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BLOCK INTRODUCTION

Real analysis is a mathematical discipline focused on the study of real numbers and real-valued
functions. It involves a rigorous examination of fundamental concepts like limits, continuity,
differentiation, integration, and the behavior of sequences and series of real numbers. Real analysis serves
as the theoretical foundation of calculus and finds applications across various fields, including physics,
engineering, and economics. The Riemann-Stieltjes integral is a significant extension of the Riemann
integral, allowing for the integration of functions that are not necessarily continuous but possess bounded
variation. Named after Bernhard Riemann and Thomas Stieltjes, this integral broadens the scope of
integration to a wider class of functions, providing a more adaptable approach to integration.

In addition to its role in extending integration concepts, the Riemann-Stieltjes integral plays a
crucial role in probability theory and statistics. It is employed to define the expectations of random
variables with respect to specific distribution functions, facilitating a deeper understanding of various
probabilistic concepts and statistical methods. The Riemann-Stieltjes integral finds application in the
theory of differential equations, where it is utilized to define the integral of functions multiplied by
distributions. This application is particularly valuable in the study of systems characterized by
discontinuous or singular inputs.

In the first unit, we shall have discussed the Partition, lower and upper Riemann-Stieltjes sums,
lower and upper Riemann-Stieltjes integrals, Definition of Riemann-Stieltjes integral, necessary and
sufficient condition for Riemann-Stieltjes integrability, algebra of Riemann-Stieltjes integrable functions.
In the second unit we shall discuss the Integral Function, primitive, fundamental theorem of integral
calculus, integration by parts, Integration of vector-valued functions. In the third unit we shall discuss
about Uniformly bounded sequence, uniform convergence of sequences, Uniform convergence of a series
of function, Cauchy’s general principle of uniform convergence, test for uniform convergence. Power
series, Cauchy’s theorem on limits, Radius of convergence, Uniform convergence of power series. Abel’s
and Tauber’s theorems are discussed in details in unit fourth.



UNIT1 RIEMANN INTEGRAL

Structure

1.1 Introduction

1.2  Objectives

1.3  Partition of a closed Interval

1.4  Lower Riemann Sum and Upper Riemann Sum
1.5 Lower and Upper Riemann Integral

1.6 Another definition of Riemann Integrable

1.7  Lower and Upper Riemann-Stieltjes Sums

1.8  Lower Riemann-Stieltjes Integral and Upper Riemann-Stieltjes Integral
1.9 The Riemann-Stieltjes Integral

1.10 The Riemann-Stieltjes Integral as a limit Sums
1.11 Properties of Riemann-Stieltjes Integral

1.12 Algebra of Riemann-Stieltjes Integrable Function
1.13 Summary

1.14 Terminal Questions

1.1 INTRODUCTION

In 1850 the german mathematician G.F.B. Riemann (1826-1866) gave a purely arithmatic approach to
formulate and independent theory of integration. Riemann Theory lead others to invent others to invent
other integration theories. The most significant being legesgue theory of integration. The Riemann integral
is a fundamental concept in calculus that defines the definite integral of a function over a closed interval.
It is named after the mathematician Bernhard Riemann, who introduced the integral in the mid-19th
century. The Riemann integral is based on the idea of approximating the area under a curve by dividing
the interval into smaller subintervals and forming rectangles whose areas approximate the area under the
curve. As the width of the subintervals approaches zero, the sum of the areas of these rectangles converges
to the Riemann integral of the function over the interval. In this unit we shall discuss the Riemann integral
of real valued bounded functions defined on some closed interval. We shall also discuss refinemonts and
extension of Riemann theory due to Thomas Jan stieltjes known Riemann-stieltjes integration.



1.2 OBJECTIVES

After reading this unit the learner should be able to understand about the:
»  Partition of a closed interval

lower Riemann sum and upper Riemann sum

lower and upper Riemann integral

lower and upper Riemann-Stieltjes Sums

Riemann —Stieltjes Integral and properties

YV VvV ¥V VY V¥V

Algebra of Riemann=Stieltjes Integrable Function

1.3 PARTITION OF A CLOSED INTERVAL

Let I=[a,b] be a closed and bounded interval then a finite set of real number
P ={Xg, X, Xp,.uue-.. s Xn_1s X having the property that
A=Xy <X <Xy < vvverennne <X, <X =Db [Here x,=a and x, =b] is called the partition of [a,b].
The closed sub-intervals I, =Xy, %], I, =[X., %], s =X, X3 ], -covvenene My =%, X, ] are

called segments of the partition AX, where AX, =X —X_ji.e., length of |, [ Here I, =[x _,,x ]| The norm

of a partition P is the maximum of AX, defined as ||P| = max{Ax, :r=1,2,3,...,n}

e, [P[=max{(x —=%)),(% =% ), (Xs =X, )serer (X, =%, )} -

A portition P"is called a refinement of another partion P if and only if P > P i.e., every point P
is used to build P".

If P, and P, are any two partitions of [a,b] then P" = B U B, is called common refinement of
P, and P,.

1.4 LOWER RIEMANN SUM AND UPPER RIEMANN SUM

Let f be abounded real valued function defined on [a,b]and let P ={a =Xy, X,X,,.... X, 1, X, } be

apartition of [&,b]. Let m, =infimum of fin 1, ( Herel, =[x,,x,])

r-11 “r

M, =supremum of f in I, respectively, then



n

L(P, f)=> mAX, =(mAX +MAX, +........ +m,AX, )is called the lower-Riemann sum
r=1

and U (P, f)= Z M, AX, = [Mle1 +M,AX, +.....+ MnAxn] is called the upper-Riemann sum.
r=1
Note: (1) Riemann sum is also known on Darbou x sum.
(2 U(P, f)-L(P, f)=> (M, —m,)Ax, is called oscillatory sum for the function f corresponding to

=]
the partition P of [a,b]. It is denoted by w(P, f) i.e, w(P, f)=[U (P, f)-L(P,f)].

Here we are giving some important theorems with and without proof and definitions of riemann integral.
Theorem.1. Let f be a bounded function on [a,b]. Let P be a partition of [a,b]. If P*is a refinement
of P then L(P*, f)>L(P,f)and U(P* f)<U(P,f)

Theorem.2: Let P be a partion of [a,b]. Let P, and P, be any two partion of [a,b] such that P=P,UP,
then U[R, f|>L(R, f)

Theorem.3: Let f,gbe a bounded function on [a,b]and let P be a partition of [a,b]. Then
L[P, f+g]=L[P, f]+L(P,g)and U[P, f +g]<U[P, f]+U[P,g].

1.5 LOWER AND UPPER RIEMANN INTEGRAL

Lower Riemann integral

I: f (x)dx =sup. of L(P.f) for all partitions [a,b]

= [[f()d=L(P.f) or limL(P,)=] T.

IPI—>0

Upper Riemann integral

J'f f (x)dx = infimum of U (P, f) of all partitions of [a,b]
= [[t()ax<U(P.f) or [ f=limU(P,1).

a IP|—0

Note: (I). If jbf =j6f = f eR[ab]ie., fisRiemann integrable

@) j;—f :—jff



3) f:—f :—Lbf

CIREIN
Theorem.4. Let fbe a bounded function defined on [a,b]then for every &>0,35>0such that
f f+&and L[P, f] j f — ¢ for a partition P of [a,b] with |P|<& .

Theorem.5: A necessary and sufficient condition for R-integrability of a function f :[a,b]—> R on [a,b]
is for &> 0,3 a partition P of [a,b] such that for P and all its refinements 0<U (P, f)-L(P, f )<e

Check your progress

Q.1 Explain the Partition of a closed interval.

Q.2 What do you mean by Lower and Upper Riemann integral?

1.6  ANOTHER DEFINITION OF RIEMANN INTEGRABLE

A function f define on [a, b]is said to be Riemann integrable over [ a, b ] if and only if for

every &>0there exists a &>0 and a number 1 such that for every partition
P ={a=Xy,%,....., X, = b} of [&,b]with |P||< 5 and for every & hence of &, €[, X ]

Zf (X =% )—l|<e

= I :j: f (x)dx

i.e., l'is R- integrable.
Now, we shall discuss the riemann-stieltjes integral which is a refinement and extension of riemann theory.

1.7 LOWER AND UPPER RIEMANN-STIELTJES SUMS

Let f be a real valued function defined on a closed interval [a,b]and let g be a monotonically
increasing (real valued) function on [a,b] . Let P={a=X,,X,%,,....X, =b} be a partition of [a,b]with
I =[%_,%]r=12.3,.

We taken Ag, = g(xr)—g(X,,l),r =12,...,n = Ad, >,0as ¢ is monotonically increasing function.

Let m=inf {f (x)|a< xsb}



M =sup{f(x)la<x<b}
m, =inf { f (x)|xel,}

r

M, =sup{f (x)|xel,}

Then L[P, f,g]=>_mAg, is called lower Riemann-stieltjes sums
r=1

And U [P, f ,g] = Z M, Ag, is called upper Riemann-stieltjes sums.
r=1

Theorem.6. Let f be a bounded function on [a,b] and let g be a monotonically increasing (real valued)

function on [a,b]. Let P be a partition of [a,b]. If p*is refinement of P then
L(P,f.g)<L(P*f,g)
U(P* f,g)<U(P,f,9)

Proof:  Let  P={a=Xy,X,X,....X, ., X, =b}be a partition of [a,b]. Let

P™={Xg, X, Xoees Xe1s Yy X, X, | DE @ refinement of P.
Let m, =inf.of f(x)inl,

M, =sup.of f(x)inl,

m', =inf.of f(x)in [x_,Y]

M ' =sup.of f(x)in [X._,Y]

m", =inf.of f(x)in [y,x]

M ", =sup.of f(x) in[y,x, |respectively

Then we have
M, >M' ,M"

And m, <m’,m",

Here P”has two subintervals more that P namely [X,_;, y] and [, X, | respectively
~U[P,f,9]-U[P* f,9]=XM,[g(x)-9(x.)]

r=1
{le\/l 'r(g(y)—g(xrJ}Z_;m"r[g(Xr)—G(Y)]—(l)

But M',[a(y)-a(x)]+M" [a(x)-a(y)]



<M, [g(y)—g(xr_l)]+ M, [Q(Xr)—g(y)}
<M, [g(%)-9(x.)]
=2M [9(y)-9(x )]+ XM [9(x)-9(y)] < XM, [9(x)-9(x)]
=U[P* f,g]<U[P.f,g]____ (2
Similarly
L[P.f,g]<L[P~fg]_____ (3
Therefore, equation (2) and (3) give the required result.

Theorem.7. Let P, and P, be any two partitions of [a,b]such that P=P,UP,. Let g be monotonically
function on [a,b]then U[P, f,g]>L[P,, f,g]

Proof: Let P=P UP,

It means P contains more subintervals then P and P, separately.

~U[P, f,g]<U[P, f,g] (1)
U[P,f,g]<U[P, f,g] (2)
And L[P, f,g]>L[R,f,g] (3)
L[P.f,g]>L[P, f,g] (4)
We know that
L[P, f,g]<U[P, f,g] (5)

.. Equations (1), (2),(3),(4) and (5) imply
L[P, f,g]<L[P, f,g]<U[P, f,g]<U[PR, f,g]

= L[P, f,g]<U[PR, f,g]ie, U[P, f,g]>L[P, f,g]Proved.
Note: Here f is defined on [a,b] we mean (i) f :[a,b] > R, R be a set of reals.

(ii) In future g will be understood monotonocally increasing (real valued) on [a, b] unless otherwise stated.

1.8 LOWER RIEMANN-STIELTJES INTEGRAL AND UPPER
RIEMANN-STIELTJES INTEGRAL

Let f be abounded function and g be a monotonocally increasing function on [a, b] then lower-Riemann

stieltjes integral of frelative to gon [ab]is the supermum of L[P f,g] e,



J: f dg =sup.L[P, f,g].

And upper Riemann-stieltjes integral of relative to g on [a,b]is the infimum of U [P, f,g]

ie. [ fdg=inf U[P, t,g]

Theorem.8. Let f be a bounded function and g be monotonically increasing function on[a,b]. Then
REE [t dg

Proof: We know if P and P, be any two partitions of [a, b] such that P =P, UP, then we have

L[P. f.g]<U[P, f.g] (1)

Taking the supermum over all P, taking P, fixed, we get

Efdg SU[PZ,f,g]['.'j:fdgzsupL[Pl,f,gﬂ ......... (2)

Again, Taking the infimum over all P, ,we have from (2)

j: f dg sjffdg [J.: f dg = infU[P,, f,g]} Proved.

1.9 THE RIEMANN-STIELTJES INTEGRAL

Let f be a bounded function and g be monotonically increasing function on [a,b] . Then f is said to be

Riemann-stieltjes integrable (Or RS-integrable) if and only if I: f dg :Jf fdgie., feRSintegrable
b b

[[ab].g] <[ fdg=] fdg

ie. f eRS—integral [[a,b],g]we mean I: f dgzjf fdg.oOr f eRS(g)

Note. I: f dg we mean J': f(x)dg(x).

Theorem.9: Let f be a bounded function and g be a monotonically increasing function on [a, b]. Then

for every & >0, There exists & >0such that U [P, f,g]<'[: fdg+eand L[P, f,g]>_[: fdg — ¢ for all
partition p with ||P[| <.

Proof: Let fbe a bounded function and g be a monotonically increasing function on [a,b] Let



for all P. j: f dg = supremum of L(P, f,g)for all P.

So for given &> 0, There exists partitions P, and P, of P such that
b
U[P, f.o]<[ fdg+e____ (1)

And  L[P, f.g]<[ fdge (2)

Let P3 be the common refinement of P1and P, then

U[R, f,g]<U[PR, f,q] (3)

L[P, f.g]>L[R.f.g]____ (4
From equation (1), (2), (3) &(4), we have

U[P, f,g]<U[PR, f,g]<jffdg+g
—U[P,f,g]<[ fdg+e (5)
similarly L[P, f,g]> [ fdg-e (6)

For all partitions P of [a,b] with ||P| < & where §>0.

Theorem.10: Let f be a bounded function and g be a monotonically increasing function on [a,b] . Then

f eRS (g) if and only if for every & > 0 there exists a partition P such that
U[P,f,g]-L[P,f.g]<e¢
Proof: Let f be a bounded function and g be a monotonically increasing function on [a, b] .
Let P={a=X,X,....%, =D} be apartition of [a,b] suppose for & >0, we have
U[P, f,g]-L[P.f,g]<e (1)
To prove f eRS(g)
We know for every partition P
L[P.f,g]<[ fdg<[ fdg<U[P.f.g]___ (2
From (1) and (2), we get

o< tdg-[ tdg<U[P.f,g]-L[P.f.g]<e



:>j: f dg—'[: fdg <eTake £ -0 as ¢ is arbitrary

= ["fdg=[" fdg=f < RS(q)

“Only of Part” Let feRS(g) To prove UJ[P, f,g]-L[P,f,g]<egiven
fe RS(g):j: f dg :j: f dg Let &> 0 be given. Since J:J f dg is the supremum of L[P, f,g]overall

partition P, there exists a partition Py such that

I:fdg<L[I31,f,g]+§

Similarly, since LE fdg is the infimum of U [P, f,g]over all partition P, there exists a partition P2 such
that U[P,, f,g]<Jf f dg +§
Let P =P UP,so that P is the common refinement of P1 nd P, then we have

jb fdg<L[P, f,g]+§

And [ fdg SULP.fal-2 (9

b &
—[ fdg>-L[P, f,g]-= 4
S-[ fdg>-L[P.fg)-S__ (4)
b b
Adding (3) & (4) , we get j fdg—L fdg>U[P, f,g]-L[P, f,g]-¢

=U|[P, f,g]-L[P, f,g]<g[-.- j" f dg :jb f dg} , proved.

Examples-
Example.l. Let f be a constant function on [a,b] defined by f (x) =k and g be monotonically increasing

function on [a,b] then
I: f dg exists and j: fdg=k[g(b)-g(a)]

Solution: Let P ={a=X,,%,X%,,...,X, =D} be any partition of [a,b] .
Let I, =[x_.%].r=22..,n.

Let ~ m, =infof f(x)in I =kas f(x)=k

m, =sup of f (x) inl =kas f(x)=k



j: fdg=sup L(P, f,g)

:supZmr Ag,, [Ag, = g(Xr)—g(Xr_l)]

SIOWIEICORIEN

=supk[ (%) =0(%)+9(%) =9 %)+t 9 (x,) -0 (¥,1)]
=supk[ (x,)-9(%)]

[ fdg=k[9(b)-g(a)]

Similarly, we have

Y

jffdg:infu[P,f,g]
—inf >k Ag,
=k[g(b)g(a)]since [ fdg=["tdg= f <Rs(g)
:>fb fdg=k[g(b)-g(a)]

Note: Y Agr=>"g(x)-9(x_,)
r=1 r=1
Put r=1,2,3,...n., we have

Agl = g(xl)—g(xo)
Ag, =9(%,)-9(x)
Ag;=9(%)—9(x,)

Agn—l =0 (Xn—l)_ g (anz)
Agn = g(Xn)_g(anl)
Adding gerlically

rZ:]Agr=g(><n)—91(><o)



Check your progress

Q.1 Define the lower and upper Riemann-Stieltjes Sums.

Q.2 What do you mean by Lower and Upper Riemann-Stieltjes integral?

1.10 THE RIEMANN-STIELTJES INTEGRAL AS A LIMIT SUMS

Let fbe a bounded function and g be a monotonic increasing function on [a,b], Let
P={a=X,%,...X, =b}be a partition of [a,b]and let Q={&,&,,....&.....&,} be an intermedeate
partition of P such that

X1 SE <X

Then the sum

n

S[P.Q,f,g]=>_ f (& )Ag,

r=1
Where Ag, =g(%,)—9 (%)
Is called the riemann-stieltjes (or RS -sum)of f relative to gon [a,b] corresponding to the partition P
and the intermedeate partition Q.

Theorem.11: If [im S(P,Q, f,g)exists, then f e RS(qg)

|P|—o0
b
And 1imS(P,Q,f,g)=| fd
Lims(P.Q.f.0)=[, f do

n

Proof: Suppose 1im S(P,Q, f,g)=1im > f (&, )Ag, exists and is equal to A.

[P0 [P0 =

Therefore, for £ >0, There exists & > 0such that for every partition P of [a,b]with |P| <&, we have
s(P,Q, f,g)—A\<g
& &
or (A_Ej<;=,(p>,cg,f,g.)<A+E 1)

This gives U (P, f,g)—L(P,f,g)<ehence f eRS(g)therefore j;fdg:jffdg:j:fdg
more over, since S(P,Q, f,g)and jbfdglie between U (P, f,g)and L(P,f,g), therefore

‘S(P,Q, f.g)-[ fdg

<U(P,f,g)-L(P,f,g)<¢



<£:HI‘|‘mS(P,Q,f,g)=J‘:fdg

Note: The existance of :>H| ‘i‘m S(P,Q, f,g)is a sufficient condition for f e RS(g), but it is not a
P|—0

:‘S(P,Q,f,g) [ fdg

necessary condition i.e. there exist a function which are integrable but for which H| ﬂm S(P,Q, f,g)does
P|—0

not exist. Thus whenever dimS(P,Q, f,g)exist t will be equal toj‘b f dg but when f e RS (g)nothing

can be said about the existance of H| ‘|m S(P,Q,f,9)-

For example, Let f be an arbitrary function and g =k , a constant function on [a,b]. Then for any

Zf )Ag, = Zf )k —k] [ Ag, =g(x) -9 ()] =k-k
=0
timplies that j: f dg=0 { jb f dg :21: f (gr)Agr}
Theorem.12: If f is continuous and g is monotonically increasing function on [a,0], then f e RS(g).

Zf )Ag, - jfdg

r=1

Moreover, to every ¢ >0there corresponds a ¢ >0such that <¢ for every

partition P ={X, =a,%,X,,..., X, =b} with |P| < & and for every intermediate partition Q ={&,,&,,..... &, }

of P, that is Mm RS(P,Q, f,g)= j f dg.

Proof: Itis given g is monotonically increasing function on [a, b] , so for € >0, choose 7 > 0such that
n|g(b)-g(a)<e (1)
Also t is given f is a continuous function on [a,b]

= f is uniformly continuous on [a,b]

= for >0, There exist & >0such that

|f(x)— f(y)|<n whenever |n-y|<5, vn,ye[ab] ___ (2)

Choose P ={a=>Xy,X,%,,..... X, 4, X, = b} such that |P| < &, Let I, =[x, ]since fis
continuous on [a,b]

= f is also continuous in |,

= f has its bounds m.,m, on I,

That is there exist points ¢,d € I, such that



m, =f(c),M, =f(d) (3)
From equations (2) and (3), we have
[F(d)=f(c)|<n

=|M,-m|<7n , r=123...,n.

Hence U (P, f,g)-L(P,f,9)
:rz:‘(Mr—mr)Agr
=U (P, f,g)-L(P, f,g)<77.zn:Agr ['.'(Mr—mr)<ﬂ

<n[g(b)-9(a)]
=U (P, f,g)-L(P, f,g)<e from (1)
=feRS(g) ___ (4

For second part

@) =U(P,f,g)-e<L(P,f,g9) [ f eRS(g)@j:fdg=j:fdg='|‘:fdg}

:>Jf fdg-e<L(P,f,g)____ (5)

And U (P, f,g)<L(P, f,g)+¢ :>U(P,f,g)<J':fdg+g :U(P,f,g)<j:fdg+g

(
[ [[tg=["f dg}

Thus [ fdg—e<L(P,f,g)<U[P,f,g]<[ fdg+e 6)
But L(P, f,g)<RS(P,Q, f,g)<U(P,f,g) (7)
From (6) & (7), we have

b b
L fdg—&<RS(P,Q, f,g)<L fdg+e
:‘RS(P,Q, f.0)-[ 1 dg‘<g

. b

= Lim RS (P,Q, f,g):ja f dg , Proved.

Theorem.13. If f is monotonic on [a,b]and g is monotonic and continuous on [a,b]then f €eRS(g).



Proof: Let P ={a=X,,X,... X, =b}be a partition of [a,b] then for &> 0, we have

b)-g(a
Ag, =M, r=123,......,0N.
n
Which is possible as g is continuous and monotonically increasing let f be monotonically increasing on
[a,b].

Let ~ m, =inf off(n)inl, 1 =[x_,x]
M, =supinf (x) in |
Then f(x_)=m, r=12...n

f(x)=m

r

Therefore U (P, f,g)-L(P, f,g)=>_(M, —m,)Ag,

r=1

r=1

- 9OR9 1 (5) - )]

U[P, f,g]-L[P, f,g]<e, for large value of n

=]

= f eRS(g)on [a,b].

Example.2: Let f(x)=x,g(x)=x*. Does I: f dg exist?

If it exists, find its value



Now, g(n)=x*is monotonically increasing in I,

Ag, =9[x ]-9[x.]= g[q—g{r—_l}
:(sz_(r—lf _(r=r+1)(r+r-1)

n n n?

>

~U[P, f,g]-L(P,f,g)=>[M,Ag,-m,Ag,]

r=1

U[P.f.g]-L[P.f.q]<e [Take %«}

= f eRS(g)on [0,1]
Now we have

“fdg=[ fdr? [wg=x =dimS(P,Q, f,g)
0 0

[Pl->0

n
,Q={6,6,1 i 4,606, WheTE X S8 <X, szTZ_; f (& )Ag,




= (gLrL] %{22 r2— r}
=1

r=1 r

. 4n*+3n-1
—dim 2
n—o Gn
Ilfdg=dim1{4+i—%}=g
0 n—o G 2n  6n 3
1 2

Example.3: J':xd(x) where [x] is the integral value of x |

Sol. Let f(x)=x g(x)=[x],x[0,3].

Let P:{

Ag, =9(x)=9(%) = g&j_g(%) A ZH{%}

0
n H

S|

-5
=1+2+3 || —|-|—|=0,r#n
n n |

de[x]:G F}— r—_1}:1,r=n,r:2n,r:3n.
0 n n

Example.4; Evalute J'Oﬂlzcos X(sinx)

Solution: Here f(x)=cosn,g(n)=sinx, | =[0,%}



0 Iz 2z (r-V)7z rz  nx
Let P=9—,—,—,..., S e
2n'2n’'2n’ 2n 2n 2n

r
Let & :Z—
n

. 7r Cox(r=1
Also Ag, :sm% —sin (2n ) [Agr = g(xr)—g(xm)}

T . T ¢z
Ag. =2c0S—(2r-1)sin— |2 i =
g, 4n( ) " [z cosxd (sinx) = Lim s(P,Q, f,9)

jozcosxd (sinx _I|m2f (& )Ag,

_I|m2cos—2 cosﬂ in~
n—e 2n 4n 4n

=1im 5|n4—{22008—cosu}

n—> n| 2n 4n

=1 |msm—{2cos—(4r 1)+cos—}

o= 4n| & 4n 4n

nN—oo

. I . 3z 1 (4n —1)7r
=lim|sin—<cos{— »+C€0S{ — p+.....+COS{ ——~—
n—>o 4n 4n 4n 4n

sin—
=lim 003[3—7[+(n—1) } 2N gin = 4 nsin 2 .cos =
n—>o0 4n 2n sin 4n 4n 4n
2n

) T < T
=1im sm—Zcos )+sm— cos—}

: T 7 SmE. z T 7
=lim|{cos| =+-— sin— ¢+ nsin—cos—
n—e 2 4n)_. 7 4n 4n 4n
sin—
2n

=lim| —sin—. sin—+nsin—cos —
n—> n . 7« 4n 4n 4n
sin—
2n




=0+% [Use Iimwzletc}

z ) T
:% ,[02 cosd (sinx) =% |

1.11 PROPERTIES OF RIEMANN-STIELTJES INTEGRAL

Let f eRS(g)on [a,b] then

m[g(b)-g(a)]<[ fdg<m[g(b)-9(a)]
Where m and M are the lower and upper bounds of f on [a,b]
Proof. Let P ={a=Xy, X, Xy, X,_y, X seee X, | D€ @ partition of [a,b] where 1, =[x, x|

Then with usual notations, we have

m<m, <M, <M

= MAg, <mAg, <M, ,Ag, <MAg,

:Zn:mAgr Szn:mrAgr szn:MrAgr SZH:MAgr

=m[g(b)-g(a)]<L(P.f.9)<U[P.f.g]<M[g(b)-g(a)]

But L(P, f,g)<| fdg

And U(P,f,g)zLdeg

Also we know that Lb f dg gf: fdg .. m[g(b)—g(a)]sj; f dg sjf fdg<M[g(b)-g(a)]

Since f is RS- integrable relative to g, we have
b b b b
L fdg=| fdg=[ fdg ~mlg(b)-g(a)]<| fdg<M[g(b)-g(a)]

Cor.11If f eRS (g) then there exists a number is, lying between m and M such that

[ tdg=ulg(b)-9(a)]



Cor. 2 If f is continuous on [a,b] then there exist a number c lying between a and b such that

b
J, fda=1(c)[a(b)-g(a)]
Proof: since f is continuous on [a,b], must take all values between m and M and in particular there exists
ce[a,b]such that f(c)=xwhere m<u<M

, m is lower bound of f on [a,b]

And M is upper bound of f on [a,b]
Cor 3.1f f €RS(g)and of | f (x)|<Kon [a,b], then “': f dg‘s K[g(b)-g(a)]
Proof: we have for all x [a,b] ‘f (X)‘ <K=-K<f(x)<K

=-K<-m< f(x)<m<K

= —Zn: KAg, < Zn:mrAgr < Zn: M, Ag, < Zn: KAg,

r=1 r=1 r=1 r=1

=—K[g(b)-g(a) <L (P.T,9)<U[P. T,g]<K[a(b)-g(a)] =] f dg

<K[g(b)-g(a)]

1.12 ALGEBRA OF RIEMANN-STIELTJES INTEGRABLE

Theorem.14. Let f e RS(g)on [a,b]. Then ¢ f e RS(g)on [a,b]for every constant c and
.[:(cf)dg :cI: f dg

Proof: Let f eRS(g)on [a,b]to prove ¢ f e RS(g)and J':(cf )dg =CI: f dg

Case | if c=0, then theorem is obrious.

Case I1if ¢> 0,1 eRS(g) = ["tdg=| fdg=]"fdg

Also for & >0, ther exists P ={X;, X, X,,...., X, } such that U [P, f,g]-L[P, f,g]<§

Letm, =inf of f (n) inl I =[x_,X ]

r-11 r



M, =supoff (n) inl = cm and cM,are inf of ¢ f (x)and sup of ¢ f (x)in I, respectively

U|P,cf,g[=cU]|P,f,
Therefore, [ g] ‘ [ g]
andL[P,cf,g]=cL[P, f,g]

Hence U[P,cf,g]-L[P,cf,g]=c[U(P,f,g)-L(P,f,g)] <c,Z <& =cf eRS(g)
C

Case lll c <0, Take C=-C, =, >0
So

U[P,cf,g]=(-a)L[P,f.g]

L[P.c.f,g]=(-a)U[P, f.qg]
Using these relations, we have

U[P,cf,g]-L[P.cf,g]<e
U[P,c.f,g]-L[P,—cf,g]
=—c,L(P, f,9)

+cU (P, f,9)
Hence cf e RS(g) ifc<0 =Cl[U(P, f,9)-L(P, f,g)]

—c. =~
&

Hence LBCf dg :j;cf dg :j: cf dg
Now, For ¢ >0 (c=—c,), we have
J':(cf )dg :I:(cf )dg
=jf(—cl) f dg :(—cl)Lb f dg :cj: fdg

Hence .[:(Cf )dg :c_[: f dg

Cor. If f RS (g)then (~f)eRS [*(~f)dg=—] fdgy

b b
Theorem.14. Let f,, f, e RS(g)on [a,b]then (f,+f,)e RS(Q)ZL f.dg +Ia f,dg
Proof: Let f,, f,eRS(g)on [a,b]

To prove (f,+ f,)eRS(g)



Since f,, f, € RS(g),t means for &> 0 there exists partitions P,and P, of [a,b]such that

U[Pl,fl,g]—L[Pl,fl,g]<§ @
And U[Pz,fz,g]—L[Pz,fz,g]<g N ¢
If P is a common refinement of P1 and P2 then we have

U[P,fl,g]—L[P,fl,g]<§_(3)
And U[P,fz,g]—L[P,fz,g]<§_(4)

Now , if f = f,+ f,and P is any partition of [a,b] then

L[P, f,g]+L[P, f,,g]<L[P,f,g]<U[P,f,g]<I[P, f,g]+U[P,f,,g]___ (5)
. (5) implies

U[P, f,g]-L[P, f,g]<U[P, f,g]+U[P, f,,g] -{L[P, f,g]+L[P, f, g]}

<g+g [ from (3)&(4)] <&

= f eRS(g) =(f,+f,)eRS(g)because f="f +T,

AgainU [P, f,g] <_Lb f.dg +§_(6)

And U[P,fz,g]<j:f2dg+§_(7)

Now, f €RS(g)= [ fdg=["fdg<U(P.t,g)
:j:fdg <U[P, f, g]+U[P.,.g], from (5)

<. fldg+§+j: fzdg+§
j:fdg<j: fldg+j: f.dg+e
jb fdg < jb f,dg +jb f,dg, Takinge >0 (8)

Since f, eRs(g)=-f, eRS(9g)
f,eRs(g)=—f, eRS(9g)

Now ["(~f)dg=["~[f,+1,]Jdg =] (~%,)dg+ [ (~f,)dg



= —_[: fdg< —Uab f.dg +I: f,dg } ,(we prove it)
= [ fdg>| f,dg+ f,dg (9)

From equations (8) & (9), we have

- jb f dg = jb f.dg + jb f,dg

=N Lb( f,+f,)dg = I: f,dg +Lb f,dg , Prove

Theorem.15. If f eRS(g,)and f €RS(g,)on [a,b] then f eRS(g,+9,) on [a,b]

And I: fd(gl+gz):j:fdgl+j: f dg,
Proof: Let P ={a =Xy, X, Xy, X,_gs X, X, | D€ @ partition of [a,b]. Let I, =[X,_, % [r=12,....n.

m. =inf of finl,

M, =sup of f inl,

A9, =9(x)—9(x_) whereg=g,+09,
=(91+92)(Xr)_(gl+gz)(xr—1)

Agf :[gl(nf)_gl(xffl)j|+|:92(xf)_ 9, (Xr—l):' :Aglr +Ang
~U[P, f,g]:zn“MrAgr

r=1

:ZMr[Aglr-l_Ang]

= z M Ag,, + z M Ay,

r=1 r=1
U[P, f,g]=U[P,f,g,]+U[P,f,g,]
Similarly, we have
L[P, f,g]=L(P, f,g,)+L(P,f,g,)

Therefore, we have

U[P.f.g]-L[P.f.q]={U[P.f,q,]-L[P.f,g,]}+{U[P.f.0,]-L[P. T,0,]}
e & - feRS(g,)
o5 [,

and f €RS(g,)

<é&

= f eRS(g) on[a,b]

= f eRS(g,+9,) [~9=0,+0,]



Further Jf fdg=infU[P, f,g]

=infU[U (P, f,g,)+U[P.f,0, ]

zj': f dgﬁjf fdg, (1)
Similary I: fdg =supL(P, f,g)

=sup[ L(P, f,9,)+L(P, f,g,)]

<sup[L(P, f,g,)+supL(P, f,g,)]

jb fdg < jb fdg, +jb fdg, _ (2)

From equations (1) & (2), we have

[ fdg = fdg, + [ fag, [ fe RS(g):>LB f dg =jb fdg}

= [ fd(g,+g,)=] fdg,+ ] fdg,.,

Theorem.16. Let f eRS(g)on [a,b].If a<c<b,then f eRS(g)on [a,c], f eRS(g)on

[c.d]and [ fdg =" fdg+ | fdg

Proof: since f eRS(g)on [a,b]foragiven & <0, there exists a partition P of [a,b] such that
w[P, f,g]=U[P, f,g]-L[P.f,g]<e____ (1)

Let P1, P2 be the sets of those points of P which constante the partitions of [a,c]and [c,b]respectively
Then the inequality (1) implies that

w[R, f,g]<eand W[PR,, f,g]<e
Let implies
f eRS(g) on [a,b]
and f eRS(g) on [c,d]

Thus || fdg = [ tg=["fdg___(2)
j fdg = j fdg={ fdg___(3)

And ["fdg =] fdg=["fdg___(4)

Now, Let P1 be any partition of [a,c] and P2 be any partition of [c,b], then (Pl U Pz) is a partition of [a,b]



whose component subintervals are those of P;and Pa.

Hence L(P, f,g)+L[PR, f,g]=L[RUP, f,g]sf: fdg

= L[R, f,g]+L[P, f,g]sj: fdg [ j" fdg :jb fdg} from (2)
By taking the supremum on the left over all P:keeping P> as fixed, we have on [a,b]

LC f dg+L[P, f,g]sj': fdg (using (3))

Now, taking the supremum over all P> and Using (3)

[ fdg+ jcb fdg < jb fdg___ (5)

Similarly, we have
U[R, f.g]+U[PR, f,g]=U[RUR, f,g]ZJ: fdg
=U[R, f,g]+U[R, f,g]ZI: fdg

Inf U[P, f,g]+infU[P, f,g]> fdg

= [ fdg+ [ fdg > [ fdg (6)

From equations (5) and (6), we have
c b b
L fdg + j fdg = j fdg
Cor. If I: fdg exists and if [c,d] =[a,b] then

J'd fdg exists.

1.13 SUMMARY

Let |=[a,b] be a closed and bounded interval then a finite set of real number
P ={Xg, X, Xp,uue-.. s Xn_1s X having the property that
A=Xy <X <Xy < vvverenne <X, <X =Db [Here x,=a and x, =b] is called the partition of [a,b].

A portition P"is called a refinement of another partion P if and only if P* > P i.e., every point P
is used to build P".

If P, and P, are any two partitions of [a,b] then P" = B U B, is called common refinement of
P, and P,.

Let f be a bounded real valued function defined on [a, b]and let P ={a= X, X,Xy,.... X, 1, %, } be



apartition of [&,b]. Let m, =infimum of fin 1, ( Herel, =[x, ,x])

M, =supremum of f in |, respectively, then

L(P, f)=) mAx, =(mAxX +M,AX, +.......+ M AX, )is called the Lower-Riemann sum
r=1

and U (P, f)=> M, AX, =[M,;AX +M,AX, +.....+ M AX ] is called the upper-Riemann sum.
r=1

A function f define on [ &, b]is said to be Riemann integrable over [ &, b ] if and only if for

every ¢>0there exists a o0>0and a number | such that for every partition
P={a=X,,X%,...... X, = b} of [a,b]with |P| <& and for every ¢ hence of &, €[, ;, ]
Zn: fle)(x—x4)-ll<e = 1 :jb f(x)dx ie., lisR-integrable.

r=1

Let f €RS(g)on [a,b]then m[g(b)—g(a)]sj: fdg<m[g(b)-g(a)]

Where m and M are the lower and upper bounds of f on [a,b].

1.14 TERMINAL QUESTIONS

Q.1 Explain the Riemann Integral.

Q.2 Write a short note on Riemann-Stieltjes integral.

Q.3 Let f be abounded function on [a,b]. Let P be a partition of [a,b]. If P*is a refinement of P
then L(P* f)>L(P,f)and U(P* f)<U(P,f)

Q.4 LetP be a partion of [a,b]. Let P, and P, be any two partion of [a,b] such that P =P, UP, then
U[R. F]2L(P, )

Q5 Let f,gbe a bounded function on [ab]and let P be a partition of [a,b]. Then
L[P, f+g]>L[P, f]+L(P,g)and U[P, f +g]<U[P, f]+U[P,g].

Q.6 Let fbe a bounded function defined on [a,b]then for every &>0,35>0such that

U[P, f]<Jf f +eand L[P, f]>_|.: f —& for a partition P of [a,b]with |[P||<&.

Q.7 A necessary and sufficient condition for R-integrability of a function f :[a,b] — R on [a,b] s for
¢ > 0,3 a partition P of [a,b] such that for P and all its refinements 0<U (P, f)-L(P, f)<s.



Suggested Further Readings:

1. M. D. Raisinghania, Integral Equations and Boundary Value Problems, S. Chand Publishing, 2007.

2. Apostol, T. M. Mathematical Analysis. Fifth edition. Wesley Publishing Co. 1981.

3. Walter, R. Principles of Mathematical Analysis. 3rd edition, McGraw-Hill, 1976.

4. Malik, S. C. and Arora, S. Mathematical Analysis. 2nd edition reprint. New Age International
Publishers 2005.

5. Royden, H. L. Real Analysis, Macmillan Pub. Co., Inc. 4th edition, New York, 1993.

6. Somasundram, D. and Chaudhary, B. A First Course in Mathematical Analysis. Narosa Publishing
House, 1996.


https://www.google.co.in/search?hl=en&sxsrf=AJOqlzUU-JBu7FPRUYGVI027whEozIeNVA:1675158480524&q=inauthor:%22MD+Raisinghania%22&tbm=bks
https://www.google.co.in/search?hl=en&q=inpublisher:%22S.+Chand+Publishing%22&tbm=bks&sa=X&ved=2ahUKEwjMy6TRw_H8AhUDTGwGHVmzBfUQmxMoAHoECCEQAg&sxsrf=AJOqlzUU-JBu7FPRUYGVI027whEozIeNVA:1675158480524

UNIT 2 INTEGRATION AND DIFFERENTIATION

Structure

2.1 Introduction

2.2  Objectives

2.3 Integral Function

2.4  Continuity of Integral Function

2.5 Differentiability of Integral Function

2.6 Fundamental Theorem of Integral Calculus
2.7  Absolute Value of Riemann-Stieltjes Integral
2.8 Relation between Riemann Integral and RS-Integral
2.9 Integration of Vector Valued Function

2.10 Function of Bounded Variation

2.11 Total Variation Function

2.12 Summary

2.13 Terminal Questions

2.1 INTRODUCTION

In Riemann integration, integration and differentiation are closely related, as both involve
understanding a function's behavior over an interval. The goal of Riemann integration is to find the area
under a curve y=f(x) over an interval [a, b]. This is accomplished by dividing the interval into smaller
subintervals and approximating the area under the curve in each subinterval. The Riemann sum is then
calculated by adding these approximations. As the width of the subintervals approaches zero (i.e., as the
partition becomes finer), the Riemann sum converges to the Riemann integral of f(x) over [a, b].

Differentiation is not directly involved in finding the Riemann integral. However, differentiation
can be used to analyze a function and its derivative's behavior over an interval. This analysis can help
understand the properties of the function and its integral. Although integration and differentiation are
distinct concepts in calculus, they are closely related in Riemann integration, where both involve analyzing
a function's behavior over an interval to determine properties such as the area under a curve or the
relationship between a function and its antiderivative.



2.2 OBJECTIVES

After studying this unit, the learner will be able to understand:
»  the integral function
»  the continuity of integral function
»  the differentiability of integral function
»  the fundamental theorem of integral calculus

2.3 INTEGRAL FUNCTION

Let f be a function integrable over [a,b]then thde function F on [a,b] given by F(x)=I: f(t)dt,

a<r<b is called the integral function of f.

2.4 COUNTINUITY OF INTEGRAL FUNCTION

Theorem 1. Let f e R[a,b]. Than the integral function F of f is given by
F(x):r f (t)dt, a<z <bis continuous on [a,b]
Proof: Since f is R—integrable over [a,b]. It means f is bounded on [a,b]

= there exists a positive integer M such that ‘f (t)‘ <M, forall te[a,b]

Let a<X, <X, <b. Then we have

‘F(Xz)_F(Xl)‘z

Xf f(t)dt—[" f (t)dt

X

=] f ()t [ f ()

a

=], 1 (t)dt‘
I dt‘ [|f (0] <M ]

<M.|%, = x|

<M.

Now, for a given & >0, let |x, — x| < ﬁ



Thus we have |F (x,)-F(x,)|< M.ﬁwhenever X, = %| <5

Which shows that F is uniformly continuous on [a,b]and hence x is continuous [q,b].

2.4 DIFFERENTIABILITY OF INTEGRAL FUNCTION

Theorem 2. Let f be a continuous function on [a,b]and let F(x):J'aX f (t)dt, for all x<[a,b]then
F(x)=f(x)
Proof: Let f be a continuous function on [a,b]

Let xe[a,b]. Choose h = osuch that x+h e[a,b], Then we have

X+

F(x+h)=F(x)= jhf(t)dt_j:f(t)at

x+h

= [ f(t)dt+ [ F (tyt

F(x+h)-F(x)= j f (t)dt ..(1)

Now, tis given t(x)is continuous on [a,b]
t means There exists a number ¢ €[x, x+h]such that
[ f (t)dt=(x+h-x)f (c) 2)

Clearly c—>x as h—0

From equation (1) and (2), we have
F(x+h)-F(x)=h f(c)

F(x+h)-F(x)

i " ER)
= f(x) ["c&xas h—0]



Check your progress

Q.1 What do you mean by Integral Function?

Q.2 Define the Countinuity and Differentiability of Integral Function.

2.6 FUNDAMENTAL THEOREM OF INTEGRAL CALCULUS

Theorem.3: Let f be a continuous function on [a,b]and let & be a differentiable function on [a,b] such
that  ¢'(x)=f(x);xe[ab].

Then [ ()t =p()-¢().
Proof: Since f is continuous on [a,b] then F(x) =J': f (t)dt,x e[a,b]is differentiable
i.e, F'(x)=f(x) forall xe[a,b] (1)
But it is given
¢'(x)=f(x), forall xe[a,b] . (2)

Therefore from (1) and (2), we have
F'(x)=¢'(x), forall xe[a,b]

= F'(x)-¢'(x)=0, forall xe[a,b]

= SR (x)-4(x)] =0
= F(x)—-¢(x)=c, cissome constant ....(3)
Now we have

F(a)=¢(a)+c

F(b)=¢(b)+c

)
F(b)-F(a)=¢(b)+¢(a)
J



Alternate method: Let P ={a=>X,,X,...., X, X, =b} be a partition of [a,b].
Let I, = [X._, X ].r=12,...r be the sub intervals of AX, =X, —X,_;

Since. ¢ is differentiable on [a,b] = ¢ is differentiable on |,

So by mean value theorem

¢(Xr)_¢(xrfl)

X, — X, 4

r r

:¢’(‘9r)’xr—l <& < Xr

— g[;ﬁ(xr)—qﬁ(xrl)] _ zl f(&)Ax [+#(x)=f(x)= ¢ () = f(e)

X

= ¢(b)-¢(a)= Zl‘, f (& )JAX, { rZ::Ds(xr)—qﬁ(xrl)] =¢(b)-g(a);x,=b,x, = a}

Taking linit |P|— o0, we have
¢(b)—¢(a):j: f (x)dx [ HI ﬂm Z f (&,)AX, _I f (x)dx}

HenceJ' X)dx=4(b)-¢(a)

Solved Examples

1
Example.1: Evaluate _[ (ZXSIn;—COS j dx

gin L
Sol. Let g'(x) = f (x) = X smx xeoq
o ,x=0

Whene g(x)= [2xsin 1—cosl}
X X

Hence f(x)is not continuous on [0,1] but bounded on ]0,1] so f is Riemann integral on [0,1].

Also f(x)is differentiable on [0,1] such that

9'(x)=f(x),vxe[01]

{(2xsm£—cos jdx g(1)—g(0) =sinl.

[ NG sinldx = 2xsinl—cosl}
X X X



2./ ABSOLUTE VALUE OF RIEMANN-STIELTJES INTEGRAL

Theorem 4. If f e RS(g) on [a,b] there | f|e RS(g) on [a,b] and Uab f dg‘ gj;| f [dg
Proof: (i) If _[: f dg > 0 then U: f dg‘ =J.: fdg [ X = x, ifx 20]

J. f dg‘ﬁfflfldg [ f<|f]] (1)

(i) If [ fdg <0

Then —Ibfdg>0

oo 1 v
=[0(-1)dg
[ 1 dg‘ﬁf:“bg Rl 2)

From equations (1) and (2) , we have

U:fdg‘sj:|f|dg.

2.8 RELATION BETWEEN RIEMANN INTEGRAL AND RS-
INTEGRAL

Theorem 8. If f is continuous on [a,b]and g has a continuous derivative on [a,b]such that

g'(x)=o0 forall xe[a,b], then J': f dg =I: f(x)g"(x) dx

Proof: Let f(X)is continuous on [a,b]. Let ghas a continuous derivative on [a,b]such that
g'[x]#0,vxe[a,b]

= g*(x)has same sign positive or negative for all x € [a,b]suppose g*(x)> 0 forall xe[a,b]

= g(x) will be monotonically increasing

Also fg'is continuous on [a, b] as product of two continuous function is also continuous on [a, b] .

:>(fg'l)e R[a.b]



Let P ={a=X,,X,X,... X, } be a partition of [a,b]. Let I, =[X,;, X ],r =1,2,..., X be r'" subinterval of P,
Since g is differentiable on [a, b] , so by Lagrange’s mean value theorem, we have

g [Xr]_ g [Xr—l] — 1
Xp =X

As I:fdg exists.
I:fdg _H“Hm () 9(x)-9(x)]

HPH»OZ f( )A,, from equation (1)

2.9 INTEGRATION OF VECTOR VALUED FUNCTON

Let f,f, . fobe a real valued functions defined on [ab]and et
f_(x):(fl(x),fz(x) ..... fp(x)),foraIIXE[a,b]

If g is a monotonically increasing function on [a,b]then f e RS(g)on[a,b] iff f, € RS(g)on [a,b]for
{=12,...p

In this case, we shall define

Theorem 9. Let T be a mapping on [a,b]into R”and let f €RS(g)on [a,b]for some monotonically

increasing function gon [a,b]. Then ‘f_‘ € RS(g)on [a,b]and U: f_dg‘ sj:‘f_‘dg.

Proof: Let f_:(fl, | P fp),we have

Clearly each f?(£=12,..,p) is RS — integral relative to g and hence so is their sum. Since X’is a
continuous function of X, The square root function is continuous on [0, K]for every real K Let ¢ =|f|,
f = identity function 1 on [a,b] ,g(x)=Xsuch that | f|ol =|f|.



=|f|eRS(g)on [a,b] ( | is continuous on [a,b]=1 ¢ RS(g))

Letﬁz(ul,uz,...,up)and a, =j: fdg,~=12,....,X

Then @ = [ f dg
2 p b b
And [a| =>u?=>u [ f dg
=1 =1

|LT|2 =J':Zp:ui f. dg
i=1

Applying schwarz inequality, we have

(Sab) =X a2 o

-1 -1

With & =u;,b, = f;(x) for a<x<bweget a<x<b
_ j:(iui ; (x)jdg < ["Ja[F ()
i=1

<ol 7o
From equation (2), we have
‘G‘Z < ‘GH:| f|dg [from equation (3)]
If u=0, The theorem holds trirally
If u=0, equation (4) imphis
u[< | fidg

or [ tdg<[’|fidg [from equation (1)]

(1)

(2)

.4

2.10 FUNCTION OF BOUNDED VARIATION

In this section, we will expand the integration theory developed so far by replacing the class of
monotonic functions with the class of functions of bounded variation. We will define this new concept as

follows:

Let f be a mapping of [a,b]inro R” and let p={a=x,X,

A= F (%)= f (%)

...... X, =b} be any partition of [a,b] .Let



Define V [[a,b],P, f |= Z‘Z?(r)‘

P[[ab], f |=supv [[a,b], P,?] ,
The supremum being taken over all partitons of [a, b] .
Then V [[a,b],ﬂ is called the total variation of ~ V [[a,b],ﬂ on [a,b]. The function f is said to be
of bounded variation on [a,b] if and only if V [[a,b], f | <o we shall use V [[a,b], f_] as V ( f_) :

Note: Most of the properties of vector valued functions of bounded variation can be reduced to the case
of real valued function. We shall prove therefore most of the theorems for vector valued functions only.

Theoerm 10. Let f_=(fl, PR fp) be a mapping of [a,b]into R*. Then f is of bounded variation on

[a,b]if and only if each of the function f;is of bounded variation on [a,b]. For i<i<p, we have
_ p
V(f)sv(F)<YV(f)
!
Proof. Let P ={a=X,,%,X,,...,X, =b} be any partition of [a,b]. Then it is easy to see that

1,060 £l <[ 0T Oxc < S0 )05 )

Adding These inequalities for r=1,2,....,n

|£.(%,)— i (%)< Zn:‘?(xr)—T(xH)‘ < Zzp] f, (%)~ f;(x._,)| Taking the supremum, we obtain
r=1

r=1 i=1

The inequality (1) shows that f is bounded vareation iff each of the functions f;is of bounded variation.
Remarks. (i) Every real function of bounded variation on [a,b] is bounded.

Since f is of bounded variation on [a,b], there exists positive number M such that V (f)<M .

Also | f (x)-f(a)|<V (f),vxe[ab]

If follows that |f (x)- f (a)| <M

gut £ (]| (@) <] (1) 1 (2)

Hence |f (X)|<M + f (a),Vx e[a,b] Thus f is bounded on [a,b]

(i) A real function f defined on [a,b] may be continuous with out being of bounded variation.



. T
Consider the function f defined on[0,2] as follows f (x)= {xsm; o Osx=2

0 Xx=0

Consider the partition

Here X, =0, x, =;for r=2,.,n
2n—-2r-1

Then

s 2 2 2 2 2
;|f(xr)_ f (%)= 2n—1+[2n—3+2n—1)+""+(§+gj

And this can be made arbitrarily large by taking n sufficiently larg, since Z% is divergral

= > |f(x.)— f (r,_,)| must be divergral because any series grealer than div is div.
=1

When shows that a bounded function need not be of bounded variation.

Theorem 11: Let f be a monotonic and bounded on [a,b]then f is of bounded variation on [a,b]and
V(f)=[f(b)-T(a).
Proof: Let f be monotonically increasing function on [a,b] .

Then for any partion P ={a=X,,X,... X, =b}, we have
DI (x0)= 1 ()= 201 00) = 10 = £ 00)= 1 () = 1 ()= 1 (a)
Therefore V (f)=sup >’|f (x.)— f (x,,)|= f (b)— f (a)
=
Therefore, we have V (f)= supZ:J f(x )= f (%)

V(f)=1f(b)-f(a)

Supermum being taken over all partition of [a,b]since f is bounded, f (b)- f ()is finite and hence f

is of bounded variation on [a,b]



Theorem 12. Let f amapping defined on [a,b]into R”. Let T existon [a,b] . If ' is bounded on [a,b]
_then f is of bounded variation.

Proof: Let P ={a=Xy, X, %,,.....X, =b}

Let I, =[X_;,X ] be a subinterval of P.

Since f'exists on [a,b] Then by mean value theorem There exists ¢, €[, ,X, ] such that
[FO0) =T O] = e ) (6 —x) (1)

Also [ (x,)

<M,Vx, €[a,b]as fisbounded on [a,b]

From equations (1) and (2), we have

IF(x)- T (%) silm (%, —%.,) <M (b-a)If follows that

Y (T) =sup Y| F(x)— F(x.)| <M (b-a) = fis of bounded variation on [a,b]
r=1
Theorem 13. Let f and g be any complex valued function of bounded variation on [,b]. Then (f +9)
and fg are also of bounded variation on [a,b]

Proof: Let P{a=X,,X,X,,....X, =b} be any partition of [a,b], we have
SJa(f+9)[=2I(F+9)(%) (1 +0)(x.)
= 316)= £ () + (%) -0(x..)
:Zn:|Afr +Ag,|
=i

<3 jaf |+ 3 Jag,

r=1

<V (f)+V(g) (1)
Since the inequality (1) holds for any partition P,
Taking supermum, we have

V(f+g)<V(f)+V(g)<om [+ f,g are of and variation ]
If follows that ( f +g) is of bounded variation.

To prove fg are of bounded variation.
It is given f and g are of bounded variation



= | f (x)|< M and
lg(x)|< N, vxe[a,b]
Let h= fg, then Ah, = fg(x, ) fg(x,,)
1 (1)a(0)- £ 0% a0 )
= () 9(x) = (x)g(xs)+ (%) 9(x)
= £ (x)[a(%)=9(%) [+ a (%) (B = (%))

Ah, = f (X, )Ag, +g(X,_)Af,

DolAah =71 f (x)Ag, +9 (%,
r=1 r=1

< Z:l:|f (X, )|.|Agr|+zzl:|gxrfl|.|Afr|
<M.YJAg, |+ N3 [Af,|
r=1 r=1

<MV (g)+NV(f)
Hence V [ fg]<mv(g)+ NV (f)< +wo
[*M and N are finite and f and g are of bounded variation |

= fg is of bounded variation.

Cor. Let f and g be monotonically increasing on [&,b]. Then (f —g) is of bounded variation on [a,b].

Check your progress

Q.1 What do you mean by Integration of vector valued function?

Q.2 Explain the function of bounded variation.

2.11 TOTAL VARIATION FUNCTION

Let f:[a,b]>R"
Let f be abounded variation on [a,b] Define V; :[a,b] >R

Such that V; (x)=V[[a,x], f | forall x<[a,b]



Then V. is called the total variation of f

Note: It is clear V is monotonically increasing on [a,b] and V. (O)

Theorem 14: let f be a mapping of [a,b]into RPand let f be bounded variation on [a,b]
(i) if a<x<bthen V|[[a,y].T]=v[[ax], T |+v[[xy], T]

(ii) If fisalso continuous on [a,b], then sois V.

Proof: (i) If x=0o0ry=Xthen the result is obrious, Now let a< x< yand &> 0 then there exists a
partition P ={a=Xy,%,X,,... X, =Y} of [ay] such that

)-e <30T (%)~ T (x| <v 2 (1)
r=1
In case x <y, we adjoin it to p and thus get a new partition p * for which (1) still holds.

Then V [[a, n], f_}+V [[X y], f_] is the supremum of Zn:| f (x.)— f (x.)|. for all partitions on [a,b].
r=1

=V (y)-e<v (x)+v[[xy], F]<v, (y)
Taking £ -0, we get = V; ( )-Vv; (X) [[ ] J
[

(if) Assume That f is continuous on ,b] Let a <y <b.We shall show that Vv is continuous at y from

the left. That is we shall show leirywvf?x) ve(y) (2
Now for every x [a,y], we have by (i)

V[[ay] Fl=v[[ax], T J+v[[xy]. F]

or v (y)=ve () vy Tl (3)

Equality of (2) will hold if v| [x,y], f | =0

ossow (1] 7=0 (4

Suppose if possible
v[[x, y]. f_] > & for some >0

And for every x €[a,b]. If we take x=ain (4)

We find that there is a position

|:a = Xor Xpyeeens Xn,y] of [a, y]



Such that Zn:‘ F(x)-F(x,)|>05 (5)
r=1

Remember that X, =Y,X,_; <Y . Since fis continuous, there exists a point &, such that
X,; <@ <Y ,such that
[T (y)-F(x,.)|and | F(a,)— F(x,,)| different by as little as we please.

In particular (5) will hold if y is replaced by some such @, . Thus we have proved that there exists &, < 'y
such that Vv [[a, ai] ) f_] > & . We continuous this process with &, in place of a and so on and obtain

the number a=a, <a, <a, <...... ,a,, <Y,forevery m. such that
v[[arfl,ar], f_] >S5 (1<r<m)

Putting r =1, 2,...., mand adding, we get

Vlilaa] fl+v[[a.a,] F]+..v[[a,.a,]+]>ms

= v[[a, a, |, f_} >md  [using (i) part]

=V|[[a,y]. fF]=v[[aa,].f |+v[a, y]>ms
=V (y)>mdforall m, forall m.

When is inpossible since v+ is bounded

So we reach to contradiction
Therefore, we have

limv|[x,y], f |=0

imv[[xy].7]

Hence IXILT;Vf(X)=Vf(Y)

Vis continuous from the left in the same manner, h can be proved Vv, is continuous from the right on

y €[a,b]Hence v is continuous on [a,b]

Theorem 15. Let fbe a real valued function of bounded variation on [a,b].Then there exist

monotonically increasing functions g and h on [a,b] with g(a)=h(a)=0such that

(i) v (x)=g(x)+h(x)forevery x=[a,b]

Proof. We define g and h by



gzé[vf +f-f(a)]

and ) ~(@) as fisrealvalued f =T
h E[vf ~f+f(a)]

Since v, (a) =0,

implies g(a)=h(a)=0

Also for every x [a,b], we have

9() =V ()+f(x)-1(a)] __(2)

1

And h(x)=§[vf (x)—f(x)+f(a)]_(3)
Now from equation (3)— (2), we have
9(x)=h(x)=f(x)-f(a)

Now from equation (3)+ (2), we have
9(x)+h(x)=v,(x)

Finally if a<x<y<Db, then
29(y) =29 (x)=v, (y)+ £ (¥)=ve ()= f (x) =V, () +v[[x Y] £ ]+ £ (y)=v (%)= £ (x)
=v[[xy] [ ()= ()] (4)

Similarly, we have

20(y)=20(0)=([xy]. 1 ][ ()=t (x)] —®

since | f (y)- f (x)|<v[[xy] f]

From equations (4) & (5) = gand h are increasing

e, Vi (x)=g(x)+h(x),vxe[a,b]

Corrollary. Let f be of bounded variation on [a,b]. Then  (x+0) exists for a<x<band f(x-0)
exists for a<x<b, and the set of discontinuous at most countable.

Note: If «is a real valued function of bounded variation on [a,b]. Then there exist monotonically
increasing function S and v such that

a=LF—-V



= [ fda=[ fds-[ fdv
Theorem 16. Let f and ocbe complex valued functions defined on [a,b] such that (i) f is continuous
and oc is of bounded variation

(ii) Let f is of bounded variation and oc continuous function. Let v be the total variation of «on [a,b]
. Than

‘ <[] f]av
Proof: Clearly | f| is continuous function and | f| is of bounded variation.

b . .
— _f | f | dv exists in each case.
a

Let P={a =Xy, X,X,,.... X, =Db} be a partition of [a,b]then

< |fle)l A | <D 1e]Ay, (1)

Where X,_, <& <X, for 1<r<xAs |p|— Oand The sum of right side of (1) tends to .[b f d ocand the

sum on the right side of (1) tends to Ib| f|dv

‘sj':|f|dv

Theorem 17. Let f and g be complex valued functions of bounded variation on [a,b], and let f be also
continuous on [a,b] then I: fdg = f (b)g(b)-f(a)g (a)—j:g df

Proof: Let P={a=Xy,X,....,X, =b} be any partition of [a,b] and let Q={a=¢,,&,¢,,...&,, =b} be
any intermediate partition of p so that X, <&, <X for r=12,...,n.

Then with usual notations, we have
s(P.Q. f,9) Zf(s)[g )]

=T(a)a(x)-f(e)g(x)+ f(e)a(x)-f(e)a(x)
ot £(2,)0(X,) = F(6)9(%,1)
=1(%)a(%)=9(%)[f(&)+f(s)]
~9(%)| f (&)= f (&) ] =g (%) F (&)= f (e00) ]+ (20) 8(x,)

[adding and subtracting the term f (X,)g (X, ) and rearranging]



n

=f(b)g(b)-f (a)g(a)—ég(xrfl)[f (e)+f(e)]
=f(b)g(b)-f(a)g(a)-RS[Q,P,q, f] (1)

If ||P|—>0,then |Q]—>0 and consequentily RS (P,Q,f,qg) —>I: fdgand RS
(P.Q. f.9)— [ gaf

From equation (1), we have

[} fdg = (b)g(b)- T (a)g(a)-[. gdf

Theorem 18 (First Mean value theorem) If f is continuous and real and g is monotonically increasing on
[a,b] then there exists a point ¢ such that a<e& <b, and _f: fdg="f(g)[g(b)-g(a)]

Proof: Consider
m=inf {f(x): a<x<b}
M =sup{f(x):a<x<b)}
Then we have
m<f(x)<M (a<x<b)
:>m_[: dg sj: fdg < Mj:dg

b
=mlg(b)-g(a)]=|, fdg=M[g(b)-g(a)]
Hence There exists a number x, m< u <M such that
b
J. fdg=xu[a(b)-g(a)]
Since f is continuous on [a,b], t takes all values between its infmum m and supremum M on [a,b]in

other words, 3 a point ¢ in [a,b] for which
f(e)=u

b
= |, fdg="f(s)[g(b)-g(a)]
Theorem.19: (Second Mean value theorem):

Let f be monotonic and let g be real, continuous and of bounded variation on [a,b]. There exists a point
¢ €[a,b]such that

[ fdg=rf(a)[a(s)-g(a)]+f(b) a(b)-0(e)]



Proof: We know if f is monotonic, g is real, continuous and of bounded variation on [a,b] then
[ fda=1(b)a(d)-f(2)g(a)-[ocf __@
Since g is continuous so by Ist mean value theorem
[adf =g(e)[ f(b)-f(a)] __(2) for z[ab]
From equations (1) and (2), we have
[, fdg="f(b)g(b)-1(a)g(a)-g(s)[ (b)-T(a)]
= f(a)L9(e)-(a)]+ F(b) 9 (b)-9()]

Theorem.20: Let fand ¢ be continuous on [a,b]and ¢ be increasing on [a,b]. If F is the increase
function of ¢, then

b #(b)
[, f(0dx=[7 £ [F(y) I (y)
Proof: Let P ={a=Xy,X,....., X, =b} be any partition of [a,b] Let y, =¢(X,)sothat r, =F (y,)
r=0,12,...,n

Consider the partition Q ={¢(a)= Yy, Y;,-.... Y, =#(b)} of [a,b]

We put h(y)=f[F(y)]

:>Zf (X — X, Zf[F y,) ][F (¥, )=F (V. 1)}
_ih (Y[ (%)~ F (¥)]

r=

Since ¢ is continuous on [a,b]
=> ¢ is uniformly continuous on [a,b]=|P|=0 [Q|=0

Thus if we let [P =0so0 Q] =0 then

> (4 (3 %)= [ F (x)o

and Zh<yr>[F<yr>—F(yroHﬁjﬁ f(F(A(F(y))  [h=fF].
Hence [ (x)ax= [ £ [F (y)]dF (¥)



2.12 SUMMARY

Let fbe a function integrable over [a,b]then thde function F on [ab] given by

F(x):Lﬂ f(t)dt, a<z<b is called the integral function of f.

Let fe R[a,b], Than the integral function F of f is given by

T

F(X):L f (t)dt, a<z<bis continuous on [a,b]

Let fbe a continuous function on [ab]and let F(x):J'aX f (t)dt, for all xe[a,b]then
F'(x)="f(x).
Let fbe a continuous function on [a,b]and let & be a differentiable function on [a,b]such that

¢'(x)=f(x);xe[a,b].
Then [ f(txt =4(b)-4(a).

If f €RS(g) on [a,b] there |f|e RS(g) on [a,b] and U: f dg‘ SI:| f|dg.

2.13 TERMINAL QUESTIONS

Q.1 Explain the Continuity and Differentiability of Integral function.

Q.2 State and prove the fundamental theorem of integral calculus.

Q.3 Show that the relation between Riemann integral and RS integral.

Q.4 If fis continuous on [a,b]and g has a continuous derivative on [a,b] such that g*(x)#=o0 for
all x[a,b], then. J':) f dg =Lb f(x)g"(x) dx

Q.5 Let f be of bounded variation on [a,b] Then f (x+0)exists for a<x<band (x—0)exists
for a< x<b, and the set of discontinuous at most countable.

Q.6 Let fand gbe monotonically increasing on [a,b]. Then (f —g) is of bounded variation on
[a,b].
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UNIT-3 UNIFORM CONVERGENCE OF SEQUENCE

Structure

3.1 Introduction

3.2  Objectives

3.3 Uniform Bounded Sequence

3.4 Uniform Convergence of Sequence

3.5 Uniform Convergence of a series of functions
3.6  Cauchy’s Criterion for Uniform Convergence
3.7  Tests for Uniform Convergence

3.8 Uniform Convergence and Integration

3.9  Uniform Convergence and Differentiation
3.10 Summary

3.11 Terminal Questions

3.1 INTRODUCTION

Uniform convergence plays a crucial role in the theory of integration, particularly when dealing
with sequences of functions. In some cases, the limit of the integrals of a sequence of functions can be
expressed as the integral of the limit function. This is known as the theorem on interchanging limits and
integrals. However, this interchange is not always valid; uniform convergence is a sufficient condition for
this interchange to hold. For series of functions, uniform convergence is essential for ensuring that the

series can be integrated term by term.

Uniform convergence is a powerful concept in integration theory, as it allows us to extend
properties of individual functions to sequences or series of functions, and it ensures the continuity of the

limit operation with respect to integration.



3.2 OBJECTIVES

After studying this unit the learner will be able to understand the :
»  Uniform bounded sequence
»  Uniform convergence of sequence
»  Uniform convergence of a series of functions
»  Cauchy’s criterion for uniform convergence
»  Tests for Uniform Convergence
»  Uniform Convergence and Integration
>

Uniform Convergence and Differentiation

3.3 UNIFORM BOUNDED SEQUENCE

A sequence of functions T, (x), f,(x), f5(X),....... , £, (X) defined on a domain D is said to
be uniformly bounded if there exists positive number m such that

|f,(x] <M forall n and forall xeD.

For example, Let fn(x):sin nx, defined on real x is uniformly bounded by I.

3.4 UNIFORM CONVERGENCE OF SEQUENCE

A sequence {fn} of functions defined on [a, b] is said to converge uniformly to a function f if for
any e>0there exists an integer m such that

|f,(x)- f(x)<e, forall n>m and for all x<[a,b].

Here m does not depend upon x .

Note: A uniformly convergent sequence is always a convergent sequence but converge is not necessarily
true on [a,b].

3.5 UNIFORM CONVERGENCE OF A SERIES OF FUNCTIONS

A series of functions ), f, converge uniformly on [a, b] if the sequence < S, > of its partial sums,
defined by

S,(x)=>_ f;(x). converges uniformly on [a,b].
i=1



Thus a series of functions Z f, converges uniformly to f on [a, b] if for any >0 and for all
x €[a, b], there exists a positive integer m such that

S, — f|<e, forall n=m.

3.6 CAUCHY’S CRITERION FOR UNIFORM CONVERGENCE

Theorem 1. A sequence of functions < f, > defined on [a,b] converges uniformly on [a, b] if and only

if for e>0 and for all x [a,b] there exists a positive integer m such that |f,,,(x)- f,(x) <e, for all
n>m,l>1

Proof. Let < f, > be a sequence of functions defined on [a, b] “if part”

Let < f, > converges uniformly to f then for e>0 and for all x [a,b] there exists positive integers
m,, m, such that

£, (x)- f(x)|<§ ,forall n>m,

And |f.,(x)- fn(x]<§, forall n>m,,1>1

Let m=max, (m,, m, ) then
[ £t ()= £, 0] =] £ () = £ () + £ (x) = £, (x)
<|f, (%)= £} + |, () f(x)

S S
<—+-=
2 2

<e,forall n>m,1 >1
Only “if part”, suppose |f,., (x)- f,(x) <e, forall n=m,1>1to show < f, > convergesto f on [a,b]
Since |f,.,(x)- f,(x] <e, forall n>m,l>1
= < f, > is a Cauchy sequence

= lim f,(x) exists for all x<[a,b]

n—o0

Let lim f,(x)=—f(x), forall x[a,b]

Keeping n fixed and taking | — oo, we get

|f,(x)— f(x), forall n>m and for all x<[a,b]

=< f,(x)> convergesto f(x) uniformly on [a,b].



Corollary. A series of functions »_ f, defined on [a,b] converges uniformly on [a,b] if and only if for
every e>0 and for all x [a,b] there exists a positive integer m such that

o (X)+ fro(X) 4t + 1, [<e, forall n=m and all xe|a,b].

Check your progress

Q.1 Define the uniform bounded sequence?

Q.2 Explain the uniform convergence of a series of functions.

Example.l. Show that the sequence <Xx" > is uniformly convergent on [0,k] k <1 and only
convergent on [0, 1].

sol. Let f (x)=x"

Let f(x)=lim f (x)=lim x"

n—oo n—o0o

lim x" =1, if x=1
O, If OSX<1 n—o )
= . Remember =0if x<1
1 if x=1

=ooif x>1
Thus the sequence < x" > converges to a discontinuous functions on [0, 1].

Further, let e<0 be given then for 0 < x <k <1, we get
|, (x)- f(x)=

=x"as 0<n<1

<e

x”—O‘

. ( j 1 1 1
=X"<e=|—=| >==>nlog —>log—
X e X e

The number € | increase as x increases.




Its maximum value is € lin Jo, k[

Let m be an integer =
log —
d k

Then. | f,(x)— f(x) <e,forall n>m and 0<n<1andat x=0.
|,(x)- f(x)=0 < forall n>1
Thus for any >0 there exists a positive integer m such that
|f,(x)— f(x)<e, forall n>m and forall xe[0, k], k <1.
Therefore < f,(x)>converges uniformly on [0, k] k <1

IogE

But €l 50 as x—1
log =
X

Therefore it is not possible to find an positive integer m such that

|f,(x)- f(x)|<e, forall n>m and for all x<[0, 1].

Hence < f,(x)> is not uniformly convergent on [0, 1].

Here the point 1 is a point of non uniform convergence.

Example 2. Show that the sequence < > is uniformly convergent in any interval [O, k], k>0.

X+n

Sol. Let < f, >=< > be a given sequence

X+n

Let f(x)=lim f, =lim —— =0, forall x<[0, k]
n—oo n—-o X 4+ N

Therefore, for >0, we have

[ fo(x)- T(x)|=

1
=0
X+n

<e

1
<e=>X+n>-—
X+n €

1
=>N>—-—X
€



1
Maximum value of [— - Xj is i
€ e

Let m> 1 then
S

|f,(x)— f(x)<e forall n=m

Hence the sequence is uniformly convergent m[O, k].

. nx
Example 3. Test for uniform convergence, the sequence < f, > where f”(x):m for all real x |
+

nx
Sol. Let f,(X)=———
(4 1+n°n®
Now f(x)=lim f,(x)= lim %:o
n2[2+x2}
n
Now for €>0,
nx I
|, (x)- f(x)= [y —0/<e forall n>m, mis positive integer.
nx X
1+ n?x? {1 2}
n| = +X
n
1
Put X=—,N=p
p
Z<ese>

We can take €e— 0 i.e. if we take e=% then %>%

=< f, > is not uniformly cost.

2

Example 4. Show that the series Y. f, whose sum to nterms S =nxe" is convergent and not
uniformly convergent on any interval [0, k] k >0

2

Solution:- Let S® = nxe

Now S(x)=lim S, (x)= lim

n—o0 n—ow A NX
e



S(x)=lim n

=0
oo 2nx+n2( )+ llllll ,forall x>0

- Thus Y f,(x) converges to 0 on [0, k]
Checking of uniform convergence, for e>0, we have
|f,(x)— f(x)<e, ¥n=m, mis positive integer

hx

2

enx

-0

<g, Vn=>2m

Take nx® =1:>n=i2:>x=i
X Jn
Take N=moO, X=

1
Jmo

1
S.Mmo.— < e.e

Jmo
Jmo<ec

mo<e? e?
i.e. n<e®e® but n must be >m
which is a contradiction

< Z f,(n)> is not uniformly convergent.

3.7 TESTS FOR UNIFORM CONVERGENCE

Theorem.2. (Mn-Test): Let < f, > be a sequence of function such that lim f,(x)= f(x) forall x [a, b]
and let M= sup | f,(x)- f(x)[. Then f, — f uniformly on [a, b] iff M, >0 as n— oo

Proof: Necessary condition. Let the sequence < f, > converge uniformlyto f on [a, b] than for >0
there exists a positive integer m (independent of x ) such that

|f,(x)— f(x)<e, forall n>m, forall xe[a, b]

= sup |f,(x)- f(x)|<e, forall n>m,



=M, =0 as n—w[-M, =sup|f,(x)- f(x)]]
Sufficient condition. Let M, =0 as n »> o

Then for €>0, there exists a positive integer m such that

M, <e, forall n>m,
= sup|f,(x)- f(x)<e, forall n>m,
=|f,(x)- f(x}<e, forall n>m,

= f, convergesto f uniformly on [a, b]

Examples

X . i .
Example.5. Show < 1 > >, X is real, converges uniformly on any closed interval I.
+ NX

. X
Solution. Let fn(X)z1+ I~
f(x)=Iim f =i =0
(x)=lim ,(x) lim 7 =0, forall xek
sup|f (x)— f(x)|=su -0
Now sup|f, (x)— f(x)] p1+nx2 ‘

f(x)=—

1+nx?

F1(x)= (1+ nxz)l— X, 2nX
(1+ nx2)2

f'(x)=0=2nx® =1+ nx>

1
nx? =1—x=+—

n
f(x) is maximum at X = -
Jn
1
2
1

lim M, =Iimi=0

n—o0 n—oo 2\/ﬁ



=M, —>0asn—->w

Soby M, test < >

1+ nx?®

Converges uniformly on any closed interval I.

Example.6. Show < nx(1—x)* > does not converge uniformly on [0, 1].

Solution. Let f,(x)=nx(1-x)"

F(x)=lim f,(x)= _m___M (Ej

n->o n—o (1-x)" (o
= ) logll—x)
—imx(_x)n= 1 Xy —oasi-x)< Xe
_rl1—>oolog(1_x) 0 { n—>oo(l )" =0as(l )1} [0, 1]

1
"M, >—an—-ow
e

Hence the sequence < f, > does not converge uniformly on [0, 1]. Hence 0 is the part of non uniform
convergence.

Example.7. Show that the sequence < f, > where fn(X)= nxe ™ , X0 is not uniformly convergent on
[0, k] k>0.

Solution. Here we have

f(x)=lim f, (x)=lim nxe ™

.onxo nx
=lim — & =lm 1
e 1+(nx2)+\/_(nx2)2
n
. X X
f(x)=1 = =0
(X) nmx2+(nx2),xz+n2( )+ ..... X2 + o0

Thus f(x)=0, V xel0, 1]



Now M, =sup{f,(x)- f(x):xe0, 1]}
=sup {nxe*nXZ }
f(x)=nxe™

f'(x)= n[l.(_anX2 rxe” (- 2nx)}

f'(x)=0=>n-2n°n*=0 1-2x2n=0

, 1 1
XS =—=>X=—=

2n J2n

2

nxe” =xnfl—xn® +...]=(nx)

1 1

X=—.—=

2n

D

1 1

=n.—.—=

N
>
D

limM_, > as n— o

n—oo

Therefore, < f, > is not uniformly convergent on [0, k].

Theorem.3. (Weierstress’ s M test): A series Z f, of functions will converge uniformly on [a, b] if there

exists a convergent series Z Mn of positive numbers such that
|f,(x)|<Mnforall n=mand x [a,b].

Proof. Let Y f, be a series of functions defined on [a,b].
Letz M, be a convergent series of positive numbers such that

f,(x)|<M,, Forall n>m,vxe[a,b]

To prove Z f. converges uniformly

It is given ZMn is convergent so for &£>0,we can obtain a positive number m such that

‘M +M . +...+M

n+3 n+p

+M <g,¥Vn=>m,p>1 (1)

n+1 n+2

Also |, (x)|<Mn (2)

From equations (1) & (2), we have



fra () Frp () e Foy OO <] By (0] | B ()| et |

<M +M o, +e M, <&, Vn2m, p>1,Vxe[a,b]

n+1 n+2

<Y f,(x)converges uniformly on [a,b].

Example.8. Show that the series Z3X sin 4% converges absolutely and uniformly on ]a, oo[ ,a>0
X

Sol. Let f (x)=>_3"si

e]a,oo[,a>0

we have
U, =3"sin—
U,,,=3"sin 1
4.4"x
sin
lim|=nel =3 lim{ —4- X { 4"x>1=-—-—<1
U, sin—— X
X
3 . ) )
:Z<1 sinn@ =@ if 0 is small
] 1
SII‘\4n+1 :44n
Further, for n>m X 4 X
.1 1
sin =
4"x  4"x
sin 1 < 1 < 1 3"sin 1 |<4m.(§j ,Yn>m
4"x  4"x 4" 4"x| 4

3. .
But > 4" [Zj Is convergent series

IS convergent as any series les than convergent is convergent

<> 3si
-

Theorem.4. (Abel’s Test): The series Y U, (X)Vv,(X) will converge. Uniformly in[a,b] if

( j (by weser strass test)

M ZU |s uniformly convergent in [a b]



(ii) The sequence <U; > is monotonic for every X « [a,b]

(iii)y The sequence<V,(X)> is uniformly bounded in [a,b]i.e. there exists a positive number k
(X)) <k, vx <« N,vxe[a,b]

Proof. Let
JR(X)=U ., (X)+U,, (X)+...+U_,  (x),vxe[a,b]
Then

U 1 (X) Vot (X) U o () Ve (X) + e (X)V (X)

Take R, (X)=Uy.4 (¥)
R ()=, (X)+U,5 ()= U, (0) =, R, (0 R, (%)
Ry (02U, (X)+U, (%) +U,5(X) U, (0) = R, (x) R, (X)and so on.
Ry (00 ()4 2R, ()= Ry (1) ]V 2 (X)
+[ 4Ry (%) = Ry (%) Va5 (X)
bt (R =2 RN (1) =U g (Vi (0) e U, (Ve () (1)
Since D U, is uniformly converges = for £>0,3me Nsuchthat_____ (2)
[p% ()| <&, vn=m,p=1 ,xe[ab]

Also <V, (x)>is uniformly bounded =>for k >0, we have

vo(X)| <k, ¥neN,vxe[ab]____ (3)
A (Una™No U, V)
S AR AR A P VAR
< g[ A BN VA :|+g Vo,
<e.2k+sk.
<3ek,vn=>m, p Zl,XE[a,b]
Hence ZU Converges uniformly in [a,b].

3.8 UNIFORM CONVERGENCE AND INTEGRATION

Theorem.5. If a sequence < f, > converges uniformly to f on [a,b]and each f, is inferable on [a,b]and



the sequence <_[X f at> converges uniformly to j” f dton [a,b] ie. j: f dt= Iim.[aX f_dt, for all

xe|a,b]
Proof. Since f,converges to f =for &£>0 There exists a positive number m such that

f, (x)— ()<

n>m___ (1)

3(bg—a)’

In particular ‘fm(x)— f (x)‘< d

?,(b——a)—(z)

Since f,is integrable we choose a partition P of[a,b] such that
U[P.L]-LP IS (3)

From (2),we have

f(x)< fm(x)+3(bg—a)

=U(P.1)<U(P.T,)+5__(4)
Also from (2), we have

f(x)> fm(x)_s(bg_a)

=L(P.)>L(P. 1) -2 (5)

From (3), (4) and (5), we have

U(P.f)-L(P.f)<U(P.1,)-L(P.f,)+
& 2¢
<—+—=
3 3
<é&

This implies that the function f is integrable on [a,b]. Now since the sequence < f, > converges

uniformly to f, for a given & > 0 there exists an integer m such that for all x €[a,b].

&
£ (x)=f(x)|<—2— forall n>m
() (x)‘<b_a ora

Then for all x <[a,b]and for all n>m, we have

Ji(f- fn)dt‘

[ fd-['t, dt‘:




S REERARCY
&

<E.(x—a)

<e, xela,b]

This implies that _[X f. dt converges uniformly to IX f dt over[a,b],

ie. [ fdt=lim|"f dt forall x<[a,b].

n—woda

Theorem.6. (Term by Term integration) If a series Z f, converges uniformly to f on [a,b] and f,is

continuous on [a,b] then f is integrable on [a,b]and the series

Z(J: fndt) converges uniformly to IX f dt for all values of in [a,b]i.e.,

[ fat=>["f,dt forall x«[ab]
r=1

Proof. Since the seriesz f, is uniformly convergent to f on [a,b] and each f, is continuous on [a,b],

the sum function f is continuous and therefore it is integrable on [a,b].

Further since all the functions f, are continuous, the sum function Z f, (x) of finite number of functions
r=1

is also continuous and integrable on [a,b]and

zl:j f dt:ja; f dt

Since the series Z f, is uniformly convergent, for a given ¢ >0, we can obtain a positive integer such
that for all x < [a,b]

‘f—Zf

=1

<b— yforall n>m

and

Lfdt—;;ja frdt‘ ‘j f—Z;fr dt

This implies that Z(_[: fndt)converges uniformly to J-X f dton [a,b]
n=1 a

i.e.



[(fat=>"["f,dtforall xe[a,b].
n=1

3.9 UNIFORM CONVERGENCE AND DIFFERENTIATION

Theorem.7. Let < f, > be a sequence of real values functions defined on [a,b] such that
(i)  f,isdifferentiable on [a,b] forn=1,2,3,...
(i) < f, >converges at least one point x, <[a,b]

(iii) The sequence< f,'> converges uniformly on [a,b] Then the given sequence< f, > converges

uniformly to a differentiable limit f and

lim f_(x)=f'(x),forall xe[a,b],

n—owo

Proof. Let ¢ > 0then by the convergence of < f, (xo) > and by the uniform convergence of < f,'>on

oo (%) - fn(xo)‘<§,for all

[a,b] there exists a positive integer m such that for all X < [a,b],we have

n>mp>1__ (1)

And

- , £
fn+p(X)—fn(x)‘<m,forall nzm,px1 2)

Applying Lagrange’s mean value theorem to the function ( fop— 1o ) for any two points x and y of [a, b]

and for some ¢ between x and Yy forall n>m, p>1, we have

fus (0= £, (0~ oy (9)+ (W] (£) £, (2)

<2 [Px-yl<(b-a)]
Frep (X) = £ (0)] = Foay (1) = £ (%) = Foy (%) + B (%) + Foy (%) = B (%)

<[ () = T (¥) = Fap (%) () +[fary (%) = T (%)

Now

E €&
<—+=
2 2
<& I )]
This implies that the sequence < f, > converges uniformly on [a, b]. Let it converges to f say For a fixed

xon [a,b]and ye[a,b], y=x wedefine



F (y)=w,n=1,2,3____(4)

f —f
And F(y) LA et R ()
y—X
Since each f, is differentiable for each n
limF, (y)=f,(x)___ (6)

y—X

Therefore,

oo (V)= Fo (¥) = —

A

01O 0010

fn+p (Y)— fn+p (X)_ fy (Y)+ fy (X)‘

<

Z(b_a),Van, p>1 (Using (3))

This shows that < F, () > converges Uniformly to F (y)on [a,b]for ye[a,b],y#x.

Since the sequence < f, > converges to f, from (4), we have

fo (y) = (%) f(y)—f(x)z,:(y)_

limF, (y)=li =
nl—rl(]) n(y) nl—r)TjO y—X y_x

Thus the sequence < f, () > converges uniformly to F(y) on [a,b]for ye[a,b], y=x.
Using (6) we have
limF(y)=Ilimf (x)=a(x)

y—>X n—w

This implies that lim F ('y)exists. Therefore (5) implies that f is

y—X

differentiable and limF (y)= f'(x)

y—X

Hence f'(x)=G(x)=lim f, (x)

n—o0

Theorem.8. (Term by term differentiation): Let a series Z f, of differentiable function on [a, b] such that
it converges to f on [a,b] and each f;is continuous on [&,b]and the seriesz f. converges uniformly to

Gon [ab]then the given series Y f, converges uniformly to f on [a,b]and f'(X)=G(x)or

o0

%g fn(x)=2% f,(x),forall xe[a,b].

n=1

Proof: Since the series Y _ f'(X) of continuous functions converges uniformly to G(x)on [a,b], its sum



function G is continuous on [a,b]and hence the function I

.[ (t)dt=G(x), forall x«[a,b]___ (1)

For every X «[a,b], we have

dt is differentiable and

Now each function fis continuous, so it is integrable on [a, b] and therefore by the fundamental theorem

of calculus, we have

LX fi(t)dt="f (x)-f,(a).,forall n>1, xe[a,b].

Therefore

ni:j:f )t = £ (x)—  (a),Wx[a,b]

Further since the series Z f ' of integrable functions converges uniformly to G on [a, b] , therefore term

by term integrable is valid i.e.

I dt_ZI (t)dt,vx e[a,b]

Proof (1), (2) & (3) we have f'(x)=G(x),Vxe[a,b]

ie. —Zf (x)= Z—f (x), vx e[a,b].

i.e. term by term differentiation is valid.
Examples
Example.9: Show that the series for which

fn(x):

1+nx

1
1+ nx

Solution. Given f (x)=

Let f(x)=limf (x)

n—owo

then f(x)=lim

=0, for xe[0,1].
n—=14nx

. 1 nx
And lim| f (x)d, —lim |
n—0J0 n—»v0 1 4+ NX

dx

can be integrated term by term in [0,1] although it is not uniformly convergent.



.1 1
-im gt = 115 0
1

Thus I: f (x)dx =lim 01 f, (x)dx

n—o

Hence the series can be integrabled term by term. It can be series easly that 0 is a point of non-uniform
convergence of the series.

Example.10: Examine for term by term integration the series for which fn(x):nx,;”"2 for
Xe[O,l].

Solution. Let f(x)=limf (x),

n—owo

. - . —nx? . nx
given f,(x)=n¢™ =limnxe™ =lim
n—w n—o @M
: nx
:Ilm—“+ ............ 0<X<1
n—oo 2 n-x
1+nx"+ 2
) 1
= lim————
el ™
nx |2

f (x) =0, for finite values of x

Jj f (x)dx=Jdex=O.

. 1 . 1 2
And lim| f (x)dx=Ilim| nx;™ dx
n—wJ0 n—»o J0
. [ 1 T
=lim| —=e
n—o 2 0
.1 1
=lim=|1-¢" |==
n—>002|: ] 2

1 R 1
Thus J'O f(x)a, # MQJ.O f, (x)dx
Hence term by term integration over [0,1] is not verified. Also convergence

can not be uniform on[0,1] But if we consider the interval [c,1],0 <c <1then

oc Olfn(x): oc lnxe’”xzdx

n—owo n—ow JC

= Iim[e’nc2 —e’”} =0

n—oo



Thus I: f (x)dx = lim 01 f, (x)dx

n—oo

Hence term by term integration is justified.

nx

Example.11: Show that the series for which f_ (x)= T
+n®x

X e [0,1] can not be differentiated term

bytermat x=0

nx

Solution: Given f (X)=———
o (X) 1+n%x?

-~ F(x)=lim £, (x) = lim—=

n—>o0 now (] )
—+Nn
n

=0for xe[0,1]

S f'(x)=0
nA 0
Also  1}(0)=lim fn(o”'g— AU Lo’
—lim—_  =lim—" _=n

h-01+4+n’h®  h-01+n*h?
. . 1 i _
~lim £ (O)—L@On—w.
Thus f'(0)=lim f;(0)
Therefore, the given series can not be differentiated term by term by at x =0 _

Example.12: Show that the sequence < f, >where

fa(x)

To a function f on [0,1] and the equation  f '(x)=1lim f () is true if x = 0and false if x=0.

n—ow

> converges uniformly

1+ nx

Solution. It can be show easily that the sequence < f, > converges uniformly to zero for all real x

Now f(x)=Ilim

2 =0
o]+ nxX

Where x=0  fi(X)=——=

r|1!>2 fnl(X):!]mm=o

Thus  f'(x)=0=Ilim f;(x)



Hence equation is true

When x =0 fr(0)=1

n

Thus  f'(0)=lim f;(0)

n—o0

Hence at x = 0 the equation

f'(x)=lim f;(x)is not true

n—oo

. asinnx L . . %
Example.13: Show that the function )| el differentiable for every x and its derivative is )
n=0 n=0

Cos nx
2

sin nx
3

Solution: Let f(x):i -
n=0

And u, (x)=

Then up (X)

iui (x) _ i COS NXx

2
n=0 n— N

€0S Nx
Now

1
<— forall x
n

1.
and Z—Z is converges.
n

Hence by weirshass’s M test the series ZUn (x)is uniformly convergent for all real values of x and
therefore the series ) U, (x)can be differentiated term by term.

Hence f(x)= YU} (x)= -5

2
n=0 n=0 n

Example.14. Show that the function

f,(x)=4-n

is not uniformly convergent on [0,1]



Solution. The given sequence converges to f where f (x)=0,Vx <[0,1].
1 é 2/x 1

Also fo fd =IOX nexdx+.|‘1/X (—n‘*x+2n)dx+_[2lxo.dx
1 . 1

And [ f (x)dxlim [ f, dx

Hence the sequence < f, > cannot converge uniformly on [0,1] .

3.10 SUMMARY

A sequence of functions f,(x), f,(x), f5(X),....... , T.,(x) defined on a domain D is said to
be uniformly bounded if there exists positive number m such that

|f,(x)<M forall n and forall xeD.

A sequence {f,} of functions defined on [a, b] is said to converge uniformly to a function f if for
any €>0 there exists an integer m such that

|f,(x)- f(x) <e, forall n>m and for all x<|[a,b].
Here m does not depend upon x .

A series of functions Z f, converge uniformly on [a, b] if the sequence <SS, > of its partial sums,
defined by

S,(x)=> f,(x). converges uniformly on [a,b].
i=1

Thus a series of functions Z f, converges uniformlyto f on [a, b] if for any €>0 and for all xe [a, b]
, there exists a positive integer m such that

S, - f|<e, forall n=m.

3.11 TERMINAL QUESTIONS

Q.1 Explain the concept of uniform convergence.
Q.2 Examine for term by term integration the series for when f, (x)n*x[1-x]", x «[0,1]

Q.3 Examine for the continuity of the sum function and for term by term integration the series where



xthterm is n’xe™ —(n—1) e " for all x«[0,1].

log(1+n°x*)
Q.4 Show fn(X)=TIS uniformly convergent on [0,1].

Q.5 Examine for term by term integration the series " x"*(1-2x")in [0,1].
Q.6 Let for the series Y. f,(x), fn(x):z—izlog(1+ n‘x’). Show that the series » U, (X)does not

converge uniformly but the given series can be differentiated term by term.

Suggested Further Readings:

1. M. D. Raisinghania, Integral Equations and Boundary Value Problems, S. Chand Publishing, 2007.

2. Apostol, T. M. Mathematical Analysis. Fifth edition. Wesley Publishing Co. 1981.

3. Walter, R. Principles of Mathematical Analysis. 3rd edition, McGraw-Hill, 1976.

4. Malik, S. C. and Arora, S. Mathematical Analysis. 2nd edition reprint. New Age International
Publishers 2005.

5. Royden, H. L. Real Analysis, Macmillan Pub. Co., Inc. 4th edition, New York, 1993.

6. Somasundram, D. and Chaudhary, B. A First Course in Mathematical Analysis. Narosa Publishing
House, 1996.
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UNIT 4 POWER SERIES

Structure

4.1 Introduction

4.2  Objectives

4.3  Power series

4.4  Cauchy’s Theorems on limits

4.5 Radius of Convergence

4.6 Uniform Convergence of Power Series
4.7  Abel’s Theorem

4.8 Tauber’s Theorem

49 Summary

4.10 Terminal Questions

4.1 INTRODUCTION

Power series are commonly used in mathematics, especially in calculus and analysis, for functions
that can be expressed as a series expansion around a certain point. They're also used in various other areas,
like physics and engineering, for their ability to approximate functions and solve differential equations. In
real analysis, power series have several applications, particularly in the study of functions and their
properties. Power series can be used to approximate a wide range of functions. By using the Taylor series
expansion of a function, one can approximate the function locally around a point. Power series can help
analyze the convergence and continuity of functions. Understanding the behavior of a function at its power
series expansion point can provide insights into its convergence and continuity properties.

Power series can be differentiated and integrated, term by term, within their interval of
convergence. This property is useful for finding derivatives and integrals of functions represented by
power series. Power series can be used to solve differential equations. By substituting a power series into
a differential equation, one can solve for the coefficients of the series and find a solution to the differential
equation. Power series are crucial in the study of analytic functions. A function is said to be analytic at a
point if it can be locally represented by a convergent power series. Analytic functions have many nice
properties, and power series provide a way to understand and analyze them.



4.2 OBJECTIVES

After reading this unit the learner should be able to understand about the:
»  Power series and Cauchy’s theorems on limits
»  Radius of convergence and uniform convergence of power series

>  Abel’s theorem and Tabuler’s theorem

4.3 POWER SERIES

A series of the type
Ya(z-2) =a,+a,(2-2, )+ e +a,(2-2,) oo is called a power series.
n=0

Theorem: The power series > a z"either

(i) Converges for all values of z,
or (if) Converges only for z =0,
or (iii) Converges for z in some region in the complex plane.
Proof. Here we take an example.

n

(i) The series ZZ— converges absolutely for all values of z.
n

n n+l
LetU, =2 . U,_, =

V4
n+l —
n n+1

Then by D’ Alembert ratio test, we have
.U .
timA%sl i DL

n—oo |U r_|+1|

n—o0 |Z| o
The series absolutely convergent for all values of z.

(i) The series 2.nz" converges only at z =0

limnz" = if z=0.

n—oo

Thus the series does not converge for z =0 Ii.e, it converges only for z=0

(iii) The geometric series Z z" converges for |z| <land divergent for |z| >1.
n=0

Theorem.2: If a power series E a,z" . converges for a particular value Zo of Z then it is converges
n=0

absolutely for all values of z for which |z| <|z,|.



Proof. Let > a,z] converge.

Then the n" term &,z must tend to 0 as n — ooso we can find a number M >0 such that

<M, vn

n
a'n ZO

Then we have

SMZ

a,z" —

(D)

(o}

n
Since |z| <|z,| the geometric series Z‘ZA converges.
o

Then by equation (1) the series > converges for all values of z for which |z| <|z,|.

a,z"

4.4 CAUCHY’S THEOREMS ON LIMITS

Theorem.3: If {a,}be asequence of constant and if lim an =1when a — oo then we have

n—oo n
Theorem.4. If {a,}is a sequence of positive constant then

i (a) - g 24 0

n

Provided the limit on the right hand side of equation (1) exists whethere finite or infinite.

Check your progress

Q.1 What do you mean by Power Series?

Q.2 Explain the Cauchy’s theorems on limits.

4.5 RADIUS OF CONVERGENCE

The number R is known as the radius of convergence of the power series > a,z" if there exist
n=0

R > 0'such that the series converges absolutely when |z|< R and diverges when |z|> R.

The circle |z|=R is known as the circle of convergence of the series.



Theorem.5. If the power series Zanzn is such that a,#0 for all n and for which the number

an+1

I =lim

n—oo

exists finitely or infinitely then the radius of convergence of the seriesis R= | (where R=0

if | =0and R=o0 if 1 =0).
Proof. Using D; alembert’s ratio test, we have

n+1
n+1

> a,z" is converges absolutely if lim <1

g

So that the n" term a_z" does not tend to zero and convergence is impossible. It follows by definition of

n

a

n+1

ie., if |z] <% { lim
| a

n

n+l
an +1

) 1 )
and if |Z|>T then lim >1

n

: . 1. .
radius of convergence of the power series is R ZT if =00, R=0andif =0,R=00.

4.6 UNIFORM CONVERGENCE OF POWER SERIES

Theorem.6. The power series Zanzn is uniformly convergent for |z| < p <R where R is the radius of
convergence.

Proof. Let p<p'<R

Since the series is convergent for |z|:,o there is a number k. independent of n so that

a, o<k ,vn

Hence we have for

mn ( Z ]n
QP | —
2

Which is independent of z

|Z|Sp

n
a,z

n
But the series k 2. (ﬂj IS convergent, being a geometric series of common radio £ 1. Hence
p 1

o,
by weiertxss’s M test, the power series is uniformly convergent for |Z| < p <R. Thus every power series

is uniformly convergent within its circle of convergence.



Note. Absore theorem statement can be defined in the following form:

If f(x)= ianz” for [x| <R then the series converges uniformly on [-R+ €, R— €] for each > 0.
n=0

4.7 ABEL’S THEOREM

Theorem.7. If the series ) a, is convergent and has the sum s. then the series » a x" is uniformly
0 0

convergent for 0<x<1and lim> a x" =s.
Xx—1 )

Proof: If is given series X an is convergent. We have for n>m..

A A, e +a

n+l

<e

For every integral value of p>0

Also since the sequence {xn} is monotonic decreasing for all values of xin 0<x <1, by abel’s

inequality |a,x" +a, . X" +......... +a,,  X"Pl<ex" <e(0=<x<1).

n+p

Thus the series > a Xx"is uniformly convergent for 0 < x <1.

It follows that > " a, x" is continuous function of xin 0<x <1 and hence
(0]

The converge of the above theorem is not true as will be seen by considering the series Z(—l)“x” =i x
5 + X

when 0<x<1.

Hence Iimi(—l)n X" =% although > a, =3 (-1)" does not converge.
0

x—1

Examples

=, (2n)!_, _ N : ,
Example.1. E (ﬁz determine the radii of convergences of following power series.
n=0 (N

Sol. (i) % — 1im 2021 where R is the radius of convergence

n—oo a
n



ere lim 2ot _ [im (2N +2)! (n1)°
st a, L°‘°((n+1)!)2 (2n)!
_ lim (2n+1)(2r;+2)
N (n+1)
=4

1
Hence R=—.
4

<)
Example.2. Solve » —z".
n=1 n

| n+1)!
Sol. Here a, = n_n a, ., = (—L
n (n+1)
Now we have
lim L Ilm[ij
n—wo g n—oo n_|_1
) 1
=lim———
+7)
n
_1
e
Hence R = e. {2<e<3}.

4.8 TAUBER’S THEOREM

Theorem.8. If na, — Oand f (x)=Xa,x" — s as x—»1. Then 2. &, converges to the sum S.

or

If lim na, = Othen Xa, converges to S.

n—oo

Proof: We have by cauchy’s Ist theorem on limits

=limna, =0.

n—oo n n—oo

For given ewe find m such that for n>m

‘f (1-%)-3‘{ (1)



n 3n
And |a1|+2|a2|; ...... +n|an|<§ (3)
Let S,=ay+a +.eeuee. +a,.then

S, —S|=|f(x)-S+S,— f(x)

= f(x)—S+a0+Zn:a,—ao—iarxr
1 1

= f(x)—S+Zn:ar —Zw:arxr
1 1

= f(x)—S+zn:ar —Zn:arxr —iarxr
1 1

n+1

= f(x)—S+Z::a, (1—xr)—iarxr

n+1

+ i:a,xr :
n+1

<|f (x)—S‘+‘z::ar (1—x")

Since (1—xr)=(1—x)(1+x+x2+x3+ .......... + xr’l)

<(1-x)r as (0<x<1)

€

A 3n(1-x)

Now by from equation (4), we have

. €
|Sn—S|S‘f (X)—S‘+(1—X)ler|ar|+m

Putting x=1—1 in this, we get
n
f (1_1}3
n

< % € +% € +% € (by equations (1) & (2))

n

1 €
+H2r|ar|+§

1

S, —S|<

<3




Hence S, —S.

Check your progress

Q.1 What do you mean by radius of Convergence?

Q.2 State the Tabuer’s theorem.

Examples

Example.3. Given that
(i) Snz" (i) > (n) 2"
n=0 n=1

. ﬂ o 7" +1
() Z(2n)!Z V)2 2n+1

Find the radii of convergence of the following power series

Sol.

(i) z(n”—jlj
. )” 2n+1

(1) x
M) 2

(i) We have 1 lim 2oL where R is the radius of convergence

n—oo a
n

We havea, =n and a,,, =n+1

. a . h+1
lim—2L = |[im—=

n—ow a n—oo n
n

:Iim(1+1j
n—oo n

Thus %zl =R=1.

(i) Here a,=n!, a,, =(n+1)!
. a . h+1
lim—=L = |lim —=
n—o an n—o n

=lim(n+1
n%w( )
] 1
=lim n(1+—j
n—oo n

=0

Thus = = R=0.



(iii)

(iv)

(iv)

n? | 1:(n+1)2
Y T (n+2)

Here a, =
(n+1

2 2
iy (1 (04)

a1 (n+2) n
=1

Thus %:1 =R=1

| 2
Given that > (nY) z2"

(2n)!
Assuming that 2n = m.

Then

Thus (1
R

—
Il
8
J
Py
Il
©

Here a_ = 1 —l =—
" on+1 m’am+1

2n+1
z

on+1"

Given Y.

m

Let m=2n+1 then ZZ—
m

Now we have



. a _ m
lim St — Jim
m—»co am m—e M +1

— lim (1+£j
m—o m

=1

ThUS%zl — Rt

(vi) Given X R

Let m=2n+1 = n:mT_l

;1 m
Then y(HZ X"

m!

m-1 Lﬂ

Here a, = (_1) 2 - (_1) -

™ (m +1)|

_\(m+)r2

.'.IimM:“m( 1) o

a, m—>o (m+1)| X(_l)(mfl)/z

(vii) z%ZZn

n
Sol. Here a, =———, &, =

Now we have

[ljz T (U S x(20)1
R

N @ n—co (2n+2)!x(n!)2




_lim (n+1)2
> (2n+2)(2n+1)

2
n2(1+1j
=lim n

T an? E1+ 1](“ 1}
n 2n

49 SUMMARY

A series of the type

ian(z—zo)”:ao+a1(z—zo)+ .......... +a,(2-2,) +eoeeeeens is called a power series.
n=0

The power series >.a.z"either

(i) Converges for all values of z,
or (it) Converges only for z =0,
or (iii) Converges for z in some region in the complex plane.

If {a,} be asequence of constant and if lim an =1when a — oo then we have

The number R is known as the radius of convergence of the power series z a,z" if there exist
n=0

R > 0'such that the series converges absolutely when |z|< R and diverges when |z|> R.

The circle |z|=R is known as the circle of convergence of the series.

If the series Zan is convergent and has the sum s. then the series Zanx” is uniformly convergent
0 0

for 0<x<1and lim a x" =s.
xalg n



If na, — Oand f(x)=Xa,x" —s as x—1. Then 2. &, converges to the sum S.

4.10 TERMINAL QUESTIONS

Q.1 Write a short note on power series.
Q.2 What do you mean by radius of convergence.
Q.3 State and prove Abel’s theorem.

Q.4 State and prove Tabuler’s theorem.

Q.5 If {a,}be asequence of constant and if lim an =1when a — oo then we have

Q.6 If {a,}isasequence of positive constant then

. _(a
le(aﬁ’“) = Ilm(—””j
—>0 n—oo a

n

provided the limit on the right hand side of the above equation exists whethere finite or infinite.
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BLOCK INTRODUCTION

A function of several variables is a mathematical rule that assigns a unique output to every
combination of input values. While functions of one variable take one input and produce one output,
functions of several variables take multiple inputs and produce one output. In machine learning and data
analysis, functions of several variables are used to model complex relationships in data and make
predictions. Many concepts in physics and engineering involve functions of multiple variables. For
instance, in fluid dynamics, electromagnetism, or structural analysis, understanding the behavior of
functions of two variables is crucial for modeling physical systems accurately. Many real-world
phenomena depend on more than one variable. Functions of two variables allow us to model and analyze
such complex systems. Limits and continuity provide essential tools for understanding the behavior of
these functions, especially as variables approach specific points. In optimization problems, such as
maximizing profit or minimizing cost, functions of two variables are often involved. To find optimal
solutions, we need to understand the behavior of these functions at critical points, which relies heavily on
concepts of limits and continuity.

Partial differentiation is a fundamental concept in multivariable calculus that deals with finding
the derivatives of functions of several variables with respect to one of those variables, keeping the others
constant. The Jacobian is a concept from multivariable calculus that generalizes the idea of the derivative
of a function of several variables. It provides a way to analyze how small changes in the input variables
of a multivariable function affect its output values. Economic models often involve functions of several
variables representing factors like supply, demand, price, and market conditions.

In the fifth unit, we shall have discussed about limit and continuity of function of two variables
and Partial differentiation is in the sixrth unit. Euler’s theorem and Jacobians are discussed in details in
unit seventh and eighth respectively.



UNITS LIMIT AND CONTINUITY OF FUNCTION OF
TWO VARIABLES

Structure

5.1 Introduction

5.2  Objectives

5.3 Limit of a function of two variables

5.4  Continuity of a function of two variables
5.5  Summary

5.6  Terminal Questions

5.1 INTRODUCTION

Many scientific and engineering problems involve a variable quantity that relies on multiple
independent variables to determine its value. This necessitates a solid understanding of partial
differentiation methods. Partial derivatives are significant in various fields such as science, management,
and engineering. They are essential in optimization techniques, operations research, electricity, computer
science, fluid dynamics, probability, statistics, economics, mechanical engineering, electronics, and more.
When working with functions of two or more independent variables, for instance, the area of a rectangle
dependent on its length and breadth or the volume of a rectangular parallelepiped determined by its length,
breadth, and depth, partial derivatives come into play. The area of a rectangle represents a function of two
variables, while the volume of a rectangular parallelepiped represents a function of three variables.

Limits and continuity are fundamental concepts in advanced mathematics, serving as building
blocks for more complex topics such as differentiation, integration, and topological properties of
functions. Therefore, a strong comprehension of partial differentiation is crucial for effectively addressing
numerous engineering problems. The importance of understanding limits and continuity of functions of
two variables lies in their foundational role in multivariable calculus and their practical applications in
various fields.

5.2 OBJECTIVES

After reading this unit the learner should be able to understand about the
»  Limit of a function of two variables
»  Continuity of a function of two variables



5.3 LIMIT OF AFUNCTION OF TWO VARIABLES

Consider a function f(x, y) of two variables xand y, then lim f(x’ y) exists and equal to 1, if

X—Xg
Y—=Yo

forevery ¢ >0, 35>0 such that| f(x, y)—1|<e, Vv(x,y)where f:R* >R is a function and for

| X=X, |<d and |y—y,|<8.

5.4 CONTINUITY OF A FUNCTION OF TWO VARIABLES

Consider a function f(x, y) of two variables x and y then f is said to be continuous at the point

(%, y, ) if M F(X, ¥) exists and equal to f (x,, y,)-

X—Xg
Y—Yo

or
Consider a function f (x, y) of two variables x and y is said to be continuous at the point (x,, y, ),
if for every £>0, 38>0 suchthat | f(x, y)— f (x,, ¥,)| <&, V(X Yy)

whenever | X=X, |<8 and |y-—y,|<3d.

Check your progress

Q.1 What do you mean by limit of a functions of two variables?

Q.2 Explain the Continuity of a functions of two variables.

Solved Examples

mit. lim f(x,y) f(x, )= Y |
Example.1. ShowthattheI|m|t(xyygﬁ(0'0) X, Y), where T{X,y)= X2 1 y? does not exists.

Solution. The given function is
X2 — yz
X2+ y?

f(xy)=

Consider (x, y) — (0,0) along the path y = mx, where meR.
As X —0, from y =mx, we have y — 0.

We have

x2 _ yz
lim f(x,y)= Ilim =~
(x,y)>(0,0) (x.y) (xy)(0.0) X% + y?



Putting y = mx, then we have

. 1-m? ,
lim (x,mx) = T which depend uponm .

Thereforethe Iirrg) f (x, mx) is not unique.

im f(x, i
Hence the (.y)2{0.0) ( Y) does not exists.

. (1 (1
Example.2. If f (X, y)= ySIn(;j+ xsm(;} where x = 0, y = O, then prove that f(X, y)—> Oas

(x,y)—(0,0).

Solution: The given function is

sl

Consider ¢ is any given arbitrary small positive number i.e.,e > 0, and assume o =«.
We have

(. y)—(0.0) = /(x—0) +(y —0)

<|x=0/+]y—0  (Now if we take|x—0|<&/2,

y—()‘<s/2)

<el2+el/2=¢

Now we have
|f(x,y)—0|= ysin(lj + xsin(lj
X y
. (1 . (1 . : . .
< ysm(;j + xsm[;j (Using By triangle inequality)
<ly| sin(lj +|X| sin(l)
X y
<|y|+|x [ sin lj <1 and sin[lj 31}
X y
€ €
<—+—=¢
2 2
Thus [f(x,y)-0<e.

Hence Iim f(x,y)=0.
(x.y)—(0,0) ( y)



Note: If we take the pathy =mx, then X >0 = y - 0.

i . .1 .1
lim f(x,y)= lim |ysin=+xsin—
(x.y)—(0,0) (x,y)—(0,0) X y

) 1 1
=lim| mxsin =+ xsin —
x—0 X mX

=0 lim xsinizo.
x—0 X

Hence lim f (x,y)=0.

(x,y)—(0,0

Xy
Example.3. If ¢ (x,y)=4 x%+y?’ (<, y)= (O’O),then prove that, ( I;rrzo o) f (x, y)
X, Y )—> )
0, (x,y)=(0,0)
does not exists.

Solution: The given function is

Xy
f(x,y)=4x>+y?’ (x,y)= (O’O)_

0, (x,y)=(00)

Suppose, if the lim ) f (X, y) exists, then this limit is independent of the path along which we

X, y)=>(Xo, Yo

approach the point (x,, Y, )-

Consider (x, y) — (0,0) along the path y = mx, where meR.
As X —0, from y =mx, we have y — 0.

We have

i . Xy
Iim f(x,y)= Ilm ———
(x,y)>(0.0) () (xy)>(0.0) x? 4 y?

Putting y = mx, then we have

im  f(x,y)=lim "%
(x,mx)—(0,0) x—>0 X2 4+ m?x?




Hence the( lim f(x, y) does not exist.

xyaO

3

Example.4. Show that the functionf(X, y)=2L6,

x#0, y#0 and f(0,0)= 0is not
X +y

continuous at (0, 0) in (X, y).

Solution: The given function is

3
f(x,y)= szzye, x =0,y =0.

Here it is also given f (0, 0)=0.
Let us consider (x, y) — (0,0) through the curve x = y*,so we get
6

. y
Iim f = lim
(x,yL(QO) (X y) y=0 y°® 4 y°

| —

o N

Now we have (x, y) — (0,0) through the line y = x , so we get

3

Iim f(x,y)=Ilim
(x,y)~(0,0) ( y) x-0 X2 4 x5

Here the limit found by two different approaches are changed thus the ( I;rrgo 0 f (x, y) does not exists.
X,y )0,

Hence the given function is not continuous.

OR

If we take the path x =my® then x>0 = y - 0.

: my~.y
lim f(x,y)=Ilim
(x,y)—(0.0) ( y) yao(mys)z_kye
6
—||mm—y
y—>0 m? y +y

~m
T m?+1

ich is di lim f(x, -
which is different value of m. So o) ( Y) does not exist.



Xy(xz . yz)

N N y 0, 0

Example.5. Show that the function f(x,y)={ x2+y? (x, y)=(0,0)
0, otherwise

is continuous at

(0, 0).

Solution: The given function is

M (x, y)= (0, o)_

f(x,y)=4 x2+y? ’

0, otherwise
We have
|f(X )— f(oo)|_ M_o
Y ! - x2 4 y2
B x2 _ y2
_‘Xy‘ X2 4 yz
=<|xy]|
{.-‘xz — yz‘ s‘xz + yz‘ % sl}
=N 1f(x,y)— £(0,0) <|x|]y]

(We now choose|x—0| < e and |y 0] <+e)

= 1T (x,y)— f(0,0)<e.Ne

= | f(x,y)— f(0,0)<e

Hence the function ( I;rrzo , f(x, y)exists and equal to f (0, O).
X,y )0,

Note: If ( I;m(oo)f(x, y)=0along some pathy=mx, then this does not means that
X,y )—0,

x J)i_r)‘f(lo 0) f (X, y) is 0, because there are infinite number of paths passing through a given point.

T firm th lim f(x,y)=L
o confirm that o ) ( Y)

We put X=X, +rcosd and y=y,+rsiné then
[f(x,y)-1l]<e
= |f (X, +rcos@, y,+rsin@)—l|<e

must hold for all volume of r less than some number ro which is independent of 6 and for all value 6 such



that |@| < 27.

2

Xy
For example: Consider f (X, y)=4x*+y*’
0 x=0

Xx=0

Case-l: If we take the path y = mx then x>0 = y — 0.

2
fim () —lim—<™)_
(x,y)—(0,0) x—0 X2 +(mX)

. omix
= X +m'x’

2

. Xm
=lim ™
x=>014+m*X

=0, forallm.

Case-11: But this d t that lim f(x,y)=0.
ase u IS d0es Nnot mean tha (x,y)—>(0,0) ( Y)

Because if we take the path x =my?® then Yy >0 = x—0.

2 2
lim f(xy)=lim—2 Y
(x,y)—(0,0) y—>0(my2) +y4
: my*
:Iymg m2ve + v
Tmy +y
=lim—
y->0m* +1
_om
m? +1

which is different for different value of m. Therefore y|)i_l")f(10 0 f (X, ¥) does not exist.

3,3
ZX—y:o_

Example.6. Show that (9)0.0) X2 + y2

- 2X3 _ y3
Solution: Let f (X, y) =———>, then we have
X +Yy
2X3 _ y3

lim f(x,y)=1li
gﬁ}) (xy) §'§§(_)x2+y2



Putting y = mx, then we have
_lim 2x° —m*x®
=0 (x? +m?x2)
- x*(2-m?)
= lim — 5
x>0 X“\1+m
_ 3
_im (2 ”;)
x>0 (1+m
=0

4

Hence lim f (x,y)=0.

y—0
Note: Here the Ilimit is zero along the path y=mx but this does not mean that
Iim (X, = 0. infini i ,
oyiio.0) ( y) Because there are infinite number of paths passing through (0, 0). To
confirm that limit is zero we proceed as follow:
Here (%,,Y,)=(0,0) and |l =0.
So we consider

2r3cos®* @ —r3sin®@

|f (rcos@, rsin@)—0| = 7 (cos? 6+ 51n? 0) 0

=|2rcos® 0 —r®sin® 9|
< 2|r||cos® | +|—r|[sin® G|

or  |f(rcos@,rsin@)—0|<2r+r
—3r, forall 6.

If we take 1, =< /3, then

|f (rcoso, rsin®)—0|<e, forr<r,
(nyl)i_r>r(10’0) f(x,y)=0.
Example.7. Let f(x, y): ﬁ when (X’ y);t(O, O)_ Show that f(x, y) is continuous
0, when (x,y)=(0,0)
at (0,0).

Solution.The given function is



Xy when (x,y)= (0, O).

F(xy)=1 P +y?

0, when (x,y)=(0,0)
If the simultaneous limit, lim f(x,y) exists and is equal to f(0,0), then f(x,y) will be continuous at
y—0
(0,0).
Now we have
lim f(x, y)= lim| —2—
e ;i%[\/xz +y’

mx?

=M ——— [Taking the limit along the line y = mx ]
x—0 /XZ +m2X2
: mx

=lim =0,

Thus lim f (X, y) exists and is equal to f(0,0).
y—0

Hence f(x,y) is continuous at (0,0).

Note: Here the limit is zero along the path y = mx . This does not confirm that limit is zero. So we
proceed as follow:

Here y|)i_r)f(1oo)f(X, y)=0 along the path y=mx this does not mean that

(x yI)iL‘r(l0 0 f (X, y) = O because there are infinite number of paths passing through (0, 0). We consider

r?sin@cos @

|f (rcoso, rsing)—0|= Jricos?o+risin?o

O‘

r?sinécosé
r.l

:‘l r.sin 26"
2

< [ sin20<1 and r >0]

N|=

- Ifwe take r, =2 € then

|f (rcoso, rsing)—0|<e, for r<r, and forall 6.

f (x,y)=0 which is equal to the value of f(x,y) at (0,0).Therefore fis

. Iim
(x,y)—(0,0)



continuous at (0, 0).

2X—Yy _
—5 5 does not exists.

|
Example.8. Show that (xy)>(0.0) x? 4y

Solution. Let y = mx, then we have

lim (—ZX —y ] _ im _2X=mX

x—0 X2 + yz x—0 XZ + mzxz
y—0

2X—Y

lim = '
(xy){0.0) 2 4 does not exists.

Hence the

Example.9. Let f : R* > R be defined as

f(x )_ 1, if x isirrational
Y= 0, if x isrational

Show that for any point (a,b), x yI)IrrEa 0 f (X, y) does not exists.

Solution.Consider a be a rational number. Then we have

lim (x,y)=lim(0) [i> f(x,y)=0fx is rational]
y=b yob
=0.
Now if ais a irrational number, then we have
lim f (x,y)= lerr;(l) [ f(x,y)=1ifx isirrational]
y:b y:b
=1
Therefore  lim  f(x, y) is not unique.
(x,y)>(a.b) () |
Hencethe lim  f(x,y) does not exists.
(x,y)>(a.b)
x> —y? .
Example.10. Show that the function f(x, y) be defined as f(x,y)=1{ x*+y?’ it x=0,y=0 is
0, if x=y=0

discontinuous at the point (0, 0).

Solution.The given function is



X —
f(x,y)={x>+y?’

<

0, if x=y=0

The simultaneous limit of (x, y) at (0,0) is given by

Thus the lim f (x, y) depends upon m.

y—0

if x=0,y=0

(taking the limit along the line y = mx)

Hence I)irr(1O 0 f (X, y) does not exists and hence f(x, y) Is discontinuous.
X,¥y)—(0,

(
Example.11. Consider

. (1 .
f(x, y)= xsm(yj, if y=0 |
0, if (x,y)=(0,0)

Show that f (X, y) is continuous at o, O).

Solution.The given function is

(1 .
xsinf = | if y=0
f(xy)= (yJ

0, if (x,y)=(0,0)

The simultaneous limit of f(x,y) at (0,0) is

i . .1
lim f(x,y)=lim xsin =
x—0 x—0 y
y—0 y—0

) ) [1)
= lim xsin| =
X—0 X

=0x (a finite number)

=0

[Taking the limitalong y = x ]

[ —1<sin 1 < 1}
X



Thus the lim f (x,y) exists and it is equal to f(0,0)ie., f(0,0)

0.

y—0

Hence f(x,Yy) is continuous at (0, 0).

55 SUMMARY
1.  Consider a function f(x, y) of two variables xand y,then lim f (x, y) exists and equal to
y—>y(())
|, if for every £>0,35>0 such that |f(xy)-l|<e V(xy) for
| X=X, |<d and |y—y,|<3d.
2. Consider a function f(x, y) of two variables x and y is said to be continuous at the point (x,, Y, )
,if X"_[Qo F(X, ¥) exists and equal to f (x,, Y, ).
Yy—=Yo
5.6 TERMINAL QUESTIONS
Q.1 Showthat lim tan* Y. does not exists.
(x.y)~>(0.2) X
2 Showthat lim (x®*+y?)=0.
Q2 showthat fim, (< +y°)
Xy2
Q.3 Show that (X’)!gr_p(o’o) f(x, y) does not exists, where iyt (X, y);t (0, 0).
Q.4 Give an example to show that the order of iterated limits can be interchanged although the
simultaneous limit does not exist.
Q.5 Show that the function f (X, y)= /|x Y] is continuous at(0, 0).
Q.6 Show that x ylgm(2 5 exists and the function (X, y)= xy is continuous at (2,3).
XXy (x, y)= (0, 0)
Q.7 If f:R* >R be a function defined by f(x,y)=9 x*+y° ’ ' is not
0 if (x,y)=(0,0)
continuous at (0,0).
Xy
———,Xx=0,y=0 ) .
Q8 Iff(x,y)=1x?>+y? Y then show that f,, f, exist at (O, O) and examine the

0 ,X=0,y=0



continuity of f,, f, with respect to x and yand(x, y) together.

x2—y2
2

X
Q.9 Let f(x, y) be a function defined by f (x, y) = / X*+y

0 for (x,y)=(0,0)

for (x,y)=(0,0)

Show that

@ f,f, f arecontinuousin (x, y)

1 Ixr y
(i) f,and f  existatevery point (X, y) and are continuous except at (0, O)

f,(0,0)=1 0,0)=-1

(iii) and fl
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UNIT 6 PARTIAL DIFFERENTIATION

Structure

6.1 Introduction

6.2 Objectives

6.3 Partial Derivatives

6.4  Higher Order Partial Derivatives
6.5 Summary

6.6  Terminal Questions

6.1 INTRODUCTION

Partial differentiation is a powerful tool that extends the concept of differentiation from functions
of one variable to functions of several variables, enabling deeper insights into the behavior of multivariable
functions and their applications in diverse fields. Partial derivatives are employed in economic and
financial models to analyze how changes in one variable affect others, such as in elasticity calculations or
option pricing models. Partial derivatives are used to define the gradient vector, which points in the
direction of the steepest ascent of a function. The gradient is crucial in optimization problems and vector
calculus.

Partial derivatives help define tangent planes to surfaces and linear approximations to functions.
This is essential in understanding the behavior of functions near specific points. In thermodynamics and
physics, partial derivatives are used extensively to describe relationships between variables in systems
with multiple parameters. In this unit we shall discuss the partial derivatives, higher order partial
derivatives and the homogeneous function.

6.2 OBJECTIVES

After reading this unit the learner should be able to understand about:

»  the partial derivatives
»  the higher order partial derivatives

»  the homogeneous function



6.2 PARTIAL DERIVATIVES

Partial differentiation involves determining partial derivatives. When we take the derivative of a
function with respect to one independent variable, while keeping all other independent variables constant,
it yields the partial derivative of the function with respect to that variable.

Consider U = f (X, y) be the function of two independent variables x and y , and is denoted bya—u, or i

or f,,oru,,or f (xY), and%u, or %,or f,,oru,or f (xy),etc.

Thus we have 2" — fjm T CHR V) = T(x, )

provided that this limit exist and unique.
OX h—0 h

Similarly, we have a =k LIFT}) Py + klz — () provided that this limit exist and unique.

6.4 HIGHER ORDER PARTIAL DERIVATIVES

Suppose U= f(X,y) then %u or;i, or f, is the partial derivatives of function of xandy . The
X

2 2
partial of a—u,or q, or f, with respect to x are denoted by 8_121 or QOr f
ox X OX OX

XX *

Similarly, the partial derivation of%u, or % or f, with respect to y are denoted by

o°u o°f
PV or Y orf,
HIEANCE
ox\oy) oxoy 7
0 (afJ o’ f
and —|—|= =1,
oy\ox) oyox
o’f o*f
oxoy oyox

In limit format the derivative of the second order are defined as
Of o T +2h, o) =28 (% +h, o)+ (x5, o)

If f,,and f, are continuous, then we have

Ox?  h-o0 h?

o* f b (X, Yo +2K)—2F (X, Yo +K)+ (X, o)
8y2 k—0 k2




2

f(Xo +h’yo +k)_ f(XO’yO +k)_ f(Xo +h’YO)+ f(XO’yO)

= lim lim
5’y8x k—0h—0 hk
o o* f _ lim lim f(Xo+h,y0+k)—f(Xo"‘hnyo)_f(X01y0+k)+f(X01yo)
axay h—0 k—0 hk

Check your progress

Q.1 What do you mean by partial derivatives?

Q.2 Explain the higher order partial derivatives.

Examples

X2
Example.l. Let f(X, y)= N +yy2 , for X#0,y#0and f(O, O)=O.Show that the partial derivatives

f., f, exist everywhere in the region—-1<x <1 -1<y <1, although f(x,y) is discontinuous in (x,y)
at the origin.
Solution. The given function is

2

f(x,y)=—Y (x20,y#0)

x*+y?
2 2 4
We have fX:2xy.M, (x=0,y#0)
(x“+y2)
4_ 2
(x4+y2)
Also for Xx=Yy =0, we get
f =lim h.0 =0 and f =0.
* hs0ht 40 ’

Similarly, the following results can be prove

f(xy)=0forx=0,y#0
f (xy)=0forx=0,y=0

f,(x,y)=0forx=0,y#0

fy(x,y):xi2 forx#0,y=0



Therefore the partial derivative f,, f exists at all points of the given region. Now we shall check the
continuity of the given function. The limiting value of f(x, y), along the line Y =0, given by

lim.0=0.

h—0
And the limiting value of f(x, y) along the line y = x* is given by

x* 1

lim
x>0 x* 4 x* 2
Here the limit obtained by two different approaches is different. Hence the f(x,y) is discontinuous in
(X, y) at the origin.

1 2 2 2 2
- l , wh : 0,0
Example.2. Example.l Let f(x, y): 4(X Y )og(x ty ) w en(x y)i( )

0 ,when(x,y)=(0,0)

Show that

f,, = f, atall points (X, y).

xy
Also, show that none of the derivatives is continuous in (X, y) at the origin.

Solution. The given function is

f(xy)= %(x2 +y2)|og(x2+y2), when (X, y);ﬁ(o,o).

0 ,when(x,y)=(0,0)

For X0,y =0, we have
f = % x(1+ Iog(x2 + y2)),
f, :;y(1+ Iog(x2 + yz))

Xy
df, =f = :
ant Ty = Ty X%+ y?

For x=0,y =0, we have fo=y,=f,=f,=0

yX

Hence, f, = f, atevery point.

Now, we show that f, = f  is not continuous at (0,0).

Since  lim Xy
(xy)>(0.0) x? 4y

Hence the limit does not exists. It follows that f, = f  is not continuous at the origin.

does not exist. If we put y = mx , then the limit of the function, depends upon m.

2



Example.3. Let f(x, y) be a function, defined by f (x, y): xsin£+ ysini, Xx=0,y=0;
X y

.1 i .
£(0,y)= ysin =,y =0; f(x0)=xsin=,x=0; f(0,0)=0.Examine the existence of f, and f,, at
y X

x=0,y=0.

Solution. The given function is
.1 .1
f(x,y)=xsin=+ysin=, x=0,y #0.
X y

We have

f(h,0)— f(0,0)
h

£,0.0)=1im

hsinE—O

=lim
h—0

.. 1
=limsin=
h—0 h

Since the limit does not exists, therefore f (0, 0)does not exists.

Now £, — lim lim + (k)= f(0.K)— (h,0)+ f(0,0)

k—0 h—0 hk

IO i 9 O

k—0 h—0 hk

= lim Iim1 =0.
k—0 h—0 hk

In spite of the fact that limit is zero, the derivative fyx(O, 0) cannot be said to exists, since f, (O, 0) does

not exists.
) ) . . ou ou a2y
Example.4. Find the first order partial derivatives — and — when u=tan™ <.
OX oy X
Sol. We have u=tan*Y (1)
X

Differentiating partially equation (1) with respect to x taking y as a constant, we get

X

u_ 1 i(i)
OX (y}z OX \ X
1+



X2 +y°

Now again differentiating partially equation (6.1) with respect to Y taking x as a constant, we get

@:#i(ij
% 1+(y} yix

X
)
x2+y2 \ x
X
X2+ y?
. . . N ou ou
Example.5. Find the first order partial derivatives v and 5 when
X
- X2 2 .
DNu=2"4+Y 1 (i) u = log(x? + y?).
a® b?
X2 y2
Sol. (i) We have U=s-—+"5— ..(2)
a“~ b
Differentiating partially equation (1) with respect to x taking y as a constant, we get
ou  2x

ox  a’

Now again differentiating partially equation (1) with respect to y taking x as a constant, we get

u_2y
X b?
(i) We have  u = log(x? + y?) (D)

Differentiating partially equation (1) with respect to x taking y as a constant, we get
ou 1 O (., o,
— = — X+
ox X +y? ax( y )
2
x* +y?

Now again differentiating partially equation (1) with respect to y taking x as a constant, we get

0 1 0
Eu = X2+ y? .E(XZ + yz)




_ 2y
X* +y?

Example.6. Verify that U _ QU jfy—as 2hxy + by’

Oxdy  Oyox’
Sol. We have u = ax? + 2hxy + by? (1)
Differentiating partially equation (1) with respect to x we get
ou
— =2ax+2h
o y ...(2)
Differentiating partially equation (2) with respect to y we get
o°u
=2h
2yox ...(3)
Now differentiating partially equation (1) with respect to y we get
ou
— =2hx+ 2by (4
oy “4)
Again differentiating partially equation (4) with respect to x we get
o°u
=2h
oxdy .. (5
Using equations (3) and (5), we conclude that
o’u _ du
Oxoy  oyox
Example.7. If u = f(lj,then show that xa—u + ya—u =0.
X OX oy
Sol. We have u = f(lj .. (D)
X

Differentiating partially equation (1) with respect to x we get

ou _ f-(zjﬁ(xj
ox  Ix/)ox\x

or xa—“:_yf'( j (2



Now differentiating partially equation (1) with respect to y we get

Al

ou y. [y
or — =212 ...(3
v [Xj 3)
Adding equations (2) and (3), we get
xa—u+y6—u=0
ox "oy

Example8. If u(x, y, z)=log(x®+ y* + z° —3xyz), then show that

o’u o%u o4
2 + 2 + 2
OX oy 0z

=-3(X+Yy+2)72.

Sol. Given that u =log(x® + y® + z° — 3xyz) ()
Differentiating partially equation (1) with respect to x, y and z respectively, we get

ou 3x? —3yz

ox X +y®+2°—3xyz - @)

au 3y? —3zx \

oy x*+y®+2z°-3xyz - 0)

au 3z% —3xy .

0z x*+y®+12°—3xyz -4
From equations (2), (3) and (4), we get

ou ou oau 3

—t = .. (5)

oX oy 07 X+y+1z

[ X2 +y> 428 -3xyz=(X+y+2)(X* +y* + 2% —xy — yz—zx)]
Now again differentiate partially equations (2), (3) and (4), with respect to X, y and z respectively, we get
o’u _4 x* —2xy® —2xz® +3y?z?
ox? (x3 +yi+2® —?:xyz)2

.. (6)



o%u _4 —2x°y —y* +2yz® —3z°x? -
oy? (x3’+y3+z3’—3xyz)2 N
o%u _3 2x%z — 2% —2y%z —3x%y? &
oz° (x3+y3+z3—3xyz)2 N
From equations (6), (7) and (8), we get
o°u o°u odcu 3
N N Ly A VI
x> oy* oz (x+y+2)
2
Example.9. If u = X" +y ,then show that u_ =4 1—6—u—6—u .
X+Yy oX oy oX oy
Sol. Given that u XAy . (1)
X+Y
Differentiating partially equation (1) with respect to x and y respectively, we get
ou (x+ y)2x)-(x? + y? )1
ox (x+y)
_XPH2xy—y?
o (x+y)
ou (x+y)2y)-(x2+y?)1
and — = >
oy (x+y)
Y2y =X
(x+y)*
2 2 2 2 272
We have au_ ou _| X +2xy—2y Y +2xy—X
X oy (x+y) (x+y)
| 2x% —2y? i
(x+y)
_Ax+y) (x-y)
(x+y)'
_Ax=y) "
(x+yy

Now we have



af1_ 04 _ou 41 X2 +2xy—y?  yP+2xy-x°
(x+y) (x+y)*

_4{x2+y2+2xy—x2—2xy+y2—y2—2xy+x2}

(x+y)
- 4_M

(x+y)

_, (x=yf
_4'(x—y)2 ...(3

Hence by equations (2) and (3), we have

(a_u_a_ufz{l_@_U_a_u}
oxX oy oxX oy

0%z

Example.10. If x*yYz* =c, then show that x=y =z, =—(xlogex)™.
Sol. Given that x*y’z* =c .. (D)
Taking log both sides of equation (1), we get

xlogx+ylogy+zlogz=logc .. (2)

Differentiating partially equation (2) with respect to x (taking z as dependent variable) then we get

(oY

or dz __1+logx .3
OX 1+logz
Similarly, we get oz _ _1+logy Y

oy 1+logz

Differentiating partially equation (4) with respect to x, we get
o'z _ofa
oxoy  ox\ oy
_ 0 1+logy
ox\ 1+logz
0 1
=—(L+logy)—
ox\1+logz

=—(1+log y)-{(— 1)1+ log Z)_Z%%}




(L+logy) oz

z(1+logz)* ox
_ (L+logy) (_1+Iong
z(1+logz)’ | 1+logz

_(L+logy)1+logx)
z(1+ log z)°

. (5)

At x =y = z, from equation (5), we have
0’z _ (l+logx)’
oxey  x(@+logx)’

B 1
x(1+log x)
1
x(loge +log x)

1
x log ex

= [x.logex]™.

2 2
Example.11. If u= f(r), where r? = x* + y?, then show that axlj+tzj:1 fr(r)+ £"(r).

Sol. Given that r’=x*+y? (D

Differentiating partially equation (1) with respect to x, we get
or

2r — = 2X
OX

or =

a _x
ox r
Similarly, we get

a_y
oy r
It is also given that
u=f(r) .. (2
Differentiating partially equation (2) with respect to x, we get
ou

or
— =f'"(r)—
OX ()ax

Xt .. (3)
.



Again differentiating partially equation (3) with respect to x, we get

2u_2 ()

X ox \ ox
0 X
=—| f'(r).—
ax( ()rj

r[f'(r)+x2 f"(r)g)r(}—xf'(r)g)r(

r2

:rlz{rf'(r)erzf"(r)—X:f'(r)} ()

Similarly, we get

ou_ 1 {
rf'(r)+y>f"(r) - f (r)}
o
Adding equation (4) and (5), we have
o’u o

1 (X y*)
erayz {er (r)+ (x> +y>) f"(r) - f' (r)}
:riz[zn“(r)+rzf"(r)—rr'(r)]
=ri2[rf'(r)+r2f"(r)]

=%f'(r)+ £(r).

.05

6.5 SUMMARY

1. Partial differentiation is the process of finding the partial derivatives.

2. If u="f(x,y) be the function of two independent variables xandy,

O Fxrhoy)—fy) o e TGy k) = f(xy)
OX h-0 h oy h—0 k
are exist and unique.

o’f o*f
oxoy oyox

3. If fand f,, are continuous, then we have

then we have

provided that these limits



6.6

TERMINAL QUESTIONS

Q.1

Q.2

Q.3

Q.4

Q.5

Q.6

Q.7

Q.8

Explain the partial derivatives.

1
x’y? cos—, forall values of ysolongasx =0
X

Let f(x,y)= . Show that

0, forx=0
(i) f, = f,atall points (xy)
(i) neither f, nor f  iscontinuousin x at x=0, if y#0
(iii) both f_ and f , are continuous in (x, y), together at the origin.
Y
If f(x,y)=1x%+y?

0 ,Xx=0,y=0
of f,, f, withrespectto x and yand(x, y) together.

X#=0,y=0 _ ) o
then show that f,, f, existat (0,0) and examine the continuity

X2 _ y2
Let f(x,y) be afunction defined by f(x, y)= S y?
0 for (x, y)=(0,0)

for (x,y)=(0,0)

Show that

(i) f,f,f arecontinuousin (X,y)

v ixa ly
(i) f andf  existatevery point (X, y) and are continuous except at (O, O)
(i) f,(0,0)=1and f,(0,0)=-1.

What do you mean by higher order partial derivatives?

If u=sin?X+ tan‘ll, then show that xg—u+ ya_u =0.
X

Yy X

S then show that o = L
ey oy (L+xt+y?)"

If u=tan™

If u=Ilog(x®+y®—-x*y—xy?), then show that



o°u o°u U 4
> +2 +—=- 5
OX oxoy oy (x+ y)

O Sy

ou  ,d%
Q.9 If u=f(x+ay)+g(x—ay), then show that Fva =a FwE

3
o°u xyz

Q.10If u=e"*, then show that = @+ 3xyz + x*y?z%)e”.
z

2 2 2
Q.l11If 2X + Zy + ZZ =1, then show that
a‘+u b°+u c°+u

(aujz ou\ (aujz ou ou _éu
— | = | =] = X—+yYy—+2—|
OX oy oz OX oy oz

H 1 a 1 82“ 22 2,2 2,2
Q.12 Find the value of +—=+ when a“x“ +b°y“ =c“z”.
a2 2

2y
x> b®> oy

Q.131f 9=t"e “/# find the value of n which will make izi(rz aej _9¢

rPor\ or) ot
y y 2y x2oy?
Q.14 1f u = x2 tan’l;— y? tan’ly,then show that oyox 2. v
Q.15If u=x’y+y’z+12°x, thenshowthata—u+a—u+a—u:(x+y+z)2.
ox oy oz

Suggested Further Readings:

1. Malik, S. C. and Arora, S. Mathematical Analysis. 2nd edition reprint. New Age International
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3. Somasundram, D. and Chaudhary, B. A First Course in Mathematical Analysis. Narosa Publishing
House, 1996.
4. Malik, A. K., Mathur, P, Purohit, S.D., A text Book of Engineering Mathematics-1, Manakin Press,
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UNIT 7 EULER’S THEOREM

Structure

7.1  Introduction

7.2 Objectives

7.3 Homogeneous Function

7.4  Euler’s Theorem on Homogeneous Functions
7.5 Some deductions from Euler’s Theorem

7.6  Total Differential Coefficient

7.7 Implicit Function

7.8 Summary

7.9  Terminal Questions

7.1 INTRODUCTION

Euler's Theorem on homogeneous functions is a result from calculus, specifically concerning
multivariable calculus and homogeneous functions. It's named after the Swiss mathematician Leonhard
Euler, who made significant contributions to various areas of mathematics. This theorem essentially
describes a relationship between the partial derivatives of a homogeneous function and the function itself.
It provides a useful tool for simplifying expressions involving homogeneous functions, often enabling
solutions to problems in physics, economics, engineering, and other fields where such functions arise.
Euler's Theorem provides insights into the behavior of these functions, helping to determine critical points,
maxima, minima, and saddle points. The concept of the total differential coefficient arises in calculus,
particularly in the context of multivariable functions. When you have a function of several variables, its
total differential describes how the function changes as each of its variables changes.

The total differential coefficient is crucial for understanding how a function changes as its variables
change. It provides a linear approximation of the change in the function near a given point in its domain.
In this unit we shall discuss about the Euler’s theorem, Euler’s theorem on homogeneous functions, Some
deductions from Euler’s Theorem, Total Differential Coefficient and implicit function.



7.2 OBJECTIVES

After reading this unit the learner should be able to:

» understand the homogeneous function

»  understand the Euler’s theorem on homogeneous functions
>  explain the total differential coefficient
>

discuss the implicit function

7.3 HOMOGENEOUS FUNCTION

A function U(X, Y) is said to be a homogenous function if all its terms are of the same degree. Let

f(xy)=a,x" +a,x" 'y +a,x"’y* +...+a _xy"" +a,y" .. (D

be a function of x and y of degree n.

The equation (1) can be written as

f (X, y) = X"|:a0 + al(lj + az(lj +. . + an_l(ljn +a, [ljnjl
X X X X

Examples

Example.1. Find the order of the following homogeneous functions:

@u=r Y u-

2 2
X+y X“+y

Solution: (a) It is given that




Here u is a homogeneous function of order 1.
(b) It is given that

u= Iy

ey
(]
)

Here u is a homogeneous function of order — g

<

=X

7.4 EULER’S THEOREM ON HOMOGENEOUS FUNCTIONS

Euler's Theorem on homogeneous functions plays a significant role in various fields of
mathematics, physics, and engineering due to its importance and wide range of applications.

ou ou
If u is a homogenous function of x and y of degree n, then we have X—+ Y —=nu.

OX oy

Proof: Since u is a homogenous function of x and y of degree n, therefore it can be written as

u= x”¢(%) (D)

Differentiating partially equation (1) with respect to x, we get

ou _ on1 Y g YO (Y
) eeB)al)
RRCRLOCY
X X X
RO
or X— =nx"¢ yx"¢@'| = .2
OX X X

Again differentiating partially (1) with respect to y , we get



u_ W[z)i(zj
oy X ) OX\ X

ol

au n-1 1 y
or — = = .3
- ®
Adding equations (2) and (3), we get
ou ou noal Y
—ty—= Zl=nu
X6x+y8y nx¢(xj

Hence if u is a homogenous function of x and y of degree n, then

Check your progress

Q.1 Define the homogenous function?

Q.2 State the Euler’s theorem.

7.5 SOME DEDUCTIONS FORM EULER’S THEOREM

o%u ou ou

If u= x”¢(lj then X* — + 2xy +y?— =n(n-1)u.
X OX oXoy oy
Solution. If u= x"¢(lj , then we know that by Euler’s theorem, we have
X
X ou +Y ou nu
. P (1
>V (1)

Differentiating partially equation (1) with respect to x and y respectively, we have

o%u  ou o%u ou

X— +—+ =n— @
x> OX yaxay OX @)

o°u d%u ou  _ou
ty_—S+_—=n_—
oxoy oyt oy oy
Multiply equation (2) by x and equation (3) by y and adding them, we get

and X

e



, 02U ou ,d% [ au 6u} ( ou au]
X®— +2Xy Y | X—+Y—|=N| X—+y—
oX oxoy oy OX oy oXx oy

Using equation (1), we have

, 0% ou 0% )
X" — +2xy +y°— +nu=n°u.
OX oXoy
2 2 2
or xzal;+2xyau+yzalj:n(n—l)u.
OX oxoy oy
Note: 1. If u is a homogeneous function of X, X,,.....,X, of degree n, then we have
ou ou ou ou
X —+ X, —+ Xy —+ .o + X, — =nu
0%, 0X, 0%, oX,,
2. 1f u=f(x,%,....., X, ) is a homogeneous function of X, X,,.....,x,, of degree n, then we have
f (0, e, 16, ) =" F (X, Xy X, )-
Examples
Example.1l. If y=cos™ Xty then prove that xé_“+ y&_u — —lcotu.
X+4Y OX oy 2
Sol. Given that u =cos| ——Y_ .. (1)
x+4fy
The above equation (1) can be written as
cosSu = & (2)
X+
Now consider V .S A e 3)
Ix+4y
Here V is a homogenous function of x and y of degree (1/2). Therefore, by Euler’s theorem, we have
oV ov 1
X—+y—==V e (4)
OX oy 2
From equations (2) and (3), we have
V =cosu o (5)

Now differentiating partially equation (5) with respect to x and y respectively, we get

a_V:_3inua_u and —:—Sinu—
OX OX



Putting these values of N and % in equation (4), we get

OX

. ou .. ou 1
— XSinu— — ysinu— = =cosu
OX oy 2

ou ou 1
or X— + y— =——=cotu.
OX oy 2
1/4 1/4
. +
Example.2. If U=SIN ! M—yl,s then prove that xa—u + ya—u = itan u.
X7 +y OX oy 20
L X1/4 + 1/4
Sol. Given that u=sin 1[W§l/5 e (1)
The above equation (1) can be written as
X1/4 + y1/4
SInu = W (2)
1/4 1/4
X+
Now consider V = Wz“f’ e (3)

Here V is a homogenous function of x and y of degree (1/20). Therefore, by Euler’s theorem, we have

xa—v+yﬂ=iv .. @
OX oy 20

From equations (2) and (3), we have

V =sinu ..(5)
Now differentiating partially equation (5) with respect to x and y respectively, we get
ﬁ:cosua—u and N _cosuM
OX OX
Putting these values of N and N in equation (4), we get
OX oy

ou ou 1 .
XCOSU— + yCcOSU— =—sinu
OX oy 20

ou ou 1
or X—+y—=—tanu.
OX oy 20

2 4 y2 ou ou
Example.3. If u =sin™ x+y ,show that X—+ Yy — = tanu.
X+Y OX oy



2 2
Sol. Given that U :sinl{u} (1)

X+ Yy
X2+ 2
We have sinu = y (2
X+ Yy
x* +y?

Now consider V=

...3)

X+Yy
Here V is a homogenous function of x and y of degree 1. Therefore, by Euler’s theorem, we have
o oV
X—+Yy—=
ox "oy
From equations (6.51) and (6.52), we have

V ...(4)

V =sinu ..(5)
Now differentiating partially equation (5) with respect to x and y respectively, we get

ﬁ:cosua—u and N _cosuM

OX OX

Putting these values of N and N in equation (4), we get
OX oy

ou ou .
xcosua— + yCcosu— =sinu
X

or xa—u+ ya—u:tanu.
OX oy

33
XX =
Example.4. Verify Euler’s theorem whenU = (3—);) .
X +Yy

3 3
X\X" —
Sol. Given that u =(3—)2). ..(D)
X +Yy

Here u is a homogenous function of x and y of degree 1. Therefore, by Euler’s theorem, we have

x Myt _y (2
OX oy

Taking log in equation (1) both sides, we have
logu =log x + log(x® — y*) —log(x® — y*) ...(3)

Differentiating partially equation (3) with respect to X and Y, we get



lou 1  3x? 3x?
=T

Uax x xX-y* x—y°
3 3
or 56—u:1+ 33X 7~ 33X 3 (4
u ox X*—y’ X -y
2 2
and 2@:1-" fy 3 33y 3
uoy x X -y X -y
Xa_u__ 3y3 B 3y3
or Y R Ry .5

Adding equations (4) and (5), we get

xou you_, 3 -y*) 30 +y’)

uox uoy x®—y? x® —y®
X ou ou
or ——+X—=1+3—3=1
uox uoy
ou ou
Hence X—+YyY—=0U.
OX oy
348 ou ou .
Example.5. If u =tan™ X+y .then show that X — + Y — =Sin 2u.
X+ Y ox "oy
X3 3
Sol. Given that u :tan‘l( Y j ..(1)
X+Yy
3 3
We have tanu=2"Y ..(2)
X+y
3 3
Now consider v =X *Y_ ...3)
X+y

Here V is a homogenous function of x and y of degree 2. Therefore, by Euler’s theorem, we have
xa—v+ya—V=2V ...(4)
ox oy
From equations (2) and (3), we have
V =tanu ...(5)

Now differentiating partially equation (5) with respect to x and y respectively, we get



oV , ou oV , Ou
— =Sec’ u— and — =Sec °u—
OX OX
Putting these values of N and N in equation (4), we get
OX oy

ou ou
X sec? u—+ ysec’u— =2tanu
X

a_u 6_u:2tanu

or +
OX yay sec’ u
ou ou .

or X—+Yy—=2sinucosu
ox "oy
ou ou .

or X—+Yy—=sin2u
OX oy

Hence xa—u+ya—u:sin 2u.
OX oy

Example.6. If V is a homogeneous function ofxand yof degree n and V = f(U)then
ou ou f(u)
X—+Yy—=n

ox "oy o fru)
Sol. Given that V=1(u) (1)

Itis given that V is a homogeneous function of x and y of degree n, then by then by Euler’s theorem, we
have

o oV
X—+

—+y—=nV
o y & (2
Differentiating partially equation (1) with respect to x and y respectively, we have
oV .,y ou
N M and —=fu)=
Ox Ox oy oy
Putting these values of N and N in equation (2), we get
OX oy
xf '(u)%+ yf I(u)% =nf (u)
ou ou f(u)
or X—+tY_—=n—_
ox oy - f'(u)
xa—u + ya—u = n—]c Q)
Hence ox oy ; (u) .



U4y U
Example.7. Verify Euler’s theorem for the function f(X,y)= W :

X1/4 + y1/4

Sol. Given that f(xy)=
( y) X1/5+y1/5

(D)

Here f(X,Y)isahomogenous function of xand y of degree (1/20). Therefore, by Euler’s theorem, we
have

of of 1
x Xy _ 2y e
x Y oy~ 20 ()
Now verify to Euler theorem, we have
1 1
x5 4 5 [ X—3/4j_ M4 4yt 4 [ X—4/5)
ox (X1/5 4 y1/5)2 - (3)
1 1
x5 Vs =84 | (14 1/4) +,,-4/5
o (Ty )[4y j (e +y )(Sy j
and 5 = (Xl/s ; y1’5)2 .. (4
Multiply equation (3) by x and equation (4) by y and adding them, we get
of of 1
X—+y—=—f
OX oy 20
Hence Euler’s theorem is verified.
Example.8. If u=xsin 1(Xj then prove that x?2 @ + 2Xy o +y? o'u =0
X ox? OXoy oy?
i o ain1 Y
Sol. Given that u = Xsin ™ (1)
Differentiating partially equation (1) with respectto xand y respectively, we have
a_ x#(—%)+sin‘l(lj
OX y? X X
1-7%
X
ou — X .
or xM_ X xsin {X] (2
OX X2 — y2 X

Similarly, we get

ya—u=L .(3)
oy /X2 _yz

From equations (2) and (3), we have



xa—u+ ya—u_ xsin” (yj (4)
oy

OX X
Differentiating partially equation (4) with respect to x and y respectively, we have
o%u ou 62u y
X— +— +sin™t .. (5
OX ax axay X2 — y2
Lx o°u +y@2u+8u X ©
an PR e
yox oyt oy x2—y?

Multiply equation (5) by x and equation (6) by y and adding them, we get

, 0°U o’u  , 0% ou  éu . 1(y)
X —+2Xxy + Y '—+| X—+Yy— |=XSIn"| =
ox? oxoy oy° OX oy X

Using equation (4), we have
2 2 2
x28 +2Xy8u+y28u

ox* OXoy oy?

=0.

7.6 TOTAL DIFFERENTIAL COEFFICIENT

Suppose u=Tf(x,y) .. (1)
where x=¢(t),y =y () )

then u can be expressed as a function of a single variables t, if we put for x and y and in U = f (X, y) and
then the derivative of u with respect to t, is the ordinary differential coefficient le_t This ?TU is called the
t

total derivative of u with respect to t is known as the total derivative of u is given by
du_oudx, oudy
dt oxdt oy dt

If u= f(x,y,2z)and x=x(t), y=Yy(t), z=z(t) then the total derivative of u is

diu_aiudx audy ou dz
dt oxdt oy dt azdt

Suppose U = f (X, Y, z)and let y and z are the function of x, u is a function of one independent variable
X, we have

du audx+6udy+6udz
dx  ox dx oy dx 0z dx



or du ou oudy oudz
— =,
dx ox oy dx oz dx

Examples

Example.9. If u=x>+y® where Xx=acost and y=Dbsint then find ?j_l:

Sol. Given that u=x+y° (1)
Also X =acost ..(2)
and y =bsint ..(3)
Differentiating partially equation (1) with respectto x and y respectively, we get
aou ou
— =3x* and —=3y? .4
o oy y 4)

Differentiating equations (2) and (3) with respectto xand y respectively, we have

ax =-asint and dy =bcost

dt

We know that the total derivative of u with respect to t is
du _oudx  oudy
dt ox dt oy dt

or ?j—f =3x*(—asint) +3y?(bcost)
or d—u=3(—axzsint+by2 cost)
dt '

7.1 IMPLICIT FUNCTION

Let us consider the implicit function f(x,y)=0.
Here y is some function of x.
Consider U= f(X,Y) , where u =0, then we have

du odudx oJudu dy
—_— =t ———+—==0
dx oxdx oydy dx

or 6u+87u+d7y20
ox oy dx
or dy _ —ou/ox

dx ou/oy

(1)



Now if Z= f(X,y)and X = x(u,V), y =y(u,V), i.e., X,y are function of u and v, more than one variable.

Then we have
o _ox Yy

U ox ou  dy au
a_ax, ay

d .. (2
nd N T X v oy ov @
Note 1: If T(X,y,2)=0 i.e., if zisan implicit function of x and y then by equation (2), we have
o of oz
—+—.—=0
OX 0z OX
and §+ig=o
oy oz oy
Hence g:_af/ax and @:—M.
OX of 1oz oy of 1oz
Note 2: If T(X,¥)=0 then we have ﬂ:_M.
dx of 1oy

Differentiating again with respect to x, we get

ﬁ(azf 0% f dyj 6f(62f 0% f dy]

d2y  oylox®  ayax dx) ox\axay oy dx

(5)
oy

orf(of \_, 0% f afaf+82f(afj2
ox? \ oy oxoy ox oy  oy? \ ox

5)

Check your progress

Q.1 What do you mean by total differential coefficient?

Q.2 Explain the Implicit function.

Example.10. If the curve f(X, y)=0 and ¢(x,y)=0 touch each other then show that

Sol. Given that f(x,y)=0 (1)

and #(x,y)=0 ..(2)



From equation (1), we get

dy _ ot /ox e
dx of /oy

From equation (2), we get
dy __0od7ox (4)
dx ol oy

. d . . .
At the point of contact the two values of d—y will be the same i.e., from equation (3) and (4), we have
X

_of Iox  oplox
of oy  O¢loy
of op _of o¢

or

ox 8y oy ox
or i%_iﬁzo
oX oy oYy oX

ou + 0'u_ ou + ou where  x=<&c0sa—nsSina
aXZ ayZ 852 6772 ! - 77 '

Example.11. Prove that
y=~&sina+ncosa.

Sol. Let u= f(x,y) (D
Giventhat X=¢&C0sa—nsina, y=£~Esina +ncosa.

From equation (1), we have
ou _ ou ox N ou oy

oc xog oy o
or = %u (cosa) + %u (sinax) .. (2)
and 6_u — a_u ﬁ + 8_u ﬂ
on oOXon oy on
or - X sina)+ X (cosa) O
oX
Differentiating partially equations (2) and (3) with respect to x and y respectively, we get
o%u o’uox . d°u oy
> = COSCZ—Z— a—z—
og Ox* 0 oy® o8
o%u o%u

2 Ho
= CO0S ay‘i‘Sln OLW ..®



o%u d%u ox o°u oy
and — =—sina——+C0sa— —
on on oy on
_sin? o°u , 0%
= (X,R-FCOS O(.W (5)

From equations (4) and (5), we get
o°u  0°u o*u  dlu
> vt 7 = > T 2"
OX oy os& on

7.8 SUMMARY

A function U(X, Y) is said to be a homogenous function if all its terms are of the same degree.

If u is a homogenous function of x and y of degree n, then we have xg—u + ya—u = nu.
X

oy
If u=f(x,y,z)and x=X(t), y=y(t), z=z(t) then the total derivative of u is
du_audx oudy oudz
dt oxdt oy dt oz dt
Suppose U= f(X,Y,2)and let y and z are the function of x, u is a function of one independent variable x,
du_ou oudy  ouds

we have — =4 + )
dx ox oydx o0z dx

7.9 TERMINAL QUESTIONS

Q.1 State and prove Euler’s theorem.

Q.2 Verify the Euler’s theorem in the following cases:
() u = axy + byz + czx (i) u=x"log(y/x)
(iii)u=ax® +by* +2hxy  (iv) u=x"sin(y/x)

(v) u=3x%yz +5xy°z + 42",

\/;—\/V ou ou

,then show that x— + y— =0.
oy

\/;4-\/? OX

Q.3 Ifu=sin™

Q.4 If u=xyf (y/x),then show that xg—u+ ya—u = 2u.
X

oy



g X
Q.5 If u=sin l—y,then show that xa—u+ya—u:1tan u.
Ix+.Jy ox oy 2

X2 +y? , 0°U o’u  , 0%
6 If u=tan" *——"— then show that X" — +2 + =
Q X—y ox® Xy&xay y oy°
2,,2
Q.7 If sinu =~ ,then show that xa—u+y8—u=3tanu.
X+ Yy OX oy
4 4
Q.8 IfuzlogX * Y then show that xa—u+y@=3.
X+Y OX oy
3 3
Q.9 Ifuzlogx * Y then show that xa—u+ya—u:2.
X+Y OX oy

3 3

Ty
X+Yy

j, then show that Xa_u + y@ = 2cotu.
OX oy

Q.101fu= sec‘l(X

Q.11I1f u be a homogeneous function of xandyof degree

. O o ou
(i) X—+Yy =(n-1)—.
OX OXoy OX
2 2
iy x 9 4y Y M
oxoy =~ oy oy
2 2 2
(iii) x® gxlzj + 2Xy §<8uy+y2 2;2] =n(n—-1)u.
ou ou ou
A21f u= f(y—1z,z—X, X—Y), then show that — + — + =— = 0.
Q (y y) W 6x+8y+az

Q.131f XY +y* =a", then show that % =0.
X

Q.14 If V1—x? +/1—y® =a(x—y), then show that e

dy 1-y?
V11— x? .

ax? + by? +cz?
ax+by+cz

QIsfu(x,y,z)= then show that

xa—u+ @+za—u:u(x z)
Y oz RARYA

OX oy

n,

then

show

that
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UNIT 8 JACOBIANS

Structure

8.1 Introduction

8.2  Objectives

8.3 Jacobian

8.4  Jacobian of Functions of Functions

8.5 Jacobian of Implicit Functions

8.6  Necessary and Sufficient Condition for a Jacobian to Vanish
8.7 Summary

8.8  Terminal Questions

8.1 INTRODUCTION

The Jacobian is a mathematical concept pivotal in calculus and linear algebra. It's a matrix
composed of first-order partial derivatives. In essence, it elucidates how changes in one set of variables
influence another set within a function. For a function with n variables, the Jacobian matrix comprises n
rows and m columns (where m denotes the number of functions in the output). Each entry signifies the
partial derivative of one function concerning one variable. Jacobian matrices find extensive applications
in physics, engineering, economics, and other disciplines. They facilitate solving systems of equations,
stability analysis, function optimization, and more.

The Jacobian matrix plays a central role in the Implicit Function Theorem, which provides
conditions under which implicit functions can be differentiated. This theorem is essential in various areas
of mathematics, including differential geometry, optimization, and differential equations. When dealing
with functions of several variables, understanding how small changes in the input variables affect the
output is crucial. The Jacobian provides this information through its partial derivatives, aiding in
optimization, integration, and curve/surface fitting.



8.2 OBJECTIVES

After reading this unit the learner should be able to understand about:
»  the Jacobian
»  the Jacobian of Functions of Functions
»  the Jacobian of Implicit Functions
»  the Necessary and Sufficient Condition for a Jacobian to Vanish

8.3 JACOBIAN

If uand v are functions of two independent variables xand y then the jacobian of u and v with
respectto xand vy is

ou ou
o(u,v) |ox oy
o(x,y) |ov  ov

X oy
=J(u,v).

Similarly, if u,vand w are the functions of three independent variables x,y and z, then the
jocobian of u,vand wwith respect to the independent variables x,y and z is

uau au
OX oy oz
o(u,v,w) |ov ov v
o(x,y,z) |ox oy o0z
oW Ow oOw
OX oy oz
=J(u,v,w).
If u,u,,Ug, ..., ,Uu, ,,u, are the function of n independent variables
Xis Xy Xgyuvannnnnn. , X,,_1» X, thenthenthe jocobianof u,,u,,Us,........... , U,_,, U, with respect



ou, ou, ou,
ox, ox, o,
o o o
O(Uy, Uy, Ug, e, U, 5, Uup) Yz Mz Yz
=|0X;, OX, OX,,
000 Xy XX ) | T
ou, ou, ou,,
ox, ox, o,
Note: If the functions U;,U,,Us,.cccu...... ,u, ;,u,of n independent
Xy Koy Xgyuenenrnnnn , X1, X, are in the following forms:
u = f(x), Uy = F, (X% ), e Uy = F(X X X, ), then we have
Mo 0 0
2
ou ou

O(U;, Uy, Uy, Uy, Uy) 2 2 0 ... 0

=|0%X  OX,

0 X Xy XoanXa) |
ou, ou, ou, ou,
ox,  ox, X, OX,,

_ 0u, du, Ou, ou,
ox, —6x2 _ax3 ................. ox.
Examples
. o(%,Y)
Example.1. If X=rcosd, y=rsind show that ———= =.
P Y a(r,0)

Sol. Given that

X=rcosd, y=rsind

variables

If xand y are functions of two independent variables r and @ then the jacobian of x and y with respect

tor and @ is
ax ox
o(x.y) _|or 80
o(r.e) |&y oy
or o0
B cos @ —rsiné@
~Isin@ r cos &



= r(cos2 0 +sin? 49)
=r..

o(x,Y,2)

=r?siné.
o(r.0,p) r‘sin

Example.2. If X=rsin@cose, y=rsindsing, z=rcosé, show that

Sol. Given that
X=rsingcosg, y=rsindsing, z=rcosé.

The jacobian of x,yand z with respectto r, ¢ and ¢ is

OX OX OX
or 060 op
o(xy.2) |0y oy oy
6(r,6’,¢) or 06 O
oz 0z oz
or 00 op

sin@cose rcosfdcose —rsindsing
=sin@sing rcosfsing rsindcose
cosé —rsiné 0
= cos0(r’sin @cos 0cos’ ¢ + I sin O cos Gsin’ o)
+rsin(rsin’ cos’ p+rsin’ Osin’ o)
=r”sin@cos* §+r’sin* @
= r’sin 6(cos” 6 +sin’ 0)
=r’sing.
Example.4. To show that the Jacobian of x,y and z with respectto r, 9 and ¢ is
o(x,y,2) r? (m? cos® p+n? cos® 0)
o(r.0.9) \/[(1— n?sin? @)(1—m?sin? ¢):|

, given that

X = rcosfcosg, y = rsin 9(1— m? sin ¢), z =rsin ¢(1— n’sin? 49), where m® +n* =1,
Sol. Given that
X = rcos@cosg, y = rsin 9(1— m? sin? ¢), Z =rsin ¢(1— n’sin? 49),

We have



X2 +y?+12° =r?cos* @cos’ g+ r’sin® @ —r’m®sin® @sin’ ¢
+r°sin® @ —r’n’sin® psin® 6
X2 +yi+2%=r? (cos2 @ cos® ¢ +sin® @ +sin® p —sin® @sin’ go) [ m? +n? :1]
=% (cos® B cos’ p+sin’ 0 +sin’ pcos )

=r? (sin2 0+ cos’ 49)

x X4 yg+z—z= r
or or or
and x—+yﬂ+zg=0 > (D)
ol ol ol
X—+ yﬂ—f— z—Z=0

The jacobian of x,yand z with respectto r, @ and ¢ is

or 00 o9
J(X,y,Z)ZQ g ﬂ
or 00 og
o oo o
or 00 o9
OX OoX OX
X— X— X—
or 00 " op
1oy oy o9
x| or 20 ¢
a a o
or 200 op
r 0 0
lloy oy oy .
==—|— — ——(, byadding yR, +zR, to : .
or 20 op y g YR, , 10 R, and using the equations (1)
oo a
or 20 09




x |00 dp 00 dp

rcose\/(l—m2 sin® p).r cos p,(1—n’sin” 0)

rsin o. nzsinecose rsin.m?sin o cos ¢
J(1—n*sin® @) \/1 (1-m?sin® o)

_ r’cosfcosg (1—mzsin2go)(l—nzsinz6?)—n2mzsin26?sin2go

X \/[(1—n25in29)(1—mzsin2gp)]

1-m?sin® ¢ —n?sin® @ + m*n®sin® psin®

r
X | —

_ r’cos@cosg| —m’n”sin’ gsin’
I cos € oS ¢ \/[(1_ n?sin’ @) (1—m?sin’ (p)]

2 2 2 2 2
T (m? cos® p+n? cos® 0) | e 1 v =]

\/[(1— nzsinza)(l—mzsinzgo)]
Example.4. If y, =rsing,siné,, y, =rsing, cosé,, y, =rcosdg,siné;,

O(Y1: Y2, Y Ya)
o(r.,6,,6,,6,)

=r’sin g, cosg,.

Y, = I COS @, cos &, then find show that

Sol. Given that

y, =rsing;siné,, y, =rsing,cosd,, y, =rcosg, sing,,
Yy, =rcoséd, cosb;.

Squaring and adding the above given relations, we have

2 2 2 2 2
Yi +Y, +Y; Ty, =¥

y1_+y26y2+y36y3 y43y .
or or )
y18y1+y2 ysay"’ y4 =0;n=123

00, 00, 00, 86’

n



Also y.” +y,” =r?cos? 6, so that

A oy, 2 . )
+Vy,—>=-r“cosé sing;
y3 691 y4 agl 1 1 (2)
OYs oy,
+y,—=% =0, n=2,3.
Y3 06, Ya 20,

The Jacobian of y,, Y,, ¥;, Y, with respectto r, 8, 6,, 6, is

oy, oy, 0oy, 09y,
or 00, 060, o6,

oy, Oy, 0Oy, oY,
or 06, 00, o6,
oy; Oys Oy; OYs
or 860, 80, o0,

Yy Oy, OY, OY,
or 06, 00, 00,

Applying y,R, +(y,R, + YsR, + Y,R, )-and using the equation (1), we get

r 0 0 0
oy, oy, oy, Oy,
or 86’1 8492 893
=7 aY3 a3/3 6y3 aY3
tlor o6, 80, 96,

Oy, OYy OYy OV,
or 06, 00, o0,

oy, 0oy, O,
00, 86, 006,
r|oy; Oy; Oy;
y, |66, 06, 06,

Ny Na Vs
00, 00, 00,
%> Y, N
06, 00, 00,
=T —-r?cos@,sing, 0 0
Y1y
A 7oA
06, 06, 86,




Now adding y,R, to y;R, and using the equation (2), we get

.r?cos@, sin 6, N Vs Nas N
06, 00, 06, 86,

A

_ r’cosd,sin 6, [(
Y1Ys

—rsin @, sin @, )(-rcosé, sin 6,)—0]

_ r®sin? g, cos? g, sin 6, sin 6,
r?sin g, cos g, sin 6, sin 6,

=r®sin g, cosd.,.

8.4 JACOBIAN OF FUNCTIONS OF FUNCTIONS

If u,, u, are the functions of y,, y, and y,, y, are the functions x;, X, then

o(uy,u;) _ A(uy,u,) vy, Y2)
a(xl’XZ) a(yl’yZ).a(Xl’XZ).

Proof. We have

ou, _ ou, oy, N ou, oy,
ox, oy, ox, oy, Ox,
ou, _ ou, oy, N ou, oy,
axz ayl aXZ ayz aXZ
ou, _ ou, oy, N ou, oy, ,
Ox, Oy, 0% Oy, OX
ou, _ ou, oy, N ou, oy,
aXZ ayl 8X2 ayZ axz

(1)

Now we have

ou, ou,| |oy, Oy,
ouyuy) A(ys,ys) | Oz | |Ox OX

a(y.,y,) 0(x,x,) |6u, ou,| |dy, &y,
A AR

ou, 3y, | Qu, By, Uy By, | oy, &,
. Oy, OX; 0Oy, 0% Oy, OX, 0y, OX,
ou, oy, o, &y, du, By, U, By,
Oy, 0%, Oy, Ox, Oy, OX, By, OX,|




ou, ou,

OX OX
= 21, using the equation (1)
ou, Ou,
OX, OX,
_ a(ul’uz)_
a(Xl’XZ)
Note. If u;,U,,........ ,U,_,,u, are functions of y;, ¥Y,,........ yYoor Yeand Vi, Yo, v Y1 Y, are
functions of X, X,,........ » X1 X,,, then we have
5] (VR VA U, n) 5] (TR VA U Un ) O(Yis Yoreeoos Yoas Y )
O (X Xpreemeis Xy s %) O(V Yarewerrns Yoas Y ) O (X0 Xpyevrevey Xy gy X )

Check your progress

Q.1 What do you mean by Jacobian?

Q.2 Explain the Jacobian of functions of functions.

8.5 JACOBIAN OF IMPLICIT FUNCTIONS

.......... U _,,u, instead of being given explicitly in terms

Suppose  u;,U,,Us, of
........... » X_1: X, are connected with them by equations such as

TROTRAY
B (Up, Uy Ugy e Uy Uy X, Xy X,y X g, X, ) =0
F, (U, Uy, Ug, e Uy Uy Xy, X, Xy ey X g, X, ) =0
By (U, Uy, Ugy e Uy Uy Xy, X, Xy eeeeeny X g, X, ) =0
Then, we have
o(F,FyFyyeees By 1, )
O(up, Uy, Uy, ... U, ,.u,) (1) O (Xys Xpy Xgyennnee s Xngs Xp,)
O(Xys Xy, Xgyeennnn X g X O(FR. KR Fo Fy)
O(uy, Uy, Uy, ... JUp_;,Uy)

Proof. We will now derive the outcome for two variables, with the proof readily extendable to n variables.
Students are encouraged to craft their own proof for n variables using the framework presented below for

two variables. In the case of two variables, the connecting relations are



Fl(u11u2-X1vX2): O}

...... (1)
Fz(ul,uz,xl,xz)zo
From equation (1), we have
OF, OF, ou, N OF, ou,
OX, Ou, O0X, 0Ou, OX;
oF, N OF, ou, N OF, ou, _
OX, oOu, ox, 0Ou, OX, 2
oF, N oF, ou, N oF,ou, | 7
OX, Ou; OX;, 0Ou, OX;
oF, N oF, ou, N oF, ou,
OX, 0Ou; OX, Ou, OX,
Now we have
oF, oF | |ou; ou;
o(F, F,) oluy,u,) _|ou, ou, L% O,
d(u,,u,) o(x,x,) |6F, OF,| |éu, au,
Ou, OU,| |OX; OX,
oF, ou, N OF, ou, OF, ou, N OF, ou,
_|ouy X, duy OX;  Ouy OX, Ou, OX,
~ |oF, au, _OF, ou, OF, au,  OF, du,
ou, 0Xx;, Ou, OX, 0Ou, OXx, adu, axz‘
—oF, —OF
o(F.,F,) o(u,u 0 OX _ _
or (R 2). (4 2): % 2 |, using the equation (2)
o(u,u,) 9(x,%,) |-0F, —0F,
oX,  OX,
a(Xl’xz)
Thus we have
o(F,, F,)
a(ul’UZ) ( )2 8(X1,X2)
(%, %,) o(F.F,)

Examples

d(u,,

u,)



d(u, v) o(x,y)
(% y) " a(u,v) -

Sol. Consider u = f,(x,y), v=f,(xy). (D)

Example.5. Prove that

Differentiate partially equation (1) with respect to u and v, we get

_ ou ox au oy
“ox du ay ou’
_uox oudy
OX OV 0y oV
QMK Ny
OX ou oy ou

(2)

Now we have

ou aul |ox  ox
ouv) alxy) _|ox oy| |au
a(xy) o) |ov v |oy
X oy| lou

22 2

au ox auay 8u6x+8uay
E ayau OX OV 0y oV
@ax ov oy 8v6x+8v8y
OXou oyou OXov oy ov
1

0
=l JJ using the equation (2)

=1
Example.6. If U +v+w=X+Vy?+72%, U+V +W=xX+y+2°, u+v+W =x>+y* +7

o(u,v,w)  1—4(xy + yz + zx)+16xyz
o(x,y,z) 2-3(u? +v2+w?)+27uviw?

then show that

Sol. The given relations can be written as
F=u’+v+w-x-y*-2* =0,
F,=u+v+w-x>-y-2°=0,
F,=u+v+w’ —x*—y*-z=0.

We know that



o(F. R F)

o(uvw) _ o 0(xy.2)
m—( 1) I (1)
o(u,v,w)
-1 -2y -2z
Here M:_ZX _1 _9y
a(x,y,2)

-2x =2y -1

= 11— 4yz)+ 2x(2y — 4yz) - 2x(4yz - 22)
=—1+4(yz + 2x+ xy)-16xyz.

c e E u> 1 1
and M: 1 3V2 1
o(u,v,w) ,
1 3w

= 3u?(9v2w? —1)-1(3w? —1)+.(1—3v?)
= 2—3(u2 +v? +W2)+ 27u’viw?,
From equation (1), we have

o(u,v,w) _ 1—4(yz + zx+ xy)+16xyz
a(x,y,z) 2-3u?+v2+w?)+27uviw?’

8.6 NECESSARY AND SUFFICIENT CONDITION FOR A
JACOBIAN TO VANISH

Let us consider u;,u,,Us,........ ,u._,,u. be functions of n independent variables
Xy s Koy Xgyenrerenn , X, 1, X, . Inorder that these n functions may not be independent, i.e, there may exist
between these n functions a relation
F(u,u,,Us,........ U, ,,u,)=0 (1)
_ N _0(u, Uy, Ug, .. Uy, Uy) o
It is necessary and sufficient that the Jacobian should vanish identically.
(X X Xgyeenenens Xogs Xy )
Proof. The condition is necessary i.e., if there exists between u,,u,,us,........ ,u, ,,u, arelation
F (U, Uy, Ug,........ ,Up_5,U,)=0 (D)

Differentiate partially equation (1) with respectto x;, X,, Xz, +-...... X, X We get

? -1 “*n



8_F%+8_F%+ +8F aun

ou, ox, 0ou, Ox, ou, Ox,
oFou oFou, o R,
au, ox, ou, ox, au, ox,
8_F%+8_F%+ a_Fau” =
ou, ox, ou, ox, ou, ox,
Eliminating a—Fa—Fa—F ......... ,a—F from these equations, we get
ou, ou, Ou, ou,
ou;  du, ou,
ox, x ox,
o ou, au,
X, X, ox, =0
o ou au,
ox, ox, OX,
o O(Uy, Uy, Ugy ey Uy g, Uy ) _o
O Xy X Xy eervves X g0 Xy )
The condition is sufficient, i.e., if the Jacobian J (u,,u,,u,,........ ,U,_;, U, ) is zero, then there must exist
a relation between u,,u,,u,,........ U, U
The equations connecting the functions u,,u,,us,........ ,u, ,,u, and the variables
Xps Xy s Xgyeeennnnn , X, 1, X, are always capable of being put into the following form:

@ (X Xgeey XU ) =0

¢2(X2,X3, ..... ,Xn,ul’uz)zo

Then, we have

By, 450 8,)

C Uy Uy ly) e A% X e X,)
) Y )
a(u,,uy,....,u,)



Op, 09, o,

B (_ 1)n OX, OX, OX,,
O¢, 09, o¢,
ou, ou, ou,
Now, if J =0, we have
6¢1 8¢2 a¢r a¢n :O
—axl '—ax2 ......... ox, ox,

ie., fo — 0 for some value of r between 1 and n.

r

Hence, for that particular value of r the function ¢ must not contain X ; and accordingly the
corresponding equation is of the form

Dr (Xeyrs Xeyoroeeess Xogs Xy Uy, Uy, Uy, e, Uy, U, ) =0,
Therefore, as a result of this and the remaining equations ¢, =0, ¢,,, =0,....... , ¢, =0 the variables
X, .15 X, 2s+---2 X, CAN be eliminated so as to give a final equation between u,,u,,u,,........ WU, .U,
alone.
Examples

Example.7. Show that the functions u=x+y—2z, v=x—-y.+z, w=x>+y*+2z°-2yz are not

independent of one another. Also find the relation between them.

Sol. We know that the jocobian of u,v and w with respectto x,yand zis

ou ou  ou
ox oy oz
o(u,v,w) |av ov v
a(x,y,z) ox oy oz
ow OW Ow
OX oy oz

1 1 -1

=1 -1 1

2x  2(y-z) 2(z-vy)

=1 -1 0 |, adding C,to C,
2x  2(y-z) O




Since the Jacobian is zero, the functions are not independent.

Now we have

u+v=2x and u—v=2(y—2z)

Therefore we have

(u +v)2 +(u—v)2 :4(x2 +y*+7° —2yz)

=4w.

Which is the required relation between u, v, w.

8.4 SUMMARY

1.

If uand v are functions of two independent variables xand y then the jacobian of u and v with
respectto xand y is

ou ou
o(u,v) ox oy
o(xy) |ov  ov
OX oy

=J(u,v).

If u,vand w are the functions of three independent variables x,y and z, then the jocobian of
u,vand wwith respect to the independent variables x,y and zis

au auau
OX oy oz
o(u,v,w) |ov ov  ov
o(x,y,z) |ox oy oz
ow oW Oow
OX oy oz
=J(u,v,w)
If u,u,,uz,cceeen..... ,u, ,,u, are the function of n independent variables
Xys KXoy Xgyeuenenennn , X, 1, X, thenthenthe jocobianof u,,u,,us,........... ,U, ., U, with

respect to the independent variables x;, X,, Xz, .......... X1, X, 1S



ou, ou, ou,
ox, ox, T o,
o o o
O(Uy, Uy, Ug, e, U, 5, Uup) Yz Mz Yz
=|0X;, OX, OX,,
000 Xy XX ) | T
ou, ou, ou,,
ox, ox, T o,
4. If the functions u,,uU,,Uz,.cccvn..... ,u, ,,u, of n independent variables
Xps Xoy Xgyeuenenennn , X, 1, X, arein the following forms:
u = f (%), Uy = F (X% ), e Uy = FL (X X , X, ), then we have
Moo 0 .. 0
X,
ou ou
(U, Uy, Ug, .o Uy, uy) 2 2 0 ... 0
=|0%  OX,
006X Xy X Xo) |
ou, ou, ou, ou,
ox,  ox, X, OX,,
Ou, Ou, Ou, ou,
ox, _8x2 ax, %,

5. If u, u, are the functions of y,, y, and y,, y, are the functions x,, x, then
o(uy,up) _ 0(uy,uy) ays,y,)
(%, %) Ay, y,) a(x, ;)

6. Consider u;,u,,us,........ ,u. ,,u. be functions of n independent variables
Xp s KXoy Xgyeurennnn , X, 1, X, - Inorder that these n functions may not be independent, i.e, there may
exist between these n functions a relation F (u,,u,,u,,........ ,U,_;,U, ) =0.It is necessary

o _0(up,uy,ug, .. Uy, Up) S
and sufficient that the Jacobian should vanish identically.
(X0 Xy Xgyenenenne VX0 X )
8.5 TERMINAL QUESTIONS

Q.1 What do you mean by Jacobian?



o(r,0) 1

2 If X=rcosd, y=rsind show that =—.
Q y 8(x,y) r

Q.3 If x=ccosucoshv, y=csinusinhv show that

M = 1c2 (cos2u —cosh 2v).
o(u,v) 2
6 7 )
Q4 If X+ y+2z=u, y+2z=uv, z=uvw show that (X y Z) =u®v.

a(u,v,w)_

o(u,v,w) . o(x,y,2) _
o(x,¥,z) o(u,v,w)

Q.5 Prove that

Q.6 Show that ax® + 2hxy + by? and Ax? +2Hxy + By? are independent unless

_h_b

h
H

>| o

Suggested Further Readings:

1. Malik, S. C. and Arora, S. Mathematical Analysis. 2nd edition reprint. New Age International
Publishers 2005.
2. Royden, H. L. Real Analysis, Macmillan Pub. Co., Inc. 4th edition, New York, 1993.
3. Somasundram, D. and Chaudhary, B. A First Course in Mathematical Analysis. Narosa Publishing
House, 1996.
4. Malik, A. K., Mathur, P, Purohit, S.D., A text Book of Engineering Mathematics-1, Manakin Press,
2020.
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BLOCK INTRODUCTION

The Fourier series holds immense significance across diverse fields such as mathematics, physics,
engineering, and signal processing. It offers a method to express periodic functions as a summation of
sinusoidal functions (sine and cosine waves), simplifying the analysis and manipulation of many real-
world phenomena that exhibit inherent periodicity. Fourier series serves as a fundamental tool for
analyzing and processing signals. Fourier series are employed to analyze seismic signals and investigate
the Earth's subsurface structure. By decomposing seismic signals into frequency components, reserchers
can identify seismic waves, infer properties of geological formations, and locate subsurface features such
as oil and gas reservoirs. Fourier series plays a central role in harmonic analysis, which explores the
representation of functions or signals as combinations of basic oscillatory components. This analysis is
pivotal in understanding the behavior of complex systems found in areas like quantum mechanics,
acoustics, and optics.

Fourier series determine the crucial applications in medical imaging techniques such as MRI
(Magnetic Resonance Imaging) and CT (Computed Tomography) scans. In MRI, Fourier transforms are
utilized to reconstruct images from acquired data in k-space, enabling visualization of internal body
structures with high resolution. Similarly, Fourier techniques are integral to CT scans for image
reconstruction and analysis. In the ninth unit, we shall have discussed about the introduction about fourier
series, periodic function, even and odd functions with their properties, and the Euler formulas for the
Fourier coefficients and in the tenth unit we deal with half rage series, change of interval and Parseval’s
identity for Fourier series.



UNIT 9 INTRODUCTION OF FOURIER SERIES

Structure
9.1 Introduction
9.2 Objectives
9.3  Trigonometric Fourier Series
9.4  Periodic Function
9.5 Evenand Odd Function
9.6 Some Important Identities
9.7  Euler Formulas for the Fourier Coefficients
9.8 Some assumptions and definition for expansion of f(x) by Fourier Series
9.8.1 Assumption for Expression of f(x) by Fourier Series
9.8.2 Fourier Series of Even and Odd functions
9.8.3 Dirichlet’s Conditions
9.8.4 Smooth and Piecewise Smooth Function
9.8.5 Jump Discontinuities
9.8.6 A Criterion for the Convergence of Fourier Series
9.9 Summary

9.10 Terminal Questions

9.1 INTRODUCTION

The Fourier series holds immense significance across a spectrum of disciplines, including heat
conduction, rotating machinery, sound waves, planetary dynamics, cardiac physiology, chemical kinetics,
and acoustics. This mathematical concept was pioneered by the French mathematician Fourier in 1807.
Essentially, the Fourier series provides an infinite series representation of periodic functions using
trigonometric sine and cosine functions. Its versatility lies in its application as a powerful tool for solving
both ordinary and partial differential equations involving periodic functions.



Engineers and scientists extensively utilize the Fourier series to tackle various physical and
engineering challenges. Its utility stems from its capability to accurately represent functions that may not
be differentiable. Moreover, it transcends beyond continuous functions, extending its application to
periodic functions as well as functions exhibiting discontinuities in their values and derivatives. This broad
applicability enables the Fourier series to serve as a fundamental analytical tool across diverse domains,
aiding in the understanding and solution of complex problems encountered in scientific and engineering
contexts.

9.2 OBJECTIVES

After reading this unit the learner should be able to understand about:
» understand the trigonometric Fourier series
»  comprehend the Periodic Functions
»  explain the even and odd functions with their properties
>

discuss the Euler formulas for the Fourier coefficients

9.3 TRIGONOMETRIC FOURIER SERIES

Aseries T(X)=a, +Y (a, cosnx +b, sinx)

n=1
Where ao, an, bn are Fourier constants independent of x, and f is bounded and integrable on (-z. =), (0, ),
is called the trigonometric Fourier series.

9.4 PERIODIC FUNCTION

A function f(x) is said to be periodic function if
f(x + T) =f(x), ¥'x, T#0.
smallest such T is called the period of f(x).
For example sin (x + 27z) =sinx, i.e., 2z1s period
cos (x + 2xz) = cosx, i.e., 2xis period
sec (x + 27) = secx, i.e., 2xis period
cosec (x + 27) = cosec, i.e., 2xis period
cot (x + ) = cot (x), i.e., is period

tan (x + ) = tan (x), i.e., zis period



sin(nx +2xz) =sinn (x + 2—“) i.e.,2—7t is period.
n n

Check your progress

Q.1 Define the trigonometric Furier series.

Q.2 What is the periodic function?

9.5 EVEN AND ODD FUNCTION

Let the function f(x) defined in an interval | which is symmetric to origin, we say that f(x) is an even
function if f(-x) = f(x) 'x

/ 0 N

About y-

This implies the graph of any even function y = f(x) is symmetric with respect to the y axis. It follows
from the interpretation of the integral as on area that for even function we have

'I[ f(x)dx =2 'I[ f(x)dx for any | ...

v

About y-



Provide that f(x) is defined and integrable as interval [-1, 1].
The function f(x) is odd if
f(-x) = -f(x) ¥'x
In particular we have for an odd function
f(-x) = -f(x) ¥'x
The graph of any odd function y = f(x) is symmetric with respect to the origin.

v
x

about the origin

For odd function I f(x)dx =0 . (2
e

for any | provided that f(x) is defined and integrable on the interval [-I, I].
Properties of even and odd functions
(@) The product for two even function or odd function is again an even function.

Suppose ¢ (x), and ¥(x), are even function, then we have

Letfix) = ¢ (x) HX)

Now we have f(-x) = ¢ (-X) H-X)
= (x) ¥(X)
= f(x)

while if ¢(x) and ¥(x) are odd functions then we have
f(-x) = ¢ (-x) H-x)
=[-o )] [-HX)]
= f(x)
(b) The product of an even and an odd function is an odd function.

Suppose ¢(x) is even and #(x) is odd function then

f(x) = o () ¥(-x)



=9 (x) [- *¥)]
=-p(x) HX)
= -f(x)

Note. In case of even function the graph of the curve is symmetrical about y-axis whereas in case of odd
function the graph of the curve is symmetrical about origin.

9.6 SOME IMPORTANT IDENTITIES

1. I sinnzdx=0 (even function)

ax

2. e™ sinbx dx = (a coshx - b sin bx)

a’+b?

ax

ax _ .
3. j € cosbxdx = Y (a sin bx + b cosbx)

T
cosnx dx = 2 Icos nx dx (even function)
- 0

>
—

5. j sinnxdx =0
0

i

6. J cosnxdx =0
0

7. J cosnx dx =2 Jcos nx dx (even function)
0

-

_ 2[sm nx}
n 0

[sin nz-sin n.0]

O s SN

[0-0]

T

8. I €0S mx cosnx dx = 2 ICOS Mmx cos nx dx (even function)
0

-

= I 2 C0S mx cox nx dx
0



[cos (m - n)x - cos(m + n)x] dx

O ==y

:j cos(m—n)xdx-j cos (m + n) x dx
0 0

sin (m-n)x]" [sin(m+n)x |
e fohe

- m-n m+n |
=0-0
=0.
9. J sinmxsinnxdx =2 J. sin mx sin nx dx
gt 0
= j [cos (m - n)x — cos (m + n)] dx
0
= j cos(m—n) xdx - j cos (m + n) x dx
0 0
_ [sin (m- n)x}” [sin(m +nx |
m-n 0 m +n 0
=0-0
=0.
10. j cos’nx dx =2 I cos?nx dx (even function)
3 0
= j 2 cos?nx dx
0
= J. (1 + cos 2nx) dx
0
= j 1.dx+ .[ oS 2nx dx
0 0
sin 2nx |"
<[+ | 12|
2n |,
=7z-0+0-0
= T.
11. I sinnx dx =2 J. sin?nx dx (even function)

- 0



2 sin’nx dx

1
O ==y

(1 -cos 2nx) dx

1 I
O ey N O ey N

1.dx- I €0S 2nx dx
0

_[x] + {sin 2nx}

2n

T

0

=7-0-0+0=1x

9.7 EULER FORMULAS FOR THE FOURIER COEFFICIENTS

Let f(x) can be expanded in the term of Fourier series

f(x)= ao + a1€0s X + axcos 2x + .......... +by sin X + ba sin 2x +........ ..(3)
where ao, a1, a,.... an, ..., b1, by, ...... are Fourier constants

The above equation (3) can be written as in forms

f(x)=a, +i (a, cosnx +b, sin nx) (B
n=1

To find ao, integrating equation (4) both sides on the interval -r to .

V4

I f(x) dx = _]; ao dx + .ﬁ-:l i an cosnx dx + nil i bn sinnx dx

T 0 V4 0 T
:ao_[ 1.dx+ Z anj cosnx dx + Z I bnsinnx dx
r n=1 -z n=l _»

0

=ap. 27+ i an .0+ ) by.0

n=1 n=1

=2rao
1 TT
a, :ZI f (x) dx

To find an multiplying by cosnx both sides of the equation (3) and integrating in interval - zto 7.
j f(x)cosnx dx = ao j cosnx dx + Z an j cos’nx dx + Z b, I sin nx cosnx dx
e n=1 n=1 -

-7 -7



VA s 00

= ao I cosnx dx + Z anj 2cos?nx dx + nz=l b?” _]i sin2nx dx

“z n=1 0
b
=ap.0+an. 7+ = .0
2
= xran
a, :if f (x) cosnx dx
72'—72'

To find b, multiplying by sin nx both sides of equation (3) and integrating -z to =

I f(x)sinnxdx:ao]i sinnxdx+z anj sinnx cosnx dx + Z bn]E sin?nx dx

-z -z n=1 -z n=1 -z

0 T

=a.0+ ), & [ sin2nxdx + i bn]r. 2sin?nx dx

n+1 n+1 0

=a0.0 +z & 0+ bur
n=1 2

T

1 .
b=—|f d
) ﬂj' (x)sinnx dx

Hence the Fourier series is defined.

9.8 SOME ASSUMPTIONS AND DEFINITION FOR EXPANSION OF

f(x) BY FOURIER SERIES

9.8.1 ASSUMPTION FOR EXPANSION OF f(x) BY FOURIER SERIES

1.  The Fourier function is assumed to be single valued continuous and integrable in the given

internals.

2. Theseries f(x)=a, + Z (a, cosnx+b, sin nx)be integrating term by term, the series should

n=1
be uniformly convergent.

3. The series converges to f(x) at every point where f(x) is continuous. At the point of discontinuity

in the interval (-7, 7) the series converges to
%[f(x + 0) + f(x-0)].
If x =c is the point of discontinuity then

f(x):% [f(c+0)+ f(c-0)].



At x =#7, the series converges to ; [f (-7 + 0) + f(x -0)] limit exist.

Check your progress

Q.1 What do you mean by even and odd function?

Q.2 Explain the Euler formula for fourier series.

9.8.2 FOURIER SERIES OF EVAN AND ODD FUNCTIONS

. . . 1 T 1 T
Case-1: If f(x) is an even function then a, :Z_J; f (x) dx :%;[ f (x) dx

T Va

and a, = 1.[ f (x) cosnx dx = EI f(x)cosnx dx (-~ f(x).cosnxis even function)

ﬂ.—/r ﬂ-O

T

1 .
db =—|f dx =0
and b, EJ' (x) sinnx dx

-

( f (x) is even and sinx is odd and so f (x)sinnx is odd function)

Case-2: If f(x) isan odd function then a, =2i]£ f(x)dx=0
TE —7T

and a, = e [ f(x)cosnx dx=0 (= f(x).cosnxis odd function)
72- -7

Vi T

1 i 2 .
db == f dx=—|f d
and b, ﬂJ- (x) sinnx dx ﬂj (x) sinnx dx

- 0

( f (x)sinnx is even function)

Note: Thus a series of even function will contain only cosine terms and series of odd function will contain

only sine terms.

9.8.3 DIRICHLET’S CONDITIONS

If a function f is bounded Riemann integrable in the interval [-rt, ] and if it is possible to divide
the interval [-=, «t] into a finite number of subinterval in each of which f(x) is monotonic, then the Fourier
series corresponding to f(x) converges for every x and if S(x) (sum function ) of the series is given as

follows:



S(X)‘;[f(x+0)+f(x—0)] (- r<x<7)

Also S(x) = %[f(—n+0)+ f(z—0)] whenx==+1.

9.84 SMOOTH AND PIECEWISE SMOOTH FUNCTION

The function f(x) is said to be piecewise continuous on [a, b] if it has a continuous derivative on
[a, b]. The graph of a smooth function is a smooth curve without any corners (a point at which the curve
has two distinct tangents).A continuous or a discontinuous function f(x) which is defined on the whole x-
axis is said to be piecewise smooth if it is smooth on every interval on finite length. The concept applies
to periodic function every piecewise smooth function is bounded and has a bounded derivative every pair
except its corner and points of discontinuity.

Y

A

y =f(x)

v
x

9.8.5 JUMP DISCONTINUITIES

In this case Right Hand Limit (R.H.L.) and Left Hand Limit (L.H.L.) both exist but not are equal
to each other. We know that when R.H.L. and L.H.L. of a given function at a point exist but are not equal
then the function is said to have the discontinuity of the first kind or a point of jumps discontinuities.

Also Xo is the point then f(xo + 0) — f (X0 -0) = Jis called the jumps of the function x = xo.

-x* for x<1
For example, f(x)=1. g x=1

\& x>1
Atx=1, LH.L. f1-0)=-1
R.H.L. fA+0)=1



The function has 2 jumps at x = 1 which is the point of discontinuity.

Note. Inremoval L.H.L. and R.H.L. exist and equal but not equal to function.

9.8.6 ACRITERION FOR THE CONVERGENCE OF FOURIER SERIES

This Fourier of a piecewise smooth (continuous of discontinuous) function f(x) of period 2n
converge for all value of x the sum of the series equals f(x) at every point of continuity and is

% [f(x + 0) + f(x — 0)] at every point of discontinuity

{arithmetic mean of R. H.L. and L.H.L.}

If f(x) is continuous at everywhere then the series converges absolutely and uniformly at end points of the
interval (-x, ).

1. Iff(-x) = f(r) then the function is continuous at the point +n and the Fourier series converge to f(x)
at the end points of the closed interval -t to .

2. If f(-n) # f(n) then the function is discontinuous at the point +r and its sum function

{f(—n)+f(ﬁ)]

2
Examples
Example.1. Find the Fourier series of the function f(x) = x? in interval (-7, z) and deduce that
(|)—i+i+i+i+ —TE_Z (")—i+i+i+i —Tc_z
gttt to 5 gzttt T B
(iii ) = s 21y T
gttt o g

Expand f(x)= x? (-7 < x < z) in Fourier series.

Sol. We know that the Fourier series for f(x)is

f(x)=a, + i (a, cosnx+b, sin nx)
n=1

where a, = £l T f(x) dx

1t
Zn[rx dx

= ij'xz dx (even function)
2n

1y
n30



iz
n 3
7[2
-3
1 Va
and a,=— If(x)cosnxdx
7z. -7
1 T
== j x%cosnx dx
4 -
27 ., .
= —j x2cosnx dx (even function)
2 0
2|( ,sinnx)" cosnx)]” (=2sinnx)"
=21l x —{2x| ——— + |
T n 0 n 0 n 0
= E[O—O+2—7:cosn7r-0+0}
7 n
_ 4
= ycosnz
4 n
=— (-1)".
17 .
Also b, = —I f (x)sin nx dx
Tc—n
17 . .
== _[xz sin nx dx (odd function)
n—n

Since the given function x? is even function and sin nx is odd function, therefore all b, will be zero. Now
we have

2 0
or =2 +y iz (~1)" cosnx
3 = n
, 7t 4 4 4
X :?—1—2 COS X +? cost—3—2c053x+ ..... ..(5)

(i) Putx =xin the equation (5), we get



T —+4+2—2 +32 IR
2
or ZL =4(1+i2 +i2+i2+)
3 2 3 4

1 1 1 1
or F=l—2+?+3—2+g+ ..... (6)

(if) Putting x = 0 in the equation (5), we get

O=" —— +— +— + e
3 ¥ 2¢ F 4
or i__[i_i 11 }
3 1 22 3 4
2
or =z -1 1 +i _t +.... (7

(iii) Putting x :% in the equation (5), we get

—:—+4[ 0———— O+i2 1+}
22 4
7’ 1 1 1
or -— =4 +— —— +....
12 [ 22 47 g2 }
7 1 1 1
oo - = ..(8
48 [22 4%  6? } ®

Adding equations (6) and (7), we get
72'_2 r 2 2 2

+—==4+=+=+.
6 12 12 3 52

or L
4

g 1 3 5 1°
Note that f(x) is is an even function so its fourier series will contain only cosine terms.
Note: The fourier series of f (x)=x% -z <x <z will contain only sin terms because f (x)=x’ is odd
function.
Example.2: Expand f(x) by Fourier series where f(x) is defined



-1 if —z<x<0
f(x)=40  if x=0
1 ifO0<x<nrx

Sol. We know that the Fourier series for f(x)is

f(x)=a,+ i (a, cosnx+b_ sinnx)

n=1

where  a, = 21 T f(x) dx
T 4
1 0

1 g
=— | (-1)dx + — (1.d
275,[( )X+2n'([ X

_ 1 11
- ﬂ[— xI', + Z[X]o
:2:;[ -7 +r]

=0

T

and a, _L _[f(x)cosnxdx
T

-

0 T
= 1{I(—l)cosnx dx +J1. cosnx dx}
0

T

-7

-4 ]

_1 [-0-0+0+0]
T

=0

Also b, = lj f (x)sin nx dx
n -

0 b3
_ I(—l)sin nx dx+I1. sin nx dx}
- 0

0
COS nX cos nx \"
+ i
L n -1 n 0

...(9)



1
— [cos n.0 —cos n (-t) — cos nxt + cos n.0]
nm

L [2cos n. 0 — 2 cos nx]
nm

-2 [1—cos nx]

nm

Ifniseven,cosnz=1,thenb,=hs=bg = ....0

If nis odd, cos nz = -1, then, b= i, bz = i, bs = i, .....
T 37 S5x

Putting these values of a,, a,, b, in the equation (9), we get

f(x)=a, + i (a, cosnx +b, sin nx)
n=1

=0+ 0+ [brsinx+bzsin2x +...]

= isin X + 0. sin 2x +isin 3x + 0. sin 4x + i sin 5z +...
T 3z 5x

=i{sinx+lsin3x+lsin SX +..... } ...(10)
T 3 5

Atx =2, 0<x<r,itisgiventhat f(x)=1, so that form equation (10), we get

1:i 1—1+1—1+ ........
T 3 5 7

1 1
or —=1-—-—+-=-—=—=+........
5 7
Example.3. Expand f(x)= |x| by the Fourier series in the interval (-7, 7). Also show that
2
T 1 1 1

§ 12 3 5%

Sol. We know that the Fourier series for f(x)is

f(x):a0+i (a, cosnx+b, sin nx) ~(11)

n=1

where aozziff(x)dx forx>0
I

-7

1 V4
=5jmm
2 V4
:ZJ Ix| dx ( x>0 .. |x|=x)

0



and  a, :ljf(x)cos nx dx
T

17[
:—I|x|cosnxdx
7[—71

:ijxcos nx dx
27r0

2 [xsin nxj” ( ( cosnxD”}
= — 1 _ 5
T n 0 n 0
2 7 cosnz 1
=—1=.0-0+ 2 ——2}
z|n n n
2
= cos zn -1
n? [ ]
2 n
ZF[(—l) —1]
Ifnisgiven,n=2,4,6, ..., we getaz=as =as = ....... =0
2 4
=~ [-1-1]=-
% 77.12[ ] .12
2 4
a,=—[-1-1]=-——"
3 72_32[ ] 71_32
4
%= s
4
a, =g

Since all bn’s will be zero because the given function f(X)= |X| is even function. Putting these values of
a,, &,, b, in the equation (11), we get

7 4[cosx c0s3X cos5x+} .(12)

M_E_Z 2 3 5



Now put x = 0 in the equation (12), we get

7 4(cosO cosO cosO
O=—-—— ' + 3 + o7 + ...

2
or z_41, 1.1
2 xl1? F 57
or Z 1,1,
g TZ T te :
Example.4. Show that an even function can have no sine term in its Fourier expansion
f(x)=xsinx; [z, z] Also show that % =% + % —3—15 + 5—17—7—19 SR
Sol.We know that the Fourier series for f(x)is
f(x)=a,+>_ (a,cosnx+b,sinnx) ...(13)
n=1
1 T
where a, = — |f(x)dx
2m *
-1 J'xsin X dx
2z <.
= ijx sin x dx
T 0
= 1[(—x cosx); —(—sin x)g]
T
= l[—7rc057r + 0+ sinz—sin0] [ cosz=—1]
v
=—CO0S T
=1.
and a, = e j f(x)cos nxdx

T

-

1 T
== Ixsin X cosnxdx
7[*72'

2 V3
—Ixsin xcosnxdx
7 0

17 )
= —J'x 2sin xcosnxdx
7z 0



= ljx(z cos nxsin x)dx
7[ 0

s

= lj'x{sin (n+1)x—sin (n-1)x}dx

T

= 1jxsin (n+1)x dx— [ xsin (n-1)x dx
9y 0

E Rl
e -

_ 1{[_” cos(n+1) ”jo ~0+0+ (”COS(” _1)’7 —0—0}

n+1 (n-l)2

~cos(n+1)z s cos(n-1)z

n+1 n-1
n+1 n-1
e
n+1 n-1
n+2 n-1
:(_1) + 1) , wheren >2
n+1 n-1
Puttingn=2,3,4,....... , we get
4
ENE RN
3 1 3
5 2
N C NS !
4 2 4 2

17 .
and alz—jxsmxcosxdx
”*7[

2 T
=— jxsin xcosxdx
7[—71'

17 .
= Ix(Zsm XCOSX)dx

= i Ixsin 2xdx
2 7



17 . .
:—Ixsm 2xdx (even function)

1 (—xcost ]” B (—1.sin 2Xj”
T 2 0 4 0

Since the given function f(x) is even therefore all bn’s are zero. Now putting these values of @,, &,, b, in
the equation (13), we get

xsinx:l—lcosx+ 1—1 COS2X + —1+l c0S3x + 11 COS4X +....... ...(14)
2 3 4 2 5 3
Put x = /2 inthe equation (14), we get

S|n—1—cosx+@ cost+(—+ jcos3x+(;—$jcos4x+ .......

272 j

or T ( j ( J [ j+ .......
2
7 2 2 2

or — =l = ——— ——
2 3 35 57
7 1 1 1 1

or =2 -+ — -+ — ...
2 [2 13 35 57 }
£ 1,1 1 1 1

or — _— -t — 4 ......

4 2 1 3 3 5 57 1. 9
Example.5. Find the Fourier series for f(x)= x + x? in (-7, 7).
Sol. We know that the Fourier series for f(x)is

f(x)=a0+i (a, cosnx +b, sinnx) ...(15)
n=1
where a =ij£f(x) dx
° 2n



1
S
4 —x
>
o
>
+
S
e
>
N
o
>

T

_1 2
_ﬁj(x+ X )cos nx dx

/4

17 17,
:—jx coS nx+—jx cos nxdx
T T

T —7T

1|( xsinnx\" ~l.cosnx) | 2%,
== —-| = +—jx cos nx dx
I n ). n | 7y

1 cos nz cosnrx
=—|0+ 2 2
n n

2 [[xz sin nx}” (—Zxcosnxj’r (—ZSin nxj
it (et . + ;
P n . n . n

2[ 27COS N7
i 0+7

n2

T

:1[0]+ —O—O+O}
T

T

E|:27TCOSHJZ}
T n?

T

0

|



2

>

Also b, = 1 I f (x)sin nxdx
T

17 :
= ;_J;(H x? Jsin nxdx

17 17, .
—jx sin nx dx+— jx sin nx dx
T T

/4 /

2% . 17z )
l jx sin nx dx+— sz sin nxdx
T T

- -

2| ( xcosnx )" _(—1sinnx i
T nJ n> ),
1{[% cos nxjﬂ [—Zx.sinnx g (2cosnxj’r ]
+o|| ————= | + -
r n 3 n B n )

2| (=nmcosnz 1| -z%cosnz #’cosnrx 2cosnz  2cosnz
=—|| ——-0+0 + +0+ -

Jr_i
n 7 n n’ n’ n?

VA

:—ZCOSI'VZ' £ 040

n

_2(Y

Now putting these values of a,, &,, b, in the equation (15), we get

f(x)=a, + i (a, cosnx+b, sin nx)
n=1

2 0 1\ ©
SN 4 21) cos NX— >, g(—1)”sin nx
3 =t N n=t N

i’ o0 0 [cosnx sin nx}
or X+x2="4 4% (-1 — ,
3 2(-1) n? 2n

—~~



Example.6. Find the Fourier series for f(x)= ”2_)( in [0,27]

Sol. We know that the Fourier series for f(x)is

f(x):a0+i (a, cosnx+b, sin nx) ...(16)
n=1
1 2
where a, =2—jf(x) dx
7[ 0
2z
_1 l(7r—x)dx
27 5 2

2/1'1

[= (z—x)cos nx dx}

02
o7 27

=— J' eosnxdx — Ixcosxnx dx}
L 0 0

B . 2 . 27 27
1 (sm nxj (xsm nx) (—1. cosnxj
2w n Jo nJo n 0

:i[_O_O_COSZHﬂ' +i2}

27 n n
1) (=)t 1
2| 0 on
_1 _i+i}
27| n? n?
1
1)



171 :
Also b :—IE(n—x)S|n nxdx

n
7[ 0

1 27
== I;rsm nxdx — jxcosnxdx
0

27 27 . 2r
1{ (—cosnxj (—xcosnxj (—1.sm nx] }
=—|r | — | | —
2w n 0 n 0 n 0

cosZn;z cosO)+127z (cos2nz —0) + 0}
T

(o -af+ 2 o)

s

1
n

'Sf
|——|I—ﬁ
:>|§]

Now putting these values of a,, &,, b, in the equation (16), we get

f(x)=a, + i (a, cosnx+b, sinnx)
n=1

%(ﬂ'—X)=O+i 0. cos nx + i lsin nx

n=1 n=1

l(n—x):0—0+smx +SInZX +5|n3x+ ........ ..(17)
2 1 2 3
Put x = /2 inthe equation (17), we get
z 1 0—1+0+1+0——+ ......
4 1 3
V4 11 1
or S=1-4= - =+
4 3 5 7

Example.7. Find the Fourier series which converge to f (x) in (-7< x <z) where f(x)= x+ x?and f(x)= 7°
when x = #7x.

Sol. For the given f(x)= x + x?in [-r, ] (from example 5), we have

cosnx  sinnx
n 2N

2
2 _ T Ay
XX =2 +4nz_;( 1){ a



It is given that when x = #rzthen f (x) =n°.
Now we have

S(x)=% [f(z-0)+ f(-z+0) |
=% [72'—0 +(7z—0)2 + —7z+(—7r)2]

= r+n? —z+27]
:7[2

At X = £z, we have

:—+4z
-2 vazey| S|

{cos nz sin nx}

3
r? -1)
or 7[2_?:4Z(n2)
or 2—”2—4[£+i+i+i+ }
3 o223 T

or

X—m when —7<x<0

Example.8. Find the Fourier series of a function f(x)= :
r—X when 0<x<7m

Sol. We know that the Fourier series for f(x)is

o0

f(x)=a,+> (a,cosnx+b, sinnx) ..(18)



and a,= 1 J' f(x) cosnxdx
7T

0 T
L I(x—;z)cosnx dx+ ij.(ﬂ'— x)cosnxdx
T, %

19 19 17%
== [xcosnx dx—= [rcosnx dx+ = [(7 —x)cosnxdx
T

-7 - 0

1] (xsin nx)° cosnx )’ z.sin nx )’
== -1 -@1)— +
s n . n . n .
1 sin nx\" sinnx )" cos nx\"
+—| |7 —| X +|-1—;
T n J n ) n 0

1 0+i_cosnﬁ_0}+£{o_o_cosn7z +i2}
| n

2 2

I Vi 1}
= ﬂ_znz [1_(_1)n]
= MG

Va

Also b, :ij'f(x)sin nxdx
72.77[

0 V.4
:ij'(x—n)sin nx dx-+ iJ'(zz—x)sin nxdx
72.—7[ 72-0
0 . 0 0
1 COS NX sin nx COS nXx
Al e ey
P n ) n> ) n
N 1{ (_ﬂcos nx) —(—x cosnxj +(_1. smznxj }
s n J, n J, n” ),




1 zrcosnr 7¢cos0 mcosnrz
=—| — +0+ —
T n n n
1 zwcosnz  wcosO mcosnrx
—| - + — -0+0
b n n n
1] -1) 7 ox
=—| -2x u +—+—
T n n n

:1 _272-(__1)+2_7Z- :|
T n

:2_7{ (0 | L }

T

_2 [(_ ) +1]
n
Now putting these values of a,, &,, b, in the equation (18), we get

f(x)=a, + i (a, cosnx+D, sin nx)

n=1

T~ N .
=—=+) a,cosnx+ Y b, sinnx
n=1 n=1

n=1 n=1

0 n+1 ©
- _%+ 24 Z{%} COSNX +2 Z%[(—l)“+1 +1]sin nx

T
2[2cosx 2c0s3x 2c0s5x }
= + - oo
V4

_z,
2 12 32 52
[ 2sinx  2sin3x sin 5x }
+2 + - T
1 3 5

r 4[ COSX  C0S3X COS5X }
=——+— + - F e
2 nm| 1° 3 52
sinx  sin3x sin 5x
+4 + — + e
[ 1 3 5 }
Example.9. Expand f(x) by Fourier series where f(x) is defined by f(x)=e*in [-7, 7].
Sol. We know that the Fourier series for f(x)is

f(x):a0+i (a, cosnx+b, sin nx) ..(19)

n=1
g

where a, = zi j f(x) dx
T

—T



= L e* dx
2r <.

L]

_ljef-e”
p/a 2

:lsin hxz
7w

T
—7T

V4

and a,= 1 j f (x) cosnxdx
ﬂ-*ﬂ'

1 T
== Iex cosnxdx
7[—7r

1| e* :
= =| —— (cosnx-+nsin nx)
| 1+n .

- 7117)[@ (cosnx+nsin nx)hr
T

1

- m[e” (cosnz+0)—e ™ (cosnz +0)|
T

1 -
:m[e”—e ]cos nz
C2.(-1)" (e"—e
“a?) 2

2(-1)"sinhz o 25iNh7 cosnz
72'(1+n2) 7[(1+ nz)

- a N
. ax - i
Note: j e®cosbx dx = Y ('a cosbx+ b sin bx)
< >
e®sinbx dx = ——— (asinbx - b cosbx
\J~ a2_|_b2 ( ) )

T

Also b =1If(x)sin nx dx

n
T

-

17 .
=—jexsm nx dx
72-—7[



1[ e ’
== > (sinnx — ncosnx)
7i1l+n .

_ 7117)[& (sinnx —ncosnx)]’_[,r
T

1

- m[e” (0—ncosnz)—e* (0—ncosnz)|
T

:ﬁ[—e” ncosnr+e” ncosmz]
T

_ncosnz ( . —e’”)

(e

2n(-1) 2n cosnzsinh z
7[(1+ n)2 ﬂ(n +1)2

Now putting these values of a,, &,, b, in the equation (19), we get

f(x)zl sinh 7 +i
T

n=1

2(-1)"sinhzcosnx  2n(-1)’sinhzsinnx |
71(1+ nz) ﬂ(1+ nz)

9.9 SUMMARY

1. A French Mathematician Fourier, in 1807 introduced the Fourier series.

2. Aseries f(x)=a, + Z(an cosnx +b, sin x), Where ao, an, bn are Fourier constants and interval (-
n=1
7. ), (0, w) independent of X, is called the trigonometric Fourier series.

3. A function f(X)is said to be periodic if f(x+T)=f(x); forallreal x
and some positive number T.

4. Afunction f(x)is said to be even if (- x)= f(x)
5. Afunction f(x)is said to be odd if f(-x)=—f(x)

6.  The Fourier series for f(x)in [-x, n] is

f(x)=a, + i (a, cosnx+b, sin nx)
n=1



V4

where a, :2i If(x)dx, a, _1 J' f (x)cosnxdx andb, :E.[ f (x)sin nx dx
ne T me

-

7. Letf(x) be an odd function in - z< x <zthen the graph y = f(x) will be symmetrical about the origin,
then we get.
aop =an = 0, since f(x) is odd.
1% . 27 :
bn= = j f (x)sin nx dx = —I f (x)sin nxdx
4 - 4 0
The Fourier sine series in 0 < x <ris given by f(x)=> b, sinnxdx
n=1
8.  Let f(x) be an even function in -7z< x <z then the graph y =f(x) will be symmetrical about the y-
axis, then we get
bn =0, since f(x) is even
1% 27
an =— J. f (x)cosnxdx :—J' f (x)cosnxdx
4 - 4 0
17 27
and ap = —If(x) dx =—j f (x)cos dx
4 - 4 0
. . - . a, &
The Fourier cosines series in 0 < x <zis given by f(x) =—> +>_ a, cosnx.
n=1
9.10 TERMINAL QUESTIONS
Q.1 Explain the Periodic function.
Q.2 Write the Euler formulas for the Fourier coefficients.
Q.3 Find the Fourier series of the function f(x)= x — x? in interval [-, 7]
Q.4 Find the Fourier series for f(x)= €™ in the interval [0, 27].
Q.5 Find the Fourier series of

f(x)— 0, when -7<x<0
“|x%, when 0<x <7z

which is assumed to be periodic with period 2.



Q.6 Find the Fourier series of

f(x)=

0, when -7<x<0
sinx, when 0<X <&

and deduce the

Q.7 Find the Fourier series of

0, for O<x<n«
f(x)=
2r—X, for 7 <x<2rx

Q.8 Find a Fourier series of the periodic function f(x) with period 2z which is defined as follows:
-1 for -z <x<0
£(x)= i
1, for 0<x<2rx
Q.9 Find the Fourier series of the function f(x)= |cos x| in the interval (-=, 7).

Q.10 Find the Fourier of the function defined as
0O for —7z<x<0

f(x): % for O<x<rx"

Q.11 If f is bounded and integrable on (-n, w) and a,, b, are the fourier coefficient then show that

i(aﬁ +b?) converges.

27 COSX C0S2X c0S3X co0s4x sinx sin2x sin3x sin4x
3. | [Pttt A +2 - + - +...

12 22 32 42 1 2 3 4

_ 2
4, (1 € ) 1+ 1cosx+1c032x +icos3x+.... + lsin x+zsin 2x+isin3x+ ......
2 5 10 2 5 10

T
5 ~ +Zi =) COS NX + i[z(—l)“+1 +i[(—1)” —1]}sin nx.
3 =3 =ti m’

3 15 35 63

2 sinx 2 {cost c0s4X COSBX COS8X }
6. — 4+ — + + + Forerns
T 2 T



10.

COS3X COS5X

4
T ——<COSX +
T

52

T 5

4 4[cos3x c0s4x }
— 4 - T,

T T 3 15

4{. sin3x  sin5x
—Jsinx + 3 + N +

= _1
8

2| 17 3 5?

Suggested Further Readings:

sin(n+1x }

2n+1

4

1{cosx c0s3X  CO0S5x } z[sinx sin2x  sin3x }
+ + oo - + —

1 2 3
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UNIT-10 HALF RANGE FOURIER SERIES

Structure

10.1 Introduction

10.2 Obijectives

10.3 Derivatives Using Forward Difference Formula
10.4 Derivatives Using Backward Difference Formula
10.5 Summary

10.6 Terminal Questions

10.1 INTRODUCTION

The Fourier series offers a robust mathematical framework essential for comprehending and
controlling periodic phenomena, with broad applications spanning various scientific and engineering
domains. In data compression, Fourier series assume a pivotal role by enabling representation of data in
the frequency domain, facilitating the elimination of redundant or less critical information. This leads to
enhanced efficiency in data storage and transmission. Moreover, in image processing, Fourier series find
extensive use in tasks like image enhancement, compression, and feature extraction. Through techniques
such as the Discrete Fourier Transform (DFT), images can be efficiently transformed into the frequency
domain, facilitating their manipulation and analysis.

The Half Range Fourier Series is a specialized form of the Fourier series that deals with functions
defined on a specific interval, typically from O to L, rather than over the entire real line. This series is
particularly useful for analyzing and representing functions that are defined only on half of the interval,
such as symmetric functions. In electrical engineering, Fourier series play a vital role in the analysis and
design of electrical circuits, encompassing filters, amplifiers, and communication systems. They aid
engineers in comprehending the frequency response of circuits, thus optimizing their performance.

10.2 OBJECTIVES

After reading this unit the learner should be able to understand about:
» understand the half range expansions in Fourier series
»  comprehend the change of interval in Fourier series

»  discuss the Parseval’s identity for Fourier series



10.3 HALF-RANGE EXPANSIONS

In Fourier series, periodic function defined in an interval 0 to 2T, (or Cto C + 2T or - tto ). Now
we suppose that a Fourier series for a function f(x) which is defined only in half-period say (0 < x <z).
There are two cases arise:

(i) Fourier Sine serieson 0 <x <&

Half-range Fourier sine series containing only sine terms. Let f(x) be an odd function in
-7< X <rzthen the graph y = f(x) will be symmetrical about the origin, we get

ao =an = 0, since f(x) is odd.

and b, L _[ f (x)sin nx dx
7T e

= EI f (x)sin nxdx
)
Hence the Fourier sine series in 0 < x <xis given by
f(x)=>"b, sinnxdx
n=1

(i) Fourier Cosine Series in 0 < x <z

Half-range Fourier cosine series containing only cosine terms. Let f(x) be an even function in -z7< x <z
then the graph y =f(x) will be symmetrical about the y-axis, we get

bn = 0, since f(x) is even.
a, = 1 I f (x)cosnxdx
72.—7[

V4

=£j f (x)cosnxdx
T

~ 2 £(x) dx
7Ty
Hence the Fourier cosine series in 0 < x <ris given by

a o0
f(x)=—+> a,cosnx
n=1
Note: Here in next articles 59 to 5.12, we assume the Fourier series is in form
a & )
f(x)= ?0 +Y(a, cosnx +b, sinnx)

n=1



10.4 CHANGE OF INTERVAL

Generally we have considered only intervals of length of = or 2=, but in many engineering
problems the period of functions are different say: T or 21. In such cases, this interval must be converted
to the length 2z, Let f(x) be a periodic function defined in the interval - < x < 1. We introduce a new
variable z. We have

T |
Z=—X 0OFf X=—172
| T

Then f(x) = f(lzj= F(2)

T
Atx=-l,z=—7m,andat x=I,z=rx
Hence F(z) is defined in (-x, n)

Now let the Fourier series of F(z) defined in the interval (-7, z) with period 2r be

0

F(z):a—z0 +§(an cos nz+b, sinnz) ...(20)
where a, =E]Z'F(z)dz )
T,
a, :i]iF(z) cosnzdz > ..(21)
b, =%iF(z)sin nzdz )

Now to find the Fourier series for f(x) in — | < x < I. Changing the variable z to x, we get

f(x)=2 z[ cos™™ bTﬂXj

n=1

where a, = 1 I F(z)dz { 2=" x}

and a, :lJ.F(z) cosnzdz
T

-



n

Similarly, b :ij.f(x)sinnl—”xdx.
T

10.5 PARSEVAL’S IDENTITY FOR FOURIER SERIES

Theorem: Let the Fourier series % +Z(an cosnx +b, sinnx) converges uniformly to f(x) at every

n=.

2 0
points of (0, 2x) then show that — I[f (x)[d :?0 + Z(a,f +bnz).

n=1

Proof. We know that Fourier expansion of a function is given

o0

?O + (a, cosnx +b, sin nx) ...(22)
n=1

Since the series uniformly converges term by term integration is justified.

2z

where a, = 1 I f (x)cosnx dx ...(23)
4 0
1 27

and b, =— I f (x)sin nx dx ...(24)
v

0

Equation (22) multiplying both sides by f(x) and integrating between limit 0 to 2x, we get

2 27r

j[f (x)f dx = _[ f (x)dx+ ji(a cosnx+ b, sin nx) f(x)dx

0 0 o n=l

2

or T[f(x)]zd I X )dx+ Za _[ cosnxdx+Zb J.f(x)sm nxdx ...(25)

n=1
Put n=0 in the equation (23), we get
2 2
a, = 1 f(x) dx = 7, =[f(x) dx
0

T o

Also from the equations (23) and (24), we get

n

2
ma, = I f(x)cosnx dx
0



2

And zh, = f f (x)sin nx dx
0

From equation (25), we get

2

[[f ()T dx :a—ﬂa0+za a, + b, b,

j 2 2.
TIF GO dx = {_5 o3 +b§)}
0 n=1
Hence
127[ 2 ©
;![f( :?°+nl(a +b?)

Check your progress

Q.1 What do you mean by Half range expension in fourier series?

Q.2 State the Perseval’s Identity for fourier series.

Examples
Example.1. Find the half-range sine series for x in the interval (0, 2).
Sol. It is given
f(x)=xin interval (0, 2) ...(26)

The Fourier series for f(x) over [-I, I,] will contain only sine terms given by

=3, sin% .27)
n=1

Here | = 2, so we have

b :lj f(x)sin@dx

n I ’
:lj. £ (x)sin "2 dx
2 2

-2

2
=2j X.sin %dx
2



cos(nsx/2) _ cos(nax/2)

‘:X{‘W}_l{ 7—/47H

__2.(—cosn7z)+ sinnz
| (hzr2)  (n*2%14)

- 4 n . N7aX
f(x)=>-—(-1) sin—>

41 . x 1 . 2z 1 . 3zx 1 . 4nx
=—|Sin——=Sin——+=SIn — +=SiINn — +....... )
T 2 2 2 3 2 4 2

Example 2. Expand f(x) =sin x, 0 < x <m in a Fourier cosine series.

Sol. We know that the Fourier cosine series in 0 < x <z is given by

f(x):% +i a, cosnx ...(28)
n=1
2 T
Where &, :—j f (x)dx
T

=£Isinxdx
7[0

_2 [-cosx]f
T

= " [cosz — cos0]

27 .
and  a, =—ISII’] xcosnxdx
7[0

17 .
= —chosnx sin x dx
7[0



= %_zf[sin (n+1)x —sin (n—1) x]dx

_(—cos(n +1) x}” ~ [_ cos(n —1)xj”
i n+1 0 n-1 0
_—cos(n+1)7r+ 1 +_cos(n—1)x_ 1 }

n+1 n+1 n-1 n-1

1
3|+

= e gl

_ 1{(—1)”*1—1 (—1)“1—1} o

n+1 n-1

Note. cos (A + B) = cos A Cos B —sinA sinB
cos (A- B) =cos A cos B + sinA sinB
2cos A sin B =sin (A + B) - sin (A - B)
2sin A sin B = cos (A —B) —cos (A + B)

Also alzzj'sin X cosx dx
72-0
1% .
=—.|.S|n2xdx
T 0

_1(_ costj”
/4 2 ),

__1 (cos2z—c0s0)
2

Now putting these values of a,, a, in the equation (28), we get
f(x) =22 +i a, cosnx
2 n=1

© n+1 n-1
4 Zi Y71 (Y71 cosnx
T S n+1 n-1




:i—l ﬂcost +i cos4x+icos4x+icos6x+....
T 7|3 15 35

] 4 4 |cos2xXx cos4x cos6Xx
or sinXx=—— — + + +....
1.3 35 5.7

a T
Example 3. Find the Fourier series for f(x)= x?- 2 in -2 < x <2.
Sol. Itis given that ~ f(x) = x? -2 ...(29)
Since given function is even function, so we have by = 0.

Then the Fourier series for f(x) is

f(x) =% +i a, cos% ...(30)
n=1

|
Where &, :—j f(x)dx
o

i(x2 —2)cos n;zx dx

N~



— ‘ 2 _ n
_J'Z(x 2)cos 50
2

- lomt2)_usinaial of v T

(nz12)
_ sinnz N 4 oSNz —2 sinnrz
(nzl2) (I’]27Z'2/4) n*z°18
= n2162 cosnz
T
16 n
~ i Y

Now putting these values of a,, @, in the equation (30), we get

n=1
2 & 16 n n
=_Z4 -1 —
3 nl|:n27z-2( ) j|
2 16[ X }
= —Z4+—|C0S"= — = COS X +=C0S———......
T 2

Example.4. Find the Fourier series for f(x)=e™ in (-I, I).

Sol. We know that the Fourier series for f(x) in interval (-1, 1) is
a = nzx sin nzx

f(x)=—2+>|a +b ...(31

(x)== Z[ Tt } (31

|
where ao = EI f (x)dx




and an =-|e

ax

———— (acosbx+bsin bx)}

2

{ j e® coshx dx =
a‘ +b

|

I _X nzx Nz _. Nax

= —5——5— | € {—C0S—— + ——sin——
I“+n°7z I I I )],

|
I q nz . | nz .
=% 3 3 (5] —COSH7Z+TSInn7r —e —COSﬂﬂ'—TSInnﬂ

I“+n°7z r

= # [(e' —e” )cosn;z]
T

_ 2l .
- W Cosnﬂ'.3|nh|
+N"x

| .
Also bn= %I f(x)smlﬂxdx

|
= 1Ie"sinn—ﬂxdx
1 |

I
-
1
aI\)
|
wn
=
‘:s
S
|
|3
B}
‘:s
S
N

{ [e*sin bxdx=ﬂ(asin bx—bcosbx)}
+
| a0 . nrz . nz
= ————|e"| —sinnz+-—cosnz |-€'| sinnz ———cosnz
I“+n°z I |

= ;2 [nl—” cosnﬁ(e' —e )}

12+n%x



2Nz

2_2

= ¥ cosnz.sinh .
+Nn°rx

Now putting these values of a,, a, in the equation (31), we get

f(x)= sinhl +Z°°: 2lcosnz.sinhl COSNX + 2nzzcosnz.sinh | sinnx
I =~ P+n’z* I>+n’z%

l+x —1<xs0

Example.5. Find the Fourier series f(x)=12 2 with period1.
—=X O<x<=
2 2

Sol. We know that the Fourier series for f(x) in interval (-1, 1) is

f(x)=20 4+ 3 a, % yp, SN .(32)
2 = I I
1 |
where a, = I_-[ f (x)dx

Here | = 1/2, so we have

1/2
_ Ly
1/2 3,

0 1/2
(£+x)dx +2 I (l— xjd X
2 2 0 2

x x2T x x2]"
=2 -+ — +2| = ——
2 2 2 2

&

1
N
—_—

|
And a, = I f(x)cos# dx
4



0 l2
=2 I G+xjc052nﬂx dx +2 j (—— XJCOSZI'VZX dx

2
5 (erj sin 2nzx dx_1 ( cosZnnxj

2 2nr

. 1/2

.2 (l—x) sin 2nzx _1(_1) (_cosgnzzx)

2 2nr an‘r 0

i 1  cos2nz Lo|_cosnz 1
~ "l an?x? an’r? an’z?  4n’z?

2 ] )
= {2 if nis odd
0 if nis even

Similarly, b, :%j f(x)sin? dx

0 1 1/2 1
=2 I (—+xjsin2n7zx dx +2 I [—— xjsin 2nzx dx
2 2 0 2
. 0
s (er) (_ cosanzxj _@) (_sm inzzxj
2 2nr an‘rx s
B . 1/2
.9 (E_Xj (_cosZn;zxj_(_l) (_smzznzzsz
i 2 2nr an‘rx o
oo
== — | 4| ——
2Nz 2nr |

=0

Now putting these values of ao, an and bn in the equation (32), we get




f(x)=%+i[ 22 > cos@ +O.sin%}

2 | cos2nax cosbax  €os10ax
+? I + Y + = R )

0 4
Example 6. Find the Fourier series for f(x) = x?in (-r, m). Also prove that Z% T using Perseval’s

n=1
theorem.

Sol. Given that f(x)= x?
Since the given function is even so bn =0 ...(33)
And the Fourier series for f(x) is

f(x):a?O +ian COS NX ...(34)

n=1

4 T 37X 2
zlj.xzdx zzszdng{x—} _2z
T Ty 2
1 s
and a, :—If(x)cosnx dx
ﬂ-—/r

271'
= —Ixz cosnx dx
7[0

_ . . T

2| x®sinnx  2x.cosnx  2sin nx
= + 2 - 3

A n n o
_ 2[2z.cosnz

| n?

4 n
= — (-1)".

5 D

By equation (34), we have



Now by Perseval’s theorem, we have

1H0F o= o %5 s 07)

n=1

N

X[ 2, 16
o BLATER
7 (-xf] 27° = 16
or R = + -
5 5 o "L
5 5 ©
or 27 _ 27 " ﬂ_z E

or = g =7zn=1 pey
or 12755 _ ﬁz r11_§
or g_o _ Z ni

© 1 72_4
Hence —_— =—.
nz_ll n* 90

10.5 SUMMARY

1.  Now to find the Fourier series for f(x) in — | < x < I. Changing the variable z to x, we get

N7zx n7zx
f(x) = (a cosT +b, sin TJ

where ao = %JI' f(x)dx { z :% x}

%_II f(x)cos% dx, Similarly, by —_f f (x)sm—dx



. . a = . . .
3. The Fourier series ?0 +Z (an cosnx + bn sin nx) converges uniformly to f(x) at every points
n=1
l 2z
of (0, 2m) then = |
7T

0

[f(x)P dx =20 + i(af +b?).

2
2 n=1

10.6 TERMINAL QUESTIONS

Q.1 Explain the concept of half range expansions in fourier series.
Q.2 State and prove Parseval’s identity.
Q.3 Find the half-range sine series for €*in (0, 1).

Q.4 Find the half-range cosine series for x in (0, 2).

sin X for 0<x<rxl/4 ) _ )
Q.5 Iff(x) = cosx  for m/A<x<m2 Expand f(x) in series of sine terms.
i_ X, if O<x <l
Q.6 Expand f(x) = 4 3 2 as the Fourier series of sine terms.

X——, If=<x<1
4 2
Q.7 Find the half-range sine series to represent f(x)= x(7z x) for 0 <x < x.

. 7X 0<x<1 how that i the i I _
Q.8 Iff(x) = 7z(2—x) 1£x£2's ow that in the interval (0, 2);

7 4] cosazx coS3zXx  coShax
fxX)= ——— >— + — + — ...
2 x| 1 3 5

Q.9 Find the Fourier series for f(x)= x — x%in (-1, 1).

X, -1<x<1
Q.10 Find the Fourier series for f(x) = and hence deduce the sum of the series
X+2 0<x<1
11 1
3 5 7

Answer

3. 27 1+e2 sin zx + 2(1—_ez)sin 27X +3’(1_+(92) Sin3zx +....
1+7x 1+4rx 1+9x



2

8 | cosax/2 cos3zx/2 cosbax/2
4, 1-— 5 + > + >
T 1 3 5

8 z|1sin2x sin6x sinl1l0x
5. —CO0S— + + +....
T 4| 1.3 5.7 9.11

1 4 . 1 4 . 1 4 :
6. ——— |SINZAX +| —— +—5— |SIN3X + | — ——— [SINSAX +....
T T 3 3r Sz 5«

8( ) sin3x  sin5x )
7. —|SNX+———+ 7t
T 3 5

1 4 |cosax C€O0S27zX C€0S3aX 2|sinzx  sin2zx  sin3zx

9. -t Yt |t - + —
3 1 2 3 | 1 2 3

10. 1 +%[3sin X —lsin 7zx+l(3)sin 37zx—£sin ArX + l(3)sin 57rx—£sin 67rx+..}
Vi1 2 3 4 5 6
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BLOCK INTRODUCTION

Integral equations are mathematical equations where an unknown function appears under one or
more integral signs. They are extensively utilized to model a broad spectrum of phenomena across
numerous disciplines such as physics, engineering, economics, and biology. These equations can be
categorized into two main types: Fredholm Integral Equations and Volterra Integral Equations. Integral
equations have widespread applications, spanning electromagnetics, acoustics, heat transfer, fluid
dynamics, quantum mechanics, signal processing, and image processing. They offer a robust mathematical
framework for representing real-world phenomena and addressing practical engineering challenges.

Integral equations find applications across numerous fields due to their ability to model diverse
phenomena and solve practical problems. Integral equations are a fundamental part of mathematical
analysis and are extensively studied in pure mathematics. They provide insights into the behavior of
functions and help in understanding the properties of various mathematical operators. Integral equations
are used in biology and medicine to model biological processes, population dynamics, and the spread of
diseases. They help in understanding the dynamics of ecosystems, predicting the effects of interventions,
and analyzing medical imaging data. Hence the integral equations provide a powerful mathematical
framework for modeling complex systems, analyzing data, and solving practical problems across a wide
range of disciplines.

In the eleventh unit, we shall discuss about introduction and classifications of integral equations.
In unit twelveth we shall discuss about Fredholm Integral equation, Fredholm first theorem, Fredholm
second theorem, Fredholm third theorem. Fredholm Integral equation, resolved kernel for Fredholm
integral equation and separable kernel are discussed in unit thirteen. In unit fourtheen we shall discussed
the Volterra Integral equation, Solution of non-homogeneous Volterra integral equation of second kind by
the method of successive substitution and successive approximation, iterated kernels.



UNIT-11 CLASSIFICATIONS OF INTEGRAL EQUATIONS

Structure

11.1 Introduction

11.2 Obijectives

11.3 Integral Equation

11.4 Types of Integral Equations
11.5 Linear Integral Equations
11.6 Volterra Integral Equations
11.7 Fredholm Integral Equations
11.8 Non-Linear Integral Equations
11.9 Singular Integral Equations
11.10 Types of Kernels

11.11 Conversion of multiple integral into a single ordinary integral
11.12 Summary

11.13 Terminal Questions

11.1 INTRODUCTION

An integral equation is an equation in which the unknown function occurs under the integral sign.
The name “integral equation” for any equations involving the unknown function @(x) under the integral
sign was introduced by du Bois-Reymond in 1888. In 1782, Laplace used the integral transform f(x) =

f0°° e f(§)dE to solve the linear difference equations and differential equations. In 1826, Abel solved the

integral equation and named after him having the form of f(x) = f:(x — &7 * 0()dE, where f(x) isa

continuous function satisfying f(a) = 0 and 0 < @ < 1. Huygens solved the Abel’s integral equation for
a=1/2.

In 1826, Poisson obtained an integral equation of the type @8(x) = f(x) + Af: K(x,§)0(8§)dg in
which the unknown function @(€) occurs outside as well as before the integral sign and the variable x
appears as one of the limits of the integral. Dirichlet’s problem, which is the determination of a function
w having prescribe values over a certain boundary surface S and satisfying Laplace Equations V2w = 0
within the region enclosed by S, we shown by heuman in 1870 to be equivalent to the solution of an
integral equation. He solved the integral equation by an expansion in powers of a certain parameter A. In
1896, Volterra gave the first general solution of class of linear integral equation in variable x appearing
as the upper limit of the integral. In 1990, Fredholms have discussed a more general class of linear Integral

equation and defined as @(x) = f(x) + Afab K(x,§)0(8)dg .



11.2 OBJECTIVES

After reading this unit the learner should be able to understand about:
»  the integral equations and its types
>  type of kernels

»  Conversion of multiple integral into a single ordinary integral

11.3 INTEGRAL EQUATIONS

An equation which contains unknown function under one or more integral signs is known as
integral equation.

fe) = [ Kxo®d (1)
O() = f() + 4, K(x,O)@@ads )
6(0) = [ K(x, Ol0@®P2d¢ L 3)

Where @(x) is unknown function and f (x), K (x, &) are known functions A, a and b are constants.

Examples

Example.1l. Verify that the given function u(x)=% is the solution of the integral equation

x u(t) _
fo oegde =V

Solution: Here, the given integral equation is

fx u(t) dt=\/;

0 J(x-t)
Putting value u(x) = % in the given equation, we get
1 0x dt
2o o =V
. 1 X
1.e., —E(Z.N/x—t 0—\/;
or Vx = +/x, Which is an identity in x.

Hence the function u(x) = % is the solution of the integral equation.

11.4 TYPES OF INTEGRAL EQUATIONS

There are three types of integral equations:

(i) Linear integral equations



(i) Non linear integral equations

(iii)  Singular integral equations.

11.5 LINEAR INTEGRAL EQUATIONS

An integral equation is called linear integral equation if there is only linear function as unknown
function under the integral sign.

For example: a(x).@(x) = f(x) + Afab K(x, &)@(€)dE is linear as the unknown function K(x, £)@(¥) is
linear.
This Linear integral equation is further has been divided into two parts.

Q) Volterra integral equation and

(i) Fredholm integral equation.

11.6 VOLTERRA INTEGRAL EQUATIONS

An integral equation is said to be volterra integral equation if the upper limit of integration is variable.
For example: The equation a(x).0(x) = f(x) + 4 f:K(x, P(&)dE (D
Here upper limit is x which is variable.
Case-1: If a = 0 then from equation (1), we get

f(x) = =2 [, K(x,§0()ds,

which is called Volterra integral of first kind.
Case-l1: If a = 1 then from equation (1), we get

B(x) = f(0) + A, K(x, D),

which is called Volterra integral equation of second kind.
Case-111: If a =1, f(x) = 0 then from equation (1), we get

B(x) = [, K(x,§)0(£)d¢,

which is called homogeneous Volterra integral equation.

11.7 FREDHOLM INTEGRAL EQUATIONS

An integral equation is called Fredholm integral equation if both the limits are constants [ domain
of integration is fixed.

For example: The equation a(x)?(x) = f(x) + A f: K(x,&)0(&)dé ...(1)

is called Fredholm integral equation.



Case-1: If a = 0 then from equation (1), we get

F(x) = A [, K(x, ©)0(§)d8,
which is called Fredholm integral equation of first kind.

Case-11: If a = 1 then from equation (1), we get

B(x) = f(x) + 4[] K(x,§)B(E)de,

which is called Fredholm integral equation of second kind.
Case-111: If a =1, f(x) = 0 then from equation (1), we get

B(x) = 2 [} K(x, )B(E)dE,

which is called homogeneous Fredholm integral equation.

11.8 NON-LINEAR INTEGRAL EQUATIONS

If the unknown function appears under an integral sign to some power greater than one, is known
as non-linear integral equation.

For example: @(x) = f(x) + /lff K(x, )™ (&)dé (n>1).

11.9 SINGULAR INTEGRAL EQUATIONS

When one or both limits of integration are infinite or the kernel K (x, &) becomes infinite at one or
more points within the range of integration, is called singular integral equation.

For example: @(x) = f(x) + 4 [, exp{—|x — £}0(§)d¢

oo 1
and 0(x) = £(0) = [, =g D).
Note: Convolution integration. If the kernel of the integral equation is of the form K(x, &) = K(x — &)

For example: @(x) = e* + Af:[(x — &2+ 3(x — &)]0(&)d¢.

Check your progress

Q.1 What do you mean by Linear integral equations?
Q.2. Define the Volterra and Fredholm integral equations.

Q.3 Explain the singular integral equations.



Examples
Example.2: Given that @(x) = (1 —x+ x—:) + f(f[sinf — (x — &)(cosé + e%)]|0(&)d¢

Determine the values of @' (x)and 9" (x).
Solution: It is given that

3 X
B(x) = (1 —x+ %) + f[sinf — (x — &)(cos + €%)]|o(§)dE (1)
0

To determine the values of @'(x) and 9" (x)

Differentiating equation (1) with respect to x, we have

3x?
(D’(x):<0_1+ 6 )
(1o
+ j [a{sinf — (x —&)(cosé + ef)}(ﬁ(f)] d¢

0
d

+ [{sin& — (x — &)(cosé + ef)}(a(f)]fzxa (x)
d

— [{sin& — (x — &)(cosé + ef)}(z)(f)]&oa (0)

Q' (x) = <—1 + xz_2> + f[{O — (cosf + ef)}(b(f)]df + [sinx — (x — x)(cosx + e*)]|0(x).1 -0
0

[" i(0) = O] ¢'(x)=-1+ ﬁ— f[(cosf + ef)Q(f)]df + sinx. @(x)
Tdx T B 2 J '

Again differentiating with respect to x, we have

o —_0 2x
(x)=-— +7

(1o d
- f [a{(cosf + ef)(b(f)}] dé + {(cos€ + ef)(Z)(E)}E:xa(x)
0

— {(cosf + ef)(zs(f)}fzo % (0) + sinx. @' (x) + O(x)cosx

@"(x) =x—0—(e* + cosx) B(x) + sinx.d'(x) + O(x)cosx
@"(x) = x —e* @(x) — cosx.D(x) + sinx.d'(x) + @(x)cosx
0"(x) — sinx. @' (x) + e* P(x) = x
Example.3: Given that

?(x) = (1—x— 4sinx) + f[3 - 2(x—9)]0(6)d¢
0
Determine the values of @'(x) and @"(x).



Solution: It is given that

P

O(x) = (1 — x — 4sinx) + f[3 —2(x = 89)]0()d¢ (D
0
Differentiating equation (1) with respect to x, we have

(1o d
9'(x) = (0 — 1 — 4cosx) + f [5{(3 —2(x — E))G)(E)}] dg + (3 = 2(x = 3O e=x 7 (x)
0
d
—+[{3—-2(x— f)}(ﬁ(f)]g:oa(o)@'(x)

= (—1—4cosx) + f —20(&)dé + [{3—2(x—x)}0(x)] .1-0

0
' (x) = (—1 — 4cosx) — 2 j 0(8)dE + 30(x)
0

Again differentiating with respect to x, we have

X

0 d d
0"() = 0+ dsiny — [2 [ {-0(6)} df + [0 ]sme 7= ) = [0 g0 7- (O] +30°C)

0
@"(x) = 4sinx — 2[0 + @(x) — 0] + 30" (x)
@"(x) —30'(x) + 20(x) = 4sinx.
Example.4: If 9(x) =3 + fOx(Sx — 3&€)@(&)dé then determine the values of @'(x) and @"(x).

Solution: It is given that

00 =3+ f (5x — 30)0(£)de (D)
0
Differentiating equation (1) with respect to x, we have

X

0 d
0') = 0+ [ [ -5 = 30001 de+{(5x ~ 300} par 7= ()

0
d
—{(5x = 38)8(D}g=0 - (MO'(x) = f(5 —0)@()ds + (5x — 3x)@(x)
0

X
0 (x) = f 5.0(6)dé + 2x.0(x)
0
Again differentiating with respect to x, we have



(o d d
000 = [ [ 05000 d + (50D emr - () = (50 )sm0 7= (0) + 22.08'C2) + 20)

@"(x) =0+ 50(x) — 0+ 2x.0'(x) + 20(x)
@"(x) — 2x.0'(x) — 70 (x) = 0.
Example.5: If @(x) = fox(x + &)@(&)dé then determine the values of @' (x)and 0" (x).

Solution: It is given that

0(x) = f (x + E)B(E)dé (D)
0

Differentiating equation (1) with respect to x, we have

X

9 d d
0') = [ [o- 10+ DOEN] df + G+ DB gme 5o G = [0+ HOE g0 7 (O)

0

0'(x) = f P()dé + [(x+x).0(x)].1-0
0

@' (x) = f@(f)d{ + 2x @(x)
0
Again differentiating with respect to x, we have
1o
@"(x) = J [a (Z)(f)] dé + 2x.0'(x) + 20(x) + 0(x)
0

@"(x) =0+ 2x.0'(x) + 30(x)
or @"(x) — 2x.0'(x) — 30(x) = 0.

Note: [ f(&)dem = [FE2 2 £(eyde.

a (n-1)!

11.10 TYPES OF KERNELS

Symmetric Kernel- A Kernel k(x,t) is Symmetric (or complex symmetric or Hermitian) if k(x,t) =
k(x,t) , where bar denotes the complex conjugate.

A real kernel k(x, t) is symmetric if
k(x,t) = k(t,x) .
For example: sin(x + t), e*t, x3t3 + x%t% + xt + 1 are all symmetric kernels.

Separable or Degenerate Kernel- A kernel which is particularly useful in solving the Fredholm equation
has the form



k(x,t) = X, a;(x)b;(t), where n is finite and a;, b; are linearly independent sets of functions. Such a
kernel is known as separable or degenerate kernel.

Remark: A degenerate kernel has a finite number or characteristic values.
Transposed Kernel- The kernel kT (x,t) = k(t,x) is called the transposed kernel of k(x, t).
Iterated Kernel
(i)  Consider Fredholm integral equation of the second kind
u(x) = £(0) + A [ K(x, ©)B()de (D)
Then, the iterated kernels k, (x,t),n = 1,2,3, ... ... are defined as follows
ki(x,t) = k(x,t)
and  kn(x,0) = [ k(x,5)kn_1(s,t)ds,n = 2,3 ..
(i) Consider Volterra integral equation of the second kind
u(®) = () + 4 [ K(x,§)B()de (2)
Then, the iterated kernels k, (x,t),n = 1,2,3, ... ... are defined as follows
ki(x,t) = k(x,t)
and ke, (x, ©) = [ k(x,5)kn_1(s,t)ds,n = 2,3 ...

Resolvent Kernel or Reciprocal Kernel- Consider the integral equations

u(x) = f() + A [, K(x, )B()dE (D)
and u(x) = £(0) + A [, K(x, )D(€)dE (2)
Let the solution of equations (1) and (2) be given by

u(x) = £(x) + A [ R(x, &, D)(E)dE .03
and u(x) = FO) + A [, T'(x, & DO(E)dE (4

Then, R(x,&,4) or I'(x, &, 1) is called the resolvent kernel or reciprocal kernel.

11.11 CONVERSION OF MULTIPLE INTEGRAL INTO A SINGLE
ORDINARY INTEGRAL

Consider the integral

I,(x) = [7(x — O™ f(B)dt (1)
where t is a positive integer and a is a constant.

Differentiating equation (1) using Leibnitz’s rule, we get

dl,, * _ -
% =(n-1) L G =" 2F(Odt + [(x = D" f (D] s



= (= Dlyogyn>1 )
From equation (1), we get

L(x) = [} f(t)dt

or ﬂ—f( ) ....(3)
Now, differentiating equation (2) successively m times, we get
d™I,
T =n-1Dn-2)(n—3)......... m—m)lh_p,n>m
In particular, we have
dn—lln
P (n— D! L(x)
d (d" 11, dl,
_ — —1\)r==
dx (dx"‘1> (n—1)! dx
& Sh=(n-DIf(x) (4)
Thus, we have
L(x) = [ flx)dx, [from equation (3)]
And 2 =1 = [ f(x)dx,
= L) = [ [ f(x1)dx;dx, [from equation (2)]

In general, we have

L,(x) =(n—-1)! f; fzn ......... ff f;zf(xl)dxldxz e Ay dx,,
Using equations (1) and (5), we conclude that

X Xn X3 X2
f f ......... f f f(x)dxdx, ... dxy,_1dx,
a a a a

1 —
oSk n ()

j (x - O™ f(O)dt

1)'
On integrating (n — 1) times, we have

ff(t)dtnzj %f(t)dt.

..(5)



11.12 SUMMARY

An equation which contains unknown function under one or more integral signs is known as
integral equation.

An integral equation is called linear integral equation if there is only linear function as unknown
function under the integral sign.

An integral equation is said to be volterra integral equation if the upper limit of integration is
variable.

An integral equation is called Fredholm integral equation if both the limits are constants i.e.,
domain of integration is fixed.

If the unknown function appears under an integral sign to some power greater than one, is called
non — linear integral equation.

When one or both limits of integration are infinite or the kernel K (x, &) becomes infinite at one or
more points within the range of integration, is called singular integral equation.

11.13 TERMINAL QUESTIONS

Q.1 What do you mean by Integral equation?

Q.2 Explain the types of Integral equation.

. . . _ 1. . . . x u(t) _
Q.3 Verify that the given function u(x) = S is the solution of the integral equation fo mdt =+x

Q.4. Show that the function u(x) = 1 is the solution of the Fredholm integral equation.

1
u(x) + f x(e* — Du(t)dt =e* — x
0

Q.5. Verify or check that the given functions are solutions of the corresponding integral equations:

(@) ulx) =xe*; u(x) = e*sinx + 2 fox cos(x — t) u(t)dt
(b) u(x) =x— % ; ulx) =x — fox sinh(x — t) u(t)dt
Q.6. Show that the function u(x) = 1 — x is a solution of the integral equation Yex—ty(t)dt = x.
0

2
Q.7. From an integral equation corresponding to the differential equation % - 52—;’ + 6y = 0, with
initial conditions y(0) = 0,y'(0) = —1.
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UNIT-12 FREDHOLM INTEGRAL EQUATIONS-I

Structure

12.1 Introduction

12.2 Objectives

12.3 Fredholm Integral Equations

12.4 Fredholm First theorem

12.5 Non-homogeneous Fredholm equation
12.6 Every zero of Fredholm function D(A) is a pole of the Resolvent Kernel
12.7 Fredholm Second Theorem

12.8 Characteristic Solutions

12.9 Fredholm’s Third Theorem

12.10 Summary

12.11 Terminal Questions

12.1 INTRODUCTION

Integral equations offer a rich array of solution techniques, including successive approximations,
separation of variables, variation of parameters, and numerical methods like finite element, collocation,
and quadrature techniques. These equations find broad applications across physics (e.g., quantum
mechanics), engineering (e.g., heat transfer), and mathematical modeling. Named after the Finnish
mathematician Ivar Fredholm, Fredholm integral equations feature the unknown function appearing both
inside and outside the integral sign. Their versatility allows them to describe relationships between
variables over continuous domains, making them indispensable in various fields. Fredholm integral
equations provide alternative approaches to solving boundary value problems in differential equations,
particularly useful for problems with intricate boundary conditions and non-standard geometries.
Fredholm integral equations are instrumental in studying conduction in materials with complex geometries
or non-uniform properties.

Fredholm integral equations play a pivotal role in physics, describing phenomena like
electromagnetic scattering, wave propagation, and quantum mechanics. In quantum mechanics, they
emerge in the analysis of scattering problems, elucidating the interaction between particles and potentials.
This comprehensive utility underscores the significance of Fredholm integral equations across various
scientific and engineering disciplines.



12.2 OBJECTIVES

After reading this unit the learner should be able to understand about:
»  the Fredholm integral equation and their solution
»  the Fredholm First, second and third theorem

12.3 FREDHOLM INTEGRAL EQUATIONS

We have determined the solution of the Fredholm integral equations as a power series the
parameterd , uniformly convergent for |A| sufficiently small. Fredholm obtained the solution of the
integral equation in the general form, if possible, for all values of the parameterA.

In the theory of integral equation, the well-known theorems of linear algebra, which are related to
the solution of the system of algebraic equation, play by a leading role. Now we shall discuss the solution
of the non-homogeneous Fredholm integral equation of second kind by replacing the integral, appearing
in the equation with a sum of which reduces the equation to a system of linear equations and assuming the
number of terms of the sum tends to infinitely. The Fredholm integral equation is  ¢(x) = F(x) +

ALY K(x, ) (§)dE.

12.4 FREDHOLM FIRST THEOREM

The non- homogeneous Fredholm integral equation of second kind

$() = F(x) + 1 [, K(x, O$(&)dg,

Under the assumption that the function F(x) and K(x,&) are integrable has a unique solution, is of the
form

b
$(0) = F(x) + 1 j R(x, & DF(E)dE

Where the Resolvent kernel R is a meromorphic 1 function of the parameterA, being the ratio of two entire
function of the parameter 1

D(x,&,A
R(x.&, 1) = ;fo)) , D(L) # 0

Defined by Fredholm’s series of the form

o (=A™ b b b ’ N
D) =1+Xie, S [ LUK (2 2 ) ddde,.. déy

m!

And D(x,m)=K(x,g)+z;g=1%ff...ffffz<<? ;11 ;ZZ-_-_-_ §:>d€1d€2...d€m

These series converge for all values of A . In particular, the solution of the homogeneous integral equation
IS zero.

Consider the Fredholm integral equation;



$() = F() + 1 [, K(x, )$(&)dg e (D)

With a Riemann integral in a given interval (a,b).In accordance with Fredholm method, we consider
partition of the interval (a,b) into n equal parts by the points:

8= $0,$1,62:§3s e e $n-1,$n = b
Where éy =a,§, =a+h,& =a+ 2h, .. .. ,épn =a+nh
Andh=g,,; — &, = = @)
Replace the definite integral in (1) by the sum corresponding to the points of division,
We have,
¢(x) = F(x) + Ah X5-1 K(x, §,) (&) .. 3)
¢(x) — Ah[K(x, §)P (1) + -+ v e HKX,$n) P ($n)1=F(X)
Since the equation (3) holds for every value of x, it must be satisfied at its n points of division x=¢£;, ¢,,...&,

Thus we obtain a set of n linear equation with n unknown values of the function ¢ (&;), ¢(&5), ... ... o(&)

d(&1) — AR[K(§1,€1)P(€1) + K(§1,$2)9 (&) + - + K(§1,§n) 9 (&) = F (&),
d(&2) — AR[K(E2,§) (1) + K(&2, &) Pp(E2) + -+ + K (&, &) (&n) = F(&2),
d(&3) — AR[K (&3, 80 (E1) + K(&3,82)9(&) + -+ K(&3,80)9(&n) = F(&3),

()b(gn) - Ah[K(gn: fl)qb(fl) + K(fn: EZ)()b(fZ) + et K(En' fn)gb(fn) = F(fn) s (4‘)
With the notations F (&) = F; ¢(&) = ¢, K(§,&;) = Ki;

The system of equation (4) reduce to

(1 - )lhK11)¢1 - AhK12¢2 - /UlK13¢3 -t _/ULKm(Pn = F1
—AhKy1¢1 + (1 — AhKyp) ¢y — AhKy3¢h3 — - — AWKy = F,
—AhK3,¢1 — AhK3, ¢, + (1 — AhK33)p3 — -+ — AhK3, ¢, = F3

_AhKnld)l - AhanqbZ + (_AhKn3)¢3 - (1 - AhKnn)d)n = Fn (5)

The solution ¢1,92,.....¢n Of the system of equations may be expressed in the form of the ratios of certain
determinants by the common characteristic determinant:

(1 - }\hKll) _ﬂ.hKlz _ﬂ.hK13 TR _AhKln
—AhK,;, (1 —2AhKy,) —AhK,s ...  —2AhKy,
DoM)=| ... ... (6)
—ARhK 4 —AhK,,  —AhK,u3 ... (1—2ARK,,)
Provided that Dn(1)#£0.

Now We shall expand the determinant (6) in powers of the factor —Ah.



The first term not containing this factor is obviously equal to unity. The term containing
(-Ah) in the first power is the sum determined as
= -MKw, v=1,2,3......n.

The term containing the factor (-Ah)? is the sum of all determinants having two columns with that
factor,i.e.,the sum of the determinants of the form

Krr Krs|
Ksr Kss

Where (r,s) is an arbitrary pair of integers taken from the sequence 1,2,3,.....n with r<s.

=(-Mh)?

Similarly, the term containing (-Ah)? is the sum of the determinants of the form

Krr Krs Krt
Ksr Kss Kst
Ktr Kts Ktt

Where r,s,t are the arbitrary integers taken from the sequence 1,2,3......n with r<s<t.

=(-Ah)*

Thus we conclude that the expansion of the determinant (6) may be expressed in the form

Krr Krs Krt
Ksr Kss Kst|+
ktr Kts Ktt

Kala?2 Kala2 ..Koalan

- |Koa2al Ko2o2 ...KoaZ2on
+( )z aen o ] T ..-(7)

Kanal Kana?2 ...Koanoan

Let h->0 and n—>oo,then each of the terms of sum (7) reduces to some single, double or triple integral
etc.Thus,we have

= lh)

Dr(h)=1-AhgKw+2g B Brs ], G

Z|Ksr Kss 3! 2z

n!

(b 22 b ob |K(E1,81)  K(§1,52) )
D)=l Xfa K(§1,¢1)dé1 iy fa fa K($2¢61) K(&2¢2) dGudes
bbb K(1,61) K(1,82) K($1,63)
;fa fa fa K($281)  K($2,82)  K(§2,3) |d&idEadEst....... .. (8)

K(381) K($382)  K(§343)
Where D(}) is called the Fredholm’s determinant.
Similarly, the power series analogous to the series (8) may be written as
DM)=1+3 ol N ¢ (Sfl'gz z )daldaz ..... dEm (9)
1762y wens

K(1,é1) K182 K(E1,ém)
where K (El’ EZ’ e Em>_ K(éZ,fl) K(fz,fz) K(fz,s;m)

£1,82,...5m) 7| ...
Km$1) KGms2) K(Emém)

This is called Fredholm’s first series.

Fredholm assumed that the solution @(x) of the integral equation are to be sought for arbitrary A in
the form of a ratio of two power series in the parameter A, where the series D(A) is to be the divisor. We
know that the solution of the Fredholm integral equation for sufficiently small |A| is of the form



P(x)=F(x)+ 1f, R(x, & DF()dE .. (10)
Where the function R(x, &; 1) is called the resolvent kernel,
R(X, 5; )\) = D(X, E; }\)/D(}\) _"(11)

Where D(}) is the Fredholm first series and D (x, &; 1) is the sum of some functional series yet to
be determined.This Theorem refers to the case where A is not a zero of the function D (A).The study of the
case where A is a zero of the entire function D (1) gives rise to the Fredholm second and the third theorems.

We know that equation (10) is a solution of the integral equation (1) if the Resolvent Kernel
R(x, &; A) satisfies the equation

R(x, &0)=KxE[, K(x, E1)R(EL & Ndéy .. (12)

In view of the form (11) of the Resolvent kernel, the numerator D(x, &; A) should satisfy the integral
equation

D(x, &; )/ D(A) = K(x, &) + Kf; K(%,¢1) D(&, & M)/ DM &

D(x, & 1) = K(x, DM+ [ K(x, £)D(Es & M)d & . (13)
The solution of the equation in the form of power series in the parameter A is given by

D(x, & L) = Bo(X, &) + Xpn=1 (—D)™(A™/mD)Bm(x, &) .. (14)
We know that

DA) =1+ Y1 (=D)™(A"/mNCn ... (1%5)
Where Cp= f; f; f: K (2 2 gz)déldéz ....... dém

from the equations (14) and (15), the equation (13) reduces
Bo(x,8)+Xm=1(=1)"(A"/mN)Bm(x, §) = K(x, &)

{142 =1 (=)™ (A"/m!)Cm} + ?»f: K(x, $1){Bo(&1, &) tXm=1(=1)"(A"/M)Bm (&, &) } d&
Substituting ~ A=0 = Bo(x, &) = K(x, £)

To determine the coefficients Bm(x, &) equating the coefficients of A™, we have

((1)™MDBm(x.£) = {(-1)™MIICrKEHH (D)™ (M-1)1} [ K(x EDBma(Es, &) } d

= Bm(x,8) = CoK(x,&)- M [ K(x,§1)Bma(8a, &) } d&a ...(16)
Which is a recursive relation between the consecutive functions Bm and Bm-1

Thus for m = 1, we have
Bi(x.8) = CIK(x,&) [ K(x &)Bo(é, &) } déa
Bi(x,8) =K(x,) [} K(&1, &) déx - [ K(x &) K(En,8) d&



K(x,§) Kx&)
K(fl) f) K(Eli 51)

In general, we shall prove that

Bi(x,8) =

des =f K(? ?)dgl .47

_b bbb, (X & & &y
B (x, =[] ..[. [ K (5 & el €m> dérdes ... dém ... (18)
where &, &1, &2....... Em are the variables of integration

expanding the determinant under the integral sign in (13), we get

K(x $1 $a. fm)

§ $1 Sz &m
K(x,$) K(x,$1) K(x,$2) K (x,&m)
K(@,8)  K($1,61) K($1,$2) K (&1, 8m)
K(Em,€)  K(Em, &) KGEm &) K (gm, Em)
x & S Sm _ $1,§2, .. §M
or K (E g & Em) - K(X@K<§1,€2,....zm)
£1,&5,....Em
KoK ()
&1,&5,....Em
-K(t) K (fi fz, ----Em>
£1,&5,....Em
- K(x.Gm) K (51, £ Em)
by integrating both sides of the equality n times with regard to the variable &1, &........ Em, We obtain
o LISk (58 ) e

s & & &

:CmK(x,g)-mf: K(x,s) {f:K(g & & &y

... (19)

We notice from the equality (17) that the relation (18) holds for m=1. Thus we conclude by induction that
it holds for all values of m. Hence the series (14) takes the following form

D(x, &; 4) =K(x, §)

)dEldEZ ...dEm — 1}ds

OGNV LI el O el i fabK(; ;11 ;22'_'_'_ g:) dadéz.....dém  ...(20)
or D(x, & ) = K(x, &) + Xm=1((=1)"/m!) A" Bm(x, £),
where Cn= [ ...f:f;KGC ;11 522-_-_-_ ?") d&rdés ... dem .21

This is called Fredholm second series and the function
D(x, &; M) is said to be the Fredholm minor.



Corollary: The Fredholm homogeneous integral equation is @(x) = 1 ffK(x, §)P(&)dé

has only one and only one solution given by @(x) = 0, if D(1) # 0.

Substituting F(x) = 0 it follows that if D(1) # 0 then the homogeneous integral equation contains only
the trivial solution @(x) = 0 in an interval (a, b).

Check your progress

Q.1 What do you mean by Fredholm integral equation?

Q.2 Explain the Fredholm first theorem.

12.5 NON-HOMOGENOUS FREDHOLM EQUATION

We know that @(x) = F(x) + 1 [, R(x, & D)F(§)dE
of the non-homogeneous Fredholm equation is unique for any A provided by D(4) # 0
we know that

R(x,& 1) =K(x,f)+/1f:R(x,s;/1)K(s,§)ds .. (D)
when modulus of A is sufficiently small.
We shall show that the above relation is satisfied by the Fredholm Resolvent kernel of the form

R(x, & 1) = 284

2D D) # 0.

It follows that both side of the above equation are meromorphic functions of the parameter A. If they are
equal in a region where in which modulus of A is sufficiently small then they are also equal for all 2,
provided that D(4) # 0. The Fredholm second series is given by

D2y — (=A™ b b b, (X & — &m
D(x, &) = K(x, &) + 52 (7 ! ....faz((f v fm)

d$16283 — — = $m - (2)

by expanding the determinant under the integral sign, with regard to the elements of the first column, we
obtain

O B 1 A B

G (WY (A L

By transposing &, to the first place we see that the integral with regard to &, of each of the components of
the above sum have the same value

X, &1 = = =$gr1—— S$m

b
J,comreon(y g T e



_ +1 (b x & - - _S;q+1__ $m
DM REOR( o DD s

Consequently have, S22 A) ff il K(? 2 _ :Z:) dé1$283 — — —$m

= K(x f)ﬂﬂf— (SR T ) angs - - g e a TS - -

x —
SPk(E R D) dass - - Gl K. Dds Ne
Upon summing the terms of second Fredholm series, we obtain

D(x,&A) = K(x,$)D(A) +/1fbD(x s; A)K(s, &)ds ... (4)

D(x,&;4) b D(x,£;1)
o) = K(x f)+1f o) K(s,&)ds, D) #0

Or, R(x,& 1) = K(x,$) +/1fa R(x,s; D)K(s,&)ds

Which is the same as equation (1).

Or,

In order to prove that the solution obtained by Fredholm equation is unique, suppose that @(x) is the given
solution of the Fredholm equation

B(x) = F(s) + A [, K(s5,)D(§)d¢ .. (5
Multiplying both the sides of equation 5 by the Resolvent kernel and integrating with respect to s, we get
[} RGe,s; DO(s)ds = [ R(x,5;2) F(s)ds + A [, { [ RCx, 5 DK (s, €) ds}B(£)dg

From the equation 5 we get
b

b
[ ke oro©ds = [ Reus D FGs

a

Since @ is the given solution of the equation 5, it follows that the Fredholm equation is .

b
P(x) =F(x) + f R(x,s;A) F(s)ds

Hence , Fredholm solution is unique for all A proved D(4) # 0.

12.6 EVERY ZERO OF FREDHOLM FUNCTION D(a) IS A POLE OF
THE RESOLVENT KERNEL

We have know that
R(x,&;A) = D(x,&;1) /D(A)

The order of this pole is at most equal to the order of the zero of the denominator D(x,&;A) and is
a single pole of the resolvent kernel. The zeroes of the Fredholm D()). By interchanging the indices of the
variables of integration in the Fredholm first series, we get



( A_)m+1
(m-1)

s §1 = $mo1
UL (S 8 D) deadads = = = e

This we have the fundamental relation D’(A)=— f: D(s,s; Dds

D'(h) = — f K(s,s)ds — Xm=>

If Ao 1s a zero of order n of the function D(A), then it is a zero of the order (n-1) of its derivative D'(A). The
point Ao may be a zero of the order at most (n-1) of the function D(x,§;1). This is a pole of the ratio,

R(x,&:0) = D(x,&;A) /D(A) of order at most n.
In particular, when Ao is single zero, we have
D(0)=0, D’ (A0)#0.

So Ao cannot be zero of the function D(A) are called the Eigen values of the kernel K(x,&). Since D(0) =1,
therefore, zero is never an Eigen value.

The set of all Eigen value of this kernel is known the spectrum of the integral equation.

Note: If a Real Kernel K(x,£) has a Complex Eigen Value Ao= u+iv, then it also contains the conjugate
Eigen Value to Ao = U-iv:

Let the Complex Eigen value be Ao = u+tiv, then its conjugate eigenvalue will be Ao = u-iv. The
entire function D(A) takes real value on the real axis of the kernel K(x,§) is real. The value of power
function D(A) at points symmetrical with regard to the real axis are complex conjugates. It follows that,

If, D(u+iv)=0, then D(u-iv)=0

D' D'y _
D)

Or, log[DO\) = — f R(s,s;)ds,D(A) # 0

We know that, J7 D(s,5: 2)/D(D)ds (1)

Since |X| is sufficiently small, the relation (1) may be represented as,

d
dllog [D(A)] = f Z A" Kn + 1 (s,s)ds,

Where the series on the R.H.S. is convergent, hence,
. /1n+1 b
logD(A) = — anomfa Kn + 1(s,s)ds . (2)
Since D(0)=1, the integrals of the iterated kernels
f; Kn + 1(s,s)ds

are called the traces of the kernel K(x,£). The radius of congruence of series (2) is equal to the smallest
modulus of the Eigen value. If a kernel possesses no Eigen values, then the series (1) is convergent for
each value of A.

12.7 FREDHOLM SECOND THEOREM

If A, is a zero of multiplicity m of the function D(}), then the homogeneous integral equation,



b
) =0 | K B
a
Possesses at least one, and at most m, linearly independent solutions,

=0 (3 5 2 50

(1=1,2,3,.......... v; 1< v < m not identically zero, and any other solution of this equation is a linear
combination of these solutions.

Fredholm first theorem does not hold when h is a root of the equation
D(h) =0 .Consider the Fredholm homogeneous integral equation of the form

B(x) = A f, k(x, &) B(€)dE ()

We shall determine the existence of non —zero solutions of the homogeneous equation (1) where D(4) =
0 has a certain number of solution different from zero.

Let A =4, is asimple zero of the function D(4) , where
D(19)=0,D" (4y) #0=>D(x,é,4) #0
Is not identically equal to zero.
The resolvent kernel satisfied by Fredholm entire function for all h is given by
D(x, ¢, 4) =k(x,$)D(A) + Af; k(x,s)D(s,&: 1p)ds .. (2)
For A — A,,we have
D(x,§: A9) = Ao J, k(x,5) D(s,§: 4g)ds

Assuming a particular value & =&, such that the function D(x, &,: 2) be non zero it follows that the
equation (1) possesses a non —zero solution.

@(x) = D(x,$0: 40) . (3)
Similarly, the function AD(x, &,: 4,) is also a solution of the homoeneous equation (1) where is an
arbitrary constant. In general, let A = A, is a zero of arbitrary multiplicity m ,i.e,
D(4y) =0,...., DY () =0, ..., D™ (4y) #0,v=1,2,3,...(m-1) ... (4)

Fredholm introduced the concept of mnors for the existence of non —zero solution of the homogeneous
integral equation . A Fredholm minor of order n relative to the kernel k(x, ¢) denoted by

X1,X2,X3,.. Xn
D e e ’ :A)
n (515253 én

Is the sum of the power series in the parameter h, i.e,

X1,X2,X3,.... Xn,  \_p(X¥1%2X3,.. Xn, o (=A)P
S L S

X1,X2,X3, . Xn, 51,52,53,..5p

b b
JaJat ( $1,$2,$3,... 51,52,53,...5p )dsl...., dsp )

Where x; x, x3 . xnand & &, &3 &, are two sequences of arbitrary variables.

.....

The series is converges for all values of the parameter A .

Differentiating the Fredholm first series , n times, we have



§1,52,53,... »-Sn

dn _ b b
LD = (DM [ k (51’52’53'____ e )dsl... ds,,

Sn+1s - Sn+p

w (=DP b b S1 - Spy
+(=1)" zpzl%fa Sk (S1 o )dsy... dsnip ... (6)

n Sn+1r - Sndp
By comparing the series (5) and (6) , we have
an X1,X2,X3,.. Xn

n b b N
—D() = (-1 J, [, Dn <f1,$(2,53,.... g A) dx; dxy .....dx,, ... (7)

Which represents a relation between nth derivative of the Fredholm function and Fredholm minor of order
n, where n is an arbitrary positive integer.

From the relation (7), we notice that if A, is a zero of order m of the function D(A) then the minor of

order m becomes
X1,X2,X3,.. Xnp,

$15253,.. $n

For that value of A, # 0, since then D™( 4,) # 0. It follows that minors of lower order than m also do
not identically vanish.

A relation between the minors that corresponds to the Resolvent kernel is determined by expanding the
Fredholm determinant under the integral sign in equation (5), with respect to the elements of the first row

X1,X2,X3,. . Xn, 51,5253,..5p
K( $1,$2,$3,..$n $1,52,53,..5p )
k(x161) k(x1.6) o k(x06n)  k(xys1) e k(xy5p)
k(xZ,fl) k(xZ,fz) ...k(xZ’fn) k(xZ’Sl) k(lesp)

T k() k(tn) o k(nén)  k(tnst) . k(xns,) (8)
k(sl,fl) k(sl,fz) ...k(sl,fn) k(sl_sl) k(sllsp)
wk(spé1) k(spé) k(spén)  k(spsi)  k(spsp)

By integrating with regard to s, s, .... s, for p = 1, p times, we obtain

b b X1,X2)200X71,51,52 01
[ S K ( n P)ds,,dsy, ..., ds,

51’52l'--;fnislﬁSZ;---vSp

= Y= (DK (x4, &) f: . f: K (S F2rmTmSL T2Sp )d51 o dsy

1S k=18 k+1,61,51,52,Sp

+ 3P (—1)ktnt f; - f: K(xy, s1.)

w (. Fmssesees  Vas ag, ®

51'---'fn—l'---'fntsbsz’---'Sk—1'5k+1'5p

The determinant K on the RHS of relation (9) do not contain the variable x; in the upper sequence and
the variable &, or s in the lower sequence. Further, all the terms of the letter of the above sums have the
same value. Now, by transposing the variables s; in the upper sequence to the first place [by means of
(k + n — 2) transpositions] and omitting the index k, we may represents each of the terms of the second
sum in the form

f: K(Xl, S){f: f: K (S,xz,...,xn,sl,...,Sp—1) dSl. . dSp_l}dS

&St wSp—1
p



Thus the equation (9) may be written as
b by X, Sy, .S
f f K( ! wol p)dsl e dSy
a $1r e &nyS1, e Sp
X2y« Xn, S1,-45Sp
(DR K ey, 80 f f ( )
Z ! Ek El! Ek—115k+1"'!fnrslr--'sp

dsq ... dspy

_pf K(xy,s) {f f (;’;22 9;1;211 SS’; 11) dsy ...dsp_q }ds ... (10)
From the relation (5) and (10) we have
X1, X3, ey X
o (55 )
" fli 521 LAy En

n

X2y viv i, X
= z(_l)k+1 K(xly Ek)Dn—1< 2 n ’A>
k=1 Ell ""Ek—1,€k+1,....,€n
b $,X2, Xy
+A [, K(x1,5) Dy, (51’;2“"”%’1) ds (1)

Expanding the determinant (8) with regard to an arbitrary i-th row and i-th column , where 1 < i < n.

X1, X2, enesy Xy
0 ()
" 511521 LR S;n

= Ty (DR (g, §) Dy (7521 itn ) .. (12)

k18 k10

And D, (3n; 2)

ey X1 X+ 1s -9 X
(~ D" Kt 60D 2)
Z ; fl ot 51' ey fi—l' fi+1' ey fn

b X1yeenenn Xy .
+A fa K(S’ 51) Dn (51'---'fi—1'5’fi+1v----vfn ’ A) dS (13)

The relation (12)and (13) holds for all values of A.The relation (12) provides the solution of

homogeneous integral equation in the cases when A = A, is an eigenvalue of the kernel.

Consider 2 = 4, is a zero of order m of the function D(4).Then as defined in the relation (7), the minor
D,,, does not identically vanish and the minors D4, D,, ...., D,,_1 need not be identically equal to zero. Let
D, be the first minor in the sequence D, D,, ...., D,,_;which does not vanish identically. The number v is
equal at least to the unity and is at most the order m of zero A,.It follows that D,,_; = 0, the relation (12)

shows that the minor D,, satisfies the homogeneous integral equation
X1y eee ey Xy ener Xy
Al o)
N & &, 000
— /1 fb K(x S)D (xl,...,xi_l,s,xi_,_l,.....,xv /1 )ds (14)
0Jg U v S S » 40

i=123.....v

Thus the function



¢l(x) — Dv (xl,...é.i..,xi_l,x,le,é.....,xv;AO) L (15)

........................

is a solution of the homogeneous equation (1) not identically equal to zero for
some chosen fixed values of the remaining variables x1,X2,.....,.xv and £1,&,.....,&v
Substituting x for x; at v different points in the minor (15), we obtain v non-
trivial solutions ¢1(x), ¢p2(x),....., ¢r(x) of the homogeneous equation (1, not
Identically equal to zero, and hence may be written as

( x1,.,xi—1,x,xi+1,....x1
Dv

) =12,y .. (16)

;AO>

where the numbers X1,Xa,.....,xv and &1,&,.....,Ev are selected in such a manner so that the denominator
does not vanish.

Now we shall show that the solution ¢i as determined by (16) are linearly independent, i.e. if there exists
arbitrary constant c1,C,.....,cv such that

C1p1(X)+C2d2(2) +......  cvdu(x)=0 ... (17)
C1=Cp=.... =cv=0
then in fact, if relation (17) were to hold with not all ¢i=0, then we obtain
c1$1(X)=0, c2$2(2) =0, ...., cvdv(x)=0

o (0,i K
as di(xk)= {1' P %k
it follows that ci=c>=.... =cy=0, which is contrary to the hypothesis,

Therefore, the solution of the homogeneous integral equation (1), not identically equal to zero, is called
the characteristic solution of that equation corresponding to a given characteristic value Ao of the kernel
K(X,&). This system is known as the fundamental system of the characteristic solutions.

Any linear combination of solutions (16) of the form
d(X)=Crd1(X)+C2d2(2) +...... cvdv(X),
where cy,Co,.....,cv are constants, is also a solution of the homogeneous integral equation.

Converse. Every solution ¢(x) of integral equation (1) is some linear combination of characteristic
solutions

$1(X), $2(X),..... Pu(X)

Assuming an auxiliary function H(x,§) of the form

Dv+1( X X1, ey, xXv N )
....................................... 0
H(x,£)= ¢Sl kY .. (18)
D”(fl ....................................... v ;/10)

Multiplying equation H(x,§), both the sides, we have

[y Hx O = [f), K(s,EH (x,5)ds]b(E)dg
Multiplying both the sides by Ao and adding term by term, we have



() =10 [, K(x, §)®)dE= %o f, I'(x, ) (D) . (19)

where I'(x,&) = K(x,&-Hx.E)+ o [ K(s, OH(x,s)ds ... (20)
Now
x,x1,.... e, XU
Dv+1 (5 EL, oo ED ;/10)
x1,....xi—1,x,xi+1,....,xv
= K(x§)Dv (51, Y ,,10>
v 1K x x1,....,xk—1,x,xk+1,...., xv )
toi=1 (1K) Dv (s EL oo £V 320

b xx1,..,xi—1,x,xi+1,...,xn
tho f, K(s,)Dv +1 (s EL s BT ;Ao)ds - (21)

In every minor Dy we transpose the variable x from the first place to between the variables Xx-1 and X+1
and divide both sides of (21) by the constant

x1,x2 ..o, XV
bv (51, E2 oo EV ;,10) #0

We obtain

H(x,8) =K(x,8) +Xk=1 KXk &) k(x)+ o f: K(s,§)H(x,s)ds -.(22)
From the relation (20) and (22), we have
I'(x,8) = -X=1 K(xk&) (x) §(&)dE ... (23)
Thus the equation (19) reduces to

§0) = - Ma¥h=y [, KOWE) i) $(EE . (24)

If we omit the function ¢k(x) from under the integral sign then each term on the R.H.S. the function ¢(x)
has the form

d(X)=Crd1(X)+C2d2(2) +...... cvdu(X)

where c1,Ca,.....,cv are constants. It follows that the function ¢(x) is a linear combination of characteristic
solutions ¢i(x).

12.8 CHARACTERISTIC SOLUTIONS

Corresponding to distinct characteristic values of Fredholm’s integral equation and its associate
equation, are orthogonal.

Since ¢(x) is a characteristic solution of the homogeneous equation
b
() = 2o [, K(x, ) p(§)dE (D)
Corresponding to the characteristic value A,.
Let W(x) be a characteristic solution of the associate equation



W) = A f) K(E0)W(E)dE e)
Corresponding to the characteristic value A;where A, # 4.
Multiplying (1) by 4; W(x) and (2) by A, ¢(x) , integrating and then subtracting , we have

(41— 20) J, p()P()dx
=doy [, [ K(x, P ()$(E)dEdx Aok [} [ K(E,0)W(E)p(x)dédx =0
Upon interchanging x and &, the second integral is identical to the first one. Thus

b
f PP (x)dx =0,4; # A

This implies that the characteristic solutions, corresponding to distinct characteristic values of Fredholm
integral and its associate equation, are orthogonal.

12.9 FREDHOLM’S THIRD THEOREM

For the non-homogeneous integral equation of second kind

b
S0 = F(O) + A j K (x, ©)p(€)de

To possess a solution in the case D(A4,)=0, it is necessary and sufficient that the given function f(x)
be orthogonal to all the eigen solutions ¢i(x),i=1, 2,...,v of the associate homogeneous equation
corresponding to the eigenvalue 4, and forming the fundamental system.

Consider the non-homogeneous integral equation

$() = () + Ao [, K(x, )(£)dé (D)
Where A, is an eigenvalue, i.e., D(4,)=0.
Let W(x) be an eigenfunction of the associated equation

W) = 4o f, KE0WE)dA )
Corresponding to the eigenvalue A,.
Multiplying (1) by W(x), both the sides and integrating, we have

b b b b
f Wb ()dx = f FOOWdx + 2, f f K (x, ©W(x) () dux de
or
b b b b
f £GP (x)dx = f W) (O dx — A, f f K (e, ©)W(x) $(E)dx dE
By Permuting the variables x and &, we have

[ FEP@dx = [[[96) = [, KE 0@ def| prdx =0 .3

It follows that the integral equation (1) does not always have a solution when D(A4,)=0, but a necessary



condition for the existence of a solution is the orthogonality of the known function f(x) to all the eigen
function W(x), of the associated equation

b
f FOO¥(x)dx =0 (4

Since every eigen function of the integral equation is a linear combination of the basic solutions, so a
necessary condition for the existence of a solution of the non-homogeneous equation (1) is the
orthogonality of the known function f(x) to v fundamental solution of the associated equation

b
f fOO¥(x)dx=0;i=1.2,...,v (5

Corresponding to an eigen value A, i.e., D(4,)=0

Further, the relation (5) is the sufficient condition for the existence of a solution of the non-homogeneous
equation (1). Multiplying (1) by the auxiliary function H(x, ¢) and integrating, we have

[T HOCOGEE [ Hex OF©)dE + Ao f) {7 HOo K (5,8)ds} p(E)dE ..(6)
Where H (x, §) is the ratio of the two minors

XX 4 e Xy

Dv+1(g,§1 ............ & ;lo)

H(x,8)= — 0%, . (7)
D"(El ............ & ;/10)
Multiplying both sides of equation (6) by 4,, we have
S0 = F() + Ao [} HOLOF (E)dE + Ao [ T(x, E)p(€)dE .. (8)
where T(x,§) = K(x, &) — H(x,§) + Ao J, H(x,$)K(x,§)ds .. 9)

Thus, the solution of the non-homogeneous integral equation (1) exists in the form

$() = F() + Ao [ D”“(if}..::::::::,;;f" do) F(E)dg 4 30, Cob) ..(10)
D"(.El,...........fv ,-,10)

Where T(x, &) = Yr=1 K(Xk&)P(x) and Cy are constants.

The function (10) is a solution of equation (1) if the orthogonality condition is satisfied. The third term of
(10) being a linear combination of the fundamental solution ¢, (x) is a solution of the homogeneous
equation.

Check your progress

Q.1 What do you mean by Fredholm second theorem?

Q.2 State the Fredholm third theorem.



Examples

Example.l: Find D(1) (Fredholm determinants) and R(x,&;A) (Resolvent kernel) of the following
K(x,&) =xe’,a=0,b=1.

Solution: we know

D) =1+ ¥ 2%,

m!

(x,$:4)
R(x, &) = DDT ,D(L) £0
D(x, ;1) = Bo(x,€) + £t B (x,€)

By (x, &)= K(x, &) = xe?
B =k(; &)

Ko Kof)| 4
KG9 KEuel ™

=L1

:fl xet xeh
0 Stlef Stlefl

=[) (&0t — xg et dg

dy

=0
o= [ 6(; § £aea

1 K(X,f) K(x'fl) K(x'fl)
- ff K@) KELE) K& dede,
0 |K(62 &) K(€n&) K(6 &)

1|xet  xebr  xe®
B = [ [aef et et agas;
0 1668 &efr et
X X X
=[f) eS*are|E & &l dgdé,
$2 §2 &
=[f, ef*6+6py dg,de,
X X X
D; = S &4 &
$2 $2 &
x 0 O
=& 0 o C, = Cy—Cy, Cs = Cs— Cy
& 0 0

=0



It implies B,(x, &) = 0
Now, C; = [ K(&1,81)dé,
= [, &refidéy
=[&,e81] - [ 1ef1dé,

=1
&g
CZ‘ﬂ (61 fz)d"ldfz
K6 K(EE)
&) K(& &)

=] ?;1 ;egz d51dé;

=/ fo (&6 88210 — £, §ef2%) dE d8,
)

d§1dS,

We already know that D(1) = 1+ ), (_mL)'m Cm

. . yi Y 23
It implies D(4) =1-2C+56G-56G+ ———-
=11, 6=0G=0--—--

D(x, & 4) = By (x, L B (x,6)
=K, = 2B, (6) + 2B, (6§ — - - — - =
=xet

- R(x, &; 1) = 200 _ _xet

b a-10
This is the required solution.
Example 2. Find D(1) (Fredholm determinants) and R(x,¢&; A1) (Resolvent kernel) of the following
K(x,é)=2x—-¢&,a=0,b=1.
PR _ =nHm
Solution: D(1) =1+ ZTCm

DA

R(x,§2) =722, D() # 0
D(x,£; 1) = By (x, T B (1,0
=K, )~ 2B O + LB, (0 ) — — - - — -

B, (x,§) = f;K(Jg gi)dfl



PIK(,E)  K(x&)
O K&, &)l

2x —¢ —¢&
52& Ak
—f -

¢, , G- C—(
— 61

% e
=[J(€ —&)(2x — & — 28 + ©)d§
=[) 2 — &) (x — &)d&
=[)20x — & + &7 — x§,)dg,

=2l — 35+

[Me—en |2

:2x§”—§”—x+E

_ xf1
By(x,6) = jf L8 2)ands

b|KG &) K&) Ko&)

ﬂqxgl) KELE) K&

K ) K(En&) K(En&)
2x—& 2x—-¢&,

_F b 2%

25—5 28, =81 28, =&
2x—=§ &8 §—&
260=¢ §=% §-&
26, =8 §=% $-&
Obtained by applying C, - C, — C; ,C3 = C3 — C;
2x—§& 1 1
26,8 1 1
26,-¢ 1 1
= 0 as two columns are equal
Similarly, other further terms of B also become zero.

Now, C; = [ K(&1,&)d&
= 528 — &)dg
= fol &1 df1

1

2

dé1dé,

d§1dS;

&@a—ﬂ

=1,

d§1dS,

= [, —&EDE - &) dé, dé,




o= [ 1% Eance

:f fb K(1,61) K(E1,62)
a |K($2,¢1) K(§2,82)

_r et -6 264,
_ffo 286, -8 25,—&

— 1 51 251_52
Thl2e,~e, e,

=[ []1&6:& — (28 — £)(2&; — &)]dEd&,
=[ [[[618 — 468 — &6 + 267 + 26,°]d& d&,
=f, [2 - 26, + 28,7 dg,

d§1ds;

d§1ds;

d§1ds;

1

3
Now by similar method we find C; which comes out to be zero and further terms will also become zero.

Now further we got,

D(x,$34) = By (x,§) + X

T B (x,€)

=K@ & - 2B, + 2B, ) - — —— - -

=2~ —AQRxE—§—x+)

A A2 A3
D) =1-2Ci+ 56— 5 G+ ——— -

2
D(x,§1) 2x—§—A2x§{-{—x+3)
R(x,$;2) = =
D) 1—%+A_62

This is the required solution.
Example 3. Find R(x, & 1) of the following K(x,§) = 2% —x8,0<x < 1,0 < £ < 1.
Solution: GivenK(x,§) = x%f—x&,a=0,b=0...(1)

D51
D)

To find R(x,&,A) =

where D(x, £ 0) = Bo(,§) — 2By (,8) + =B, (#,)) = = By(#, D)oo
Bo(x,8) = K(x,8) = x°¢— x¥8°

2 8. (K@D KxE)
; adﬁ‘ﬁ KELD K )9S

1

&ma=LK




_ ! xZE—xEZ x2§1_x512
Bl(x’g)_fo e -ne o0 |

By(x,§) = — f (% — B2) (225, — 2E)dE,
0
By (x,) = — f [(26 — £,82) (x28)) — (82 — £,80) (x5, 9)]
0
1
B,(x,§) = — f (W68 — E28x? — xE1E + EEx) dE

2 2¢2 2

dg; dg;

dg, dg,

dg; dg;

B, (%, ) = f f 5
| K@®D  K@wE) K@)
f f KELE KELE) KEE)
0 [KGnE) KEnE) K k)
e — 2B 2% — 28 %, — 2
] j PE-LE BE-LE B, - 58| dE d
2E5E  BE-5LE 8- LE
oD BE-8) LGk
] j X5 |56 -D EE-E) bE-5)
A A S
x—& x—&§ x—§&
j j X5 B zl £ E-f §-§
5§ &-5)

dg; dg,

x—& &— E1 E1 &
fflezlzz SE E—& B —E|d5d5C o C—C oo Cy—
A
x—¢ 1 1
=f f PEEEE-E)E -6 |6 - 1 1|dEdg =0
0’0o &—¢ 1 1

as two columns are same.
Similarly B3(x,8) = 0 = B4(x,8) =.........

G = f K1, 8)dg, = f (8 °81 — £1817) d§y = 0

Cq



&1 &

"IKGiE)  K(Ei52)

szfofo g, %1527 ) K(EE)| 192
Ure%E 557§ - EE
C; = 2 2 2 2 d&,d&;
'I;) J;) EZ El _EZEI EZ EZ _EZEZ E E
o £6(E — &)
CZ‘fOfO £ 5 (5 — &) o |%udi
_ 2¢ 2 _ 2
¢, = fo fo 5,25,% (5 —5) g, dE,
¢, = fo fo £26,2(5 % + 5% — 255,) d5dE,
_ ! 1 4+ 2 2 4-_ 3 3
cz—fo jozl 5,2 +52+ 5% — 257, dgd,
_ Yo, 1, 2
cz—fo (g-8% +38" - 15 d&)
oLl 1 11 1
2 15 2°4 120
El EZ
Cs = f j ] g L 23 a5y dé, dt
L a[KEE) KEE) KEE)
Cs = j ] j KEE) K& K(Eb)|dg de, d
0 Jo Jo |K(EE) K(EE) K(Ed)
NP ¢ TR T TR I (TR AR A 25 B (IR S A 25
G| | ] @ -ash @R-aR) G- 8ED)|d6 6
0 0 0 2 2 2 2 2 2
G2 85D (525 —85D) (5% —LED)
Do | EEE ) GEE-E) G —§)
Cs = f f f GhE -8 (BaE—5) (ks — )| dE b i,
0 Jo o |(€ 86 —8) (BBa(Es— &) (Esks(Es — En)
D |GG G- B -
€ = f f f 55 |GG -8 G —5) (E( — )| dE dg, dg,
0 Jo Jo s —5) (Bs(&s — &) (Es(Es — )
1 1 1 El_zl El_zz El_ES
C3:f f f 512522532 52_21 Ez—zz 52—23 d§1dzzd§3
0 Jo Jo -8 E-f &k
1 1 1 El_zl El_zz El_ES
C3:f f f 512522532 52_21 Ez—zz 52—23 d§1dzzd§3
0 Jo Jo -8 E-f &k

CZ—>CZ - Cl




C3->C3—(C

1 1 p1 0 1 1
6= | | et -nem|E-u 11
0 -0 -0 &—& 1 1
Cs; = 0 Since two columns are equals.
Similarly €, =0=C5 =.........
D(x,& 1)

R(x' E' }\) = W
A2 7&
K(2,5) — 2oBi (D) + 25 By (2,8) — 2y By (2, D ...

A A? A3
1_HC1+EC2_L_3 3

ZE xEZ +Mz[x+§_%§_%]
R(x &M = ;\ 21
1-— O+|_2 120+0
25 — a+u4”%—ﬁ—ﬂ
R(x, & A) =
(1+m)

Example 4. Find R(x, §,A) of the following K(x,€) =sinxcos,0 < x < 2m, 0<% < 2m
Given K(x, &)= sinx cos¢,a = 0,b = 2m.

Solution: We know that
3

K@) - B0 + 15B(x0) — g Ba(x Dt

R(x&A) = ) 22 E
=gbtpt 36

K9 K5

2T
dﬁ:L KGELD K E)

sinxcos& sinxcosé,;
sin&; cos€ sin&; cos§;

Now we have

dg,

B, (x,§) = f dxﬁ

dg,

&ma=£

2T
= sinxf
0

Similarly  B,(x,8) = 0 = B3(x,§) =.....

q=f maama=[ sin&, cost; d; = 0

cos § cos &;

sin&; cos€ sin&; cos§; & =0

SimilarlyC, =0=C;5 =.......

(D



sinx cos§
1

Example 5. Find fredholm determinant and resolvent kernel of k(x, &) =sin x—sin &,
a=0,b=2nm.
Solution: We know fredholm determinant

SoR(x, EA) =

D) =12 Ci+ZCo— v (1)
Resolve kernel

R(X,& A) = % (2
where D(x,&; %) = Bo(x, &) — 2 B1(X, &) + ......... ..(3)
Here Bo(X, &) = k(x, &) = sin x —sin & (given) ...(4)
Now we have

B A

Consider

D, = ‘ k(x,&)  k(x,&)
k(& ,&) k(& &)

— |sinx—sin{ sinx—sing

siné, —siné siné, —sing,
= —(sin x —sin &)(sin &1— sSing)
= —sin X .sin &1+sin%Ey - sin X. sin E—+sin &. siné;

. Bi(X, &) = -sin xfozn.sin £1der— fozn.sinzaldal +sin x. sin &fozn.dgﬁ

sinéfozn.sin £1dEy
20+ [ (1~ c0s2E1) dEs + sin x sing. 27 + 0

=n(l+2sinxsin§)

Ba(x, &) :ffj”k[; o fzjdgldfz

1 2

Where Da(x, &1, &2) = kt; 2 2]
k(x, &) k(x, &)  k(x,&,)
=1 k(S,,8) Kk(&,&) Kk(&.S,)
k(&,,8) k(S,,8) k(<)



sing, —siné sin¢ —sing, sing —sind,
sing, —sing siné, —siné, sing, —sing,

{sinxsinéj sinx —siné& sinxsin@]

Co-C-C C:;-C:-C
{ sinx—sing sin{-sing, siné-sing, J

sing, —siné siné -siné, siné —sing,

sing, —sing siné —siné, siné —sing,

sinx—siné 1 1

{sinf1 —siné 1 1J= 0
sing, —siné 1 1
Da(x, &1, &) =0

s Ba(x, €) =0

Similarly, other terms are zero.

Now C1= (&1, &) d& = ["(sin & sinés)dés = 0

C — 271'k 51 ngd d - 271'. k(§1/§1) k(é:l/éz)
2= Jly Lﬂ e, |95 s KELE) KE,E)

sing —siné, sing —sind,

sing, —sing, sing, —sing,

dédé

_ ﬂoml

d&dé

= [J, " (siné1 — sing;)’de de,

= ffozn.(sinzgl + 5in%E2 — Singsingz)derde,

= [J,"[1 — 2singasing, - %(0032&1 + C082E2)]dEr 2
= ff;” 1d&1de, — foozn.singl sing d& dgp — % ffOZ”.(0032§1 + 05282)dEs &2
= [T 2nd& - 0-0

= 4n?

S R LEL TS

Where D3(&3, &2, :Kxg1 fzj
3(&1, &2, &3) [ P

k(6,6 kS, 5,) K&.&5)
=| k(& 6) K&y 8) Ks,.85)
k(5:61) K(s5.8,) K(Ss,65)



sing, —sing, sin¢ —sing, siné —sind,

=|sing, —siné, sin¢, —siné, sing, —sing,

sing, —siné, sin¢, —siné, sing, —sing,
C2—Co-Ct Cs—>Cs-Cy

sing, —sing, sing —siné sing, —sing
sing, —sing, sing, —sing siné, —sing
sing, —siné, sing, —siné siné, —sing

sing —-sing, 1 1
= (sin&y - sing)(sings - sing) | sin&, —sing, 1 1 =0
sin, —sing, 1 1

D3=0
~Ca= [[["0d& & &=0
Similarly, C4=Cs=Ce=0=..............
D(x, & A) = Bo(X, &) = Ba(x, &) + ......
=sinx—sing—mn(l+2sinxsin&)+0+0+......
D) =1-2Ci+Co oo,
=1+ (4720

=1+ 21%\°
D(x,§;2)

R(x, & 1) = 252

R(X, &; L) ={sin x —sin& — (1 + 2 sin x sin &)}/{1 + 2n°A?} which is required resolvent kernel.

12.10 SUMMARY

The non- homogeneous Fredholm integral equation of second kind ¢(x) = F(x) + 4 f; K(x,&)¢p(&)dé,

Under the assumption that the function F(x) and K(x, &) are integrable has a unique solution, is of the
form  ¢(x) = F(x) + 1 [, R(x, & DF(§)d¢
Where the Resolvent kernel R is a meromorphic 1 function of the parameterA, being the ratio of two entire

function of the parameter A, R(X,¢,4) = M;('—?,D(/l) # 0.
We know that @(x) = F(x) + A [, R(x, & DF(§)d¢

of the non-homogeneous Fredholm equation is unique for any A provided by D(1) # 0.



If A, is a zero of multiplicity m of the function D(X), then the homogeneous integral equation,

b
$() = Ao f K, €) $(€)de

Possesses at least one, and at most m, linearly independent solutions,

ww=n (i B T E )

(1=1,2,3,.......... v;1<v<m not identically zero, and any other solution of this equation is a linear
combination of these solutions.

12.11 TERMINAL QUESTIONS

Q.1 Explain the Fredhlom integral equation.

Q.2 State and Prove Fredhlom First theorem.

Q.3 State and Prove Fredhlom Second theorem.

Q.4 State and Prove Fredhlom third theorem.

Q.5 Find R(x, &, 1) of the following: K(x,§) =1+3x&,0<x<1,0<E<L1.

Q.6 Find the resolvent kernel of the following kernel k(x, &) = x —2§,0<x<1,0< g <.
Q.7 Find the reslovent kernel of K(x,&)=x+&+1,-1<x<1,-1 <E{<I.

Q.8 Find the reslovent kernel of K(x, §) =4x& —x? ,0<x<1,0 <&<1.

Q.9 Find the reslovent kernel of K(x,é)=1, a=0, b=1.
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UNIT-13 FREDHOLM INTEGRAL EQUATIONS-I1I

Structure

13.1 Introduction

13.2 Obijectives

13.3 Fredholm Integral Equation

13.4 Solution of Fredholm Integral Equation
13.5 Resolvent kernel for Fredholm integral equation
13.6 Separable kernel

13.7 Method to solve Fredholm integral equation
13.8 Eigen values and Eigen function

13.9 Symmetric kernel

13.10 Orthogonality

13.11 Summary

13.12 Terminal Questions

13.1 INTRODUCTION

Integral equations represent mathematical relationships where an unknown function is involved
within an integral expression. These equations are prevalent across physics, engineering, and mathematics,
particularly when addressing scenarios with continuous quantities. Named after the Swedish
mathematician Ivar Fredholm, Fredholm integral equations feature the unknown function both inside and
outside the integral sign. Their applications span diverse fields such as physics, engineering, and
mathematics, offering valuable insights into physical phenomena and facilitating the analysis of
engineering systems. Moreover, solutions to Fredholm integral equations aid in addressing specific
boundary value problems. Extensively utilized in mathematical modeling, Fredholm integral equations
play a crucial role in describing phenomena characterized by continuous interactions or distributions.

Across various disciplines, Fredholm integral equations contribute significantly to the analysis,
modeling, and comprehension of complex systems and phenomena. In electrical engineering, Fredholm
integral equations are instrumental in analyzing transmission lines, antennas, and electromagnetic wave
propagation. They provide valuable insights into the behavior of electromagnetic fields within intricate
structures and media, further enhancing the understanding and optimization of electrical systems. In this
unit we shall discuss the vrious types for Fredholm integral equations, various methods to solve Fredholm
integral equation of first and second kind are discussed. Resolvent kernels are used to solve Fredholm
integral equations.



13.2 OBJECTIVES

After reading this unit the learner should be able to understand about:

»  the Fredholm integral equation
»  the solution of Fredholm integral equation
»  the resolved kernel and separable kernel for Fredholm integral equation

13.3 FREDHOLM INTEGRAL EQUATION

A Fredholm Integral Equation is of the type
b

h(x)u(x) = f(x) + j K(x,u(é&)dé forall x € [a, b]

(i)  Ifh(x) =0, the above equation reduces to:
b

—ﬂm=fK@awa&

This equation is called Fredholm integral equation of first kind.

(i)  If h(x) = 1, the above equation becomes:
b

M@=ﬂ@+meSM@ﬁ

a

This equation is called Fredholm integral equation of second kind.

(iii) If h(x) = 1, f(x) = 0 the above equation becomes:
b

mm=meawa&

This equation is called Homogeneous Fredholm integral equation of second kind.

Examples
Example 1. Reduce the boundary value problem to Fredholm equation

y'=xy=1y(0)=0y(1) =0.
Solution: Given boundary value problem is
y'=1-—xy - (1)
Integrating over 0 to X,

Y () = x - j £ y(E)dE + ¢,
0

Again integrating over 0 to X,



27
v =[] - [- e +axe, -

Where c; and c, are constants to be determined by boundary value conditions.
Using y(0) = 0 in equation (2), we get

0=0-04+0+4+c, =1c=0
So, equation (2) becomes

P
y0) =5 [ = DyE)ds + @)

Now, using y(1) = 0 in the equation (3), we get

1 1
0=7- f (1 - OEY(E)dE + ¢,
0

1 1
o= [ (- Dev©ds -5 @)
0
Putting value of ¢, in equation (3), we get

x 1
X

y0) =5 = [ - D6y +x [ £ - Oyds -5
0

0

X 1
- f ECx — O)y(©)dE +x f (1 — O)y(©)d¢
0 0

N[ =

xZ
or y(x) = =~

To express this in standard form, we split the second integral into two integrals, as follows

- j £ — Oy (©)dE +x f E(1— O)y(©)dE +x f (1 — O)y(©)de
0 0 X

N[ xR

2
y(x) =x7—

2 X X
or @ == [Gmat —x+ 06O +x [ £01- Oy
0 0

N X

xz X X
oy =23+ [a-na@a+ [ fa- oy
0 0

or y(x)=f()+ f §K(x,&) y(&)dE where f(x) = %—;
0
_(A-x)¢ if 0sé=<x
and K(x’g)_{(l—f)x if x<&<1

Hence the solution.



Example 2. Reduce the boundary value problem,
y'+A®)Y +Bx)y=g(x),a<x<by(a)=c,yb)=c,
to a Fredholm integral equation.
Solution: Given differential equation is
y'+ Ay + By = g(x)
y'=—AX)y —B(x)y + g(x)
Integrating w.r.t. X from a to x, we get
x x x
2=~ [a©y©ds - [ Bey©ds + [ 9@t +a
a a

a

d r r i
= D= —UAOYOR+ [ 4Oy - [ BEw©ds + [ 96 + @

X

> f (A @©y(©O]y(©) d(©) + j 9(E)dE — Ay + Ay + ay

a

Again integrating over a to X,

Y (@) = j (= ) [4'(6) — BE)Iy(©)dé + j (x - O)g(&) de

- j A©YE) + & - Dlas + Al@ecy] + ©

a
Applying first boundary condition, y(a) = ¢;, we get a, = ¢,

Again applying second boundary condition, y(b) = c,, we have

b b
Cy = ](b = [A'(E) = B(OIy(§)ds + J(b —$§)g(§) dg

a

A©)y(§)ds + (b — )y + A(a)cr] + ¢

= a;+cA(a) =

|
f

l — ¢ [ [(b=OIA(E) — B(§)} — A(D]y(§)d¢ - j(b E)g(f)dfl



= a;, + c,A(a)

1 X
{Cz —C1— f[(b = A =B} = A)]y(§) d§

- b—a
b b
- f[(b —O{A' () — B} —AD)]y(§)dS — f(b - f)g(f)df}

Putting this value of a; + ¢;A(a) in equation (1), we obtain

a

X b
y(x) =c¢ + f(x —£)g()dé + 2 : Z [62 —¢ - f(b —$)9g() ds‘]

X

+ j[(x = {A(E) = B} = AD)] y(§)d¢ —f

a

[(b = {A'(E) = B(E)} = AD)]y(§)dE

x—a
b—a

b
x—a ,
—22 (1 - 9 © - B - A
X _ b _ _
orye =100+ [ [{o- 0 - 520 e - s+ ao -1+ =5 vorae

x_

b
a !
2 16— ot - BE) - AW

Now

x-—a)®-8) &-bHE-a) X—a_x-—b
=8 - b—a - b—a and_1+m=b—a

Thus, the above equation becomes

—b p
Y00 = £00 + 3= [[A(©) - (a = HU'©) - BEMyE)d

b
X —a

- af[A(f) — (b ={A(E) = B(Oy()d¢

a

b
or y() = £ + j K (x, €)y(§)dé

Where



x Y —a b
fo) =a+ [ - D9 df + 1 [Cz o E)g(s‘)d%

b [A() = (a=O{A') - B(OHx>¢
and Kx,§=|[2_2

A - (b - HAE) - BEN ¥ <¢

This is complete solution.
Example 3. Covert the Fredholm integral equation

x(1—-t) 0<x<t

1
u(x) = A'[K(x, Du(t)dt where K (x,t) = {t(l —x) t<x<1
0

into the boundary value problem u" + Au =0, u(0) = 0,u(1) = 0.
Solution. Write

ulx) =1

x 1
fK(x, t)u(t)dt+fK(x, t)u(t)dt]

0 X

=A|]| t(1 —x)u(t)dt + | x(1 —t)u(t)dt
[ fra-mond

X

X 1
= Af t(1 —x)u(t)dt + 2 f x(1—=tu(t)dt (D
0 X

Differentiating (1) w.r.t. x and using Leibnitz formula

du B x 1
T /lf —tu(t)dt + 2(x)(1 — x)u(x) + Af(l —tu(t)dt — Ax(1 — x)u(x)
0 x

2 ~ g
s 3712‘ ~2 j 0. (—Du(t)dt + A(—x)u(x) + A J 0.(1 — Hu(t)dt — A(1 — x)u(x)
0 X
= —Au(x)
2
= % + Au(x) =0

Also, from (1), we have, u(0) =0 =u(1)

Hence the solution.



13.4 SOLUTION OF FREDHOLM INTEGRAL EQUATION

Let us Consider a Fredholm integral equation of second kind.

u(x) = f(x) + lfK(x, Su($)ds (1

We define an integral operator,
b

k¢ ()] = f K(x, ) p()dé

a

k2[¢p(x)] = k[k{p(x)}] and so on.

Then, (1) can be written as

u(x) = f(x) + Ak[u(x)]

Theorem 1. If the Fredholm integral equation

b
u(x) = f(x) + lf K(x,$)u($)dé ey

Is such that

(i)  K(x,¢&) is anon-zero real continuous function in the rectangle R = I X I, where | =[a, b] and |K(x, §)| <
MinR.

(i) f(x) is an non-zero real valued continuous function on 1.

1

(iii) 4 is a constant satisfying the inequality, |A| < Mo

Then (1) has one and only one continuous solution in the interval | and this solution is given by
the absolutely and uniformly convergent series u(x) = f(x) + Ak[f (x)] + A2k?[f (x)] + - to oo.

Proof: We prove the result by the method of successive approximation. In this method we choose any
continuous function say u, (x) defined on | as the zeroth approximation.

Then the first approximation, say u, (x), is given
b

() = 60 + A f K (x, ©)uo (6)dE @

By substituting this approximation into R.H.S. of (1), we obtain next approximation, u,(x). Continuing
like this, we observe that the successive approximations are determined by the recurrence formula

b
Uy () = £G) + A f K (x, €)1 (€)dE 3)

= f(0) + Ak [up—1 (x)]
= f0) + Ak[f (x) + Ak{up_, (0)}]



= f() + AR[f O] + A2K2[f (x) + Ak{un—3(x)}]
Hence u,, (x) = f(x) + Ak[f(x)] + 22Kk2[f ()] + +++ e . ALK F ()] + Ry (%),
Where R, (x) = A"k™[uy(x)]
As uy(x) is continuous, it is bounded that is, |uy(x)| < U in |

Now, |R,(x)| = |A|" [ffK(x, t) f;K(t, t1) ...f(fK(tn_z,1:,1_1)u0(tn_l)dtn_1 ....dt]
< |A™"M™ U (b — a)™
1
— _ n 1 -
=U[|AIM(b—a)]" > 0asn - (smce, 1] < M= a))
= lim R,(x) =0
n—-oo
Thus, lim u,(x) = u(x) = f(x) + Akf (x) + 22k?f(x) + ++..to
n—-oo

This can be easily verified by the virtue of M test that the above series is absolutely and uniformly
convergent in |.

Uniqueness: Let v(x) be another solution of given integral equation then by choosing uy(x) = v(x), we
get
up(x) =v(x)foralln

= rlll_r)lc}o Up(x) = v(x) = ulx) = v(x)

This completes the proof.
Examples

Example 4. Find the first two approximation of the solution of Fredholm integral equation.

1
x 0<x<¢

u(x) =1 +]K(x,f)u($)df where K(x, &) = ¢ f=x<1
0
Solution: Let uy(x) = 1 be the zeroth approximation. Then first approximation is given by
1

uﬂ@=1+fK@fMd®ﬁ

0

X 1 X 1
= 1+0fK(x,E)dE+fo(x,E)dE= 1+bf§d5+xfxd§

x? x?
=1+=+x(1-x)=1+x——
> x(1—x) X ==

Now we have
1

ux@=1+fK&£Mﬂ®&

0



1

2
=1+fK(x,E)<1+E—%>df

0

X 1
EZ
=1+ f(1+5——>df+x <1+€——>d€
/ Jre3

_1+4 x? x3_|_x4
T T3Y T T T

13.5 RESOLVENT KERNEL FOR FREDHOLM INTEGRAL
EQUATION

Let us Consider the Fredholm integral equation

b
() = F(0) + 2 f K (x, ©)u(€)de Q)

The integrated kernels are defined by K; (x, ) = K(x, &), and
b

Kpa1 (6, €) = f R(x, € D) f (6)dE

a

- ;an—lm, £)

Neumann series: The infinite series K; + AK, + A2K5 + ---.. is called Neumann series and Resolvent
Kernel: The function R(x, é: 1) is called Resolvent Kernel.

Examples

Example.5: Obtain the resolvent kernel associated with the kernel K(x,¢) = 1 — 3x¢ in the interval (0,
1) and solve the integral equation
1

ulx) =1+ Af(l —3x&u(é)dé
0
Solution: Here K(x,§) = 1 — 3x& We know that the iterated kernel are given by the relation, K, (x, ) =
K(x,$)

and Kny1 () = [ K (x, OKa(t, )t
therefore, K;(x, &) =1 — 3x¢
and K, (x,¢) = f; K(x,)K,(t,§)dt



= f(l — 3xt)(1 — 3x&)dt

= f(l — 3t — 3xt + 9xt?&)dt

1

+ 3xt%&
0

_| 3t2¢§  3xt?
B 2 2

=1 3 3 + 3
= 26 2x xé

&ma=ijo&@aw
0

=f(1—3xt)(1—%t—;f+3tf)dt
0

= %(1 — 3x¢) (on solving)

1
mma=fxmo&@am
0

1 1
= qu — 3xt) (1 — 3t&)dt

[1 3k
The Resolvent Kernel R(x, E. A) is given by
R(x,&:1) = Ky + AK, + 22K + 23K, + - ........(Here K, means  K,,(x,&) etc)
3 3 A? A3 3 3
= (1 - 3x8) +/1<1 —;—7x+ 3x€> +L -3+ 5 (1—;—7x+3x5) )

2 2
=(1—3xf)<1+%>+A(1—32—€—32—x+3xf)<1+%>+---..

= (1+%2+~-->[(1—3xf)+A<1—32—€—37x+3x5>]

:(1_11_2>[(1—3x€)+l<1—?;—€—37x+ 3x€>]

~(FZa)la-v0+a(i-3-F 42




Which provides the required result.
We know that the solution of an integral equation

ulx) =f(x) + /1[ K(x,&u(é)dé is given by

b
u&)=ﬂ@+lfR@fJV@ﬂE

Here K(x, &) = (1 — 3x§). Then

3§ 3x
R(x,f./l)—(4 /12)[(1—3x§)+/1(1—7—7+3x§)]
Thus, the solution of given integral equation is
) =1+ ”(1 3 )+/1(1 38 3% s )] 1d
u(x) = T x€ > 5 x& &
0
~ 382 3x¢  382\]'
=1taC ,12[5_3 _+’1<€_ "2 "2 .
1— (1 3 3x 3x
= p[ 7773
1+ 42 (1 3x+/1>
L 2 4
_d+4-ead
w7

This is the required solution of given integral equation.

13.6 SEPARABLE KERNEL

A kernel K (x, &) of an integral equation is called separable if it can be expressed in the form

n

K(x,§) = z a; ()b (§) = a1 (b1 () + az ()b, (§) + -+ +an(x) by (§)

i=1
For example.
() e* ¢ =e*e$ =a;(x)by(§),n=1
Bb)x—¢&=x.1+1(=&) = a;(x)b (&) + a,(x)b,(E),n = 2
(¢) Similarly,sin(x + &), 1 — 3x & are separable kernels.

(d) x%, sin(x &) & are non — separable kernels.



Check your progress

Q.1 Explain the Fredholm integral equation?

Q.2 Define the Separable kernel.

13.7 ANOTHER METHOD TO SOLVE FREDHOLM INTEGRAL
EQUATION

We have to solve the Fredholm integral equation of second kind with separable kernel.

Let the given integral equation be

b
w(x) = F(0) + 1 f K (x, ©)u(€) dé )

a

where K(x,&) = ) a;(x)b;(§) (2)

n
i=1

Thus, (1) can be written as

> ai(x)bi(sf)] u(§) d¢

i=1

b
u(x) = f(x) +Af

n b
u(@) = f() 1Y a,(x) l [ Bou® df]
= f(x) + Acyas (%) + c2a,(x) + .. +cpan(x)] (3)

b b
where C = f b ()u(E) dE = f b (Ou(x) dx @)

Here (3) gives the solution of given Fredholm integral (1) provided the constants ci, C2, ....cn are
determined.
For this, we multiply (3) both sides bi(x) and then integrating w.r.t. x from a to b, we find

b b

b
fbi(x)u(x) dx = ff(x)bl-(x) dx+lz Ckfbi(x) ap(x)dx for i=1,2,3,.....n

a k=1 a

n
N ¢ =fi+ /’lz i Ci . (5)
k=1



b b
where f; = ff(x)bi(x) dx and aj =fbi(x) a,(x)dx v (6)

From equation (5), we have

¢, = f1 + Alci1aq + cipa, + . FCipay]
Cy = fo+ Aca1aq + cppay + - FCopay]
Cn = fn+ Alcnias + cpzas + .. Fepnanl
In matrix form, C = F + AAC or I—24A)C=F )
Where
¢ fi A1y Ay . Aqp
colel| e | | 4 Ay1 Ay e Aop
Cn fn an1 Anz - App
Let |I—24] =A) ...(8)

Now, we discuss the various cases

Case I: When f(x) # 0 and F # 0, that is, both integral equation as well as matrix equation are non-
homogeneous. Then, from equation (7) has a unique solution if and only if A(4) # 0.

If A(A) = 0 for some value of A, then from equation (7) has no solution or infinite solutions.

Case I1: When f(x) = 0 that is, the Fredholm integral equation is homogeneous. In this case f; = 0 for all
i and consequently F = 0. Thus, equation (7) reduces to:

(I-24)C=0 .. (9)
Subcase (a). If A(1) # 0, then from equation (9) has the trivial solution, C =0 that is, C; = 0 for all i .
Hence the equation (3) becomes, u(x) = 0 which is the solution of given integral equation.

Subcase (b). If A(4,) = 0 for some scalar A,, then from equation (9) has infinitely many solutions.
Consequently, the Fredholm integral equation u(x) = A, f: K (x,&)u(&)d¢ has infinitely many solutions.

Case I11: When f(x) # 0 but F = 0. In this case also,

(I-24)C =0 ...(10)
Subcase (a). If A(1) # 0, then (10) has only trivial solution, C = 0 thatis, C; = 0 forall i .
Hence the required solution of given equation becomes u(x) = f(x) + 0 = f(x)

Subcase (b). If A(4,) = 0 for some scalar A,, then from equation (9) has infinitely many solutions.
Consequently, the Fredholm integral equation

u(x) = Ao [ K(x,©)u(§)dé has infinitely many solutions.



13.8 EIGEN VALUES AND EIGEN FUNCTION

The values of A for which A(1) = 0 are known as eigen values (or characteristic number) of
Fredholm integral equation. The non-trivial solution corresponding to Eigen values are known as Eigen
functions (or characteristic functions).

Remark: Separable kernels are also known as degenerate kernels.
Examples

Example.6. Solve the integral equation and discuss all its possible cases with the method of separable
kernel

w(x) = F(0) + 1 j (1 - 3xE)u(8)de
0

Solution: The given equation is

u@) = fQ) +A[(1-3xOu@©de ... (1)
u(x) =f(x)+AC; —3xC,] L (2)
Where o =[fu@®ds L 3)
and = [ au®de . 4)

c; and c, are constant to be determined.

Integrating (2), w.r.t. x over the limit O to 1.

1

Ju(x)dx = Ojf(x)dx +/10f(cl — 3xcy)dx

0

1
3
c, = ff(x)dx +1 <61 — Ecz) [Using (3)]
0
or A-De+2=f .. (5)
Where fi = [, f)dx
Now multiplying (2) with x and integrating w.r.t x between limits 0 and 1, we get
1 1 1
jxu(x)dx = fo(x)dx + lj(clx — 3x%¢,) dx
0 0 0
x? 1 .
or = fit Aoy —xc| [using (4)]

=fi +A(%_Cz)



or —lo+ 1+ D=1 (6)

Where fo = fole(x)dx
From (5) and (6), we get,
1—1 31
- 3 312 A2
A(A): 2 2 :1—12+T:1—Z
—= 1+2
Or
2
AA) = 2
Now, (5) and (6) can be written as
(I-24)C=f
_[¢ _ f1]
Where C= [cl]’F =1
Also, |I — AA| = A(A)

Case I. When f(x) # 0 and F # 0 then equations (5) and (6) has a unique solution if A(1) # 0 that is,
A # 2,—2 When A = 2 or — 2, then these equations have either no solution or infinite many solutions.

i) A=2
Then (5) and (6) reduce to
_Cl + 3C2 = fl]
_Cl + 3C2 = fz (7)

These equation have no solution if f; # f, and have infinitely many solution when f; = f,, that is
1

ffl(x)dx = fxf(x)dx
0

0
or [ =x)f(x)dx =0
Thus, the solution of given integral equation is
u(x) = f(x) + 2[c;a,(x) + c,a,(x)]
= f(x) + 2[c;. 1+ c,(—3x)]
= f(x) + 2[3¢, — f; — 3xc,] from (7)
=f(x) +6c,(1 —x) —2f;
Oru(x) = f(x) +6c,(1—x)—2 folf(x)dx where ¢, is arbitrary.
(i) 1=-2

As done above the solution is given by



1

ulx) =f(x)—2(1—-3x)c, — 2 f xf (x)dx
0
Case Il. When f(x) =0,F=0

In this case, the equation (5) and (6) becomes:

31
(1_A)C1+7C2 = 0

A
_Ecl + (1+A)C2 = O

If A # 2,—2, then system has only trivial solution ¢; = 0 = ¢,. Thus u(x) = 0 is the solution of given
integral equation.

i) A=2
Then, (8) becomes
—¢c1+3c; =0 = ¢ =3¢,
Thus the solution of given integral equation is
u(x) =04+ 23c; —3xcy) = 6c,(1 —x)
@iy A1=-2
Then, (8) becomes
c1—¢=0->c=c¢c
Thus the solution is
u(x) =0—2(c; —3xcy) =2¢,(3x— 1)
Case I1l. When f(x) #0 and F=0
If A # 2,—2, the system (8) has only trivial solution ¢; = ¢, = 0and therefore u(x) = f(x) is the solution.
i 1=2
Then ¢; = 3¢, and the solution is
ulx) = f(x)+2Bc; —3xcy) = f(x) + 6c,(1 —x)
(i) A=-2
Then ¢; = ¢, and the solution is
u(x) = f(x) = 2(cz = 3xcz) = f(x) — 2¢,(1 — 3x)
This completes the solution.

Example 7. Find the eigen values and eigen functions of the integral equation

21

ulx) = /'lf sin(x + t)u(t)dt
0

1
—
Tl.'

Solution: Eigen values are A = + % For A =



Eigen function is u(x) = A(sinx + cos x), where A = % and for 1 = —%,

C2

Eigen function is u(x) = B(sinx — cos x), where B = -

13.9 SYMMETRIC KERNEL

The kernel K(x, &) of an integral equation is said to be symmetric if
K(x,é) = K(&,x) forall x and €.

13.10 ORTHOGONALITY

Two function ¢, (x) and ¢, (x) continuous on an interval (a, b) are said to be orthogonal if
b
[ 10 ¢ =0,
a

Theorem 2. For the Fredholm integral equation y(x) = A4 f; K (x, &)y (&€)dE with symmetric kernel, prove
that:

(i)  The eigen function corresponding to two different eigen values are orthogonal over (a, b).
(i) The eigen values are real.

Proof: (i) Let 4, and A, be two different eigen values of given integral equation

b
() =1 f K(x, )y (€)de ©

w.r.t. eigen function y; (x) and y, (x). We have to show that

b

[ 7@y =o @

a
By definition we have,

b
) = A f K(x,€) y,(§)dé 3)

b

Y2 () = 2 f K(x,€) y,(§)dé @

a



Multiplying (3) by y2(x) and then integrating w.r.t. x over the interval a to b find

b b b
j“y1<x>>@<x>dx =A11j‘yz<x) j‘K(x,f)>q<f>df}dx
Interchanging the order of integration
b b b
[ 7100 7.dx = [ 72 | [ KCo© 2G| g
b b
=hjn@)jmawn@m4ﬁbmmea=K@wn
’ ©®
= [ n@X e by (4)]
/1 b
=ij&ﬂmyxm¢x
A b
= (1 - Z)JM(X) y2(x)dx =0
b
= JM(X) y.(x)dx =0 (A # 13)

a

(if) If possible, we assume on the contrary that there is an eigen value A, (say) which is not real. So
Ao = o+ iBo, Bo#0 )

Where a, and 3, are real.

Let y,(x) # 0 be the corresponding eigen function. Then

b

3M@=%waah@ME ©)

a

We claim that the eigen function y,(x) corresponding to a non real eigen value 4, is not real values. If
Vo (x) is real valued, then separating the real and imaginary parts in (6), we get

b

}M@=%waﬂm@M€ )

a

And



b

0= B, f K(x, €) yo(£)dE ®)

a

b

S f K, ©) yo(E)dE =0 (By # 0)

a

Hence from (7), we get y,(x) = 0, a contradiction. Thus y,(x) cannot be a real valued function.

Let us consider

Yo(x) = a(x) +ifo(x),  Bx)#0 9
Changing i to —i in (6), we obtain
b

7@ = T f K(x,€) Yo (©de (10)

a

This shows that A, is an eigen value with corresponding eigen function y,(x). Since A, is non-real by
assumption. So 1, and 1, are two different eigen values. Thus by part (i), we have

b

f Yo () Yo@)dE = 0

a

b
- f 1Yo (x)[2dx = 0

b
= fla(x) + iB(x)|*dx =0

b

= [ dator + e ax = o
= alx)=(x)=0
= Yo(x) =0

A contradiction because eigen functions are non-zero. This contradiction shows that our assumption that
Ao is not real is wrong. Hence 4, must be real.

Remark.

1. After finding the resolvent kernel R (x, &: 1) the solution of given integral equation is given by

b

() = £ + A f R(x, & D f(§)dE

a



2. This method cannot be used when A = 1
Examples

Example.8. Using the Fredholm determinant, find the resolvent kernel of

K(x,&) =2x =&, 0<x<10<é<1
Solution: Here the kernel is
K(x,§) =2x—-¢ (1)
The resolvent kernel R(x, &: 1) is given by
R(x,&:1) = %, D) #0 (2)
Where
D&l =K &) + Y L 1B, ()
n=1
And
D",
D(/l)_1+nZ1 e 3)
K(x,¢) K(x,t) ... K(xt,)
Where B, = f*f* ... 0| F&8) Kt e KEBI
K(tn &) K(twt) . Kt ty)
K(t,t) K(tyt) ... K(ty,ty)
and g0 () K)o,
Ktwt) K(twts) oo Kt ty)

therefore,

1
_ 2x—& 2x—1t
0

1
= f(th1 — &t; — 4xty + 2t2 + 2x& — &ty)dt,
0

1

= J(—th1 — 28ty + 2t% + 2x€)dt,
0

B;(x,&) = —x—f+§+2xf



2x — 2x —t; 2x—t,
Bz(x E) —_ ff 2t1 2t1 - tl 2t1 - tz dtldtz
2t2 th - tl th - tz

Which on solving gives, B,(x,&) =0
In general B,(x,&) = 0 foralln>2

NOW, 1 = fol(ztl tl) dtl =

2| dt,dt, =

1

2

1
f ’2t2 —t 2t2 — t
0

o\»—\

Now, since B,, = 0 foralln>2
= ¢, =0foralln>3

Thus, from (3) we get
2
D(x,&:2) = (2x — &) + (1A (zgx x—f4 5)

=2x—f+a@+f—2ﬁ—§)

(=2 )2/1 =1 /1+/12
T 276

DA =1+ (-1 %, +

Hence the resolvent kernel is given by:

Qx—8+%(x+f—2%—%)

A, A2

R(x,&: 1) =

13.11 SUMMARY

A Fredholm Integral Equation is of the type
b

h(x)u(x) = f(x) + f K(x,Ou(é)d¢ forallx € [a,b]
(i) Ifh(x) =0, the above equation reduces to:
b
@) = | K Eu)ds

This equation is called Fredholm integral equation of first kind.
(i) If h(x) = 1, the above equation becomes:

b

u(x) = £0) + f K (x, ©)u(€)dé

a



This equation is called Fredholm integral equation of second kind.
(iii) If h(x) = 1, f(x) = 0 the above equation becomes:
b
uG) = [ K Ou(ds
a

This equation is called Homogeneous Fredholm integral equation of second kind.

If the Fredholm integral equation

b
() = F(x) + 2 f K (x, ©)u(€)dé )

is such that: (a) K (x, &) is a non-zero real continuous function in the rectangle R = I x I, where | = [a, b]
and |[K(x,¢é)| < M inR.

(b) f(x) is an non-zero real valued continuous function on 1.
1
M(b-a)’
Then equation (1) has one and only one continuous solution in the interval | and this solution is given by
the absolutely and uniformly convergent series u(x) = f(x) + Ak[f (x)] + A2k?[f (x)] + - to oo.

A kernel K (x, &) of an integral equation is called separable if it can be expressed in the form

n
K(x,§) = Z a;(x)b;(§) = a3 (x)b1(§) + az ()b, (§) + -+ +an(x)bn(§)
i=1
The values of A for which A(1) = 0 are known as eigen values (or characteristic number) of
Fredholm integral equation. The non-trivial solution corresponding to Eigen values are known as Eigen

functions (or characteristic functions).
The kernel K (x, &) of an integral equation is said to be symmetric if K(x,§) = K(&,x) for all x and &.
Two function ¢, (x) and ¢, (x) continuous on an interval (a, b) are said to be orthogonal if

(c) A is a constant satisfying the inequality, |A| <

b
f 1) by (x)dx = 0.

13.12 TERMINAL QUESTIONS

Q.1 Explain the solution procedure of a Fredholm integral equation.

Q.2 Reduce the following boundary value problems to Fredholm integral equation.
a y'—ly=0,a<x<b,y(a)=0=y(b)
b.y'"+1y=0,y(0)=0,y(1)=0
c. y'+ly=x;y(0)=0,y(1)=0



d y"+ 2y =2x+1,y(0)=y(1),y'(0) =y(1)
e. y"+ 2y =e*y(0) =y'(0),y(1) =y'(D.

2.  Determine the Resolvent Kernel associated with K(x, §) = x¢ in the interval (0, 1) in the form of
a power series in A

Answer. R(x,é: 1) = %xf, 1] < 3

3. Solve the following integral equations by finding the resolvent kernel:

a. u(x) = f(x) + /1[ e =Dy (&)a¢ b. u(x) =1 +/1fxe(f)u(f)d§

1 1
c. u(x) =x+21 ] xeOu(&)dé d u@x)=x+21 j x& u(&)dé
0 0
4.  Solve the integral equations by the method of degenerate kernel:
1 1
a. u(x) =x+ /'lf(xt2 + x2t)u(t)dt b. u(x) =e* + Af 2e*etu(t)dt
0 0

5. Using Fredholm determinant, find the resolvent kernel of K(x,&) = 1 + 3x¢.

6.  Solve the following integral equations by finding the resolvent kernel:
1
uG) = £G) + 4 [ e Fhue)g
0
7. Solve the integral equations by the method of degenerate kernel:

u(x)=x+lj(1+x+t)u(t)dt
0

Answer
, GDE-0 r g<E<x
Q2 Ay =2[, K(x,Oy@)dewhere K(x, &) = [, 27
T ha lf x < E <b

z G
(6) ¥() = 2 f K )y dgwhere K (v, ) = | )

z if x<&<li

© y() =5 (& = 3) + 2, K (o )y()dgwhere K (x,§) = [? o Z :Z

)

d)y(x) = f(x) + Afol K(x,&)y(&)dé where f(x) = %[Zx3 + 3x% —17x — 5] and



1+x(1-9%) E<x

KeO=|la-pnre-9x £>x

©y0) = e + 20, K y(©ds where ke §) = [ 10 178

Q3 @u) = f(x) + = [ e®Df()d¢
O ulx) =1 +%(e -1
(©) u() =x +-=

(d) ulx) =x+=

(240-601)x+80Ax?
240-1201—-A2

Q4 (a) ulx) =

ex

(b) u(x) = T-A(e2-1)

(1+3xf)—)t(1—3gx_37f_37")

Q5 R(x, &) =

1—Zl+%;
Q6 u(@) = f(x) + 7 [, e® G f()ds

Q7 ulx)=x+ [10 + (6 + )x]

12-241—A2
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UNIT-14 VOLTERRA INTEGRAL EQUATIONS

Structure

14.1 Introduction

14.2 Objectives

14.3 Integral Equation

14.4 Volterra Integral Equation

14.5 Homogeneous Integral Equation

14.6 Solution of Volterra Integral Equation

14.7 Laplace transform method to solve an integral equation
14.8 Solution of Volterra Integral Equation of first kind
14.9 Method of Iterated kernel/Resolvent kernel to solve the Volterra integral equation
14.10 Summary

14.11 Terminal Questions

14.1 INTRODUCTION

Volterra integral equations, named after mathematician Vito Volterra, describe dynamic processes
and systems with memory effects. Unlike Fredholm equations, the unknown function only appears inside
the integral sign. These equations are essential for modeling systems in physics, biology, economics, and
engineering, where present states depend on past inputs. Particularly valuable for nonlinear systems
analysis, they offer insights into complex dynamics like viscoelastic materials and biochemical reactions.
Their applications extend to control theory, mathematical biology, and ecology, facilitating the study of
population dynamics and predator-prey interactions. Additionally, they provide a framework for
understanding fractional calculus, relevant in physics, engineering, and finance.

Hence the Volterra integral equations serve as indispensable tools for comprehending and
analyzing real-world phenomena across diverse scientific and engineering domains. Volterra integral
equations are closely related to fractional calculus, which deals with derivatives and integrals of non-
integer order. Volterra integral equations are particularly useful for studying nonlinear systems, where the
output does not vary linearly with the input.



14.2 OBJECTIVES

After reading this unit the learner should be able to understand about:

> Initial value problem reduced to Volterra integral equations.

Method of successive substitution to solve Volterra integral equation of second kind.
Method of successive approximation to solve Volterra integral equation of second kind.
Resolved kernel as a series.

Laplace transform method for a difference kernel

YV V V V

14.3 INTEGRAL EQUATION

An integral equation is one in which function to be determined appears under the integral sign. The most
general form of a linear integral equation is

b(x)

h(x)u(x) = f(x) + f K(x,&)u(t)dg forallx € [a,b]

a

In which u(x) is the function to be determined and K (x, &) is called the Kernel of integral equation.

14.4 VOLTERRA INTEGRAL EQUATION

A Volterra integral equation is of the type:
X
h(x)u(x) = f(x) + f K(x,&)u(®)dg forallx € [a,b]
a
that is, in Volterra equation h(x) = x
(i) If h(x) = 0 the above equation reduces to

X

—ﬂw=JK®£h@ME

a

This equation is called Volterra integral equation of first kind.
(if) 1f h(x) = 1 the above equation reduces to

X

mm=ﬂm+meam&m

a

This equation is called Volterra integral equation of second kind.



14.5 HOMOGENEOUS INTEGRAL EQUATION

If f(x) = 0 for all x € [a, b], then the reduced equation
b(x)

h(u(x) = f K(x,€) u(E)dt

a

is called homogeneous integral equation. Otherwise, it is called non-homogeneous integral equation.
Leibnitz Rule: The Leibnitz rule for differentiation under integral sign:

B(x) ﬁ(X)
dp (x) ( )
- (f) F(x,s‘)ds‘} (f) Sode + F(x p(0) L2~ Pl ata) o
In particular, we have
=/ K(x,f)u(E)dE] = [ 5 u®d + K(x 9
Lemma: If n is a positive integer, then
f j f j F(n) ditydt s .. dy =r—— f (x - @)

Proof: If I,(x) = fa (x =™ 1f(&)dé, then I,(a) = 0and forn = 1,1;(x) = fa f(&)dé
Using Leibnitz rule, we get % = f(x).

Now, differentiating I,, (x) w.r.t. x and using Leibnitz rule, we get

di [ o r

== [ Sl = O = (- 1) [ -
or

dlgix) =n—-1DL,_1(x) forn>1
Taking successive derivatives, we get
n-1
= ——L(x)=n-1Dn-2)..21Lx)
Again, differentiating,
n d
ﬁln(x) =n—1!all(x) =n—1!f(x) (D

We observe that,

I™(@=0form=0,1,2,....,.n—1 )



Integrating (1) over the interval [a, x] and using (2) for m =n — 1, we obtain

V() = (n - 1)! f fGen)da

Again integrating it and using (2) for m =n — 2, we get

x X1

f f(xy)dx, dxq

dn—z
o () = ") =n—-1!
a
Continuing like this, n times, we obtain
x X1 Xn-1
I(x) =(n- 1)!fj f fxp)dxpdxy_q oo dxyq
a a a

Which provides the required result
Examples
2
Example.1. Transform the initial value equation 3732’ + x% +y=0;y(0)=1, y'(0) =0 to Volterra
integral equation.

Solution: Consider, % = ¢(x) ..(D
Then 2= [ o®dE+G

Using the condition y'(0) = 0, we get, C; =0
D f ©)d @
il RACOLY
0
Again integrating from 0 to x and using the above lemma, we get
X
y=[@-oes+c
0
Using the condition y(0) = 1, we get C, = 1 s0

y= [ - a6 +1 (3
0

From the relations (1), (2) and (3) the given differential equation reduces to:

S0 +x f $O)dE + f (= OPEAE+1 =0
0 0

or



$o0) = —1 - f (2x — "1 p(E)de

Which represents a Volterra integral equation of second kind.

Check your progress

Q.1 What do you mean by integral equation?

Q.2 Explain the Volterra integral equations.

14.6 SOLUTION OF VOLTERRA INTEGRAL EQUATION

Weierstrass M-Test- Suppose Y. f,,(2) is an infinite series of single valued functions defined in a bounded
closed domain D. Let ), M,, be a series of positive constant (independent of z) such that

Q) |fn(2)| < M,, forallnand forall z € D
(i) X M, is convergent.
Then the series ., f,, is uniformly and absolutely convergent in D.

Theorem 1. Let (x) = f(x) + A f;K(x, &u(é)dé be a non-homogeneous Volterra integral equation of

second kind with constant a and A. f(x) is a non-zero real values continuous function in the interval I =
[a,b], K(x,€&) is a non-zero real values continuous function defined in the rectangle R =1 X1 =
{(x,8)ra<x,&<b}and |K(x,¢)| <M inR.

Then the given equation has one and only one continuous solution u(x) in I and this solution is given by
the absolutely and uniformly convergent series.

x x t
u(x) = f(x) +/1fK(x,t)f(t) dt+/12ffl<(x,t) K(t, t)f (t)dtdt + . ...

Proof: This theorem can be proved by applying either of the following two methods:
(i) Method of successive substitution.
(i) Method of successive approximation.

Let us apply these methods one by one

(i) Method of successive substitution: The given integral equation is

ulx) = f(x) + AfK(x, u(t) dt (D

Substituting value of u(t) from (1) into itself, we get



ulx) = f(x) +/1fK(x, t)|f () +/1fK(t, tyt(t)dt, | dt

X

= f(x)/lfK(x, t)f(t) dt + A2 ffK(t, t1)K(ty)dt, dt (2)

a

Again substituting the value of u(t;) from (1) into (2), we get

u(x) = f(x) + AfK(x, t)f(t)dt +/12ffK(x, K (¢, t,)f (t)dt, dt

x t t

+/13fffK(x,t)K(t,tl)K(tl,tz)u(tz)dtzdtldt

a a a

Proceeding in the same way, we get after n steps

u(x)
= f() + A f K(Cxe, OF () dt

x t th—2

+ St +/1n .f .f ...... f K(x, t)K(t, tl) ...... K(tn_z, tn—l)f(tn—l)dtn—ldtn—z e dtldt + Rn+1(x)

a a a
where
th—1

x t
Ryiq(x) = Antt jj ...... J K(x,)K(t, ty) ... ... K(ty—1, tpu(t,)dt,_1dt, ....dt,dt
a a

a

Consider the infinite series

flx)+ A]K(x, f(t)dt +/12]JK(x, OK(t, t)f(t)dt, dt (5

Neglecting the first term, let v, (x) denotes the nth term of infinite series in (5). Since f(x) is continuous
over I, so it is bounded.

Let |f(x)| < N inl. also, it is given that |K(x,t)| < M in R. Therefore,

th—2

x t n—
v, ()| < |/1|“ff.......f M™N dt,,_,dt,dt
a a a

Thus we have

(x—a)" (b—a)"
n! n!

v, ()| < [A|"M™N < |A|"M"N (6)

The series whose nth term is |/1|“M"N% Is a series of positive terms and is convergent by ratio test



for all values of a, b, |A], M and N.
Thus, by Weierstrass M-test, the series Y; v, (x) is absolutely and uniformly convergent in 1.
If u(x) given by (2) is continuous in I, then is bounded in I, that is,

u(x) < U for all x in I. then

(X _ a)n+1 (b _ a)n+1
R < A n+1Mn+1 - - < /1 n+1Mn+1 ~ s 0 0
|Rp+1 ()| < A u TR |A] u ot D - 0asn—
= lim Rpyq(x) =0 ®

From equations (3), (4) and (8), we obtain

ulx) = f(x) + )lfl((x,t)f(t) dt+/12fjK(x,t)K(t,tl)f(tl)dtl dt + - ....to

which is the required series.

Now, we verify that this series is actually a solution of the given Volterra integral (1). Substituting the
series for u(x) in the R.H.S. of the given equation, we get

RH.S.=f()+ ALK [F@) + 2[JKEDF@) dt + 22 [T [T K(E DKt t,)f (t,)dt, dt +
- to oo]

X X f
FGO + A j K(x, &) f (&) dé + 22 j J K(x, OK(E O f(O)dt dE + -+ to oo = u(x) = L. H.S.

(i) Method of Successive Approximation: In this method, we select any real values function, say
Uy (x), continuous on | = [a, b] as the zeroth approximation. Substituting this zeroth approximation
in the given Volterra integral equation.

ulx) = f(x) + A]K(x, tu(t) dt (D

We obtain the first approximation, say u, (x), given by

U (x) = f(x) + /'lJ K(x,t)uy(t) dt (2)

The value of u, (x), is given substituted for u(x) in (1) to obtain the second approximation u, (x) where

X

() = £ + f K (x, Ouy (£) dt 3)

a

This process is continued to obtain nth approximation

X

up(x) = f(x) + Af K(x,)u,_1(t)dt forn=1,2,3, ... 4)

a



This relation is known as recurrence relation.

Now, we can write

up(x) = f(x) +/1f1((x, @) +/1fK(t, t)Un_o(t)dt, | dt

= f(x) +/1fK(x, t)f(t)dt+/12ffl((x, Kt t) | f(t) +/1f K(tqy, t))uy_s3 (ty)dt, | dt,dt

or

X x t
U, (x) = f(x) +/’lfK(x, t) f(t)dt +Aszl{(x, K (t,ty) f(t)dt dt
x t t1 ¢

+/’l3fjjl((x,t) K(t, t))K(ty, t;)dt,dt, dt (5)

a a a

Continuing in this fashion, we get

u,(x) =f(x) + /’lf K(x,t) f(t)dt

x t th-3

+R (x)F (6)
Where
x t th—2
R,(x) —A”ff f K(x, t)K(t, ty) ... ... K(tp_2, tn1) Uo(tp_1)dty,_q ...dt dt (7
a a a
Since uy(x) is continuous on | so it is bounded. Let
lug(¥)| <uinl )
Thus
nn(—)" aym, B~
|R,(x)| < |A|"M™u < |A|"M™u — —»0asn — o
So
lim R,(x) =0 €))
n—-oo

Thus, as n increases, the sequence < u, (x) > approaches to a limit. We denote this limit by u(x) that is,

u(x) = lim uy, (x)

So,



X

u(x) = f(x) +/1fK(x, t) f(t)dt +/12ff1((x, Kt ty) f(t)dt,dt + .. too (10)

As in the method of successive substitution, we can prove that the series (10) is absolutely and
uniformly convergent and hence the series on R.H.S. of (10) is the desid solution of given Volterra integral
equation.

Uniqueness- Let, if possible, the given Volterra integral equation has another solution v(x). we make, by
our choice, the zeroth approximation u,(x) = v(x), then all approximations u,; (x) ... ...., u, (x) will be
identical with v(x) that is,

U, (x) =v(x)foralln
lim w, (x) = v(x)
u(x) = v(x)
This proves uniqueness of solution, with this, the proof of the theorem is completed.
Examples
Example.2. Using the method of successive approximation solve the integral equation,

X

uG) = x - [ (= Hu(rd D
0
Solution: Let the zeroth approximation be uy(x) = 0

Then the first approximation u, (x) is given by:
X
ul(x)zx—fo.dfzx (2)
0

Thus we have

uA@=x—f&fMﬂ®ﬁ=x—f@—8ME
0 0

~ xfz x 53 x
=[5 +[5],

X X
=Ygty
x3
=*"%
x3
T ®)

Now we have



U3 () = x — f (x — Euy(§)de

x 3
=x—f(x—f)<€—%)d€

x3  x°
=X — ? + E (4)
From equations (2), (3) and (4), we conclude that the nth approximation, u,, (x) will be
3 5 2n—-1

(2n —1)! ()

Which is obviously the nth partial sum of Maclaurin’s series of sinx. Hence by the method of successive
approximation, solution of given integral equation is

u(x) = limu,(x) = sinx
n-—->oo

Hence the solution.

14.7 LAPLACE TRANSFORM METHOD TO SOLVE AN INTEGRAL
EQUATION

The Laplace transform of a function f(x) defined on interval (0, «) is given by

LIF)] = £(s) = j () e dx (D)
0

Here s is called Laplace variable or Laplace parameter. Also. f(x) = L™[f(s)] is called inverse Laplace
transform.

Some important results:

(1) L(sinx) = 11 (2) L[cosx] = 11 (3) L[e™] = P
(& Lix" = 5= 20 () LI = sf(s) ~ f(0)  (6)LI1] =~

Convolution: The convolution of two functions f; (x) and £, (x) is denoted by (f; * f,) (x) and is defined
as

i f) () = f fiGx = O f(©)de
0

Convolution theorem. (without proof): Laplace transform of convolution of two functions is equal to
the product their respective Laplace transforms, that is

[(f1 * f2) ()] = LIfi()]. L[f2(x)]



Difference integral or convolution integral: Consider the integral equation
b(x)

() = £ + f K (x, )u(€)de

a

Let the kernel K(x, &) be a function of x — &, say g(x — &) then the integral equation becomes
b(x)

() = £G0) + f g0x — Ou(€)de

a

In this case, the kernel K(x,¢&) = g(x — &) is called difference kernel and the corresponding integral is
called difference integral or convolution integral.

Working Procedure: Consider the integral equation
x
uG) = £0O + 4 [ KCx Eu)ds
Where K (x, §) is difference kernel of the type g(x —af) then,
uG) = F0O + 2 [ g - uo)ds
a

u(x) = f(x) + A[g(x) * u(x)]
Applying Laplace transform on both sides, we get
U(s) = F(s) + AG(s)U(s)
Where U(s), F(s) and G(s) represent the Laplace Transform of u(x), f(x) and g(x) respectively. Then

F(s)
O e T
Applying inverse Laplace Transform
F(s)
— 71
wx) =L [1 —G(s)

Note. Method of Laplace Transform is applicable to those integral equations only where the kernel is
difference Kernel.

Examples
Example.3. Use the method of Laplace Transform to solve the integral equation.

w(x) = x - f (x — E)u(€)de 1)
0

Solution: Here Kx,)=x—¢=gx—¢&)=>gkx)=x
Thus (1) can be written as u(x) = x — g(x) * u(x)
Applying Laplace Transform on both sides

U(s) = L[x] — L[x]U(s)



1 1
_'EE'—'——l](S)
1

= U(s) == :

sZ2+1

So, ulx) =L~ [ = sin x.

s2+1

14.8 SOLUTION OF VOLTERRA INTEGRAL EQUATION OF FIRST
KIND

Consider the non-homogeneous Volterra integral equation of first kind

uu)=zfxu£muadauu)
0

Where the kernel K (x, £) is the difference Kernel of the type
K(x,§) =g(x—-%)
Then (1) can be written as
f(x) = 2g(x) * u(x)
Applying Laplace Transform on both sides:
F(s) =A1G(s)U(s)

1F
“”‘_ég

Applying inverse Laplace Transform on both sides:
L[F(s)
u(x) = c (s)

Examples
Example.4. Solve the integral equation sin x = Af()xex‘fu(f)df 1)
Solution: Here K (x, &) = e*~% = g(x — &)

= glx) =e*
Thus (1) can be written as

sinx = A g(x) * u(x)
Applying Laplace Transform on both sides
L[sinx] = A L[e*]L [u(x)]
1 A

= = U
s2+1 s-—1 (5)




Us) 1 s—1 1[ S 1 ]
= = — = — —_
S As?2+1 Als?2+1 s2+1

s ()—lL‘l[ s 1 ]
o W=7 sZ2+1 s2+1

u(x) = 1 (cosx — sinx)
Theorem 2. Prove that the Volterra integral equation of first kind

fx)=2 fox K(x,&)u(&)dé can be transformed to a Volterra integral equation of second kind, provided
that K(x, x) #0.

Proof: The given equation is

fG) =12 j K (x, )u(€)de )
0

Differentiating (1) w.r.t. x and using Leibnitz rule, we obtain

% =1 j Z—I;u(f)df +AK (%, 0)u(x). 1
0
xaK d
0

1 df [ 1 oK .
AK(x,x)'EJrO T Koo ax “O%

u(x) =

X

u(x) = g() + j H(x, )u(€)de

0

L% Here represents the desired Volterra integral
K(x,x) 0x

d
Where g(x) = M(lx'x).é and H(x, &) =-—

equation of second kind.

Example 5. Reduce the integral equation sinx = 4 fox e*~Su(&)d¢ to the second kind and hence solve it.

Solution: The given equation is

sinx = /'lf e*u(&)dé (1)
0

Differentiating equation (1) with respect to x, we get

cosx = /'lf e Su(&)dé + 1e* *u(x).1
0

= cosx = /1[ e*Su(&)dé + u(x)
0



x
1

= ux) = 7 C0s X — f e*Su(§)dé (2)

Which is Volterra integral equation of second kind and can be simply solved by the method of
Laplace transform.

14.9 METHOD OF ITERATED KERNEL/RESOLVENT KERNEL TO
SOLVE THE VOLTERRA INTEGRAL EQUATION

Let us Consider the volterra integral equation

() = f(0) = A f K, Ou(©)de (1)

We take
Ki(x,§) =K(x &) (2)

and
Kpi1(x,8) = fK(x, K, (t,&)dt;n=1,2,3,......... (3)
¢

From here, we get a sequence of new kernels and these kernels are called iterated kernels.

We know that (1) has one and only one series solution given by

x x t
ulx) =f(x) + /’lf K(x,t) f(t)dt + 22 f f K(x,t)K(t, ty) f(t,)dt dt + .. too (4)

We write this series solution in the form
u(x) = ug(x) + Auy (x) + 22uy(x) + -+ ....too  (5)
Then comparing (4) and (5), we have

U (x) = f(x)

P

u(x) = fK(x, t) f(t)dt = JKl(x, t) f(t)dt

a

and u,(x) = ffl((x, Kt ty) f(t)dt dt

By interchanging the order of integration, we have



up(x) = fx f(t1)

f K(x, t)K,(t, tl)dt] dty

t1

= ff(tl)Kz(x,tl)dtl = ff(t) Ky (x, t)dt

similarly u,(x) = ff(t) K, (x, t)dt

Thus (5) becomes

X

u(x) = f(x) +/1fK1(x,t)f(t)dt +Asz2(x,t)f(t)dt+ .. t0 ©

a

= f(x) +/1fR(x,t:/1)f(t)dt . (6)
A

Where R(x,t: 1) = Yo A" 1K, (x, 1)

Thus (6) is the solution of given integral (1).

Neumann Series

The series K; + AK, + A2K5 + ++- ... ... to oo is known as the Neumann series.
Resolvent Kernel

The sum of Neumann Series R(x, t: A) is known as the Resolvent Kernel.

Examples

Example.6. With the aid of Resolvent Kernel find the solution of the integral equation.

¢u>=x+f®—m¢@m5
0

Solution: Here Ki(x,§) =K(x,&) =& —x ..(1)

and K1 (2, ) = [T K(x, DK (¢, E)dt e (2)

Puttingn =1, 2, 3, ....in the equation (2), we have,

X X

1
K ) = [ KGOk 6 0de = (=06 = 0de = =5, =)
§ §

And



X X

1
K0 ) = [ K@k (6. )de = [ (=06 = 0de = =36 =007
§ §

The Resolvent Kernel is defined as

® _ _ 3 _ 5 1
R(x, &: 1) =Z/1“Kn(x,€) =";1!x—("z 3!x) 28 5!x) = -20G=1

= sin(§ — x)

The solution of the integral equation is given by

$() = () +1 f RGx, & ) (€)de
0

X

= x+jfsin(f—x)d€

0
= x + sinx — x [Integrating by parts]

= sin x.

14.10 SUMMARY

An integral equation is one in which function to be determined appears under the integral sign. The most
general form of a linear integral equation is

b(x)

h(x)u(x) = f(x) + f K(x,&)u(§)dg forallx € [a,b]

a

In which u(x) is the function to be determined and K (x, ) is called the Kernel of integral equation.

A Volterra integral equation is of the type:

b

h(x)u(x) = f(x) + _[ K(x,&)u(&)dt forallx € [a,b]

a

that is, in Volterra equation h(x) = x

(iii)  If h(x) = 0 the above equation reduces to

b

—f0) = j K(x, &) u(®)d

a

This equation is called Volterra integral equation of first kind.

(iv) If h(x) = 1 the above equation reduces to



X

w(@) = £ + f K(x, €) u(®)ds

a

This equation is called Volterra integral equation of second kind.

If f(x) = 0 for all x € [a, b], then the reduced equation

b(x)

h(x)u(x)=f K(x, &) u(®)dg

a

is called homogeneous integral equation. Otherwise, it is called non-homogeneous integral equation.

If n is a positive integer, then

fxf ---.7_2 7_1 F(x,) dxpdx,_q ....dx; =ﬁf(x — O (E)dE

The Laplace transform of a function f(x) defined on interval (0, ) is given by

LIF)] = £(s) = j f)e*dx .. (1)
0

Here s is called Laplace variable or Laplace parameter. Also. f(x) = L™1[f(s)] is called inverse Laplace
transform.

14.11 TERMINAL QUESTIONS

Q.1 Write the solution procedure of Volterra Integral equation.

Q.2 Reduce following initial value problem into Volterra integral equations:
ay'+xy=1y'(0)=0=y(0)
d%y dy _ — ! =
b. = +A(x)a+ B(x)y = gx), y(a) =c¢; and y'(a) = ¢,
c.y"+Ay=0,y(0)=1,9y(0)=0
d.y"-5y"+6y =0, y(0)=0,y'(0) = -1
Q.3 Using the method of successive approximation, solve the integral equation,

X

y(x) =e* + J e* ty(t)dt.
0

Using the method of successive approximation, solve the integral equation:



Q4 u(x) =1+ [, (x — Hu(§)de.

Q5 u(x) =1+ [, (£ —0u(§)dé

Q6 u(x) =1+ [ u(¥)dé

Q.7 u(x) =e* + [ e* Fu(t)dt

Q8 u(x)=(1+x)+ f;c(x —Ou(®)dé withug(x) =1

Q.9 Use the method of Laplace Transform to solve the following integral equations.

@ u@) =1+ f (x — Ou(®)de
0

®) u@ =1+ f (€ — u(E)de
0

X

© uG) =1+ f u(€)de

0

Q.10 Solve the integral equation x = [ cos(x — )u(§)dé

Q.11 Obtaining the Resolvent Kernel, solve the following Volterra integral equation of second kind:

(@ u(x) = f(0) + 1 f e*Eu(E)de
0
B) $(x) =1+ j (€ — )(E)de
0

© $() = e + j e~ p(£)dE
0

Q.12 Solve the following problems.
a. Reduce following initial value problem into Volterra integral equations:

y'—2xy'=3y=0; y(0)=0,y'(0)=0

b. Using the method of successive approximation, solve the integral equation,



ulx) =1+x) —fu(f)df withuy(x) =1

c. Use the method of Laplace Transform to solve the following integral equations.

u(x) = e~ + f sinCx — £) u(§)dé

Answer

Q.2

Q.3

Q.4
Q5
Q.6
Q.7
Q.8
Q.9

@ y(@) =%~ [X(x - OP()de

(b) f(x) = c1 + o (x — @) + [ (x — ©)g()dé + A(a)c, (x — @),
where K (x,) = (x — )[A'(§) — B(O] — A).

©y(@) =1-2[ (x—Oy(&)d¢.

(d) y(x) = (6x = 5) + [ (5 — 6x + 6§)p(§)dE

y(x) = ii_r)](r)loex [1 + x +§+ +’;—T] =e¥. e¥ =e%*
Cosh x

Cos x

o

SetD)

ex

(a) cosh x
(b) cos x.

() e*

Q101 +%.

Q.11 (@) u(x) = f(x) + 2@+ [Fe-(+DE £ (£)de,

(b) cos x.

(C) ex(x+1)



Q.12(a) y(x) = [, (x + O)y(§)d¢
(b)1

(c) 2e7* —1+x.
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