 

Again, Taking the infimum over all ,we have from (2)  

 Proved. 

 

1.9 THE RIEMANN-STIELTJES INTEGRAL 

Let be a bounded function and g be monotonically increasing function on . Then is said to be 

Riemann-stieltjes integrable (Or RS-integrable) if and only if i.e., integrable

    

i.e. integral we mean . Or  

Note. we mean . 

Theorem.9: Let be a bounded function and be a monotonically increasing function on  , .a b Then 

for every There exists such that and for all 

f  ,a b

f g  ,a b  , ,L P f g

 sup. , ,
b

a
f dg L P f g

 ,a b  , ,U P f g

 inf . , ,
b

a
f dg U P f g

f g  ,a b

b b

a a
f dg f dg 

1P 2P  ,a b 1 2P P P

     1 2, , , , ________ 1L P f g U P f g

1,P 2P

 2 , ,
b

a
f dg U P f g  1sup , ,

b

a
f dg L P f g 

  

2P

b b

a a
f dg f dg   2 inf , ,

b

a
f dg U P f g 

  

f  ,a b f

b b

a a
f dg f dg  f RS

 , ,a b g  

b b

a a
f dg f dg  

f RS   , ,a b g  
b b

a a
f dg f dg   f RS g

b

a
f dg    

b

a
f x dg x

f g

0,  0   , ,
b

a
U P f g f dg    , ,

b

a
L P f g fdg  



partition p with . 

Proof: Let be a bounded function and g be a monotonically increasing function on Let 

be a partition of then for we have infimum of 

for all P. supremum of for all P.  

So for given There exists partitions  and  of P such that  

  

And   

Let P3 be the common refinement of P1and P2 then 

  

  

From equation (1), (2), (3) &(4), we have  

  

 

Similarly  

 For all partitions P of  with where .  

Theorem.10: Let be a bounded function and g be a monotonically increasing function on . Then 

if and only if for every there exists a partition P such that 

 

Proof: Let be a bounded function and g be a monotonically increasing function on .  

 Let  be a partition of suppose for , we have  

  

To prove  

We know for every partition P 

P 

f  ,a b

 0 1, , ,....., nP a x x x b   ,a b 0, 
b

a
f dg   , ,U P f g

b

a
f dg   , ,L P f g

0,  1P 2P

   1, , __________ 1
b

a
U P f g f dg  

   2 , , __________ 2
b

a
L P f g f dg  

     3 1, , , , __________ 3U P f g U P f g

     4 2, , , , __________ 4L P f g L P f g

   1, , , ,
b

a
U P f g U P f g f dg   

   , , ______ 5
b

a
U P f g f dg   

   , , ______ 6
b

a
L P f g f dg  

 ,a b P  0 

f  ,a b

 f RS g 0 

   , , , ,U P f g L P f g  

f  ,a b

 0 1, ,...., nP a x x x b    ,a b 0 

     , , , , ________ 1U P f g L P f g  

 f RS g



 ______(2)  

From (1) and (2), we get  

  

Take  as is arbitrary  

 

“Only of Part.” Let  To prove given 

 Let be given. Since is the supremum of over all 

partition P, there exists a partition P1 such that 

  

Similarly, since is the infimum of over all partition P, there exists a partition P2 such 

that  

Let so that P is the common refinement of P1 nd P2 then we have  

  

And   

 

Adding (3) & (4) , we get  

, proved. 

Examples- 

Example.1. Let f be a constant function on  defined by and be monotonically increasing 

function on  then 

exists and  

Solution: Let be any partition of . 

   , , , ,
b b

a a
L P f g f dg f dg U P f g   

   0 , , , ,
b b

a a
f dg f dg U P f g L P f g      

b b

a a
f dg f dg     0  

  RS
b b

a a
f dg f dg f g    

 f RS g    , , , ,U P f g L P f g  

 
b b

a a
f RS g f dg f dg    0 

b

a
f dg  , ,L P f g

 1, ,
2

b

a
f dg L P f g


 

b

a
fdg  , ,U P f g

 2 , ,
2

b

a
U P f g f dg


 

1 2P P P

 , ,
2

b

a
f dg L P f g


 

   , , _____ 3
2

b

a
f dg U P f g


 

   , , _______ 4
2

b

a
f dg L P f g


   

   , , , ,
b b

a a
f dg f dg U P f g L P f g     

   , , , ,
b b

a a
U P f g L P f g f dg f dg     

   

 ,a b  f x k g

 ,a b

b

a
f dg    

b

a
f dg k g b g a   

 0 1 2, , ,..., nP a x x x x b    ,a b



 Let . 

Let  in as  

 as  

 

  

  

  

  

   

Similarly, we have 

   

  

 Since  

  

Note:  

Put , we have  

  

 1, , 1,2,...,r r rI x x r n 

 inf ofrm f x rI k  f x k

 sup  of  in r rm f x I k   f x k

sup
b

a
f dg   , ,L P f g

1

sup ,
n

r r

r

m g


     1r r rg g x g x     

   1

1

sup
n

r r

r

k g x g x 



   

           1 0 2 1 1sup ....... n nk g x g x g x g x g x g x         

   0sup nk g x g x   

   
b

a
f dg k g b g a   

 inf , ,
b

a
f dg U P f g

1

inf
n

r

r

k g


 

   k g b g a     
b b

a a
fdg f dg f RS g   

   
b

a
f dg k g b g a    

   1

1 1

n n

r r

r r

gr g x g x 

 

   

1,2,3,.... .r n

   

   

   

1 1 0

2 2 1

3 3 2

g g x g x

g g x g x

g g x g x

  

  

  



  

 

1.10 THE RIEMANN-STIELTJES INTEGRAL AS A LIMIT SUMS 

Let be a bounded function and g be a monotonic increasing function on . Let 

be a partition of and let be an intermedeate 

partition of P such that  

   

Then the sum  

   

  Where  

Is called the riemann-stieltjes of relative to on corresponding to the partition P 

and the intermedeate partition Q. 

Theorem.11: If  
0

im , , ,
P
l S P Q f g


exists, then  f RS g  

And   
0

im , , ,
b

aP
l S P Q f g f dg


   

Proof: Suppose    
0 0

1

im , , , im
n

r r
P P

r

l S P Q f g l f g
 



  exists and is equal to A. 

Therefore, for 0  , There exists 0  such that for every partition P of  ,a b with P  , we have  

  , , ,
2

S P Q f g A


   

 Or     , , , ________ 1
2 2

A S P Q f g A
  

    
 

 

This gives    , , , ,U P f g L P f g   hence  f RS g therefore 
b b b

a a a
f dg f dg f dg   

more over, since  , , ,S P Q f g and 
b

a
f dg lie between  , ,U P f g and  , ,L P f g , therefore 

   

   

   

1 1 2

1

0

1

___________________  Adding qerlically

n n n

n n n

n

r n

r

g g x g x

g g x g x

g g x g x

  





  

  

  

f  ,a b

 0 1, ,..., nP a x x x b    ,a b  1 2, ,....., ,...,r nQ    

1r r rx x  

   
1

, , ,
n

r r

r

S P Q f g f g


 

   1r r rg g x g x   

 or RS -sum f g  ,a b



     , , , , , , ,
b

a
S P Q f g f dg U P f g L P f g      

 , , ,
b

a
S P Q f g f dg     

0
im , , ,

b

aP
l S P Q f g f dg


    

Note: The existance of  
0

im , , ,
P
l S P Q f g


 is a sufficient condition for  f RS g , but it is not a 

necessary condition i.e. there exist a function which are integrable but for which  
0

im , , ,
P
l S P Q f g


does 

not exist. Thus whenever  dim , , ,S P Q f g exist t will be equal to
b

a
f dg but when  f RS g nothing 

can be said about the existance of  
0

im , , ,
P
l S P Q f g


. 

For example, Let be an arbitrary function and , a constant function on . Then for any 

=  

   = 0 

implies that  

Theorem.12: If is continuous and g is monotonically increasing function on , then . 

Moreover, to every there corresponds a such that for every 

partition with and for every intermediate partition 

of P, that is  
0

im , , , .
b

aP
l RS P Q f g f dg


   

Proof: It is given g is monotonically increasing function on , so for choose such that  

 ________  

Also t is given f is a continuous function on  

 is uniformly continuous on  

 for , There exist such that  

whenever ,   

Choose such that Let since is  

continuous on  

is also continuous in  

has its bounds on  

f g k  ,a b

    
1 1

n n

r r r

r r

f g f k k 
 

       1r r rg g x g x      k k

t 0
b

a
f dg   

1

nb

r r
a

r

f dg f g


 
  

 


f  , 0a  f RS g

0  0   
1

n b

r r
a

r

f g f dg 


   

 0 1 2, , ,...., nP x a x x x b   P   1 2, ,...., nQ   

 ,a b 0,  0 

   g b g a    1

 ,a b

f  ,a b

 0  0 

   f x f y   n y    , ,n y a b   _____ 2

 0 1 2 1, , ,...., ,n nP a x x x x x b   ,P   1,r r rI x x f

 ,a b

f rI

f ,r rm m rI



That is there exist points c,d such that  

 

From equations (2) and (3), we have 

 

 ,  . 

Hence    

 

  

 

 from (1) 
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Theorem.13. If f is monotonic on and is monotonic and continuous on then .  

Proof: Let be a partition of then for we have  

 

Which is possible as g is continuous and monotonically increasing let be monotonically increasing on 
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1.11 PROPERTIES OF RIEMANN-STIELTJES INTEGRAL 

Let on then  

  

Where m and M are the lower and upper bounds of on  

Proof. Let be a partition of where  

Then with usual notations, we have 
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Cor. 1 If then there exists a number is, lying between m and M such that  

 

Cor. 2 If  is continuous on then there exist a number c lying between a and b such that  

 

Proof: since f is continuous on , must take all values between m and M and in particular there exists 

such that where  
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1.12 ALGEBRA OF RIEMANN-STIELTJES INTEGRABLE 

Theorem.14. Let on . Then on for every constant c and  
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Cor. If then  

Theorem.14. Let on then  

Proof: Let on  

To prove  

Since t means for there exists partitions and of such that 
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If P is a common refinement of P1 and P2 then we have 

  

And   

Now , if and P is any partition of then 

 

  implies 

 

  

because  

Again  

And  

Now,  

  

 

 f RS g  f RS   
b b

a a
f dg f dg   

 1 2,f f RS g  ,a b    1 2 1 2

b b

a a
f f RS g f dg f dg    

 1 2,f f RS g  ,a b

   1 2f f RS g 

 1 2, ,f f RS g 0  1P 2P  ,a b

     1 1 1 1, , , , _______ 1
2

U P f g L P f g


 

     2 2 2 2, , , , _______ 2
2

U P f g L P f g


 

     1 1, , , , _______ 3
2

U P f g L P f g


 

     2 2, , , , _______ 4
2

U P f g L P f g


 

1 2f f f   ,a b

             1 2 1 2, , , , , , , , , , , , _______ 5L P f g L P f g L P f g U P f g I P f g U P f g    

(5)

       1 2, , , , , , , ,U P f g L P f g U P f g U P f g       2, , , ,L P f g L P f g 

2 2

 
      from 3 & 4   

 f RS g     1 2f f RS g   1 2f f f 

   1 1, , ______ 6
2

b

a
U P f g f dg


 

   2 2, , ______ 7
2

b

a
U P f g f dg


 

 f RS g  , ,
b b

a a
f dg f dg U P f g   

   1 2

1 2

, , , , , from (5)

2 2

b

a

b b

a a

f dg U P f g U P f g

f dg f dg
 

  

   



 

1 2

b b b

a a a
f dg f dg f dg     



________(8) 

Since  

  

Now  

  

From equations (8) & (9), we have 

 

, Prove 

Theorem.15. If and on  then  

And  

Proof: Let be a partition of . Let  

 

 

 

 

   

   

 

Similarly, we have 

 

Therefore, we have 

  

1 2 , Taking 0
b b b

a a a
f dg f dg f dg     

   1 1f Rs g f RS g   

   2 2f Rs g f RS g   

       1 2 1 2

b b b b

a a a a
f dg f f dg f dg f dg          

 

 

1 2

1 2

, we prove it

______ 9

b b b

a a a

b b b

a a a

f dg f dg f dg

f dg f dg f dg

     
  

  

  

  

1 2

b b b

a a a
f dg f dg f dg    

 1 2 1 2

b b b

a a a
f f dg f dg f dg     

 1f RS g  2f RS g  ,a b    1 2  on ,f RS g g a b 

 1 2 1 2

b b b

a a a
fd g g f dg f dg    

 0 1 2 1, , ,...., , ,....,r r nP a x x x x x x   ,a b  1, 1,2,...., .r r rI x x r n 

   

     

1 1 2

1 2 1 2 1

inf  of in 

sup  of  in 

 where 

r r

r r

r r r

r r

m f I

M f I

g g x g x g g g

g g x g g x









    

   

       1 1 1 2 2 1r r r r rg g n g x g x g x            1 2r rg g  

 
1

, ,
n

r r

r

U P f g M g


  

 1 2r r rM g g   

1 2

1 1

n n

r r r r

r r

M g M g
 

    

     1 2, , , , , ,U P f g U P f g U P f g 

     1 2, , , , , ,L P f g L P f g L P f g 

             1 1 2 2, , , , , , , , , , , ,U P f g L P f g U P f g L P f g U P f g L P f g    



  

 

 

 

Further  

   

   

Similary  

   

   

  

From equations (1) & (2), we have 

 

,  

Theorem.16. Let on . If then on on 

and  

Proof: since on for a given there exists a partition P of such that  

  

Let P1, P2 be the sets of those points of P which constante the partitions of and respectively 

Then the inequality (1) implies that  

 and  

Let implies 

  

2 2

 
 

 

 

1

2and

f RS g

f RS g

 
 

  



    on ,f RS g a b 

   1 2 1 2f RS g g g g g    

 inf , ,
b

a
f dg U P f g

  1 2inf , , , ,U U P f g U P f g   

 1 2 ____ 1
b b

a a
f dg f dg  

 sup , ,
b

a
fdg L P f g

   1 2sup , , , ,L P f g L P f g   

   1 2sup , , sup , ,L P f g L P f g   

 1 2 ____ 2
b b b

a a a
fdg fdg f dg   

 1 2

b b b b b

a a a a a
fdg fdg fdg f RS g f dg fdg     

      

 1 2 1 2

b b b

a a a
fd g g fdg fdg     

 f RS g  ,a b ,a c b   f RS g    , ,a c f RS g

 ,c d
b c b

a a c
fdg fdg fdg   

 f RS g  ,a b 0,   ,a b

       , , , , , , ______ 1w P f g U P f g L P f g   

 ,a c  ,c b

 1, ,w P f g   2 , ,w P f g 

   

   

 on ,

and  on ,

f RS g a b

f RS g c d







Thus  

  

And  
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Cor. If  exists and if    , ,c d a b  then 
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1.13 SUMMARY 

Let  ,I a b  be a closed and bounded interval then a finite set of real number 
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A portition is called a refinement of another partion P if and only if  i.e., every point P 

is used to build . 

If 1P  and  are any two partitions of  ,a b  then *

1 2P P P is called common refinement of 

 and . 

Let be a bounded real valued function defined on  ,a b and let be 

a partition of  ,a b . Let infimum of in I   1 Here ,r r rI x x  

supremum of in rI  respectively, then  

 1 1 2 2 ........ n nm x m x m x       is called the lower-Riemann sum  

and  is called the upper-Riemann sum. 

A function define on  ,a b is said to be Riemann integrable over  ,a b if and only if for 

every there exists a and a number I such that for every partition 

 0 1, ,....., nP a x x x b   of with and for every hence of  

    
b

a
I f x dx    

i.e., I is R- integrable. 

Let on then  

  

Where m and M are the lower and upper bounds of on . 

 

1.14 TERMINAL QUESTIONS 

Q.1 What do you mean by Partition of a closed interval?  

Q.2 Explain the Riemann Integral. 

Q.3 Write a short note on Riemann-Stieltjes integral. 

Q.4 Let be a bounded function on . Let be a partition of . If is a refinement of P 

then and  

Q.5 Let P be a partion of . Let  and  be any two partion of  such that  then 
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Q.6 Let be a bounded function on and let P be a partition of . Then 

and . 

Q.7 Let be a bounded function defined on then for every such that 

and for a partition P of with . 

Q.8 A necessary and sufficient condition for R-integrability of a function on is for 

a partition P of such that for P and all its refinements . 
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2.1 INTRODUCTION 

In Riemann integration, integration and differentiation are closely related, as both involve 

understanding a function's behavior over an interval. The goal of Riemann integration is to find the area 

under a curve y=f(x) over an interval [a, b].  This is accomplished by dividing the interval into smaller 

subintervals and approximating the area under the curve in each subinterval. The Riemann sum is then 

calculated by adding these approximations. As the width of the subintervals approaches zero (i.e., as the 

partition becomes finer), the Riemann sum converges to the Riemann integral of f(x) over [a, b].  

Differentiation is not directly involved in finding the Riemann integral. However, differentiation 

can be used to analyze a function and its derivative's behavior over an interval. This analysis can help 

understand the properties of the function and its integral. Although integration and differentiation are 



distinct concepts in calculus, they are closely related in Riemann integration, where both involve analyzing 

a function's behavior over an interval to determine properties such as the area under a curve or the 

relationship between a function and its antiderivative. 

 

 

2.2 OBJECTIVES 

After studying this unit, the learner will be able to understand: 

 the integral function 

 the continuity of integral function 

 the differentiability of integral function 

 the fundamental theorem of integral calculus 

 

2.3 INTEGRAL FUNCTION 

Let be a function integrable over then th4e function F on 
 
given by , 

 is called the integral function of  

 

2.4 COUNTINUITY OF INTEGRAL FUNCTION 

Theorem 1. Let . Than the integral function of is given by  

is continuous on  

Proof: Since is integrable over . It means is bounded on  

there exists a positive integer M such that for all  

Let . Then we have 
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2.4 DIFFERENTIABILITY OF INTEGRAL FUNCTION 

Theorem 2. Let be a continuous function on and let for all then 
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2.6 FUNDAMENTAL THEOREM OF INTEGRAL CALCULUS 

Theorem.3: Let be a continuous function on and let & be a differentiable function on such 

that      ; ,x f x x a b   .  

Then   . 

Proof: Since is continuous on then is differentiable  

i.e.,    F x f x   for all      ….(1) 

But it is given 

   for all    ….(2)  

Therefore from (1) and (2), we have 

   F x x  , for all  ,x a b   

    0,F x x    for all  ,x a b  

 

  c is some constant    ….(3) 

Now we have 

  

  

  

But  

And  

 

i.e.,  

 f x  &  as 0c x h 

     1 , ,F x f x x a b   

f  ,a b  ,a b

     
b

a
f t dt b a  

f  ,a b      , ,
x

a
F x f t dt x a b 

 ,x a b

   1 ,x f x   ,x a b

    0
d

F x x
dx

    

    ,F x x c  

   F a a c 

   F b b c 

       F b F a b a   

   
b

a
F b f t dt 

   
a

a
F a f t dt o 

       F b F a b a           
b

a
f t dt o b a   

     
b

a
f t dt b a  
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2.7 ABSOLUTE VALUE OF RIEMANN-STIELTJES INTEGRAL 

Theorem 4. If 
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2.8 RELATION BETWEEN RIEMANN INTEGRAL AND RS-

INTEGRAL 

Theorem 8. If is continuous on and has a continuous derivative on such that  

 
for all then  

Proof: Let is continuous on . Let has a continuous derivative on such that 
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2.9 INTEGRATION OF VECTOR VALUED FUNCTON 

Let be a real valued functions defined on and let 

, for all  

If is a monotonically increasing function on then on  iff on for 
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Applying schwarz inequality, we have 

 

With for we get  
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From equation (2), we have 
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If The theorem holds trirally  
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2.10 FUNCTION OF BOUNDED VARIATION 

In this section, we will expand the integration theory developed so far by replacing the class of 

monotonic functions with the class of functions of bounded variation. We will define this new concept as 

follows: 

Let f be a mapping of inro and let be any partition of .Let  
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The supremum being taken over all partitons of . 

Then is called the total variation of  on . The function is said to be 

of bounded variation on if and only if we shall use as . 

Note: Most of the properties of vector valued functions of bounded variation can be reduced to the case 

of real valued function. We shall prove therefore most of the theorems for vector valued functions only. 

Theoerm 10. Let be a mapping of into . Then  is of bounded variation on 

if and only if each of the function is of bounded variation on . For , we have 

 

Proof. Let be any partition of . Then it is easy to see that 

 

Adding These inequalities for  
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The inequality (1) shows that is bounded vareation iff each of the functions is of bounded variation. 

Remarks. 
 
Every real function of bounded variation on is bounded.  
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Consider the function defined on as follows  
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And this can be made arbitrarily large by taking n sufficiently larg, since is divergral  

must be divergral because any series grealer than div is div. 
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Theorem 12. Let a mapping defined on into . Let exist on . If is bounded on 

, then is of bounded variation. 

Proof: Let  

Let be a subinterval of P.  

Since exists on Then by mean value theorem There exists such that 
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Theorem 13. Let and be any complex valued function of bounded variation on . Then 
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2.11 TOTAL VARIATION FUNCTION 

Let  

Let be a bounded variation on Define  
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Then is called the total variation of  
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function of , then  
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2.12 SUMMARY 

Let be a function integrable over then th4e function F on 
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,  is called the integral function of  

Let . Than the integral function of is given by  
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 is continuous on  

Let be a continuous function on and let for all then 
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Let be a continuous function on and let & be a differentiable function on such that
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on 

 
there 

 
on 

 
and . 

 

2.13 TERMINAL QUESTIONS 

Q.1 Explain the Continuity and Differentiability of Integral function. 

Q.2 State and prove the fundamental theorem of integral calculus. 

Q.3 Show that the relation between Riemann integral and RS integral. 

Q.4 If is continuous on and  has a continuous derivative on  such that 
 
for 

all then.
 

 

Q.5 Let be of bounded variation on Then exists for and exists 

for and the set of discontinuous at most countable. 

Q.6 Let and be monotonically increasing on . Then 
 
is of bounded variation on 
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UNIT-3 UNIFORM CONVERGENCE OF SEQUENCE 

Structure  

3.1 Introduction 

3.2 Objectives 

3.3  Uniform Bounded Sequence 

3.4 Uniform Convergence of Sequence 

3.5 Uniform Convergence of a series of functions 

3.6 Cauchy’s Criterion for Uniform Convergence 

3.7 Tests for Uniform Convergence 

3.8 Uniform Convergence and Integration 

3.9 Uniform Convergence and Differentiation 

3.10 Summary 

3.11 Terminal Questions 

 

3.1 INTRODUCTION 

Uniform convergence plays a crucial role in the theory of integration, particularly when dealing 

with sequences of functions. In some cases, the limit of the integrals of a sequence of functions can be 

expressed as the integral of the limit function. This is known as the theorem on interchanging limits and 

integrals. However, this interchange is not always valid; uniform convergence is a sufficient condition for 

this interchange to hold. For series of functions, uniform convergence is essential for ensuring that the 

series can be integrated term by term.  



Uniform convergence is a powerful concept in integration theory, as it allows us to extend 

properties of individual functions to sequences or series of functions, and it ensures the continuity of the 

limit operation with respect to integration. 

 

 

 

3.2 OBJECTIVES 

After studying this unit the learner will be able to understand the : 

 Uniform bounded sequence 

 Uniform convergence of sequence 

 Uniform convergence of a series of functions 

 Cauchy’s criterion for uniform convergence 

 Tests for Uniform Convergence 

 Uniform Convergence and Integration 

 Uniform Convergence and Differentiation 

 

3.3 UNIFORM BOUNDED SEQUENCE 

A sequence of functions  defined on a domain D is said to 

be uniformly bounded if there exists positive number such that 

 for all  and for all . 

For example, Let , defined on real  is uniformly bounded by I. 

 

3.4 UNIFORM CONVERGENCE OF SEQUENCE 

A sequence  of functions defined on  is said to converge uniformly to a function if for 

any there exists an integer  such that 

, for all  and for all . 

Here does not depend upon . 

Note: A uniformly convergent sequence is always a convergent sequence but converge is not necessarily 

true on . 
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3.5 UNIFORM CONVERGENCE OF A SERIES OF FUNCTIONS 

A series of functions converge uniformly on  if the sequence of its partial sums, 

defined by 

. Converges uniformly on . 

Thus a series of functions converges uniformly to  on  if for any  and for all 

, there exists a positive integer  such that 

 for all . 

 

3.6 CAUCHY’S CRITERION FOR UNIFORM CONVERGENCE 

Theorem 1. A sequence of functions defined on  converges uniformly on   if and only 

if for  and for all  there exists a positive integer  such that , for all 

 

Proof. Let be a sequence of functions defined on  “if part” 

Let  converges uniformly to then for  and for all  there exists positive integers 

 such that 
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 is a Cauchy sequence 

 exists for all  

Let , for all  

Keeping  fixed and taking , we get 

, for all  and for all  

 converges to  uniformly on . 

Corollary. A series of functions  defined on  converges uniformly on  if and only if for 

every  and for all  there exists a positive integer such that 

, for all  and all . 

Example.1. Show that the sequence  is uniformly convergent on  and only 

convergent on . 

Sol. Let  

Let  

   Remember  

Thus the sequence  converges to a discontinuous functions on . 

Further, let  be given then for , we get 
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Its maximum value is  in  

Let be an integer  

Then. , for all  and  and at . 

for all   

Thus for any  there exists a positive integer such that 

, for all  and for all . 

Therefore converges uniformly on  

But  as  

Therefore it is not possible to find an positive integer such that 

for all  and for all . 

Hence  is not uniformly convergent on . 

Here the point 1 is a point of non uniform convergence. 

Example 2. Show that the sequence  is uniformly convergent in any interval . 

Sol. Let  be a given sequence 

Let , for all  

Therefore, for , we have 
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Maximum value of  is  

Let then 

for all  

Hence the sequence is uniformly convergent . 

Example 3. Test for uniform convergence, the sequence  where  for all real . 

Sol. Let  

Now  

Now for , 

 for all , is positive integer. 

 

Put  

 

We can take  i.e. if we take  then  

 is not uniformly cost. 

Example 4. Show that the series whose sum to terms is convergent and not 

uniformly convergent on any interval  

Solution:- Let  

Now  
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, for all  

 Thus  converges to 0 on  

Checking of uniform convergence, for , we have 

 is positive integer 

 

Take  

Take  

 

 

 

i.e.  but must be  

which is a contradiction 

is not uniformly convergent. 

 

3.7 TESTS FOR UNIFORM CONVERGENCE 

Theorem.2. (Mn-Test): Let  be a sequence of function such that for all  

and let Mn= sup . Then  uniformly on  iff  as . 

Proof: Necessary condition. Let the sequence  converge uniformly to  on  than for 

there exists a positive integer (independent of ) such that 
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Sufficient condition. Let  as  

Then for , there exists a positive integer such that 

, for all  

, for all  

, for all  

 converges to  uniformly on  

Examples 

Example.5. Show  is real, converges uniformly on any closed interval I. 

Solution. Let  

, for all  
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So by  test  

Converges uniformly on any closed interval I. 

Example.6. Show  does not converge uniformly on . 

Solution. Let  
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Hence the sequence  does not converge uniformly on . Hence 0 is the part of non uniform 

convergence. 

Example.7. Show that the sequence  where  is not uniformly convergent on 
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Therefore,  is not uniformly convergent on . 

Theorem.3. (Weierstress’ s M test): A series of functions will converge uniformly on  if there 

exists a convergent series  of positive numbers such that  

for all and  ,x a b . 

Proof. Let   be a series of functions defined on .  

Let nM  be a convergent series of positive numbers such that 

  ,n nf x M  For all  , ,n m x a b     

To prove converges uniformly 

It is given nM  is convergent so for we can obtain a positive number m such that 
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converges uniformly on . 

Example.8. Show that the series converges absolutely and uniformly on  
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(ii) The sequence  is monotonic for every  

(iii) The sequence  is uniformly bounded in  i.e. there exists a positive number k 

independent of and n such that    , , ,nU x k x N x a b      
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3.8 UNIFORM CONVERGENCE AND INTEGRATION 
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Theorem.5. If a sequence  converges uniformly to f on and each is inferable on and 

the sequence > converges uniformly to on  i.e.  for all 

 

Proof. Since converges to for  There exists a positive number m such that 

 

 In particular  

Since is integrable we choose a partition P of  such that 
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 for all  

Then for all and for all , we have  

nf   ,a b nf  ,a b

x

n
a

f  at
a

f dt


  ,a b lim ,
x x

n
a an

f dt f dt


 
 ,x a b

nf f  0 

   
 

 , ____ 1
3

nf x f x n m
b a


  



   
 

 _____ 2
3

mf x f x
b a


 



mf  ,a b

     , , _____ 3
3

m mU P f L P f


 

   
 3

mf x f x
b a


 



     , , _____ 4
3

mU P f U P f


  

   
 3

mf x f x
b a


 



     , , _____ 5
3

mL P f L P f


  

       
2

, , , ,
3

m mU P f L P f U P f L P f


   

2

3 3

 
 



 ,a b nf 

0   ,x a b

    ,nf x f x
b a


 


n m

 ,x a b n m



 

  

  

  , ,x a b   

This implies that converges uniformly to over
 

i.e. for all  ,x a b . 

Theorem.6. (Term by Term integration) If a series converges uniformly to f on  and is 

continuous on  then f is integrable on and the series 

 
 
converges uniformly to  for all values of in i.e., 
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Proof. Since the series  is uniformly convergent to on and each  is continuous on  

the sum function f is continuous and therefore it is integrable on  
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i.e. 

 for all  ,x a b .  

 

3.9 UNIFORM CONVERGENCE AND DIFFERENTIATION 

Theorem.7. Let be a sequence of real values functions defined on such that 

(i) is differentiable on for n = 1,2,3,… 

(ii) converges at least one point  0 ,x a b  

(iii) The sequence  converges uniformly on  Then the given sequence  converges 

uniformly to a differentiable limit f and  

for all  ,x a b , 

Proof. Let then by the convergence of  and by the uniform convergence of on 
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Proof: Since the series  of continuous functions converges uniformly to on , its sum 

function G is continuous on and hence the function is differentiable and 

for all  

 For every we have  

    

Now each function is continuous, so it is integrable on and therefore by the fundamental theorem 

of calculus, we have  

 for all  1, , .n x a b   

Therefore 

          1

1

, , .... 2
x

n
a

n

f t dt f x f a x a b




     

Further since the series of integrable functions converges uniformly to G on , therefore term 

by term integrable is valid i.e. 

        1

1

, , ... 3
x x

n
a a

r

G t dt f t dt x a b




     

Proof (1), (2) & (3) we have      ' , ,f x G x x a b    

i.e.      
1 1

, ,n n

n n

d d
f x f x x a b

dn dn

 

 

    . 

 i.e. term by term differentiation is valid.  

Examples 

Example.9: Show that the series for which  

 can be integrated term by term in although it is not uniformly convergent. 

Solution. Given   

Let   

then  for  0,1 .x  

And  

 1

nf x  G x  ,a b

 ,a b  
x

a
G t dt

    ,
x

a

d
G t dt G x

dx
    , ____ 1x a b

 , ,x a b

   
1

n

n

f x f x






1

nf  ,a b

     1 ,
x

n n n
a

f t dt f x f a 

1

nf  ,a b

 
1

1
nf x

nx



 0,1

 
1

1
nf x

nx




   lim n
n

f x f x




 
1

lim 0,
1n

f x
nx

 


 
1 1

0 0
lim limn x
n n

nx
f x d dx

r nx 


 



   

Thus  

Hence the series can be integrabled term by term. It can be series easly that 0 is a point of non-uniform 

convergence of the series. 

Example.10: Examine for term by term integration the series for which for 

 0,1 .x  

Solution. Let 
 

given  

         2 4
2

lim ............

1
2

n

nx

n x
nx


 

 

                                    

 3

1
lim .............

1

2

n nx
x

nx


 

 

 

 for finite values of  

. 

And   

    

    

 Thus  

Hence term by term integration over  is not verified. Also convergence  

can not be uniform on  But if we consider the interval then  

 

   

 
1 1

lim log 1
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1
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n
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1 1

0 0
lim n
n

f x dx f x dx
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n ef x nx
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f x f x
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n ef x nx
2

2
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nx
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e



 
 

0 1x 

  0,f x  x

 
1 1

0 0
0 0f x dx dx   

 
21 1
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lim lim nx

n e
n n

f x dx nx dx
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1
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n
e



 
  

 

1 1
lim 1

2 2

n

n
e


    

 
1

0
xf x a  

1

0
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 0,1

 0,1  ,1 ,0 1c c 
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0
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n e
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2

lim 0nc n

n
e e 



   
 



Thus  

Hence term by term integration is justified. 

Example.11: Show that the series for which    2 2
, 0,1

1
n

nx
f x x

n x
 


can not be  differentiated term 

by term at  

Solution: Given  

 for  0,1x  

  

Also   

   

 . 

Thus  

Therefore, the given series can not be differentiated term by term by at . 

Example.12: Show that the sequence where 

converges uniformly  

To a function f on and the equation   is true if and false if  

Solution. It can be show easily that the sequence converges uniformly to zero for all real  

 Now   

 Where  

  

Thus   
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lim n
n

f x dx f x dx
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  2 21
n
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n x




   
2

lim lim 0
1
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x
f x f x

n
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0
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nh
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 0x  0.x 

nf  x

  2
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1n

x
f x

nx
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2
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2
2

1
0

1
n

nx
x f x

nx


 



 
 

2
1

2
2

1
lim lim 0

1
n

n n

nx
f x

nx
 


  



   1' 0 lim nf x f x 



  Hence equation is true  

When    

Thus   

Hence at the equation  

  is not true  

Example.13: Show that the function  is differentiable for every and its derivative is  

Solution: Let   

 And    

 Then    

 

Now  for all  

and is converges.  

Hence by weirshass’s M test the series is uniformly convergent for all real values of and 

therefore the series can be differentiated term by term. 

Hence  

Example.14. Show that the function   

 

is not uniformly convergent on   

0x   1 0 1nf 

   1' 0 lim 0n
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f f
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2
0, 1

n

n x x
n

f x n x x x
n n

x
n
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Solution. The given sequence converges to f where    0, 0,1f x x   . 

Also  

And  

Hence the sequence  cannot converge uniformly on . 

 

3.10 SUMMARY 

A sequence of functions  defined on a domain D is said to 

be uniformly bounded if there exists positive number such that 

 for all  and for all . 

A sequence  of functions defined on  is said to converge uniformly to a function if for 

any  there exists an integer  such that 

, for all  and for all . 

Here does not depend upon . 

A series of functions converge uniformly on  if the sequence of its partial sums, 

defined by 

. Converges uniformly on . 

Thus a series of functions converges uniformly to  on  if for any  and for all 

, there exists a positive integer  such that 

 for all . 

 

3.11 TERMINAL QUESTIONS 

Q.1 Explain the concept of uniform convergence. 

Q.2 Examine for term by term integration the series for when  

Q.3 Examine for the continuity of the sum function and for term by term integration the series where 
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1 2/ 1

0 0 1/ 2/
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in xfxS
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 ba,

 nf f  ba, 0  bax ,

m

, fSn mn 

     2 1 , 0,1
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nf x n x x x 



th term is for all . 

Q.4 Show is uniformly convergent on . 

Q.5 Examine for term by term integration the series in . 

Q.6 Let for the series . Show that the series does not 

converge uniformly but the given series can be differentiated term by term. 
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UNIT 4 POWER SERIES 

Structure 

4.1 Introduction 

4.2 Objectives 

4.3  Power series 

4.4  Cauchy’s Theorems on limits  

4.5 Radius of Convergence  

4.6  Uniform Convergence of Power Series 

4.7 Abel’s Theorem 

4.8 Tauber’s Theorem 

4.9 Summary 

4.10 Terminal Questions 

 

4.1 INTRODUCTION 

Power series are commonly used in mathematics, especially in calculus and analysis, for functions 

that can be expressed as a series expansion around a certain point. They're also used in various other areas, 

like physics and engineering, for their ability to approximate functions and solve differential equations. In 

real analysis, power series have several applications, particularly in the study of functions and their 

properties. Power series can be used to approximate a wide range of functions. By using the Taylor series 

expansion of a function, one can approximate the function locally around a point. Power series can help 

analyze the convergence and continuity of functions. Understanding the behavior of a function at its power 

series expansion point can provide insights into its convergence and continuity properties. 

Power series can be differentiated and integrated, term by term, within their interval of 

convergence. This property is useful for finding derivatives and integrals of functions represented by 

power series. Power series can be used to solve differential equations. By substituting a power series into 

a differential equation, one can solve for the coefficients of the series and find a solution to the differential 

equation. Power series are crucial in the study of analytic functions. A function is said to be analytic at a 



point if it can be locally represented by a convergent power series. Analytic functions have many nice 

properties, and power series provide a way to understand and analyze them.  

 

4.2 OBJECTIVES 

After reading this unit the learner should be able to understand about the: 

 Power series and Cauchy’s theorems on limits 

 Radius of convergence and uniform convergence of power series 

 Abel’s theorem and Tabuler’s theorem 

 

4.3 POWER SERIES 

A series of the type 

      1

0

.......... .........
n n

n o o o n o

n

a z z a a z z a z z




        is called a power series. 

Theorem: The power series n

na z either  

(i)   Converges for all values of z, 

or  (ii)  Converges only for 0,z   

or  (iii) Converges for z in some region in the complex plane. 

Proof.  Here we take an example. 

(i) The series 
nz

n
  converges absolutely for all values of .z  

Let 
n

n

z
U

n
  .  

1

1
1

n

n

z
U

n



 


  

Then by D’Alembert ratio test, we have 

 
1

1
lim lim

n

n n
n

U n

U z 



    

The series absolutely convergent for all values of z. 

(ii)  The series 
nnz  converges only at 0z    

lim n

n
nz


    if  0z  . 

Thus the series does not converge for 0z   i.e, it converges only for 0z   

(iii)   The geometric series 
0

n

n

z




  converges for 1z  and divergent for 1.z   



Theorem.2: If a power series 
0

n

n

n

a z




 . converges for a particular value Zo of  Z then it is converges 

absolutely for all values of z for which oz z . 

Proof. Let 
n

n oa z  converge. 

Then the thn  term 
0

n

na z  must tend to o as n  so we can find a number 0M   such that 

  
0

n

na z M ,  n  

Then we have 

 ...(1)

n

n

n

o

Z
a z M

Z
  

Since oz z  the geometric series 

n

o

Z

Z
  converges.  

Then by equation (1) the series n

na z  converges for all values of z for which oz z . 

 

4.4 CAUCHY’S THEOREMS ON LIMITS 

Theorem.3: If  na be  a sequence of constant and if lim an l when a  then we have 

  1 2 .......
lim n

n

a a a
l

n

  
 . 

Theorem.4. If   na is a sequence of  positive constant then   

 1/ 1lim limn n
n

n n
n

a
a

a



 

 
  

 
      ... 1  

Provided the limit on the right hand side of equation (1) exists whethere finite or infinite. 

 

4.5 RADIUS OF CONVERGENCE 

The number R is known as the radius of convergence of the power series 
0

n

n

n

a z




  if there  exist 

0R  such that the series converges absolutely when z R  and diverges when .z R  

The circle z R  is known as the circle of convergence of the series. 

Theorem.5. If the power series 
n

na z  is such that 0na   for all n and for which the number 1lim n

n
n

a
l

a




  



exists finitely or infinitely  then the radius of convergence of the series is 
1

R
l

 (where 0R   if l   and 

R    if 0l  ). 

Proof. Using D; alembert’s ratio test, we have 

 
n

na z is converges absolutely if 
1

1lim 1
n

n

n

n

a z

a z



   

i.e., if 
1

z
l

     1lim n

n

a
l

a


  

 
  

  

and if 
1

z
l

  then 
1

1lim 1
n

n

n

n

a z

a z



   

So that the thn  term n

na z  does not tend to zero and convergence is impossible. It follows by definition of 

radius of convergence of the power series is 
1

R
l

  if l   ,  0R  and if 0,l R  . 

 

4.6 UNIFORM CONVERGENCE OF POWER SERIES 

Theorem.6. The power series 
n

na z is uniformly convergent for z R   where R is the radius of 

convergence.  

Proof.  Let ' R     

Since  the series is convergent for 'z   there is a number k. independent of n so that 

' ,n

na k n    

Hence we have for  

 z   

 '
' '

n n

n n

n n

z p
a z a k

 

   
    

   
 

Which is independent of  z 

But the series 
'

n

p
k

p

 
 
 

 is convergent, being a geometric series of common radio 1
'




 . Hence 

by weiertxss’s M test, the power series is uniformly convergent for z R  . Thus every power series 

is uniformly convergent within its circle of convergence. 

 

Note. Absore theorem statement can be defined in the following form: 



If   
0

n

n

n

f x a z




  for x R  then the series converges uniformly on  ,R R   for each 0 . 

 

4.7 ABEL’S THEOREM 

Theorem.7. If the series 
0

na


  is convergent and has the sum s. then the series 
0

n

na x


  is uniformly 

convergent for 0 1x   and 
1

0

lim .n

n
x

a x s



  

Proof: If is given series an  is convergent. We have for n m .  

 
1 2 ........n n n pa a a       

For every integral value of 0p   

Also since the sequence  nx is monotonic decreasing for all values of x in 0 1x  , by abel’s 

inequality  1

1 ......... 0 1n n n p n

n n n pa x a x a x x x 

        .  

Thus the series n

na x is uniformly convergent for 0 1x  .  

It follows that 
0

n

na x


 is continuous function of x in 0 1x   and hence 

  
1 0

0 0

lim lim 1
nn

n n
x n

a x a n
 

 
    

0

na

s







  

The converge of the above theorem is not true as will be seen by considering the series  
0

1
1

1

n nx
x



 


  

when 0 1x   .  

Hence   
1

0

1
lim 1

2

n n

x
x




   although  1

n

na     does not converge.  

Examples 

 

Example.1. 
 

 
2

0

2 !

!

n

n

n
z

n





  determine the radii of convergences of following power series. 

Sol.  (i)  11
lim n

n
n

a

R a




  where R is the radius of convergence  

Here 
 

  

 

 

2

1

2

2 2 ! !
lim lim

2 !1 !

n

n n
n

n na

a nn



 





  



  

 
2

2 1 2 2
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1

4
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Hence 
1

4
R  . 

Example.2. Solve 
1

! n

n
n

n
z

n





 . 

Sol. Here 
 

 
1 1
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.

1
n n nn

nn
a a

n n
 


 


 

Now we have 

 

1lim lim
1

1
lim

1
1

1

n

n

n n
n

nn

a n

a n

n

e



 



 
  

 


 
 

 



 

Hence R = e.   2 3e  . 

 

4.8 TAUBER’S THEOREM 

Theorem.8. If 0nna  and   n

nf x a x s    as 1.x   Then na  converges to the sum S.  

or 

If lim 0n
n

na


 then na converges to S.  

Proof: We have by cauchy’s Ist  theorem on limits  

1 22 .......
lim lim 0

n

n
n n

a a n a
na

n 

  
  . 

For given we find m such that for n m  

   
1

1 ... 1
3

f S
n

 
   

 
 

 

 

1

3

i.e., .... 2
3

n

n n
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a

 




 



And  1 22 ......
... 3

3

na a n a

n

   
  

Let 0 1 .......... .n nS a a a    then  

    n nS S f x S S f x      

    0 0

1 1

n
r

r rf x S a a a a x


        

   
1 1

n
r

r rf x S a a x


      

   
1 1 1

n n
r r

r r r

n

f x S a a x a x




        

     
1 1

1
n

r r

r r

n

f x S a x a x




       

     
1 1

1
n

r r

r r

n

f x S a x a x




      . 

Since     2 3 11 1 1 ..........r rx x x x x x          

   1 x r   as  0 1x   

   
 3 1n x





 

Now by from equation (4), we have 

    
 1

1
3 1

n

n rS S f x S x r a
n x


     


  

Putting 
1

1x
n

   in this, we get  

1

1 1
1

3

n

n rS S f S r a
n n

 
      

 
  

 
1 1 1

3 3 3
       (by equations (1) & (2)) 

  < 3 

Hence  nS S . 

Examples 

Example.3. Given that 



 (i) 
0
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n z




    (ii)  
1

! n

n

n z




             (iii) 

2

1

nz

n
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   (vi) 

 

 

2 11
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Find the radii of convergence of the following power series  

Sol.  

(i) We have 11
lim n

n
n

a

R a




   where R is the radius of convergence 

We have na n  and 1 1na n    
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(iii) Here 
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(iv)  Given that 
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Thus 
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1
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  1.R   

(vi) Given 
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(vii) 
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Sol. Here 
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Now we have  
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4.9 SUMMARY 

A series of the type 

      1

0

.......... .........
n n

n o o o n o

n

a z z a a z z a z z




        is called a power series. 

The power series n

na z either  

(i)   Converges for all values of z, 

or  (ii)  Converges only for 0,z   

or  (iii) Converges for z in some region in the complex plane. 

If  na be  a sequence of constant and if lim an l when a  then we have 

  1 2 .......
lim n

n

a a a
l

n

  
 . 

The number R is known as the radius of convergence of the power series 
0

n

n

n

a z




  if there  exist 

0R  such that the series converges absolutely when z R  and diverges when .z R  

The circle z R  is known as the circle of convergence of the series. 

If the series 
0

na


  is convergent and has the sum s. then the series 
0

n

na x


  is uniformly convergent 

for 0 1x   and 
1

0

lim .n

n
x

a x s



  

If 0nna  and   n

nf x a x s    as 1.x   Then na  converges to the sum S. 

 

4.10 TERMINAL QUESTIONS 

Q.1 Write a short note on power series. 

Q.2 What do you mean by radius of convergence. 

Q.3 State and prove Abel’s theorem. 

Q.4 State and prove Tabuler’s theorem. 

Q.5 If  na be  a sequence of constant and if lim an l when a  then we have 



  1 2 .......
lim n

n

a a a
l

n

  
 . 

Q.6 If   na is a sequence of  positive constant then  

  1/ 1lim limn n
n

n n
n

a
a

a



 

 
  

 
  

 provided the limit on the right hand side of the above equation exists whethere finite or infinite. 
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BLOCK INTRODUCTION 

A function of several variables is a mathematical rule that assigns a unique output to every 

combination of input values. While functions of one variable take one input and produce one output, 

functions of several variables take multiple inputs and produce one output. In machine learning and data 

analysis, functions of several variables are used to model complex relationships in data and make 

predictions. Many concepts in physics and engineering involve functions of multiple variables. For 

instance, in fluid dynamics, electromagnetism, or structural analysis, understanding the behavior of 

functions of two variables is crucial for modeling physical systems accurately. Many real-world 

phenomena depend on more than one variable. Functions of two variables allow us to model and analyze 

such complex systems. Limits and continuity provide essential tools for understanding the behavior of 

these functions, especially as variables approach specific points. In optimization problems, such as 

maximizing profit or minimizing cost, functions of two variables are often involved. To find optimal 

solutions, we need to understand the behavior of these functions at critical points, which relies heavily on 

concepts of limits and continuity. 

Partial differentiation is a fundamental concept in multivariable calculus that deals with finding 

the derivatives of functions of several variables with respect to one of those variables, keeping the others 

constant. The Jacobian is a concept from multivariable calculus that generalizes the idea of the derivative 

of a function of several variables. It provides a way to analyze how small changes in the input variables 

of a multivariable function affect its output values. Economic models often involve functions of several 

variables representing factors like supply, demand, price, and market conditions. 

In the fifth unit, we shall have discussed about limit and continuity of function of two variables 

and Partial differentiation is in the sixrth unit. Euler’s theorem and Jacobians are discussed in details in 

unit seventh and eighth respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

UNIT 5 LIMIT AND CONTINUITY OF FUNCTION OF 

TWO VARIABLES 

Structure 

5.1 Introduction  

5.2 Objectives 

5.3 Limit of a function of two variables 

5.4 Continuity of a function of two variables 

5.5 Summary 

5.6 Terminal Questions 

 

5.1 INTRODUCTION 

Many scientific and engineering problems involve a variable quantity that relies on multiple 

independent variables to determine its value. This necessitates a solid understanding of partial 

differentiation methods. Partial derivatives are significant in various fields such as science, management, 

and engineering. They are essential in optimization techniques, operations research, electricity, computer 

science, fluid dynamics, probability, statistics, economics, mechanical engineering, electronics, and more. 

When working with functions of two or more independent variables, for instance, the area of a rectangle 

dependent on its length and breadth or the volume of a rectangular parallelepiped determined by its length, 

breadth, and depth, partial derivatives come into play. The area of a rectangle represents a function of two 

variables, while the volume of a rectangular parallelepiped represents a function of three variables.  

Limits and continuity are fundamental concepts in advanced mathematics, serving as building 

blocks for more complex topics such as differentiation, integration, and topological properties of 

functions. Therefore, a strong comprehension of partial differentiation is crucial for effectively addressing 

numerous engineering problems. The importance of understanding limits and continuity of functions of 

two variables lies in their foundational role in multivariable calculus and their practical applications in 

various fields. 

 

5.2 OBJECTIVES 

After reading this unit the learner should be able to understand about the 

 Limit of a function of two variables 

 Continuity of a function of two variables 

 



5.3 LIMIT OF A FUNCTION OF TWO VARIABLES 

Consider a function  yxf ,  of two variables , and yx then  yxf
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for every  ,0ε 0δ   such that    x, ylyxf  ε,,
 
where  2:f   is a function and for
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5.4 CONTINUITY OF A FUNCTION OF TWP VARIABLES 

Consider a function  yxf ,  of two variables yx  and  then f  is said to be continuous at the point 

 00 , yx  if  yxf
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exists and equal to  00 , yxf . 

or 

Consider a function  yxf ,  of two variables yx  and is said to be continuous at the point  ,00 , yx

if for every  ,0ε 0δ   such that       x, y, yxfyxf  ε,, 00

 
whenever .δ  and   δ 00  yyxx

 
Solved Examples 

Example.1. Show that the limit
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Consider    0,0, yx  along the path ,mxy   where .Rm  

As 0x , from ,mxy   we have 0y . 

We have  
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Note: If we take the path ,mxy   then 0x   0y . 
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Example.3. If  
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does not exists. 

Solution: The given function is 
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Suppose, if the 
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00 ,, 

 exists, then this limit is independent of the path along which we 

approach the point  ., 00 yx  

Consider    0,0, yx  along the path ,mxy   where .Rm  

As 0x , from ,mxy   we have 0y . 

We have 
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Putting ,mxy  then we have 
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Hence the
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 does not exist. 

Example.4. Show that the function   0,0,,
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yxf  and   00,0 f is not 



continuous at (0, 0) in  yx, . 

Solution: The given function is 
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Here it is also given   .00,0 f  

Let us consider    0,0, yx  through the curve ,3yx  so we get 
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Now we have    0,0, yx  through the line xy   , so we get 
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Here the limit found by two different approaches are changed thus the 
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 does not exists. 

Hence the given function is not continuous. 

OR 

If we take the path 3x my  then 0x   0y . 
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Example.5. Show that the function  
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Solution: The given function is 
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Case-I: If we take the path y mx  then 0x   0y . 
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which is different for different value of m. Therefore 
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Example.6. Show that 
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Putting ,mxy  then we have 
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Note: Here the limit is zero along the path y mx  but this does not mean that  
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  Because there are infinite number of paths passing through (0, 0). To 

confirm that limit is zero we proceed as follow:  

Here    0 0, 0,0   and 0.x y l   
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Example.7. Let  
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Solution.The given function is 
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 exists and is equal to  0,0f .  

Hence  yxf ,  is continuous at  0,0 . 

Note: Here the limit is zero along the path y mx . This does not confirm that limit is zero.  So we 

proceed as follow:  

Here 
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Example.9. Let RRf 2:  be defined as 
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Example.10. Show that the function  yxf ,  be defined as  
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Example.11. Consider 
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Hence  yxf ,  is continuous at  .0,0  

 

5.5 SUMMARY 

1. Consider a function  yxf ,  of two variables , and yx then  yxf

yy

xx
,lim
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2. Consider a function  yxf ,  of two variables yx  and is said to be continuous at the point  00 , yx
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5.6 TERMINAL QUESTIONS 

Q.1 Show that 
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Q.2 Show that 
   

  .0lim 22

0,0,



yx

yx
 

Q.3 Show that 
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Q.4 Give an example to show that the order of iterated limits can be interchanged although the 

simultaneous limit does not exist. 

Q.5 Show that the function   yxyxf , is continuous at  0,0 . 

Q.6 Show that 
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Q.7 If RRf 2:  be a function defined by  
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Q.9 Let  yxf ,  be a function defined by  
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Show that  

(i) 
yx fff ,,  are continuous in  yx,  

(ii) 
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(iii) 
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UNIT 6 PARTIAL DIFFERENTIATION 
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6.1 Introduction  
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6.3 Partial Derivatives 

6.4 Higher Order Partial Derivatives 

6.5 Summary  

6.6 Terminal Questions 

 

6.1 INTRODUCTION 

Partial differentiation is a powerful tool that extends the concept of differentiation from functions 

of one variable to functions of several variables, enabling deeper insights into the behavior of multivariable 

functions and their applications in diverse fields. Partial derivatives are employed in economic and 

financial models to analyze how changes in one variable affect others, such as in elasticity calculations or 

option pricing models. Partial derivatives are used to define the gradient vector, which points in the 

direction of the steepest ascent of a function. The gradient is crucial in optimization problems and vector 

calculus. 

Partial derivatives help define tangent planes to surfaces and linear approximations to functions. 

This is essential in understanding the behavior of functions near specific points. In thermodynamics and 

physics, partial derivatives are used extensively to describe relationships between variables in systems 

with multiple parameters. In this unit we shall discuss the partial derivatives, higher order partial 

derivatives and the homogeneous function. 

 

 6.2 OBJECTIVES 

After reading this unit the learner should be able to understand about: 

 the partial derivatives 

 the higher order partial derivatives 

 the homogeneous function  

 

 



6.2 PARTIAL DERIVATIVES 

Partial differentiation involves determining partial derivatives. When we take the derivative of a 

function with respect to one independent variable, while keeping all other independent variables constant, 

it yields the partial derivative of the function with respect to that variable.  
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6.4 HIGHER ORDER PARTIAL DERIVATIVES 
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If xyf and yxf  are continuous, then we have  .
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In limit format the derivative of the second order are defined as  
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Examples 

Example.1. Let   ,,
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  for 0,0  yx and   00,0 f .Show that the partial derivatives 

yx ff , exist everywhere in the region 11,11  yx , although  yxf ,  is discontinuous in  yx,  

at the origin. 

Solution. The given function is  
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Therefore the partial derivative 
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Here the limit obtained by two different approaches is different. Hence the  yxf ,  is discontinuous in 

 yx,  at the origin. 

Example.2. Example.1 Let  
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Show that 

yxxy ff   at all points  yx, . 

Also, show that none of the derivatives is continuous in  yx,  at the origin. 
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yxxy ff   at every point. 

Now, we show that 
yxxy ff   is not continuous at  0,0 . 
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yx 
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Hence the limit does not exists. It follows that 
yxxy ff   is not continuous at the origin. 

Example.3. Let  yxf ,  be a function, defined by   ;0,0,
1

sin
1

sin,  yx
y

y
x

xyxf  

  ;0,
1

sin,0  y
y

yyf   ;0,
1

sin0,  x
x

xxf   .00,0 f Examine the existence of xf  and 
yxf at 

0,0  yx . 



Solution. The given function is  

  .0,0,
1

sin
1

sin,  yx
y

y
x

xyxf
 

We have  
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f

h
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0,00,
lim0,0

0
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h
h

h

0
1
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lim
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hh

1
sinlim

0
  

Since the limit does not exists, therefore  0,0xf does not exists. 

Now 
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yx
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k
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hk
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limlim
00
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limlim
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 hkhk

 

In spite of the fact that limit is zero, the derivative  0,0yxf
 
cannot be said to exists, since  0,0xf  does 

not exists. 

Example.4. Find the first order partial derivatives 
y

u

x

u








 and   when 

x

y
u 1tan  . 

Sol. We have  
x

y
u 1tan 

       
…(1) 

Differentiating partially equation (1) with respect to x taking y  as a constant, we get 
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 Now again differentiating partially equation (6.1) with respect to y taking x  as a constant, we get 
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Example.5. Find the first order partial derivatives 
y

u

x

u








 and   when 

(i) 1
2

2

2

2


b

y

a

x
u   (ii) ).log( 22 yxu   

Sol. (i) We have 1
2

2

2

2


b

y

a

x
u        …(2) 

Differentiating partially equation (1) with respect to x taking y  as a constant, we get 

   2

2

a

x

x

u





 

Now again differentiating partially equation (1) with respect to y taking x  as a constant, we get 

   2

2

b

y

x

u





 

(ii) We have  22log yxu                   … (1) 

Differentiating partially equation (1) with respect to x taking y  as a constant, we get 

    22
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1
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xyxx

u













 

22
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x


  

Now again differentiating partially equation (1) with respect to y taking x  as a constant, we get 
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.

1
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yyxy
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2
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Example.6. Verify that ,
22

xy

u

yx

u








  if .2 22 byhxyaxu   

Sol. We have 22 2 byhxyaxu 
      

…(1) 

Differentiating partially equation (1) with respect to x we get 



   hyax
x

u
22 




      …(2) 

Differentiating partially equation (2) with respect to y  we get 

   h
xy

u
2

2





       …(3) 

Now differentiating partially equation (1) with respect to y we get 

   byhx
y

u
22 




      …(4) 

Again differentiating partially equation (4) with respect to x  we get 

   h
yx

u
2
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                 … (5) 

Using equations (3) and (5), we conclude that 
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Example.7. If ,









x

y
fu then show that .0










y

u
y

x

u
x  

Sol.  We have  









x

y
fu                   … (1) 

Differentiating partially equation (1) with respect to x we get 
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u
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… (2) 

Now differentiating partially equation (1) with respect to y we get 
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y
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u
y              … (3) 

Adding equations (2) and (3), we get  
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Example.8. If     ),3log(,, 333 xyzzyxzyxu   then show that   

.)(3 2
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Sol. Given that )3log( 333 xyzzyxu 
             … (1) 

Differentiating partially equation (1) with respect to x, y and z respectively, we get 

xyzzyx
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              … (2) 
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           … (3) 
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            … (4) 

From equations (2), (3) and (4), we get 

zyxz
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… (5)

 

                    ))((3 222333 zxyzxyzyxzyxxyzzyx 
 

Now again differentiate partially equations (2), (3) and (4), with respect to x, y and z respectively, we get 
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From equations (6), (7) and (8), we get 
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Example.9. If ,
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 then show that .14
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Sol. Given that 
yx

yx
u






22

      

… (1) 

Differentiating partially equation (1) with respect to x and y respectively, we get 
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We have 
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Now we have 
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        … (3) 

Hence by equations (2) and (3), we have 
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Example.10. If ,czyx zyx  then show that   .log,
1

2






 exx

yx

z
zyx  

Sol. Given that czyx zyx          … (1) 

Taking log both sides of equation (1), we get 

  czzyyxx loglogloglog 
     … (2) 

Differentiating partially equation (2) with respect to x  (taking z as dependent variable) then we get 

  0log
1

.01.log
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z
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or   
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x
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log1

log1










      

… (3)  

Similarly, we get 
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log1

log1










      

… (4) 

Differentiating partially equation (4) with respect to ,x we get 

   
2 z z

x y x y
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… (5) 



At ,zyx  from equation (5), we have 
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Example.11. If where),(rfu  ,222 yxr  then show that ).(")('
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Sol. Given that  
222 yxr        … (1) 

Differentiating partially equation (1) with respect to x, we get 
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Similarly, we get 
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y
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It is also given that    

)(rfu         … (2) 

Differentiating partially equation (2) with respect to x, we get 
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    … (3) 

Again differentiating partially equation (3) with respect to x, we get 
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Similarly, we get 
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Adding equation (4) and (5), we have 
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6.5 SUMMARY 

1.  Partial differentiation is the process of finding the partial derivatives. 

2.  If ),( yxfu   be the function of two independent variables x and y , then we have 

h

yxfyhxf

x

f

h

),(),(
lim

0









and 

k

yxfkyxf
k

y

f

h

),(),(
lim

0









provided that these limits 

are exist and unique. 

3.  If xyf and yxf  are continuous, then we have .
22

yxf
xy

f

yx

f










 

 

6.6 TERMINAL QUESTIONS 

Q.1 Explain the partial derivatives. 

Q.2 Let   .

0for,0

0aslongsoofvaluesallfor,
1

cos
,

22














x

xy
x

yx
yxf  Show that 



(i) 
yxxy ff  at all points  yx,  

(ii)  neither
xyf  nor 

yxf  is continuous in x  at 0x , if 0y  

(iii) both
xyf  and 

yxf  are continuous in  yx, , together at the origin. 

Q.3 If  













0,0,0

0,0,
, 22

yx

yx
yx

xy

yxf  then show that 
yx ff ,  exist at  0,0  and examine the continuity 

of 
yx ff ,  with respect to x  and y and  yx,  together. 

Q.4 Let  yxf ,  be a function defined by  
   

   
















0,0,0

0,0,
, 22

22

yxfor

yxfor
yx

yx
xy

yxf  

Show that  

(i) 
yx fff ,,  are continuous in  yx,  

(ii) 
xyf and

yxf  exist at every point  yx,  and are continuous except at  0,0  

(iii)   10,0 xyf and   10,0 yxf . 

Q.5 What do you mean by higher order partial derivatives? 

Q.6 If ,tansin 11

x

y

y

x
u   then show that .0










y

u
y

x

u
x  

Q.7 If ,
1

tan
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1
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u


 

then show that .
)1(

1
2/322

2

yxyx
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Q.8 If ),log( 2233 xyyxyxu   then show that 
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Q.9 If ),()( ayxgayxfu   then show that .
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2
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u
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Q.10 If   ,xyzeu   then show that .)31( 222
3

xyzezyxxyz
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Q.11 If   ,1
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Q.12 Find the value of 2
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Q.13 If ,
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Q.14 If ,tantan 1212
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x
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Q.15 If   ,222 xzzyyxu    then show that .)( 2zyx
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UNIT 7 EULER’S THEOREM 

Structure 

7.1 Introduction 

7.2 Objectives 

7.3  Homogeneous Function 

7.4     Euler’s Theorem on Homogeneous Functions 

7.5     Some deductions from Euler’s Theorem 

7.6 Total Differential Coefficient  

7.7     Implicit Function 

7.8  Summary 

7.9 Terminal Questions 

 

7.1 INTRODUCTION 

Euler's Theorem on homogeneous functions is a result from calculus, specifically concerning 

multivariable calculus and homogeneous functions. It's named after the Swiss mathematician Leonhard 

Euler, who made significant contributions to various areas of mathematics. This theorem essentially 

describes a relationship between the partial derivatives of a homogeneous function and the function itself. 

It provides a useful tool for simplifying expressions involving homogeneous functions, often enabling 

solutions to problems in physics, economics, engineering, and other fields where such functions arise. 

Euler's Theorem provides insights into the behavior of these functions, helping to determine critical points, 

maxima, minima, and saddle points. The concept of the total differential coefficient arises in calculus, 

particularly in the context of multivariable functions. When you have a function of several variables, its 

total differential describes how the function changes as each of its variables changes.  

The total differential coefficient is crucial for understanding how a function changes as its variables 

change. It provides a linear approximation of the change in the function near a given point in its domain. 

In this unit we shall discuss about the Euler’s theorem, Euler’s theorem on homogeneous functions, Some 

deductions from Euler’s Theorem, Total Differential Coefficient and implicit function. 

 

 

 



7.2 OBJECTIVES 

After reading this unit the learner should be able to: 

 understand the homogeneous function  

 understand the Euler’s theorem on homogeneous functions  

 explain the total differential coefficient 

 discuss the implicit function 

 

7.3 HOMOGENEOUS FUNCTION 

A function ),( yxu is said to be a homogenous function if all its terms are of the same degree. Let 

 n

n

n

n

nnn yaxyayxayxaxayxf  
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10 ......),(        … (1) 

be a function of x and y of degree n.

 
The equation (1) can be written as  
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Examples 

Example.1.  Find the order of the following homogeneous functions: 

(a) 
2 2x y

u
x y





  (b) 2 2

x y
u

x y



 

Solution: (a) It is given that  

 
2 2x y
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x y
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Here u is a homogeneous function of order 1. 

(b) It is given that   

2 2

x y
u

x y
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y
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y
x

x
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Here u is a homogeneous function of order .
2

3
  

 

7.4 EULER’S THEOREM ON HOMOGENEOUS FUNCTIONS 

Euler's Theorem on homogeneous functions plays a significant role in various fields of 

mathematics, physics, and engineering due to its importance and wide range of applications. 

If u is a homogenous function of x and y of degree n, then we have .nu
y

u
y

x

u
x 









 

Proof: Since u is a homogenous function of x and y of degree n, therefore it can be written as  











x

y
xu n        … (1) 

Differentiating partially equation (1) with respect to x, we get 
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 Again differentiating partially (1) with respect to y , we get 
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Adding equations (2) and (3), we get 
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x y x


   
   

   
nu

 

Hence if u is a homogenous function of x and y of degree n, then  
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u
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u
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7.5 SOME DEDUCTIONS FORM EULER’S THEOREM 

If 
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xu n  then .)1(2
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Solution. If 
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y
xu n , then we know that by Euler’s theorem, we have  
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Differentiating partially equation (1) with respect to x  and y  respectively, we have  
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Multiply equation (2) by x and equation (3) by y and adding them, we get 
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Using equation (1), we have 
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Note: 1. If u is a homogeneous function of 1 2, ,....., nx x x
 

of degree n, then we have
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2. If  1 2, ,....., nu f x x x  is a homogeneous function of mxxx ,.....,, 21  
of degree n, then we have

   1 2 1 2, ,....., , ,....., .n

n nf tx tx tx t f x x x  

Examples 

Example.1.  If 

















 

yx
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u 1cos   then prove that   .cot
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Sol. Given that  
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u 1cos                                                     ….. (1) 

The above equation (1) can be written as  
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….. (2)

 

Now consider 
yx

yx
V




         ….. (3) 

Here V is a homogenous function of x and y of degree (1/2). Therefore, by Euler’s theorem, we have 
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…. (4) 

From equations (2) and (3), we have 

   
uV cos

       
…. (5) 

Now differentiating partially equation (5) with respect to x and y respectively, we get 

  
x

u
u

x

V









sin

        

and  
y

u
u

y

V









sin  

Putting these values of 
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 and  in equation (4), we get 
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Example.2. If 
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Sol. Given that 
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The above equation (1) can be written as  
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        ….. (3) 

Here V is a homogenous function of x and y of degree (1/20). Therefore, by Euler’s theorem, we have 
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From equations (2) and (3), we have 

  uV sin

        

…(5)
 Now differentiating partially equation (5) with respect to x and y respectively, we get 
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 and  in equation (4), we get 

u
y

u
uy

x

u
ux sin

20

1
coscos 










 

or

   

.tan
20

1
u

y

u
y

x

u
x 










 

Example.3. If ,sin
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Sol. Given that 
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We have   
yx

yx
u






22

sin
      

…(2)

 



Now consider V= 
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         …(3) 

Here V is a homogenous function of x and y of degree 1. Therefore, by Euler’s theorem, we have 
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From equations (6.51) and (6.52), we have 

  uV sin
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 Now differentiating partially equation (5) with respect to x and y respectively, we get 
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Example.4. Verify Euler’s theorem when
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Sol. Given that 
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Here u is a homogenous function of x and y of degree 1. Therefore, by Euler’s theorem, we have 
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Taking log in equation (1) both sides, we have 

  )log()log(loglog 3333 yxyxxu     ….(3) 

Differentiating partially equation (3) with respect to ,  and  yx we get 
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Adding equations (4) and (5), we get  
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Example.5. If ,tan
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Sol. Given that 
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        …(3) 

Here V is a homogenous function of x and y of degree 2. Therefore, by Euler’s theorem, we have 
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From equations (2) and (3), we have 

uV tan    
    

…(5) 

Now differentiating partially equation (5) with respect to x and y respectively, we get 
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 and  in equation (4), we get 
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Example.6. If V is a homogeneous function of x and y of degree n and )(ufV  then   
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Sol.  Given that )(ufV 

       

…(1) 

It is given that V is a homogeneous function of x and y of degree n, then by then by Euler’s theorem, we 

have 
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Differentiating partially equation (1) with respect to x and y  respectively, we have   
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Example.7. Verify Euler’s theorem for the function .
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Sol. Given that 5/15/1
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Here )y,x(f is a homogenous function of x and y of degree (1/20). Therefore, by Euler’s theorem, we 

have 
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Now verify to Euler theorem, we have 
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Multiply equation (3) by x and equation (4) by y and adding them, we get 
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Hence Euler’s theorem is verified. 
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Sol. Given that  
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Differentiating partially equation (1) with respect to x and y  respectively, we have         
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From equations (2) and (3), we have 
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Differentiating partially equation (4) with respect to x and y  respectively, we have   
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Multiply equation (5) by x and equation (6) by y and adding them, we get 
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Using equation (4), we have 
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7.6 TOTAL DIFFERENTIAL COEFFICIENT 

Suppose  ),( yxfu               … (1) 

where   
)(),( tytx  
           … (2) 

then u can be expressed as a function of a single variables t, if we put for x and y and in ),( yxfu  and 

then the derivative of u with respect to t, is the ordinary differential coefficient .
dt

du

 
This 

dt

du

 

is called the 

total derivative of u with respect to t is known as the total derivative of u is given by  

dt

dy

y

u

dt

dx

x

u

dt

du









  

If ),,( zyxfu  and )(),(),( tzztyytxx   then the total derivative of u is 
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Suppose ),,( zyxfu  and let y and z are the function of x, u is a function of one independent variable 

x, we have 
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Examples 

Example.9. If 3 3u x y   where cos    and  sinx a t y b t      then find  .
du

dt
 

Sol. Given that  
3 3u x y        …(1) 



Also cos    x a t         …(2) 

and  siny b t         …(3) 

Differentiating partially equation (1) with respect to x and y  respectively, we get         

  2 23    and   3
u u

x y
x y

 
 

 
     ….(4) 

Differentiating equations (2) and (3) with respect to x and y  respectively, we have         

  sin    and   cos
dx dy

a t b t
dt dt

    

We know that the total derivative of u with respect to t is 
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or           
2 23 ( sin ) 3 ( cos )

du
x a t y b t

dt
    

or            2 23 sin cos .
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ax t by t
dt

    

 

7.1 IMPLICIT FUNCTION 

Let us consider the implicit function .0),( yxf  

Here y is some function of x . 

Consider ),( yxfu   , where 0u , then we have
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Now if ),( yxfz  and ( , ), ( , ), . ., ,x x u v y y u v i e x y   are function of u and v , more than one variable. 

Then we have 
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Note 1: If 0),,( zyxf  i.e., if z is an implicit function of x and y then by equation (2), we have
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Note 2: If 0),( yxf  then we have  .
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Differentiating again with respect to x, we get 
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Examples 

Example.10. If the curve  , 0f x y   and  , 0x y   touch each other then show that 

0.
f f

x y y x

    
 

   
  

Sol. Given that   , 0f x y        …(1) 

and                   , 0x y        …(2) 

From equation (1), we get         
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       ….(3) 

From equation (2), we get         

  
/
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      ….(4) 

At the point of contact the two values of  
dy

dx
 will be the same i.e., from equation (3) and (4), we have 
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Example.11. Prove that ,
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Sol. Let ),( yxfu 
         … (1) 

Given that ,sincos  x .cossin  y  

From equation (1), we have  
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Differentiating partially equations (2) and (3) with respect to x and y respectively, we get 
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From equations (4) and (5), we get 
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7.8 SUMMARY 

1. A function ),( yxu is said to be a homogenous function if all its terms are of the same degree. 



2. If u is a homogenous function of x and y of degree n, then we have .nu
y

u
y

x

u
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3. If ),,( zyxfu  and )(),(),( tzztyytxx   then the total derivative of u is 
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4. Suppose ),,( zyxfu  and let y and z are the function of x, u is a function of one independent 

variable x, we have
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7.9 TERMINAL QUESTIONS 

Q.1 State and prove Euler’s theorem. 

Q.2 Verify the Euler’s theorem in the following cases: 

czxbyzaxyui )(  

)/log()( xyxuii n   
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.453)( 422 zzxyyzxuv   
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Q.11 If u be a homogeneous function of x and y of degree n, then show that
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Q.13 If ,bxy ayx   then show that .0
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UNIT 8 JACOBIANS 

Structure 

8.1 Introduction 

8.2 Objectives 

8.3 Jacobian 

8.4 Jacobian of Functions of Functions 

8.5 Jacobian of Implicit Functions 

8.6 Necessary and Sufficient Condition for a Jacobian to Vanish  

8.7 Summary 

8.8 Terminal Questions 

 

8.1 INTRODUCTION 

The Jacobian is a mathematical concept pivotal in calculus and linear algebra. It's a matrix 

composed of first-order partial derivatives. In essence, it elucidates how changes in one set of variables 

influence another set within a function. For a function with n variables, the Jacobian matrix comprises n 

rows and m columns (where m denotes the number of functions in the output). Each entry signifies the 

partial derivative of one function concerning one variable. Jacobian matrices find extensive applications 

in physics, engineering, economics, and other disciplines. They facilitate solving systems of equations, 

stability analysis, function optimization, and more.  

The Jacobian matrix plays a central role in the Implicit Function Theorem, which provides 

conditions under which implicit functions can be differentiated. This theorem is essential in various areas 

of mathematics, including differential geometry, optimization, and differential equations. When dealing 

with functions of several variables, understanding how small changes in the input variables affect the 

output is crucial. The Jacobian provides this information through its partial derivatives, aiding in 

optimization, integration, and curve/surface fitting. 

 

 

 

 

 

 



8.2 OBJECTIVES 

After reading this unit the learner should be able to understand about: 

 the Jacobian 

 the Jacobian of Functions of Functions  

 the Jacobian of Implicit Functions 

 the Necessary and Sufficient Condition for a Jacobian to Vanish  

 

8.3 JACOBIAN 

If u and v  are functions of two independent variables x and y  then the jacobian of u and v with 

respect to x and y  is 
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u v x y

v vx y

x y

 

  

 

 

 

     , .J u v  

Similarly, if vu, and w  are the functions of three independent variables yx,  and z , then the 

jocobian of  vu, and w with respect to the independent variables yx,  and z is 
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 , , .J u v w  

If 1 2 3 1, , ,..........., ,n nu u u u u  are the function of n  independent variables 

1 2 3 1, , ,.........., ,n nx x x x x then then the jocobian of 1 2 3 1, , ,..........., ,n nu u u u u with respect 

to the independent variables 1 2 3 1, , ,.........., ,n nx x x x x is 
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Note: If the functions 1 2 3 1, , ,..........., ,n nu u u u u of n  independent variables 

1 2 3 1, , ,.........., ,n nx x x x x are in the following forms: 

     1 1 1 2 2 1 2 1 2, , , ........, , ,.......,n n nu f x u f x x u f x x x   , then we have 
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Examples 

Example.1. If cos , sinx r y r    show that
 

 

,
.
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x y
r

r 





 

Sol. Given that 

cos , sinx r y r    

If x and y  are functions of two independent variables r  and   then the jacobian of x and y with respect 

to r  and   is 
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Example.2. If sin cos , sin sin , cos ,x r y r z r        show that
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Sol. Given that 

sin cos , sin sin , cos .x r y r z r        

The jacobian of x , y and z with respect to ,r   and   is 
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2 2 2 3sin cos sinr r     

 2 2 2sin cos sinr      

2 sinr  . 

Example.4. To show that the Jacobian of x , y and z with respect to ,r   and   is 
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, given that 

 ,sin1sin,coscos 22  mryrx   ,sin1sin 22  nrz  where 122  nm . 

Sol. Given that 

 ,sin1sin,coscos 22  mryrx   ,sin1sin 22  nrz   

We have  
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The jacobian of x , y and z with respect to ,r   and   is 
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Example.4. If 1 1 2 2 1 2 3 1 3sin sin , sin cos , cos sin ,y r y r y r       

4 1 3cos cosy r   then find show that 
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Sol. Given that 

1 1 2 2 1 2 3 1 3sin sin , sin cos , cos sin ,y r y r y r       

4 1 3cos cosy r   . 

Squaring and adding the above given relations, we have 
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Now adding 34 Ry  to 23 Ry  and using the equation (2), we get 
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8.4 JACOBIAN OF FUNCTIONS OF FUNCTIONS 

If 1 2,u u  are the functions of 1 2,y y  and 1 2,y y  are the functions 1 2,x x  then 
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Proof. We have 
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 , using the equation (1) 
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Note. If 1 2 1, ,........, ,n nu u u u  are functions of 1 2 1, ,........, ,n ny y y y and 1 2 1, ,........, ,n ny y y y  are 

functions of 1 2 1, ,........, ,n nx x x x , then we have 
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8.5 JACOBIAN OF IMPLICIT FUNCTIONS 

Suppose 1 2 3 1, , ,.........., ,n nu u u u u  instead of being given explicitly in terms of 

1 2 3 1, , ,..........., ,n nx x x x x  are connected with them by equations such as 

 1 1 2 3 1 1 2 3 1, , ,......, , , , , ,......, , 0n n n nF u u u u u x x x x x    

 2 1 2 3 1 1 2 3 1, , ,......, , , , , ,......, , 0n n n nF u u u u u x x x x x    

….. …… ……. ……. 

 1 2 3 1 1 2 3 1, , ,......, , , , , ,......, , 0n n n n nF u u u u u x x x x x    

Then, we have  
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Proof. We will now derive the outcome for two variables, with the proof readily extendable to n  variables. 

Students are encouraged to craft their own proof for n  variables using the framework presented below for 

two variables. In the case of two variables, the connecting relations are 
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From equation (1), we have  
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Now we have 
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, using the equation (2) 
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Thus we have 
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Examples 

Example.5. Prove that 
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Sol. Consider    1 2, , , .u f x y v f x y     …..(1) 

Differentiate partially equation (1) with respect to u  and v , we get 
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Now we have 

 
 

 
 

v

y

u

y

v

x

u

x

y

v

x

v

y

u

x

u

vu

yx

yx

vu













































,

,

,

,
 

v

y

y

v

v

x

x

v

u

y

y

v

u

x

x

v

v

y

y

u

v

x

x

u

u

y

y

u

u

x

x

u





































































  

10

01
 , using the equation (2) 

= 1. 

Example.6. If 3 2 2 3 2 2 3 2 2, ,u v w x y z u v w x y z u v w x y z                

then show that 
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Sol. The given relations can be written as 
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From equation (1), we have 
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8.6 NECESSARY AND SUFFICIENT CONDITION FOR A 

JACOBIAN TO VANISH 

Let us consider 
1 2 3 1, , ,........, ,n nu u u u u

 be functions of n  independent variables 

1 2 3 1, , ,........, ,n nx x x x x
. In order that these n  functions may not be independent, i.e, there may exist 

between these n  functions a relation  

 1 2 3 1, , ,........, , 0n nF u u u u u      …..(1) 

It is necessary and sufficient that the Jacobian 
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should vanish identically. 

Proof. The condition is necessary i.e., if there exists between 
1 2 3 1, , ,........, ,n nu u u u u

 a relation 

 1 2 3 1, , ,........, , 0n nF u u u u u      …..(1) 

Differentiate partially equation (1) with respect to 
1 2 3 1, , ,........, ,n nx x x x x

 we get 
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The condition is sufficient, i.e., if the Jacobian  1 2 3 1, , ,........, ,n nJ u u u u u
 is zero, then there must exist 

a relation between 
1 2 3 1, , ,........, ,n nu u u u u

. 

The equations connecting the functions 
1 2 3 1, , ,........, ,n nu u u u u

 and the variables 

1 2 3 1, , ,........, ,n nx x x x x
 are always capable of being put into the following form: 
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Then, we have 

 
 

 

 
 
 
 n

n

n

n

n

n

n

uuu

xxx

xxx

uuu
J

,....,,

,.....,,

,....,,

,....,,

1
,....,,

,....,,

21

21

21

21

21

21



















 

  .

........

........

1

2

2

1

1

2

2

1

1

n

n

n

n

n

uuu

xxx






























 

Now, if ,0J we have 
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for some value of r  between 1 and .n  

Hence, for that particular value of r  the function 
r  must not contain 

rx ; and accordingly the 

corresponding equation is of the form 

 1 2 1 1 2 3 1, ,....., , , , , ,....., , 0.r r r n n n nx x x x u u u u u       

Therefore, as a result of this and the remaining equations 
1 20, 0,......., 0r r n       the variables 

1 2, ,.....,r r nx x x 
 can be eliminated so as to give a final equation between 

1 2 3 1, , ,........, ,n nu u u u u
 

alone.  

Examples 

Example.7. Show that the functions ,zyxu   ,. zyxv   yzzyxw 2222   are not 

independent of one another. Also find the relation between them. 

Sol. We know that the jocobian of ,u v  and w  with respect to x , y and z is  
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, adding 2C to 3C  

           .0  

Since the Jacobian is zero, the functions are not independent. 

Now we have 

xvu 2  and  .2 zyvu   

Therefore we have 
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Which is the required relation between .,, wvu  

 

8.4 SUMMARY 

1. If u and v  are functions of two independent variables x and y  then the jacobian of u and v with 

respect to x and y  is 
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2.  If vu, and w  are the functions of three independent variables yx,  and z , then the jocobian of  vu,

and w with respect to the independent variables yx,  and z is 
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3. If 
1 2 3 1, , ,..........., ,n nu u u u u

 are the function of n  independent variables 

1 2 3 1, , ,.........., ,n nx x x x x
then then the jocobian of 

1 2 3 1, , ,..........., ,n nu u u u u
with 

respect to the independent variables 
1 2 3 1, , ,.........., ,n nx x x x x

is 
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4. If the functions 
1 2 3 1, , ,..........., ,n nu u u u u

of n  independent variables 

1 2 3 1, , ,.........., ,n nx x x x x
are in the following forms: 

     1 1 1 2 2 1 2 1 2, , , ........, , ,.......,n n nu f x u f x x u f x x x   , then we have 
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5. If 
1 2,u u  are the functions of 

1 2,y y  and 
1 2,y y  are the functions 

1 2,x x  then 
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6. Consider 
1 2 3 1, , ,........, ,n nu u u u u

 be functions of n  independent variables 

1 2 3 1, , ,........, ,n nx x x x x
. In order that these n  functions may not be independent, i.e, there may 

exist between these n  functions a relation  1 2 3 1, , ,........, , 0.n nF u u u u u  It is necessary 

and sufficient that the Jacobian 
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should vanish identically. 

 

8.5 TERMINAL QUESTIONS 

Q.1 What do you mean by Jacobian? 

Q.2 If cos , sinx r y r    show that
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Q.3 If cos cosh , sin sinhx c u v y c u v   show that 
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Q.4 If , ,x y z u y z uv z uvw       show that 
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Q.5 Prove that 
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BLOCK INTRODUCTION 

The Fourier series holds immense significance across diverse fields such as mathematics, physics, 

engineering, and signal processing. It offers a method to express periodic functions as a summation of 

sinusoidal functions (sine and cosine waves), simplifying the analysis and manipulation of many real-

world phenomena that exhibit inherent periodicity. Fourier series serves as a fundamental tool for 

analyzing and processing signals. Fourier series are employed to analyze seismic signals and investigate 

the Earth's subsurface structure. By decomposing seismic signals into frequency components, reserchers 

can identify seismic waves, infer properties of geological formations, and locate subsurface features such 

as oil and gas reservoirs. Fourier series plays a central role in harmonic analysis, which explores the 

representation of functions or signals as combinations of basic oscillatory components. This analysis is 

pivotal in understanding the behavior of complex systems found in areas like quantum mechanics, 

acoustics, and optics.  

Fourier series determine the crucial applications in medical imaging techniques such as MRI 

(Magnetic Resonance Imaging) and CT (Computed Tomography) scans. In MRI, Fourier transforms are 

utilized to reconstruct images from acquired data in k-space, enabling visualization of internal body 

structures with high resolution. Similarly, Fourier techniques are integral to CT scans for image 

reconstruction and analysis. In the ninth unit, we shall have discussed about the introduction about fourier 

series, periodic function, even and odd functions with their properties, and the Euler formulas for the 

Fourier coefficients and in the tenth unit we deal with half rage series, change of interval and Parseval’s 

identity for Fourier series. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



UNIT 9 INTRODUCTION OF FOURIER SERIES 

Structure 

9.1 Introduction 

9.2 Objectives 

9.3 Trigonometric Fourier Series 

9.4 Periodic Function 

9.5 Even and Odd Function 

9.6 Some Important Identities 

9.7 Euler Formulas for the Fourier Coefficients 

9.8 Some assumptions and definition for expansion of f(x) by Fourier Series 

9.8.1 Assumption for Expression of f(x) by Fourier Series 

9.8.2 Fourier Series of Even and Odd functions 

9.8.3 Dirichlet’s Conditions 

9.8.4 Smooth and Piecewise Smooth Function 

9.8.5 Jump Discontinuities 

9.8.6 A Criterion for the Convergence of Fourier Series 

9.9 Summary 

9.10 Terminal Questions 

 

9.1 INTRODUCTION 

The Fourier series holds immense significance across a spectrum of disciplines, including heat 

conduction, rotating machinery, sound waves, planetary dynamics, cardiac physiology, chemical kinetics, 

and acoustics. This mathematical concept was pioneered by the French mathematician Fourier in 1807. 

Essentially, the Fourier series provides an infinite series representation of periodic functions using 

trigonometric sine and cosine functions. Its versatility lies in its application as a powerful tool for solving 

both ordinary and partial differential equations involving periodic functions. 



Engineers and scientists extensively utilize the Fourier series to tackle various physical and 

engineering challenges. Its utility stems from its capability to accurately represent functions that may not 

be differentiable. Moreover, it transcends beyond continuous functions, extending its application to 

periodic functions as well as functions exhibiting discontinuities in their values and derivatives. This broad 

applicability enables the Fourier series to serve as a fundamental analytical tool across diverse domains, 

aiding in the understanding and solution of complex problems encountered in scientific and engineering 

contexts. 

 

9.2 OBJECTIVES 

After reading this unit the learner should be able to understand about: 

 understand the trigonometric Fourier series 

 comprehend the Periodic Functions 

 explain the even and odd functions with their properties 

 discuss the Euler formulas for the Fourier coefficients 

 

9.3 TRIGONOMETRIC FOURIER SERIES 

A series    





1

0 sincos
n

nn xbnxaaxf  

Where a0, an, bn are Fourier constants independent of x, and  f  is bounded and integrable on (-π. π), (0, π), 

is called the trigonometric Fourier series. 

 

9.4 PERIODIC FUNCTION 

A function f(x) is said to be periodic function if   

f(x + T) = f(x),  x,  T≠0. 

smallest such T is called the period of f(x). 

For example   sin (x + 2) = sinx, i.e., 2 is period 

   cos (x + 2) = cosx, i.e., 2 is period 

   sec (x + 2) = secx, i.e., 2 is period 

  cosec (x + 2) = cosec, i.e., 2 is period 

   cot (x + ) = cot (x), i.e.,  is period 

   tan (x + ) = tan (x), i.e.,  is period   
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  sin (nx + 2) = sin n period. is 
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9.5 EVEN AND ODD FUNCTION 

Let the function f(x) defined in an interval I which is symmetric to origin, we say that f(x) is an even 

function if   f(-x) = f(x) x 

 

 

 

 

 

 

 

 

 

 

This implies the graph of any even function y = f(x) is symmetric with respect to the y axis. It follows 

from the interpretation of the integral as on area that for even function we have 

    




l

l

l

lanyfordxxfdxxf
0

2

    

….(1) 

 

 

 

 

 

 

 

 

 

Provide that f(x) is defined and integrable as interval [-l,  l]. 

The function f(x) is odd if  

   f(-x) = -f(x) x 

In particular we have for an odd function 

x 
0 About y-

axis 

y 



   f(-x) = -f(x) x  

The graph of any odd function y = f(x) is symmetric with respect to the origin. 

 

  

 

 

 

 

 

 

 

For odd function  




l

l

dxxf 0                                                          … (2) 

for any l provided that f(x) is defined and integrable on the interval [-l, l]. 

Properties of even and odd functions 

(a) The product for two even function or odd function is again an even function. 

Suppose φ (x), and  (x), are even function, then we have 

Let f(x) =  φ (x) (x) 

Now we have   f(-x) =  φ (-x) (-x) 

             = φ (x)  (x) 

     =  f(x) 

while if φ(x) and (x) are odd functions then we have 

    f(-x) =  φ (-x) (-x) 

             = [-φ (x)] [-(x)] 

     =  f(x) 

(b) The product of an even and an odd function is an odd function. 

Suppose φ(x) is even and (x) is odd function then  

    f(-x) =  φ (-x) (-x) 

             = φ (x) [-(x)] 

             = -φ(x) (x) 

             =  -f(x) 

Note. In case of even function the graph of the curve is symmetrical about y-axis whereas in case of odd 

0 
about the origin 

x 

y 



function the graph of the curve is symmetrical about origin. 

 

9.6 SOME IMPORTANT IDENTITIES 

1. 






sin n dx = 0      (even function) 

2. 
axe  sinbx dx = 

22

ax

ba

e


 (a cosbx - b sin bx) 

3. 
axe  cosbx dx = 

22

ax

ba

e


 (a sin bx + b cosbx) 

4.  






cosnx dx = 2 


0

dxnx  cos                                                    (even function) 

5.  
2

0

sinnx dx = 0 

6.  
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0

cosnx dx = 0 

7. 
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  = 
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sin
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n
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n
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2
 [0 – 0] 
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cos mx cosnx dx = 2 


0

dxnx  cosmx  cos                               (even function) 

         = 


0

2 cos mx cox nx dx 

         = 


0
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sin mx sin nx dx  = 2 
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9.7 EULER FORMULAS FOR THE FOURIER COEFFICIENTS 

Let f(x) can be expanded in the term of Fourier series 

 f(x)= a0 + a1cos x + a2cos 2x + ………. +b1 sin x + b2 sin 2x +…..…  ...(3) 

where a0, a1, a2,…. an, ……., b1,  b2, …… are Fourier constants 

The above equation (3) can be written as in forms 

     nxbnxaaxf nn

n

sincos
1

0  


  

   ….(4) 

To find a0, integrating equation (4) both sides on the interval - to . 
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= a0. 2 + 


1n

an . 0 + 
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bn . 0 

= 2 a0 
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π
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2π

1
dxxfa  

To find an multiplying by cosnx both sides of the equation (3) and integrating in interval - to . 
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1n
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 an 


0

2cos2nx dx + 


1n 2

nb







sin2nx dx 

  = a0 . 0 +an . + 
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nb
 . 0 



   =  an 

 
1

cos   dna f x nx x








    

To find bn, multiplying by sin nx both sides of equation (3) and integrating - to  
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sinnx cosnx dx   + 
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bn 






sin2nx dx 

= a0 . 0 + 


1n 2
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 sin 2nx dx + 
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0

2sin2nx dx 
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1n 2
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 . 0 + bn 
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1

sin   dnb f x nx x








   

Hence the Fourier series is defined. 

 

9.8 SOME ASSUMPTIONS AND DEFINITION FOR EXPANSION OF 

f(x) BY FOURIER SERIES 

9.8.1 ASSUMPTION FOR EXPANSION OF f(x) BY FOURIER SERIES 

1. The Fourier function is assumed to be single valued continuous and integrable in the given 

internals. 

2. The series    nxbnxaaxf nn

n

sincos
1

0  




be integrating term by term, the series should 

be uniformly convergent. 

3. The series converges to f(x) at every point where f(x) is continuous.  At the point of discontinuity 

in the interval (-, ) the series converges to  

    
].00[ 

2

1
) f(x - )  f(x   

 If x =c  is the point of discontinuity then 

    
   

1
 ( 0) ( 0) .

2
f x f c    f c -     

 At x =, the series converges to 
1

 [ (-   0)  (  - 0)]
2

f f    limit exist. 

 



9.8.2 FOURIER SERIES OF EVAN AND ODD FUNCTIONS 

Case-1: If  f x  is an even function then    
π π

0

π 0

1 1

2π 2π
a f x dx f x dx



    

and       
0

1 2
cos   d cos   d         .cos is even functionna f x nx x f x nx x f x nx

 


 



    

and  
1

sin   d 0nb f x nx x








   

                   is even and sin is odd  and so .sin   is odd functionf x x f x nx  

Case-2: If  f x  is an odd function then  
π

0

π

1
0

2π
a f x dx



   

and     
1

cos   d 0        .cos is odd functionna f x nx x f x nx








   

and    
0

1 2
sin   d sin   dnb f x nx x f x nx x

 


 



    

                 .sin   is even functionf x nx  

Note: Thus a series of even function will contain only cosine terms and series of odd function will contain 

only sine terms. 

 

9.8.3 DIRICHLET’S CONDITIONS 

If a function f is bounded Riemann integrable in the interval [-, ] and if it is possible to divide 

the interval [-, ] into a finite number of subinterval  in each of which f(x) is monotonic, then the Fourier 

series corresponding to f(x) converges for every  x and if S(x) (sum function ) of the series is given as 

follows: 

 S(x) =         xxfxf 00
2

1
 

Also  S(x) =      π         when          00
2

1
 x  πfπf . 

 

9.8.4 SMOOTH AND PIECEWISE SMOOTH FUNCTION 

The function f(x) is said to be piecewise continuous on [a, b] if it has a continuous derivative on 

[a, b]. The graph of a smooth function is a smooth curve without any corners (a point at which the curve 



has two distinct tangents).A continuous or a discontinuous function f(x) which is defined on the whole x-

axis is said to be piecewise smooth if it is smooth on every interval on finite length.  The concept applies 

to periodic function every piecewise smooth function is bounded and has a bounded derivative every pair 

except its corner and points of discontinuity.  

 

 

 

 

 

 

 

 

 

 

 

 

9.8.5 JUMP DISCONTINUITIES 

In this case Right Hand Limit (R.H.L.) and Left Hand Limit (L.H.L.) both exist but not are equal 

to each other.  We know that when R.H.L. and L.H.L.  of a given function at a point exist but are not equal 

then the function is said to have the discontinuity of the first kind or a point of jumps discontinuities.  

Also x0 is the point then f(x0 + 0) – f (x0 -0) =  is called the jumps of the function x = x0. 

For example,  f(x) = 















1

10

13

xx

x

xforx

 

At x = 1,  L.H.L.  f(1 – 0) = - 1 

               R.H.L. f (1 + 0) = 1 

The function has 2 jumps at x = 1 which is the point of discontinuity. 

Note.  In removal L.H.L. and R.H.L. exist and equal but not equal to function. 

 

9.8.6 A CRITERION FOR THE CONVERGENCE OF FOURIER SERIES 

This Fourier of a piecewise smooth (continuous of discontinuous) function f(x) of period 2 

converge for all value of x the sum of the series equals f(x) at every point of continuity and is  

2

1
[f(x + 0) + f(x – 0)] at every point of discontinuity 

x 
a 0 

smooth 

y = f(x) 

y 



 {arithmetic mean of R. H.L. and L.H.L.} 

If f(x) is continuous at everywhere then the series converges absolutely and uniformly at end points of the 

interval (-, ). 

1. If f(-) = f() then the function is continuous at the point  and the Fourier series converge to f(x) 

at the end points of the closed interval - to . 

2. If f(-)  f() then the function is discontinuous at the point  and its sum function  

   







 

2

πfπf
. 

Examples 

Example.1. Find the Fourier series of the function f(x) = x2 in interval (-, ) and deduce that 
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Expand f(x)= x2 (-   x  ) in Fourier series. 

Sol. We know that the Fourier series for  xf is 
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where   
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sin
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π

1
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Since the given function x2 is even function and nxsin  is odd function, therefore all bn will be zero. Now 

we have 
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(i) Put x = in the equation (5), we get 
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(ii) Putting x = 0 in the equation (5), we get 
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(iii) Putting x =
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in the equation (5), we get 
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Adding equations (6) and (7), we get 
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Note that f(x) is is an even function so its fourier series will contain only cosine terms. 

Note: The fourier series of   3;f x x x      will contain only sin terms because   3f x x  is odd 

function. 

Example.2: Expand f(x) by Fourier series where f(x) is defined 
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Sol. We know that the Fourier series for  xf is 
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If n is even, cos n = 1, then b2 = b4 = b6 = ….0 

If n is odd, cos n = -1, then, b1= 


4
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4
, ….. 

Putting these values of nn baa ,,0  in the equation (9), we get 
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At x = /2,   0 < x <, it is given that   f(x) = 1, so that form equation (10), we get 
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Example.3. Expand f(x)= |x| by the Fourier series in the interval (-, ). Also show that 
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Sol. We know that the Fourier series for  xf is 
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If n is given, n = 2, 4, 6, ….., we get a2= a4  = a6 = ……. = 0 
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Since all bn’s will be zero because the given function f(x)= |x| is even function. Putting these values of 

nn baa ,,0  in the equation (11), we get 
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Now put x = 0 in the equation (12), we get 
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Example.4. Show that an even function can have no sine term in its Fourier expansion

   .,  ;sin  xxxf  Also show that ......
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Sol.We know that the Fourier series for  xf is 
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, where n ≥ 2 

Putting n = 2, 3, 4,……., we get 
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Since the given function f(x) is even therefore all bn’s are zero. Now putting these values of nn baa ,,0  in 

the equation (13), we get 
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Put  2/x  in the equation (14), we get 
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Example.5. Find the Fourier series for f(x)= x + x2 in (-, ). 

Sol. We know that the Fourier series for  xf is 
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Now putting these values of nn baa ,,0  in the equation (15), we get 

    nxbnxaaxf nn

n

sincos
1

0  


  

        
 

  












1 1

2

2

sin1
2

cos
14

3 n

n

n

n

nx
n

nx
n


 

or   .
2

sincos
14

3 1
2

2
2













n

n

n

nx

n

nx
xx



 

Example.6. Find the Fourier series for    .2,0
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Sol. We know that the Fourier series for  xf is 
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Now putting these values of nn baa ,,0  in the equation (16), we get 
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Put  2/x  in the equation (17), we get 
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Example.7. Find the Fourier series which converge to f (x) in (-< x <) where f(x)= x+ x2and f(x)= 2 

when x = . 

Sol. For the given f(x)= x + x2 in [-, ]  (from example 5), we have 
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Example.8. Find the Fourier series of a function   .
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Sol. We know that the Fourier series for  xf is 
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Now putting these values of nn baa ,,0  in the equation (18), we get 
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Example.9. Expand f(x) by Fourier series where f(x) is defined by f(x)= ex in [-, ]. 

Sol.  We know that the Fourier series for  xf is 
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Now putting these values of nn baa ,,0  in the equation (19), we get 
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9.9 SUMMARY 

1. A French Mathematician Fourier, in 1807 introduced the Fourier series. 

2. A series    ,sincos
1

0 





n

nn xbnxaaxf  Where a0, an, bn are Fourier constants and interval (-

π. π), (0, π) independent of x, is called the trigonometric Fourier series. 

3. A function  xf is said to be periodic if       ;xfTxf  x real allfor 

T.number  positive some and  

4. A function  xf is said to be even if    .xfxf   

5. A function  xf is said to be odd if    .xfxf   

6. The Fourier series for  xf in [-, ] is 
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7. Let f(x) be an odd function in -< x < then the graph y = f(x) will be symmetrical about the origin, 

then we get. 

 a0 =an = 0, since f(x) is odd. 

 bn =    
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The Fourier sine series in 0 < x < is given by   
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8. Let f(x) be an even function in -< x < then the graph y =f(x) will be symmetrical about the y-

axis, then we get  

bn  = 0, since f(x) is even 
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The Fourier cosines series in 0 < x < is given by   .cos
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9.10 TERMINAL QUESTIONS 

Q.1 Explain the Periodic function. 

Q.2 Write the Euler formulas for the Fourier coefficients. 

Q.3 Find the Fourier series of the function f(x)= x – x2 in interval [-, ] 

Q.4 Find the Fourier series for f(x)= e-x in the interval [0, 2]. 

Q.5  Find the Fourier series of  
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f x

x when x





  
 

 
 

which is assumed to be periodic with period 2. 

Q.6 Find the Fourier series of  

 
0, 0

sin , 0

when x
f x

x when x





  
 

 
  

and deduce the 

  .....
7.5

1

5.1

1

3.1

1

4

2



 

Q.7 Find the Fourier series of 

 













2,2

0,0

xforx

xfor
xf  

Q.8 Find a Fourier series of the periodic function f(x) with period 2 which is defined as follows: 
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Q.9 Find the Fourier series of the function f(x)= |cos x| in the interval (-, ). 



Q.10 Find the Fourier of the function defined as 
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Q.11 If f is bounded and integrable on (-, ) and ,n na b are the fourier coefficient then show that  
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UNIT-10 HALF RANGE FOURIER SERIES 

Structure  

10.1 Introduction 



10.2 Objectives 

10.3 Derivatives Using Forward Difference Formula 

10.4 Derivatives Using Backward Difference Formula 

10.5 Summary 

10.6 Terminal Questions 

 

10.1 INTRODUCTION 

The Fourier series offers a robust mathematical framework essential for comprehending and 

controlling periodic phenomena, with broad applications spanning various scientific and engineering 

domains. In data compression, Fourier series assume a pivotal role by enabling representation of data in 

the frequency domain, facilitating the elimination of redundant or less critical information. This leads to 

enhanced efficiency in data storage and transmission. Moreover, in image processing, Fourier series find 

extensive use in tasks like image enhancement, compression, and feature extraction. Through techniques 

such as the Discrete Fourier Transform (DFT), images can be efficiently transformed into the frequency 

domain, facilitating their manipulation and analysis.  

The Half Range Fourier Series is a specialized form of the Fourier series that deals with functions 

defined on a specific interval, typically from 0 to L, rather than over the entire real line. This series is 

particularly useful for analyzing and representing functions that are defined only on half of the interval, 

such as symmetric functions. In electrical engineering, Fourier series play a vital role in the analysis and 

design of electrical circuits, encompassing filters, amplifiers, and communication systems. They aid 

engineers in comprehending the frequency response of circuits, thus optimizing their performance. 

 

10.2 OBJECTIVES 

After reading this unit the learner should be able to understand about: 

 understand the half range expansions in Fourier series 

 comprehend the change of interval in Fourier series 

 discuss the Parseval’s identity for Fourier series  

 

10.3 HALF-RANGE EXPANSIONS 

In Fourier series, periodic function defined in an interval 0 to 2T, (or C to C + 2T or -  to ).  Now 

we suppose that a Fourier series for a function f(x) which is defined only in half-period say (0 < x <). 

There are two cases arise: 

(i) Fourier Sine series on 0 < x < 

Half-range Fourier sine series containing only sine terms.  Let f(x) be an odd function in  



-< x < then the graph y = f(x) will be symmetrical about the origin, we get 

a0 =an = 0, since f(x) is odd. 

and  
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Hence the Fourier sine series in 0 < x < is given by 
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(ii) Fourier Cosine Series in 0 < x < 

Half-range Fourier cosine series containing only cosine terms.  Let f(x) be an even function in -< x < 

then the graph y =f(x) will be symmetrical about the y-axis, we get  

bn = 0, since f(x) is even. 
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Hence the Fourier cosine series in 0 < x < is given by 
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Note: Here in next articles 5.9 to 5.12, we assume the Fourier series is in form

   .sincos
2 1

0
0 






n

n nxbnxa
a

xf  

 

10.4 CHANGE OF INTERVAL 

Generally we have considered only intervals of length of  or 2, but in many engineering 

problems the period of functions are different say: T or 2l.  In such cases, this interval must be converted 

to the length 2.  Let f(x) be a periodic function defined in the interval –l < x < l.  We introduce a new 

variable z. We have 
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Hence F(z) is defined in (-, ) 

Now let the Fourier series of F(z) defined in the interval (-, ) with period 2be 
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Now to find the Fourier series for f(x) in – l < x < l.  Changing the variable z to x, we get 
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10.5 PARSEVAL’S IDENTITY FOR FOURIER SERIES 

Theorem: Let the Fourier series  
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Proof. We know that Fourier expansion of a function is given  
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Since the series uniformly converges term by term integration is justified. 
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Equation (22) multiplying both sides by f(x) and integrating between limit 0 to 2, we get 
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Put n=0 in the equation (23), we get  
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Also from the equations (23) and (24), we get 
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Examples 

Example.1. Find the half-range sine series for x in the interval (0, 2). 

Sol. It is given   

  xxf  in interval (0, 2)                                                       …(26) 

The Fourier series for  xf  over [-l, l,] will contain only sine terms given by 
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Now putting these values of nb  in equation (27), we get 
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Example 2. Expand   xxf sin , 0 < x < in a Fourier cosine series. 

Sol. We know that the Fourier cosine series in 0 < x < is given by 
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Note.  cos (A + B) = cos A Cos B – sinA sinB 



  cos (A- B)  = cos A cos B + sinA sinB 

2cos A sin B = sin (A + B) - sin (A - B) 

  2sin A sin B = cos (A – B) – cos (A + B) 

Also 
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Now putting these values of naa ,0  in the equation (28), we get 
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Example 3. Find the Fourier series for f(x)= x2 - 2 in -2 ≤ x ≤2. 

Sol. It is given that  f(x) = x2 – 2                                                                          …(29) 

Since given function is even function, so we have bn = 0. 



Then the Fourier series for f(x) is 
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Now putting these values of naa ,0  in the equation (30), we get 
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Example.4. Find the Fourier series for f(x)= e-x in (-l, l). 

Sol. We know that the Fourier series for f(x) in interval (-l, l) is 
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Now putting these values of naa ,0  in the equation (31), we get 
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Example.5. Find the Fourier series   1. periodwith 
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Sol. We know that the Fourier series for f(x) in interval (-l, l) is 
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Now putting these values of a0, an and bn in the equation (32), we get 
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Example 6. Find the Fourier series for f(x) = x2 in (-, ). Also prove that 
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theorem. 

Sol. Given that f(x)= x2 

Since the given function is even so bn = 0                                                         …(33) 

And the Fourier series for f(x) is 
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By equation (34), we have 
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Now by Perseval’s theorem, we have 
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10.5 SUMMARY 

1.  Now to find the Fourier series for f(x) in – l < x < l.  Changing the variable z to x, we get 
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10.6 TERMINAL QUESTIONS 

Q.1 Explain the concept of half range expansions in fourier series.. 

Q.2 State and prove Parseval’s identity. 

Q.3 Find the half-range sine series for ex in (0, 1). 

Q.4 Find the half-range cosine series for x in (0, 2). 

Q.5 If f(x) = 
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. Expand f(x) in series of sine terms. 
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Q.7 Find the half-range sine series to represent f(x)= x(- x) for 0 ≤ x ≤ . 
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. Show that in the interval (0, 2); 
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Q.9 Find the Fourier series for f(x)= x – x2in (-1, 1). 

Q.10 Find the Fourier series for f(x) = 
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BLOCK INTRODUCTION 

Integral equations are mathematical equations where an unknown function appears under one or 

more integral signs. They are extensively utilized to model a broad spectrum of phenomena across 

numerous disciplines such as physics, engineering, economics, and biology. These equations can be 

categorized into two main types: Fredholm Integral Equations and Volterra Integral Equations. Integral 

equations have widespread applications, spanning electromagnetics, acoustics, heat transfer, fluid 

dynamics, quantum mechanics, signal processing, and image processing. They offer a robust mathematical 

framework for representing real-world phenomena and addressing practical engineering challenges. 

Integral equations find applications across numerous fields due to their ability to model diverse 

phenomena and solve practical problems. Integral equations are a fundamental part of mathematical 

analysis and are extensively studied in pure mathematics. They provide insights into the behavior of 

functions and help in understanding the properties of various mathematical operators. Integral equations 

are used in biology and medicine to model biological processes, population dynamics, and the spread of 

diseases. They help in understanding the dynamics of ecosystems, predicting the effects of interventions, 

and analyzing medical imaging data. Hence the integral equations provide a powerful mathematical 

framework for modeling complex systems, analyzing data, and solving practical problems across a wide 

range of disciplines. 

In the eleventh unit, we shall discuss about introduction and classifications of integral equations. 

In unit twelveth we shall discuss about Fredholm Integral equation, Fredholm first theorem, Fredholm 

second theorem, Fredholm third theorem. Fredholm Integral equation, resolved kernel for Fredholm 

integral equation and separable kernel are discussed in unit thirteen. In unit fourtheen we shall discussed 

the Volterra Integral equation, Solution of non-homogeneous Volterra integral equation of second kind by 

the method of successive substitution and successive approximation, iterated kernels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



UNIT-11 CLASSIFICATIONS OF INTEGRAL EQUATIONS 

Structure  

11.1 Introduction 

11.2 Objectives 

11.3 Integral Equation 

11.4 Types of Integral Equations 

11.5 Linear Integral Equations 

11.6 Volterra Integral Equations  

11.7 Fredholm Integral Equations 

11.8 Non-Linear Integral Equations 

11.9 Singular Integral Equations  

11.10 Types of Kernels 

11.11 Conversion of multiple integral into a single ordinary integral 

11.12 Summary 

11.13 Terminal Questions 

 

11.1 INTRODUCTION 

An integral equation is an equation in which the unknown function occurs under the integral sign. 

The name “integral equation” for any equations involving the unknown function ∅(𝑥) under the integral 

sign was introduced by du Bois-Reymond in 1888. In 1782, Laplace used the integral transform 𝒇(𝒙) =

∫ 𝒆ξ𝒙𝒇(ξ)𝒅ξ
∞

𝟎
 to solve the linear difference equations and differential equations. In 1826, Abel solved the 

integral equation and named after him having the form of 𝒇(𝒙) = ∫ (𝒙 − ξ)−𝜶 ∅(ξ)𝒅ξ
𝒙

𝟎
, where 𝒇(𝒙) is a 

continuous function satisfying 𝑓(𝑎) = 0 𝑎𝑛𝑑 0 < 𝛼 < 1. Huygens solved the Abel’s integral equation for 

𝛼 = 1/2.  

In 1826, Poisson obtained an integral equation of the type ∅(𝒙) = 𝒇(𝒙) +  𝛌 ∫ 𝐊(𝐱, 𝛏)∅(𝛏)𝐝𝛏
𝒙

𝟎
 in 

which the unknown function ∅(ξ) occurs outside as well as before the integral sign and the variable 𝑥 

appears as one of the limits of the integral. Dirichlet’s problem, which is the determination of a function 

ᴪ having prescribe values over a certain boundary surface 𝑆 and satisfying Laplace Equations ∇2ᴪ = 0 

within the region enclosed by 𝑆, we shown by heuman in 1870 to be equivalent to the solution of an 

integral equation. He solved the integral equation by an expansion in powers of a certain parameter λ . In 

1896, Volterra gave the first general solution of class of linear integral equation in variable 𝑥 appearing 

as the upper limit of the integral. In 1990, Fredholms have discussed a more general class of linear Integral 

equation and defined as  ∅(𝒙) = 𝒇(𝒙) +  𝛌 ∫ 𝐊(𝐱, 𝛏)∅(𝛏)𝐝𝛏
𝒃

𝐚
 . 



11.2 OBJECTIVES 

After reading this unit the learner should be able to understand about: 

 the integral equations and its types 

 type of kernels  

 Conversion of multiple integral into a single ordinary integral 

 

11.3 INTEGRAL EQUATIONS 

An equation which contains unknown function under one or more integral signs is known as 

integral equation.  

𝑓(𝑥) = ∫ 𝐾(𝑥, 𝑡)∅(ξ)𝒅ξ
𝑥

𝑎
      ……. (1) 

∅(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝜉)∅(𝜉)𝑑𝜉
𝑥

𝑎
     …… (2) 

∅(𝑥) = ∫ 𝐾(𝑥,
𝑏

𝑎
 𝜉)[∅(𝜉)]2𝑑𝜉      …… (3) 

Where ∅(𝑥) is unknown function and 𝑓(𝑥), 𝐾(𝑥, 𝜉) are known functions  λ, 𝑎 𝑎𝑛𝑑 𝑏 are constants. 

Examples 

Example.1. Verify that the given function 𝑢(𝑥) =
1

2
 is the solution of the integral equation 

∫
𝑢(𝑡)

√(𝑥−𝑡)
𝑑𝑡 = √𝑥

𝑥

0
. 

Solution:  Here, the given integral equation is  

∫
𝑢(𝑡)

√(𝑥−𝑡)
𝑑𝑡 = √𝑥

𝑥

0
  

Putting value 𝑢(𝑥) =
1

2
 in the given equation, we get  

1

2
∫

𝑑𝑡

√(𝑥−𝑡)
= √𝑥

𝑥

0
  

i.e.,   −
1

2
 (2. √𝑥 − 𝑡 )

0

𝑥
= √𝑥 

or                                       √𝑥 = √𝑥, Which is an identity in 𝑥.  

Hence the function 𝑢(𝑥) =
1

2
 is the solution of the integral equation. 

 

11.4 TYPES OF INTEGRAL EQUATIONS 

There are three types of integral equations: 

(i) Linear integral equations 



(ii) Non linear integral equations 

(iii) Singular integral equations. 

 

11.5 LINEAR INTEGRAL EQUATIONS 

An integral equation is called linear integral equation if there is only linear function as unknown 

function under the integral sign. 

For example:  𝛼(𝑥). ∅(𝑥) = 𝑓(𝑥) + λ ∫ K(x, ξ)∅(ξ)dξ
b

a
  is linear as the unknown function K(x, ξ)∅(ξ) is 

linear. 

This Linear integral equation is further has been divided into two parts. 

(i) Volterra integral equation and (ii) Fredholm integral equation. 

 

11.6 VOLTERRA INTEGRAL EQUATIONS 

An integral equation is said to be volterra integral equation if the upper limit of integration is variable. 

For example: The equation 𝛼(𝑥). ∅(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝜉)∅(𝜉)𝑑𝜉
𝑥

𝑎
  …(1) 

Here upper limit is x which is variable. 

Case-1: If α = 0 then from equation (1), we get  

𝑓(𝑥) = −𝜆 ∫ 𝐾(𝑥, 𝜉)∅(𝜉)𝑑𝜉
𝑥

𝑎
,  

which is called Volterra integral of first kind. 

Case-II: If α = 1 then from equation (1), we get  

∅(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝜉)∅(𝜉)𝑑𝜉
𝑥

𝑎
,  

which is called Volterra integral equation of second kind. 

Case-III: If α = 1,  f(x) = 0 then from equation (1), we get  

 ∅(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝜉)∅(𝜉)𝑑𝜉
𝑥

𝑎
,  

which is called homogeneous Volterra integral equation. 

 

11.7 FREDHOLM INTEGRAL EQUATIONS 

An integral equation is called Fredholm integral equation if both the limits are constants [ domain 

of integration is fixed. 

For example:  The equation 𝛼(𝑥)∅(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝜉)∅(𝜉)𝑑𝜉
𝑏

𝑎
                          ….(1) 

is called Fredholm integral equation. 

Case-1: If α = 0 then from equation (1), we get  



𝐹(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝜉)∅(𝜉)𝑑𝜉
𝑏

𝑎
,  

which is called Fredholm integral equation of first kind. 

Case-II: If α = 1 then from equation (1), we get  

∅(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝜉)∅(𝜉)𝑑𝜉
𝑏

𝑎
,  

which is called Fredholm integral equation of second kind. 

Case-III: If α = 1,  f(x) = 0 then from equation (1), we get  

∅(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝜉)∅(𝜉)𝑑𝜉
𝑏

𝑎
,  

which is called homogeneous Fredholm integral equation. 

 

11.8 NON-LINEAR INTEGRAL EQUATIONS 

If the unknown function appears under an integral sign to some power greater than one, is known 

as non-linear integral equation. 

For example:    ∅(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝜉)∅𝑛(𝜉)𝑑𝜉
𝑏

𝑎
   (n> 1). 

 

11.9 SINGULAR INTEGRAL EQUATIONS 

 When one or both limits of integration are infinite or the kernel 𝐾(𝑥, 𝜉) becomes infinite at one or 

more points within the range of integration, is called singular integral equation. 

For example:  ∅(𝑥) = 𝑓(𝑥) + 𝜆 ∫ exp {−|𝑥 −
∞

−∞
 𝜉|}∅(𝜉)𝑑𝜉 

and ∅(𝑥) = 𝑓(𝑥) = ∫
1

(𝑥− 𝜉)𝛼

∞

−∞
  ∅(𝜉)𝑑𝜉. 

Note: Convolution integration. If the kernel of the integral equation is of the form 𝐾(𝑥, 𝜉) = 𝐾(𝑥 − 𝜉) 

For example:   ∅(𝑥) = 𝑒𝑥 + 𝜆 ∫ [(𝑥 − 𝜉)2 + 3(𝑥 − 𝜉)]∅(𝜉)𝑑𝜉
𝑏

𝑎
. 

Examples 

Example.2: Given that ∅(𝑥) = (1 − 𝑥 +
𝑥3

6
) + ∫ [𝑠𝑖𝑛𝜉 − (𝑥 − 𝜉)(𝑐𝑜𝑠𝜉 + 𝑒𝜉)]∅(𝜉)𝑑𝜉 

𝑥

0
 

Determine the values of ∅′(𝑥)𝑎𝑛𝑑 ∅”(𝑥). 

Solution: It is given that 

∅(𝒙) = (𝟏 − 𝒙 +
𝒙𝟑

𝟔
) + ∫[𝒔𝒊𝒏𝝃 − (𝒙 − 𝝃)(𝒄𝒐𝒔𝝃 + 𝒆𝝃)]∅(𝝃)𝒅𝝃 

𝒙

𝟎

                … (1) 

To determine the values of  ∅′(𝑥) 𝑎𝑛𝑑 ∅"(𝑥) 

Differentiating equation (1) with respect to x, we have 



∅′(𝑥) = (0 − 1 +
3𝑥2

6
)

+ ∫ [
𝜕

𝜕𝑥
{𝑠𝑖𝑛𝜉 − (𝑥 − 𝜉)(𝑐𝑜𝑠𝜉 + 𝑒𝜉)}∅(𝜉)] 𝑑𝜉

𝑥

0

+ [{𝑠𝑖𝑛𝜉 − (𝑥 − 𝜉)(𝑐𝑜𝑠𝜉 + 𝑒𝜉)}∅(𝜉)]
𝜉=𝑥

𝑑

𝑑𝑥
(𝑥)

− [{𝑠𝑖𝑛𝜉 − (𝑥 − 𝜉)(𝑐𝑜𝑠𝜉 + 𝑒𝜉)}∅(𝜉)]
𝜉=0

𝑑

𝑑𝑥
(0)  

∅′(𝑥) = (−1 +
𝑥2

2
) + ∫[{0 − (𝑐𝑜𝑠𝜉 + 𝑒𝜉)}∅(𝜉)]𝑑𝜉 + [𝑠𝑖𝑛𝑥 − (𝑥 − 𝑥)(𝑐𝑜𝑠𝑥 + 𝑒𝑥)]∅(𝑥). 1 − 0 

𝑥

0

 

[∵
𝑑

𝑑𝑥
(0) = 0] ∅′(𝑥) = −1 +

𝑥2

2
− ∫[(𝑐𝑜𝑠𝜉 + 𝑒𝜉)∅(𝜉)]𝑑𝜉 + 𝑠𝑖𝑛𝑥. ∅(𝑥)

𝑥

0

 

Again differentiating with respect to x, we have 

∅"(𝑥) = −0 +
2𝑥

2

− ∫ [
𝜕

𝜕𝑥
{(𝑐𝑜𝑠𝜉 + 𝑒𝜉)∅(𝜉)}] 𝑑𝜉 + {(𝑐𝑜𝑠𝜉 + 𝑒𝜉)∅(𝜉)}

𝜉=𝑥

𝑑

𝑑𝑥
(𝑥)

𝑥

0

− {(𝑐𝑜𝑠𝜉 + 𝑒𝜉)∅(𝜉)}
𝜉=0

𝑑

𝑑𝑥
(0) + 𝑠𝑖𝑛𝑥. ∅′(𝑥) + ∅(𝑥)𝑐𝑜𝑠𝑥  

∅"(𝑥) = 𝑥 − 0 − (𝑒𝑥 + 𝑐𝑜𝑠𝑥) ∅(𝑥) +  𝑠𝑖𝑛𝑥. ∅′(𝑥) + ∅(𝑥)𝑐𝑜𝑠𝑥 

∅"(𝑥) = 𝑥 − 𝑒𝑥 ∅(𝑥) − 𝑐𝑜𝑠𝑥. ∅(𝑥) +  𝑠𝑖𝑛𝑥. ∅′(𝑥) + ∅(𝑥)𝑐𝑜𝑠𝑥 

∅"(𝑥) −  𝑠𝑖𝑛𝑥. ∅′(𝑥) + 𝑒𝑥 ∅(𝑥) = 𝑥 

Example.3: Given that 

∅(𝒙) = (𝟏 − 𝒙 − 𝟒𝒔𝒊𝒏𝒙) + ∫[𝟑 − 𝟐(𝒙 − 𝝃)]∅(𝝃)𝒅𝝃                                 

𝒙

𝟎

 

Determine the values of  ∅′(𝑥) 𝑎𝑛𝑑 ∅"(𝑥). 

Solution: It is given that 

∅(𝑥) = (1 − 𝑥 − 4𝑠𝑖𝑛𝑥) + ∫[3 − 2(𝑥 − 𝜉)]∅(𝜉)𝑑𝜉                                  … (1)

𝑥

0

 

Differentiating equation (1) with respect to x, we have 



  ∅′(𝑥) = (0 − 1 − 4𝑐𝑜𝑠𝑥) + ∫ [
𝜕

𝜕𝑥
{(3 − 2(𝑥 − 𝜉))∅(𝜉)}]  𝑑𝜉 + [{3 − 2(𝑥 − 𝜉)}∅(𝜉)]𝜉=𝑥

𝑑

𝑑𝑥
(𝑥)

𝑥

0

− +[{3 − 2(𝑥 − 𝜉)}∅(𝜉)]𝜉=0

𝑑

𝑑𝑥
(0)∅′(𝑥)

= (−1 − 4𝑐𝑜𝑠𝑥) + ∫ −2∅(𝜉)𝑑𝜉 + [{3 − 2(𝑥 − 𝑥)}∅(𝑥)] . 1 − 0

𝑥

0

 

∅′(𝑥) = (−1 − 4𝑐𝑜𝑠𝑥) − 2 ∫ ∅(𝜉)𝑑𝜉 + 3∅(𝑥)

𝑥

0

 

Again differentiating with respect to x, we have 

∅"(𝑥) = 0 + 4𝑠𝑖𝑛𝑥 − [2 ∫ {
𝜕

𝜕𝑥
∅(𝜉)} 𝑑𝜉 + [∅(𝜉)]𝜉=𝑥

𝑑

𝑑𝑥
(𝑥) − [∅(𝜉)]𝜉=0

𝑑

𝑑𝑥
(0)]  + 3∅′(𝑥)

𝑥

0

 

∅"(𝑥) = 4𝑠𝑖𝑛𝑥 − 2[0 + ∅(𝑥) − 0] + 3∅′(𝑥) 

∅"(𝑥) − 3∅′(𝑥) + 2∅(𝑥) = 4𝑠𝑖𝑛𝑥. 

Example.4: If ∅(𝑥) = 3 + ∫ (5𝑥 − 3𝜉)∅(𝜉)𝑑𝜉
𝑥

0
 then determine the values of ∅′(𝑥) 𝑎𝑛𝑑 ∅"(𝑥). 

Solution: It is given that  

∅(𝑥) = 3 + ∫(5𝑥 − 3𝜉)∅(𝜉)𝑑𝜉

𝑥

0

                                                                   … (1) 

Differentiating equation (1) with respect to x, we have 

∅′(𝑥) = 0 + ∫ [
𝜕

𝜕𝑥
{(5𝑥 − 3𝜉)∅(𝜉)}] 𝑑𝜉+{(5𝑥 − 3𝜉)∅(𝜉)}𝜉=𝑥

𝑥

0

𝑑

𝑑𝑥
(𝑥)

− {(5𝑥 − 3𝜉)∅(𝜉)}𝜉=0

𝑑

𝑑𝑥
(0)∅′(𝑥) = ∫(5 − 0)∅(𝜉)𝑑𝜉

𝑥

0

+ (5𝑥 − 3𝑥)∅(𝑥) 

∅′(𝑥) = ∫ 5. ∅(𝜉)𝑑𝜉

𝑥

0

+ 2𝑥. ∅(𝑥) 

Again differentiating with respect to x, we have 

∅"(𝑥) = ∫ [
𝜕

𝜕𝑥
{5. ∅(𝜉)}] 𝑑𝜉

𝑥

0

+ {5∅(𝜉)}𝜉=𝑥

𝑑

𝑑𝑥
(𝑥) − {5∅(𝜉)}𝜉=0

𝑑

𝑑𝑥
(0) + 2𝑥. ∅′(𝑥) + 2∅(𝑥) 

∅"(𝑥) = 0 + 5∅(𝑥) − 0 + 2𝑥. ∅′(𝑥) + 2∅(𝑥) 

∅"(𝑥) − 2𝑥. ∅′(𝑥) − 7∅(𝑥) = 0. 

Example.5: If ∅(𝑥) = ∫ (𝑥 + 𝜉)∅(𝜉)𝑑𝜉
𝑥

0
 then determine the values of ∅′(𝑥)𝑎𝑛𝑑 ∅"(𝑥). 



Solution: It is given that 

∅(𝑥) = ∫(𝑥 + 𝜉)∅(𝜉)𝑑𝜉

𝑥

0

                                                                  … (1) 

Differentiating equation (1) with respect to x, we have 

∅′(𝑥) = ∫ [
𝜕

𝜕𝑥
{(𝑥 + 𝜉)∅(𝜉)}] 𝑑𝜉

𝑥

0

+ [(𝑥 + 𝜉)∅(𝜉)]𝜉=𝑥

𝑑

𝑑𝑥
(𝑥) − [(𝑥 + 𝜉)∅(𝜉)]𝜉=0

𝑑

𝑑𝑥
(0) 

∅′(𝑥) = ∫ ∅(𝜉)𝑑𝜉 + [(𝑥 + 𝑥). ∅(𝑥)]. 1 − 0

𝑥

0

 

∅′(𝑥) = ∫ ∅(𝜉)𝑑𝜉 + 2𝑥

𝑥

0

∅(𝑥) 

Again differentiating with respect to x, we have  

∅"(𝑥) = ∫ [
𝜕

𝜕𝑥
∅(𝜉)] 𝑑𝜉 +

𝑥

0

2𝑥. ∅′(𝑥) + 2∅(𝑥) + ∅(𝑥) 

∅"(𝑥) = 0 + 2𝑥. ∅′(𝑥) + 3∅(𝑥) 

or    ∅"(𝑥) − 2𝑥. ∅′(𝑥) − 3∅(𝑥) = 0. 

Note:  ∫ 𝑓(𝜉)𝑑𝜉𝑛 =
𝑥

𝑎
∫

(𝑥−𝜉)𝑛−1

(𝑛−1)!
𝑓(𝜉)𝑑𝜉.

𝑥

𝑎
  

 

11.10 TYPES OF KERNELS 

Symmetric Kernel- A Kernel 𝑘(𝑥, 𝑡) is Symmetric (or complex symmetric or Hermitian) if 𝑘(𝑥, 𝑡) =
𝑘(𝑥, 𝑡) ̅̅ ̅̅ ̅̅ ̅̅ ̅, where bar denotes the complex conjugate.  

A real kernel 𝑘(𝑥, 𝑡) is symmetric if 

 𝑘(𝑥, 𝑡) = 𝑘(𝑡, 𝑥) . 

For example: 𝑠𝑖𝑛(𝑥 + 𝑡), 𝑒𝑥𝑡, 𝑥3𝑡3 + 𝑥2𝑡2 + 𝑥𝑡 + 1 are all symmetric kernels. 

Separable or Degenerate Kernel- A kernel which is particularly useful in solving the Fredholm equation 

has the form 

 𝑘(𝑥, 𝑡) = ∑ 𝑎𝑖(𝑥)𝑏𝑖(𝑡)𝑛
𝑖=1 , where 𝑛 is finite and 𝑎𝑖, 𝑏𝑖 are linearly independent sets of functions. Such a 

kernel is known as separable or degenerate kernel. 

Remark: A degenerate kernel has a finite number or characteristic values. 

Transposed Kernel- The kernel 𝑘𝑇(𝑥, 𝑡) = 𝑘(𝑡, 𝑥) is called the transposed kernel of 𝑘(𝑥, 𝑡). 

Iterated Kernel 

(i) Consider Fredholm integral equation of the second kind 



𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝜉)∅(𝜉)𝑑𝜉
𝑏

𝑎
     …(1) 

Then, the iterated kernels 𝑘𝑛(𝑥, 𝑡), 𝑛 = 1,2,3, … …are defined as follows 

𝑘1(𝑥, 𝑡) = 𝑘(𝑥, 𝑡) 

and  𝑘𝑛(𝑥, 𝑡) = ∫ 𝑘(𝑥, 𝑠)𝑘𝑛−1(𝑠, 𝑡)𝑑𝑠, 𝑛 = 2,3 …
𝑏

𝑎
 

(ii) Consider Volterra integral equation of the second kind 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝜉)∅(𝜉)𝑑𝜉
𝑏

𝑎
     …(2) 

Then, the iterated kernels 𝑘𝑛(𝑥, 𝑡), 𝑛 = 1,2,3, … …are defined as follows 

𝑘1(𝑥, 𝑡) = 𝑘(𝑥, 𝑡) 

and 𝑘𝑛(𝑥, 𝑡) = ∫ 𝑘(𝑥, 𝑠)𝑘𝑛−1(𝑠, 𝑡)𝑑𝑠, 𝑛 = 2,3 …
𝑏

𝑎
 

Resolvent Kernel or Reciprocal Kernel- Consider the integral equations 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝜉)∅(𝜉)𝑑𝜉
𝑏

𝑎
     …(1) 

and   𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝜉)∅(𝜉)𝑑𝜉
𝑏

𝑎
     …(2) 

Let the solution of equations (1) and (2) be given by  

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑅(𝑥, 𝜉, 𝜆)∅(𝜉)𝑑𝜉
𝑏

𝑎
    …(3) 

and   𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝛤(𝑥, 𝜉, 𝜆)∅(𝜉)𝑑𝜉
𝑏

𝑎
    …(4) 

Then, 𝑅(𝑥, 𝜉, 𝜆) or 𝛤(𝑥, 𝜉, 𝜆) is called the resolvent kernel or reciprocal kernel. 

 

11.11 CONVERSION OF MULTIPLE INTEGRAL INTO A SINGLE 

ORDINARY INTEGRAL 

Consider the integral  

       𝐼𝑛(𝑥) = ∫ (𝑥 − 𝑡)𝑛−1𝑥

𝑎
𝑓(𝑡)𝑑𝑡        …..(1) 

where 𝑡 is a positive integer and 𝑎 is a constant. 

Differentiating equation (1) using Leibnitz’s rule, we get  

𝑑𝐼𝑛

𝑑𝑥
= (𝑛 − 1) ∫ (𝑥 − 𝑡)𝑛−2𝑓(𝑡)𝑑𝑡 + [(𝑥 − 𝑡)𝑛−1𝑓(𝑡)]𝑡=𝑥

𝑥

𝑎

 

𝑑𝐼𝑛

𝑑𝑥
= (𝑛 − 1)𝐼𝑛−1, 𝑛 > 1     ….(2) 

From equation (1), we get  

𝐼1(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
   

𝑜𝑟                            
𝑑𝐼1

𝑑𝑥
= 𝑓(𝑥)       …..(3) 

Now, differentiating equation (2) successively 𝑚 times, we get 



𝑑𝑚𝐼𝑛

𝑑𝑥𝑚
= (𝑛 − 1)(𝑛 − 2)(𝑛 − 3) … … … (𝑛 − 𝑚)𝐼𝑛−𝑚, 𝑛 > 𝑚 

In particular, we have  

𝑑𝑛−1𝐼𝑛

𝑑𝑥𝑛−1
= (𝑛 − 1)! 𝐼1(𝑥) 

𝑑

𝑑𝑥
(

𝑑𝑛−1𝐼𝑛

𝑑𝑥𝑛−1
) = (𝑛 − 1)!

𝑑𝐼1

𝑑𝑥
 

𝑑𝑛𝐼𝑛

𝑑𝑥𝑛 = (𝑛 − 1)! 𝑓(𝑥)       ….(4) 

Thus, we have  

𝐼1(𝑥) = ∫ 𝑓(𝑥1)𝑑𝑥1
𝑥

𝑎
                 [from equation (3)] 

And 
𝑑𝐼2

𝑑𝑥
= 𝐼1 = ∫ 𝑓(𝑥1)𝑑𝑥1

𝑥

𝑎
          

⇨  𝐼2(𝑥) = ∫ ∫ 𝑓(𝑥1)𝑑𝑥1𝑑𝑥2
𝑥2

𝑎

𝑥

𝑎
   [from equation (2)] 

In general, we have  

𝐼𝑛(𝑥) = (𝑛 − 1)! ∫ ∫ … … …
𝑥𝑛

𝑎

𝑥

𝑎
∫ ∫ 𝑓(𝑥1)𝑑𝑥1𝑑𝑥2

𝑥2

𝑎

𝑥3

𝑎
… . 𝑑𝑥𝑛−1𝑑𝑥𝑛  …(5) 

Using equations (1) and (5), we conclude that   

∫ ∫ … … …
𝑥𝑛

𝑎

𝑥

𝑎

∫ ∫ 𝑓(𝑥1)𝑑𝑥1𝑑𝑥2

𝑥2

𝑎

𝑥3

𝑎

… . 𝑑𝑥𝑛−1𝑑𝑥𝑛 

=
1

(𝑛 − 1)!
𝐼𝑛(𝑥) 

=
1

(𝑛 − 1)!
∫ (𝑥 − 𝑡)𝑛−1𝑓(𝑡)𝑑𝑡

𝑥

𝑎

 

On integrating (𝑛 − 1) times, we have 

∫ 𝑓(𝑡)𝑑𝑡𝑛 = ∫
(𝑥 − 𝑡)𝑛−1

(𝑛 − 1)!

𝑥

𝑎

𝑥

𝑎

𝑓(𝑡)𝑑𝑡. 

 

11.12 SUMMARY 

An equation which contains unknown function under one or more integral signs is known as 

integral equation.  

An integral equation is called linear integral equation if there is only linear function as unknown 

function under the integral sign. 

An integral equation is said to be volterra integral equation if the upper limit of integration is 

variable. 

An integral equation is called Fredholm integral equation if both the limits are constants i.e., 

domain of integration is fixed. 



If the unknown function appears under an integral sign to some power greater than one, is called 

non – linear integral equation. 

When one or both limits of integration are infinite or the kernel 𝐾(𝑥, 𝜉) becomes infinite at one or 

more points within the range of integration, is called singular integral equation. 

 

11.13 TERMINAL QUESTIONS 

Q.1 What do you mean by Integral equation? 

Q.2 Explain the types of Integral equation. 

Q.3 Verify that the given function 𝑢(𝑥) =
1

2
 is the solution of the integral equation ∫

𝑢(𝑡)

√(𝑥−𝑡)
𝑑𝑡 = √𝑥

𝑥

0
 

Q.4. Show that the function 𝑢(𝑥) = 1 is the solution of the Fredholm integral equation. 

𝑢(𝑥) + ∫ 𝑥(𝑒𝑥𝑡 − 1)𝑢(𝑡)𝑑𝑡 =
1

0

𝑒𝑥 − 𝑥 

Q.5. Verify or check that the given functions are solutions of the corresponding integral equations: 

(a)  𝑢(𝑥) = 𝑥𝑒𝑥 ;                   𝑢(𝑥) = 𝑒𝑥𝑠𝑖𝑛𝑥 + 2 ∫ cos(𝑥 − 𝑡) 𝑢(𝑡)𝑑𝑡
𝑥

0
 

(b)  𝑢(𝑥) = 𝑥 −
𝑥3

6
 ;               𝑢(𝑥) = 𝑥 − ∫ sinh(𝑥 − 𝑡) 𝑢(𝑡)𝑑𝑡

𝑥

0
 

Q.6. Show that the function 𝑢(𝑥) = 1 − 𝑥 is a solution of the integral equation ∫ 𝑒𝑥−𝑡𝑢(𝑡)𝑑𝑡 = 𝑥
𝑥

0
. 

Q.7. From an integral equation corresponding to the differential equation 
𝑑2𝑦

𝑑𝑥2 − 5
𝑑𝑦

𝑑𝑥
+ 6𝑦 = 0, with 

initial conditions 𝑦(0) = 0, 𝑦′(0) = −1. 
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12.1 INTRODUCTION 

Integral equations offer a rich array of solution techniques, including successive approximations, 

separation of variables, variation of parameters, and numerical methods like finite element, collocation, 

and quadrature techniques. These equations find broad applications across physics (e.g., quantum 

mechanics), engineering (e.g., heat transfer), and mathematical modeling. Named after the Finnish 

mathematician Ivar Fredholm, Fredholm integral equations feature the unknown function appearing both 

inside and outside the integral sign. Their versatility allows them to describe relationships between 

variables over continuous domains, making them indispensable in various fields. Fredholm integral 

equations provide alternative approaches to solving boundary value problems in differential equations, 

particularly useful for problems with intricate boundary conditions and non-standard geometries. 

Fredholm integral equations are instrumental in studying conduction in materials with complex geometries 

or non-uniform properties.  

Fredholm integral equations play a pivotal role in physics, describing phenomena like 

electromagnetic scattering, wave propagation, and quantum mechanics. In quantum mechanics, they 

emerge in the analysis of scattering problems, elucidating the interaction between particles and potentials. 

This comprehensive utility underscores the significance of Fredholm integral equations across various 

scientific and engineering disciplines. 

 



12.2 OBJECTIVES 

After reading this unit the learner should be able to understand about: 

 the Fredholm integral equation and their solution 

 the Fredholm First, second and third theorem 

 

12.3 FREDHOLM INTEGRAL EQUATIONS 

We have determined the solution of the Fredholm integral equations as a power series the 

parameter𝜆 , uniformly convergent for |𝜆| sufficiently small. Fredholm obtained the solution of the 

integral equation in the general form, if possible, for all values of the parameter𝜆. 

In the theory of integral equation, the well-known theorems of linear algebra, which are related to 

the solution of the system of algebraic equation, play by a leading role. Now we shall discuss the solution 

of the non-homogeneous Fredholm integral equation of second kind by replacing the integral, appearing 

in the equation with a sum of which reduces the equation to a system of linear equations and assuming the 

number of terms of the sum tends to infinitely. The Fredholm integral equation is     𝜙(𝑥) = 𝐹(𝑥) +

𝜆 ∫ 𝐾(𝑥, 𝜉)𝜙(𝜉)𝑑𝜉
𝑏

𝑎
. 

 

12.4 FREDHOLM FIRST THEOREM 

The non- homogeneous Fredholm integral equation of second kind  

                 𝜙(𝑥) = 𝐹(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝜉)𝜙(𝜉)𝑑𝜉
𝑏

𝑎
, 

Under the assumption that the function F(x) and K(x,𝜉) are integrable has a unique solution, is of  the 

form 

𝜙(𝑥) = 𝐹(𝑥) + 𝜆 ∫ 𝑅(𝑥, 𝜉, 𝜆)𝐹(𝜉)𝑑𝜉

𝑏

𝑎

 

Where the Resolvent kernel R is a meromorphic † function of the parameter𝜆, being the ratio of two entire 

function of the parameter 𝜆 

                   R(x,𝜉, 𝜆) =
𝐷(𝑥,𝜉,𝜆)

𝐷(𝜆)
 , 𝐷(𝜆) ≠ 0 

Defined by Fredholm’s series of the form  

D(𝜆) =1+∑
(−𝜆)𝑚

𝑚!
∞
𝑚=1 ∫ … . . ∫ ∫ 𝐾 (𝜉1 𝜉2 . . 𝜉𝑚

𝜉1 𝜉2 . . 𝜉𝑚
)

𝑏

𝑎

𝑏

𝑎

𝑏

𝑎
𝑑𝜉1𝑑𝜉2. . 𝑑𝜉𝑚 

And D(x,𝜉, 𝜆) = 𝐾(𝑥, 𝜉)+∑
(−𝜆)𝑚

𝑚!
∫ … ∫ ∫ 𝐾 (

𝑥 𝜉1 𝜉2… 𝜉𝑚

𝜉 𝜉1 𝜉2 … 𝜉𝑚
) 𝑑𝜉1𝑑𝜉2 … 𝑑𝜉𝑚

𝑏

𝑎

𝑏

𝑎

𝑏

𝑎
∞
𝑚=1  

These series converge for all values of  𝜆 . In particular, the solution of the homogeneous integral equation 

is zero. 

Consider the Fredholm integral equation; 



      𝜙(𝑥) = 𝐹(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝜉)𝜙(𝜉)𝑑𝜉  
𝑏

𝑎
              …. (1) 

With a Riemann integral in a given interval (a,b).In accordance with Fredholm method, we consider 

partition of the interval (a,b) into n equal parts by the points: 

 a= 𝜉0, 𝜉1, 𝜉2, 𝜉3, … … . . 𝜉𝑛−1, 𝜉𝑛 = 𝑏 

Where 𝜉0 = 𝑎, 𝜉1 = 𝑎 + ℎ, 𝜉2 = 𝑎 + 2ℎ, … … , 𝜉𝑛 = 𝑎 + 𝑛ℎ 

And h=𝜉𝑣+1 − 𝜉𝑣 =
𝑏−𝑎

𝑛
                                             … (2) 

Replace the definite integral in (1) by the sum corresponding to the points of division, 

We have, 

             𝜙(𝑥) = 𝐹(𝑥) + 𝜆ℎ ∑ 𝐾(𝑥, 𝜉𝑣)𝜙(𝜉𝑣)𝑛
𝑣=1                       … (3) 

𝜙(𝑥) − 𝜆ℎ[𝐾(𝑥, 𝜉1)𝜙(𝜉1) + ⋯ … … … ….+K(x,𝜉𝑛)𝜙(𝜉𝑛)]=F(x) 

Since the equation (3) holds for every value of x, it must be satisfied at its n points of division x=𝜉1, 𝜉2,…𝜉𝑛 

Thus we obtain a set of n linear equation with n unknown values of the function 𝜙 (𝜉1), 𝜙(𝜉2), … … 𝜙(𝜉𝑛) 

: 

𝜙(𝜉1) − 𝜆ℎ[𝐾(𝜉1, 𝜉1)𝜙(𝜉1) + 𝐾(𝜉1, 𝜉2)𝜙(𝜉2) + ⋯ + 𝐾(𝜉1, 𝜉𝑛)𝜙(𝜉𝑛) = 𝐹(𝜉1), 

𝜙(𝜉2) − 𝜆ℎ[𝐾(𝜉2, 𝜉1)𝜙(𝜉1) + 𝐾(𝜉2, 𝜉2)𝜙(𝜉2) + ⋯ + 𝐾(𝜉2, 𝜉𝑛)𝜙(𝜉𝑛) = 𝐹(𝜉2), 

𝜙(𝜉3) − 𝜆ℎ[𝐾(𝜉3, 𝜉1)𝜙(𝜉1) + 𝐾(𝜉3, 𝜉2)𝜙(𝜉2) + ⋯ + 𝐾(𝜉3, 𝜉𝑛)𝜙(𝜉𝑛) = 𝐹(𝜉3), 

……       …….      …….      …….     ……..     ………     ……… 

𝜙(𝜉𝑛) − 𝜆ℎ[𝐾(𝜉𝑛, 𝜉1)𝜙(𝜉1) + 𝐾(𝜉𝑛, 𝜉2)𝜙(𝜉2) + ⋯ + 𝐾(𝜉𝑛, 𝜉𝑛)𝜙(𝜉𝑛) = 𝐹(𝜉𝑛) … . (4) 

With the notations   𝐹(𝜉𝑖) = 𝐹𝑖,𝜙(𝜉𝑖) = 𝜙𝑖 , 𝐾(𝜉𝑖, 𝜉𝑗) = 𝐾𝑖𝑗 

The system of equation (4) reduce to 

(1 − 𝜆ℎ𝐾11)𝜙1 − 𝜆ℎ𝐾12𝜙2 − 𝜆ℎ𝐾13𝜙3 − ⋯ . −𝜆ℎ𝐾1𝑛𝜙𝑛 = 𝐹1 

−𝜆ℎ𝐾21𝜙1 + (1 − 𝜆ℎ𝐾22)𝜙2 − 𝜆ℎ𝐾23𝜙3 − ⋯ − 𝜆ℎ𝐾2𝑛𝜙𝑛 = 𝐹2 

−𝜆ℎ𝐾31𝜙1 − 𝜆ℎ𝐾32𝜙2 + (1 − 𝜆ℎ𝐾33)𝜙3 − ⋯ − 𝜆ℎ𝐾3𝑛𝜙𝑛 = 𝐹3 

…    …     …     …    …    …     …    …    …      …     … 

…     …    …      …    …    …    …   …      …     …      … 

−𝜆ℎ𝐾𝑛1𝜙1 − 𝜆ℎ𝐾𝑛2𝜙2 + (−𝜆ℎ𝐾𝑛3)𝜙3 − ⋯ (1 − 𝜆ℎ𝐾𝑛𝑛)𝜙𝑛 = 𝐹𝑛        … (5) 

The solution φ1,φ2,.....φn of the system of equations may be expressed in the form of the ratios of certain 

determinants by the common characteristic determinant: 

   Dn(λ)=|
|

(1 − λhK11) −𝜆ℎK12 −𝜆ℎK13 … . . −𝜆ℎK1n

−𝜆ℎK21 (1 − 𝜆ℎK22) −𝜆ℎK23 … . . −𝜆ℎK2n

… . . … . . … . . … . . … . .
… . . … . . … . . … . . … . .

−𝜆ℎKn1 −𝜆ℎKn2 −𝜆ℎKn3 … . . (1 − 𝜆ℎKnn)

|
|
     … (6) 

Provided that Dn(λ)≠0. 

Now We shall expand the determinant (6) in powers of the factor –λh. 



The first term not containing this factor is obviously equal to unity. The term containing 

(-λh) in the first power is the sum determined as 

   = -λhKvv , v=1,2,3......n. 

The term containing the factor (-λh)2 is the sum of all determinants having two columns with that 

factor,i.e.,the sum of the determinants of the form 

  =(-λh)2|
𝐾𝑟𝑟 𝐾𝑟𝑠
𝐾𝑠𝑟 𝐾𝑠𝑠

| 

Where (r,s) is an arbitrary pair of integers taken from the sequence 1,2,3,.....n with r<s. 

Similarly, the term containing (-λh)3 is the sum of the determinants of the form 

  =(-λh)3|
𝐾𝑟𝑟 𝐾𝑟𝑠 𝐾𝑟𝑡
𝐾𝑠𝑟 𝐾𝑠𝑠 𝐾𝑠𝑡
𝐾𝑡𝑟 𝐾𝑡𝑠 𝐾𝑡𝑡

| 

Where r,s,t are the arbitrary integers taken from the sequence 1,2,3......n with r<s<t. 

Thus we conclude that the expansion of the determinant (6) may be expressed in the form 

Dn(λ)=1-λh∑Kvv+
(−λh)2

2!
∑|

𝐾𝑟𝑟 𝐾𝑟𝑠
𝐾𝑠𝑟 𝐾𝑠𝑠

|+
(−λh)3

3!
∑|

𝐾𝑟𝑟 𝐾𝑟𝑠 𝐾𝑟𝑡
𝐾𝑠𝑟 𝐾𝑠𝑠 𝐾𝑠𝑡
𝑘𝑡𝑟 𝐾𝑡𝑠 𝐾𝑡𝑡

|+.... 

+
(−𝜆ℎ)𝑛

𝑛!
∑|

𝐾𝛼1𝛼2 𝐾α1α2 … 𝐾α1αn
𝐾α2α1 𝐾α2α2 … 𝐾α2αn

… . . … . . . … . .
𝐾αnα1 𝐾αnα2 … 𝐾αnαn

|                              … (7) 

Let h0 and n∞,then each of the terms of sum (7) reduces to some single, double or triple integral 

etc.Thus,we have 

D(λ)=1-λ∫ 𝐾(𝜉1, 𝜉1)𝑑𝜉1
𝑏

𝑎
 +

𝜆2

2!
∫ ∫ |

𝐾(𝜉1,𝜉1) 𝐾(𝜉1,𝜉2)

𝐾(𝜉2,𝜉1) 𝐾(𝜉2,𝜉2)
|

𝑏

𝑎

𝑏

𝑎
dξ1dξ2-

𝜆3

3!
∫ ∫ ∫ |

𝐾(𝜉1, 𝜉1) 𝐾(𝜉1, 𝜉2) 𝐾(𝜉1, 𝜉3)
𝐾(𝜉2,𝜉1) 𝐾(𝜉2,𝜉2) 𝐾(𝜉2,𝜉3)

𝐾(𝜉3,𝜉1) 𝐾(𝜉3,𝜉2) 𝐾(𝜉3,𝜉3)
|

𝑏

𝑎

𝑏

𝑎

𝑏

𝑎
dξ1dξ2dξ3+.......                   … (8) 

Where D(λ) is called the Fredholm’s determinant. 

Similarly, the power series analogous to the series (8) may be written as 

D(λ)=1+∑
(−𝜆)𝑚

𝑚!
∫ ∫ …

𝑏

𝑎

𝑏

𝑎
∫ 𝐾 (

𝜉1, 𝜉2 … . ξm
𝜉1, 𝜉2, … . ξm

)
𝑏

𝑎
dξ1dξ2.....dξm.             ...                (9) 

where 𝐾 (
ξ1, ξ2, … . ξm
ξ1, ξ2, … . ξm

)=|

𝐾(𝜉1, 𝜉1) 𝐾(𝜉1, 𝜉2) 𝐾(𝜉1, 𝜉𝑚)
𝐾(𝜉2,𝜉1) 𝐾(𝜉2,𝜉2) 𝐾(𝜉2,𝜉𝑚)

… . . … . . … . .
K(𝜉𝑚,𝜉1) K(𝜉𝑚,𝜉2) 𝐾(𝜉𝑚,𝜉𝑚)

| 

This is called Fredholm’s first series. 

Fredholm assumed that the solution φ(x) of the integral equation are to be sought for arbitrary λ in 

the form of a ratio of two power series in the parameter λ, where the series D(λ) is to be the divisor. We 

know that the solution of the Fredholm integral equation for sufficiently small |λ| is of the form 



∅(x)=F(x)+ λ∫ 𝑅(𝑥, 𝜉; λ)F(ξ)dξ
𝑏

𝑎
                                               … (10) 

Where the function 𝑅(𝑥, 𝜉; λ) is called the resolvent kernel, 

𝑅(𝑥, 𝜉; λ) = D(𝑥, 𝜉; λ)/D(λ)      ---(11) 

Where D(λ) is the Fredholm first series and 𝐷(𝑥, 𝜉; λ) is the sum of some functional series yet to 

be determined.This Theorem refers to the case where λ is not a zero of the function 𝐷(λ).The study of the 

case where λ is a zero of the entire function 𝐷(λ) gives rise to the Fredholm second and the third theorems. 

We know that equation (10) is a solution of the integral equation (1) if the Resolvent Kernel 

𝑅(𝑥, 𝜉; λ) satisfies the equation 

𝑅(𝑥, 𝜉; λ)=K(x,ξ)+λ∫ 𝐾(𝑥, 𝜉1)𝑅(ξ1, 𝜉; λ)
𝑏

𝑎
dξ1                                         … (12) 

In view of the form (11) of the Resolvent kernel, the numerator D(x, ξ; λ) should satisfy the integral 

equation  

D(x, ξ; λ)/ D(λ) = K(x, ξ) + λ∫ K(x, 𝜉1)
𝑏

𝑎
 D(ξ1, ξ; λ)/ D(λ)d ξ1 

D(x, ξ; λ) = K(x, ξ)D(λ)+λ∫ K(x, 𝜉1)
𝑏

𝑎
D(ξ1, ξ; λ)d ξ1                … (13) 

The solution of the equation in the form of power series in the parameter λ is given by 

D(x, ξ; λ) = B0(x, ξ) + ∑ (−1)∞
𝑚=1

m( λm/m!)Bm(x, ξ)         … (14) 

We know that 

D(λ) = 1 + ∑ (−1)∞
𝑚=1

m( λm/m!)Cm                            … (15) 

Where  Cm= ∫ … ∫ ∫ K 
𝑏

𝑎

𝑏

𝑎

𝑏

𝑎
(

𝜉1  𝜉2 … . 𝜉𝑚
𝜉1  𝜉2 … . 𝜉𝑚

)dξ1dξ2 …….dξm                                                   

from the equations (14) and (15), the equation (13) reduces  

B0(x,ξ)+∑ (−1)∞
𝑚=1

m(λm/m!)Bm(x, ξ) = K(x, ξ) 

{1+∑ (−1)∞
𝑚=1

m( λm/m!)Cm} + λ∫ K(x, 𝜉1)
𝑏

𝑎
{B0(ξ1, ξ) +∑ (−1)∞

𝑚=1
m( λm/m!)Bm (ξ1, ξ) } dξ1     

Substituting       λ=0 ⇒   B0(x, ξ) = K(x, ξ) 

To determine the coefficients Bm(x, ξ) equating the coefficients of λm , we have  

((-1)m/m!)Bm(x,ξ) =  {(-1)m/m!}CmK(x,ξ)+{(-1)m-1/(m-1)!} ∫ K(x, ξ1)
𝑏

𝑎
Bm-1(ξ1, ξ) } dξ1    

⇒ Bm(x,ξ) = CmK(x,ξ)- m ∫ K(x, ξ1)
𝑏

𝑎
Bm-1(ξ1, ξ) } dξ1                           …(16) 

Which is a recursive relation between the consecutive functions Bm and Bm-1 

Thus for 𝑚 = 1, we have  

B1(x,ξ) = C1K(x,ξ)-  ∫ K(x, 𝜉1)
𝑏

𝑎
B0(ξ1, ξ) } dξ1    

B1(x,ξ) = K(x,ξ) ∫ K(𝜉1, 𝜉1)
𝑏

𝑎
 dξ1   - ∫ K(x, 𝜉1)

𝑏

𝑎
 K(ξ1,ξ) dξ1    



 B1(x,ξ) =∫ |
𝐾(𝑥, 𝜉)     𝐾(𝑥, 𝜉1)

𝐾(𝜉1, 𝜉)      𝐾(𝜉1, 𝜉1) 
|

𝑏

𝑎
dξ1 =∫ K(

𝑥  𝜉
𝜉   𝜉

)dξ1                  … (17)                   

In general, we shall prove that  

Bm (𝑥, 𝜉)= ∫ … ∫ ∫ K
𝑏

𝑎

𝑏

𝑎

𝑏

𝑎
 (

𝑥 𝜉1 𝜉2… 𝜉𝑚

𝜉 𝜉1 𝜉2 … 𝜉𝑚
)  dξ1dξ2 …….dξm           … (18)                                   

where ξ,   ξ1,  ξ2 …….ξm   are the variables of integration 

expanding the determinant under the integral sign in (13), we get 

     K(
𝑥 𝜉1 𝜉2… 𝜉𝑚

𝜉 𝜉1 𝜉2 … 𝜉𝑚
)=   

            |

𝐾(𝑥, 𝜉)           𝐾(𝑥, 𝜉1) 𝐾(𝑥, 𝜉2) 𝐾(𝑥, ξm)

𝐾(𝜉1, 𝜉)         𝐾(𝜉1, 𝜉1) 𝐾(𝜉1, 𝜉2) 𝐾(𝜉1, ξm)
… . . … . . … ..                                                    

   K(ξm, 𝜉 )     K(ξm, 𝜉1)               K(ξm, 𝜉2)                 𝐾(ξm, ξm)                              

| 

Or    K  (
𝑥 𝜉1 𝜉2… 𝜉𝑚

𝜉 𝜉1 𝜉2 … 𝜉𝑚
)       =     K(x,ξ) K (

𝜉1, 𝜉2, … . ξm
𝜉1, 𝜉2, … . ξm

) 

                                                  - K(x,ξ1) K (
𝜉1, 𝜉2, … . ξm
𝜉1, 𝜉2, … . ξm

)                                                               

                                                 - K(x,ξ2) K  (
𝜉1, 𝜉2, … . ξm
𝜉1, 𝜉2, … . ξm

)                                                                                               

                                                - K(x,ξm) K (
𝜉1, 𝜉2, … . ξm
𝜉1, 𝜉2, … . ξm

)  

by integrating both sides of the equality n times with regard to the variable  ξ1,  ξ2 …….ξm, we obtain 

or     ∫ ∫ . .
𝑏

𝑎
… ∫ ∫ ∫ K

b

a

𝑏

𝑎

𝑏

𝑎

𝑏

𝑎
    (

𝑥 𝜉1 𝜉2… 𝜉𝑚

𝜉 𝜉1 𝜉2 … 𝜉𝑚
)      dξ1dξ2 …….dξm                              

=CmK(x,ξ)-m∫ K(x, s) {
𝑏

𝑎
∫ K

𝑏

𝑎
(

𝑠 𝜉1 𝜉2… 𝜉𝑚

𝜉 𝜉1 𝜉2 … 𝜉𝑚
) dξ1dξ2 . . . dξm − 1 }ds                                                                                                                                                                                                         

… (19)                                                                                                 

We notice from the equality (17) that the relation (18) holds for m=1. Thus we conclude by induction that 

it holds for all values  of m. Hence the series (14) takes the following  form 

D(x, ξ; λ) = K(x, ξ) 

          +∑ (−∞
𝑚=1 λm)/m! ∫ ∫ . .

𝑏

𝑎
… ∫ ∫ ∫ K

b

a

𝑏

𝑎

𝑏

𝑎

𝑏

𝑎
 (

𝑥 𝜉1 𝜉2… 𝜉𝑚

𝜉 𝜉1 𝜉2 … 𝜉𝑚
) dξ1dξ2 …….dξm           …(20)                                                                                                     

or   D(x, ξ; λ) = K(x, ξ) + ∑ ((−1)∞
𝑚=1

m/m!) λm Bm(x, ξ),  

where Cm= ∫ … ∫ ∫ K
𝑏

𝑎

𝑏

𝑎

𝑏

𝑎
 (

𝑥 𝜉1 𝜉2… 𝜉𝑚

𝜉 𝜉1 𝜉2 … 𝜉𝑚
)  dξ1dξ2 …….dξm               … (21)                                                                                                     

This is called Fredholm second series and the function   

D(x, ξ; λ)  is said to be the Fredholm minor. 



Corollary: The Fredholm homogeneous integral equation is ∅(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝜉)∅(𝜉)𝑑𝜉
𝑏

𝑎
   

has only one and only one solution given by ∅(𝑥) = 0, if D(𝜆) ≠ 0. 

Substituting 𝐹(𝑥) = 0 it follows that if D(𝜆) ≠ 0 then the homogeneous integral equation contains only 

the trivial solution ∅(𝑥) = 0 in an interval (a, b). 

 

12.5 NON-HOMOGENOUS FREDHOLM EQUATION 

We know that 

∅(𝑥) = 𝐹(𝑥) + 𝜆 ∫ 𝑅(𝑥, 𝜉; 𝜆)𝐹(𝜉)𝑑𝜉
𝑏

𝑎

 

of the non-homogeneous Fredholm equation is unique for any 𝜆 provided by D(𝜆) ≠ 0 

we know that 

 𝑅(𝑥, 𝜉; 𝜆) = 𝐾(𝑥, 𝜉) + 𝜆 ∫ 𝑅(𝑥, 𝑠; 𝜆)𝐾(𝑠, 𝜉)𝑑𝑠
𝑏

𝑎
                       … (1) 

when modulus of 𝜆 is sufficiently small. 

We shall show that the above relation is satisfied by the Fredholm Resolvent kernel of the form 

𝑅(𝑥, 𝜉; 𝜆) =
𝐷(𝑥,𝜉;𝜆)

𝐷(𝜆)
  , D(𝜆) ≠ 0. 

It follows that both side of the above equation are meromorphic functions of the parameter 𝜆. If they are 

equal in a region where in which modulus of 𝜆 is sufficiently small then they are also equal for all 𝜆, 

provided that D(𝜆) ≠ 0. The Fredholm second series is given by  

D(𝑥, 𝜉; 𝜆) = 𝐾(𝑥, 𝜉) + ∑
(−𝜆)𝑚

𝑚!
 ∫ ∫ … . ∫ 𝐾 (

𝑥 𝜉1 − 𝜉𝑚

𝜉 𝜉1 − 𝜉𝑚
)

𝑏

𝑎

𝑏

𝑎

𝑏

𝑎
 

                                                                     d𝜉1𝜉2𝜉3 − − − 𝜉𝑚                … (2) 

by expanding the determinant under the integral sign, with regard to the elements of the first column, we 

obtain  

𝐾 (
𝑥 𝜉1 − 𝜉𝑚

𝜉 𝜉1 − 𝜉𝑚
) =  𝐾(𝑥, 𝜉)𝐾 (

𝜉1 𝜉2 − 𝜉𝑚

𝜉1 𝜉2 − 𝜉𝑚
) + 

∑ (−1)𝑞+2 𝐾(𝜉𝑞 , 𝜉)𝑚
𝑞=1  𝐾 (

𝑥, 𝜉1 −  −  −𝜉𝑞+1 − − 𝜉𝑚

𝜉, 𝜉1 −  −  −𝜉𝑞+1 −  − 𝜉𝑚
) 

By transposing 𝜉𝑞 to the first place we see that the integral with regard to 𝜉𝑞 of each of the components of 

the above sum have the same value  

∫ (−1)𝑞+2 𝐾(𝜉𝑞 , 𝜉)𝐾 (
𝑥, 𝜉1 −  −  −𝜉𝑞+1 − − 𝜉𝑚

𝜉, 𝜉1 −  −  −𝜉𝑞+1  − 𝜉𝑚
) 𝑑

𝑏

𝑎

𝜉𝑞 

=(−1)2𝑞+1 ∫  𝐾(𝑠, 𝜉)𝐾 (
𝑥 𝜉1 −  −  −𝜉𝑞+1 − − 𝜉𝑚

𝜉 𝜉1 −  −  −𝜉𝑞+1 −  − 𝜉𝑚
) 𝑑

𝑏

𝑎
𝑠 

Consequently have, 
(−𝜆)𝑚

𝑚!
 ∬ − − − ∫ 𝐾 (

𝑥 𝜉1 − 𝜉𝑚

𝜉 𝜉1 − 𝜉𝑚
)  d𝜉1𝜉2𝜉3 − − − 𝜉𝑚

𝑏

𝑎

𝑏

𝑎
 



= 𝐾(𝑥, 𝜉)
(−𝜆)𝑚

𝑚!
 ∬ − − − − ∫ 𝐾 (

𝜉1 𝜉2 − 𝜉𝑚

𝜉1 𝜉2 − 𝜉𝑚
)  d𝜉1𝜉2𝜉3 − − − 𝜉𝑚 + 𝜆 ∫ [ 

(−𝜆)𝑚−1

𝑚−1!
 ∬ − −

𝑏

𝑎

𝑏

𝑎

𝑏

𝑎

𝑏

𝑎

− ∫ 𝐾 (
𝑥 𝜉1 − 𝜉𝑚

𝑠 𝜉1 − 𝜉𝑚
)  d𝜉1𝜉2𝜉3 − − − 𝜉𝑚−1

𝑏

𝑎
] 𝐾(𝑠, 𝜉)𝑑𝑠                                                   ... (3) 

Upon summing the terms of second Fredholm series, we obtain  

𝐷(𝑥, 𝜉; 𝜆) = 𝐾(𝑥, 𝜉)D(𝜆) + 𝜆 ∫ 𝐷(𝑥, 𝑠; 𝜆)𝐾(𝑠, 𝜉)𝑑𝑠
𝑏

𝑎
                        … (4) 

Or, 
𝐷(𝑥,𝜉;𝜆)

𝐷(𝜆)
=  𝐾(𝑥, 𝜉) + 𝜆 ∫

𝐷(𝑥,𝜉;𝜆)

𝐷(𝜆)
𝐾(𝑠, 𝜉)𝑑𝑠

𝑏

𝑎
 , D(𝜆) ≠ 0  

Or,  𝑅(𝑥, 𝜉; 𝜆) = 𝐾(𝑥, 𝜉) + 𝜆 ∫ 𝑅(𝑥, 𝑠; 𝜆)𝐾(𝑠, 𝜉)𝑑𝑠
𝑏

𝑎
 

 Which is the same as equation (1).  

In order to prove that the solution obtained by Fredholm equation is unique, suppose that ∅(𝑥) is the given 

solution of the Fredholm equation  

∅(𝑥) = 𝐹(𝑠) + 𝜆 ∫ 𝐾(𝑠, 𝜉)∅(𝜉)𝑑𝜉
𝑏

𝑎
                                                      … (5) 

Multiplying both the sides of equation 5 by the Resolvent kernel and integrating with respect to s, we get  

∫ 𝑅(𝑥, 𝑠; 𝜆)∅(𝑠)𝑑𝑠 = ∫ 𝑅(𝑥, 𝑠; 𝜆)
𝑏

𝑎
𝐹(𝑠)𝑑𝑠 + 𝜆 ∫ {∫ 𝑅(𝑥, 𝑠; 𝜆)𝐾(𝑠, 𝜉)

𝑏

𝑎
𝑑𝑠}∅(𝜉)𝑑𝜉  

𝑏

𝑎

𝑏

𝑎
  

From the equation 5 we get 

∫ 𝐾(𝑥, 𝜉)∅(𝜉)𝑑𝜉 = ∫ 𝑅(𝑥, 𝑠; 𝜆)
𝑏

𝑎

𝐹(𝑠)𝑑𝑠

𝑏

𝑎

 

Since ∅ is the given solution of the equation 5, it follows that the Fredholm equation is .  

∅(𝑥) = 𝐹(𝑥) + ∫ 𝑅(𝑥, 𝑠; 𝜆)
𝑏

𝑎

𝐹(𝑠)𝑑𝑠 

Hence , Fredholm solution is unique for all 𝜆 proved D(𝜆) ≠ 0. 

 

12.6 EVERY ZERO OF FREDHOLM FUNCTION D(λ) IS A POLE OF 

THE RESOLVENT KERNEL 

We have know that                         

R(x,ξ;λ) = D(x,ξ;λ) /D(λ) 

The order of this pole is at most equal to the order of the zero of the denominator D(x,ξ;λ) and is 

a single pole of the resolvent kernel. The zeroes of the Fredholm D(λ). By interchanging the indices of the 

variables of integration in the Fredholm first series, we get 

D'(λ) = − ∫ 𝐾(𝑠, 𝑠)𝑑𝑠 −  ∑  
(−𝜆)𝑚+1

(𝑚−1)!
∞
𝑚=2

𝑏

𝑎
× 

                                ∫ {∫ … ∫ 𝐾 (
𝑠 𝜉1 − 𝜉𝑚−1

𝑠 𝜉1 − 𝜉𝑚−1
) d𝜉1𝜉2𝜉3 − − − 𝜉𝑚−1

𝑏

𝑎

𝑏

𝑎

𝑏

𝑎
    



This we have the fundamental relation D’(λ)=− ∫ 𝐷(𝑠, 𝑠;
𝑏

𝑎
𝜆)𝑑𝑠 

If λ0 is a zero of order n of the function D(λ), then it is a zero of the order (n-1) of its derivative D'(λ). The 

point λ0 may be a zero of the order at most (n-1) of the function D(x,ξ;λ). This is a pole of the ratio, 

                        R(x,ξ;λ) = D(x,ξ;λ) /D(λ) of order at most n. 

In particular, when λ0 is single zero, we have  

                                   D(λ0)=0, D’(λ0)≠0. 

So λ0 cannot be zero of the function D(λ) are called the Eigen values of the kernel K(x,ξ). Since D(0) =1, 

therefore, zero is never an Eigen value.  

The set of all Eigen value of this kernel is known the spectrum of the integral equation. 

Note: If a Real Kernel K(x,ξ) has a Complex Eigen Value λ0= u+iv, then it also contains the conjugate 

Eigen Value to  λ0 = u-iv: 

Let the Complex Eigen value be λ0 = u+iv, then its conjugate eigenvalue will be ¯λ0 = u-iv. The 

entire function D(λ) takes real value on the real axis of the kernel K(x,ξ) is real. The value of power 

function D(λ) at points symmetrical with regard to the real axis are complex conjugates. It follows that, 

If, D(u+iv)=0, then D(u-iv)=0 

We know that, 
𝐷′(𝜆)

𝐷(𝜆)
= − ∫ 𝐷(𝑠, 𝑠;

b

a
𝜆)/𝐷(𝜆)𝑑𝑠             … (1) 

Or,        
d

𝑑𝜆
log[D(λ)] = − ∫ 𝑅(𝑠, 𝑠;

b

a
𝜆)𝑑𝑠, 𝐷(𝜆) ≠ 0 

Since |λ| is sufficiently small, the relation (1) may be represented as, 

𝑑

𝑑𝜆
log[𝐷(𝜆)] = − ∫ ∑  𝜆𝑛 𝐾𝑛 + 1 (𝑠, 𝑠)𝑑𝑠,

𝑛=0

𝑏

𝑎

  

Where the series on the R.H.S. is convergent, hence, 

       log 𝐷(𝜆) = − ∑
𝜆𝑛+1

𝑛+1
∞
𝑛=0 ∫  𝐾𝑛 + 1(𝑠, 𝑠)𝑑𝑠

𝑏

𝑎
             … (2) 

Since D(0)=1, the integrals of the iterated kernels 

 ∫  𝐾𝑛 + 1(𝑠, 𝑠)𝑑𝑠
𝑏

𝑎
 

are called the traces of the kernel K(x,ξ). The radius of congruence of series (2) is equal to the smallest 

modulus of the Eigen value. If a kernel possesses no Eigen values, then the series (1) is convergent for 

each value of λ. 

 

12.7 FREDHOLM SECOND THEOREM 

If  𝜆0 is a zero of multiplicity m of the function D(λ), then the homogeneous integral equation, 

𝜙(𝑥) = 𝜆0 ∫  𝐾(𝑥,
𝑏

𝑎

𝜉) 𝜙(𝜉)𝑑𝜉 

Possesses at least one, and at most m, linearly independent solutions, 

𝜙𝑖 (𝑥) = 𝐷𝑟 (
𝑥1 𝑥2 − 𝜉𝑣

𝜉1 𝜉2 − 𝜉𝑣
  ; 𝜆0 )  



(i=1,2,3,……….v; 1≤ v ≤ m not identically zero, and any other solution of this equation is a linear 

combination of these solutions.  

Fredholm first theorem does not hold when h is a root of the equation  

D(h) =0 .Consider the  Fredholm homogeneous integral equation of the form  

                                                ∅(𝑥) = 𝜆 ∫ 𝑘(𝑥, 𝜉)
𝑏

𝑎
∅(𝜉)𝑑𝜉                          … (1) 

We shall determine the existence of non –zero solutions of the homogeneous equation (1) where D(𝜆) = 

0 has a certain number of solution different from zero.  

Let  𝜆 =𝜆0 is a simple zero of the function D(𝜆) , where 

                 D(𝜆0) = 0 , 𝐷, (𝜆0)  ≠ 0 ⇒ D(x, 𝜉, 𝜆)  ≠ 0 

Is not identically equal to zero. 

The resolvent kernel satisfied by Fredholm entire function for all h is given by  

                D(x, 𝜉, 𝜆) = 𝑘(𝑥, 𝜉)D(𝜆)  + 𝜆 ∫ 𝑘(𝑥, 𝑠)
𝑏

𝑎
D(s, 𝜉: 𝜆0)𝑑𝑠                   … (2)  

For     𝜆 →  𝜆0 , we have        

                                  D(x, 𝜉: 𝜆0) = 𝜆0 ∫ 𝑘(𝑥, 𝑠)
𝑏

𝑎
D(s, 𝜉: 𝜆0)𝑑𝑠            

Assuming a particular value  𝜉 =𝜉0 such that the function D(x, 𝜉0: 𝜆 ) be non zero it follows that the 

equation (1) possesses a non –zero solution. 

                                               ∅(𝑥) = D(x, 𝜉0: 𝜆0)                                          … (3) 

Similarly, the function AD(x, 𝜉0: 𝜆0) is also a solution of the homoeneous equation (1) where is an 

arbitrary constant. In general, let  𝜆 =  𝜆0  is a zero of arbitrary multiplicity m ,i.e, 

 D(𝜆0) =0,….,  𝐷𝑣 (𝜆0) = 0, …,  𝐷𝑚 (𝜆0) ≠0 , v=1,2,3,…(m-1)      … (4) 

Fredholm introduced the concept of mnors for the existence of non –zero solution of the homogeneous 

integral equation . A Fredholm minor of order n relative to the kernel k(x, 𝜉) denoted by                               

                               𝐷𝑛 (
𝑥1,𝑥2,𝑥3,…. 𝑥𝑛,

𝜉1,𝜉2,𝜉3,…. 𝜉𝑛
 ∶ 𝜆) 

Is the sum of the power series in the parameter h , i.e, 

              𝐷𝑛 (
𝑥1,𝑥2,𝑥3,…. 𝑥𝑛,

𝜉1,𝜉2,𝜉3,…. 𝜉𝑛
 ∶ 𝜆)=k(

𝑥1,𝑥2,𝑥3,…. 𝑥𝑛,

𝜉1,𝜉2,𝜉3,…. 𝜉𝑛
 ∶ 𝜆)+∑

(−𝜆)𝑝

𝑝!
∞
𝑝=1   

∫ …
𝑏

𝑎
∫ 𝑘 

𝑏

𝑎
(

𝑥1,𝑥2,𝑥3,…..𝑥𝑛, 𝑠1,𝑠2,𝑠3,…..𝑠𝑝

𝜉1,𝜉2,𝜉3,…. 𝑠1,𝑠2,𝑠3,…..𝑠𝑝
  )d𝑠1…., d𝑠𝑝       … (5) 

Where 𝑥1,𝑥2,𝑥3,…..𝑥𝑛 and 𝜉1,𝜉2,𝜉3,…. 𝜉𝑛 are two sequences of arbitrary variables. 

The series is converges for all values of the parameter  𝜆 . 

Differentiating the Fredholm first series , n times, we have  

     
𝑑𝑛

 𝑑𝜆𝑛D(𝜆) = (−1)𝑛 ∫ …
𝑏

𝑎
∫ 𝑘 

𝑏

𝑎
(

𝑠1,𝑠2,𝑠3,….. , … 𝑠𝑛

𝑠1,𝑠2,𝑠3,….. , … 𝑠𝑛
  ) d𝑠1… d𝑠𝑛 

      +(−1)𝑛  ∑
(−𝜆)𝑝

𝑝!
∞
𝑝=1  ∫ …

𝑏

𝑎
∫ 𝑘 

𝑏

𝑎
(

𝑠1 … 𝑠𝑛, 𝑠𝑛+1, … 𝑠𝑛+𝑝

𝑠1 … 𝑠𝑛, 𝑠𝑛+1, … 𝑠𝑛+𝑝
  ) d𝑠1… d𝑠𝑛+𝑝    … (6) 

By comparing the series (5) and (6) , we have  



   
𝑑𝑛

 𝑑𝜆𝑛D(𝜆) = (−1)𝑛 ∫ …
𝑏

𝑎
∫ 𝐷𝑛 

𝑏

𝑎
(

𝑥1,𝑥2,𝑥3,…. 𝑥𝑛,

𝜉1,𝜉2,𝜉3,…. 𝜉𝑛
 ∶ 𝜆) d𝑥1 d𝑥2 … . . d𝑥𝑛,      … (7) 

Which represents a relation between nth derivative of the Fredholm function and Fredholm minor of order 

n, where n is an arbitrary positive integer. 

From the relation (7), we notice that if    𝜆0  is a zero of order m of the function  D(𝜆) then the minor of 

order m becomes  

                                              𝐷𝑚 (
𝑥1,𝑥2,𝑥3,…. 𝑥𝑛,

𝜉1,𝜉2,𝜉3,…. 𝜉𝑛
 ∶   𝜆0 ) 

For that value of    𝜆0  ≠ 0, since then  𝐷𝑚(  𝜆0) ≠ 0. It follows that minors of lower order than m also do 

not identically vanish. 

A relation between the minors that corresponds to the Resolvent kernel is determined by expanding the 

Fredholm determinant under the integral sign in equation (5), with respect to the elements of the first row  

 𝐾 (
𝑥1,𝑥2,𝑥3,…..𝑥𝑛, 𝑠1,𝑠2,𝑠3,…..𝑠𝑝

𝜉1,𝜉2,𝜉3,….𝜉𝑛 𝑠1,𝑠2,𝑠3,…..𝑠𝑝
  )                       

        = 

|

|

𝑘(𝑥1,𝜉1)    𝑘(𝑥1,𝜉2) … 𝑘(𝑥1,𝜉𝑛) 𝑘(𝑥1,𝑠1) … . . 𝑘(𝑥1,𝑠𝑝)

𝑘(𝑥2,𝜉1)    𝑘(𝑥2,𝜉2) … 𝑘(𝑥2,𝜉𝑛) 𝑘(𝑥2,𝑠1) … . . 𝑘(𝑥2,𝑠𝑝)
… . ⋯ … . .

…

𝑘(𝑥𝑛,𝜉1)    𝑘(𝑥𝑛,𝜉2) … 𝑘(𝑥𝑛,𝜉𝑛) 𝑘(𝑥𝑛,𝑠1) … . . 𝑘(𝑥𝑛,𝑠𝑝)

𝑘(𝑠1,𝜉1)    𝑘(𝑠1,𝜉2) … 𝑘(𝑠1,𝜉𝑛) 𝑘(𝑠1,𝑠1) … . . 𝑘(𝑠1,𝑠𝑝)

… 𝑘(𝑠𝑝,𝜉1)    𝑘(𝑠𝑝,𝜉2) … 𝑘(𝑠𝑝,𝜉𝑛) 𝑘(𝑠𝑝,𝑠1) 𝑘(𝑠𝑝,𝑠𝑝)

…|

|

      …(8) 

By integrating with regard to 𝑠1, 𝑠2, … . 𝑠𝑝 𝑓𝑜𝑟 𝑝 ≥ 1, p times, we obtain  

∫ … . ∫ 𝐾 (
𝑥1,𝑥2,…,𝑥𝑛,𝑠1,𝑠2,…,𝑠𝑝

𝜉1,𝜉2,…,𝜉𝑛,𝑠1,𝑠2,…,𝑠𝑝
) 𝑑𝑠1, 𝑑𝑠2, … . , 𝑑𝑠𝑝

𝑏

𝑎

𝑏

𝑎
  

= ∑ (−1)𝑘+1𝑛
𝑘=1 𝐾(𝑥1, 𝜉𝑘) ∫ . . . ∫ 𝐾 (

𝑥2,...,𝑥𝑛,𝑠1,𝑠2,…,𝑠𝑝

𝜉1,…,𝜉𝑘−1,𝜉𝑘+1,𝜉𝑛,𝑠1,𝑠2,…,𝑠𝑝
)

𝑏

𝑎

𝑏

𝑎
𝑑𝑠1 … 𝑑𝑠𝑝  

+ ∑ (−1)𝑘+𝑛+1𝑝
𝑘=1 ∫ … . ∫ 𝐾(𝑥1, 𝑠𝑘)

𝑏

𝑎

𝑏

𝑎
  

× 𝐾 (
𝑥2,…,𝑥𝑛,𝑠1,𝑠2,…,𝑠𝑘,….,𝑠𝑝

𝜉1,…,𝜉𝑛−1,…,𝜉𝑛,𝑠1,𝑠2,…,𝑠𝑘−1,𝑠𝑘+1,𝑠𝑝
) 𝑑𝑠1 … 𝑑𝑠𝑝                     …..(9) 

The determinant K on the RHS of relation (9) do not contain the variable 𝑥1 in the upper sequence and 

the variable 𝜉𝑘 𝑜𝑟 𝑠𝑘 in the lower sequence. Further, all the terms of the letter of the above sums have the 

same value. Now, by transposing the variables 𝑠𝑘 in the upper sequence to the first place [by means of 
(𝑘 + 𝑛 − 2) transpositions] and omitting the index k, we may represents each of the terms of the second 

sum in the form  

∫ 𝐾(𝑥1, 𝑠){∫ … ∫ 𝐾 (
𝑆,𝑥2,…,𝑥𝑛,𝑠1,…,𝑠𝑝−1

𝜉1,…,𝜉𝑛,𝑠1,…,𝑠𝑝−1
) 𝑑𝑠1. . 𝑑𝑠𝑝−1}𝑑𝑠

𝑏

𝑎

𝑏

𝑎

𝑏

𝑎
  

Thus the equation (9) may be written as  

∫ … ∫ 𝐾 (
𝑥1, … 𝑥𝑛, 𝑠1, … 𝑠𝑝

𝜉1, … 𝜉𝑛, 𝑠1, … 𝑠𝑝
)

𝑏

𝑎

𝑏

𝑎

𝑑𝑠1 … . 𝑑𝑠𝑝 



= ∑(−1)𝑘+1𝐾(𝑥1, 𝜉𝑘)

𝑛

𝑘=1

∫ … ∫ 𝐾 (
𝑥2, . . 𝑥𝑛, 𝑠1, . . , 𝑠𝑝

𝜉1, . . , 𝜉𝑘−1, 𝜉𝑘+1, . . , 𝜉𝑛, 𝑠1, . . , 𝑠𝑝
)

𝑏

𝑎

𝑏

𝑎

 

                                                                                    𝑑𝑠1 … … . . 𝑑𝑠𝑝 

−𝑝 ∫ 𝐾(𝑥1, 𝑠)
𝑏

𝑎
{∫ … ∫ 𝐾 (

𝑠,𝑥2,…,𝑥𝑛,𝑠1,…,𝑠𝑝−1

𝜉1,𝜉2,…,𝜉𝑛,𝑠1,…,𝑠𝑝−1
) 𝑑𝑠1 … . 𝑑𝑠𝑝−1

𝑏

𝑎

𝑏

𝑎
 } 𝑑𝑠        … (10)                                                                          

From the relation (5) and (10) we have  

𝐷𝑛 (
𝑥1, 𝑥2, … , 𝑥𝑛

𝜉1, 𝜉2, … , 𝜉𝑛
; 𝜆) 

= ∑(−1)𝑘+1

𝑛

𝑘=1

𝐾(𝑥1, 𝜉𝑘)𝐷𝑛−1 (
𝑥2, … … . . , 𝑥𝑛

𝜉1, … . 𝜉𝑘−1, 𝜉𝑘+1, … . , 𝜉𝑛
; 𝜆) 

                          +𝜆 ∫ 𝐾(𝑥1, 𝑠)
𝑏

𝑎
𝐷𝑛 ( 𝑠,𝑥2,….,𝑥𝑛

𝜉1,𝜉2,….,𝜉𝑛
; 𝜆) 𝑑𝑠                           ... (11)                                                                                

Expanding the determinant (8) with regard to an arbitrary i-th row and i-th column , where 1 ≤ 𝑖 ≤ 𝑛. 

𝐷𝑛 (
𝑥1, 𝑥2, … . , 𝑥𝑛

𝜉1, 𝜉2, … , 𝜉𝑛
; 𝜆) 

= ∑ (−1)𝑘+1𝐾(𝑥𝑖, 𝜉𝑘)𝐷𝑛−1 (𝑥1,𝑥2,…,𝑥𝑖−1,𝑥𝑖+1,……,𝑥𝑛

𝜉1,𝜉2,…,𝜉𝑘−1,𝜉𝑘+1,….,𝜉𝑛
; 𝜆)𝑛

𝑘=1                      … (12) 

And 𝐷𝑛 (𝑥1,𝑥2,….,𝑥𝑛

𝜉1,𝜉2,….,𝜉𝑛
; 𝜆) 

= ∑(−1)𝑘+1

𝑛

𝑘=1

𝐾(𝑥𝑘, 𝜉𝑖)𝐷𝑛−1 (
𝑥1, … . , 𝑥𝑘−1, 𝑥𝑘+1, … . , 𝑥𝑛

𝜉1, … . , 𝜉𝑖−1, 𝜉𝑖+1, … . , 𝜉𝑛
; 𝜆) 

                     +𝜆 ∫ 𝐾(𝑠, 𝜉1)
𝑏

𝑎
𝐷𝑛 ( 𝑥1,……….,𝑥𝑛

𝜉1,…,𝜉𝑖−1,𝑠,𝜉𝑖+1,….,𝜉𝑛
; 𝜆) 𝑑𝑠                 ... (13)                                                             

The relation (12)and (13) holds for all values of 𝜆.The relation (12) provides the solution of 

homogeneous integral equation in the cases when 𝜆 = 𝜆0 is an eigenvalue of the kernel. 

Consider 𝜆 = 𝜆0 is a zero of order m of the function 𝐷(𝜆).Then as defined in the relation (7), the minor 

𝐷𝑚 does not identically vanish and the minors 𝐷1, 𝐷2, … . , 𝐷𝑚−1 need not be identically equal to zero. Let 

𝐷𝛼 be the first minor in the sequence 𝐷1, 𝐷2, … . , 𝐷𝑚−1which does not vanish identically.The number v is 

equal at least to the unity and is at most the order m of zero 𝜆0.It follows that 𝐷𝑣−1 = 0 , the relation (12) 

shows that the minor 𝐷𝑣 satisfies the homogeneous integral equation 

𝐷𝑣 (
𝑥1, … . , 𝑥𝑖 , … . , 𝑥𝑣

𝜉1, … … … . , 𝜉𝑣
; 𝜆0) 

               = 𝜆0 ∫ 𝐾(𝑥𝑖, 𝑠)𝐷𝑣 (𝑥1,…,𝑥𝑖−1,𝑠,𝑥𝑖+1,…..,𝑥𝑣

𝜉1,……….,𝜉𝑣
; 𝜆0) 𝑑𝑠

𝑏

𝑎
                    … (14)                                                                        

𝑖 = 1,2,3 … … . 𝑣      

Thus the function  

                          𝜙𝑖(𝑥) = 𝐷𝑣 (𝑥1,……..,𝑥𝑖−1,𝑥,𝑥𝑖+1,…….,𝑥𝑣

𝜉1,………………….,𝜉𝑣
; 𝜆0)                    ... (15)               

is a solution of the homogeneous equation (1) not identically equal to zero for  

some chosen fixed values of the remaining variables x1,x2,…..,xv and ξ1,ξ2,…..,ξv  



Substituting x for xi at v different points in the minor (15), we obtain v non- 

trivial solutions ɸ1(x), ɸ2(x),….., ɸr(x) of the homogeneous equation (1, not  

Identically equal to zero, and hence may be written as  

ɸi(x)=
𝐷𝑣(

𝑥1,…..,𝑥𝑖−1,𝑥,𝑥𝑖+1,…..,𝑥𝑛            
𝜉1,………………………………..𝜉𝑛        ;𝜆0

)

𝐷𝑣(
𝑥1,…..,𝑥𝑖−1,𝑥,𝑥𝑖+1,…..,𝑥𝑛            

𝜉1,………………………………..𝜉𝑛        ;𝜆0
)
 , i=1,2,…..,v                    … (16) 

where the numbers x1,x2,…..,xv and ξ1,ξ2,…..,ξv are selected in such a manner so that the denominator 

does not vanish. 

Now we shall show that the solution ɸi as determined by (16) are linearly independent, i.e. if there exists 

arbitrary constant c1,c2,…..,cv such that  

  c1ɸ1(x)+c2ɸ2(2) +…...+cvɸv(x)=0                                             … (17) 

                    c1=c2=…. =cv=0 

then in fact, if relation (17) were to hold with not all ci=0, then we obtain 

            c1ɸ1(x)=0, c2ɸ2(2) =0, …., cvɸv(x)=0    

as               ɸi(xk)= {
0, 𝑖 ≠ 𝑘
1, 𝑖 ≠ 𝑘

              

it follows that c1=c2=…. =cv=0, which is contrary to the hypothesis, 

Therefore, the solution of the homogeneous integral equation (1), not identically equal to zero, is called 

the characteristic solution of that equation corresponding to a given characteristic value λ0 of the kernel 

K(X,ξ). This system is known as the fundamental system of the characteristic solutions. 

Any linear combination of solutions (16) of the form 

              ɸ(x)=c1ɸ1(x)+c2ɸ2(2) +…...+cvɸv(x), 

where c1,c2,…..,cv are constants, is also a solution of the homogeneous integral equation. 

Converse. Every solution ɸ(x) of integral equation (1) is some linear combination of characteristic 

solutions  

                  ɸ1(x), ɸ2(x),….., ɸv(x) 

Assuming an auxiliary function H(x,ξ) of the form 

H(x,ξ)= 
𝐷𝑣+1(

𝑥  𝑥1,…..,…..,                               𝑥𝑣            
𝜉     𝜉1,………………………………..𝜉𝑣        ;𝜆0

)

𝐷𝑣(
𝑥1,…..                           ,….   .,𝑥𝑣            
𝜉1,………………………………..𝜉𝑣       ;𝜆0

)
                                   ... (18) 

Multiplying equation H(x,ξ), both the sides, we have 

∫ 𝐻(𝑥, 𝜉)ɸ(ξ)dξ
𝑏

𝑎
 = λ0∫ [∫ 𝐾(𝑠, 𝜉)𝐻(𝑥, 𝑠)𝑑𝑠]ɸ(ξ)dξ

𝑏

𝑎

𝑏

𝑎
 

Multiplying both the sides by λ0 and adding term by term, we have 

  ɸ(x) = λ0 ∫ 𝐾(𝑥, 𝜉)ɸ(ξ)dξ
𝑏

𝑎
== λ0 ∫ 𝛤(𝑥, 𝜉)ɸ(ξ)dξ

𝑏

𝑎
                ... (19) 

where  𝛤(𝑥, 𝜉) = K(x,ξ)-H(x,ξ)+ λ0 ∫ 𝐾(𝑠, 𝜉)H(x, s)ds
𝑏

𝑎
                        … (20) 

Now 



𝐷𝑣 + 1 (
𝑥 , 𝑥1, … ..                                  … . . ,   𝑥𝑣            
𝜉 𝜉1, … … … … … … … … … … … … . . 𝜉𝑣        ; 𝜆0

)

= 𝐾(𝑥𝜉)𝐷𝑣 (
𝑥1, … . . , 𝑥𝑖 − 1, 𝑥, 𝑥𝑖 + 1, … . . , 𝑥𝑣            

𝜉1, … … … … … … … … … … … … . . 𝜉𝑣        ; 𝜆0
) 

           +∑  𝑣
𝑘=1 (-1)kK(xk,ξ) 𝐷𝑣 (

𝑥      𝑥1, … . . , 𝑥𝑘 − 1, 𝑥, 𝑥𝑘 + 1, … . . ,    𝑥𝑣            
𝑠    𝜉1, … … … … … … … … … … … …  . . 𝜉𝑣        ; 𝜆0

) 

             + λ0 ∫ 𝐾(𝑠, 𝜉)𝐷𝑣 + 1 (
𝑥 𝑥1, … , 𝑥𝑖 − 1, 𝑥, 𝑥𝑖 + 1, . . . , 𝑥𝑛            
𝑠 𝜉1, … … … … … … … … … . . 𝜉𝑛        ; 𝜆0

) ds
𝑏

𝑎
                  … (21)                                           

In every minor Dv we transpose the variable x from the first place to between the variables xk-1 and xk+1 

and divide both sides of (21) by the constant  

             𝐷𝑣 (
𝑥1, 𝑥2 … . . … . . , 𝑥𝑣            
𝜉1, 𝜉2 … … … . . 𝜉𝑣        ; 𝜆0

) ≠0 

We obtain 

H(x,ξ) =K(x,ξ) +∑  𝑣
𝑘=1 K(xk,ξ)ɸ k(x)+ λ0 ∫ 𝐾(𝑠, 𝜉)H(x, s)ds

𝑏

𝑎
                     …(22)           

From the relation (20) and (22), we have 

𝛤(𝑥, 𝜉) = -∑  𝑣
𝑘=1 K(xk,ξ) ɸk(x) ɸ(ξ)dξ                                                                 … (23) 

Thus the equation (19) reduces to 

  ɸ(x) = - λ0∑  𝑣
𝑘=1 ∫  

𝑏

𝑎
K(xk,ξ) ɸk(x) ɸ(ξ)dξ                                                       … (24) 

If we omit the function ɸk(x) from under the integral sign then each term on the R.H.S. the function ɸ(x) 

has the form 

                ɸ(x)=c1ɸ1(x)+c2ɸ2(2) +…...+cvɸv(x) 

where c1,c2,…..,cv are constants. It follows that the function ɸ(x) is a linear combination of characteristic 

solutions ɸi(x).  

 

12.8 CHARACTERISTIC SOLUTIONS 

Corresponding to distinct characteristic values of Fredholm’s integral equation and its associate 

equation , are orthogonal. 

Since 𝜙(𝑥) is a characteristic solution of the homogeneous equation  

         𝜙(𝑥) =  𝜆0 ∫ 𝐾(𝑥, 𝜉)𝜙(𝜉)𝑑𝜉
𝑏

𝑎
                                         … (1) 

Corresponding to the characteristic value 𝜆0. 

Let Ψ(𝑥)  be a characteristic solution of the associate equation 

          Ψ(𝑥) =  𝜆1 ∫ 𝐾(𝜉, 𝑥)Ψ(𝜉)𝑑𝜉
𝑏

𝑎
                                        … (2) 

Corresponding to the characteristic value 𝜆1where 𝜆0 ≠ 𝜆1. 

Multiplying (1) by 𝜆1 Ψ(𝑥) and (2) by 𝜆0 ϕ(𝑥) , integrating and then subtracting , we have   

(𝜆1 − 𝜆0) ∫ 𝜙(𝑥)Ψ(𝑥)𝑑𝑥
𝑏

𝑎
              



        =𝜆0𝜆1 ∫ ∫ 𝐾(𝑥, 𝜉)Ψ(𝑥)𝜙(𝜉)𝑑𝜉𝑑𝑥
𝑏

𝑎

𝑏

𝑎
−𝜆0𝜆1 ∫ ∫ 𝐾(𝜉, 𝑥)Ψ(𝜉)𝜙(𝑥)𝑑𝜉𝑑𝑥

𝑏

𝑎

𝑏

𝑎
 = 0 

Upon interchanging x and 𝜉, the second integral is identical to the first one. Thus 

∫ 𝜙(𝑥)Ψ(𝑥)𝑑𝑥
𝑏

𝑎

= 0, 𝜆1 ≠ 𝜆0 

This implies that the characteristic solutions, corresponding to distinct characteristic values of Fredholm 

integral and its associate equation, are orthogonal. 

 

12.9 FREDHOLM’S THIRD THEOREM 

For the non-homogeneous integral equation of second kind  

         𝜙(𝑥) = 𝑓(𝑥) + 𝜆0 ∫ 𝐾(𝑥, 𝜉)𝜙(𝜉)𝑑𝜉
𝑏

𝑎

 

To possess a solution in the case D(𝜆0)=0, it is necessary and sufficient that the given function f(x) 

be orthogonal to all the eigen solutions ɸi(x),i=1, 2,…,v of the associate homogeneous equation 

corresponding to the eigenvalue 𝜆0 and forming the fundamental system. 

Consider the non-homogeneous integral equation 

         𝜙(𝑥) = 𝑓(𝑥) + 𝜆0 ∫ 𝐾(𝑥, 𝜉)𝜙(𝜉)𝑑𝜉
𝑏

𝑎
                                          … (1) 

Where 𝜆0 is an eigenvalue, i.e., D(𝜆0)=0. 

Let Ψ(𝑥) be an eigenfunction of the associated equation 

                    Ψ(𝑥) = 𝜆0 ∫ 𝐾(𝜉, 𝑥)Ψ(𝜉)𝑑𝜆 
𝑏

𝑎
                                                        ... (2) 

Corresponding to the eigenvalue 𝜆0. 

Multiplying (1) by Ψ(𝑥), both the sides and integrating, we have 

∫ Ψ(𝑥)𝜙(𝑥)𝑑𝑥
𝑏

𝑎

= ∫ 𝑓(𝑥)Ψ(𝑥)𝑑𝑥
𝑏

𝑎

+ 𝜆0 ∫ ∫ 𝐾(𝑥, 𝜉)Ψ(𝑥)
𝑏

𝑎

𝜙(𝜉)𝑑𝑥
𝑏

𝑎

𝑑𝜉 

or 

∫ 𝑓(𝑥)Ψ(𝑥)𝑑𝑥
𝑏

𝑎

= ∫ Ψ(𝑥)𝜙(𝑥)𝑑𝑥
𝑏

𝑎

− 𝜆0 ∫ ∫ 𝐾(𝑥, 𝜉)Ψ(𝑥)
𝑏

𝑎

𝜙(𝜉)𝑑𝑥
𝑏

𝑎

𝑑𝜉 

By Permuting the variables x and 𝜉, we have 

∫ 𝑓(𝑥)Ψ(𝑥)𝑑𝑥
𝑏

𝑎
= ∫ [Ψ(𝑥) − 𝜆0 {∫ 𝐾(𝜉, 𝑥)Ψ(𝜉)

𝑏

𝑎
𝑑𝜉}] 𝜙(𝑥)𝑑𝑥 = 0

𝑏

𝑎
        ...(3) 

It follows that the integral equation (1) does not always have a solution when D(𝜆0)=0, but a necessary 

condition for the existence of a solution is the orthogonality of the known function f(x) to all the eigen 

function Ψ(𝑥), of the associated equation 

∫ 𝑓(𝑥)Ψ(𝑥)𝑑𝑥
𝑏

𝑎

= 0                               … (4) 



Since every eigen function of the integral equation is a linear combination of the basic solutions, so a 

necessary condition for the existence of a solution of the non-homogeneous equation (1) is the 

orthogonality of the known function f(x) to v fundamental solution of the associated equation 

∫ 𝑓(𝑥)Ψi(𝑥)𝑑𝑥
𝑏

𝑎

= 0 ; 𝑖 = 1,2, … . , 𝑣                              … (5)     

Corresponding to an eigen value 𝜆0 i.e., D(𝜆0)=0 

Further, the relation (5) is the sufficient condition for the existence of a solution of the non-homogeneous 

equation (1). Multiplying (1) by the auxiliary function 𝐻(𝑥, 𝜉) and integrating, we have 

∫ 𝐻(𝑥, 𝜉)𝜙(𝜉)𝑑𝜉
𝑏

𝑎
∫ 𝐻(𝑥, 𝜉)𝑓(𝜉)𝑑𝜉

𝑏

𝑎
+ 𝜆0 ∫ {∫ 𝐻(𝑥, 𝑠)𝐾 (𝑠, 𝜉)𝑑𝑠

𝑏

𝑎
} 𝜙(𝜉)𝑑𝜉  

𝑏

𝑎
 …(6) 

Where 𝐻(𝑥, 𝜉) is the ratio of the two minors 

H(x,ξ)= 
𝐷𝑣+1(

𝑥,𝑥1,…..…..,𝑥𝑣            

𝜉,𝜉1…….…..𝜉𝑣        ;𝜆0
)

𝐷𝑣(
𝑥1,…..…..,𝑥𝑣            

𝜉1,………..𝜉𝑣        ;𝜆0
)

                                                     … (7) 

Multiplying both sides of equation (6) by 𝜆0, we have  

         𝜙(𝑥) = 𝑓(𝑥) + 𝜆0 ∫ 𝐻(𝑥, 𝜉)𝑓(𝜉)𝑑𝜉
𝑏

𝑎
+  𝜆0 ∫ 𝑇(𝑥, 𝜉)𝜙(𝜉)𝑑𝜉

𝑏

𝑎
            … (8) 

where 𝑇(𝑥, 𝜉) = 𝐾(𝑥, 𝜉) − 𝐻(𝑥, 𝜉) + 𝜆0 ∫ 𝐻(𝑥, 𝑠)𝐾(𝑥, 𝜉)𝑑𝑠 
𝑏

𝑎
                   … (9) 

Thus, the solution of the non-homogeneous integral equation (1) exists in the form 

 

         𝜙(𝑥) = 𝑓(𝑥) + 𝜆0 ∫
𝐷𝑣+1(

𝑥,𝑥1,…..…..,𝑥𝑣            

𝜉,𝜉1…….…..𝜉𝑣        ;𝜆0
)

𝐷𝑣(
𝑥1,…..…..,𝑥𝑣            

,𝜉1,………..𝜉𝑣        ;𝜆0
)

𝑓(𝜉)𝑑𝜉
𝑏

𝑎
+ ∑  𝑣

𝑘=1 𝐶𝑘ɸk(x)     …(10) 

Where 𝑇(𝑥, 𝜉) = ∑  𝑣
𝑘=1 K(xk,ξ)𝜙(𝑥)  and 𝐶𝑘 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠. 

The function (10) is a solution of equation (1) if the orthogonality condition is satisfied. The third term of 

(10) being a linear combination of the fundamental solution 𝜙𝑘(𝑥) is a solution of the homogeneous 

equation. 

Examples 

Example.1: Find D(𝜆) (Fredholm determinants) and 𝑅(𝑥, 𝜉; 𝜆) (Resolvent kernel) of the following 

K(𝑥, 𝜉) = 𝑥𝑒𝜉  , 𝑎 = 0, 𝑏 = 1. 

Solution: we know  

D(𝜆) = 1 +  ∑
(−𝜆)𝑚

𝑚!
𝐶𝑚 

𝑅(𝑥, 𝜉; 𝜆) =
𝐷(𝑥,𝜉;𝜆)

𝐷(𝜆)
  , D(𝜆) ≠ 0 

D(𝑥, 𝜉; 𝜆) = 𝐵𝑜(𝑥, 𝜉) +  ∑
−1𝑚𝜆𝑚

𝑚!
𝐵𝑚(𝑥, 𝜉) 

𝐵𝑜(𝑥, 𝜉)= K(𝑥, 𝜉) = 𝑥𝑒𝜉  



𝐵1(𝑥, 𝜉) = ∫ 𝐾 (
𝑥 𝜉1

𝜉 𝜉1
)

1

0
d𝜉1 

= ∫ |
𝐾(𝑥, 𝜉) 𝐾(𝑥, 𝜉1)
𝐾(𝜉1, 𝜉) 𝐾(𝜉1, 𝜉1)

| 𝑑𝜉1

1

0

 

                =∫ |
𝑥𝑒𝜉 𝑥𝑒𝜉1

𝜉1𝑒𝜉 𝜉1𝑒𝜉1
| 𝑑𝜉1

1

0
 

                =∫ (𝑥𝜉1𝑒𝜉+𝜉1 − 𝑥𝜉1𝑒𝜉+𝜉1)
1

0
𝑑𝜉1 

                = 0 

𝐵2(𝑥, 𝜉) = ∬ 𝐾 (
𝑥 𝜉1 𝜉2

𝜉 𝜉1 𝜉2
) 𝑑𝜉1𝑑𝜉2

1

0

 

= ∬ |

𝐾(𝑥, 𝜉) 𝐾(𝑥, 𝜉1) 𝐾(𝑥, 𝜉1)
𝐾(𝜉1, 𝜉) 𝐾(𝜉1, 𝜉1) 𝐾(𝜉1, 𝜉2)
𝐾(𝜉2, 𝜉) 𝐾(𝜉2, 𝜉1) 𝐾(𝜉2, 𝜉2)

|
1

0

 𝑑𝜉1𝑑𝜉2 

𝐵2(𝑥, 𝜉) = ∬ |

𝑥𝑒𝜉 𝑥𝑒𝜉1 𝑥𝑒𝜉2

𝜉1𝑒𝜉 𝜉1𝑒𝜉1 𝜉1𝑒𝜉2

𝜉2𝑒𝜉 𝜉2𝑒𝜉1 𝜉2𝑒𝜉2

|
1

0

 𝑑𝜉1𝑑𝜉2 

                =∬ 𝑒𝜉+𝜉1+𝜉2 |

𝑥 𝑥 𝑥
𝜉1 𝜉1 𝜉1

𝜉2 𝜉2 𝜉2

|
1 

0
 𝑑𝜉1𝑑𝜉2 

                =∬ 𝑒𝜉+𝜉1+𝜉2𝐷3
1 

0
 𝑑𝜉1𝑑𝜉2 

𝐷3 = |

𝑥 𝑥 𝑥
𝜉1 𝜉1 𝜉1

𝜉2 𝜉2 𝜉2

| 

= |
𝑥 0 0
𝜉1 0 0
𝜉2 0 0

|,              𝐶2 → 𝐶2 − 𝐶1 , 𝐶3 → 𝐶3 − 𝐶1 

      = 0 

It implies 𝐵2(𝑥, 𝜉) = 0 

Now, 𝐶1 = ∫ 𝐾(𝜉1, 𝜉1)
1

0
d𝜉1 

= ∫ 𝜉1𝑒𝜉1
1

0
d𝜉1 

                =|𝜉1𝑒𝜉1| − ∫ 1𝑒𝜉1
1

0
d𝜉1 

                = 1 

𝐶2 = ∬ 𝐾 (
𝜉1 𝜉2

𝜉1 𝜉2
) 𝑑𝜉1𝑑𝜉2

1

0

 

      =∫ ∫ |
𝐾(𝜉1, 𝜉1) 𝐾(𝜉1, 𝜉2)
𝐾(𝜉2, 𝜉1) 𝐾(𝜉2, 𝜉2)

| 𝑑𝜉1𝑑𝜉2
1

0
 



      =∫ ∫ |
𝜉1𝑒𝜉1 𝜉1𝑒𝜉2

𝜉2𝑒𝜉1 𝜉2𝑒𝜉2
| 𝑑𝜉1𝑑𝜉2

1

0
 

       =∫ ∫ (𝜉1𝜉2𝑒𝜉2+𝜉1 − 𝜉1𝜉2𝑒𝜉2+𝜉1)
1

0
𝑑𝜉1d𝜉2 

       = 0 

We already know that D(𝜆) = 1 + ∑
(−𝜆)𝑚

𝑚!
𝐶𝑚 

It implies D(𝜆) = 1−
𝜆

1!
𝐶1 +

𝜆2

2!
𝐶2 −

𝜆3

3!
𝐶3 + − − − − 

                           = (1-𝜆) , 𝐶2 = 𝐶3 = 0 − − − − 

D(𝑥, 𝜉; 𝜆) = 𝐵𝑜(𝑥, 𝜉) +  ∑
−1𝑚𝜆𝑚

𝑚!
𝐵𝑚(𝑥, 𝜉) 

                  = K(𝑥, 𝜉) −
𝜆

1!
𝐵1(𝑥, 𝜉) +

𝜆2

2!
𝐵2(𝑥, 𝜉) − − − − − − 

                  = 𝑥𝑒𝜉 

                 𝑅(𝑥, 𝜉; 𝜆) =
𝐷(𝑥,𝜉;𝜆)

𝐷(𝜆)
=

 𝑥𝑒𝜉

(1−𝜆)
 

This is the required solution.  

Example 2. Find D(𝜆) (Fredholm determinants) and 𝑅(𝑥, 𝜉; 𝜆) (Resolvent kernel) of the following  

K(𝑥, 𝜉) = 2𝑥 − 𝜉 , 𝑎 = 0, 𝑏 = 1. 

Solution: D(𝜆) = 1 +  ∑
(−𝜆)𝑚

𝑚!
𝐶𝑚 

𝑅(𝑥, 𝜉; 𝜆) =
𝐷(𝑥,𝜉;𝜆)

𝐷(𝜆)
  , D(𝜆) ≠ 0 

D(𝑥, 𝜉; 𝜆) = 𝐵𝑜(𝑥, 𝜉) +  ∑
−1𝑚𝜆𝑚

𝑚!
𝐵𝑚(𝑥, 𝜉) 

                  = K(𝑥, 𝜉) −
𝜆

1!
𝐵1(𝑥, 𝜉) +

𝜆2

2!
𝐵2(𝑥, 𝜉) − − − − − − 

𝐵1(𝑥, 𝜉) = ∫ 𝐾 (
𝑥 𝜉1

𝜉 𝜉1
)

𝑏

𝑎
d𝜉1 

= ∫ |
𝐾(𝑥, 𝜉) 𝐾(𝑥, 𝜉1)

𝐾(𝜉1, 𝜉) 𝐾(𝜉1, 𝜉1)
| 𝑑𝜉1

𝑏

𝑎

 

                =∫ |
2𝑥 − 𝜉 2𝑥 − 𝜉1

2𝜉1 − 𝜉 2𝜉1 − 𝜉1
| 𝑑𝜉1

1

0
 

                =∫ |
2𝑥 − 𝜉 𝜉 − 𝜉1

2𝜉1 − 𝜉 𝜉 − 𝜉1
| 𝑑𝜉1

1

0
  , 𝐶2 → 𝐶2 − 𝐶1 

                =∫ (𝜉 − 𝜉1) |
2𝑥 − 𝜉 1
2𝜉1 − 𝜉 1

| 𝑑𝜉1
1

0
 

                =∫ (𝜉 − 𝜉1)(2𝑥 − 𝜉 − 2𝜉1 + 𝜉)𝑑𝜉1
1

0
 

                =∫ 2(𝜉 − 𝜉1)(𝑥 − 𝜉1)𝑑𝜉1
1

0
 

                =∫ 2(𝑥𝜉 − 𝜉𝜉1 + 𝜉1
2 − 𝑥𝜉1)𝑑𝜉1

1

0
 



                = 2[𝑥𝜉 −
𝜉

2
−

𝑥

2
+

1

3
] 

                = 2 𝑥𝜉 − 𝜉 − 𝑥 +
2

3
 

𝐵2(𝑥, 𝜉) = ∬ 𝐾 (
𝑥 𝜉1 𝜉2

𝜉 𝜉1 𝜉2
) 𝑑𝜉1𝑑𝜉2

𝑏

𝑎

 

= ∬ |

𝐾(𝑥, 𝜉) 𝐾(𝑥, 𝜉1) 𝐾(𝑥, 𝜉1)
𝐾(𝜉1, 𝜉) 𝐾(𝜉1, 𝜉1) 𝐾(𝜉1, 𝜉2)
𝐾(𝜉2, 𝜉) 𝐾(𝜉2, 𝜉1) 𝐾(𝜉2, 𝜉2)

|
𝑏

𝑎

 𝑑𝜉1𝑑𝜉2 

𝐵2(𝑥, 𝜉) = ∬ |

2𝑥 − 𝜉 2𝑥 − 𝜉1 2𝑥 − 𝜉2

2𝜉1 − 𝜉 2𝜉1 − 𝜉1 2𝜉1 − 𝜉2

2𝜉2 − 𝜉 2𝜉2 − 𝜉1 2𝜉2 − 𝜉2

|
1

0

 𝑑𝜉1𝑑𝜉2 

                = ∬ |

2𝑥 − 𝜉 𝜉 − 𝜉1 𝜉 − 𝜉2

2𝜉1 − 𝜉 𝜉 − 𝜉1 𝜉 − 𝜉2

2𝜉2 − 𝜉 𝜉 − 𝜉1 𝜉 − 𝜉2

|
1

0
 𝑑𝜉1𝑑𝜉2 

Obtained by applying 𝐶2 → 𝐶2 − 𝐶1 , 𝐶3 → 𝐶3 − 𝐶1 

                = ∬ (𝜉 − 𝜉1)(𝜉 − 𝜉2) |

2𝑥 − 𝜉 1 1
2𝜉1 − 𝜉 1 1
2𝜉2 − 𝜉 1 1

|
1

0
 𝑑𝜉1𝑑𝜉2 

                = 0 as two columns are equal 

Similarly, other further terms of B also become zero. 

Now, 𝐶1 = ∫ 𝐾(𝜉1, 𝜉1)
𝑏

𝑎
d𝜉1 

= ∫ (2𝜉1 − 𝜉1)
1

0
d𝜉1 

= ∫ 𝜉1 
1

0
d𝜉1 

                =
1

2
 

𝐶2 = ∬ 𝐾 (
𝜉1 𝜉2

𝜉1 𝜉2
) 𝑑𝜉1𝑑𝜉2

𝑏

𝑎

 

      =∫ ∫ |
𝐾(𝜉1, 𝜉1) 𝐾(𝜉1, 𝜉2)
𝐾(𝜉2, 𝜉1) 𝐾(𝜉2, 𝜉2)

| 𝑑𝜉1𝑑𝜉2
𝑏

𝑎
 

      =∫ ∫ |
2𝜉1 − 𝜉1 2𝜉1 − 𝜉2

2𝜉2 − 𝜉1 2𝜉2 − 𝜉2
| 𝑑𝜉1𝑑𝜉2

1

0
 

      =∫ ∫ |
𝜉1 2𝜉1 − 𝜉2

2𝜉2 − 𝜉1 𝜉2
| 𝑑𝜉1𝑑𝜉2

1

0
 

      =∫ ∫ [𝜉1𝜉2 − (2𝜉1 − 𝜉2)(2𝜉2 − 𝜉1)]𝑑𝜉1𝑑𝜉2
1

0
 

      =∫ ∫ [𝜉1𝜉2 − 4𝜉1𝜉2 − 𝜉1𝜉2 + 2𝜉1
2 + 2𝜉2

2]𝑑𝜉1𝑑𝜉2
1

0
 

      =∫ [
2

3
− 2𝜉2 + 2𝜉2

2] 𝑑𝜉2
1

0
 



      =
1

 3
 

Now by similar method we find 𝐶3 which comes out to be zero and further terms will also become zero. 

Now further we got, 

D(𝑥, 𝜉; 𝜆) = 𝐵𝑜(𝑥, 𝜉) +  ∑
−1𝑚𝜆𝑚

𝑚!
𝐵𝑚(𝑥, 𝜉) 

                  = K(𝑥, 𝜉) −
𝜆

1!
𝐵1(𝑥, 𝜉) +

𝜆2

2!
𝐵2(𝑥, 𝜉) − − − − − − 

= 2𝑥 − 𝜉 − 𝜆(2 𝑥𝜉 − 𝜉 − 𝑥 +
2

3
) 

D(𝜆) =1−
𝜆

1!
𝐶1 +

𝜆2

2!
𝐶2 −

𝜆3

3!
𝐶3 +  − − − − 

=1−
𝜆

2
+

𝜆2

6
 

𝑅(𝑥, 𝜉; 𝜆) =
𝐷(𝑥, 𝜉; 𝜆)

𝐷(𝜆)
=

2𝑥 − 𝜉 − 𝜆(2 𝑥𝜉 − 𝜉 − 𝑥 +
2
3)

1 −
𝜆
2 +

𝜆2

6

 

This is the required solution. 

Example 3. Find R(𝓍, ξ, λ) of the following K(𝓍, ξ) = 𝓍2ξ − 𝓍ξ2, 0 ≤ 𝓍 ≤ 1, 0 ≤ ξ ≤ 1. 

Solution:   GivenK(𝓍, ξ)  =  𝓍2ξ − 𝓍ξ2, a = 0, b = 0…(1)                                

To find R(𝓍, ξ, λ) =
D(𝓍,ξ,λ)

D(λ)
 

where D(𝓍, ξ, λ) = B0(𝓍, ξ) −
λ

∟1
B1(𝓍, ξ) +

λ2

∟2
B2(𝓍, ξ) −

λ3

∟3
B3(𝓍, ξ)+. . . . . . . . . . . . .. 

B0(𝓍, ξ) = K(𝓍, ξ)  = 𝓍2ξ − 𝓍ξ2 

B1(𝓍, ξ) = ∫ K |
𝓍 ξ1

ξ ξ1
|

1

0

dξ1 = ∫ |
K(𝓍, ξ) K(𝓍, ξ1)
K(ξ1, ξ) K(ξ1, ξ1)

|
1

0

dξ1 

B1(𝓍, ξ) = ∫ |
𝓍2ξ − 𝓍ξ2 𝓍2ξ1 − 𝓍ξ1

2

ξ1
2ξ1 − ξ1ξ2 0

|
1

0

dξ1 

B1(𝓍, ξ) = − ∫ (ξ1
2ξ − ξ2) (𝓍2ξ1 − 𝓍ξ1

2)dξ1

1

0

 

B1(𝓍, ξ) = − ∫ [(ξ1
2ξ − ξ1ξ2) (𝓍2ξ1) − (ξ1

2ξ − ξ1ξ2)(𝓍ξ1
2)]

1

0

dξ1 

B1(𝓍, ξ) = − ∫ (𝓍2ξξ1
3 − ξ2ξ1

2𝓍2 − 𝓍ξ1
4ξ + ξ1

3ξ2𝓍)
1

0

dξ 

B1(𝓍, ξ) = − [
𝓍2ξ

4
−

𝓍2ξ2

3
−

𝓍ξ

5
+

𝓍ξ2

4
] 

B1(𝓍, ξ) = −𝓍ξ [
𝓍 + ξ

4
−

𝓍ξ

3
−

1

5
] 



B2(𝓍, ξ) = ∫ ∫ K |
𝓍 ξ1 ξ2

ξ ξ1 ξ2
| dξ1

1

0

dξ2

1

0

 

= ∫ ∫ |

K(𝓍, ξ) K(𝓍, ξ1) K(𝓍, ξ2)
K(ξ1, ξ) K(ξ1, ξ1) K(ξ1, ξ2)
K(ξ2, ξ1) K(ξ2, ξ1) K(ξ2, ξ2)

| dξ1

1

0

dξ2

1

0

 

= ∫ ∫ |

𝓍2ξ − 𝓍ξ2 𝓍2ξ1 − 𝓍ξ1
2 𝓍2ξ2 − 𝓍ξ2

2

ξ1
2ξ − ξ1ξ2 ξ1

2ξ1 − ξ1ξ1
2 ξ1

2ξ2 − ξ1ξ2
2

ξ2
2ξ−ξ2ξ2 ξ2

2ξ1 − ξ2ξ1
2 ξ2

2ξ2 − ξ2ξ2
2

| dξ1

1

0

dξ2

1

0

 

= ∫ ∫ 𝓍ξ1ξ2 |

ξ(𝓍 − ξ) ξ1(𝓍 − ξ1) ξ2(𝓍 − ξ2)
ξ(ξ1 − ξ) ξ1(ξ1 − ξ1) ξ2(ξ1 − ξ2)
ξ1(ξ2 − ξ) ξ1(ξ2 − ξ1) ξ2(ξ2 − ξ2)

| dξ1

1

0

dξ2

1

0

 

= ∫ ∫ 𝓍ξ1ξ1
2ξ2

2 |

𝓍 − ξ 𝓍 − ξ1 𝓍 − ξ2

ξ1 − ξ ξ1 − ξ1 ξ1 − ξ2

ξ2 − ξ ξ2 − ξ1 ξ2 − ξ2)
| dξ1

1

0

dξ2

1

0

 

= ∫ ∫ 𝓍ξ1ξ1
2ξ2

2 |

𝓍 − ξ ξ − ξ1 ξ1 − ξ2

ξ1 − ξ ξ − ξ1 ξ1 − ξ2

ξ2 − ξ ξ − ξ1 ξ1 − ξ2

| dξ1

1

0

dξ2

1

0

C2 → C2 − C1      C3 → C3 − C1 

= ∫ ∫ 𝓍ξ1ξ1
2ξ2

2(ξ − ξ1)(ξ1 − ξ2) |

𝓍 − ξ 1 1
ξ1 − ξ 1 1
ξ2 − ξ 1 1

| dξ1

1

0

dξ2

1

0

= 0 

as two columns are same. 

Similarly B3(𝓍, ξ) = 0 = B4(𝓍, ξ) =. . . . . . . .. 

𝐶1 = ∫ K (ξ1, ξ1)
1

0

dξ1 = ∫  (ξ1
2ξ1 − ξ1ξ1

2)
1

0

dξ1 = 0 

𝐶2 = ∫ ∫ K |
ξ1 ξ2

ξ1 ξ2
|

1

0

1

0

dξ1ξ2 = ∫ ∫ |
K(ξ1ξ1) K(ξ1ξ2)
K(ξ2ξ1) K(ξ2ξ2)

|
1

0

1

0

dξ1dξ2 

𝐶2 = ∫ ∫ |
ξ1

2ξ1 − ξ1ξ1
2 ξ1

2ξ2 − ξ1ξ2
2

ξ2
2ξ1 − ξ2ξ1

2 ξ2
2ξ2 − ξ2ξ2

2|
1

0

1

0

dξ1dξ2 

𝐶2 = ∫ ∫ |
0 ξ1ξ2(ξ1 − ξ2)

ξ1ξ2(ξ2 − ξ1) 0
|

1

0

1

0

dξ1dξ2 

𝐶2 = ∫ ∫ +
1

0

1

0

ξ1
2ξ2

2(ξ1−ξ2)2dξ1dξ2 

𝐶2 = ∫ ∫ ξ1
2ξ2

2(ξ1
2 + ξ2

2 − 2ξ1ξ2) dξ1dξ2

1

0

1

0

 

𝐶2 = ∫ ∫ ξ1
4ξ2

2 + ξ1
2 + ξ2

4 − 2ξ1
3ξ2

3) dξ1dξ2

1

0

1

0

 



𝐶2 = ∫ (
1

5
. ξ2

2 +
1

3
ξ2

4 −
2

4
ξ2

3) dξ2)
1

0

 

𝐶2 =
1

15
+

1

15
−

1

2
.
1

4
=

1

120
 

𝐶3 = ∫ ∫ ∫ K |
ξ1 ξ2 ξ3

ξ1 ξ2 ξ3
|

1

0

1

0

1

0

dξ1 dξ2 dξ3 

𝐶3 = ∫ ∫ ∫ |

K(ξ1ξ1) K(ξ1ξ2) K(ξ1ξ3)
K(ξ2ξ1) K(ξ2ξ2) K(ξ2ξ3)
K(ξ3ξ1) K(ξ3ξ2) K(ξ3ξ3)

|
1

0

1

0

1

0

dξ1 dξ2 dξ3 

𝐶3 = ∫ ∫ ∫ |

(ξ1
2ξ1 − ξ1ξ1

2) (ξ1
2ξ2 − ξ1ξ2

2) (ξ1
2ξ3 − ξ1ξ3

2)

(ξ2
2ξ1 − ξ2ξ1

2) (ξ2
2ξ2 − ξ2ξ2

2) (ξ2
2ξ3 − ξ2ξ3

2)

(ξ3
2ξ1 − ξ3ξ1

2) (ξ3
2ξ2 − ξ3ξ2

2) (ξ3
2ξ3 − ξ3ξ3

2)

|
1

0

1

0

1

0

dξ1 dξ2 dξ3 

𝐶3 = ∫ ∫ ∫ |

(ξ1ξ1(ξ1 − ξ1) (ξ1ξ2(ξ1 − ξ2) (ξ1ξ3(ξ1 − ξ3)
(ξ2ξ1(ξ2 − ξ1) (ξ2ξ2(ξ2 − ξ2) (ξ2ξ3(ξ2 − ξ3)
(ξ3ξ1(ξ3 − ξ1) (ξ3ξ2(ξ3 − ξ2) (ξ3ξ3(ξ3 − ξ3)

|
1

0

1

0

1

0

dξ1 dξ2 dξ3 

𝐶3 = ∫ ∫ ∫ ξ1ξ2ξ3 |

(ξ1(ξ1 − ξ1) (ξ1(ξ1 − ξ2) (ξ1(ξ1 − ξ3)
(ξ2(ξ2 − ξ1) (ξ2(ξ2 − ξ2) (ξ2(ξ2 − ξ3)
(ξ3(ξ3 − ξ1) (ξ3(ξ3 − ξ2) (ξ3(ξ3 − ξ3)

|
1

0

1

0

1

0

dξ1 dξ2 dξ3 

𝐶3 = ∫ ∫ ∫ ξ1
2ξ2

2ξ3
2 |

ξ1 − ξ1 ξ1 − ξ2 ξ1 − ξ3

ξ2 − ξ1 ξ2 − ξ2 ξ2 − ξ3

ξ3 − ξ1 ξ3 − ξ2 ξ3 − ξ3

|
1

0

1

0

1

0

dξ1 dξ2 dξ3 

𝐶3 = ∫ ∫ ∫ ξ1
2ξ2

2ξ3
2 |

ξ1 − ξ1 ξ1 − ξ2 ξ1 − ξ3

ξ2 − ξ1 ξ2 − ξ2 ξ2 − ξ3

ξ3 − ξ1 ξ3 − ξ2 ξ3 − ξ3

|
1

0

1

0

1

0

dξ1 dξ2 dξ3 

𝐶2→𝐶2 − 𝐶1 

𝐶3 → 𝐶3 − 𝐶1 

𝐶3 = ∫ ∫ ∫ ξ1
2ξ2

2ξ3
2(ξ1 − ξ2)(ξ1ξ3) |

0 1 1
ξ2 − ξ1 1 1
ξ3 − ξ1 1 1

|
1

0

1

0

1

0

dξ1 dξ2 dξ3 

𝐶3 = 0  Since two columns are equals. 

Similarly  𝐶4 = 0 = 𝐶5 =. . . . . . . .. 

R(𝓍, ξ, λ) =
D(𝓍, ξ, λ)

D(λ)
 

[
𝐾(𝓍, ξ) −

λ
∟1 B1(𝓍, ξ) +

λ2

∟2 B2(𝓍, ξ) −
λ3

∟3 B3(𝓍, ξ)+. . .

1 −
λ

∟1
C1 +

λ2

∟2
C2 −

λ3

∟3
C3+. . . . .

] 



R(𝓍, ξ, λ) =
𝓍2ξ − 𝓍ξ2 + λ𝓍ξ [

𝓍 + ξ
4 −

𝓍ξ
3 −

1
5

]

1 −
λ

∟1 . 0 +
λ2

∟2 .
1

120 + 0
 

R(𝓍, ξ, λ) =
𝓍ξ(𝓍 − ξ) + λ𝓍ξ [

𝓍 + ξ
4 −

𝓍ξ
3 −

1
5

]

(1 +
λ2

240)
 

Example 4.  Find R(𝓍, ξ, λ) of the following K(𝓍, ξ) = sin 𝓍 cos ξ , 0 ≤ 𝓍 ≤ 2π, 0 ≤ ξ ≤ 2π 

Given K(𝓍, ξ)= sin 𝓍 cos ξ , a = 0, b = 2π. 

 Solution: We know that 

R(𝓍, ξ; λ) =
𝐾(𝓍, ξ) −

λ
∟1 B1(𝓍, ξ) +

λ2

∟2 B2(𝓍, ξ) −
λ3

∟3 B3(𝓍, ξ)+. . .

1 −
λ

∟1 C1 +
λ2

∟2 C2 −
λ3

∟3 C3+. . . . .
              . . . (1) 

Now we have 

B1(𝓍, ξ) = ∫ K |
𝓍 ξ1

ξ ξ1
|

2π

0

dξ1 = ∫ |
K(𝓍, ξ) K(𝓍, ξ1)
K(ξ1, ξ) K(ξ1, ξ1)

|
2π

0

dξ1 

B1(𝓍, ξ) = ∫ |
sin 𝓍 cos ξ sin 𝓍 cos ξ1

sin ξ1 cos ξ sin ξ1 cos ξ1
|

2π

0

dξ1 

= sin 𝓍 ∫ |
cos ξ cos ξ1

sin ξ1 cos ξ sin ξ1 cos ξ1
|

2π

0

dξ1 = 0 

Similarly       B2(𝓍, ξ) = 0 = B3(𝓍, ξ) =. . . .. 

C1 = ∫ K(ξ1, ξ1)dξ1

2π

0

= ∫ sin ξ1 cos ξ1 dξ1

2π

0

= 0 

Similarly C2 = 0 = C3 =. . . . . .. 

So R(𝓍, ξ; λ) =
sin 𝓍 cos ξ

1
. 

Example 5. Find fredholm determinant and resolvent kernel of  k(x , ) = sin x – sin  ,  

a = 0, b = 2. 

Solution: We know fredholm determinant  

D() = 1 – 


1! 
 C1 + 

.

2!
C2 – ……………      …(1) 

Resolve kernel 

R(x,; ) = 
𝐷(𝑥,𝜉;)

𝐷()
         …(2) 

where D(x,; ) = B0(x, ) –  


1!
 B1(x, ) + ………     …(3) 

Here B0(x, ) = k(x, ) = sin x – sin   (given)     …(4) 



Now we have 

 B1(x, ) =∫ 𝑘
2𝜋

0
1

1

x 

 

 
 
 

d1 =∫ .
2𝜋

0
1

1 1 1

( , ) ( , )

( , ) ( , )

k x k x

k k

 

   
 d1   …(5) 

Consider 

      D1 = 1

1 1 1

( , ) ( , )

( , ) ( , )

k x k x

k k

 

   
 

 = 1

1 1 1

sin sin sin sin

sin sin sin sin

 

   

 

 

x x
 

 = – (sin x – sin )(sin 1– sin) 

           = –sin x .sin 1+sin21 - sin x. sin –+sin . sin1 

  B1(x, ) = –sin x∫ .
2𝜋

0
sin 1 d1 – ∫ .

2𝜋

0
sin21d1 + sin x. sin ∫ .

2𝜋

0
d1+ 

sin∫ .
2𝜋

0
sin 1d1 

  = 0 + 
1

2
∫ .

2𝜋

0
(1 – cos21) d1 + sin x sin.2 + 0 

  = (1 + 2 sin x sin  ) 

B2(x, ) =∬ 𝑘
2𝜋

0
1 2

1 2

 

  

 
 
 

x
d1 d2 

Where D2(x, 1, 2 ) = k 1 2

1 2

 

  

 
 
 

x
 

 = 

1 2

1 1 1 1 2

2 2 1 2 2

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

k x k x k x

k k k

k k k

  

     

     

 
 
 
 
 

 

 = 

2

1 1 1 1 2

2 2 1 2 2

sin sin sin sin sin sin

sin sin sin sin sin sin

sin sin sin sin sin sin

  

     

     

    
 

   
    

x x x

 

C2 C2 – C1  C3 C3 – C1 

=  

1 2

1 1 2

2 1 2

sin sin sin sin sin sin

sin sin sin sin sin sin

sin sin sin sin sin sin

x     

     

     

    
 

   
    

 

= = 0 

 D2(x, 1, 2) = 0 

1

2

sin sin 1 1

sin sin 1 1

sin sin 1 1

x 

 

 

  
 

 
  



 B2(x, ) = 0 

Similarly, other terms are zero. 

Now C1 = (1, 1) d1 = ∫ .
2𝜋

0
(sin 1 – sin1)d1 = 0  

C2 =  ∬ 𝑘
2𝜋

0
d1d2   =∬ .

2𝜋

0
d1d2   

      =∬ .
2𝜋

0
d1d2 

     = ∬ .
2𝜋

0
(sin1 – sin2)

2d1d2 

    = ∬ .
2𝜋

0
(sin21 + sin22 – sin1sin2)d1d2 

     = ∬ .
2

0
[1 – 2sin1sin2 – 

1

2
(cos21 + cos22)]d12 

    = ∬ 1
2𝜋

0
d1d2 – 2∬ .

2𝜋

0
sin1 sin2 d1 d2 – 

1

2
∬ .

2𝜋

0
(cos21 + cos22)d1 2 

    = ∫ 2𝜋
2𝜋

0
d2 – 0 – 0 

    = 42 

C3 =∭ .
2𝜋

0
K d1 d2 d3 

Where D3(1, 2, 3) = K  

     =  

      =  

C2 C2– C1  C3 C3– C1 

        =  

        = (sin1 – sin)(sin3 – sin)   = 0  

D3 = 0 

1 2

1 2

 

 

 
 
 

1 1 1 2

2 1 2 2

( , ) ( , )

( , ) ( , )

k k

k k

   

   

1 1 1 2

2 1 2 2

sin sin sin sin

sin sin sin sin

   

   

 

 

1 2

1 2

 

  

 
 
 

x

1 2

1 2

 

  

 
 
 

x

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

k k k

k k k

k k k

     

     

     

 
 
 
 
 

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

sin sin sin sin sin sin

sin sin sin sin sin sin

sin sin sin sin sin sin

     

     

     

    
 

   
    

1 1 1 3

2 1 2 3

3 1 2 3

sin sin sin sin sin sin

sin sin sin sin sin sin

sin sin sin sin sin sin

     

     

     

    
 

   
    

1 1

2 1

3 1

sin sin 1 1

sin sin 1 1

sin sin 1 1

 

 

 

  
 

 
  



C3 = ∭ 0 
2𝜋

0
d1 2 3= 0 

Similarly, C4 = C5 = C6 = 0 = ………….. 

D(x, ; ) = B0(x, ) – 


1!
 B1(x, ) + …… 

      = sin x – sin  – (1 + 2 sin x sin ) + 0 + 0 + …… 

D() = 1 – 


1! 
 C1 + 

.

2!
C2 – ………………      

 = 1 + 
1

2
(422) 

 = 1 + 222 

R(x, ; ) = 
𝐷(𝑥,𝜉;)

𝐷()
 

R(x, ; ) ={sin x – sin – (1 + 2 sin x sin )}/{1 + 222} 

Which is required resolvent kernel. 

 

12.10 SUMMARY 

The non- homogeneous Fredholm integral equation of second kind  

                 𝜙(𝑥) = 𝐹(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝜉)𝜙(𝜉)𝑑𝜉
𝑏

𝑎
, 

Under the assumption that the function F(x) and K(x, 𝜉) are integrable has a unique solution, is of  the 

form 

𝜙(𝑥) = 𝐹(𝑥) + 𝜆 ∫ 𝑅(𝑥, 𝜉, 𝜆)𝐹(𝜉)𝑑𝜉

𝑏

𝑎

 

Where the Resolvent kernel R is a meromorphic † function of the parameter𝜆, being the ratio of two entire 

function of the parameter 𝜆 

                   R(x,𝜉, 𝜆) =
𝐷(𝑥,𝜉,𝜆)

𝐷(𝜆)
, 𝐷(𝜆) ≠ 0. 

We know that ∅(𝑥) = 𝐹(𝑥) + 𝜆 ∫ 𝑅(𝑥, 𝜉; 𝜆)𝐹(𝜉)𝑑𝜉
𝑏

𝑎
 

of the non-homogeneous Fredholm equation is unique for any 𝜆 provided by D(𝜆) ≠ 0. 

If 𝜆0 is a zero of multiplicity m of the function D(λ), then the homogeneous integral equation, 

𝜙(𝑥) = 𝜆0 ∫  𝐾(𝑥,
𝑏

𝑎

𝜉) 𝜙(𝜉)𝑑𝜉 

Possesses at least one, and at most m, linearly independent solutions, 

𝜙𝑖 (𝑥) = 𝐷𝑟 (
𝑥1 𝑥2 − 𝜉𝑣

𝜉1 𝜉2 − 𝜉𝑣
  ; 𝜆0 )  

(i=1,2,3,……….v;1≤v≤m not identically zero, and any other solution of this equation is a linear 

combination of these solutions.  



 

12.11 TERMINAL QUESTIONS 

Q.1 Explain the Fredhlom integral equation. 

Q.2 State and Prove Fredhlom First theorem.  

Q.3 State and Prove Fredhlom Second theorem.  

Q.4 State and Prove Fredhlom third theorem.  

Q.5 Find R(x, , ) of the following: K(x, ) = 1 + 3 x  ,0  x  1, 0    1. 

Q.6 Find the resolvent kernel of the following kernel k(x, ) = x – 2, 0  x  1, 0   1. 

Q.7 Find the reslovent kernel of   K(x , 𝜉) = x + ξ + 1 , -1 ≤ x ≤ 1 , -1  ≤ ξ ≤ 1. 

Q.8 Find the reslovent kernel of K(x , 𝜉) = 4xξ – x2  , 0 ≤ x ≤ 1 , 0  ≤ ξ ≤ 1. 

Q.9 Find the reslovent kernel of    K(x , 𝜉) = 1 ,   a = 0 ,  b = 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



UNIT-13 FREDHOLM INTEGRAL EQUATIONS-II 

Structure  

13.1 Introduction 

13.2 Objectives 

13.3 Fredholm Integral Equation 

13.4 Solution of Fredholm Integral Equation 

13.5 Resolvent kernel for Fredholm integral equation 

13.6 Separable kernel 

13.7 Method to solve Fredholm integral equation 

13.8 Eigen values and Eigen function 

13.9 Symmetric kernel 

13.10 Orthogonality 

13.11 Summary 

13.12 Terminal Questions 

 

13.1 INTRODUCTION 

Integral equations represent mathematical relationships where an unknown function is involved 

within an integral expression. These equations are prevalent across physics, engineering, and mathematics, 

particularly when addressing scenarios with continuous quantities. Named after the Swedish 

mathematician Ivar Fredholm, Fredholm integral equations feature the unknown function both inside and 

outside the integral sign. Their applications span diverse fields such as physics, engineering, and 

mathematics, offering valuable insights into physical phenomena and facilitating the analysis of 

engineering systems. Moreover, solutions to Fredholm integral equations aid in addressing specific 

boundary value problems. Extensively utilized in mathematical modeling, Fredholm integral equations 

play a crucial role in describing phenomena characterized by continuous interactions or distributions.  

Across various disciplines, Fredholm integral equations contribute significantly to the analysis, 

modeling, and comprehension of complex systems and phenomena. In electrical engineering, Fredholm 

integral equations are instrumental in analyzing transmission lines, antennas, and electromagnetic wave 

propagation. They provide valuable insights into the behavior of electromagnetic fields within intricate 

structures and media, further enhancing the understanding and optimization of electrical systems. In this 

unit we shall discuss the vrious types for Fredholm integral equations, various methods to solve Fredholm 

integral equation of first and second kind are discussed. Resolvent kernels are used to solve Fredholm 

integral equations. 

 



13.2 OBJECTIVES 

After reading this unit the learner should be able to understand about: 

 the Fredholm integral equation 

 the solution of Fredholm integral equation 

 the resolved kernel and separable kernel for Fredholm integral equation 

 

13.3 FREDHOLM INTEGRAL EQUATION 

A Fredholm Integral Equation is of the type 

ℎ(𝑥)𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝐾(𝑥, 𝜉)𝑢(𝜉)𝑑𝜉

𝑏

𝑎

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ [𝑎, 𝑏] 

(i) If h(x) = 0, the above equation reduces to: 

−𝑓(𝑥) = ∫ 𝐾(𝑥, 𝜉)𝑢(𝜉)𝑑𝜉

𝑏

𝑎

 

This equation is called Fredholm integral equation of first kind. 

(ii) If h(x) = 1, the above equation becomes: 

𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝐾(𝑥, 𝜉)𝑢(𝜉)𝑑𝜉

𝑏

𝑎

 

This equation is called Fredholm integral equation of second kind. 

(iii) If h(x) = 1, f(x) = 0 the above equation becomes: 

𝑢(𝑥) = ∫ 𝐾(𝑥, 𝜉)𝑢(𝜉)𝑑𝜉

𝑏

𝑎

 

This equation is called Homogeneous Fredholm integral equation of second kind. 

Examples 

Example 1. Reduce the boundary value problem to Fredholm equation 

𝑦" = 𝑥𝑦 = 1, 𝑦(0) = 0, 𝑦(1) = 0. 

Solution: Given boundary value problem is 

𝑦" = 1 − 𝑥𝑦                                                                                       … (1) 

Integrating over 0 to x, 

𝑦′(𝑥) = 𝑥 − ∫  𝜉 𝑦(𝜉)𝑑𝜉

𝑥

0

+ 𝑐1 

Again integrating over 0 to x, 



𝑦(𝑥) = [
𝑥2

2
]

0

𝑥

− ∫(𝑥 − 𝜉)𝜉𝑦(𝜉)𝑑𝜉 + 𝑐1𝑥 + 𝑐2

𝑥

0

                                            … (2) 

Where 𝑐1 and 𝑐2 are constants to be determined by boundary value conditions. 

Using y(0) = 0 in equation (2), we get 

0 = 0 − 0 + 0 + 𝑐2      ⇒  𝑐2 = 0 

So, equation (2) becomes 

𝑦(𝑥) =
𝑥2

2
− ∫(𝑥 − 𝜉)𝜉𝑦(𝜉)𝑑𝜉 + 𝑐1𝑥

𝑥

0

                                                     … (3) 

Now, using y(1) = 0 in the equation (3), we get 

0 =
1

2
− ∫(1 − 𝜉)𝜉𝑦(𝜉)𝑑𝜉 + 𝑐1

1

0

 

𝑐1 = ∫(1 − 𝜉)𝜉𝑦(𝜉)𝑑𝜉

1

0

−
1

2
(4) 

Putting value of 𝑐1 in equation (3), we get 

𝑦(𝑥) =
𝑥2

2
− ∫(𝑥 − 𝜉)𝜉𝑦(𝜉)𝑑𝜉 + 𝑥 ∫ 𝜉(1 − 𝜉)𝑦(𝜉)𝑑𝜉

1

0

−
𝑥

2

𝑥

0

 

𝑜𝑟                       𝑦(𝑥) =
𝑥2

2
−

𝑥

2
− ∫ 𝜉(𝑥 − 𝜉)𝑦(𝜉)𝑑𝜉 + 𝑥 ∫ 𝜉(1 − 𝜉)𝑦(𝜉)𝑑𝜉

1

0

𝑥

0

 

To express this in standard form, we split the second integral into two integrals, as follows 

𝑦(𝑥) =
𝑥2

2
−

𝑥

2
− ∫ 𝜉(𝑥 − 𝜉)𝑦(𝜉)𝑑𝜉 + 𝑥 ∫ 𝜉(1 − 𝜉)𝑦(𝜉)𝑑𝜉

𝑥

0

𝑥

0

+ 𝑥 ∫ 𝜉(1 − 𝜉)𝑦(𝜉)𝑑𝜉

1

𝑥

 

𝑜𝑟            𝑦(𝑥) =
𝑥2

2
−

𝑥

2
+ ∫(𝑥 − 𝑥𝜉 − 𝑥 + 𝜉)𝜉𝑦(𝜉)𝑑𝜉 + 𝑥 ∫ 𝜉(1 − 𝜉)𝑦(𝜉)𝑑𝜉

𝑥

0

𝑥

0

 

𝑜𝑟            𝑦(𝑥) =
𝑥2

2
−

𝑥

2
+ ∫ 𝜉(1 − 𝑥)𝜉𝑦(𝜉)𝑑𝜉 + ∫ 𝜉(1 − 𝜉)𝑦(𝜉)𝑑𝜉

𝑥

0

𝑥

0

 

𝑜𝑟      𝑦(𝑥) = 𝑓(𝑥) + ∫ 𝜉𝐾(𝑥, 𝜉)

1

0

𝑦(𝜉)𝑑𝜉 𝑤ℎ𝑒𝑟𝑒 𝑓(𝑥) =
𝑥2

2
−

𝑥

2
 

𝑎𝑛𝑑                     𝐾(𝑥, 𝜉) = {
(1 − 𝑥)𝜉      𝑖𝑓   0 ≤ 𝜉 ≤ 𝑥 
(1 − 𝜉)𝑥      𝑖𝑓     𝑥 ≤ 𝜉 ≤ 1

 

Hence the solution. 



Example 2. Reduce the boundary value problem, 

𝑦" + 𝐴(𝑥)𝑦′ + 𝐵(𝑥)𝑦 = 𝑔(𝑥), 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑦(𝑎) = 𝑐1, 𝑦(𝑏) = 𝑐2 

to a Fredholm integral equation. 

Solution: Given differential equation is 

𝑦" + 𝐴(𝑥)𝑦′ + 𝐵(𝑥)𝑦 = 𝑔(𝑥) 

𝑦" = −𝐴(𝑥)𝑦′ − 𝐵(𝑥)𝑦 + 𝑔(𝑥) 

Integrating w.r.t. x from a to x, we get 

𝑑𝑦

𝑑𝑥
= − ∫ 𝐴(𝜉)𝑦′(𝜉)𝑑𝜉

𝑥

𝑎

− ∫ 𝐵(𝜉)𝑦(𝜉)𝑑𝜉

𝑥

𝑎

+ ∫ 𝑔(𝜉)𝑑𝜉 + 𝛼1

𝑥

𝑎

 

⇒         
𝑑𝑦

𝑑𝑥
= −[𝐴(𝜉)𝑦(𝜉)]𝑎

𝑥 + ∫ 𝐴′(𝜉)𝑦(𝜉)𝑑𝜉

𝑥

𝑎

− ∫ 𝐵(𝜉)𝑦(𝜉)𝑑𝜉

𝑥

𝑎

+ ∫ 𝑔(𝜉)𝑑𝜉 + 𝛼1

𝑥

𝑎

 

⇒            
𝑑𝑦

𝑑𝑥
= ∫[𝐴′(𝜉)𝑦(𝜉)]𝑦(𝜉)

𝑥

𝑎

𝑑(𝜉) + ∫ 𝑔(𝜉)𝑑𝜉 − 𝐴(𝑥)𝑦(𝑥) + 𝐴(𝑎)𝑐1 + 𝛼1

𝑥

𝑎

 

Again integrating over a to x, 

𝑦(𝑥) = ∫(𝑥 − 𝜉)

𝑥

𝑎

[𝐴′(𝜉) − 𝐵(𝜉)]𝑦(𝜉)𝑑𝜉 + ∫(𝑥 − 𝜉)𝑔(𝜉)

𝑥

𝑎

𝑑𝜉

− ∫ 𝐴(𝜉)𝑦(𝜉) + (𝑥 − 𝑎)[𝛼1 + 𝐴(𝑎)𝑐1] + 𝛼2                                                   (1)

𝑥

𝑎

 

Applying first boundary condition, 𝑦(𝑎) = 𝑐1, we get 𝛼2 = 𝑐1 

Again applying second boundary condition, 𝑦(𝑏) = 𝑐2, we have 

𝑐2 = ∫(𝑏 − 𝜉)

𝑏

𝑎

[𝐴′(𝜉) − 𝐵(𝜉)]𝑦(𝜉)𝑑𝜉 + ∫(𝑏 − 𝜉)𝑔(𝜉)

𝑏

𝑎

𝑑𝜉

− ∫ 𝐴(𝜉)𝑦(𝜉)𝑑𝜉 + (𝑏 − 𝑎)[𝛼1 + 𝐴(𝑎)𝑐1] + 𝑐1

𝑏

𝑎

 

⇒   𝛼1 + 𝑐1𝐴(𝑎) =
1

𝑏 − 𝑎
[𝑐2 − 𝑐1 ∫[(𝑏 − 𝜉){𝐴′(𝜉) − 𝐵(𝜉)} − 𝐴(𝜉)]

𝑏

𝑎

𝑦(𝜉)𝑑𝜉 − ∫(𝑏 − 𝜉)𝑔(𝜉)𝑑𝜉

𝑏

𝑎

] 



⇒  𝑎1 + 𝑐1𝐴(𝑎)

=
1

𝑏 − 𝑎
{𝑐2 − 𝑐1 − ∫[(𝑏 − 𝜉){𝐴′(𝜉) − 𝐵(𝜉)} − 𝐴(𝜉)]𝑦(𝜉)

𝑥

𝑎

𝑑𝜉

− ∫[(𝑏 − 𝜉){𝐴′(𝜉) − 𝐵(𝜉)} − 𝐴(𝜉)]𝑦(𝜉)𝑑𝜉 −

𝑏

𝑥

∫(𝑏 − 𝜉)𝑔(𝜉)𝑑𝜉

𝑏

𝑎

} 

Putting this value of 𝑎1 + 𝑐1𝐴(𝑎) in equation (1), we obtain 

𝑦(𝑥) = 𝑐1 + ∫(𝑥 − 𝜉)𝑔(𝜉)𝑑𝜉 +

𝑥

𝑎

𝑥 − 𝑎

𝑏 − 𝑎
[𝑐2 − 𝑐1 − ∫(𝑏 − 𝜉)𝑔(𝜉)

𝑏

𝑎

𝑑𝜉] 

+ ∫[(𝑥 − 𝜉){𝐴′(𝜉) − 𝐵(𝜉)} − 𝐴(𝜉)]

𝑥

𝑎

𝑦(𝜉)𝑑𝜉 − ∫
𝑥 − 𝑎

𝑏 − 𝑎

𝑥

𝑎

[(𝑏 − 𝜉){𝐴′(𝜉) − 𝐵(𝜉)} − 𝐴(𝜉)]𝑦(𝜉)𝑑𝜉 

                                              −
𝑥 − 𝑎

𝑏 − 𝑎
∫[(𝑏 − 𝜉){𝐴′(𝜉) − 𝐵(𝜉)} − 𝐴(𝜉)]𝑦(𝜉)𝑑𝜉

𝑏

𝑥

 

𝑜𝑟 𝑦(𝑥) = 𝑓(𝑥) + ∫ [{(𝑥 − 𝜉) −
(𝑥 − 𝑎)(𝑏 − 𝜉)

𝑏 − 𝑎
} {𝐴′(𝜉) − 𝐵(𝜉)} + 𝐴(𝜉) {−1 +

𝑥 − 𝑎

𝑏 − 𝑎
}] 𝑦(𝜉)𝑑𝜉

𝑥

𝑎

 

                                                                  −
𝑥 − 𝑎

𝑏 − 𝑎
∫[(𝑏 − 𝜉){𝐴′(𝜉) − 𝐵(𝜉)} − 𝐴(𝜉)]𝑦(𝜉)𝑑𝜉

𝑏

𝑥

 

Now  

(𝑥 − 𝜉) −
(𝑥 − 𝑎)(𝑏 − 𝜉)

𝑏 − 𝑎
=

(𝑥 − 𝑏)(𝜉 − 𝑎)

𝑏 − 𝑎
  𝑎𝑛𝑑 − 1 +

𝑥 − 𝑎

𝑏 − 𝑎
=

𝑥 − 𝑏

𝑏 − 𝑎
 

Thus, the above equation becomes 

𝑦(𝑥) = 𝑓(𝑥) +
𝑥 − 𝑏

𝑏 − 𝑎
∫[𝐴(𝜉) − (𝑎 − 𝜉){𝐴′(𝜉) − 𝐵(𝜉)}]𝑦(𝜉)𝑑𝜉

𝑥

𝑎

 

−
𝑥 − 𝑎

𝑏 − 𝑎
∫[𝐴(𝜉) − (𝑏 − 𝜉){𝐴′(𝜉) − 𝐵(𝜉)}]𝑦(𝜉)𝑑𝜉

𝑏

𝑎

 

𝑜𝑟                              𝑦(𝑥) = 𝑓(𝑥) + ∫ 𝐾(𝑥, 𝜉)𝑦(𝜉)𝑑𝜉

𝑏

𝑎

 

Where 



𝑓(𝑥) = 𝑐1 + ∫(𝑥 − 𝜉)𝑔(𝜉)

𝑥

𝑎

𝑑𝜉 +
𝑥 − 𝑎

𝑏 − 𝑎
[𝑐2 − 𝑐1 − ∫(𝑏 − 𝜉)𝑔(𝜉)𝑑𝜉

𝑏

𝑎

] 

𝑎𝑛𝑑                         𝐾(𝑥, 𝜉) = [

𝑥 − 𝑏

𝑏 − 𝑎
[𝐴(𝜉) − (𝑎 − 𝜉){𝐴′(𝜉) − 𝐵(𝜉)}] 𝑥 > 𝜉

𝑥 − 𝑎

𝑏 − 𝑎
[𝐴(𝜉) − (𝑏 − 𝜉){𝐴′(𝜉) − 𝐵(𝜉)}] 𝑥 < 𝜉

 

This is complete solution. 

Example 3. Covert the Fredholm integral equation 

𝑢(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡

1

0

 𝑤ℎ𝑒𝑟𝑒 𝐾(𝑥, 𝑡) = {
𝑥(1 − 𝑡) 0 ≤ 𝑥 ≤ 𝑡

𝑡(1 − 𝑥) 𝑡 ≤ 𝑥 ≤ 1
 

into the boundary value problem  𝑢" + 𝜆𝑢 = 0, 𝑢(0) = 0, 𝑢(1) = 0.  

Solution. Write 

𝑢(𝑥) = 𝜆 [∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0

+ ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡

1

𝑥

] 

            = 𝜆 [∫ 𝑡(1 − 𝑥)𝑢(𝑡)𝑑𝑡 +

𝑥

0

∫ 𝑥(1 − 𝑡)𝑢(𝑡)𝑑𝑡

1

𝑥

] 

            = 𝜆 ∫ 𝑡(1 − 𝑥)𝑢(𝑡)𝑑𝑡 +

𝑥

0

𝜆 ∫ 𝑥(1 − 𝑡)𝑢(𝑡)𝑑𝑡

1

𝑥

                                                              (1) 

Differentiating (1) w.r.t. x and using Leibnitz formula 

𝑑𝑢

𝑑𝑥
= 𝜆 ∫ −𝑡 𝑢(𝑡)𝑑𝑡

𝑥

0

+ 𝜆(𝑥)(1 − 𝑥)𝑢(𝑥) + 𝜆 ∫(1 − 𝑡)𝑢(𝑡)𝑑𝑡

1

𝑥

− 𝜆𝑥(1 − 𝑥)𝑢(𝑥) 

𝑠𝑜         
𝑑2𝑢

𝑑𝑥2
= 𝜆 ∫ 0. (−𝑡)𝑢(𝑡)𝑑𝑡 +

𝑥

0

𝜆(−𝑥)𝑢(𝑥) + 𝜆 ∫ 0. (1 − 𝑡)𝑢(𝑡)𝑑𝑡

1

𝑥

− 𝜆(1 − 𝑥)𝑢(𝑥) 

                       = −𝜆 𝑢(𝑥) 

⇒       
𝑑2𝑢

𝑑𝑥2
+  𝜆 𝑢(𝑥) = 0 

Also, from (1), we have, u(0) = 0 = u(1) 

Hence the solution. 

 



13.4 SOLUTION OF FREDHOLM INTEGRAL EQUATION 

Let us Consider a Fredholm integral equation of second kind. 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝜉)𝑢(𝜉)𝑑𝜉

1

0

                                          (1) 

We define an integral operator, 

𝑘[𝜙(𝑥)] = ∫ 𝐾(𝑥, 𝜉)𝜙(𝜉)𝑑𝜉

𝑏

𝑎

 

𝑘2[𝜙(𝑥)] = 𝑘[𝑘{𝜙(𝑥)}] and so on. 

Then, (1) can be written as 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆𝑘[𝑢(𝑥)] 

Theorem 1. If the Fredholm integral equation 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝜉)𝑢(𝜉)𝑑𝜉

𝑏

𝑎

                                                   (1) 

Is such that 

(i) 𝐾(𝑥, 𝜉) is a non-zero real continuous function in the rectangle 𝑅 = 𝐼 × 𝐼, where I = [a, b] and |𝐾(𝑥, 𝜉)| <
𝑀 in R. 

(ii) 𝑓(𝑥) is an non-zero real valued continuous function on I. 

(iii) 𝜆 is a constant satisfying the inequality, |𝜆| <
1

𝑀(𝑏−𝑎)
. 

Then (1) has one and only one continuous solution in the interval I and this solution is given by 

the absolutely and uniformly convergent series 𝑢(𝑥) = 𝑓(𝑥) + 𝜆𝑘[𝑓(𝑥)] + 𝜆2𝑘2[𝑓(𝑥)] + ⋯ 𝑡𝑜 ∞. 

Proof:  We prove the result by the method of successive approximation. In this method we choose any 

continuous function say 𝑢0(𝑥) defined on I as the zeroth approximation. 

Then the first approximation, say 𝑢1(𝑥), is given 

𝑢1(𝑥) = f(x) + λ ∫ 𝐾(𝑥, 𝜉)𝑢0(𝜉)𝑑𝜉

𝑏

𝑎

                                                        (2) 

By substituting this approximation into R.H.S. of (1), we obtain next approximation, 𝑢2(𝑥). Continuing 

like this, we observe that the successive approximations are determined by the recurrence formula 

𝑢𝑛(𝑥) = f(x) + λ ∫ 𝐾(𝑥, 𝜉)𝑢𝑛−1(𝜉)𝑑𝜉

𝑏

𝑎

                                                        (3) 

= 𝑓(𝑥) + 𝜆𝑘[𝑢𝑛−1(𝑥)] 

= 𝑓(𝑥) + 𝜆𝑘[𝑓(𝑥) + 𝜆𝑘{𝑢𝑛−2(𝑥)}] 



= 𝑓(𝑥) + 𝜆𝑘[𝑓(𝑥)] + 𝜆2𝑘2[𝑓(𝑥) + 𝜆𝑘{𝑢𝑛−3(𝑥)}] 

Hence 𝑢𝑛(𝑥) = 𝑓(𝑥) + 𝜆𝑘[𝑓(𝑥)] + 𝜆2𝑘2[𝑓(𝑥)] + ⋯ … . +𝜆𝑛−1𝑘𝑛−1[𝑓(𝑥)] + 𝑅𝑛(𝑥), 

Where 𝑅𝑛(𝑥) = 𝜆𝑛𝑘𝑛[𝑢0(𝑥)] 

As 𝑢0(𝑥) is continuous, it is bounded that is, |𝑢0(𝑥)| ≤ 𝑈 in I 

Now, |𝑅𝑛(𝑥)| = |𝜆|𝑛 [∫ 𝐾(𝑥, 𝑡)
𝑏

𝑎
∫ 𝐾(𝑡, 𝑡1) …

𝑏

𝑎
∫ 𝐾(𝑡𝑛−2, 𝑡𝑛−1)𝑢0(𝑡𝑛−1)𝑑𝑡𝑛−1 … . 𝑑𝑡

𝑏

𝑎
] 

≤ |𝜆|𝑛𝑀𝑛 𝑈 (𝑏 − 𝑎)𝑛 

= 𝑈[|𝜆|𝑀(𝑏 − 𝑎)]𝑛 → 0 𝑎𝑠 𝑛 → ∞ (𝑠𝑖𝑛𝑐𝑒, |𝜆| <
1

𝑀(𝑏 − 𝑎)
) 

⇒                 lim
𝑛→∞

𝑅𝑛(𝑥) = 0 

Thus, lim
𝑛→∞

𝑢𝑛(𝑥) = 𝑢(𝑥) = 𝑓(𝑥) + 𝜆𝑘𝑓(𝑥) + 𝜆2𝑘2𝑓(𝑥) + ⋯ . . 𝑡𝑜 ∞ 

This can be easily verified by the virtue of M test that the above series is absolutely and uniformly 

convergent in I. 

Uniqueness: Let v(x) be another solution of given integral equation then by choosing 𝑢0(𝑥) = 𝑣(𝑥), we 

get 

                                   𝑢𝑛(𝑥) = 𝑣(𝑥)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 

⇒                            lim
𝑛→∞

𝑢𝑛(𝑥) = 𝑣(𝑥) ⇒ 𝑢(𝑥) = 𝑣(𝑥) 

This completes the proof. 

Examples 

Example 4. Find the first two approximation of the solution of Fredholm integral equation. 

𝑢(𝑥) = 1 + ∫ 𝐾(𝑥, 𝜉)𝑢(𝜉)𝑑𝜉

1

0

   𝑤ℎ𝑒𝑟𝑒 𝐾(𝑥, 𝜉) = [
𝑥 0 ≤ 𝑥 ≤ 𝜉
𝜉 𝜉 ≤ 𝑥 ≤ 1

 

Solution: Let 𝑢0(𝑥) = 1 be the zeroth approximation. Then first approximation is given by 

𝑢1(𝑥) = 1 + ∫ 𝐾(𝑥, 𝜉)𝑢0(𝜉)𝑑𝜉

1

0

 

= 1 + ∫ 𝐾(𝑥, 𝜉)𝑑𝜉

𝑥

0

+ ∫ 𝐾(𝑥, 𝜉)𝑑𝜉

1

𝑥

= 1 + ∫ 𝜉

𝑥

0

𝑑𝜉 + ∫ 𝑥𝑑𝜉

1

𝑥

 

= 1 +
𝑥2

2
+ 𝑥(1 − 𝑥) = 1 + 𝑥 −

𝑥2

2
 

Now we have 

𝑢2(𝑥) = 1 + ∫ 𝐾(𝑥, 𝜉)𝑢1(𝜉)𝑑𝜉

1

0

 



= 1 + ∫ 𝐾(𝑥, 𝜉) (1 + 𝜉 −
𝜉2

2
) 𝑑𝜉

1

0

 

= 1 + ∫ 𝜉 (1 + 𝜉 −
𝜉2

2
) 𝑑𝜉

𝑥

0

+ 𝑥 ∫ (1 + 𝜉 −
𝜉2

2
) 𝑑𝜉

1

𝑥

 

= 1 +
4

3
𝑥 −

𝑥2

2
−

𝑥3

6
+

𝑥4

24
. 

 

13.5 RESOLVENT KERNEL FOR FREDHOLM INTEGRAL 

EQUATION 

Let us Consider the Fredholm integral equation 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝜉)𝑢(𝜉)𝑑𝜉

𝑏

𝑎

                                          (1) 

The integrated kernels are defined by 𝐾1(𝑥, 𝜉) = 𝐾(𝑥, 𝜉), and  

𝐾𝑛+1(𝑥, 𝜉) = ∫ 𝑅(𝑥, 𝜉: 𝜆)𝑓(𝜉)𝑑𝜉

𝑏

𝑎

 

Where  𝑅(𝑥, 𝜉: 𝜆) = 𝐾1 + 𝜆𝐾2 + 𝜆2𝐾3 + ⋯ . . 𝑡𝑜 ∞ 

= ∑ 𝜆𝑛−1𝐾𝑛(𝑥, 𝜉)

∞

𝑛=1

 

Neumann series: The infinite series 𝐾1 + 𝜆𝐾2 + 𝜆2𝐾3 + ⋯ .. is called Neumann series and Resolvent 

Kernel: The function 𝑅(𝑥, 𝜉: 𝜆) is called Resolvent Kernel. 

Examples 

Example.5: Obtain the resolvent kernel associated with the kernel 𝐾(𝑥, 𝜉) = 1 − 3𝑥𝜉 in the interval (0, 

1) and solve the integral equation  

𝑢(𝑥) = 1 + 𝜆 ∫(1 − 3𝑥𝜉)𝑢(𝜉)𝑑𝜉

1

0

 

Solution: Here 𝐾(𝑥, 𝜉) = 1 − 3𝑥𝜉 We know that the iterated kernel are given by the relation, 𝐾1(𝑥, 𝜉) =
𝐾(𝑥, 𝜉) 

and  𝐾𝑛+1(𝑥, 𝜉) = ∫ 𝐾(𝑥, 𝑡)𝐾𝑛(𝑡, 𝜉)𝑑𝑡
𝑏

𝑎
 

therefore, 𝐾1(𝑥, 𝜉) = 1 − 3𝑥𝜉     

and 𝐾2(𝑥, 𝜉) = ∫ 𝐾(𝑥, 𝑡)𝐾1(𝑡, 𝜉)𝑑𝑡
𝑏

𝑎
 



                       = ∫(1 − 3𝑥𝑡)(1 − 3𝑥𝜉)𝑑𝑡

1

0

 

                     = ∫(1 − 3𝑡𝜉 − 3𝑥𝑡 + 9𝑥𝑡2𝜉)𝑑𝑡

1

0

 

                    = [1 −
3𝑡2𝜉

2
−

3𝑥𝑡2

2
+ 3𝑥𝑡2𝜉]

0

1

 

                      = 1 −
3

2
𝜉 −

3

2
𝑥 + 3𝑥𝜉 

      𝐾3(𝑥, 𝜉) = ∫ 𝐾(𝑥, 𝑡)

1

0

𝐾2(𝑡, 𝜉)𝑑𝑡 

                         = ∫(1 − 3𝑥𝑡)

1

0

(1 −
3

2
𝑡 −

3

2
𝜉 + 3𝑡𝜉) 𝑑𝑡 

                         =
1

4
(1 − 3𝑥𝜉) (𝑜𝑛 𝑠𝑜𝑙𝑣𝑖𝑛𝑔) 

      𝐾4(𝑥, 𝜉) = ∫ 𝐾(𝑥, 𝑡)

1

0

𝐾3(𝑡, 𝜉)𝑑𝑡 

                       =
1

4
∫(1 − 3𝑥𝑡)

1

0

(1 − 3𝑡𝜉)𝑑𝑡 

                        =
1

4
[1 −

3𝜉

2
−

3𝑥

2
+ 3𝑥𝜉] 

The Resolvent Kernel 𝑅(𝑥, 𝜉: 𝜆) is given by 

𝑅(𝑥, 𝜉: 𝜆) = 𝐾1 + 𝜆𝐾2 + 𝜆2𝐾3 + 𝜆3𝐾4 + ⋯ … … ..(𝐻𝑒𝑟𝑒 𝐾𝑚 𝑚𝑒𝑎𝑛𝑠      𝐾𝑚(𝑥, 𝜉)  etc)  

          = (1 − 3𝑥𝜉) + 𝜆 (1 −
3𝜉

2
−

3𝑥

2
+ 3𝑥𝜉) +

𝜆2

4
(1 − 3𝑥𝜉) +

𝜆3

4
(1 −

3𝜉

2
−

3𝑥

2
+ 3𝑥𝜉) +.. 

         = (1 − 3𝑥𝜉) (1 +
𝜆2

4
) + 𝜆 (1 −

3𝜉

2
−

3𝑥

2
+ 3𝑥𝜉) (1 +

𝜆2

4
) + ⋯ .. 

         = (1 +
𝜆2

4
+ ⋯ ) [(1 − 3𝑥𝜉) + 𝜆 (1 −

3𝜉

2
−

3𝑥

2
+ 3𝑥𝜉)] 

            = (
1

1 −
𝜆2

4

) [(1 − 3𝑥𝜉) + 𝜆 (1 −
3𝜉

2
−

3𝑥

2
+ 3𝑥𝜉)] 

            = (
4

4 − 𝜆2
) [(1 − 3𝑥𝜉) + 𝜆 (1 −

3𝜉

2
−

3𝑥

2
+ 3𝑥𝜉)] 



Which provides the required result. 

We know that the solution of an integral equation 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝜉)𝑢(𝜉)

𝑏

𝑎

𝑑𝜉   𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑅(𝑥, 𝜉: 𝜆)𝑓(𝜉)

𝑏

𝑎

𝑑𝜉    

Here 𝐾(𝑥, 𝜉) = (1 − 3𝑥𝜉). Then 

𝑅(𝑥, 𝜉: 𝜆) = (
4

4 − 𝜆2
) [(1 − 3𝑥𝜉) + 𝜆 (1 −

3𝜉

2
−

3𝑥

2
+ 3𝑥𝜉)] 

Thus, the solution of given integral equation is 

𝑢(𝑥) = 1 +
4𝜆

4 − 𝜆2
∫ [(1 − 3𝑥𝜉) + 𝜆 (1 −

3𝜉

2
−

3𝑥

2
+ 3𝑥𝜉)] . 1𝑑𝜉

1

0

 

= 1 +
4𝜆

4 − 𝜆2
[𝜉 − 3𝑥

𝜉2

2
+ 𝜆 (𝜉 −

3𝜉2

4
−

3𝑥𝜉

2
+

3𝜉2

2
)]

0

1

 

= 1 +
4𝜆

4 − 𝜆2
[1 −

3𝑥

2
+ 𝜆 (1 −

3

4
−

3𝑥

2
+

3𝑥

2
)] 

= 1 +
4𝜆

4 − 𝜆2
(1 −

3𝑥

2
+

𝜆

4
) 

=
4 + 4𝜆 − 6𝑥𝜆

4 − 𝜆2
, 𝜆 ≠ ±2 

This is the required solution of given integral equation. 

 

13.6 SEPARABLE KERNEL 

A kernel 𝐾(𝑥, 𝜉) of an integral equation is called separable if it can be expressed in the form 

𝐾(𝑥, 𝜉) = ∑ 𝑎𝑖(𝑥)𝑏𝑖(𝜉)

𝑛

𝑖=1

= 𝑎1(𝑥)𝑏1(𝜉) + 𝑎2(𝑥)𝑏2(𝜉) + ⋯ . +𝑎𝑛(𝑥)𝑏𝑛(𝜉) 

For example. 

(𝑎)  𝑒𝑥−𝜉 = 𝑒𝑥. 𝑒−𝜉 = 𝑎1(𝑥)𝑏1(𝜉), 𝑛 = 1 

(𝑏) 𝑥 − 𝜉 = 𝑥. 1 + 1(−𝜉) = 𝑎1(𝑥)𝑏1(𝜉) + 𝑎2(𝑥)𝑏2(𝜉), 𝑛 = 2 

(𝑐) 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦, sin(𝑥 + 𝜉), 1 − 3𝑥 𝜉 are separable kernels. 

(𝑑) 𝑥𝜉 , sin(𝑥 𝜉) 𝜉 are non – separable kernels. 



13.7 ANOTHER METHOD TO SOLVE FREDHOLM INTEGRAL 

EQUATION 

We have to solve the Fredholm integral equation of second kind with separable kernel. 

Let the given integral equation be 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝜉)𝑢(𝜉)

𝑏

𝑎

𝑑𝜉                                             (1) 

𝑤ℎ𝑒𝑟𝑒   𝐾(𝑥, 𝜉) = ∑ 𝑎𝑖(𝑥)𝑏𝑖(𝜉)

𝑛

𝑖=1

                                               (2) 

Thus, (1) can be written as 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ [∑ 𝑎𝑖(𝑥)𝑏𝑖(𝜉)

𝑛

𝑖=1

] 𝑢(𝜉)

𝑏

𝑎

𝑑𝜉 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∑ 𝑎𝑖(𝑥)

𝑛

𝑖=1

[∫ 𝑏𝑖(𝜉)𝑢(𝜉)

𝑏

𝑎

𝑑𝜉] 

= 𝑓(𝑥) + 𝜆[𝑐1𝑎1(𝑥) + 𝑐2𝑎2(𝑥) + ⋯ . . +𝑐𝑛𝑎𝑛(𝑥)]                                  (3) 

𝑤ℎ𝑒𝑟𝑒   𝐶𝑘 = ∫ 𝑏𝑘(𝜉)𝑢(𝜉)

𝑏

𝑎

𝑑𝜉 = ∫ 𝑏𝑘(𝑥)𝑢(𝑥)

𝑏

𝑎

𝑑𝑥                                   (4) 

Here (3) gives the solution of given Fredholm integral (1) provided the constants c1, c2, ….cn are 

determined. 

For this, we multiply (3) both sides bi(x) and then integrating w.r.t. x from a to b, we find 

∫ 𝑏𝑖(𝑥)𝑢(𝑥)

𝑏

𝑎

𝑑𝑥 = ∫ 𝑓(𝑥)𝑏𝑖(𝑥)

𝑏

𝑎

𝑑𝑥 + 𝜆 ∑ 𝐶𝑘

𝑛

𝑘=1

∫ 𝑏𝑖(𝑥)

𝑏

𝑎

𝑎𝑘(𝑥)𝑑𝑥  𝑓𝑜𝑟  𝑖 = 1, 2, 3, … . . 𝑛 

⇒                             𝑐𝑖 = 𝑓𝑖 + 𝜆 ∑ 𝛼𝑖𝑘𝐶𝑘

𝑛

𝑘=1

                                                                  … . (5) 

𝑤ℎ𝑒𝑟𝑒   𝑓𝑖 = ∫ 𝑓(𝑥)𝑏𝑖(𝑥)

𝑏

𝑎

𝑑𝑥  𝑎𝑛𝑑  𝛼𝑖𝑘 = ∫ 𝑏𝑖(𝑥)

𝑏

𝑎

𝑎𝑘(𝑥)𝑑𝑥                          … . (6) 

From equation (5), we have 

𝑐1 = 𝑓1 + 𝜆[𝑐11𝑎1 + 𝑐12𝑎2 + ⋯ . . +𝑐1𝑛𝑎𝑛]  

𝑐2 = 𝑓2 + 𝜆[𝑐21𝑎1 + 𝑐22𝑎2 + ⋯ . . +𝑐2𝑛𝑎𝑛] 

….   ………..         ………….           ………….. 



𝑐𝑛 = 𝑓𝑛 + 𝜆[𝑐𝑛1𝑎1 + 𝑐𝑛2𝑎2 + ⋯ . . +𝑐𝑛𝑛𝑎𝑛] 

In matrix form,  𝐶 = 𝐹 + 𝜆𝐴𝐶            or   (𝐼 − 𝜆𝐴)𝐶 = 𝐹                            …. (7) 

Where 

𝐶 = [

𝑐1

𝑐2

. .
𝑐𝑛

] , 𝐹 = [

𝑓1

𝑓2

. .
𝑓𝑛

] , 𝐴 = [

𝛼11 𝛼12

𝛼21 𝛼22

… . … .
    

… . 𝛼1𝑛

… . 𝛼2𝑛

… . … .… . … .
𝛼𝑛1 𝛼𝑛2

     
… . … .
… . 𝛼𝑛𝑛

] 

Let      |𝐼 − 𝜆𝐴| = Δ(𝜆)                                                                                           …(8) 

Now, we discuss the various cases 

Case I: When 𝑓(𝑥) ≠ 0 and 𝐹 ≠ 0, that is, both integral equation as well as matrix equation are non-

homogeneous. Then, from equation (7) has a unique solution if and only if ∆(𝜆) ≠ 0. 

If ∆(𝜆) = 0 for some value of 𝜆, then from equation (7) has no solution or infinite solutions. 

Case II: When f(x) = 0 that is, the Fredholm integral equation is homogeneous. In this case 𝑓𝑖 = 0 for all 

i  and consequently F = 0. Thus, equation (7) reduces to: 

                                  (𝐼 − 𝜆𝐴)𝐶 = 0                                                        … (9) 

Subcase (a). If ∆(𝜆) ≠ 0, then from equation (9) has the trivial solution, C = 0 that is, 𝐶𝑖 = 0 for all i . 

Hence the equation (3) becomes, u(x) = 0 which is the solution of given integral equation. 

Subcase (b). If ∆(𝜆0) = 0 for some scalar 𝜆0, then from equation (9) has infinitely many solutions. 

Consequently, the Fredholm integral equation 𝑢(𝑥) = 𝜆0 ∫ 𝐾(𝑥, 𝜉)𝑢(𝜉)𝑑𝜉
𝑏

𝑎
 has infinitely many solutions. 

Case III: When 𝑓(𝑥) ≠ 0 but F = 0. In this case also, 

                                       (𝐼 − 𝜆𝐴)𝐶 = 0                                                          …(10) 

Subcase (a). If ∆(𝜆) ≠ 0, then (10) has only trivial solution, C = 0 that is, 𝐶𝑖 = 0 for all i . 

Hence the required solution of given equation becomes 𝑢(𝑥) = 𝑓(𝑥) + 0 = 𝑓(𝑥) 

Subcase (b). If ∆(𝜆0) = 0 for some scalar 𝜆0, then from equation (9) has infinitely many solutions. 

Consequently, the Fredholm integral equation 𝑢(𝑥) = 𝜆0 ∫ 𝐾(𝑥, 𝜉)𝑢(𝜉)𝑑𝜉
𝑏

𝑎
 has infinitely many solutions. 

 

13.8 EIGEN VALUES AND EIGEN FUNCTION 

The values of 𝜆 for which Δ(𝜆) = 0 are known as eigen values (or characteristic number) of 

Fredholm integral equation. The non-trivial solution corresponding to Eigen values are known as Eigen 

functions (or characteristic functions). 

Remark: Separable kernels are also known as degenerate kernels. 

Examples 

Example.6. Solve the integral equation and discuss all its possible cases with the method of separable 

kernel 



𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫(1 − 3𝑥𝜉)𝑢(𝜉)𝑑𝜉

1

0

 

Solution: The given equation is 

  𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ (1 − 3𝑥𝜉)𝑢(𝜉)𝑑𝜉
1

0
                                … … (1) 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆[𝐶1 − 3𝑥𝐶2]                              ……(2) 

Where                      𝑐1 = ∫ 𝑢(𝜉)𝑑𝜉
1

0
                                    ……(3) 

and                           𝑐2 = ∫ 𝜉𝑢(𝜉)𝑑𝜉
1

0
                                  ……(4) 

𝑐1 and 𝑐2 are constant to be determined. 

Integrating (2), w.r.t. x over the limit 0 to 1. 

∫ 𝑢(𝑥)𝑑𝑥

1

0

= ∫ 𝑓(𝑥)𝑑𝑥 + 𝜆

1

0

∫(𝑐1 − 3𝑥𝑐2)𝑑𝑥

1

0

 

𝑐1 = ∫ 𝑓(𝑥)𝑑𝑥 +

1

0

𝜆 (𝑐1 −
3

2
𝑐2)              [𝑈𝑠𝑖𝑛𝑔 (3)] 

Or                                 (1 − 𝜆)𝑐1 +
3

2
𝜆𝑐2 = 𝑓1                                      ……(5) 

Where                                 𝑓1 = ∫ 𝑓(𝑥)𝑑𝑥
1

0
 

Now multiplying (2) with x and integrating w.r.t x between limits 0 and 1, we get 

∫ 𝑥𝑢(𝑥)𝑑𝑥

1

0

= ∫ 𝑥 𝑓(𝑥)𝑑𝑥 + 𝜆

1

0

∫(𝑐1𝑥 − 3𝑥2𝑐2)

1

0

𝑑𝑥 

Or                    𝑐2 = 𝑓1 + 𝜆 [𝑐1
𝑥2

2
− 𝑥3𝑐2]

0

1

                         [using (4)] 

= 𝑓1 + 𝜆 (
𝑐1

2
− 𝑐2) 

Or                        −
𝜆

2
𝑐1 + (1 + 𝜆)𝑐2 = 𝑓2                                        (6) 

Where               𝑓2 = ∫ 𝑥 𝑓(𝑥)𝑑𝑥
1

0
 

From (5) and (6), we get,  

Δ(𝜆) = |
1 − 𝜆

3𝜆

2

−
𝜆

2
1 + 𝜆

| = 1 − 𝜆2 +
3𝜆2

4
= 1 −

𝜆2

4
 

Or 



Δ(𝜆) =
4 − 𝜆2

4
 

Now, (5) and (6) can be written as 

(𝐼 − 𝜆𝐴)𝐶 = 𝑓 

Where               𝐶 = [
𝑐1

𝑐1
] , 𝐹 = [

𝑓1

𝑓1
] 

Also,              |𝐼 − 𝜆𝐴| = Δ(𝜆) 

Case I. When 𝑓(𝑥) ≠ 0 and 𝐹 ≠ 0 then equations (5) and (6) has a unique solution if Δ(𝜆) ≠ 0 that is, 

𝜆 ≠ 2, −2 When 𝜆 = 2 𝑜𝑟 − 2, then these equations have either no solution or infinite many solutions. 

(i) 𝜆 = 2 

 Then (5) and (6) reduce to 

−𝑐1 + 3𝑐2 = 𝑓1

−𝑐1 + 3𝑐2 = 𝑓2
]                                                                                          (7) 

These equation have no solution if 𝑓1 ≠ 𝑓2 and have infinitely many solution when 𝑓1 = 𝑓2, that is 

∫ 𝑓1(𝑥)𝑑𝑥

1

0

= ∫ 𝑥𝑓(𝑥)𝑑𝑥

1

0

 

or                                         ∫ (1 − 𝑥)𝑓(𝑥)𝑑𝑥
1

0
= 0 

Thus, the solution of given integral equation is 

𝑢(𝑥) = 𝑓(𝑥) + 2[𝑐1𝑎1(𝑥) + 𝑐2𝑎2(𝑥)] 

= 𝑓(𝑥) + 2[𝑐1. 1 + 𝑐2(−3𝑥)] 

= 𝑓(𝑥) + 2[3𝑐2 − 𝑓1 − 3𝑥𝑐2]              𝑓𝑟𝑜𝑚 (7) 

= 𝑓(𝑥) + 6𝑐2(1 − 𝑥) − 2𝑓1 

Or 𝑢(𝑥) = 𝑓(𝑥) + 6𝑐2(1 − 𝑥) − 2 ∫ 𝑓(𝑥)𝑑𝑥
1

0
 where 𝑐2 is arbitrary. 

(ii) 𝜆 = −2 

 As done above the solution is given by 

𝑢(𝑥) = 𝑓(𝑥) − 2(1 − 3𝑥)𝑐2 − 2 ∫ 𝑥𝑓(𝑥)𝑑𝑥

1

0

 

Case II. When f(x) = 0, F = 0 

In this case, the equation (5) and (6) becomes: 

(1 − 𝜆)𝑐1 +
3𝜆

2
𝑐2 = 0 

−
𝜆

2
𝑐1 + (1 + 𝜆)𝑐2 = 0 

If 𝜆 ≠ 2, −2, then system has only trivial solution 𝑐1 = 0 = 𝑐2. Thus u(x) = 0 is the solution of given 



integral equation. 

(i) 𝜆 = 2 

 Then, (8) becomes 

−𝑐1 + 3𝑐2 = 0 →  𝑐1 = 3𝑐2 

 Thus the solution of given integral equation is 

𝑢(𝑥) = 0 + 2(3𝑐2 − 3𝑥𝑐2) = 6𝑐2(1 − 𝑥) 

(ii) 𝜆 = −2 

 Then, (8) becomes 

𝑐1 − 𝑐2 = 0 → 𝑐1 = 𝑐2 

 Thus the solution is 

𝑢(𝑥) = 0 − 2(𝑐2 − 3𝑥𝑐2) = 2𝑐2(3𝑥 − 1) 

Case III. When f(x) ≠ 0 and F = 0 

If 𝜆 ≠ 2, −2, the system (8) has only trivial solution 𝑐1 = 𝑐2 = 0and therefore u(x) = f(x) is the solution. 

(i) 𝜆 = 2 

 Then 𝑐1 = 3𝑐2 and the solution is 

𝑢(𝑥) = 𝑓(𝑥) + 2(3𝑐2 − 3𝑥𝑐2) = 𝑓(𝑥) + 6𝑐2(1 − 𝑥) 

(ii) 𝜆 = −2 

 Then 𝑐1 = 𝑐2 and the solution is 

𝑢(𝑥) = 𝑓(𝑥) − 2(𝑐2 − 3𝑥𝑐2) = 𝑓(𝑥) − 2𝑐2(1 − 3𝑥) 

 This completes the solution. 

Example 7.  Find the eigen values and eigen functions of the integral equation 

𝑢(𝑥) = 𝜆 ∫ sin(𝑥 + 𝑡)𝑢(𝑡)𝑑𝑡

2𝜋

0

 

Solution: Eigen values are 𝜆 = ±
1

𝜋
. For 𝜆 =

1

𝜋
,  

Eigen function is 𝑢(𝑥) = 𝐴(sin 𝑥 + cos 𝑥), where 𝐴 =
𝑐1

𝜋
 and for 𝜆 = −

1

𝜋
,  

Eigen function is 𝑢(𝑥) = 𝐵(sin 𝑥 − cos 𝑥), where 𝐵 =
𝑐2

𝜋
. 

 

13.9 SYMMETRIC KERNEL 

The kernel 𝐾(𝑥, 𝜉) of an integral equation is said to be symmetric if 

𝐾(𝑥, 𝜉) = 𝐾(𝜉, 𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 𝑎𝑛𝑑 𝜉. 

 



13.10 ORTHOGONALITY 

Two function 𝜙1(𝑥) and 𝜙2(𝑥) continuous on an interval (a, b) are said to be orthogonal if 

∫ 𝜙1(𝑥)

𝑏

𝑎

𝜙2(𝑥)𝑑𝑥 = 0. 

Theorem 2. For the Fredholm integral equation 𝑦(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝜉)𝑦(𝜉)𝑑𝜉
𝑏

𝑎
 with symmetric kernel, prove 

that: 

(i) The eigen function corresponding to two different eigen values are orthogonal over (a, b). 

(ii) The eigen values are real. 

Proof: (i) Let 𝜆1 and 𝜆2 be two different eigen values of given integral equation 

𝑦(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝜉)𝑦(𝜉)𝑑𝜉

𝑏

𝑎

                                                                      (1) 

w.r.t. eigen function 𝑦1(𝑥) and 𝑦2(𝑥). We have to show that 

∫ 𝑦1(𝑥)

𝑏

𝑎

𝑦2(𝑥)𝑑𝑥 = 0                                                                                    (2) 

By definition we have, 

𝑦1(𝑥) = 𝜆1 ∫ 𝐾(𝑥, 𝜉)

𝑏

𝑎

𝑦1(𝜉)𝑑𝜉                                           (3) 

𝑦2(𝑥) = 𝜆2 ∫ 𝐾(𝑥, 𝜉)

𝑏

𝑎

𝑦2(𝜉)𝑑𝜉                                           (4) 

Multiplying (3) by y2(x) and then integrating w.r.t. x over the interval a to b find 

∫ 𝑦1(𝑥)

𝑏

𝑎

𝑦2(𝑥)𝑑𝑥 = 𝜆1 ∫ 𝑦2(𝑥)

𝑏

𝑎

[∫ 𝐾(𝑥, 𝜉)

𝑏

𝑎

𝑦1(𝜉)𝑑𝜉] 𝑑𝑥 

Interchanging the order of integration 

∫ 𝑦1(𝑥)

𝑏

𝑎

𝑦2(𝑥)𝑑𝑥 = 𝜆1 ∫ 𝑦1(𝜉)

𝑏

𝑎

[∫ 𝐾(𝑥, 𝜉)

𝑏

𝑎

𝑦2(𝑥)𝑑𝑥] 𝑑𝜉 



= 𝜆1 ∫ 𝑦1(𝜉)

𝑏

𝑎

[∫ 𝐾(𝜉, 𝑥)

𝑏

𝑎

𝑦2(𝑥)𝑑𝑥] 𝑑𝜉 [𝑠𝑖𝑛𝑐𝑒 𝐾(𝑥, 𝜉) = 𝐾(𝜉, 𝑥)] 

= 𝜆1 ∫ 𝑦1(𝜉)

𝑏

𝑎

𝑦2(𝜉)

𝜆2
𝑑𝜉                                                          [𝑏𝑦 (4)] 

=
𝜆1

𝜆2
∫ 𝑦1(𝑥)

𝑏

𝑎

𝑦2(𝑥)𝑑𝑥 

⇒                                    (1 −
𝜆1

𝜆2
) ∫ 𝑦1(𝑥)

𝑏

𝑎

𝑦2(𝑥)𝑑𝑥 = 0                                                   

⇒                                    ∫ 𝑦1(𝑥)

𝑏

𝑎

𝑦2(𝑥)𝑑𝑥 = 0                                            (𝜆1 ≠ 𝜆2)       

(ii) If possible, we assume on the contrary that there is an eigen value 𝜆0 (say) which is not real. So         

𝜆0 = 𝛼0 + 𝑖𝛽0, 𝛽0 ≠ 0                                                                                (5) 

Where 𝛼0 and 𝛽0 are real. 

Let 𝑦0(𝑥) ≠ 0 be the corresponding eigen function. Then 

𝑦0(𝑥) = 𝜆0 ∫ 𝐾(𝑥, 𝜉)

𝑏

𝑎

𝑦0(𝜉)𝑑𝜉                                                                  (6) 

We claim that the eigen function 𝑦0(𝑥) corresponding to a non real eigen value 𝜆0 is not real values. If 

𝑦0(𝑥) is real valued, then separating the real and imaginary parts in (6), we get 

𝑦0(𝑥) = 𝛼0 ∫ 𝐾(𝑥, 𝜉)

𝑏

𝑎

𝑦0(𝜉)𝑑𝜉                                                                  (7) 

And               

0 = 𝛽0 ∫ 𝐾(𝑥, 𝜉)

𝑏

𝑎

𝑦0(𝜉)𝑑𝜉                                                                  (8) 

⇒                                             ∫ 𝐾(𝑥, 𝜉)

𝑏

𝑎

𝑦0(𝜉)𝑑𝜉 = 0     (𝛽0 ≠ 0)                                          

Hence from (7), we get 𝑦0(𝑥) = 0, a contradiction. Thus 𝑦0(𝑥) cannot be a real valued function. 

Let us consider 

𝑦0(𝑥) = 𝛼(𝑥) + 𝑖𝛽0(𝑥), 𝛽(𝑥) ≠ 0                                                    (9) 



Changing 𝑖 to −𝑖 in (6), we obtain 

𝑦0(𝑥)̅̅ ̅̅ ̅̅ ̅ = 𝜆0
̅̅ ̅ ∫ 𝐾(𝑥, 𝜉)

𝑏

𝑎

𝑦0(𝜉)̅̅ ̅̅ ̅̅ ̅𝑑𝜉                                                                  (10) 

This shows that 𝜆0
̅̅ ̅ is an eigen value with corresponding eigen function 𝑦0(𝑥)̅̅ ̅̅ ̅̅ ̅. Since 𝜆0 is non-real by 

assumption. So 𝜆0 and 𝜆0
̅̅ ̅ are two different eigen values. Thus by part (i), we have 

∫ 𝑦0(𝑥)

𝑏

𝑎

𝑦0(𝜉)̅̅ ̅̅ ̅̅ ̅𝑑𝜉 = 0 

⇒                          ∫|𝑦0(𝑥)|2𝑑𝑥 = 0

𝑏

𝑎

 

⇒                           ∫|𝛼(𝑥) + 𝑖𝛽(𝑥)|2𝑑𝑥 = 0

𝑏

𝑎

 

⇒                                ∫([𝛼(𝑥)]2 + [𝛽(𝑥)]2) 𝑑𝑥 = 0

𝑏

𝑎

 

⇒                                 𝛼(𝑥) = (𝑥) = 0 

⇒                                    𝑦0(𝑥) = 0 

A contradiction because eigen functions are non-zero. This contradiction shows that our assumption that 

𝜆0 is not real is wrong. Hence 𝜆0 must be real. 

Remark. 

1. After finding the resolvent kernel 𝑅(𝑥, 𝜉: 𝜆) the solution of given integral equation is given by 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑅(𝑥, 𝜉: 𝜆)𝑓(𝜉)𝑑𝜉 

𝑏

𝑎

 

2. This method cannot be used when 𝜆 = 1 

Examples 

Example.8. Using the Fredholm determinant, find the resolvent kernel of 

𝐾(𝑥, 𝜉) = 2𝑥 − 𝜉,                                              0 ≤ 𝑥 ≤ 1, 0 ≤ 𝜉 ≤ 1 

Solution:  Here the kernel is 

𝐾(𝑥, 𝜉) = 2𝑥 − 𝜉                                           (1) 

The resolvent kernel 𝑅(𝑥, 𝜉: 𝜆) is given by 

𝑅(𝑥, 𝜉: 𝜆) =
𝐷(𝑥, 𝜉: 𝜆)

𝐷(𝜆)
, 𝐷(𝜆) ≠ 0                          (2) 



Where 

𝐷(𝑥, 𝜉: 𝜆) = 𝐾(𝑥, 𝜉) + ∑
(−1)𝑛

𝑛!
𝜆𝑛𝐵𝑛(𝑥, 𝜉)

∞

𝑛=1

 

And  

𝐷(𝜆) = 1 + ∑
(−1)𝑛

𝑛!
𝜆𝑛𝑐𝑛

∞

𝑛=1

                                        (3) 

Where    𝐵𝑛 = ∫ ∫ … … . . ∫ ||

𝐾(𝑥, 𝜉) 𝐾(𝑥, 𝑡1)
𝐾(𝑡, 𝜉) 𝐾(𝑡1, 𝑡1)

… . … .

    
… . 𝐾(𝑥, 𝑡𝑛)
… . 𝐾(𝑡1, 𝑡𝑛)
… . … .… . … .

𝐾(𝑡𝑛, 𝜉) 𝐾(𝑡𝑛, 𝑡1)    
… . … .
… . 𝐾(𝑡𝑛, 𝑡𝑛)

|| 𝑑𝑡1𝑑𝑡2 … . . 𝑑𝑡𝑛
𝑏

𝑎

𝑏

𝑎

𝑏

𝑎
 

and      ∫ ∫ … … . . ∫ ||

𝐾(𝑡1, 𝑡1) 𝐾(𝑡1, 𝑡2)
𝐾(𝑡2, 𝑡1) 𝐾(𝑡2, 𝑡2)

… . … .

    
… . 𝐾(𝑡1, 𝑡𝑛)
… . 𝐾(𝑡2, 𝑡𝑛)
… . … .… . … .

𝐾(𝑡𝑛, 𝑡1) 𝐾(𝑡𝑛, 𝑡2)    
… . … .
… . 𝐾(𝑡𝑛, 𝑡𝑛)

|| 𝑑𝑡1𝑑𝑡2 … . . 𝑑𝑡𝑛
𝑏

𝑎

𝑏

𝑎

𝑏

𝑎
 

therefore, 

𝐵1(𝑥, 𝜉) = ∫ |
2𝑥 − 𝜉 2𝑥 − 𝑡1

2𝑡1 − 𝜉 2𝑡1 − 𝑡1
|

1

0

𝑑𝑡1 

= ∫(2𝑥𝑡1 − 𝜉𝑡1 − 4𝑥𝑡1 + 2𝑡1
2 + 2𝑥𝜉 − 𝜉𝑡1)𝑑𝑡1

1

0

 

= ∫(−2𝑥𝑡1 − 2𝜉𝑡1 + 2𝑡1
2 + 2𝑥𝜉)𝑑𝑡1

1

0

 

𝐵1(𝑥, 𝜉) = −𝑥 − 𝜉 +
2

3
+ 2𝑥𝜉 

𝐵2(𝑥, 𝜉) = ∫ ∫ |

2𝑥 − 𝜉 2𝑥 − 𝑡1 2𝑥 − 𝑡2

2𝑡1 − 𝜉 2𝑡1 − 𝑡1 2𝑡1 − 𝑡2

2𝑡2 − 𝜉 2𝑡2 − 𝑡1 2𝑡2 − 𝑡2

| 𝑑𝑡1𝑑𝑡2

1

0

1

0

 

Which on solving gives, 𝐵2(𝑥, 𝜉) = 0 

In general 𝐵𝑛(𝑥, 𝜉) = 0 for all n ≥ 2 

Now,             𝑐1 = ∫ (2𝑡1 − 𝑡1)
1

0
𝑑𝑡1 =

1

2
 

𝑐2 = ∫ ∫ |
2𝑡1 − 𝑡1 2𝑡1 − 𝑡2

2𝑡2 − 𝑡1 2𝑡2 − 𝑡2
| 𝑑𝑡1𝑑𝑡2

1

0

1

0

=
1

3
 

Now, since 𝐵𝑛 = 0 for all n ≥ 2 

⇒                𝑐𝑛 = 0 for all n ≥ 3 



Thus, from (3) we get 

𝐷(𝑥, 𝜉: 𝜆) = (2𝑥 − 𝜉) + (−1)𝜆 (2𝜉𝑥 − 𝑥 − 𝜉 +
2

3
) 

= 2𝑥 − 𝜉 + 𝜆 (𝑥 + 𝜉 − 2𝑥𝜉 −
2

3
) 

𝐷(𝜆) = 1 + (−1)1𝜆𝑐1 +
(−2)2

2!
𝜆𝑐2 = 1 −

𝜆

2
+

𝜆2

6
 

Hence the resolvent kernel is given by: 

𝑅(𝑥, 𝜉: 𝜆) =
(2𝑥 − 𝜉) + 𝜆 (𝑥 + 𝜉 − 2𝑥𝜉 −

2
3)

1 −
𝜆
2 +

𝜆2

6

. 

 

13.11 SUMMARY 

A Fredholm Integral Equation is of the type 

ℎ(𝑥)𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝐾(𝑥, 𝜉)𝑢(𝜉)𝑑𝜉

𝑏

𝑎

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ [𝑎, 𝑏] 

(i) If h(x) = 0, the above equation reduces to: 

−𝑓(𝑥) = ∫ 𝐾(𝑥, 𝜉)𝑢(𝜉)𝑑𝜉

𝑏

𝑎

 

This equation is called Fredholm integral equation of first kind. 

(ii) If h(x) = 1, the above equation becomes: 

𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝐾(𝑥, 𝜉)𝑢(𝜉)𝑑𝜉

𝑏

𝑎

 

This equation is called Fredholm integral equation of second kind. 

(iii) If h(x) = 1, f(x) = 0 the above equation becomes: 

𝑢(𝑥) = ∫ 𝐾(𝑥, 𝜉)𝑢(𝜉)𝑑𝜉

𝑏

𝑎

 

This equation is called Homogeneous Fredholm integral equation of second kind. 

If the Fredholm integral equation 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝜉)𝑢(𝜉)𝑑𝜉

𝑏

𝑎

                                                   (1) 

is such that: (a) 𝐾(𝑥, 𝜉) is a non-zero real continuous function in the rectangle 𝑅 = 𝐼 × 𝐼, where I = [a, b] 



and |𝐾(𝑥, 𝜉)| < 𝑀 in R. 

(𝑏) 𝑓(𝑥) is an non-zero real valued continuous function on I. 

(𝑐) 𝜆 is a constant satisfying the inequality, |𝜆| <
1

𝑀(𝑏−𝑎)
. 

Then equation (1) has one and only one continuous solution in the interval I and this solution is given by 

the absolutely and uniformly convergent series 𝑢(𝑥) = 𝑓(𝑥) + 𝜆𝑘[𝑓(𝑥)] + 𝜆2𝑘2[𝑓(𝑥)] + ⋯ 𝑡𝑜 ∞. 

A kernel 𝐾(𝑥, 𝜉) of an integral equation is called separable if it can be expressed in the form 

𝐾(𝑥, 𝜉) = ∑ 𝑎𝑖(𝑥)𝑏𝑖(𝜉)

𝑛

𝑖=1

= 𝑎1(𝑥)𝑏1(𝜉) + 𝑎2(𝑥)𝑏2(𝜉) + ⋯ . +𝑎𝑛(𝑥)𝑏𝑛(𝜉) 

The values of 𝜆 for which Δ(𝜆) = 0 are known as eigen values (or characteristic number) of 

Fredholm integral equation. The non-trivial solution corresponding to Eigen values are known as Eigen 

functions (or characteristic functions). 

The kernel 𝐾(𝑥, 𝜉) of an integral equation is said to be symmetric if 

 𝐾(𝑥, 𝜉) = 𝐾(𝜉, 𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 𝑎𝑛𝑑 𝜉. 

Two function 𝜙1(𝑥) and 𝜙2(𝑥) continuous on an interval (a, b) are said to be orthogonal if 

∫ 𝜙1(𝑥)

𝑏

𝑎

𝜙2(𝑥)𝑑𝑥 = 0. 

 

13.12 TERMINAL QUESTIONS 

Q.1 Explain the solution procedure of a Fredholm integral equation. 

Q.2 Reduce the following boundary value problems to Fredholm integral equation. 

𝒂.  𝑦" − 𝜆 𝑦 = 0, 𝑎 < 𝑥 < 𝑏, 𝑦(𝑎) = 0 = 𝑦(𝑏) 

𝒃.  𝑦" + 𝜆𝑦 = 0, 𝑦(0) = 0, 𝑦(1) = 0 

𝒄.  𝑦" + 𝜆𝑦 = 𝑥;  𝑦(0) = 0, 𝑦(1) = 0 

𝒅.  𝑦" + 𝜆𝑦 = 2𝑥 + 1, 𝑦(0) = 𝑦′(1), 𝑦′(0) = 𝑦(1) 

𝒆.  𝑦" + 𝜆𝑦 = 𝑒𝑥 𝑦(0) = 𝑦′(0), 𝑦(1) = 𝑦′(1). 

2. Determine the Resolvent Kernel associated with 𝐾(𝑥, 𝜉) = 𝑥𝜉 in the interval (0, 1) in the form of 

a power series in 𝜆 

 Answer. 𝑅(𝑥, 𝜉: 𝜆) =
3

3−𝜆
𝑥𝜉, |𝜆| < 3 

3. Solve the following integral equations by finding the resolvent kernel: 

𝒂.  𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑒(𝑥−𝜉)𝑢(𝜉)𝑑𝜉

1

0

 



𝒃.  𝑢(𝑥) = 1 + 𝜆 ∫ 𝑥𝑒(𝜉)𝑢(𝜉)𝑑𝜉

1

0

 

𝒄.  𝑢(𝑥) = 𝑥 + 𝜆 ∫ 𝑥𝑒(𝜉)𝑢(𝜉)𝑑𝜉

1

0

 

𝒅.  𝑢(𝑥) = 𝑥 + 𝜆 ∫ 𝑥𝜉 𝑢(𝜉)𝑑𝜉

1

0

 

4. Solve the integral equations by the method of degenerate kernel: 

𝒂.   𝑢(𝑥) = 𝑥 + 𝜆 ∫(𝑥𝑡2 + 𝑥2𝑡)𝑢(𝑡)𝑑𝑡

1

0

 

𝒃.   𝑢(𝑥) = 𝑒𝑥 + 𝜆 ∫ 2𝑒𝑥𝑒𝑡𝑢(𝑡)𝑑𝑡

1

0

 

5. Using Fredholm determinant, find the resolvent kernel of 𝐾(𝑥, 𝜉) = 1 + 3𝑥𝜉. 

6. Solve the following integral equations by finding the resolvent kernel: 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑒𝑎(𝑥2−𝜉2)𝑢(𝜉)𝑑𝜉

1

0

 

7. Solve the integral equations by the method of degenerate kernel: 

𝑢(𝑥) = 𝑥 + 𝜆 ∫(1 + 𝑥 + 𝑡)𝑢(𝑡)

1

0

𝑑𝑡 

Answer 

Q.2 (a) 𝑦(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝜉)𝑦(𝜉)𝑑𝜉
𝑏

𝑎
where 𝐾(𝑥, 𝜉) = [

(𝑥−𝑏)(𝜉−𝑎)

𝑏−𝑎
𝑖𝑓 𝑎 ≤ 𝜉 ≤ 𝑥

(𝑥−𝑎)(𝜉−𝑏)

𝑏−𝑎
𝑖𝑓 𝑥 ≤ 𝜉 ≤ 𝑏

 

 (b) 𝑦(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝜉)𝑦(𝜉)𝑑𝜉
𝑙

0
where 𝐾(𝑥, 𝜉) = [

𝜉(𝑙−𝑥)

𝑙
𝑖𝑓 0 ≤ 𝜉 ≤ 𝑥

𝑥(𝑙−𝜉)

𝑙
𝑖𝑓 𝑥 ≤ 𝜉 ≤ 𝑙

 

 (c) 𝑦(𝑥) =
1

6
(𝑥3 − 3𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝜉)𝑦(𝜉)𝑑𝜉

𝑙

0
where 𝐾(𝑥, 𝜉) = [

𝑥 , 𝑥 > 𝜉
𝜉 , 𝑥 < 𝜉

 

 (d) 𝑦(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝜉)𝑦(𝜉)𝑑𝜉
1

0
 where 𝑓(𝑥) =

1

6
[2𝑥3 + 3𝑥2 − 17𝑥 − 5] and 

𝐾(𝑥, 𝜉) = [
1 + 𝑥(1 − 𝜉) 𝜉 < 𝑥

(1 − 𝜉) + (2 − 𝜉)𝑥 𝜉 > 𝑥
 



 (e) 𝑦(𝑥) = 𝑒𝑥 + 𝜆 ∫ 𝐾(𝑥, 𝜉)𝑦(𝜉)𝑑𝜉
1

0
 where 𝐾(𝑥, 𝜉) = [

−𝑥(1 + 𝜉) ;  𝑥 > 𝜉

−(1 + 𝑥𝑠)𝜉 ;  𝑥 < 𝜉
 

Q.3 (a) 𝑢(𝑥) = 𝑓(𝑥) +
𝜆

1−𝜆
∫ 𝑒(𝑥−𝜉)𝑓(𝜉)𝑑𝜉

1

0
 

 (b) 𝑢(𝑥) = 1 +
𝜆𝑥

1−𝜆
(𝑒 − 1) 

 (c)  𝑢(𝑥) = 𝑥 +
𝜆𝑥

1−𝑥
 

 (d)  𝑢(𝑥) = 𝑥 +
𝜆𝑥

1−𝜆
 

Q.4 (a)  𝑢(𝑥) =
(240−60𝜆)𝑥+80𝜆𝑥2

240−120𝜆−𝜆2
 

 (b)  𝑢(𝑥) =
𝑒𝑥

1−𝜆(𝑒2−1)
 

Q.5 𝑅(𝑥, 𝜉: 𝜆) =
(1+3𝑥𝜉)−𝜆(1−3𝜉𝑥−

3𝜉

2
−

3𝑥

2
)

1−2𝜆+
𝜆2

4

 

Q.6 𝑢(𝑥) = 𝑓(𝑥) +
𝜆

1−𝜆
∫ 𝑒𝑎(𝑥2−𝜉2)𝑓(𝜉)𝑑𝜉

1

0
 

Q.7 𝑢(𝑥) = 𝑥 +
𝜆

12−24𝜆−𝜆2
[10 + (6 + 𝜆)𝑥] 

 

 

 

 

 

 

 

 

 

 

UNIT-14 VOLTERRA INTEGRAL EQUATIONS 

Structure  



14.1 Introduction 

14.2 Objectives 

14.3 Integral Equation 

14.4 Volterra Integral Equation 

14.5 Homogeneous Integral Equation 

14.6 Solution of Volterra Integral Equation 

14.7 Laplace transform method to solve an integral equation 

14.8 Solution of Volterra Integral Equation of first kind 

14.9 Method of Iterated kernel/Resolvent kernel to solve the Volterra integral equation 

14.10 Summary 

14.11 Terminal Questions 

 

14.1 INTRODUCTION 

Volterra integral equations, named after mathematician Vito Volterra, describe dynamic processes 

and systems with memory effects. Unlike Fredholm equations, the unknown function only appears inside 

the integral sign. These equations are essential for modeling systems in physics, biology, economics, and 

engineering, where present states depend on past inputs. Particularly valuable for nonlinear systems 

analysis, they offer insights into complex dynamics like viscoelastic materials and biochemical reactions. 

Their applications extend to control theory, mathematical biology, and ecology, facilitating the study of 

population dynamics and predator-prey interactions. Additionally, they provide a framework for 

understanding fractional calculus, relevant in physics, engineering, and finance.  

Hence the Volterra integral equations serve as indispensable tools for comprehending and 

analyzing real-world phenomena across diverse scientific and engineering domains. Volterra integral 

equations are closely related to fractional calculus, which deals with derivatives and integrals of non-

integer order. Volterra integral equations are particularly useful for studying nonlinear systems, where the 

output does not vary linearly with the input. 

 

 

14.2 OBJECTIVES 

After reading this unit the learner should be able to understand about: 

 Initial value problem reduced to Volterra integral equations. 

 Method of successive substitution to solve Volterra integral equation of second kind. 



 Method of successive approximation to solve Volterra integral equation of second kind. 

 Resolved kernel as a series. 

 Laplace transform method for a difference kernel 

 

14.3 INTEGRAL EQUATION 

An integral equation is one in which function to be determined appears under the integral sign. The most 

general form of a linear integral equation is 

ℎ(𝑥)𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝐾(𝑥, 𝜉)

𝑏(𝑥)

𝑎

u(ξ)dξ   for all x ∈ [a, b] 

In which u(x) is the function to be determined and 𝐾(𝑥, 𝜉)  is called the Kernel of integral equation. 

 

14.4 VOLTERRA INTEGRAL EQUATION 

A Volterra integral equation is of the type: 

ℎ(𝑥)𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝐾(𝑥, 𝜉)

𝑥

𝑎

u(ξ)dξ   for all x ∈ [a, b] 

that is, in Volterra equation h(x) = x 

(i) If h(x) = 0 the above equation reduces to 

−𝑓(𝑥) = ∫ 𝐾(𝑥, 𝜉)

𝑥

𝑎

u(ξ)dξ    

This equation is called Volterra integral equation of first kind. 

(ii) If h(x) = 1 the above equation reduces to 

𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝐾(𝑥, 𝜉)

𝑥

𝑎

u(ξ)dξ    

This equation is called Volterra integral equation of second kind. 

 

14.5 HOMOGENEOUS INTEGRAL EQUATION 

If f(x) = 0 for all x ∈ [a, b], then the reduced equation 

ℎ(𝑥)𝑢(𝑥) = ∫ 𝐾(𝑥, 𝜉)

𝑏(𝑥)

𝑎

u(ξ)dξ 



is called homogeneous integral equation. Otherwise, it is called non-homogeneous integral equation. 

Leibnitz Rule: The Leibnitz rule for differentiation under integral sign: 

𝑑

𝑑𝑥
[ ∫ 𝐹(𝑥, 𝜉)𝑑𝜉

𝛽(𝑥)

𝛼(𝑥)

] = ∫
𝜕𝐹

𝜕𝑥

𝛽(𝑥)

𝛼(𝑥)

𝑑𝜉 + 𝐹(𝑥, 𝛽(𝑥))
𝑑𝛽(𝑥)

𝑑𝑥
− 𝐹(𝑥, 𝛼(𝑥))

𝑑𝛼(𝑥)

𝑑𝑥
 

In particular, we have 

𝑑

𝑑𝑥
[∫ 𝐾(𝑥, 𝜉)

𝑥

𝑎

u(ξ)dξ] = ∫
𝜕𝐾

𝜕𝑥

𝑥

𝑎

u(ξ)dξ + K(x, x)u(x) 

Lemma: If n is a positive integer, then 

∫ ∫ … . ∫ ∫ 𝐹(𝑥𝑛)

𝑥𝑛−1

𝑎

𝑑𝑥𝑛𝑑𝑥𝑛−1 … . 𝑑𝑥1 =

𝑥𝑛−2

𝑎

𝑥1

𝑎

𝑥

𝑎

1

1 − 𝑛!
∫(𝑥 − 𝜉)𝑛−1𝑓(𝜉)𝑑𝜉

𝑥

𝑎

 

Proof: If   𝐼𝑛(𝑥) = ∫ (𝑥 − 𝜉)𝑛−1𝑓(𝜉)𝑑𝜉
𝑥

𝑎
, then 𝐼𝑛(𝑎) = 0 and for 𝑛 = 1, 𝐼1(𝑥) = ∫ 𝑓(𝜉)𝑑𝜉

𝑥

𝑎
 

Using Leibnitz rule, we get  
𝑑𝐼1

𝑑𝑥
= 𝑓(𝑥). 

Now, differentiating 𝐼𝑛(𝑥) w.r.t. x and using Leibnitz rule, we get 

𝑑𝐼1

𝑑𝑥
=

𝑑

𝑑𝑥
= ∫

𝜕

𝜕𝑥
[(𝑥 − 𝜉)𝑛−1]

𝑥

𝑎

𝑓(𝜉)𝑑𝜉 = (𝑛 − 1) ∫(𝑥 − 𝜉)𝑛−2𝑓(𝜉)𝑑𝜉

𝑥

𝑎

 

or 

𝑑𝐼𝑛(𝑥)

𝑑𝑥
= (𝑛 − 1)𝐼𝑛−1(𝑥) 𝑓𝑜𝑟 𝑛 > 1 

Taking successive derivatives, we get 

𝑑𝑛−1

𝑑𝑥𝑛−1
𝐼𝑛(𝑥) = (𝑛 − 1)(𝑛 − 2) … .2.1 𝐼1(𝑥) 

Again, differentiating, 

𝑑𝑛

𝑑𝑥𝑛
𝐼𝑛(𝑥) = 𝑛 − 1!

𝑑

𝑑𝑥
𝐼1(𝑥) = 𝑛 − 1! 𝑓(𝑥)                      (1) 

We observe that, 

𝐼𝑛
(𝑚)(𝑎) = 0 𝑓𝑜𝑟 𝑚 = 0, 1, 2, … … , 𝑛 − 1                             (2) 

Integrating (1) over the interval [a, x] and using (2) for m = n – 1, we obtain 

𝐼𝑛
(𝑛−1)(𝑥) = (𝑛 − 1)! ∫ 𝑓(𝑥1)𝑑𝑥1

𝑥

𝑎

 

Again integrating it and using (2) for m = n – 2, we get 



𝑑𝑛−2

𝑑𝑥𝑛−2
𝐼𝑛(𝑥) = 𝐼𝑛

(𝑛−2)
(𝑥) = 𝑛 − 1! ∫ ∫ 𝑓(𝑥2)𝑑𝑥2 𝑑𝑥1

𝑥1

𝑎

𝑥

𝑎

 

Continuing like this, n times, we obtain 

𝐼𝑛(𝑥) = (𝑛 − 1)! ∫ ∫ … … . ∫ 𝑓(𝑥𝑛)𝑑𝑥𝑛𝑑𝑥𝑛−1 … … . . 𝑑𝑥1

𝑥𝑛−1

𝑎

𝑥1

𝑎

𝑥

𝑎

 

Which provides the required result 

Examples 

Example.1. Transform the initial value equation 
𝑑2𝑦

𝑑𝑥2
+ 𝑥

𝑑𝑦

𝑑𝑥
+ 𝑦 = 0; 𝑦(0) = 1, 𝑦′(0) = 0 to Volterra 

integral equation. 

Solution: Consider,    
𝑑2𝑦

𝑑𝑥2 = 𝜙(𝑥)                                        ….(1) 

Then                             
𝑑𝑦

𝑑𝑥
= ∫ 𝜙(𝜉)𝑑𝜉 + 𝐶1

𝑥

0
 

Using the condition 𝑦′(0) = 0, we get,  𝐶1 = 0 

𝑑𝑦

𝑑𝑥
= ∫ 𝜙(𝜉)𝑑𝜉                                                                                       … (2)

𝑥

0

 

 Again integrating from 0 to x and using the above lemma, we get 

𝑦 = ∫(𝑥 − 𝜉)𝜙(𝜉)𝑑𝜉 + 𝐶2

𝑥

0

 

Using the condition 𝑦(0) = 1, we get 𝐶2 = 1 so 

𝑦 = ∫(𝑥 − 𝜉)𝜙(𝜉)𝑑𝜉 + 1

𝑥

0

                                                       … (3) 

From the relations (1), (2) and (3) the given differential equation reduces to: 

𝜙(𝑥) + 𝑥 ∫ 𝜙(𝜉)𝑑𝜉

𝑥

0

+ ∫(𝑥 − 𝜉)𝜙(𝜉)𝑑𝜉 + 1

𝑥

0

= 0 

or         

𝜙(𝑥) = −1 − ∫(2𝑥 − 𝜉)𝑛−1𝜙(𝜉)𝑑𝜉

𝑥

0

 

Which represents a Volterra integral equation of second kind. 

 

14.6 SOLUTION OF VOLTERRA INTEGRAL EQUATION 



Weierstrass M-Test- Suppose ∑ 𝑓𝑛(𝑧) is an infinite series of single valued functions defined in a bounded 

closed domain D. Let ∑ 𝑀𝑛 be a series of positive constant (independent of z) such that 

(i) |𝑓𝑛(𝑧)| ≤ 𝑀𝑛 for all n and for all 𝑧 ∈ 𝐷 

(ii) ∑ 𝑀𝑛 is convergent. 

Then the series ∑ 𝑓𝑛 is uniformly and absolutely convergent in D. 

Theorem 1. Let (𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝜉)𝑢(𝜉)𝑑𝜉
𝑥

𝑎
 be a non-homogeneous Volterra integral equation of 

second kind with constant a and 𝜆. f(x) is a non-zero real values continuous function in the interval 𝐼 =
[𝑎, 𝑏], 𝐾(𝑥, 𝜉) is a non-zero real values continuous function defined in the rectangle 𝑅 = 𝐼 × 𝐼 =
{(𝑥, 𝜉): 𝑎 ≤ 𝑥, 𝜉 ≤ 𝑏} and |𝐾(𝑥, 𝜉)| ≤ 𝑀 𝑖𝑛 𝑅. 

Then the given equation has one and only one continuous solution u(x) in I and this solution is given by 

the absolutely and uniformly convergent series. 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑓(𝑡)

𝑥

𝑎

𝑑𝑡 + 𝜆2 ∫ ∫ 𝐾(𝑥, 𝑡)

𝑡

𝑎

𝐾(𝑡, 𝑡1)𝑓(𝑡1)𝑑𝑡1𝑑𝑡

𝑥

𝑎

+ ⋯ . … 

Proof: This theorem can be proved by applying either of the following two methods: 

(i) Method of successive substitution. 

(ii) Method of successive approximation. 

Let us apply these methods one by one 

(i) Method of successive substitution: The given integral equation is 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)

𝑥

𝑎

𝑑𝑡                                (1) 

Substituting value of u(t) from (1) into itself, we get 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)

𝑥

𝑎

[𝑓(𝑡) + 𝜆 ∫ 𝐾(𝑡, 𝑡1)𝑡(𝑡1)𝑑𝑡1

𝑡

𝑎

] 𝑑𝑡 

= 𝑓(𝑥) 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑓(𝑡)

𝑥

𝑎

𝑑𝑡 + 𝜆2 ∫ ∫ 𝐾(𝑡, 𝑡1)𝐾(𝑡1)𝑑𝑡1

𝑡

𝑎

𝑑𝑡                                (2)

𝑥

𝑎

 

Again substituting the value of 𝑢(𝑡1) from (1) into (2), we get 

𝑢(𝑥) = 𝑓(𝑥) +  𝜆 ∫ 𝐾(𝑥, 𝑡)𝑓(𝑡)

𝑥

𝑎

𝑑𝑡 + 𝜆2 ∫ ∫ 𝐾(𝑥, 𝑡)𝐾(𝑡, 𝑡1)𝑓(𝑡1)𝑑𝑡1

𝑡

𝑎

𝑑𝑡

𝑥

𝑎

 

+𝜆3 ∫ ∫ ∫ 𝐾(𝑥, 𝑡)𝐾(𝑡, 𝑡1)𝐾(𝑡1, 𝑡2)𝑢(𝑡2)𝑑𝑡2𝑑𝑡1𝑑𝑡

𝑡1

𝑎

𝑡

𝑎

𝑥

𝑎

 

Proceeding in the same way, we get after n steps 



𝑢(𝑥)

= 𝑓(𝑥) +  𝜆 ∫ 𝐾(𝑥, 𝑡)𝑓(𝑡)

𝑥

𝑎

𝑑𝑡

+ ⋯ . . +𝜆𝑛  ∫ ∫ … … ∫ 𝐾(𝑥, 𝑡)𝐾(𝑡, 𝑡1) … … 𝐾(𝑡𝑛−2, 𝑡𝑛−1)𝑓(𝑡𝑛−1)𝑑𝑡𝑛−1𝑑𝑡𝑛−2 … . 𝑑𝑡1𝑑𝑡 + 𝑅𝑛+1(𝑥)

𝑡𝑛−2

𝑎

𝑡

𝑎

𝑥

𝑎

 

where  

𝑅𝑛+1(𝑥) = 𝜆𝑛+1  ∫ ∫ … … ∫ 𝐾(𝑥, 𝑡)𝐾(𝑡, 𝑡1) … … 𝐾(𝑡𝑛−1, 𝑡𝑛)𝑢(𝑡𝑛)𝑑𝑡𝑛−1𝑑𝑡𝑛 … . 𝑑𝑡1𝑑𝑡

𝑡𝑛−1

𝑎

𝑡

𝑎

𝑥

𝑎

 

Consider the infinite series 

𝑓(𝑥) +  𝜆 ∫ 𝐾(𝑥, 𝑡)𝑓(𝑡)

𝑥

𝑎

𝑑𝑡 + 𝜆2 ∫ ∫ 𝐾(𝑥, 𝑡)𝐾(𝑡, 𝑡1)𝑓(𝑡1)𝑑𝑡1

𝑡

𝑎

𝑑𝑡

𝑥

𝑎

                       (5) 

Neglecting the first term, let 𝑣𝑛(𝑥) denotes the nth term of infinite series in (5). Since f(x) is continuous 

over I, so it is bounded. 

Let |𝑓(𝑥)| ≤ 𝑁 in I. also, it is given that |𝐾(𝑥, 𝑡)| ≤ 𝑀 𝑖𝑛 𝑅. Therefore, 

|𝑣𝑛(𝑥)| ≤ |𝜆|n ∫ ∫ … … . ∫ 𝑀𝑛𝑁 𝑑𝑡𝑛−1𝑑𝑡1𝑑𝑡

𝑡𝑛−2

𝑎

𝑡

𝑎

𝑥

𝑎

 

Thus we have 

|𝑣𝑛(𝑥)| ≤ |𝜆|n𝑀𝑛𝑁
(𝑥 − 𝑎)𝑛

𝑛!
≤ |𝜆|n𝑀𝑛𝑁

(𝑏 − 𝑎)𝑛

𝑛!
                    (6) 

The series whose nth term is |𝜆|n𝑀𝑛𝑁
(𝑏−𝑎)𝑛

𝑛!
 is a series of positive terms and is convergent by ratio test 

for all values of a, b, |𝜆|, M and N. 

Thus, by Weierstrass M-test, the series ∑ 𝑣𝑛(𝑥) is absolutely and uniformly convergent in I. 

If u(x) given by (2) is continuous in I, then is bounded in I, that is, 

u(x) ≤ U for all x in I. then  

|𝑅𝑛+1(𝑥)| ≤ |𝜆|n+1𝑀𝑛+1𝑢
(𝑥 − 𝑎)𝑛+1

(𝑛 + 1)!
≤ |𝜆|n+1𝑀𝑛+1𝑢

(𝑏 − 𝑎)𝑛+1

(𝑛 + 1)!
→ 0 𝑎𝑠 𝑛 → 0 

⇒                                   lim
𝑛⟶∞

𝑅𝑛+1(𝑥) = 0                                                             (8) 

From equations (3), (4) and (8), we obtain 

𝑢(𝑥) = 𝑓(𝑥) +  𝜆 ∫ 𝐾(𝑥, 𝑡)𝑓(𝑡)

𝑥

𝑎

𝑑𝑡 + 𝜆2 ∫ ∫ 𝐾(𝑥, 𝑡)𝐾(𝑡, 𝑡1)𝑓(𝑡1)𝑑𝑡1

𝑡

𝑎

𝑑𝑡 + ⋯ … . . 𝑡𝑜 ∞

𝑥

𝑎

 

which is the required series. 

Now, we verify that this series is actually a solution of the given Volterra integral (1). Substituting the 



series for u(x) in the R.H.S. of the given equation, we get 

𝑅. 𝐻. 𝑆. = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝜉)
𝑥

𝑎
[𝑓(𝜉) +  𝜆 ∫ 𝐾(𝜉, 𝑡)𝑓(𝑡)

𝑥

𝑎
𝑑𝑡 + 𝜆2 ∫ ∫ 𝐾(𝜉, 𝑡)𝐾(𝑡, 𝑡1)𝑓(𝑡1)𝑑𝑡1

𝑡

𝑎
𝑑𝑡 +

𝑥

𝑎

⋯ 𝑡𝑜 ∞]  

𝑓(𝑥) +  𝜆 ∫ 𝐾(𝑥, 𝜉)𝑓(𝜉)

𝑥

𝑎

𝑑𝜉 + 𝜆2 ∫ ∫ 𝐾(𝑥, 𝜉)𝐾(𝜉, 𝑡)𝑓(𝑡)𝑑𝑡

𝜉

𝑎

𝑑𝜉 + ⋯ 𝑡𝑜 ∞

𝑥

𝑎

= 𝑢(𝑥) = 𝐿. 𝐻. 𝑆. 

(ii) Method of Successive Approximation: In this method, we select any real values function, say 

𝑢0(𝑥), continuous on I = [a, b] as the zeroth approximation. Substituting this zeroth approximation 

in the given Volterra integral equation. 

𝑢(𝑥) = 𝑓(𝑥) +  𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)

𝑥

𝑎

𝑑𝑡                             (1) 

We obtain the first approximation, say 𝑢1(𝑥), given by 

𝑢1(𝑥) = 𝑓(𝑥) +  𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢0(𝑡)

𝑥

𝑎

𝑑𝑡                             (2) 

The value of 𝑢1(𝑥), is given substituted for u(x) in (1) to obtain the second approximation 𝑢2(𝑥) where 

𝑢2(𝑥) = 𝑓(𝑥) +  𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢1(𝑡)

𝑥

𝑎

𝑑𝑡                             (3) 

This process is continued to obtain nth approximation 

𝑢𝑛(𝑥) = 𝑓(𝑥) +  𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢𝑛−1(𝑡)

𝑥

𝑎

𝑑𝑡 𝑓𝑜𝑟 𝑛 = 1, 2, 3, …                            (4) 

This relation is known as recurrence relation. 

Now, we can write 

𝑢𝑛(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)

𝑥

𝑎

[𝑓(𝑡) + 𝜆 ∫ 𝐾(𝑡, 𝑡1)𝑢𝑛−2(𝑡1)𝑑𝑡1

𝑡

𝑎

] 𝑑𝑡 

= 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)

𝑥

𝑎

𝑓(𝑡)𝑑𝑡 + 𝜆2 ∫ ∫ 𝐾(𝑥, 𝑡)𝐾(𝑡, 𝑡1)

𝑡

𝑎

𝑥

𝑎

[𝑓(𝑡1) + 𝜆 ∫ 𝐾(𝑡1, 𝑡2)𝑢𝑛−3

𝑡1

𝑎

(𝑡2)𝑑𝑡2] 𝑑𝑡1𝑑𝑡 

or   



𝑢𝑛(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)

𝑥

𝑎

𝑓(𝑡)𝑑𝑡 + 𝜆2 ∫ ∫ 𝐾(𝑥, 𝑡)𝐾(𝑡, 𝑡1)

𝑡

𝑎

𝑥

𝑎

𝑓(𝑡1)𝑑𝑡1𝑑𝑡

+ 𝜆3 ∫ ∫ ∫ 𝐾(𝑥, 𝑡)

𝑡1

𝑎

𝐾(𝑡, 𝑡1)𝐾(𝑡1, 𝑡2)𝑑𝑡2𝑑𝑡1𝑑𝑡

𝑡

𝑎

𝑥

𝑎

                                         (5) 

Continuing in this fashion, we get 

𝑢𝑛(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)

𝑥

𝑎

𝑓(𝑡)𝑑𝑡

+ 𝜆𝑛−1 ∫ ∫ … . . ∫ 𝐾(𝑥, 𝑡)𝐾(𝑡, 𝑡1) … …

𝑡𝑛−3

𝑎

𝐾(𝑡𝑛−3, 𝑡𝑛−2)

𝑡

𝑎

𝑥

𝑎

𝑓(𝑡𝑛−2)𝑑𝑡𝑛−2 … 𝑑𝑡1𝑑𝑡

+ 𝑅𝑛(𝑥)𝐹                                                                                                               (6) 

Where 

𝑅𝑛(𝑥) = 𝜆𝑛 ∫ ∫ … . . ∫ 𝐾(𝑥, 𝑡)𝐾(𝑡, 𝑡1) … …

𝑡𝑛−2

𝑎

𝐾(𝑡𝑛−2, 𝑡𝑛−1)

𝑡

𝑎

𝑥

𝑎

𝑢0(𝑡𝑛−1)𝑑𝑡𝑛−1 … 𝑑𝑡1𝑑𝑡           (7) 

Since 𝑢0(𝑥) is continuous on I so it is bounded. Let 

|𝑢0(𝑥)| ≤ 𝑢 𝑖𝑛 𝐼                                                                                                                (8) 

Thus 

|𝑅𝑛(𝑥)| ≤ |𝜆|𝑛𝑀𝑛𝑢
(𝑥 − 𝑎)𝑛

𝑛!
≤ |𝜆|𝑛𝑀𝑛𝑢

(𝑏 − 𝑎)𝑛

𝑛!
→ 0 𝑎𝑠 𝑛 → ∞ 

So 

lim
𝑛→∞

𝑅𝑛(𝑥) = 0                                                                (9) 

Thus, as n increases, the sequence < 𝑢𝑛(𝑥) > approaches to a limit. We denote this limit by u(x) that is, 

𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛(𝑥) 

So, 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)

𝑥

𝑎

𝑓(𝑡)𝑑𝑡 + 𝜆2 ∫ ∫ 𝐾(𝑥, 𝑡)𝐾(𝑡, 𝑡1)

𝑡

𝑎

𝑥

𝑎

𝑓(𝑡1)𝑑𝑡1𝑑𝑡 + ⋯ . . 𝑡𝑜∞         (10) 

As in the method of successive substitution, we can prove that the series (10) is absolutely and 

uniformly convergent and hence the series on R.H.S. of (10) is the desid solution of given Volterra integral 

equation. 

Uniqueness- Let, if possible, the given Volterra integral equation has another solution v(x). we make, by 

our choice, the zeroth approximation 𝑢0(𝑥) = 𝑣(𝑥), then all approximations 𝑢1(𝑥) … … . , 𝑢𝑛(𝑥) will be 

identical with v(x) that is, 

𝑢𝑛(𝑥) = 𝑣(𝑥)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 



lim
𝑛→∞

𝑢𝑛(𝑥) = 𝑣(𝑥) 

𝑢(𝑥) = 𝑣(𝑥) 

This proves uniqueness of solution, with this, the proof of the theorem is completed. 

Examples 

Example.2. Using the method of successive approximation solve the integral equation, 

𝑢(𝑥) = 𝑥 − ∫(𝑥 − 𝜉)𝑢(𝜉)𝑑𝜉

𝑥

0

                                            (1) 

Solution: Let the zeroth approximation be 𝑢0(𝑥) = 0 

Then the first approximation 𝑢1(𝑥) is given by: 

𝑢1(𝑥) = 𝑥 − ∫ 0. 𝑑𝜉 = 𝑥

𝑥

0

                                                      (2) 

Thus we have  

𝑢2(𝑥) = 𝑥 − ∫(𝑥, 𝜉)𝑢1(𝜉)𝑑𝜉 = 𝑥 − ∫(𝑥 − 𝜉)𝜉𝑑𝜉

𝑥

0

𝑥

0

 

= 𝑥 − [
𝑥𝜉2

2
]

0

𝑥

+ [
𝜉3

3
]

0

𝑥

 

= 𝑥 −
𝑥3

2
+

𝑥3

3
 

= 𝑥 −
𝑥3

6
 

= 𝑥 −
𝑥3

3!
                                          (3) 

Now we have 

𝑢3(𝑥) = 𝑥 − ∫(𝑥 − 𝜉)𝑢2(𝜉)𝑑𝜉

𝑥

0

 

= 𝑥 − ∫(𝑥 − 𝜉) (𝜉 −
𝜉3

6
) 𝑑𝜉

𝑥

0

 

= 𝑥 −
𝑥3

3!
+

𝑥5

5!
                                                                                (4) 

From equations (2), (3) and (4), we conclude that the nth approximation, 𝑢𝑛(𝑥) will be 

𝑢𝑛(𝑥) = 𝑥 −
𝑥3

3!
+

𝑥5

5!
+ ⋯ … . +(−1)𝑛−1

𝑥2𝑛−1

(2𝑛 − 1)!
                                             (5) 



Which is obviously the nth partial sum of Maclaurin’s series of sinx. Hence by the method of successive 

approximation, solution of given integral equation is 

𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛(𝑥) = sin 𝑥 

Hence the solution. 

 

14.7 LAPLACE TRANSFORM METHOD TO SOLVE AN INTEGRAL 

EQUATION 

The Laplace transform of a function f(x) defined on interval (0, ∞) is given by 

𝐿[𝑓(𝑥)] = 𝑓(𝑠) = ∫ 𝑓(𝑥)

∞

0

𝑒−5𝑥𝑑𝑥                                                            … . (1) 

Here s is called Laplace variable or Laplace parameter. Also .  𝑓(𝑥) = 𝐿−1[𝑓(𝑠)] is called inverse Laplace 

transform. 

Some important results: 

(1)   𝐿(sin 𝑥) =
1

𝑠2 + 1
                           (2) 𝐿[cos 𝑥] =

𝑠

𝑠2 + 1
                      (3)  𝐿[𝑒𝑎𝑥] =

1

𝑠 − 𝑎
 

(4)  𝐿[𝑥𝑛] =
𝑛!

𝑠𝑛 + 1
, 𝑛 ≥ 0                    (5) 𝐿[𝑓′(𝑥)] = 𝑠𝑓(𝑠) − 𝑓(0)           (6) 𝐿[1] =

1

𝑠
 

Convolution: The convolution of two functions 𝑓1(𝑥) and 𝑓2(𝑥) is denoted by (𝑓1 ∗ 𝑓2) (𝑥) and is defined 

as  

(𝑓1 ∗ 𝑓2) (𝑥) = ∫ 𝑓1(𝑥 − 𝜉)𝑓2(𝜉)𝑑𝜉

𝑥

0

 

Convolution theorem. (without proof): Laplace transform of convolution of two functions is equal to 

the product their respective Laplace transforms, that is 

[(𝑓1 ∗ 𝑓2) (𝑥)] = 𝐿[𝑓1(𝑥)]. 𝐿[𝑓2(𝑥)] 

Difference integral or convolution integral: Consider the integral equation 

𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝐾(𝑥, 𝜉)𝑢(𝜉)𝑑𝜉

𝑏(𝑥)

𝑎

 

Let the kernel 𝐾(𝑥, 𝜉) be a function of 𝑥 − 𝜉, say 𝑔(𝑥 − 𝜉) then the integral equation becomes 

𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝑔(𝑥 − 𝜉)𝑢(𝜉)𝑑𝜉

𝑏(𝑥)

𝑎

 

In this case, the kernel 𝐾(𝑥, 𝜉) = 𝑔(𝑥 − 𝜉) is called difference kernel and the corresponding integral is 

called difference integral or convolution integral. 

Working Procedure: Consider the integral equation 



𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝜉)𝑢(𝜉)𝑑𝜉

𝑥

𝑎

 

Where 𝐾(𝑥, 𝜉) is difference kernel of the type 𝑔(𝑥 − 𝜉) then, 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑔(𝑥 − 𝜉)𝑢(𝜉)𝑑𝜉

𝑥

𝑎

 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆[𝑔(𝑥) ∗ 𝑢(𝑥)] 

Applying Laplace transform on both sides, we get 

𝑈(𝑠) = 𝐹(𝑠) + 𝜆𝐺(𝑠)𝑈(𝑠) 

Where U(s), F(s) and G(s) represent the Laplace Transform of u(x), f(x) and g(x) respectively. Then 

𝑈(𝑠) =
𝐹(𝑠)

1 − 𝜆𝐺(𝑠)
 

Applying inverse Laplace Transform 

𝑢(𝑥) = 𝐿−1 [
𝐹(𝑠)

1 − 𝜆𝐺(𝑠)
] 

Note. Method of Laplace Transform is applicable to those integral equations only where the kernel is 

difference Kernel. 

Examples 

Example.3. Use the method of Laplace Transform to solve the integral equation. 

𝑢(𝑥) = 𝑥 − ∫(𝑥 − 𝜉)𝑢(𝜉)𝑑𝜉

𝑥

0

                                                  (1) 

Solution: Here             𝐾(𝑥, 𝜉) = 𝑥 − 𝜉 = 𝑔(𝑥 − 𝜉) ⇒ 𝑔(𝑥) = 𝑥 

Thus (1) can be written as u(x) = x – g(x) * u(x) 

Applying Laplace Transform on both sides 

𝑈(𝑠) = 𝐿[𝑥] − 𝐿[𝑥]𝑈(𝑠) 

=
1

𝑠2
−

1

𝑠2
𝑈(𝑠) 

   𝑈(𝑠) =
1

𝑠2

1+
1

𝑠2

=
1

𝑠2+1
 

𝑆𝑜, 𝑢(𝑥) = 𝐿−1 [
1

𝑠2 + 1
] = sin 𝑥. 

 

14.8 SOLUTION OF VOLTERRA INTEGRAL EQUATION OF FIRST 

KIND 



Consider the non-homogeneous Volterra integral equation of first kind 

𝑢(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝜉)𝑢(𝜉)𝑑𝜉

𝑥

0

… (1) 

Where the kernel 𝐾(𝑥, 𝜉) is the difference Kernel of the type 

𝐾(𝑥, 𝜉) = 𝑔(𝑥 − 𝜉) 

Then (1) can be written as 

𝑓(𝑥) = 𝜆𝑔(𝑥) ∗ 𝑢(𝑥) 

Applying Laplace Transform on both sides: 

𝐹(𝑠) = 𝜆 𝐺(𝑠)𝑈(𝑠) 

𝑈(𝑠) =
1

𝜆
 
𝐹(𝑠)

𝐺(𝑠)
 

Applying inverse Laplace Transform on both sides: 

𝑢(𝑥) =
1

𝜆
𝐿−1 [

𝐹(𝑠)

𝐺(𝑠)
] 

Examples 

Example.4. Solve the integral equation sin 𝑥 = 𝜆 ∫ 𝑒𝑥−𝜉𝑢(𝜉)𝑑𝜉
𝑥

0
                                       (1) 

Solution: Here 𝐾(𝑥, 𝜉) = 𝑒𝑥−𝜉 = 𝑔(𝑥 − 𝜉) 

⇒                          𝑔(𝑥) = 𝑒𝑥                                                                                   

Thus (1) can be written as 

sin 𝑥 = 𝜆 𝑔(𝑥) ∗ 𝑢(𝑥) 

Applying Laplace Transform on both sides 

𝐿[sin 𝑥] = 𝜆 𝐿[𝑒𝑥]𝐿 [𝑢(𝑥)] 

⇒                                                       
1

𝑠2 + 1
=

𝜆

𝑠 − 1
𝑈(𝑠)                                                                     

⇒                                        𝑈(𝑠) =
1

𝜆
 

𝑠 − 1

𝑠2 + 1
=

1

𝜆
 [

𝑠

𝑠2 + 1
−

1

𝑠2 + 1
]                                                 

𝑆𝑜,                                  𝑢(𝑥) =
1

𝜆
 𝐿−1 [

𝑠

𝑠2 + 1
−

1

𝑠2 + 1
]                                                        

𝑢(𝑥) =
1

𝜆
 (cos 𝑥 − sin 𝑥) 

Theorem 2. Prove that the Volterra integral equation of first kind 

 𝑓(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝜉)𝑢(𝜉)𝑑𝜉
𝑥

0
 can be transformed to a Volterra integral equation of second kind, provided 

that K(x, x) ≠ 0. 

Proof: The given equation is 



𝑓(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝜉)𝑢(𝜉)𝑑𝜉

𝑥

0

                         (1) 

Differentiating (1) w.r.t. x and using Leibnitz rule, we obtain 

𝑑𝑓

𝑑𝑥
= 𝜆 ∫

𝜕𝐾

𝜕𝑥
𝑢(𝜉)𝑑𝜉 + 𝜆𝐾(𝑥, 𝑥)𝑢(𝑥). 1

𝑥

0

 

−𝜆𝐾(𝑥, 𝑥)𝑢(𝑥) = 𝜆 ∫
𝜕𝐾

𝜕𝑥
𝑢(𝜉)𝑑𝜉 −

𝑑𝑓

𝑑𝑥

𝑥

0

 

𝑢(𝑥) =
1

𝜆𝐾(𝑥, 𝑥)
.
𝑑𝑓

𝑑𝑥
+ ∫ −

1

𝐾(𝑥, 𝑥)

𝜕𝐾

𝜕𝑥
𝑢(𝜉)𝑑𝜉

𝑥

0

 

𝑢(𝑥) = 𝑔(𝑥) + ∫ 𝐻(𝑥, 𝜉)𝑢(𝜉)𝑑𝜉

𝑥

0

 

Where 𝑔(𝑥) =
1

𝜆𝐾(𝑥,𝑥)
.

𝑑𝑓

𝑑𝑥
  and  𝐻(𝑥, 𝜉) = −

1

𝐾(𝑥,𝑥)

𝜕𝐾

𝜕𝑥
. Here represents the desired Volterra integral 

equation of second kind. 

Example 5. Reduce the integral equation sin 𝑥 = 𝜆 ∫ 𝑒𝑥−𝜉𝑢(𝜉)𝑑𝜉
𝑥

0
 to the second kind and hence solve it. 

Solution: The given equation is 

sin 𝑥 = 𝜆 ∫ 𝑒𝑥−𝜉𝑢(𝜉)𝑑𝜉

𝑥

0

(1) 

Differentiating equation (1) with respect to x, we get 

cos 𝑥 = 𝜆 ∫ 𝑒𝑥−𝜉𝑢(𝜉)𝑑𝜉

𝑥

0

+ 𝜆𝑒𝑥−𝑥𝑢(𝑥). 1 

⇒ cos 𝑥 = 𝜆 ∫ 𝑒𝑥−𝜉𝑢(𝜉)𝑑𝜉

𝑥

0

+ 𝜆𝑢(𝑥) 

⇒ 𝑢(𝑥) =
1

𝜆
cos 𝑥 − ∫ 𝑒𝑥−𝜉𝑢(𝜉)𝑑𝜉

𝑥

0

(2) 

Which is Volterra integral equation of second kind and can be simply solved by the method of 

Laplace transform. 

 

14.9 METHOD OF ITERATED KERNEL/RESOLVENT KERNEL TO 

SOLVE THE VOLTERRA INTEGRAL EQUATION 



Let us Consider the volterra integral equation 

𝑢(𝑥) = 𝑓(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝜉)𝑢(𝜉)𝑑𝜉

𝑥

𝑎

  (1) 

We take  

𝐾1(𝑥, 𝜉) = 𝐾(𝑥, 𝜉)     (2) 

and  

𝐾𝑛+1(𝑥, 𝜉) = ∫ 𝐾(𝑥, 𝑡)𝐾𝑛(𝑡, 𝜉)𝑑𝑡; 𝑛 = 1, 2, 3, … … ….  (3)

𝑥

𝜉

 

From here, we get a sequence of new kernels and these kernels are called iterated kernels. 

We know that (1) has one and only one series solution given by 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)

𝑥

𝑎

𝑓(𝑡)𝑑𝑡 + 𝜆2 ∫ ∫ 𝐾(𝑥, 𝑡)𝐾(𝑡, 𝑡1)

𝑡

𝑎

𝑥

𝑎

𝑓(𝑡1)𝑑𝑡1𝑑𝑡 + ⋯ . . 𝑡𝑜∞  (4) 

We write this series solution in the form 

𝑢(𝑥) = 𝑢0(𝑥) + 𝜆𝑢1(𝑥) + 𝜆2𝑢2(𝑥) + ⋯ … . 𝑡𝑜∞    (5)  

Then comparing (4) and (5), we have 

                                               𝑢0(𝑥) = 𝑓(𝑥) 

                                               𝑢1(𝑥) = ∫ 𝐾(𝑥, 𝑡)

𝑥

𝑎

𝑓(𝑡)𝑑𝑡 = ∫ 𝐾1(𝑥, 𝑡)

𝑥

𝑎

𝑓(𝑡)𝑑𝑡 

𝑎𝑛𝑑                                       𝑢2(𝑥) = ∫ ∫ 𝐾(𝑥, 𝑡)𝐾(𝑡, 𝑡1)

𝑡

𝑎

𝑥

𝑎

𝑓(𝑡1)𝑑𝑡1𝑑𝑡 

By interchanging the order of integration, we have 

                                          𝑢2(𝑥) = ∫ 𝑓(𝑡1)

𝑥

𝑎

[ ∫ 𝐾(𝑥, 𝑡)𝐾1(𝑡, 𝑡1)𝑑𝑡

𝑥

𝑡1

] 𝑑𝑡1 

                                          = ∫ 𝑓(𝑡1)

𝑥

𝑎

𝐾2(𝑥, 𝑡1)𝑑𝑡1 = ∫ 𝑓(𝑡)

𝑥

𝑎

𝐾2(𝑥, 𝑡)𝑑𝑡 

similarly               𝑢𝑛(𝑥) = ∫ 𝑓(𝑡)

𝑥

𝑎

𝐾𝑛(𝑥, 𝑡)𝑑𝑡 

Thus (5) becomes 



𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾1(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡 +

𝑥

𝑎

𝜆2 ∫ 𝐾2(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡 + ⋯ … 𝑡𝑜 ∞

𝑥

𝑎

 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫[𝐾1(𝑥, 𝑡) + 𝜆𝐾2(𝑥, 𝑡) + 𝜆2𝐾3(𝑥, 𝑡) + ⋯ … … ∞]

𝑥

𝑎

 𝑓(𝑡)𝑑𝑡 

= 𝑓(𝑥) + 𝜆 ∫ 𝑅(𝑥, 𝑡: 𝜆)𝑓(𝑡)𝑑𝑡                                                  … . (6)

𝑋

𝐴

 

Where 𝑅(𝑥, 𝑡: 𝜆) = ∑ 𝜆𝑛−1𝐾𝑛(𝑥, 𝑡)∞
𝑛=1  

Thus (6) is the solution of given integral (1). 

Neumann Series 

The series 𝐾1 + 𝜆𝐾2 + 𝜆2𝐾3 + ⋯ … … . 𝑡𝑜 ∞ is known as the Neumann series. 

Resolvent Kernel 

The sum of Neumann Series 𝑅(𝑥, 𝑡: 𝜆) is known as the Resolvent Kernel. 

Examples 

Example.6. With the aid of Resolvent Kernel find the solution of the integral equation. 

𝜙(𝑥) = 𝑥 + ∫(𝜉 − 𝑥)𝜙(𝜉)𝑑𝜉

𝑥

0

 

Solution: Here                        𝐾1(𝑥, 𝜉) = 𝐾(𝑥, 𝜉) = 𝜉 − 𝑥                                      …(1) 

and             𝐾𝑛+1(𝑥, 𝜉) = ∫ 𝐾(𝑥, 𝑡)𝐾𝑛(𝑡, 𝜉)𝑑𝑡
𝑥

0
                          …. (2) 

Putting n = 1, 2, 3, ….in the equation (2), we have, 

𝐾2(𝑥, 𝜉) = ∫ 𝐾(𝑥, 𝑡)𝐾1(𝑡, 𝜉)𝑑𝑡 = ∫(𝑡 − 𝑥)(𝜉 − 𝑡)𝑑𝑡 = −
1

3!
(𝜉 − 𝑥)3

𝑥

𝜉

𝑥

𝜉

 

And  

𝐾3(𝑥, 𝜉) = ∫ 𝐾(𝑥, 𝑡)𝐾2(𝑡, 𝜉)𝑑𝑡 = ∫(𝑡 − 𝑥)(𝜉 − 𝑡)𝑑𝑡 = −
1

3!
(𝜉 − 𝑥)5

𝑥

𝜉

𝑥

𝜉

 

The Resolvent Kernel is defined as 

𝑅(𝑥, 𝜉: 𝜆) = ∑ 𝜆𝑛𝐾𝑛

∞

𝑛=1

(𝑥, 𝜉) =
𝜉 − 𝑥

1!
−

(𝜉 − 𝑥)3

3!
+

(𝜉 − 𝑥)5

5!
= −

1

3!
(𝜆 = 1) 

= sin(𝜉 − 𝑥) 

The solution of the integral equation is given by 



𝜙(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑅(𝑥, 𝜉: 𝜆)𝑓(𝜉)𝑑𝜉

𝑥

0

 

= 𝑥 + ∫ 𝜉

𝑥

0

sin(𝜉 − 𝑥)𝑑𝜉 

                                               = 𝑥 + sin 𝑥 − 𝑥  [𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑛𝑔 𝑏𝑦 𝑝𝑎𝑟𝑡𝑠] 

= sin 𝑥. 

 

14.10 SUMMARY 

An integral equation is one in which function to be determined appears under the integral sign. The most 

general form of a linear integral equation is 

ℎ(𝑥)𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝐾(𝑥, 𝜉)

𝑏(𝑥)

𝑎

u(ξ)dξ   for all x ∈ [a, b] 

In which u(x) is the function to be determined and 𝐾(𝑥, 𝜉)  is called the Kernel of integral equation. 

A Volterra integral equation is of the type: 

ℎ(𝑥)𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝐾(𝑥, 𝜉)

𝑥

𝑎

u(ξ)dξ   for all x ∈ [a, b] 

that is, in Volterra equation h(x) = x 

(iii) If h(x) = 0 the above equation reduces to 

−𝑓(𝑥) = ∫ 𝐾(𝑥, 𝜉)

𝑥

𝑎

u(ξ)dξ    

This equation is called Volterra integral equation of first kind. 

(iv) If h(x) = 1 the above equation reduces to 

𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝐾(𝑥, 𝜉)

𝑥

𝑎

u(ξ)dξ    

This equation is called Volterra integral equation of second kind. 

If f(x) = 0 for all x ∈ [a, b], then the reduced equation 

ℎ(𝑥)𝑢(𝑥) = ∫ 𝐾(𝑥, 𝜉)

𝑏(𝑥)

𝑎

u(ξ)dξ 



is called homogeneous integral equation. Otherwise, it is called non-homogeneous integral equation. 

If n is a positive integer, then 

∫ ∫ … . ∫ ∫ 𝐹(𝑥𝑛)

𝑥𝑛−1

𝑎

𝑑𝑥𝑛𝑑𝑥𝑛−1 … . 𝑑𝑥1 =

𝑥𝑛−2

𝑎

𝑥1

𝑎

𝑥

𝑎

1

1 − 𝑛!
∫(𝑥 − 𝜉)𝑛−1𝑓(𝜉)𝑑𝜉

𝑥

𝑎

 

The Laplace transform of a function f(x) defined on interval (0, ∞) is given by 

𝐿[𝑓(𝑥)] = 𝑓(𝑠) = ∫ 𝑓(𝑥)

∞

0

𝑒−5𝑥𝑑𝑥 … . (1) 

Here s is called Laplace variable or Laplace parameter. Also.  𝑓(𝑥) = 𝐿−1[𝑓(𝑠)] is called inverse Laplace 

transform. 

 

14.11 TERMINAL QUESTIONS 

Q.1 Write the solution procedure of Volterra Integral equation. 

Q.2 Reduce following initial value problem into Volterra integral equations: 

a. 𝑦" + 𝑥𝑦 = 1, 𝑦′(0) = 0 = 𝑦(0) 

b. 
𝑑2𝑦

𝑑𝑥2 + 𝐴(𝑥)
𝑑𝑦

𝑑𝑥
+ 𝐵(𝑥)𝑦 = 𝑔(𝑥), 𝑦(𝑎) = 𝑐1  𝑎𝑛𝑑  𝑦′(𝑎) = 𝑐2 

c. 𝑦" + 𝜆𝑦 = 0, 𝑦(0) = 1, 𝑦′(0) = 0 

d. 𝑦" − 5 𝑦′ + 6𝑦 = 0, 𝑦(0) = 0, 𝑦′(0) = −1 

Q.3 Using the method of successive approximation, solve the integral equation, 

𝑦(𝑥) = 𝑒𝑥 + ∫ 𝑒𝑥−𝑡𝑦(𝑡)𝑑𝑡

𝑥

0

. 

Using the method of successive approximation, solve the integral equation: 

Q.4 𝑢(𝑥) = 1 + ∫ (𝑥 − 𝜉)𝑢(𝜉)𝑑𝜉
𝑥

0
. 

Q.5 𝑢(𝑥) = 1 + ∫ (𝜉 − 𝑥)𝑢(𝜉)𝑑𝜉
𝑥

0
 

Q.6 𝑢(𝑥) = 1 + ∫ 𝑢(𝜉)𝑑𝜉
𝑥

0
 

Q.7 𝑢(𝑥) = 𝑒𝑥2
+ ∫ 𝑒𝑥2−𝑡2

𝑢(𝑡)𝑑𝑡
𝑥

0
 

Q.8 𝑢(𝑥) = (1 + 𝑥) + ∫ (𝑥 − 𝜉)𝑢(𝜉)𝑑𝜉 𝑤𝑖𝑡ℎ 𝑢0(𝑥) = 1
𝑥

0
 



Q.9 Use the method of Laplace Transform to solve the following integral equations. 

(𝑎)   𝑢(𝑥) = 1 + ∫(𝑥 − 𝜉)𝑢(𝜉)𝑑𝜉

𝑥

0

 

(𝑏)   𝑢(𝑥) = 1 + ∫(𝜉 − 𝑥)𝑢(𝜉)𝑑𝜉

𝑥

0

 

(𝑐)   𝑢(𝑥) = 1 + ∫ 𝑢(𝜉)𝑑𝜉

𝑥

0

 

Q.10 Solve the integral equation   𝑥 = ∫ cos(𝑥 − 𝜉)𝑢(𝜉)𝑑𝜉
𝑥

0
 

Q.11 Obtaining the Resolvent Kernel, solve the following Volterra integral equation of second kind: 

(𝑎) 𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑒𝑥−𝜉𝑢(𝜉)𝑑𝜉

𝑥

0

 

(𝑏) 𝜙(𝑥) = 1 + ∫(𝜉 − 𝑥)𝜙(𝜉)𝑑𝜉

𝑥

0

 

(𝑐) 𝜙(𝑥) = 𝑒𝑥2
+ ∫ 𝑒𝑥2−𝜉2

𝜙(𝜉)𝑑𝜉

𝑥

0

 

Q.12 Solve the following problems. 

a. Reduce following initial value problem into Volterra integral equations: 

𝑦" − 2𝑥𝑦′ − 3𝑦 = 0;       𝑦(0) = 0, 𝑦′(0) = 0 

b. Using the method of successive approximation, solve the integral equation, 

𝑢(𝑥) = (1 + 𝑥) − ∫ 𝑢(𝜉)𝑑𝜉

𝑥

0

 𝑤𝑖𝑡ℎ 𝑢0(𝑥) = 1 

c. Use the method of Laplace Transform to solve the following integral equations. 

𝑢(𝑥) = 𝑒−𝑥 + ∫ sin(𝑥 − 𝜉) 𝑢(𝜉)𝑑𝜉

𝑥

0

 

Answer 



Q.2 (a)  𝑦(𝑥) =
𝑥2

2
− ∫ (𝑥 − 𝜉)𝜙(𝜉)𝑑𝜉

𝑥

0
 

(b) 𝑓(𝑥) = 𝑐1 + 𝑐2(𝑥 − 𝑎) + ∫ (𝑥 − 𝜉)𝑔(𝜉)𝑑𝜉 + 𝐴(𝑎)𝑐1(𝑥 − 𝑎)
𝑥

𝑎
,  

where 𝐾(𝑥, 𝜉) = (𝑥 − 𝜉)[𝐴′(𝜉) − 𝐵(𝜉)] − 𝐴(𝜉). 

(c) 𝑦(𝑥) = 1 − 𝜆 ∫ (𝑥 − 𝜉)𝑦(𝜉)𝑑𝜉
𝑥

𝑎
. 

(d) 𝑦(𝑥) = (6𝑥 − 5) + ∫ (5 − 6𝑥 + 6𝜉)𝜙(𝜉)𝑑𝜉
𝑥

𝑎
 

Q.3 𝑦(𝑥) = lim
𝑛→∞

𝑒𝑥 [1 + 𝑥 +
𝑥2

2!
+ ⋯ … … … . +

𝑥𝑛

𝑛!
] = 𝑒𝑥. 𝑒𝑥 = 𝑒2𝑥 

Q.4 Cosh x 

Q.5 Cos x 

Q.6 𝑒𝑥 

Q.7 𝑒𝑥(𝑥+1) 

Q.8 𝑒𝑥 

Q.9 (a) cosh x 

(b) cos x. 

(c) 𝑒𝑥 

Q.10 1 +
𝑥2

2
. 

Q.11 (a) 𝑢(𝑥) = 𝑓(𝑥) + 𝜆𝑒(1+𝜆)𝑥 ∫ 𝑒−(1+𝜆)𝜉𝑓(𝜉)𝑑𝜉.
𝑥

0
 

(b) cos x. 

(c) 𝑒𝑥(𝑥+1) 

Q.12 (a)  𝑦(𝑥) = ∫ (𝑥 + 𝜉)𝑦(𝜉)𝑑𝜉
𝑥

0
      (b) 1    (c)  2𝑒−𝑥 − 1 + 𝑥. 


