
Bachelor in Computer
Application

BCA-118

Windows Programming

Block-1 INTRODUCTION TO WINDOWS
PROGRAMMING 3-82

UNIT-1 Windows Programming 7

UNIT-2 Programming Resources 35

UNIT-3 Visual C++ Programming 53

Block-2 VISUAL BASIC PROGRAMMING 83-172

UNIT-4 Windows Programming 87

UNIT-5 Working with Controls 119

UNIT-6 Dialog Boxes and Internet 151

Block-3 WORKING WITH GRAPHICS 173-230

UNIT-7 Document View Architecture 177

UNIT-8 Graphics and Multimedia 203

Block-4 INTERFACING AND DATABASE
APPLICATION 231-352

UNIT-9 Interfacing Other Applications 235

UNIT-10 Database Application 259

UNIT-11 Network Programming 293

UNIT-12 Advanced Topics and Case Study 325

Uttar Pradesh Rajarshi Tandon
Open University

PL
O

N
E-

28

BCA-118/1

PL
O

N
E-

28

BCA-118/2

Bachelor in Computer
Application

BCA-118

Windows Programming

BLOCK

1
INTRODUCTION TO WINDOWS PROGRAMMING

UNIT-1

Windows Programming

UNIT-2

Programming Resources

UNIT-3

Visual C++ Programming

Uttar Pradesh Rajarshi Tandon
Open University

PL
O

N
E-

28

BCA-118/3

Course Design Committee

Prof. Ashutosh Gupta

Director

School of Science, UPRTOU Prayagraj

Prof. Suneeta Agarwal

Dept. of Computer Science & Engineering

Motilal Nehru National Institute of Technology, Allahabad, Prayagraj

Dr. Upendra Nath Tripathi

Associate Professor

Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur

Dr. Ashish Khare

Associate Professor

Dept. of Computer Science, University of Allahabad, Prayagraj

Ms. Marisha

Assistant Professor (Computer Science)

School of Science, UPRTOU Prayagraj

Mr. Manoj Kumar Balwant

Assistant Professor (Computer Science)

School of Sciences, UPRTOU Prayagraj

Course Preparation Committee

Dr. Krishan Kumar Author

Assistant Professor

Department of Computer Science,

Gurukula Kangri Vishwavidyalaya Haridwar (UK)

Dr. Brajesh Kumar Editor

Associate Professor, Dept. of CS & IT

M.J.P Rohilkahand University, Bareilly, Uttar Pradesh

Prof. Ashutosh Gupta Director (In-Charge)

School of Computer & Information Sciences

UPRTOU Prayagraj

Mr. Manoj Kumar Balwant Coordinator

Assistant Professor (computer science)

School of Sciences, UPRTOU Prayagraj

©UPRTOU, Prayagraj - 2020
ISBN :

©All Rights are reserved. No part of this work may be reproduced in any form, by
mimeograph or any other means, without permission in writing from the Uttar Pradesh
Rajarshi Tondon Open University, Prayagraj.
Printed and Published by Dr. Arun Kumar Gupta Registrar, Uttar Pradesh Rajarshi
Tandon Open University, 2020.

Printed By : Chandrakala Universal Pvt. 42/7 Jawahar Lal Neharu Road, Prayagraj.

PL
O

N
E-

28

BCA-118/4

BLOCK INTRODUCTION

We believe effective programmers must combine theory with practice, so
they can adapt to ever-changing computing environments. This block does not
cover the breadth of topics found in some professional reference books, but it has
a number of features that make it useful in the classroom:

 A step-by-step learning approach in which new ideas and concepts build
on existing ones.

 Check-up exercises at the end of each section.

 Review questions and programming exercises at the end of each chapter.

Block 1 basically contains three units intended with Windows
programming and its associated concepts like traditional programming,
programming resources, and visual C++ programming.

Unit 1 introduces the history, evolution and notion of Windows
programming and also describes its fundamental principles. Basically, Windows
programming is a programming language which intends with the graphical user
interface (GUI). It gives the overview of traditional programming paradigms like
procedure oriented programming. Moreover, event driven programming like
Visual Basic and Visual C++ has also been discussed. After that windows
messages’ functions have been discussed. Lastly data link libraries (DLL) and
SDK have been explained briefly in simple way.

Unit 2 covers the basic need of programming resources like accelerators,
bitmaps, dialog boxes, icons, menus, string tables, toolbars, and versions. These
resources play an important role in windows programming development
environment. Thsese topics have been one-by-one explained using appropriate
syntax and examples.

Unit 3 gives the detailed idea of event driven programming in VC++.
Event-driven, meaning code remains idle until called upon to respond to some
event (button pressing, mouse up, mouse down, key press, menu selection etc).
Conceptually, VC++ is governed by an event processor. Nothing happens until an
event is detected. Once an event is detected, the code corresponding to that event
(event procedure) is executed. Unit starts from data types and ends with MFC
(Microsoft Foundation Classes) file handling. VC++ is the language with added
GUI features originated from C++. As C++ is a partly object oriented
programming language, VC++ explores all the characteristics of object oriented
language like encapsulation, inheritance, polymorphism etc. MFCs are new
features in VC++ which were not available in C++.

PL
O

N
E-

28

BCA-118/5

PL
O

N
E-

28

BCA-118/6

UNIT 1 WINDOWS PROGRAMMING

Structure

1.0 Introduction

1.1 Objectives

1.2 Introduction to Windows Programming

1.3 Traditional Programming Paradigms

1.4 Event Driven Programming

1.5 Handles and Data Types

1.6 Windows Messages

1.7 Device Contexts

1.8 Document Interfaces

1.9 Document Linking Libraries

1.10 Software Development Kit Tools

1.11 Context Help

1.12 Summary

1.13 Terminal Questions

1.0 INTRODUCTION

Windows programs are usually different from the conventional programs.
The most obvious difference is to work with the graphical user interface (GUI)
between user and program. Windows programs use a GUI, where in addition to
use the keyboard; the user can do mouse clicks on buttons in GUI or select items
from lists or drop-down menus. As, all Windows programs use the same interface,
therefore provide a familiar feel to the user. More basically however, the
Windows programs also operate in a completely different way from conventional
programs. A conventional program runs without a break (apart from occasional
pauses to request user input) upon execution, performing its tasks in a set order
determined by the program logic. When it has finished its tasks, it terminates
automatically. A typical Windows program works differently. When it is first
executed, a new window opens on the desktop but then the program stops running
and just waits until the user chooses to do something. Tasks are performed at the
user’s request when a menu item is selected or a button is clicked. It is the user,
therefore, rather than the program who decides the order in which tasks are
performed. After the completion of a task, the program goes back to waiting, and
it does not terminate automatically but waits until the user requests it to do so.

PL
O

N
E-

28

BCA-118/7

Windows programs normally spend most of the time in waiting and doing
nothing. While one program is waiting, other Windows programs may be
executing. The operating system controls execution of programs sharing the CPU
time between all the programs that are running. Windows programs are event-
driven programs. An event is a user action such as the button click, the press of a
key on the keyboard, or the selection of an item from a drop-down menu or list.
The Windows program responds to each event by taking an action and the
program code that responds to the event is called an event handler, typically, a
subroutine or function. There must be an event handler for every possible
Windows event.

This unit deals with the basic concept of traditional and Windows
programming. Readers might be familiar with the conventional programming
languages like C, C++, Java etc. Windows programming is slightly different as
discussed earlier. Before knowing about the Windows programming,
understanding of operating system (OS) is necessary. There are many well-known
operating systems like DOS, Windows, Linux, Android, and Macintosh. The
operating system is an interface between the user and hardware. It acts as the
manger which manages all the resources of computer like processor, memory;
hardware devices such as printer, monitor, scanner, and modems. Moreover, an
operating system is termed as the soul of the machine without which it is too
difficult to operate the machine. Any application cannot directly interact with the
hardware or resources rather it needs a medium or interface. Therefore, all the
applications interact with the operating system to obtain the access to the
available resources. There are many operating systems based on the specific
requirements such as single-user operating system, multi-user operating system,
network operating system, distributed operating system, and handheld operating
system etc. DOS and Windows are two operating systems popular in the world of
Information Technology. Windows is a user friendly operating system and widely
popular.

The Windows programming is closely related to the Windows operating
system. Microsoft released the first version Windows 1.0 of Windows on
November 20, 1985. It was a multi-application operating system i.e. able to
interact with multiple applications simultaneously. In windows operating system,
hardware is shared by all users/applications. It changed from 16-bit to 32-bit
architecture when Windows NT and Windows 95 were introduced later. Windows
10 is the latest version of Windows OS for desktops.

The windows API or WinAPI is Microsoft’s core set of application
programming interfaces which exist in operating systems. Windows API are also
known as Win32 API. The windows API is mainly focussed on the programming
language where the data structures and functions are defined. API may also be
used by any language compiler or assembler to handle the well-defined low level
data structures. The internal implementation of APIs has been developed using
several languages. Despite the fact that C language is not the object oriented
programming language however, Windows API and Windows both have been
considered as object oriented. Wrapper classes and MFC make APIs more
explicit. Earlier there were only two ways to access the Windows API, one was to
use the C programming (mostly used) and other was Microsoft Pascal
programming (rarely used). PL

O
N

E-
28

BCA-118/8

1.1 OBJECTIVES

At the end of this unit you will come to know about the following:

 Definition of windows programming

 The mechanism of Windows programming

 Traditional programming

 Data Types

 Windows Messages

 Device Contexts

 Document Interfaces

 Dynamic Linking Libraries

 Context Help

1.2 INTRODUCTION TO WINDOWS PROGRAMMING

Prior to Windows GUI, DOS was very popular and widely used in
computers. DOS is a single user operating system. On the other hand, with the
added features, Windows, developed by Microsoft grew dramatically. As
Windows was a 16-bit graphical layer for MS-DOS originally; it grew and gained
the ability to handle 32-bit programs and eventually became totally 32-bit when
Windows NT (in 1993) and Windows 2000 came out. After Windows 95 in 1995,
Microsoft began to remove dependencies on DOS and finally fully implemented
the separation in Windows 2000. Moreover, Windows has many advanced
features as well as many platform specific issues. It possesses an API that consists
of thousands of mostly undocumented GUI functions as well as having varying
degrees of MS-DOS compatibility. Furthermore, with the advent of NT (New
Technology), Windows relied completely on the NT kernel instead of its MS-
DOS subsystem. The NT kernel is capable of emulating the necessary DOS
functionality. In addition to the NT kernel, Microsoft had also introduced many
API wrappers, such as the Microsoft Foundation Classes (MFCs), Component
Object Model (COM), and .NET technologies. Over the years, the most popular
languages for use on Windows include Visual Basic/VB6.0 and C/C++; although
C++ is quickly being replaced by the .NET platform, specifically by C# (C
Sharp). So It can be said that VB and C# are the two most commonly used
languages to develop Windows GUI.

Windows 1.0, 2.0, and 3.11 are considered to be an older generation of
Windows systems that were built to be a simple graphical layer over the MS-DOS
operating system. Windows 95, Windows 98, and Windows ME were designed to
bypass MS-DOS (although DOS was still present), and were all based on the
same code structure known as the "9x Kernel". Windows NT 4.0, Windows 2000,

PL
O

N
E-

28

BCA-118/9

Windows XP, Windows Vista, Windows 7, Window 8, and Windows Server are
all based on a collection of code known as the "NT Kernel".

The Windows system might be surprising for some people to learn, it is a
very hands-on system. This is not a familiar concept for people who are just
beginning C programming using the standard library. In a normal software
project, there is typically a main function, and the main function in turn calls other
functions that are defined in a project. In a Windows function, typically the
programmer provides function pointers to the system, and Windows makes calls
for them into the program. Also, in a Windows program, the code will sit idle
when there is nothing to be done. Using the message loop architecture, Windows
will send messages to the program when an event needs to be handled, and the
program responds to the messages. If the program doesn't respond, the message is
ignored.

The new Windows Store applications represent a radical break with
traditional Windows. The programs generally run in a full-screen mode—
although two programs can share the screen in a “snap” mode—and many of
these programs will probably be optimized for touch and tablet use. These
applications are purchasable and installable only from the application store run by
Microsoft. As a developer, one can deploy and test applications directly from
Visual Studio. In addition to the versions of Windows that run on x86 processors,
there is also a version of Windows that runs on ARM processors, most commonly
found in low-cost tablets and other mobile devices. This version of Windows is
called Windows RT, and it only comes pre-installed on these machines. One of
the first computers running Windows RT is the initial release of the Microsoft
Surface. Aside from some preinstalled desktop applications, Windows RT runs
new Windows Store applications only.

Note: - An ARM processor is one of a family of CPUs based on the RISC (reduced
instruction set computer) architecture developed by Advanced RISC Machines
(ARM)

Windows is a GUI operating system, developed by Microsoft, has several
versions and each version has different GUI with a good desktop display that
allows users to view files and folders. It is widely used operating system for
personal computers. Microsoft Windows is designed for home computing and
professional computing. The versions of Windows home editions are:

 Windows 1.0 (1985)

 Windows 2.0 (1987)

 Windows 3.0 (1990)

 Windows 3.1 (1992)

 Windows NT (1993)

 Windows 95 (1995)

 Windows 98 (1998)

 Windows 98SE (1999)

PL
O

N
E-

28

BCA-118/10

 Windows Me (2000)

 Windows XP (2001)

 Windows Vista (1990)

 Windows 7 (2008)

 Windows 8 (2010)

 Windows 10 (2013)

Windows programming languages and their development environments are
different in different years as given in Table 1.1.

Table1.1 Windows Programming Languages and their Platforms

Two main things in Windows are System 32 and Win API. System32
directory is located in C:\Windows\System32. In addition, Windows development
platforms are: Win16API, Win32API, Window foundations classes, .NET
Window forms (WinForms), .NET Window Presentation Foundation (WPF). On
the other hand, Win API provides the environment to develop desktop and server
applications. Similar functions are provided by 32-bit and 64-bit operating
systems. Windows applications can be developed using a procedure-oriented
approach in C or C++. Windows provides the ability to develop GUI.

Fig. 1.1 Windows Structure

Year Language Platform

1985 C or VB Windows Application Program Interface (API)

1992 C++ or VB Microsoft Foundation Class (MFC) library

2001 C# or C++ Windows Forms (.NET Framework) or VB

2006 C# or VB Windows Presentation Foundation (WPF)

PL
O

N
E-

28

BCA-118/11

Windows is a graphic-based multi-tasking operating system. All the
programs have a consistent look and command structure. For the development of
Windows applications, it provides various predefined functions that allow easy
implementations of menus, dialog boxes, scroll bars, icons to represent a better
user-friendly interface. It also provides a hardware-independent environment to
the programs.

To write a Windows program in C or C++ you need to install a Microsoft
Windows Software Development Kit (SDK) or an environment which includes
SDK such as Visual C++. Usually SDK contains the headers and libraries
necessary to compile and link an application. Windows SDK also includes
command-line tools for building Windows application, including the Visual C++
compiler and linker. Although you can compile and run the programs at
command-line, however full-featured development environment like Microsoft
Visual C++ is recommended.

Moreover, as Windows is a user friendly operating system which provides
many features, it has MFC, a C++ class library, which provides an object oriented
environment around the Windows API. Object oriented concepts like abstraction,
inheritance, polymorphism, and data hiding etc. provides characteristics like
robustness, flexibility, dynamicity, privacy, reusability etc. to Windows
programming. The main magic of Windows is its MFC which contains nearly
more than 200 predefined classes.

Furthermore, MFC is also an application framework. More than merely a
collection of classes, MFC helps define the structure of an application and handles
many routine chores on the application's behalf. Starting with CWinApp, the class
that represents the application itself, MFC encapsulates virtually every aspect of a
program's operation. The framework supplies the WinMain function, and
WinMain in turn calls the application object's member functions to make the
program go. One of the CWinApp member functions called by WinMain—Run—
provides the message loop that pumps messages to the application's window. The
framework also provides abstractions that go above and beyond what the
Windows API has to offer. For example, MFC's document/view architecture
builds a powerful infrastructure on top of the API that separates a program's data
from graphical representations, or views, of that data. Such abstractions are totally
foreign to the API and don't exist outside the framework of MFC or a similar class
library.

1.3 TRADITIONAL PROGRAMMING PARADIGMS

Traditional programming like C, C++, and Java etc. are used for the most
of the applications as well as system software. Programs written for traditional
operating environment use a procedural programming model in which programs
execute from top to bottom in an orderly fashion. The path taken from start to
finish may vary with each invocation of the program depending on the input it
receives or the conditions under which it is run, but the path remains fairly
predictable. In a C program, execution begins with the first line in the function
named main and ends when main returns. In between, main might call other
functions and these functions might call even more functions, but ultimately it is

PL
O

N
E-

28

BCA-118/12

the program—not the operating system—that determines what gets called and
when.

Windows programs operate differently. They use the event-driven
programming model, in which applications respond to events by processing
messages sent by the operating system. An event could be a keystroke, a mouse-
click, or a command for a window to repaint itself, among other things. The entry
point for a Windows program is a function named WinMain, but most of the
action takes place in a function known as the window procedure. The window
procedure processes messages sent to the window. WinMain creates that window
and then enters a message loop, alternately retrieving messages and dispatching
them to the window procedure. Messages wait in a message queue until they are
retrieved. A typical Windows application performs the bulk of its processing in
response to the messages it receives, and in between messages, it does little
except wait for the next message to arrive.

A few years ago, the person learning to program Microsoft Windows for
the first time had a limited number of programming tools to choose from. C was
the language spoken by the Windows Software Development Kit (SDK), and
alternative Windows programming environments such as Microsoft Visual Basic
hadn't arrived on the scene. Most Windows applications were written in C, and
the fledgling Windows programmer faced the daunting task not only of learning
the ins and outs of a new operating system but also of getting acquainted with the
hundreds of different API functions that Windows supports.

Today many Windows programs are still written in C. But the variety of
Windows programming environments available means that commercial-quality
Windows programs can be written in C, C++, VC++, and a number of other
languages. Moreover, C++ has all but replaced C as the professional Windows
programmer's language of choice because the complexity of Windows, coupled
with the wide-ranging scope of the Windows API, cries out for an object-oriented
programming language. Many Windows programmers have concluded that C++
offers a compelling alternative to C that, combined with a class library that
abstracts the API and encapsulates the basic behavior of windows and other
objects in reusable classes, makes Windows programming simpler. And an
overwhelming majority of C++ programmers have settled on the Microsoft
Foundation Class (MFC) library as their class library of choice. Other Windows
class libraries are available, but only MFC was written by the company that writes
the operating system. MFC is continually updated to incorporate the latest
changes to Windows itself, and it provides a comprehensive set of classes
representing everything from windows to ActiveX controls in order to make the
job of writing Windows applications easier.

If one is coming to MFC from a traditional Windows programming
environment such as C and the Windows SDK already familiar with many of the
concepts need to understand Windows programming with MFC. But if coming
from a character-oriented environment such as MS-DOS or UNIX, one finds that
Windows programming is fundamentally different. This unit begins with an
overview of the Windows programming model and under at how Windows
applications work.

PL
O

N
E-

28

BCA-118/13

CHECK YOUR PROGRESS

 Define main difference between traditional and windows programming.

 Write the names of all versions of Windows home editions.

 Give the names of programming languages used to develop Windows
programs.

1.4 EVENT-DRIVEN PROGRAMMING

In computer science, event-driven programming is basically a
programming method where the flow of control is determined by the events.
These events are user actions e.g. keyboard actions, mouse actions, sensor inputs
line in games, or some messages from other processes. Event-driven paradigm is
an important paradigm which is the key part of GUI. This is similar to the device
drivers e.g. USB device drivers which become active whenever a flash drive is
inserted in a USB port. While, in embedded system the same thing happens by
hardware interrupts. In all these situations, a main loop listens for events
according to different actions performed. During every event, some kind of event
handler works. Event handlers may be a trivial event handler (works with key,
mouse, sensory input) or an exception event handler (works with hardware error,
interrupts, underflow, and overflow). The languages which provide high-level-
abstractions are used to develop even-driven programs.

1.4.1 BACKGROUND

Event driven programming entirely depends upon the events. Events are
nothing but a moment in computer hardware when something instantaneously
happens due to the interaction with the devices. For example, mouse-click,
mouse-up, mouse-down, key-press, key-up, key-down, pressing a key, etc. all are
the events. Earlier, ahead the advent of object oriented programming languages
like C++, C#, and Java; events were implemented as subroutines within a
procedural program. The flow of the such program is entirely decided by the
programmer and controlled from within the main routine of the program. And the
programs were highly structured having high complexity in the logic. The entire
code of the program is written by the programmer, including the code for event
and exception handling as well as the code required to manage the flow of
program execution.

Usually, in a modern event-driven program, flow control is not
recognized. The main routine is an event-loop that waits for an event to occur, and
then invokes the appropriate event-handling routine. Since the code for this event
loop is usually provided by the event-driven development environment or
framework, and largely invisible to the programmer, the programmer’s perception
of the application is that of a collection of event handling routines. Programmers
working with procedural programming languages, sometimes find that the

PL
O

N
E-

28

BCA-118/14

transition to an event-driven environment requires a considerable mental
adjustment.

GUI changed the world of computer science completely. The change from
procedural to event-driven programming has been accelerated by the introduction
of the GUI which has been widely adopted for use in operating systems and end-
user applications. It really began, however, with the introduction of object-
oriented programming languages and development methodologies in the late
1970s. By the 1990's, object-oriented technologies had largely replaced the
procedural programming languages and structured development methods. One of
the drivers behind the object oriented approach to programming that emerged
during that era was the speed with which database technology developed and was
adopted for commercial use. Information system designers increasingly saw the
database itself, rather than the software that was used to access it, as the central
component of a computerized information system. The software simply provided
a user interface to the database, and a set of event handling procedures to deal
with database queries and updates.

1.4.2 INTRODUCTION

Event-driven programming is a programming paradigm in which the flow
of program execution is always determined by events, for example a user action
such as a mouse click, mouse up, mouse down, key press, key up or a message
from the operating system or another program. An event-driven application is
designed to detect events as they occur, and then deal with them using an
appropriate event-handling procedure. The idea is an extension of interrupt-
driven programming found in early command-line environments such as DOS,
and in embedded systems (where the application is implemented as firmware).
Event-driven programs can be written in any programming language, although
some languages (Visual Basic for example) are specifically designed to facilitate
event-driven programming, and provide an integrated development environment
(IDE) that partially automates the production of code, and provides a
comprehensive selection of built-in objects and controls, each of which can
respond to a range of events. Virtually all object-oriented and visual languages
support event-driven programming. Visual Basic, Visual C++ and Java are
examples of such languages.

A visual programming IDE such as VB.Net provides much of the code for
detecting events automatically when a new application is created. The
programmer can therefore, concentrate on issues such as interface design, which
involves adding controls such as command buttons, text boxes, and labels to
standard forms (a form represents an application's workspace or window). Once
the user interface is complete, the programmer can add event-handling code to
each control as required. Many visual programming environments will even
provide code templates for event-handlers, so the programmer only needs to
provide the code that defines the action the program should take when the event
occurs. Each event-handler is usually bound to a specific object or control on a
form. Any additional subroutines, methods, or function procedures required are
usually placed in a separate code module, and can be called from other parts of
the program as and when needed.

PL
O

N
E-

28

BCA-118/15

1.4.3 HOW EVENT-DRIVEN PROGRAMMING WORKS

The main component of an event-driven application is a scheduler that
receives a stream of events and passes each event to the relevant event-handler.
The scheduler continues to remain active until it encounters an event that results it
to terminate the application. Under certain circumstances, the scheduler may
encounter an event for which it cannot assign an appropriate event handler.
Depending upon the nature of the event, the scheduler can either ignore it or raise
an error. Within an event-driven programming environment, standard events are
usually identified using the ID of the object affected by the event (e.g. the name
of a command button on a form), and the event ID (e.g. "left-click"). The
information passed to the event-handler may include additional information, such
as the x and y coordinates of the mouse pointer at the time the event occurred, or
the state of the Shift key (if the event in question is a key-press).

Events are often actions performed by the user during the execution of a
program, but can also be messages generated by the operating system or another
application, or an interrupt generated by a peripheral device or system hardware.
If the user clicks on a button with the mouse or hits the Enter key, it generates an
event. If a file download completes, it generates an event. And if there is a
hardware or software error, it generates an event. The events are dealt with by a
central event-handler (usually called a dispatcher or scheduler) that runs
continuously in the background and waits for an event to occur. When an event
does occur, the scheduler must determine the type of event and call the
appropriate event-handler to deal with it. The information passed to the event
handler by the scheduler varies, but will include sufficient information to allow
the event-handler to take any action necessary.

1.5 HANDLES AND DATA TYPES

In Windows, and generally in computing, a handle is an abstraction which
hides a real memory address from the API user, allowing the system to reorganize
physical memory transparently to the program. Resolving a handle into a pointer
locks the memory, and releasing the handle invalidates the pointer. In this case
think of it as an index into a table of pointers. You use the index for the system
API calls, and the system can change the pointer in the table at will. Alternatively,
a real pointer may be given as the handle when the API writer intends that the
user of the API be insulated from the specifics of what the address returned points
to. In this case, it must be considered that what the handle points to may change at
any time (from API version to version or even from call to call of the API that
returns the handle). The handle should therefore be treated as simply an opaque
value meaningful only to the API. Moreover; In any modern operating system,
even the so-called "real pointers" are still opaque handles into the virtual memory
space of the process, which enables the OS to manage and rearrange memory
without invalidating the pointers within the process.

Variables and constants are the basic data objects manipulated in a
program. Declarations list the variables to be used stating the type of values they
can store and sometimes also provide their initial values. Operators specify what

PL
O

N
E-

28

BCA-118/16

to be done with the data values provided. Expressions combine variables and
constants to produce new values. The type of an object determines the set of
values it can have and what operations can be performed on it. The programming
standard has made many small changes and additions to basic types and
expressions in programming languages. Characteristics of data types may be
different for different programming languages.

1.5.1 HUNGARIAN NOTATION

Hungarian notation is a naming convention in computer programming that
indicates either the type of object or the way it should be used. It was originally
proposed by Charles Simonyi, a programmer at Xerox PARC in the early 1980s.
There are two variations of Hungarian notation: Systems and Apps. They both
involve using a special prefix as part of the name to indicate an object's nature.

1.5.1.1 SYSTEMS HUNGARIAN NOTATION

In Systems Hungarian notation, the prefix represents the actual data
type of the object. For instance, if the object named Greeting were a zero-
terminated string, its Systems Hungarian name might be szGreeting. Or, if the
object YesOrNo were a boolean variable, its Systems Hungarian name would
be bYesOrNo.

1.5.1.2 APPS HUNGARIAN NOTATION

In Apps Hungarian notation, the prefix represents the logical data type,
which gives an indication of the object's purpose. For instance, an "unsafe"
(unsanitized) string might have the prefix us, and a variable used for counting
might be prefixed with n.

The Win32 API uses the Hungarian Notation for naming variables.
Hungarian Notation requires that a variable be prefixed with an abbreviation of its
data type, so that when you are reading the code, you know exactly what type of
variable it is. The reason behind this practice in the Win32 API is the availability
of different data types makes it difficult to keep them all straight. Also, there are a
number of different data types that are essentially defined the same way, and
therefore some compilers do not pick up errors when they are used incorrectly. As
we discuss each data type, we also note the common prefixes for that data type. In
which each variable name begins with one or more lowercase characters
identifying the variable's type: h for handle, n for integer, and so on. Prefixes are
often combined to form other prefixes, as when p and sz are joined to form psz,
which stands for "pointer to zero-terminated string."

Putting the letter "P" in front of a data type, or "p" in front of a variable
usually indicates that the variable is a pointer. The letters "LP" or the prefix "lp"
stands for "Long Pointer", which is exactly the same as a regular pointer on 32-bit
machines. LP data objects are simply legacy objects that were carried over from
Windows 3.1 or earlier, when pointers and long pointers needed to be
differentiated. In modern 32-bit systems, these prefixes can be used
interchangeably. PL

O
N

E-
28

BCA-118/17

1.5.2 LPVOID

LPVOID data types are defined as being a "pointer to a void object". It
seems to be strange to some programmers, but the ANSI-C standard allows for
generic pointers to be defined as "void*" types. This means that LPVOID pointers
can be used to point to different types of objects, without creating a compiler
error. However, the burden is on the programmer to keep track of what type of
object is being pointed to. Also, some Win32 API functions may have arguments
labeled as "LPVOID lpReserved". These reserved data members should not be
used in the program, because they either depend on functionality that hasn't yet
been implemented by Microsoft, or else they are only used in certain applications.
If you see a function with an "LPVOID lpReserved" argument, you must always
pass a NULL value for that parameter. Some functions will fail if you do not do
so. LPVOID objects frequently do not have prefixes, although it is relatively
common to prefix an LPVOID variable with the letter "p", as it is a pointer.

1.5.3 DWORD, WORD, BYTE

These data types are defined to be a specific length, regardless of the
platform. There is a complexity in the header files to achieve this, but code
becomes very well standardized, and very portable to different hardware
platforms and different compilers.

DWORDs (Double WORDs): It is the most commonly used of these three data
types. DWORDs are defined always to be unsigned 32-bit quantities. For any
machine irresepective of it being 16-bit, 32-bit, or 64-bit, a DWORD is always 32
bits long. Hence, DWORDs are very common and popular on 32-bit machines,
but less common on 16-bit and 64-bit machines.

WORDs (Single WORDs): These are defined strictly as unsigned 16-bit values,
regardless of what machine you are programming on.

BYTE: These are defined strictly as being unsigned 8-bit values.

QWORDs (Quad WORDs): Although rare, these are defined as being unsigned
64-bit quantities.

Putting a "P" in front of any of these identifiers indicates that the variable
is a pointer. Putting two "Ps” in front indicates it's a pointer to a pointer. These
variables may be unprefixed, or they may use any of the prefixes common with
DWORDs. Because of the differences in compilers, the definition of these data
types may be different, but typically following definitions are used:

#include <stdint.h>

typedef uint8_t BYTE;

typedef uint16_t WORD;

typedef uint32_t DWORD;

typedef uint64_t QWORD;

PL
O

N
E-

28

BCA-118/18

Usually, we can define pointers to these types as:

#include <stdint.h>

typedef uint8_t * PBYTE;

typedef uint16_t * PWORD;

typedef uint32_t * PDWORD;

typedef uint64_t * PQWORD;

DWORD variables are typically prefixed with "dw". Likewise, we have prefixes
given in the following Table 1.2.

Table1.2 Data types & their prefixes

Data Type Prefix

BYTE "b"

WORD "w"

DWORD "dw"

QWORD "qw"

1.5.4 LONG, INT, SHORT, CHAR

These types are not defined to a specific length. It is left to the host machine to
determine exactly how many bits each of these types take.

LONG notation: LONG variables are typically prefixed with "l" (lower-case L).

UINT notation: UINT variables are typically prefixed with an "i" or an "ui" to
indicate that it is an integer or unsigned integer.

CHAR, UCHAR notation: These variables are usually prefixed with a "c" or an
"uc" respectively.

If the size of the variable doesn't matter, you can use integer types.
However, if you are concerned with the size of the variable, other data types such
as BYTE, WORD, DWORD, or QWORD identifiers can be used. The sizes of
these data types are platform-independent and never change. Syntax is given as
follows:

typedef long LONG;

typedef unsigned long ULONG;

typedef int INT;

typedef unsigned int UINT;

PL
O

N
E-

28

BCA-118/19

typedef short SHORT;

typedef unsigned short USHORT;

typedef char CHAR;

typedef unsigned char UCHAR;

1.5.5 STR, LPSTR

STR: It is a string data type with storage already allocated. STR data types are
used when the string is supposed to be treated as an immediate array, and not as a
simple character pointer. The variable name prefix for a STR data type is "sz"
because it is a zero-terminated string (ends with a null character). Most
programmers however do not prefer STR opting instead a character array.
Defining a string as an array allows the size to be set explicitly. Also, creating a
large string on the stack can cause undesirable stack-overflow problems.

LPSTR: It stands for "Long Pointer to a STR" and it is more commonly used than
STR. It is essentially defined as follows:

#define STR * LPSTR;

LPSTR can be used exactly like other string objects, except that LPSTR is
explicitly defined as being ASCII, not unicode, and this definition will hold on all
platforms. LPSTR variables would usually be prefixed with the letters "lpsz" to
denote a "Long Pointer to a String that is Zero-terminated". The "sz" part of the
prefix is important, because some strings in the Windows world (especially when
talking about the DDK1) are not zero-terminated. LPSTR variables prefixed with
the "lpsz" can all be used seamlessly with the standard library <string.h>
functions.

1.5.6 TCHAR

TCHAR data type is a generic character data type. TCHAR can hold either
standard 1-byte ASCII characters, or wide 2-byte Unicode characters. Because
this data type is defined by a macro, only character data should be used with this
type. TCHAR is similar to the following:

#ifdef UNICODE

#define TCHAR WORD

#else

#define TCHAR BYTE

#endif

1.5.7 TSTR, LPTSTR

Strings of TCHARs are typically referred to as TSTR data types. They are
defined as LPTSTR types such as:

PL
O

N
E-

28

BCA-118/20

#define TCHAR * LPTSTR

These strings can be either UNICODE or ASCII, depending on the status
of the UNICODE macro. LPTSTR variables are long pointers to generic strings,
and may contain either ASCII strings or Unicode strings, depending on the
environment. LPTSTR data types are also prefixed with the letters "lpsz".

1.5.8 HANDLE

HANDLE is another data type in Windows programming. It is slightly
different and hard to understand for the new programmers migrated from other
languages. It is also one of the most important data objects in win32
programming. The details of the data objects are maintained by the kernel.
Basically buttons, icons, mouse pointers, windows etc. have the entry in a table
and each entry is assigned a unique identifier. This identifier is called HANDLE.
HANDLES are defined in <windows.h>, but they are not similar to the integers
and hence should not be used like integers. In other words, HANDLES can be
stored but cannot be changed by the programmers. Moreover, they are prefixed
with an “h”. HANDLES are unsigned integers that Windows uses internally to
keep track of objects in memory. Windows moves objects such as memory blocks
to make room in the memory. If the object is moved in memory, the handles table
is updated. Some HANDLES are described below.

HWND: HWND variables are "Handles to a Window". These are used to keep
track of the various objects that appear on the screen. To communicate with a
particular window, you need to have a copy of the window's handle.

Syntax:

HWND hwnd; // used for main window

HWND hwndChild1, hwndChild2...// used for child window

HWND hDlg; // used for dialog boxes

HINSTANCE: HINSTANCE variables are handles to a program instance. Each
program gets a single instance variable and it is important for the kernel to
communicate with the program. It is usually a benefit to make this HINSTANCE
variable a global value, so that all your functions can access it when needed.

Syntax:

HINSTANCE hInstance;

HMENU: If the program has any type of menu such as drop-down then that will
be associated with a HANDLE. To perform some operations like alter, display
etc. you need to access HMENU handle.

1.6 WINDOWS MESSAGES

After creation of the window, it interacts with rest of the system by means
of messages. Normally the system sends message to the window, and window
sends messages back to the system. This process lasts from the creation of PL

O
N

E-
28

BCA-118/21

message till it ends. In fact, most of the programs read messages and respond to
them. Messages come in the form of MSG data type which uses a function
GetMessage() to read the message from the message queue. After this, translate
function is used to do the simple tasks like conversion to Unicode etc. Finally, the
message is sent to the window to process using the DispatchMessage() function.

Example

MSG msg;

BOOL bRet;

while((bRet = GetMessage(&msg, NULL, 0, 0)) != 0)

{

if (bRet == -1)

{

// handle the error and possibly exit

}

else

{

TranslateMessage(&msg);

DispatchMessage(&msg);

}

}

return msg.wParam;

1.6.1 TYPES OF MESSAGES

WM_CREATE: This is the first message. Window receives this message only
once, when it is first created. This message is used to perform tasks that need to
be handled in the beginning, such as initializing variables, allocating memory, or
creating child windows (buttons and textboxes).

WM_PAINT: This message indicates that it is the time for the program to redraw
itself. If you don't draw anything, then the window will either be a boring white
(or grey) background, or if the background was not erased, will keep whatever
image is already shown on it (which looks unstable). The WM_PAINT message
is sent when the system or another application makes a request to paint a portion
of an application's window. The message is sent when
the UpdateWindow or RedrawWindow function is called, or by
the DispatchMessage function when the application obtains
a WM_PAINT message by using the GetMessage or PeekMessage function.

WM_COMMAND: This is a general message that indicates that the user has
done something on your window. Either the user has clicked a button, or the user
has selected a menu item, or the user has pressed a special "Accelerator" key
sequence. The WPARAM and LPARAM fields of WM_COMMAND will
contain some descriptions on what happened, so you can find a way to react to PL

O
N

E-
28

BCA-118/22

this. If you do not process the WM_COMMAND messages, the user will not be
able to click any buttons, or select any menu items.

WM_CLOSE: If user decides to close the window, the kernel sends the
WM_CLOSE message. This is the final chance to preserve the window as
necessary. If you don't want it closed completely, you should handle the
WM_CLOSE message and ensure that it does not destroy the window. If the
WM_CLOSE message is passed to the DefWindowProc, then the window will
next receive the WM_DESTROY message.

WM_DESTROY: The WM_DESTROY indicates that a given window is
removed from the screen and will be unloaded from memory. Normally, your
program can post the WM_QUIT message to exit the program by calling
PostQuitMessage().

CHECK YOUR PROGRESS

 Give the meaning of event driven programming.

 Define handles in windows programming.

 What do you mean by window messages and its types?

1.7 DEVICE CONTEXTS

A device context is a structure that defines a set of graphic objects and
their associated attributes, and the graphic modes that affect the output. The
graphic objects include a pen for line drawing, a brush for painting and filling, a
bitmap for copying or scrolling parts of the screen, a palette for defining the set of
available colors, a region for clipping and other operations, and a path for painting
and drawing operations.

Device Context is an abstraction in windows to access any output
hardware like graphic adapters or printers which displays text and graphical
drawings. Windows OS returns a handle to the device context of the device.
Device context is a structure in kernel mode of the OS, where it stores the
attributes and other properties of the device. Hardware may vary in many aspects
but device context is common for all for any particular device type. Hardware
vendors supply device dependent device drives or miniport drivers for their
hardware which takes care of the lower layer access and manageability of the
hardware.

The upper layer is Win32 APIs to access the hardware from application
layer. Windows provides a set of APIs to access a type of device through the
device context. Lower layer access and manageability may vary from hardware to
hardware and from vendor to vendor but methods and steps via Windows API are
same for accessing same type of devices. It creates a uniform access point for
device hardware. In other words, a device context is just a place where drawing
occurs. So if you have two different DC's, you're drawing in two different places.
It is a kind of file handle. Device contexts can refer to real-estate on screen, or to
bitmaps that just reside in memory, and probably other places too. PL

O
N

E-
28

BCA-118/23

Compatible contexts have the same underlying pixel organization. The
pixel organization referes to the number of bits per pixel, bytes per pixel, colour
organization and so forth. Memory bitmap device contexts can have any
organization you want, but your screen contexts are going to be related
(eventually) to buffers on your graphics card, which will (depending on mode,
etc) have a very specific pixel organization. Having compatible contexts leads to
efficient image data transfer between them, because little or no translation of the
data is required. At the other extreme, if you have a 256 colour palette 8-bit map
and you try to build it on a screen that has 8 bits each of RGBA per pixel, then
every last pixel will require significant messaging as it is copied and so copying
incompatible bitmaps is very much slower. According to Win32 SDK
documentation, at least BitBlt() and StretchBlt() convert the source colour format
to match the destination format, so it can be done.

SelectObject() controls which resources are currently active within the
device context. A context has a current pen, brush, font, and bitmap. These make
a lot of the other GDI calls simpler by allowing you to specifiy fewer parameters.
For instance, you don't have to specify the font when you use TextOut(), but if
you want to change the font, that's where SelectObject() comes in. If you feed
SelectObject() a handle to a font, the return value is a handle to the font that was
in effect, and subsequent operations use the new font. Behavior is the same for the
other kinds of resources, pens, brushes, etc. When you want to draw on a graphics
output device such as the screen or printer, you must first obtain a handle to a
device context. By giving your program this handle, Windows is giving you
permission to use the device. You then include the handle as an argument to the
GDI functions to identify the device on which you wish to draw.

The device context contains many "attributes" that determine how the GDI
functions work on the device. These attributes allow GDI functions to have just a
few arguments, such as starting coordinates. The GDI functions do not need
arguments for everything else that Windows needs to display the object on the
device. For example, when you call TextOut(), you need to specify in the function
only the device context handle, the starting coordinates, the text, and the length of
the text. You don't need to specify the font, the color of the text, the color of the
background behind the text, or the intercharacter spacing. These are all attributes
that are part of the device context. When you want to change one of these
attributes, you call a function that does so. Subsequent TextOut calls to that device
context use the new attribute.

1.7.1 GETTING A DEVICE CONTEXT HANDLE

Windows provides several methods for obtaining a device context handle.
If you obtain a video display device context handle while processing a message,
you should release it before exiting the window procedure. After you release the
handle, it is no longer valid. For a printer device context handle, the rules are not
as strict. The most common method for obtaining a device context handle and
then releasing it involves using the BeginPaint and EndPaint calls when
processing the WM_PAINT message:

hdc = BeginPaint (hwnd, &ps);

PL
O

N
E-

28

BCA-118/24

[other program lines]

EndPaint (hwnd, &ps);

The variable ps is a structure of type PAINTSTRUCT. The hdc field of
this structure is the same handle to the device context that BeginPaint returns. The
PAINSTRUCT structure also contains a RECT (rectangle) structure named
rcPaint that defines a rectangle encompassing the invalid region of the window's
client area. With the device context handle obtained from BeginPaint you can
draw only within this region. The BeginPaint call also validates this region.

Windows programs can also obtain a handle to a device context while
processing messages other than WM_PAINT:

hdc = GetDC (hwnd);

[other program lines]

ReleaseDC (hwnd, hdc);

This device context applies to the client area of the window whose handle
is hwnd. The primary difference between the use of these calls and the use of the
BeginPaint and EndPaint combination is that you can draw on your entire client
area with the handle returned from GetDC. However, GetDC and ReleaseDC
don't validate any possibly invalid regions of the client area.

A Windows program can also obtain a handle to a device context that
applies to the entire window and not only to the window's client area:

hdc = GetWindowDC (hwnd);

[other program lines]

ReleaseDC (hwnd, hdc);

This device context includes the window title bar, menu, scroll bars, and
frame in addition to the client area. Applications programs rarely use the
GetWindowDC function. If you want to experiment with it, you should also trap
the WM_NCPAINT ("nonclient paint") message, which is the message Windows
used to draw on the nonclient areas of the window.

The BeginPaint, GetDC, and GetWindowDC calls obtain a device context
associated with a particular window on the video display. A much more general
function for obtaining a handle to a device context is CreateDC:

hdc = CreateDC (pszDriver, pszDevice, pszOutput, pData);

[other program lines]

DeleteDC (hdc);

For example, you can obtain a device context handle for the entire display by
calling

hdc = CreateDC (TEXT ("DISPLAY"), NULL, NULL, NULL);

Writing outside your window is generally impolite, but it's convenient for

PL
O

N
E-

28

BCA-118/25

some unusual applications. (Although this fact is not documented, you can also
retrieve a device context for the entire screen by calling GetDC with a NULL
argument.)

Sometimes you need only to obtain some information about a device
context and not do any drawing. In these cases, you can obtain a handle to an
"information context" by using CreateIC. The arguments are the same as for the
CreateDC function. For example,

hdc = CreateIC (TEXT ("DISPLAY"), NULL, NULL, NULL);

You can't write to the device by using this information context handle.
When working with bitmaps, it can sometimes be useful to obtain a "memory
device context":

hdcMem = CreateCompatibleDC (hdc);

[other program lines]

DeleteDC (hdcMem);

You can select a bitmap into the memory device context and use GDI
functions to draw on the bitmap. A metafile is a collection of GDI function calls
encoded in binary form. You can create a metafile by obtaining a metafile device
context:

hdcMeta = CreateMetaFile (pszFilename);

[other program lines]

hmf = CloseMetaFile (hdcMeta);

During the time the metafile device context is valid, any GDI calls you
make using hdcMeta are not displayed but become part of the metafile. When you
call CloseMetaFile, the device context handle becomes invalid. The function
returns a handle to the metafile (hmf).

1.7.2 GETTING DEVICE CONTEXT INFORMATION

A device context usually refers to a physical display device such as a
video display or a printer. Often, you need to obtain information about this device,
including the size of the display, in terms of both pixels and physical dimensions,
and its color capabilities. You can get this information by calling the
GetDeviceCap ("get device capabilities") function:

iValue = GetDeviceCaps (hdc, iIndex);

The iIndex argument is one of 29 identifiers defined in the WINGDI.H
header file. For example, the iIndex value of HORZRES causes GetDeviceCaps to
return the width of the device in pixels; a VERTRES argument returns the height
of the device in pixels. If hdc is a handle to a screen device context, that's the
same information you can get from GetSystemMetrics. If hdc is a handle to a
printer device context, GetDeviceCaps returns the height and width of the printer
display area in pixels.

PL
O

N
E-

28

BCA-118/26

You can also use GetDeviceCaps to determine the device's capabilities of
processing various types of graphics. This is usually not important for dealing
with the video display, but it becomes more important with working with printers.
For example, most pen plotters can't draw bitmapped images and GetDeviceCaps
can tell you that.

1.8 DOCUMENT INTERFACES

The document interface is the view, which can be provided to the user. It
joins the things between the user and computer. Windows is intended to take the
responsibility to provide interface in a very simple manner so that the end user
could understand the environment easily in which one wants to work, and hence
could do the different tasks like data submission, performing queries, retrieving
the data, changing the data etc. Basically document interfaces are divided into two
categories: Single-Document Interface (SDI) and Multiple-Document Interface
(MDI).

1.8.1 SINGLE DOCUMENT INTERFACE

In a Single Document Interface (SDI) application, there is only one
window in each instance of the application. If you want a second window you can
start a second complete instance of the application. Switching between windows
happens at the operating system level when switching takes place between
applications. In Microsoft Windows this means that you use the taskbar to select a
different window, as all windows have an icon in the taskbar.

SDI is a type of GUI in which a program is unable to display more than
one document in a window at time. This is the simplest interface which can be
provided to the user. Basically it is a single-screen program in which data can be
entered. SDI is simpler than multiple document interface as it is easy to program
using SDI and is easy to use as well if implemented properly. However, it limits
the multitasking capability of the program. And too many instances may create
problem for the hardware. Due to this problem nowadays web browsers use the
tabs. Examples of SDI are windows notepad, wordpad, calculator, command
prompt, internet explorer 6 or earlier versions, etc. A window with SDI
application is shown in Fig. 1.2.

Fig. 1.2 SDI Application PL
O

N
E-

28

BCA-118/27

1.8.2 MULTIPLE DOCUMENT INTERFACE

The ‘classic’ Multiple Document Interface (MDI) design has been with us
for many years now, and at one stage was a very common way of handling the
user interface problems described so far. A MDI application has a main ‘shell’
MDI window with just a menu bar and possibly a toolbar. The user can load
individual screens from these bars, and the screens will just ‘float’ within the
window.

Typically, these applications have a ‘Window’ menu option, with ‘Tile’
and ‘Cascade’ options that rearrange all open windows. We also usually have a
list of open windows on the ‘Window’ menu to allow us to find an individual
screen. Microsoft uses this paradigm for Microsoft Word. If you open two
documents in MS Word, you get two separate instances of the application.

1.9 DYNAMIC LINKING LIBRARIES

Basically dynamic link libraries or simply DLLs provide a mechanism for
reused, shared and changed code and data, allowing a programmer to upgrade
functionality without requiring applications to be re-linked or re-compiled. DLLs
are the libraries which are helpful during the runtime without extra burden of
memory. It was introduced with the first version of Microsoft Windows OS. And
today it is the fundamental component of OS. They are not only the part of core
OS but also the key component of many technologies like .NET and MFC.

DLLs allow a code fragment to be compiled into a single library and then
linked by multiple programs. Which means only a single copy is needed and
various programs share the data and functions. The main difference between a
static and a dynamic library is that when a program is compiled it is not compiled
rather it remains as a distinct module. This reduces the size of the memory and
accessed or loaded into the memory whenever needed. The method of building a
DLL file depends on the compiler used. However, the way of programming a
DLL file is same.

1.9.1 /DLL hell

It is a common problem of the Windows programmers known as “DLL
hell” and it doesn’t really have a solution. The term hell was coined in 90s. This is
basically related with the permissions given by OS to let incorrect versions to be
loaded upon the request of application that may result to a system crash.

1.9.2 __DECLSPEC

This is a keyword, which is not for ANSI C standard, though most
compilers understand it. Specifically, there are two __declspec identifiers:

__declspec(dllexport)

__declspec(dllimport)

PL
O

N
E-

28

BCA-118/28

When writing a DLL, we need to use the dllexport keyword to denote
functions that are going to be available to other programs. Functions without this
keyword will only be available for use from inside the library itself. Here is an
example:

__declspec(dllexport) int MyFunc1(int foo)

The __declspec identifier for a function needs to be specified both in the
function prototype and the function declaration, when building a DLL. To
"import" a DLL function into a regular program, the program must link to the
DLL, and must prototype the function to be imported using the dllimport keyword
such as:

__declspec(dllimport) int MyFunc1(int foo);

Now the program can use the function, even though the function exists in
an external library. The compiler works with Windows to handle all the details.
Some people find it useful to define a single header file for their DLL instead of
maintaining one header file for building a DLL. Following is the macro that is
common in DLL creation:

#ifdef BUILDING_DLL

#define DLL_FUNCTION __declspec(dllexport)

#else

#define DLL_FUNCTION __declspec(dllimport)

#endif

Now, to build the DLL, we need to define the BUILDING_DLL macro.
When we import the DLL, we don't need to use that macro. Functions then can be
prototyped are:

DLL_FUNCTION int MyFunc1(void);

DLL_FUNCTION int MyFunc2(void);

.......

1.9.3 DLLMAIN

When the Windows links to a DLL program it calls Dll main function.
This means that every Dll needs a main function. Dll main can be defined as:

BOOL APIENTRY DllMain (HINSTANCE hInstance, DWORD reason,
LPVOID reserved)

The keywords "BOOL", "APIENTRY", "HINSTANCE", etc. all are
defined in <windows.h>. So, you must include this file even if you don't use any
Win32 API functions in your library. APIENTRY is just a keyword that the
Windows uses internally. So, you don't need to worry about it. The variable
"hInstance" is the HINSTANCE handle for the library. You can keep, use, or
trash it depending on one of the following four different values:

PL
O

N
E-

28

BCA-118/29

DLL_PROCESS_ATTACH: a new program has just linked to the library for the
first time.

DLL_PROCESS_DETACH: a program has unlinked the library.

DLL_THREAD_ATTACH: a thread from a program has linked to the library.

DLL_THREAD_DETACH: a thread from a program has just unlinked the
library.

The DllMain function doesn't need to do anything special for these cases,
although some libraries will find it useful to allocate storage for each new thread
or process that is being used with the library. The DllMain function must return
TRUE if the library loaded successfully, or FALSE if the library had an error and
could not load. If you return FALSE, the program will pop up a warning message
and crash.

1.9.4 DLL BENEFITS

Software Engineering Perspective: Increasing the reusability of common
routines. Easy to upgrade by changing the libraries only.

System Utilization Perspective: The code segment can be sharing at runtime;
decrease the consume of memory and disk space. When multiple programs use
the same function library, a DLL can reduce the duplication of code that is loaded
onto disk and physical memory. This can greatly influence the performance not
only of the program that runs in the background, but also other programs running
on the Windows operating system.

They promote a modular structure: A DLL helps you to promote programs that
have a modular structure in development. This enables us to develop a large
number of programs that require multiple language versions or a program that
requires a modular structure. An example of a modular program is an accounting
program that has many modules that can be loaded dynamically at the time of
execution.

Facilitate implementation and installation: When a function within
a DLL requires an update or a fix, it is not necessary that the program be
downloaded again. Additionally, if multiple programs use the same DLL, all
programs will benefit from update or remediation.

1.10 SOFTWARE DEVELOPMENT KIT TOOLS

A software development kit (SDK) is basically a set of software
development tools that allows the creation of applications for a
specific software package, software framework, hardware platform, desktop
computer, laptop, video game console, operating system, or similar development
platform. To enhance applications with advanced features, advertisements, push
notifications, and more, most applications’ developers implement certain SDKs.
Some SDKs are critical for developing a platform-specific app. For example, the
development of an Android app on Java platform requires a Java Development
Kit (JDK); for iOS apps the iOS SDK; and for Universal Windows PL

O
N

E-
28

BCA-118/30

Platform the .NET Framework SDK. Moreover, there are some SDKs that are
installed in apps to provide analytics and data about application activity. The
prominent creators of these types of SDKs include Google, InMobi, and
Facebook.

An SDK can take the form of a simple implementation of one or more
application programming interfaces (APIs) in the form of on-device libraries to
interface to a particular programming language, or it may be as complex as
hardware-specific tools that can communicate with a particular embedded system.
Common tools include debugging facilities and other utilities, often presented in
an integrated development environment (IDE). SDKs may also include sample
code and technical notes or other supporting documentation such as tutorials to
help clarify points made by the primary reference material.

SDKs often include licenses that make them unsuitable for building
software intended to be developed under an incompatible license. For example, a
proprietary SDK is generally incompatible with free software development, while
a GPL-licensed SDK could be incompatible with proprietary software
development, all particularly for legal reasons. However, SDKs built under Lesser
General Public License (LGPL) are typically safe for proprietary development.
The average Android mobile app implements on an average 15.6 separate SDKs,
while gaming apps implementing on average 17.5 different SDKs. The most
popular SDK categories for Android mobile apps are analytics and advertising.

SDKs can be unsafe because they are implemented within apps, but yet
run separate code. Malicious SDKs (with honest intentions or not) can violate
users' data privacy, damage app performance, or even cause apps to be banned
from Google Play Store or the App Store. New technologies allow app developers
to control and monitor client SDKs in real time. Providers of SDKs for specific
systems or subsystems sometimes substitute a more specific term instead of the
word “software”. For instance, both Microsoft and Citrix provide a driver
development kit (DDK) for developing device drivers.

1.11 CONTEXT HELP

A Help system is composed of various types of contents designed to assist
users when they are unable to complete a task, and want to understand a concept
in more detail, or need more technical details than are available in the GUI. The
GUI is the primary place because that is where users first try to solve their
problems. They consult the Help system only if they can't accomplish their task
with the GUI.

Context-help is a kind of help which is given basically online or called
online help. It can be obtained from a specific state of the software which
provides the help for the current situation. Context-help is also known as Context-
sensitive help. Context-sensitive help, as opposed to general online help or online
manuals, does not need to be accessible for reading as a whole. Each topic is
supposed to describe extensively one state, situation, or feature of the software.

Context-sensitive help can be implemented using tooltips, which either
provides a brief description of a GUI gadget or display a complete topic from the PL

O
N

E-
28

BCA-118/31

help file. Other commonly used ways to access context-sensitive help start by
clicking a button. One way uses a per widget (a small gadget) button that displays
the help immediately. Another way changes the pointer shape to a question mark,
and after the user clicks a widget, the help appears. Context-sensitive help
examples include Apple's System 7 Balloon help, Microsoft's WinHelp, OS/2's
INF Helper Sun's JavaHelp. A snapshot of Windows Help and Support is given in
Fig. 1.3

Fig. 1.3 Windows Help and Support

A similar topic is embedded help, which can be thought of as a "deeper"
context-sensitive help. It generally goes beyond basic explanations or manual
clicks by either detecting a user's need for help or offering a guided explanation in
situation. Embedded help is not to be confused with a software wizard.

CHECK YOUR PROGRESS

 Give the meaning of device-context.

 Write briefly about SDK.

 What do you mean by context help?

1.12 SUMMARY

In Windows, a handle is an abstraction which hides a real memory address
from the API user, allowing the system to reorganize physical memory
transparently to the program. Resolving a handle into a pointer locks the memory,
and releasing the handle invalidates the pointer.

PL
O

N
E-

28

BCA-118/32

Variables and constants are the basic data objects manipulated in a
program. Declarations list the variables to be used, and state what type they have
and perhaps what their initial values are. Operators specify what is to be done to
them. Expressions combine variables and constants to produce new values. The
type of an object determines the set of values it can have and what operations can
be performed on it. The programming standard has made many small changes and
additions to basic types and expressions in programming languages.
Characteristics of data types may be different for different programming
languages.

After creation of the window, it interacts with rest of the system by means
of window messages. Normally the system sends message to the window, and
windows sends messages back to the system. This process lasts from the creation
of message till it ends. In fact, most of the programs read messages and respond to
them. Messages come in the form of MSG data type which uses a function
GetMessage() to read the message from the message queue.

A device context is a structure that defines a set of graphic objects and
their associated attributes, and the graphic modes that affect output. The graphic
objects include a pen for line drawing, a brush for painting and filling, a bitmap
for copying or scrolling parts of the screen, a palette for defining the set of
available colors, a region for clipping and other operations, and a path for painting
and drawing operations.

The document interface is the view which can be provided to the user.
This is the joining thing between the user and computer. Basically document
interfaces are divided into two categories: SDI and MDI. In a SDI application
there is only one window in each instance of the application.

A MDI has a main ‘shell’ MDI window with just a menu bar and possibly
a toolbar. The user can load individual screens from these bars, and the screens
will just ‘float’ within the window.

DLLs provide a mechanism to reuse, share, and change code and data,
allowing a programmer of code/data to upgrade functionality without requiring
applications to be re-linked or re-compiled. DLLs are the libraries, which are
helpful during the runtime without extra burden of memory. It was introduced
with the first version of Microsoft Windows OS. And today it is the fundamental
component of OS. They are not only the part of core OS but also the key
component of many technologies like .NET and MFC.

SDK is basically a set of software development tools that allows the
creation of applications for a specific software package, software framework,
hardware platform, desktop, computer, laptop, video game console, operating
system, or similar development platform. To enhance applications with advanced
features, advertisements, push notifications, and more, most applications’
developers implement certain software development kits.

Context-help is a kind of help which is given basically online or called
online help. It can be obtained from a specific state of the software which
provides the help for the current situation. Context-help is also known as Context-
sensitive help.

PL
O

N
E-

28

BCA-118/33

1.13 TERMINAL QUESTIONS

1. What do you understand by Windows programming? Explain briefly.

2. Compare Windows programming with traditional programming.

3. Explain the importance of handles in Windows programming.

4. Write a short note on device context.

5. Write a short note on the role of DLLs in Windows programming.

6. Discuss the various types of messages.

7. Discuss about Context-help.

8. Write the significance of Window messages.

9. What do you understand by software development kit?

10. Differentiate SDI and MDI.

PL
O

N
E-

28

BCA-118/34

UNIT 2 PROGRAMMING RESOURCE

Structure

2.0 Introduction

2.1 Objectives

2.2 Accelerators

2.3 Bitmaps

2.4 Dialog Boxes

2.5 Icons

2.6 Menus

2.7 String Tables

2.8 Toolbars

2.9 Summary

2.10 Terminal Questions

2.0 INTRODUCTION

Programming resources are the important and powerful part of Windows
programming; which are used to create various controls. These are associated
with an important file called rc.exe or resource script compiler. The resource
compiler compiles a special type of file known as a Resource Script. Resource
scripts contain GUI data, and, when compiled, can be linked into a program. The
program then can access the data contained in the resource script. Moreover, it is
interesting to note that the operating system accesses a program's resource for
various purposes. For instance, right-click on a program and click "Properties". If
available, click on the "Version" tab which contain a number of different text
strings that describe the program. These text strings are all included from a
resource script.

There are several types of resources that can be stored in a program via a
resource script. Resource scripts are not the only way to store this information in a
program, but also they are much easier to write than hard C code or VB code to
store and access them.

They are of following types:

 Drop-down Menus

 Popup Menus

 Text Strings

PL
O

N
E-

28

BCA-118/35

 Keyboard Accelerators (keypress combinations, such as [Ctrl]+[C] to copy
text)

 Icons

 Bitmap Images

 Dialog Boxes

 Version Information

 Mouse Cursors

The syntax to write a resource script is similar to C code. The resource
script compiler uses the standard C preprocessor and the header file <afxres.h> to
make a resource script must also be included. Once a resource is stored in the
excutable file, various methods can be used to access it. It also depends on type of
resource one want to access. For example, one might need to use
the LoadString function; accordingly, the LoadIcon function would be needed to
access an icon.

All the resources are stored using a string or number. If it is numeric, the
number must be no larger than an unsigned 16-bit integer (65535, max).
Resources are all called by name, that is the system is expecting a Unicode string
with the name of the resource. However, if we use a numerical identifier we need
to inform the system that we are doing so, so that it coouln't get confused and try
to treat the integer as a string. For that the MAKEINTRESOURCE macro to make
is passed.

2.1 OBJECTIVES

At the end of this unit you will come to know about:

 Accelerators

 Bitmaps

 Dialog Boxes

 Icons

 Menus

 String Tables

 Toolbars

 Versions

2.2 ACCELERATORS

In Windows programming, accelerators are the keyboard shortcuts. These
are the most commonly used during the time of working in editors like MSWord,
Notepad, etc. For example, Ctrl+s and Ctrl+o is used to save and open a file
respectively. Most often, programs use keyboard accelerators to duplicate the
action of common menu options, but they can also perform nonmenu functions.

PL
O

N
E-

28

BCA-118/36

For instance, some Windows programs have an edit menu that includes a delete or
clear option; these programs conventionally assign the Del key as a keyboard
accelerator for this option. The user can choose the Delete option from the menu
by pressing an Alt-key combination or can use the keyboard accelerator simply by
pressing the Del key. When the window procedure receives a WM_COMMAND
message, it does not have to determine whether the menu or the keyboard
accelerator was used.

In the same way other shortcuts are also available in a table which is
known as accelerator table. In Windows programming, an accelerator table
allows an application to specify a list of accelerators for menu items or other
commands. An accelerator takes precedence over normal processing and can be a
convenient way to program some event handling. Each accelerator is associated
with a control ID, which is similar to the IDs of buttons, text boxes, check boxes,
and menu items. In this way, GUI objects can be created which represent the same
function as an accelerator.

Since using the menus, and subsequently the mouse, is not always the
good practice, it is important to provide users with the possibility to minimize
usage of the mouse. Therefore, showing the accelerators in menus can be useful;
it informs the user that there are shortcuts, and that using the mouse is not always
mandatory. Moreover, many of the latest supercomputers are based on
accelerators, including the two fastest systems according to the 11/2013 TOP500
list. Accelerators are also becoming widespread in PCs and are even starting to
appear in handheld devices, which will further boost the interest in accelerator
programming.

2.2.1 ACCELERATOR TABLE

An accelerator table can be defined in Developer Studio. For ease in
loading the accelerator table in the program, give it the same text name as your
program. An accelerator table is a data resource that maps keyboard
combinations, such as Ctrl+o, to application commands. These tables provide a
better solution with following characteristics:

 Requires less coding.

 Consolidates all of your shortcuts into one data file.

 Supports localization into other languages.

 Enables shortcuts and menu commands to use the same application logic.

Moreover, each shortcut in the table is defined by:

 A numeric identifier- It is an integer number that identifies the
application command that will be invoked by the shortcut.

 The ASCII character or virtual-key code of the shortcut.

 Optional modifier keys- Alt, Shift, or, Ctrl.

The accelerator table itself has a numeric identifier, which identifies the table in
the list of application resources.

PL
O

N
E-

28

BCA-118/37

2.2.2 SOME RULES ON ASSIGNING ACCELERATORS

In theory, you can define a keyboard accelerator for almost any virtual key
or character key in combination with the Shift key, Ctrl key, or Alt key. However,
you should try to achieve some consistency with other applications and avoid
interfering with Windows use of the keyboard. You should avoid using Tab,
Enter, Esc, and the Spacebar in keyboard accelerators because these are often
used for system functions. The most common use of keyboard accelerators is for
items on the program's Edit menu. The recommended keyboard accelerators for
these items changed between Windows 3.0 and Windows 3.1, so it's become
common to support both the old and the new accelerators, as shown in Table 2.1.

Table 2.1 Old Accelerators and New Accelerators

Function Old Accelerator New Accelerator

Undo Alt+Backspace Ctrl+Z

Cut Shift+Del Ctrl+X

Copy Ctrl+Ins Ctrl+C

Paste Shift+Ins Ctrl+V

Delete or Clear Del Del

2.3 BITMAPS

A bitmap is an array of bits, where one or more bits correspond to each
display pixel. In a monochrome bitmap, each pixel requires one bit. In simple case
1 bit represents white, while 0 bit represents black. Bitmaps are mostly used in
logical operations rather than to create simple drawings. In a color bitmap,
multiple bits correspond to each pixel to represent color. Image editor usually
supports the creation of monochrome bitmaps and 16-color bitmaps.

In computer graphics, when the domain is a rectangle (indexed by two
coordinates) a bitmap gives a way to store a binary image, that is, an image in
which each pixel is either black or white (or any two colors). The more general
term pixmap refers to a map of pixels, where each one may store more than two
colors, thus using more than one bit per pixel. Often bitmap is used for this as
well. In some contexts, the term bitmap implies one bit per pixel, while pixmap is
used for images with multiple bits per pixel.

The great thing about MS Windows is that unlike DOS, you don't need to
know anything about what video hardware you are using to display graphics.
Instead, it provides an API called the Graphics Device Interface (GDI). The GDI
uses a set of generic graphics objects that can be used to draw to the screen, to
memory, or even to printers.

PL
O

N
E-

28

BCA-118/38

A bitmap is the representation of a picture or another type of graphics on a
window. It is one of the GDI objects that can be selected into a device context
(DC). The device contexts are structures that define a set of graphic objects and
their associated attributes, and graphic modes that affect output. The table below
describes the GDI objects that can be selected into a device context. A bitmap is a
graphical object used to create, manipulate (scale, scroll, rotate, and paint), and
store images as files on a disk. This overview describes the bitmap classes and
bitmap operations. Fig. 2.1 illustrates the use of bitmap as a regular picture.

Fig. 2.1 Use of bitmap as regular picture on a form

From a developer's view, a bitmap consists of a collection of structures
that specify or contain the following elements:

 A header that describes the resolution of the device on which the rectangle
of pixels is created, the dimensions of the rectangle, the size of the array
of bits, and so on.

 A logical palette.

 An array of bits that defines the relationship between pixels in the
bitmapped image and entries in the logical palette.

A bitmap size is related to the type of image it contains. Bitmap images
can be either monochrome or color. In an image, each pixel corresponds to one or
more bits in a bitmap. Monochrome images have a ratio of 1 bit per pixel (bpp).
Color imaging is more complex. The number of colors that can be displayed by a
bitmap is equal to two raised to the number of bits per pixel. Thus, a 256-color
bitmap requires 8 bpp (28 = 256).

Control Panel applications are examples of applications that use bitmaps.
When you select a background (or wallpaper) for your desktop, actually a bitmap
is selected, which the system uses to paint the desktop background. The system
creates the selected background pattern by repeatedly drawing a 32-by-32-pixel
pattern on the desktop.

PL
O

N
E-

28

BCA-118/39

There are two classes of bitmaps:

 Device-Independent Bitmaps (DIB) - The DIB file format was designed
to ensure that bitmapped graphics created using one application can be
loaded and displayed in another application, retaining the same
appearance as the original.

 Device-Dependent Bitmaps (DDB) – This is also known as GDI bitmaps,
were the only bitmaps available in early versions of 16-bit Microsoft
Windows (prior to version 3.0). However, as display technology improved
and as the variety of display devices increased, certain inherent problems
surfaced which could only be solved using DIBs. For example, there was
no method of storing (or retrieving) the resolution of the display type on
which a bitmap was created, so a drawing application could not quickly
determine whether a bitmap was suitable for the type of video display
device on which the application was running.

2.3.1 THE BITMAP CLASS

To support bitmaps, the GDI+ library provides the Bitmap class. In the
.NET Framework, the bitmap is represented by a class called Bitmap. The Bitmap
class is derived from the Image abstract class. Both classes are defined in the
System::Drawing namespace of the System.Drawing.dll assembly. The Bitmap
class is serializable.

2.3.2 THE BITMAP APPLICATIONS

 It can be used to show a regular picture on a form.

 It is widely used in control panel applications.

 It is used on some dialog boxes.

 A bitmap can be used as a background for a window or a web page.

CHECK YOUR PROGRESS

 What do you mean by accelerators?

 Write the old and new accelerators for copy and paste.

 Give three examples of Bitmap applications.

2.4 DIALOG BOXES

A dialog box is a user interface element, a type of window that is used to
enable communication and interaction between a user and a software program.
The dialog box appears when the program either needs to give the user
information in an urgent manner that involves interruption, such as when an error
occurs; or if the program requires immediate input or decision from the user such

PL
O

N
E-

28

BCA-118/40

as when the program closes and needs to know if the changes made have to be
saved or not. The simplest form of dialog box is an alert, which simply displays a
message and only requires an acknowledgment from the user that the message has
been read as shown in Fig. 2.2.

Dialog boxes usually take onscreen priority and are displayed over the
current display window. Dialog boxes also appear in response to the selection of a
menu option. For example, if the user wants to change the properties of an image
in image editing software, a dialog box often appears that will allow the user to
select what's required to achieve the desired effect on the image. Some dialogue
boxes are predefined that support common menu items such as Open and Print.

Dialogue boxes are basically used to receive inputs from the keyboard by
the users which is beyond what can be managed with the menu available in the
editor. A dialogue box is basically available in the form of a pop up window
including different child controls. The size and placement of these controls are
normally indicated in a dialogue box template in the program’s resource script
file. All Windows are responsible for the creation of these pop up dialog boxes
and child controls. The code for this type of working is called dialogue box
manager. The message processed by the dialogue box window passed to the
function is called dialogue procedure or simply procedure.

The subject of the dialogue boxes is a big one as it involves the child
window controls. Adding a dialogue box to a window program is not an easy task
because it involves various changes to many files like – the dialogue box template
goes in the resource script file, the dialog box procedure goes in the source code
file, and the identifiers used in the dialog box go in the program’s header file.
There are two types of dialog boxes i.e. modal and modeless.

2.4.1 MODAL DIALOG BOX

Modal dialog box is very common. It halts the application so that the user
cannot continue until the dialog box has been closed or its purpose satisfied. This
type of dialog box is used when the program needs information or is providing a
warning. When the program displays this modal dialog box the user can’t switch
between the dialog box and another window in the program.

Fig. 2.2 A Simple dialogue box PL
O

N
E-

28

BCA-118/41

2.4.2 MODELESS DIALOG BOX

Modeless dialog boxes are used when the information or action being
requested by the dialog box is not essential for the proper function of the program
so it can be left open while the user continues to work on the application.
Modeless dialog boxes stay on the screen and are available for use at any time but
permit other user activities. These dialog boxes are preferred when the user would
find it convenient to keep the dialog box displayed for a while. For instance, word
processors often use modeless dialog boxes to Find and Replace the specific text.
Creating a dialog box for a program requires the following steps:

1. Use the dialog editor to design the dialog box and create its dialog-
template resource.

2. Create a dialog class.

3. Connect the dialog resource's controls to message handlers in the dialog
class.

4. Add data members associated with the dialog box's controls and to specify
dialog data exchange and dialog data validations for the controls.

2.5 ICONS

An icon is a small graphical representation of a program or file. When you
double-click an icon, the associated file or program is opened. For example, if you
double-click on the My Computer icon, it would open Windows Explorer. Icons
are a component of GUI operating systems including Apple macOS X and
Microsoft Windows. Icons help users quickly identify the type of file represented
by the icon as shown in Fig. 2.3.

Fig. 2.3 Some icons on the desktop of computer

The tool used to create icons, cursors, and bitmaps is called an image
editor, and it is one of the most important development tools in any Windows
integrated development environment. Icons and cursors are both variations of
bitmaps. Basically, icons are pictorial representations of objects, these are
important not only for artistic reasons as part of the visual identity of a program,
but also for utilitarian reasons as shorthand for conveying meaning that users

PL
O

N
E-

28

BCA-118/42

perceive almost instantaneously. Windows introduces a new style of iconography
that brings a higher level of details and sophistication for users.

Moreover, in computing, an icon is a pictogram or ideogram displayed on a
computer screen in order to help the user navigate a computer system. The icon
itself is a quickly comprehensible symbol of a software tool, function, or a data
file, accessible on the system and is more like a traffic sign than a detailed
illustration of the actual entity it represents. It can serve as an electronic hyperlink
or file shortcut to access the program or data. The user can activate an icon using
a mouse, pointer, finger, or recently voice commands. Their placement on the
screen, also in relation to other icons, may provide further information to the user
about their usage. In activating an icon, the user can move directly into and out of
the identified function without knowing anything further about the location or
requirements of the file or code.

There are numerous software programs available that enable users to
customize, create, or modify their own icons on their computers. A suggestion of
some of the free programs is given below:

 Free icon editor
 aaICO
 LiquidIcon
 IcoFx

2.5.1 TYPES OF ICONS

2.5.1.1 STANDARDIZED ELECTRICAL DEVICE SYMBOLS

A series of recurring computer icons are taken from the broader field of
standardized symbols used across a wide range of electrical equipment. For
examples the power symbol and the USB icon, which are found on a wide variety
of electronic devices. The standardization of electronic icons is an important
safety-feature on all types of electronics, enabling a user to more easily navigate
an unfamiliar system. As a subset of electronic devices, computer systems, and
mobile devices use many of the same icons; they are incorporated into the design
of both the computer hardware and on the software. On the hardware, these icons
identify the functionality of specific buttons and plugs. In the software, they
provide a link into the customizable settings.

System warning icons also belong to the broader area of ISO standard
warning signs. These warning icons, first designed to regulate automobile traffic
in the early 1900s, have become standardized and widely understood by users
without necessity of further verbal explanations. In designing software operating
systems, different companies have incorporated and defined these standard
symbols as part of their GUI. For example, the Microsoft MSDN defines the
standard icon use of error, warning, information and question mark icons as part
of their software development guidelines.

Different organizations are actively involved in standardizing these icons,
as well as providing guidelines for their creation and use. The International
Electrotechnical Commission (IEC) has defined "Graphical symbols for use on

PL
O

N
E-

28

BCA-118/43

equipment," published as IEC 417, a document which displays IEC standardized
icons. Another organization invested in the promotion of effective icon usage is
the Information and Communications Technologies (ICT), which has published
guidelines for the creation and use of icons. Many of these icons are available on
the Internet, either to purchase or as freeware to incorporate into new software.

2.5.1.2 METAPHORICAL ICONS

An icon is a Signifier pointing to a Signified. Easily comprehendible icons
will make use of familiar visual metaphors directly connected to the Signified:
actions the icon initiate or the content that would be revealed. Metaphors,
Metonymy and Synecdoche are used to encode the meaning in an icon system.
The Signified can have multiple natures: virtual objects such as Files and
Applications, actions within a system or an application (e.g. snap a picture, delete,
rewind, connect/disconnect etc...), action in the physical world (e.g. print, eject
dvd, change volume or brightness etc...) as well as physical objects (e.g. monitor,
compact disk, mouse, printer etc...).

2.5.1.3 THE DESKTOP METAPHOR

A subgroup of the more visually rich icons is based on objects lifted from
a 1970 physical office space and desktop environment. It includes the basic icons
used for a file, file folder, trash can, inbox, together with the spatial real estate of
the screen i.e. the electronic desktop. This model originally enabled users,
familiar with common office practices and functions, to intuitively navigate the
computer desktop and system. The icons stand for objects or functions accessible
on the system and enable the user to do tasks common to an office space. These
desktop computer icons developed over several decades; data files in the 1950s,
the hierarchical storage system (i.e. the file folder and filing cabinet) in the 1960s,
and finally the desktop metaphor itself in the 1970s.

Dr. David Canfield Smith associated the term "icon" with computing in
his landmark 1975 PhD thesis "Pygmalion: A Creative Programming
Environment." In his work, Dr. Smith envisioned a scenario in which "visual
entities", called icons, could execute lines of programming code, and save the
operation for later re-execution. Dr. Smith later served as one of the principal
designers of the Xerox Star, which became the first commercially available
personal computing system based on the desktop metaphor when it was released
in 1981.

This model of the desktop metaphor has been adopted by most personal
computing systems in the last decades of the 20th century; it remains popular as a
"simple intuitive navigation by single user on single system." It is only at the
beginning of the 21st century that personal computing is evolving a new metaphor
based on Internet connectivity and teams of users, cloud computing. In this new
model, data and tools are no longer stored on the single system, instead they are
stored someplace else, "in the cloud". The cloud metaphor is replacing the
desktop model; it remains to be seen how many of the common desktop icons
(file, file folder, trash can, inbox, filing cabinet) find a place in this new metaphor.

PL
O

N
E-

28

BCA-118/44

2.5.1.4 BRAND ICONS FOR COMMERCIAL SOFTWARE

A further type of computer icon is more related to the brand identity of the
software programs available on the computer system. These brand icons are
bundled with their product and installed on a system with the software. They
function in the same way as the hyperlink icons described previously,
representing functionality accessible on the system and providing links to either a
software program or data file. Over and beyond this, they act as a company
identifier and advertiser for the software or company. Because these company and
program logos represent the company and product itself, much attention is given
to their design, done frequently by commercial artists. To regulate the use of these
brand icons, they are trademark registered and are considered part of the company
intellectual property.

2.5.1.5 OVERLAY ICONS

In some GUI systems (e.g. Windows), on an icon which represents an
object (e.g. a file) a certain additional subsystem can add a smaller secondary
icon, layer over the primary icon and usually positioned in one of its corners, to
indicate the status of the object which is represented with the primary icon. For
instance, the subsystem for locking files can add a "padlock" overlay icon on an
icon which represents a file in order to indicate that the file is locked.

2.6 MENUS

A menu is a list of available options. A menu tells a hungry person what a
restaurant can serve for him/her. A window’s menu bar is displayed below the
title bar. This menu bar is called main menu which is also called popup menu or a
submenu. An item in a popup menu can display another menu and son on.
Sometimes options/items in a menu displays dialogue boxes instead of further
menus.

Alternatively referred to as the file menu, a menu is a list of commands or
choices offered to the user through the menu bar. Menus are commonly used in
GUI operating systems and allow a user to access various options the software
program is capable of performing. File menus are commonly accessed using the
computer mouse. However, it may also sometimes be accessed using shortcuts or
the keyboard. Fig. 2.4 is a visual illustration of what a menu may look like in a
GUI environment.

Fig. 2.4 Visual Example of Menu
(Source: www.computerhope.com) PL

O
N

E-
28

BCA-118/45

For a window program a menu tells the user that what type of operations
an application can perform. A menu is basically very important part of any user
interface that a window can offer. Adding a menu is easy way in Windows
programming. To create a menu, simply design a structure in the resource script
and assign a unique ID to each menu item. And the name of the menu can be
defined in the window class structure. When the user chooses a menu item,
window sends a WM_COMMAND message containing that ID for the program.

Menu items in the top level menu or in popup menus can be enabled,
disabled, or grayed. The words active and inactive are also used for enabled and
disabled respectively. Enabled and disabled items look same but have a slightly
different gray shade. The functions of all these three are different. Window sends
WM_COMMAND message to program only for enabled messages.

2.6.1 MOST COMMONLY USED MENUS

2.6.1.1 PROPERTIES MENU

Properties menu is te importatnt feature of Windows programming and
normally a user is familiar with it. It is helpful to navigate on other options. It is
available by clicking the right click on any icon and displays several properties of
the the particular file or directory. In Microsoft Windows, a properties page is a
panel of information in the file properties dialog (accessed from the File menu,
context menu, or by typing alt + Enter, or alt + double-clicking). It can be a built-
in feature of Windows Explorer (for example, the file sharing page), or created by
a shell extension (for example MP3ext or WinRAR).

2.6.1.2 SYSTEM MENU

The system menu (also called the window menu or control menu) is a
popup menu in Microsoft Windows, accessible by left-clicking on the upper-left
icon of most windows, or by pressing the Alt and Space keys. This menu provides
the user ability to perform some common tasks on the window, some in unusual
ways. For example, normally a user would move a window by dragging the title
bar of the window - but with the option in the system menu the user gets a
different cursor and procedure to move the window with.

Some applications customize the system menu, typically through the
GetSystemMenu WinAPI function. The Win32 console, used e.g. by the
Command Prompt (cmd.exe), is an example of this and it offers the user an ability
to change its preferences through its system menu (other applications typically
offer the user to change their preferences through the normal menu below their
window's title bar).

2.6.2 MENU STRUCTURE

When menu is created or changed in a program, it is useful to think about
the top-level menu and each popup menu must be kept as a separate menu. The
top-level menu has a menu handle, each popup menu within a top-level menu has
its own menu handle. Each item in the menu is defined by three different features. PL

O
N

E-
28

BCA-118/46

The first feature is what appears in the menu which is either a text string or a
bitmap. The second feature is either an ID number that windows send to the
program in a WM_COMMAND message or a popup menu that windows displays
when the user selects that menu item. And the third one describes the attribute of
the menu item, including whether the item is disabled, grayed, or checked.

CHECK YOUR PROGRESS

 What do you mean by modal dialog box?

 Define modeless dialog box.

 Discuss about the menu structure.

2.7 STRING TABLES

String tables are programming resources to hold text strings. They can be
added or edited by resource editor present in Visual Studio. String tables are
basically a list of strings which is compiled and gets added in executable binary.
These strings are in UNICODE format and thus can support all international
languages like Hindi, English, Chinese, Arabic, Hebrew, Japanese, Spanish,
French, etc. LoadString API call is an important way which can be used to obtain
string from string table. LoadString basically loads a string resource from the
executable file associated with a specified module, copies the string into a buffer,
and appends a terminating null character.

A resource script can have many string tables, although this is
unnecessary: the tables aren't differentiated (i.e. they get merged), and each string
object, in any table, must have a unique identifier. Strings in a string table also
may not use names, but instead must use numeric identifiers. After all, it doesn't
make any sense to have to address a string with a string. String tables are used to
store string variables that are referenced by workflows for runtime replacement of
values, depending on the environment in which the workflow is executing. When
a workflow executes and references one of these placeholders, the workflow
checks the string table to find the value for the placeholder and replaces the
"placeholder" with the string value for that string table entry. The character string
resources are defined in resource script using keyword STRINGTABLE:

STRINGTABLE

{

id1, “character string 1”

id2, “character string 2”

[other string definitions]

}

Note: - The resource script can contain only one String table. Each string can be
only one line long with a maximum of 255 characters. PL

O
N

E-
28

BCA-118/47

2.7.1 STRING TABLE EDIT FIELDS

The right-hand side of the String Table Editor window displays a series
of fields for editing the selected string. The first field, the ID field, is where you
can modify the string ID name, which is the name associated with each string
ID. This name will be included in your string file as an enumerated list, and you
will use this name in your application software when you want to refer to a
particular string. You can edit this name simply by typing on the keyboard. You
can select the font to use while working in the string table using the drop-down
list box labeled Font. The selected font is displayed in the grid in the lower-right
portion of the screen. This grid allows you to select characters while editing the
current string. The second field on the right side of the String Table Editor
window is the string literal edit window. This field displays the string literal
value using any of the fonts which are part of your project.

There are three methods for editing strings displayed in the string literal
edit window. The First one, if the current language alphabet is supported by
your keyboard, you can simply type the string value. In Second method, you can
simply click on characters displayed in the font viewer window, as you click on
the characters, they are inserted into the current string at the current insertion
point. Finally, you can type the JIS (Japanese Industrial Standard) or Unicode
encoding value in hexadecimal for the character you wish to insert. For people
who know the encodings for common characters, this is faster than finding the
characters in the font display window. As you edit the selected string, the width
of the string (in pixels) is displayed in the Width field. The Notes button brings
up a small note editor window. Notes are useful for including additional
information about each string, usually for the benefit of translators who will
translate your English or reference language strings into strings for the other
languages.

The reference language is also important in the event that a translation is
not required or available for certain strings in your application. Empty (NULL)
strings in any other language are replaced with the corresponding (untranslated)
string of the reference language.

2.7.2 MERGING STRING TABLES

The Merge button on the String Table Editor window invokes a series of
dialogs that walk through the merge process. In order to understand the reason
for the merge operation, we need to examine the life-cycle of a typical multi-
language project development as given below:

1. The system developers define the initial string table. The total number of
languages and the language names are defined using the Configure |
Languages dialog.

2. The String ID names and the Reference Language (English) strings are
initialized for all strings in the application using the String Table Editor.

3. The Window Builder Project file, along with the Window Builder
executable program, are distributed to translators who will each fill in PL

O
N

E-
28

BCA-118/48

one column of the string table. These translators may reside at the same
location, but could also be located all around the globe.

4. The translators return Window Builder project files to you, and the
returned project files each have one or more additional columns of the
string table filled in with translated strings.

The problem should now be obvious: The Merge operation will merge
strings for selected languages from a second project file into the current project
file. The process is actually very simple as you are guided step-by-step through
the merge process. When Window Builder performs the merge, it looks for
matching string ID names in the secondary project. For each matching string ID
name, if the selected language in the secondary project has a non-NULL string
value, that string value is copied into the current project for that specific string
ID and language.

2.8 TOOLBARS

Toolbars serve as an always-available, easy-to-use interface for
performing common functions. A toolbar is a set of icons or buttons that are part
of a software program's interface or an open window. When it is part of a
program's interface, the toolbar typically sits directly under the menu bar. For
example, Adobe Photoshop includes a toolbar that allows you to adjust settings
for each selected tool. If the paintbrush is selected, the toolbar will provide
options to change the brush size, opacity, and flow. MS Word has a toolbar with
icons that allow you to open, save, and print documents, as well as change the
font, text size, and style of the text. Like many programs, the Word toolbar can be
customized by adding or deleting options. It can even be moved to different parts
of the screen.

The toolbar can also reside within an open window. For example, web
browsers, such as Internet Explorer, include a toolbar in each open window.
These toolbars have items such as Back and Forward buttons, a Home button, and
an address field. Some browsers allow to customize the items in toolbar by right-
clicking within the toolbar and choosing "Customize..." or selecting "Customize
Toolbar" from the browser preferences. Open windows on the desktop may have
toolbars as well. For example, in Mac OS X, each window has Back and Forward
buttons, View Options, a Get Info button, and a New Folder button. You can
customize the Mac OS X window toolbars as well.

Sometimes referred to as a bar or standard toolbar, the toolbar is a row of
boxes, often at the top of an application window that control various functions of
the software. The boxes often contain images that correspond with the function
they control, as demonstrated in the image below. A toolbar often provides quick
access to functions that are commonly performed in the program. For example, a
formatting toolbar in a MS Excel gives you access to things like making text bold
or changing its alignment, along with other common buttons. In an Internet
browser, toolbars add functionality that may not come pre-installed. For example,
with the Google toolbar, you can get access to exclusive Google features.

Note: - If you are missing a window toolbar, press the Alt key on the keyboard as PL
O

N
E-

28

BCA-118/49

some programs hide the toolbar until Alt is pressed.

There are several common Computer Software Toolbars and other Bars
listed as follows.

 App Bar - Windows 8 bar.

 Bar Chart - A chart consisting of horizontal or vertical bars.

Fig. 2.5 Example of Microsoft window toolbar, menu bar, title bar

 Barcode - A series of lines that identifies an address, product, or other
information.

 Browser Toolbar - Any toolbar in an Internet browser.

 Bookmarks Bar - Bar showing frequently visited bookmarks or
favourites.

 Commands Bar - A bar that shows available commands in a program.

 Formatting Toolbar - Toolbar that shows text formatting options.

 Formula Bar - Bar in a spreadsheet program that allows you to edit a
formula.

 Menu Bar - A bar at the top of the screen that gives access to all of the
menus.

 Navigation Bar - Gives access to all navigation features in a browser.

 Places Bar - A pane that shows common places to access files.

 Progress Bar - An indicator that shows how long until something is
completed.

 Scroll Bar - A bar on the bottom or side of the window to scroll through a
page. PL

O
N

E-
28

BCA-118/50

 Split Bar - A bar that divides the window into multiple sections.

 Status Bar - One of the few bars at the bottom of the window that shows
the status.

 Title Bar - A bar at the very top of a window that describes the program
or window.

Apart from the software toolbars, there are some computer Hardware Bars too, for
example:

 Port Bar - A device that allows your laptop to connect to other devices.

 Spacebar - A key on a keyboard that creates a space.

CHECK YOUR PROGRESS

 What do you understand by string table?

 Write any three examples of toolbars.

2.9 SUMMARY

In Windows programming, accelerators are the keyboard shortcuts. These
are commonly used during the time of working in most of the editors like
MSWord, and Notepad, etc. For example, Ctrl + s and Ctrl + o, are used to save
and open a file respectively. Most often, programs use keyboard accelerators to
duplicate the action of common menu options, but they can also perform non-
menu functions.

A bitmap is an array of bits where one or more bits corresponds to each
display pixel. In a monochrome bitmap, each pixel requires one bit. In simple
case, 1 represents white while 0 represents black. Bitmaps are mostly used in
logical operations rather than to create simple drawings. In a color bitmap,
multiple bits are used for each pixel to represent colors. Image editor usually
supports the creation of monochrome bitmaps and 16-color bitmaps.

A dialog box is a user interface element, a type of window that is used to
enable communication and interaction between a user and a software program.
The dialog box appears when the program either needs to give the user
information in an urgent manner that involves interruption, such as when an error
occurs, or if the program requires immediate input or decision from the user, such
as when the program closes and needs to know if the changes made have to be
saved or not.

An icon is a small graphical representation of a program or file. When you
double-click an icon, the associated file or program is opened. For example, if you
double-click on the My Computer icon, it would open Windows Explorer. Icons
are a component of GUI operating systems, including Apple macOS and
Microsoft Windows. Icons help users quickly identify the type of file represented
by the icon.

PL
O

N
E-

28

BCA-118/51

A menu is a list of available options. A window’s menu bar is displayed
below the title bar. This menu bar is called main menu which is also called popup
menu or a submenu. An item in a popup menu can display another menu and son
on. Some popular menus are- file menu, edit menu, and font menu.

String tables are programming resources to hold text strings. They can be
added or edited by resource editor present in Visual Studio. String tables are
basically a list of strings which are compiled and get added in executable binary.
These strings are in UNICODE format and thus can support all international
languages like Hindi, English, Chinese, Arabic, and Hebrew, etc.

A toolbar is a set of icons or buttons that are part of a software program's
interface or an open window. When it is the part of a program's interface, the
toolbar typically sits directly under the menu bar. For example, Adobe Photoshop
includes a toolbar that allows you to adjust settings for each selected tool. If the
paintbrush is selected, the toolbar will provide options to change the brush size,
opacity, and flow.

2.10 TERMINAL QUESTIONS

1. What do you understand by accelerators? Explain its usefulness.

2. Draw the table for all available old and new accelerators.

3. Explain bitmap class and its types.

4. Compare modal and modeless dialog boxes.

5. Write a short note on types of icons.

6. Discuss most commonly used menus.

7. What do you understand by string table? Explain merging of string tables.

8. Write a short note on common computer software toolbars and other bars.

PL
O

N
E-

28

BCA-118/52

UNIT-3 VISUAL C++ PROGRAMMING

Structure

3.0 Introduction

3.1 Objectives

3.2 Basic Concepts of VC++

3.3 Object Oriented Programming

3.4 Object and Classes

3.5 VC++ Components

3.6 Resources

3.7 Event Handling

3.8 Menus

3.9 Dialog Boxes

3.10 MFC File Handling

3.11 MFC and VC++

3.12 Summary

3.13 Terminal Questions

3.0 INTRODUCTION

Microsoft Visual C++ (often abbreviated to MSVC) is an integrated
development environment (IDE) product from Microsoft for the C, C++, and
C++/CLI programming languages. MSVC is a proprietary software. It was
originally a standalone product but later became a part of Visual Studio and made
available in both trialware and freeware forms. It features tools for developing
and debugging C++ code, especially code written for the Windows API, DirectX
and .NET.

Many applications require redistributableVisual C++ runtime library
packages to function correctly. These packages are often installed independently
of applications, allowing multiple applications to make use of the package while
only having to install it once. The Visual C++ (VC++) is redistributable and
runtime packages are mostly installed for standard libraries that many applications
use. It has tools for coding and debugging visual codes. The main features of
VC++ are:

 Smart pointers

 New containers

PL
O

N
E-

28

BCA-118/53

 Expression parsing

 Polymorphism

 Exception handling

 Garbage collection

In this unit, the programming using VC++ is discussed with basic as well as some
advanced features.

3.1 OBJECTIVES

At the end of this unit you are supposed to acquire knowledge about the
following:

 Object Oriented Programming

 Objects

 Classes

 VC++ Components

 Resources

 Event Handling

 Menus

 Dialog Boxes

 MFC file handling

 MFC and VC++

3.2 BASIC CONCEPTS OF VC++

VC++ in its version 1.5 was released in December 1993. It included MFC
2.5, and added OLE 2.0 and ODBC support to MFC. It was the first version of
VC++ that came only on CD-ROM. MSVC is an IDE product from Microsoft for
the C, C++, and C++/CLI programming languages. It includes tools for
developing and debugging C++ code, especially code written for the Windows
API, DirectX and .NET. Many applications require redistributable VC++ runtime
library packages to function correctly. These packages are often installed
independently of applications, allowing multiple applications to make use of the
package while only having to install it once. These VC++ redistributable and
runtime packages are mostly installed for standard libraries that many applications
use. You can use it in an integrated development system or as individual tools.
VC++ consists of the following components:

 VC++ Compiler Tools- The compiler supports traditional native code
developers and also the developers who target virtual machine platforms
such as the common language runtime (CLR). The compiler evolved over
the years through different versions such as 2008, 2010, and 2012, etc. PL

O
N

E-
28

BCA-118/54

VC++ 2008 includes compilers to target x64 and Itanium. The compiler
continues to support targeting x86 computers directly, and optimizes
performance for both platforms.

 VC++ Libraries- These include the industry-standard Active Template
Library (ATL), the Microsoft Foundation Class (MFC) libraries, standard
libraries such as the Standard C++ Library consisting of the iostreams
library, Standard Template Library (STL), and the C Runtime Library
(CRT). The CRT includes security-enhanced alternatives to functions that
are known to pose security issues. The STL/CLR library brings STL to
managed developers. The C++ Support Library is included with new
features for data marshaling to simplify programs that target the CLR.

 VC++ Development Environment- It provides powerful support for
project management and configuration (including better support for large
projects), source code editing, source code browsing, and debugging tools.
This environment also supports IntelliSense, which makes informed,
context-sensitive suggestions as code is being authored.

VC++ comes within Microsoft Visual Studio. And usually, Visual Studio
contains Visual Basic, Visual C#, and Visual J#. Using Visual Studio, you can
mix and match languages within one "solution". Visual Studio is a programming
environment that contains all the libraries, examples, and documentation needed
to create applications for Windows. Instead of talking about programs, in Visual
Basic we talk about projects and solutions. Solutions can contain several projects
and projects typically contain multiple items or files.

3.2.1 CREATING FIRST VC++ PROGRAM

For the first VC++ program, a console mode application is made that displays a
greeting message. A console mode application is a kind of VC++ program that is
built for all exercises/assignments. Console mode programs are often simpler to
build than Windows applications. The following example will take you through
the steps of creating, building and executing a program in VC++. We first assume
that you use the built-in code editor in Visual Studio to edit your code; then we
will show you how to build and run your C++ programs that you have created
with any external editors.

3.2.1.1 HOW TO START

You can open the Visual Studio by following the steps given below.

Press Start | All Programs | Microsoft Visual Studio 2013 | Visual Studio 2013

You may also find a shortcut to Visual Studio 2013 on your desktop.

3.2.1.2 STARTING YOUR FIRST PROGRAM

If Visual Studio is being used first time, you have to select VC++
Development Settings, then click on Start Visual Studio. If you want to choose
another environment later, to the menu and click Tools\Import and Export\Reset

PL
O

N
E-

28

BCA-118/55

All Settings\Next, then you choose to save current settings or overwrite current
settings. After that you will see is the Start Page as shown in Fig. 3.1.

Fig. 3.1 Start Page

To get started on your first program, you must create a "project" that will
keep track of all the parts of your program, including the C++ source code, and
the header files, etc. Therefore, click the "Create Project" link. A "New Project"
dialog box similar to the Fig. 3.2 would appear. Now follow the steps given as
follows:

 For a Name, type a project name (e.g. "hello")

 Location, set it to your Desktop, or to your Documents\Visual Studio
2013\Projects

 Click on OK

The "Win32 Application Wizard" would appear as shown in Fig. 3.3, click on
Application Settings, uncheck both Precompiled Header and Security
Development Lifecycle (SDL) then select Empty Project. After this, click on
Finish. You will notice that it doesn't appear like anything has changed. However,
if you look at the Solution Explorer on the right-hand side you will see "Solution
‘hello’ (1 project)".

Fig. 3.2 New Project Dialog Box

PL
O

N
E-

28

BCA-118/56

Fig. 3.3 Win32 Application Wizard

To add C++ source code to this project, use following steps:

 Click on your project in the Solution Explorer

 Select Project | Add New Item... from the main menu

 Select C++ File (.cpp)

 Type in the file name: "hello.cpp" in the Name: box.

 Click on Add.

This file will be added to the hello workspace that we have just created, and a
blank document will be opened for editing.

Exercise: Type the following program in the source code editor and Save
hello.cpp after you have finished editing it.

// FILE: hello.cpp

// PURPOSE: An example of a simple I/O stream

#include <iostream>

using namespace std;

int main()

{

 char name[50];

 cout << "Please enter your name:" << endl;

 cin >> name;

 cout << "Hello, " << name << endl;

 return 0;

}

PL
O

N
E-

28

BCA-118/57

3.2.1.3 BUILDING THE HELLO PROJECT

In order to compile any code in VC++, you have to create a project first. A project
holds three major types of information:

 It remembers all of the source code files that combine together to create
one executable. In this simple example, the file hello.cpp will be the only
source file, but in larger applications you often break the code up into
several different files to make it easier to understand (and also to make it
possible for several people to work on it simultaneously). The project
maintains a list of the different source files and compiles all of them as
necessary each time you want to create a new executable.

 It remembers compiler and linker options particular to this specific
application. For example, it remembers which libraries to link into the
executable, whether or not you want to use pre-compiled headers, and so
on.

 It remembers what type of project you wish to build: a console
application, a windows application, etc.

If you are familiar with makefiles, then it is easy to think of a project as a
machine-generated makefile that has a very easy-to-understand user interface to
manipulate it.

Exercise:

 Compile the hello project by selecting BUILD | Compile from the main
menu.
It simply compiles the source file and forms the object file (hello.obj) for
it. It does not perform a link, so it is useful only for quickly compiling a
file to check for errors.

 Select BUILD | Build hello from the menu bar to link the program.
It compiles all of the source files in the project that have been modified
since the last build, and then links them to create an executable.

 Choose DEBUG | Start Without Debugging to run the program.

Fig. 3.4 Debugging PL
O

N
E-

28

BCA-118/58

If errors or warnings are displayed in the Build status window, there is
probably an error in the source file. Check your source file again for missing
semicolons, quotes, or braces. Now, we will continue using VC++ in another
project, so select File | Close Solution. This will return you to the Start Page.

3.2.2 ADVANTAGE OF OOP OVER PROCEDURE-
ORIENTED PROGRAMMING

1. OOPs makes development and maintenance easier whereas in Procedure-
Oriented programming it is not easy to manage if code grows as project
size grows.

2. OOPs provides data hiding whereas in Procedure-Oriented programming a
global data can be accessed from anywhere.

3. OOPs provide ability to simulate real-world event much more effectively.
We can provide the solution to real word problem if we are using the
Object-Oriented Programming.

3.3 OBJECT ORIENTED PROGRAMMING

Object Oriented programming is a programming style that is associated
with the concept of class, objects and various other concepts revolving around
these two like inheritance, polymorphism, abstraction, encapsulation, and data
binding, exception handling etc. The major purpose of C++ programming is to
introduce the concept of object orientation to the C programming language.

Object Oriented Programming is also called a paradigm that provides the
concepts such as encapsulation, inheritance, abstraction etc. The programming
paradigm where everything is represented as an object is known as truly or pure
object-oriented programming language like Java; on the other hand, the language
that does not represent everything as an object is not pure object oriented
language like C++. In other words, the program in C++ can be created with or
without a class. Smalltalk is considered as the first truly object-oriented
programming language.

Now, let us try to understand a little about all these, through a simple real
life example. Human beings are living forms, broadly categorized into two types,
Male and Female. It is true that every human being has two legs, two hands, two
eyes, one nose, one heart etc. There are body parts that are common for male and
female, but some specific body parts, present in a male are not present in a
female; and some body parts present in female but not in males. All human beings
can walk, eat, see, talk, hear etc. Now again, both male and female, performs
some common functions, but there are some specifics to both, which is not valid
for the other. For example: A female can give birth, while a male cannot, so this is
only for the female. Human anatomy is an interesting area. But let us see how all
this is related to C++ and OOPS. Here we will try to explain all the OOPS
concepts through this example and later we will have the technical definitions for
all this.

PL
O

N
E-

28

BCA-118/59

3.3.1 OBJECT ORIENTED PROGRAMMING CONCEPTS

Class - Here we can consider Human Being as a class. A class is a blueprint for
any functional entity which defines its properties and its functions. Like Human
Being, having body parts, and performing various actions. Moreover, it is similar
to structure and union in C language. Class can also be defined as user defined
data type but it also contains functions in it. So, class is basically a blueprint for
object. It declares & defines what data variables the object will have and what
operations can be performed on the class's object.

Object - My name is Krishan, and I am an instance/object of class male. When
we say, Human Being, male or female, we just mean a kind, you, your friend, me,
we are the forms of these classes. We have a physical existence while a class is
just a logical definition. We are the objects. Object is everything for an object
oriented programming. Every concept(s) is/are associated with the object. The
objects are basic unit of object oriented programming. They are instances of a
class, which have data members and uses various member functions to perform
various tasks. These objects are modeled after the real life things like animals,
flowers, birds, students etc.

Encapsulation - This concept is a little tricky to explain with our example. Our
legs are binded to help us walk. Our hands, help us hold things. This binding of
the properties to functions is called Encapsulation. From programming point of
view, “Wrapping of the data and functions into a single unit is called
encapsulation.” This is to avoid the access of private data members from outside
the class. To achieve encapsulation, we make all data members of class private
and create public functions, using them we can get the values from these data
members or set the value to these data members. It is implemented using the class
or in simple words we can say that class is the real implementation of
encapsulation. It can also be said as data binding. Encapsulation is all about
binding the data variables and functions together in class.

Abstraction - Abstraction means, showcasing only the required things to the
outside world while hiding the details. Continuing our real life example of human
being; human beings can talk, walk, hear, eat, but the details about how it
happens; are hidden from the outside world. We can take our skin as the
abstraction factor in our case, hiding the inside mechanism of sensing so many
things so fast with appropriate classifications of different materials. Moreover,
abstraction refers to showing only the essential features of the application and
hiding the details. Abstraction is a process of hiding irrelevant details from user.
For example, when a person sends an sms he/she just type the message, select the
contact and click send, the phone shows that the message has been sent; but what
actually happens in background when you click send, is hidden from the sender as
it is considered as irrelevant.

In C++, classes can provide methods to the outside world to access & use
the data variables, keeping the variables hidden from direct access, or classes can
even declare everything accessible to everyone, or maybe just to the classes
inheriting it. This can be done using access specifiers. Steering of the car,
electrical switch are some other examples of real life abstraction. In C++ it can be

PL
O

N
E-

28

BCA-118/60

implemented using the pure virtual functions.

Inheritance - Considering HumanBeing a class, which has properties like hands,
legs, eyes etc, and functions like walk, talk, eat, see etc. Male and female are also
classes, but most of the properties and functions are included in Human Being,
hence they can inherit everything from class HumanBeing using the concept of
Inheritance like in teir children. More conceptually, Inheritance is a way to reuse
the code written once. The class which is inherited is called the base class & the
class which inherits is called the derived class. They are also called parent and
child class. So when, a derived class inherits a base class, the derived class can
use all the functions which are defined in the base class, hence making the code
reusable. It gives the benefit of reusability. There are five types of inheritance in
object oriented languages viz single, multiple, hierarchical, multilevel, and hybrid.

Polymorphism – Polymorphisms means one thing and many uses; it allows us to
redefine the way something works, by either changing how it is done or by
changing the parts using which it is done. Both the ways have different terms for
them. If we walk using our hands, and not legs, here we will change the parts used
to perform something. Hence this is called overloading. And if there is a defined
way of walking, but I wish to walk differently, but using my legs, like everyone
else. Then I can walk like I want, this will be called as overriding. It lets us create
functions with same name but different/same arguments as per the need, which
will perform different actions. That means, functions with same name, but
functioning in different ways. Or, it also allows us to redefine a function to
provide it with a completely new definition. You will learn how to do this in
details soon in coming lessons. It is of two types i.e. runtime and compile time
polymorphism. It can be used to increase the alternatives.

Exception Handling - Exception handling is used to handle unresolved
exceptions or errors produced at runtime. Throw and catch are two popular
keywords used in exception handling. It is a good way to avoid errors in software
development and hence avoiding risks of software fail. Normally try is the
keyword used in many languages for throwing error in the form of object and
catch to handle that object in efficient and effective manner without causing
problems at runtime.

3.4 OBJECTS AND CLASSES

Classes and Objects are basic concepts of Object Oriented Programming
which revolve around the real life entities. A class is a user defined blueprint or
prototype from which objects are created. It represents the set of properties or
methods that are common to all objects of one type.

3.4.1 OBJECTS

Object means a real word entity such as pen, chair, table etc. as shown in
Fig. 3.5. Collection of objects is called a class basically which is a logical entity.
VC++ is a multi-paradigm programming language. Meaning, it supports different
programming styles. One of the popular ways to solve a programming problem is
by creating objects, known as object-oriented style of programming. VC++ PL

O
N

E-
28

BCA-118/61

supports object-oriented style of programming which allows one to divide
complex problems into smaller sets by creating objects. Object is simply a
collection of data and functions that act on those data.

Fig. 3.5 Objects

3.4.2 CLASSES

The classes are the most important feature of C++ that leads to object
oriented programming. Class is a user defined data type, which holds its own data
members and member functions, which can be accessed and used by creating
instance of that class. The variables inside class definition are called as data
members and the functions are called member functions. For example- class of
birds; all birds can fly and they all have wings and beaks. So, here flying is a
behavior and wings and beaks are part of their characteristics. And there are many
different birds in this class with different names but they all posses this behavior
and characteristics. Similarly, class is just a blue print, which declares and defines
characteristics and behavior, namely data members and member functions
respectively. And all objects of this class will share these characteristics and
behavior. Some more information on classes is given as follows.

1. Class name should start with an uppercase letter (Although this is not
mandatory). If class name is made of more than one word, then first letter
of each word must be in uppercase. For Example:

class Student, class StudyTonight, class Birds etc.

2. Classes contain data members and member functions, and the access of
these data members and variables depend on the access specifiers e.g.
private, public, protected (which is discussed in details later.)

3. Class member functions can be defined inside the class definition or
outside the class definition.

4. Classes in C++ are similar to structures in C, the only difference being,
class defaults to private access control, where as structure defaults to
public.

5. All the features of OOPs in VC++ e.g. Inheritance, Encapsulation,
Abstraction etc. revolve around the objects and classes.

6. Objects of a class holds separate copies of data members. We can create as
many objects of a class as we need.

7. Classes do possess more characteristics such as abstract classes,
immutable classes etc. PL

O
N

E-
28

BCA-118/62

CHECK YOUR PROGRESS

 Give any two advantages of OOPs over procedure oriented
programming.

 What do you understand by encapsulation?

 What do you understand by inheritance?

3.5 VC++ COMPONENTS

VC++ consists of two complete Windows application development
systems in one product. If you choose, you can develop C-language Windows
programs using only the Win32 API. You can use many VC++ tools, including
the resource editors, to make low-level Win32 programming easier. VC++ also
includes the ActiveX Template Library (ATL), which can be used to develop
ActiveX controls for the Internet. ATL programming is neither Win32 C language
programming nor MFC programming. It is about C++ programming within the
MFC library application framework that is part of VC++. You'll be using the C++
classes documented in the VC++ MFC Library Reference and you'll also be using
application framework-specific VC++ tools such as AppWizard and ClassWizard.

Note: - Use of the MFC library programming interface doesn't cut you off from
the Win32 functions. In fact, you'll almost always need some direct Win32 calls in
your MFC library programs.

A quick run-through of the VC++ components will help you to get your
bearings in the application framework. Fig. 3.6 shows an overview of the VC++
application build process.

Fig. 3.6 Application Building Process in VC++

(source: https://www.tenouk.com/visualcplusmfc/visualcplusmfc1.html)

PL
O

N
E-

28

BCA-118/63

If you have used earlier versions of VC++ or another vendor's IDE, you
already understand how VC++ operates. But if you are new to IDEs, you will
need to know what a project is. Basically, a project is a collection of interrelated
source files that are compiled and linked to make up an executable Windows-
based program or a DLL. Source files for each project are generally stored in a
separate subdirectory. A project depends on many files outside the project
subdirectory too, such as include files and library files.

Experienced programmers are familiar with makefiles. A makefile stores
compiler and linker options and expresses all the interrelationships among source
files. A source code file needs specific include files, certain object modules, and
libraries, and so forth. A make program reads the makefile and then invokes the
compiler, assembler, resource compiler, and linker to produce the final output,
which is generally an executable file. The make program uses built-in inference
rules that tell it to invoke the compiler to generate an OBJ file from a specified
CPP file.

In a VC++ 6.0 (or VC6 in short) project, there is no makefile (with an
MAK extension) unless you tell the system to export one. A text-format project
file (with a DSP extension) serves the same purpose. A separate text-format
workspace file (with a DSW extension) has an entry for each project in the
workspace. It is possible to have multiple projects in a workspace. To work on an
existing project, you need to tell VC++ to open the DSW file and then you can
edit and build the project. VC++ creates some intermediate files too. Table 3.1
lists the files that VC++ generates in the workspace.

Table 3.1 Files in the Workspace

File Extension Description

APS Supports ResourceView

BSC Browser information file

CLW Supports ClassWizard

DEP Dependency file

DSP Project file*

DSW Workspace file*

MAK External makefile

NCB Supports ClassView

OPT Holds workspace configuration

PLG Builds log file

PL
O

N
E-

28

BCA-118/64

Note: DSP and DSW are two important file extensions used for project and
workspace respectively.

3.5.1 THE RESOURCE EDITORS—WORKSPACE
RESOURCEVIEW

When you click on the ResourceView tab in VC++ workspace window,
you can select a resource for editing. The main window hosts a resource editor
appropriate for the resource type. The window can also host a wysiwyg editor for
menus and a powerful graphical editor for dialog boxes, and it includes tools for
editing icons, bitmaps, and strings. The dialog editor allows you to insert ActiveX
controls in addition to standard Windows controls and the new Windows common
controls.

Each project usually has one text-format resource script (RC) file that
describes the project's menu, dialog, string, and accelerator resources. The RC file
also has #include statements to bring in resources from other subdirectories.
These resources include project-specific items, such as BMP and icon (ICO) files,
and resources common to all VC++ programs, such as error message strings.
Editing the RC file outside the resource editors is not recommended. The resource
editors can also process EXE and DLL files, so you can use the clipboard to
"steal" resources, such as bitmaps and icons, from other Windows applications.

3.5.2 THE C/C++ COMPILER

The VC++ compiler can process both C and C++ source code. It
determines the language by looking at the source code's filename extension. A C
extension indicates C source code, and CPP or CXX indicates C++ source code.
The compiler is compliant with all ANSI standards, including the latest
recommendations of a working group on C++ libraries, and has additional
Microsoft extensions. Templates, exceptions, and runtime type identification
(RTTI) are fully supported in VC++ version 6.0. The C++ Standard Template
Library (STL) is also included, although it is not integrated into the MFC library.

3.5.3 THE SOURCE CODE EDITOR

VC++ 6.0 includes a sophisticated source code editor that supports many
features such as dynamic syntax coloring, auto-tabbing, keyboard bindings for a
variety of popular editors (such as VI and EMACS), and pretty printing. An
exciting new feature named AutoComplete has been added. If you have used any
of the Microsoft Office products or Microsoft Visual Basic, you might already be
familiar with this technology. Using the VC++ 6.0 AutoComplete feature, all you
have to do is type the beginning of a programming statement and the editor would
provide you with a list of possible completions to choose from. This feature is
extremely handy when you are working with C++ objects and have forgotten an
exact member function or data member name— they are all there in the list for
you. You no longer have to memorize thousands of Win32 APIs or rely heavily
on the online help system.

PL
O

N
E-

28

BCA-118/65

3.5.4 THE RESOURCE COMPILER

Resource Compiler (rc) - a tool that compiles resources such as icons,
cursors, menus, and dialog boxes, that your application uses. You add the
resulting binary resource file to the application's binary file to produce an
executable Windows 3.x application. Moreover, it is a tool used in building
Windows-based applications. This overview describes how to create a resource-
definition (script) file, how to compile your application's resources, and how to
add compiled resources to your application. This tool is available in Visual Studio
and the Microsoft Windows Software Development Kit (SDK). It Resource
compiler reads an ASCII RC file from the resource editors and writes a binary
RES file for the linker.

3.5.5 THE LINKER

The linker reads the OBJ file produced by the C/C++ compiler, RES file
generated by the resource compiler, LIB files for MFC code, runtime library code,
and Windows code. It then writes the project's EXE file. An incremental link
option minimizes the execution time when only minor changes have been made to
the source files. The MFC header files contain #pragma statements (special
compiler directives) that specify the required library files, so you don't have to tell
the linker explicitly which libraries to read.

3.5.6 THE DEBUGGER

If your program executes first time, you don't need the debugger. The rest
of us might need one from time to time. The VC++ debugger has been steadily
improving, but it doesn't actually fix the bugs yet. The debugger works closely
with VC++ to ensure that breakpoints are saved on disk. Toolbar buttons insert
and remove breakpoints and control single-step execution. Note that the Variables
and Watch windows can expand an object pointer to show all data members of the
derived class and base classes. If you position the cursor on a simple variable, the
debugger shows you its value in a small window. To debug a program, you must
build the program with the compiler and linker options set to generate debugging
information.

VC++ 6.0 adds a new twist to debugging with the Edit And Continue
feature. Edit And Continue lets you debug an application, change the application,
and then continue debugging with the new code. This feature dramatically reduces
the amount of time you spend debugging because you no longer have to manually
leave the debugger, recompile, and then debug again. To use this feature, simply
edit any code while in the debugger and then hit the continue button. VC++ 6.0
automatically compiles the changes and restarts the debugger for you.

3.5.7 APPWIZARD

AppWizard is a code generator that creates a working skeleton of a
Windows application with features, class names, and source code filenames that
you specify through dialog boxes. Don't confuse AppWizard with older code PL

O
N

E-
28

BCA-118/66

generators that generate all the code for an application. The functionality is inside
the application framework base classes. AppWizard gets you started quickly with
a new application. Advanced developers can build custom AppWizards.
Microsoft Corporation has exposed its macro-based system for generating
projects. If you discover that your team needs to develop multiple projects with a
telecommunications interface, you can build a special wizard that automates the
process.

3.5.8 CLASSWIZARD

ClassWizard is a program (implemented as a DLL) that is accessible from
VC++ View menu. ClassWizard takes the hard work out of maintaining VC++
class code. ClassWizard writes the prototypes, the function bodies, and the code
to link the Windows message to the function (if necessary). ClassWizard can
update class code that you write, so you avoid the maintenance problems common
to ordinary code generators.

3.5.9 THE SOURCE BROWSER

If you write an application from scratch, you probably have a good mental
picture of your source code files, classes, and member functions. If you take over
someone else's application, you'll need some assistance. The VC++ Source
Browser (the browser, for short) lets you examine (and edit) an application from
the class or function viewpoint instead of from the file viewpoint. It is a little like
the "inspector" tools available with object-oriented libraries such as Smalltalk.
The browser has the following viewing modes:

1. Definitions and References: You select any function, variable, type,
macro, or class and then see where it's defined and used in your project.

2. Call Graph/Callers Graph: For a selected function, you see a graphical
representation of the functions it calls or the functions that call it.

3. Derived Classes and Members/Base Classes and Members: These are
graphical class hierarchy diagrams. For a selected class, you see the
derived classes or the base classes plus members. You can control the
hierarchy expansion with the mouse.

4. File Outline: For a selected file, the classes, functions, and data members
appear together with the places in which they're defined and used in your
project.

3.5.10 ONLINE HELP

In VC++ 6.0, the help system has been moved to a separate application
named the MSDN Library Viewer. This help system is based on HTML. Each
topic is covered in an individual HTML document, then all topics are combined
into indexed files. The MSDN Library Viewer uses code from Microsoft Internet
Explorer 4.0, so it works like the Web browser you already know. MSDN Library
can access the help files from the VC++ CD-ROM (the default installation option)

PL
O

N
E-

28

BCA-118/67

or from your hard disk, and it can access HTML files on the Internet. VC++ 6.0
allows to access help in four ways:

1. By book: When you choose Contents from Help menu, the MSDN Library
application switches to a contents view. Here Visual Studio, VC++,
Win32 SDK documentation, and more is organized hierarchically by
books and chapters.

2. By topic: When you choose Search from VC++ Help menu, it
automatically opens the MSDN Library Viewer. You can then select the
Index tab, type a keyword, and see the topics and articles included for that
keyword.

3. By word: When you choose Search from VC++ Help menu, it invokes the
MSDN Library with the Search tab active. With this tab active, you can
type a combination of words to view articles that contain those words.

4. F1 help: This is the programmer's best friend. Just move the cursor inside
a function, macro, or class name, and then press the F1 key and the help
system goes to work. If the name is found in several places—in the MFC
and Win32 help files, for example—you choose the help topic you want
from a list window.

3.5.11 WINDOWS DIAGNOSTIC TOOLS

VC++ 6.0 contains a number of useful diagnostic tools. The SPY++ tool
gives you a tree view of your system's processes, threads, and windows. It also
lets you view messages and examine the windows of running applications. You
find PVIEW (PVIEW95 for Windows 95) tool useful for killing errant processes
that aren't visible from the Windows 95 task list. The Windows NT Task
Manager, which you can run by right-clicking the toolbar, is an alternative to
PVIEW. VC++ also includes a whole suite of ActiveX utilities, an ActiveX
control test program (now with full source code in VC++ 6.0), the help workshop
(with compiler), a library manager, binary file viewers and editors, a source code
profiler, and other utilities.

3.5.12 SOURCE CODE CONTROL

During development of VC++ 5.0, Microsoft bought the rights to an
established source code control product named SourceSafe. This product has since
been included in the Enterprise Edition of VC++ and Visual Studio Enterprise,
and it is integrated into VC++ so that one can coordinate large software projects.
The master copy of the project's source code is stored in a central place on the
network, and programmers can check out modules for updates. These checked-out
modules are usually stored on the programmer's local hard disk. After a
programmer checks in modified files, other team members can synchronize their
local hard disk copies to the master copy. Other source code control systems can
also be integrated into VC++.

PL
O

N
E-

28

BCA-118/68

3.5.13 THE GALLERY

The VC++ Components and Controls Gallery lets you share software
components among different projects. The Gallery manages three types of
modules:

 ActiveX Controls: When you install an ActiveX control (OCX—formerly
OLE control), an entry is made in the Windows Registry. All registered
ActiveX controls appear in the Gallery's window, so you can select them
in any project.

 Source Modules: When you write a new class, you can add the code to the
Gallery. The code can then be selected and copied into other projects. You
can also add resources to the Gallery.

 Components: The Gallery can contain tools that let you add features to
your project. Such a tool could insert new classes, functions, data
members, and resources into an existing project. Some component
modules are supplied by Microsoft (Idle time processing, Palette support,
and Splash screen, for example) as part of VC++. Others will be supplied
by third-party software firms.

3.6 RESOURCES

Apart from framework all other objects in a windows are treated as
resources. A separate .rc file holds the description of the resource. Resource
compiler which is required to built into VC++ IDE and called automatically when
a project has resources included. A resource is a text file that allows the compiler
to manage objects such as pictures, sounds, mouse cursors, dialog boxes, etc.
Microsoft Visual Studio makes creating a resource file particularly easy by
providing the necessary tools in the same environment used to program. This
means, you usually do not have to use an external application to create or
configure a resource file.

Following are some important features related to resources:

 Resources are interface elements that provide information to the user.

 Bitmaps, icons, toolbars, and cursors are all resources.

 Some resources can be manipulated to perform an action such as selecting
from a menu or entering data in dialog box.

 An application can use various resources that behave independently of
each other, these resources are grouped into a text file that has the *.rc
extension.

 Most resources are created by selecting the desired one from the Add
Resource dialog box.

 The Add Resource dialog box (Fig. 3.7) provides an extensive list of
resources which can be used as per requirements, but if you need
something which is not available then you can add it manually to the *.rc
file before executing the program. PL

O
N

E-
28

BCA-118/69

Fig. 3.7 Adding Resource

3.6.1 IDENTIFIERS

An identifier is a symbol which is a constant integer whose name usually
starts with ID. It consists of two parts − a text string (symbol name) mapped to an
integer value (symbol value).

 Symbols provide a descriptive way of referring to resources and user-
interface objects, both in your source code and while you're working with
them in the resource editors.

 When you create a new resource or resource object, the resource editors
provide a default name for the resource, for example, IDC_DIALOG1,
and assign a value to it.

 The name-plus-value definition is stored in the Resource.h file.

 3.6.2 Icons

 An icon is a small picture used on a window which represents an
application. It is used in two main scenarios.

 On a window's frame, it is displayed on the left side of the window name
on the title bar.

 In Windows Explorer, on the desktop, in My Computer, or in the Control
Panel window.

3.6.3 TOOLBARS

A toolbar is a Windows control that allows the user to perform some
actions on a form by clicking a button instead of using a menu. It has the
following features:

 A toolbar provides a convenient group of buttons that simplifies the user's
job by bringing the most accessible actions as buttons.

PL
O

N
E-

28

BCA-118/70

 A toolbar can bring such common actions closer to the user.

 Toolbars usually display under the main menu.

 They can be equipped with buttons but sometimes their buttons or some
of their buttons have a caption.

 Toolbars can also be equipped with other types of controls.

3.7 EVENT HANDLING

An event is a message sent by an object within a program to the main
program loop, informing it that something has happened. An application is made
of various objects. Most of the time, more than one application run on the
computer and the operating system is constantly asked to perform some
assignments. Because there can be so many requests presented unpredictably, the
operating system leaves it up to the objects to specify what they want, when they
want it, and what behavior or result they expect. Event handling is necessary
because of the following:

 The Microsoft Windows operating system cannot predict what kinds of
requests one object would need to take care of and what type of
assignment another object would need.

 To manage all these assignments and requests, the objects send messages.

 Each object has the responsibility to decided what message to send and
when.

 In order to send a message, a control must create an event.

 To make a distinction between the two, a message name usually starts
with WM_ which stands for Window Message.

 The name of an event usually starts with symbols that indicate an action.

 The event is the action of sending the message.

 Since Windows is a message-oriented operating system, a large portion of
programming for the Windows environment involves message handling.
Each time an event such as a keystroke or mouse click occurs, a message
is sent to the application, which must then handle the event.

 For the compiler to manage messages, they should be included in the
class definition.

 The DECLARE_MESSAGE_MAP macro should be provided at the end of
the class definition as shown in the following code.

class CMainFrame : public CFrameWnd {

 public:

CMainFrame();

protected:

DECLARE_MESSAGE_MAP()

}; PL
O

N
E-

28

BCA-118/71

 The actual messages should be listed just above the
DECLARE_MESSAGE_MAP line.

 To implement the messages, you need to create a table of messages that
your program is using.

 This table uses two delimiting macros; Its starts with a
BEGIN_MESSAGE_MAP and ends with an END_MESSAGE_MAP
macros.

CHECK YOUR PROGRESS

 Define class wizard.

 What do you understand by a resource?

 Discuss the role of events in Windows programming.

3.8 MENUS

Menus allow you to arrange commands in a logical and easy-to-find
fashion. With the Menu editor, you can create and edit menus by working directly
with a menu bar that closely resembles the one in your finished application. To
create a menu, follow the steps given below

Step 1− Right-click on your project and select Add → Resources. You will see
the Add Resources dialog box (Fig. 3.8).

Fig. 3.8 Adding Resource

Step 2− Select Menu and click New. You will see the rectangle that contains
"Type Here" on the menu bar (Fig 3.9).

PL
O

N
E-

28

BCA-118/72

Fig. 3.9 Type Here on the Menu Bar

Step 3− Write some menu options like File, Edit, etc. as shown in the following
snapshot. (Fig. 3.10)

Fig. 3.10 Menu Options

Step 4− If you expand the Menu folder in Resource View, you will see the Menu
identifier IDR_MENU1. Right-click on this identifier and change it to
IDM_MAINMENU. (Fig. 3.11)

PL
O

N
E-

28

BCA-118/73

Fig. 3.11 Menu Identifier

Step 5− Save all the changes.

Step 6− We need to attach this menu to our dialog box. Expand your Dialog
folder in Solution Explorer and double click on the dialog box identifier.

Fig. 3.12 MFCModalDemo

Step 7− You will see the menu field in the Properties. Select the Menu identifier
from the dropdown as shown above (Fig. 3.12).

Step 8− Run this application and you will see the following dialog box (Fig.
3.13) which also contains menu options.

PL
O

N
E-

28

BCA-118/74

Fig. 3.13 Dialog Box Containing Menu Options

3.9 DIALOG BOXES

Applications for Windows frequently communicate with the user through
dialog boxes. CDialog class provides an interface for managing dialog boxes.
The VC++ dialog editor makes it easy to design dialog boxes and create their
dialog-template resources.

Creating a dialog object is a two-phase operation −

 Construct the dialog object.

 Create the dialog window.

Let us look into a simple example by creating a new Win32 project.

Step 1− Open the Visual studio and click on the File → New → Project menu
option.

Step 2− You can now see the New Project dialog box.

Fig. 3.14 New Project

PL
O

N
E-

28

BCA-118/75

Step 3− From the left pane, select Templates → VC++ → Win32.

Step 4− In the middle pane, select Win32 Project.

Step 5− Enter project name ‘MFCDialogDemo’ in the Name field and click OK
to continue.

You will see the following dialog.

Step 6– Now Click Next.

Fig. 3.15 (a) Application Wizard

Fig. 3.15 (b) Application Wizard

Step 7− Select the options shown in the dialog box given above and click Finish.

Step 8− An empty project is created (Fig. 3.16). PL
O

N
E-

28

BCA-118/76

Fig. 3.16 Empty Project

Step 9− To make it a MFC project, right-click on the project and select
Properties.

Step 10− In the left section, click Configuration Properties → General.

Step 11− Select the Use MFC in Shared DLL option in Project Defaults section
and click OK.

Fig. 3.17 Property Pages

Step 12− Add a new source file.

(For Step 13-15, See Fig 3.18)

Step 13− Right-click on your Project and select Add → New Item.

Step 14− In the Templates section, click C++ File (.cpp)

Step 15− Set the Name as Example and click Add.

Step 16− To create an application, we need to add a class and derive it from the
MFC's CwinApp. PL

O
N

E-
28

BCA-118/77

Fig. 3.18 Add New Item

3.10 MFC FILE HANDLING

The Microsoft Foundation Class (MFC) Library is a collection of classes
(generalized definitions used in object-oriented programming) that can be used in
building application programs. The classes in the MFC Library are written in
the C++ programming language. The MFC Library saves a programmer time by
providing code that has already been written. It also provides an overall
framework for developing the application program. There are MFC Library
classes for all GUI elements (windows, frames, menus, tool bars, status bars, and
so forth), for building interfaces to databases, for handling events such as
messages from other applications, for handling keyboard and mouse input, and for
creating ActiveX controls.

3.10.1 DRIVES

A drive is a physical device attached to a computer so it can store
information. A logical disk, logical volume or virtual disk (vdisk for short) is a
virtual device that provides an area of usable storage capacity on one or more
physical disk drive(s) in a computer system. A drive can be a hard disk, a CD
ROM, a DVD ROM, a flash (USB) drive, a memory card etc. One of the primary
operations you might want to perform is to get a list of drives on the computer.

Let us look into a simple example by creating a new MFC dialog based
application.

Step 1− Drag one button from the toolbox, change its Caption to Get Drives Info.

Step 2− Remove the Caption of Static control (TODO line) and change its ID to
IDC_STATIC_TEXT.

Step 3 − Right-click on the button and select Add Event Handler.

Step 4− Select the BN_CLICKED message type and click the Add and Edit
button.

Step 5− Add the value variable m_strDrives for Static Text control. PL
O

N
E-

28

BCA-118/78

To support drives on a computer, the Win32 library provides the
GetLogicalDrives() function of Microsoft Windows, which retrieves a list of all
drives on the current computer.

Step 6− When the above code is compiled and executed, you see the following
output.

Step 7 − When you click the button, you can see all the drives on your computer.

3.10.2 DIRECTORIES

In computing, a directory is a file system cataloging structure which
contains references to other computer files, and possibly other directories.
Directory is a physical location. It can handle operations not available on a drive.
Let us look into a simple example by creating a new MFC dialog based
application

Step 1− Drag three buttons from the toolbox. Change their Captions to Create
Directory, Delete Directory, and Move Directory.

Step 2− Change the IDs of these buttons to IDC_BUTTON_CREATE,
IDC_BUTTON_DELETE, and IDC_BUTTON_MOVE.

Step 3− Remove the TODO line.

Step 4− Add event handler for each button.

Step 5− To create a directory, you can call the CreateDirectory() method of the
Win32 library.

Step 6− There is a Create button event handler implementation in which we will
create one directory and then two more sub directories.

Step 7− To get rid of a directory, you can call the RemoveDirectory() function of
the Win32 library. Here is the implementation of delete button event handler.

Step 8− If you want to move a directory, you can also call the same MoveFile()
function. Here is the implementation of move button event handler in which we
will create first new directory and then move the Dir2 to that directory.

Step 9− When the above code is compiled and executed, output will be displayed.

Step 10− When you click the Create Directory button, it will create these
directories.

Step 11− When you click on Delete Directory button, it will delete the Dir1.

3.10.3 FILE PROCESSING

The most of the file processing in an MFC application is performed in
conjunction with a class named CArchive. The CArchive class serves as a relay
between the application and the medium used to either store data or make it
available. It allows you to save a complex network of objects in a permanent
binary form (usually disk storage) that persists after those objects are deleted.

PL
O

N
E-

28

BCA-118/79

3.11 MFC AND VC++

MFC is a large and extensive C++ class hierarchy that makes Windows
application development significantly easier. MFC is compatible across the entire
Windows family. As each new version of Windows comes out, MFC gets
modified so that old code compiles and works under the new system. MFC also
gets extended, adding new capabilities to the hierarchy and making it easier to
create complete applications.

The advantage of MFC and C++ as opposed to directly accessing the
Windows API from a C program is that MFC already contains and encapsulates
all the normal "boilerplate" code that all Windows programs written in C must
contain. Programs written in MFC are therefore much smaller than equivalent C
programs. On the other hand, MFC is a fairly thin covering over the C functions,
so there is little or no performance penalty imposed by its use. It is also easy to
customize things using the standard C calls when necessary since MFC does not
modify or hide the basic structure of a Windows program. The best part about
using MFC is that it does all of the hard work for you. The hierarchy contains
thousands and thousands of lines of correct, optimized and robust Windows code.
Many of the member functions that you call invoke code that would have taken
you weeks to write yourself. In this way MFC tremendously accelerates your
project development cycle.

MFC is fairly large. For example, Version 4.0 of the hierarchy contains
something like 200 different classes. Fortunately, you don't need to use all of
them in a typical program. In fact, it is possible to create some fairly spectacular
software using only ten or so of the different classes available in MFC. The
hierarchy is broken into several different class categories which include:

 Application Architecture

 Graphical Drawing and Drawing Objects

 File Services

 Exceptions

 Structures - Lists, Arrays, Maps

 Internet Services

 OLE 2

 Database

 General Purpose

CHECK YOUR PROGRESS

 Write the steps to create a menu.

 How dialog box can be created?

 What is the role of VC++ in MFC?

PL
O

N
E-

28

BCA-118/80

3.12 SUMMARY

Normally VC++ comes within Microsoft Visual Studio. Visual Studio
also contains Visual Basic, Visual C#, and Visual J#. Using Visual Studio, one
can mix and match languages within a "solution". VC++ is a programming
environment that contains all the libraries, examples, and documentation needed
to create applications for Windows. Instead of talking about programs, it is talked
about project and solution. Solutions can contain several projects and projects
typically contain multiple items or files.

Object means a real word entity such as pen, chair, table etc. Collection of
objects is called a class. It is a logical entity. VC++ is a multi-paradigm
programming language. Meaning, it supports different programming styles. One
of the popular ways to solve a programming problem is by creating objects,
known as object-oriented style of programming.

The classes are the most important features of C++ that leads to Object
Oriented programming. Class is a user defined data type, which holds its own
data members and member functions, which can be accessed and used by creating
instance of that class. The variables inside class definition are called as data
members and the functions are called member functions.

Each project usually has one text-format resource script (RC) file that
describes the project's menu, dialog, string, and accelerator resources. The RC
file also contains #include statements to bring in resources from other
subdirectories. These resources include project-specific items, such as bitmap
(BMP) and icon (ICO) files, and resources common to all VC++ programs, such
as error message strings.

The VC++ debugger has been steadily improving, but it doesn't actually
fix the bugs yet. The debugger works closely with Visual C++ to ensure that
breakpoints are saved on disk. ClassWizard is a program (implemented as a DLL)
that's accessible from VC++'s View menu. ClassWizard takes the drudgery out of
maintaining VC++ class code. VC++ 6.0 contains a number of useful diagnostic
tools. For example, SPY++ gives a tree view of system's processes, threads, and
windows. It also let view messages and examine the windows of running
applications.

Apart from framework all other objects in a windows are teated as
resources. A separate .rc file holds the description of the resource. Resource
compiler which is required to built into VC++ IDE and called automatically when
a project has resources included. A resource is a text file that allows the compiler
to manage objects such as pictures, sounds, mouse cursors, dialog boxes, etc.

An event is a message sent by an object within a program to the main
program loop, informing it that something has happened. An application is made
of various objects. Most of the time, more than one application is running on the
computer and the operating system is constantly asked to perform some
assignments. Menus allow to arrange commands in a logical and easy-to-find
fashion. With the Menu editor, menus can be created and edited by working
directly with a menu bar that closely resembles the one in the finished
application. PL

O
N

E-
28

BCA-118/81

Applications for Windows frequently communicate with the user through
dialog boxes. CDialog class provides an interface for managing dialog boxes. The
VC++ dialog editor makes it easy to design dialog boxes and create their dialog-
template resources.

Most of the file processing in an MFC application is performed in
conjunction with a class named CArchive. The CArchive class serves as a relay
between the application and the medium used to either store data or make it
available. It allows to save a complex network of objects in a permanent binary
form (usually disk storage) that persists after the deleted objects.

3.13 TERMINAL QUESTIONS

1. What do you understand by object oriented language? Explain its features.

2. Explain VC++ components briefly.

3. Compare procedure oriented language over object oriented.

4. Explain some characteristics of a class.

5. Write a short note on resources.

6. Describe the term dialog box and its creation in VC++.

7. Discuss the steps to create menus.

8. What do you understand by event? Explain event handling.

9. Write a short note on file handling.

PL
O

N
E-

28

BCA-118/82

Bachelor in Computer
Application

BCA-118

Windows Programming

BLOCK

2
VISUAL BASIC PROGRAMMING

UNIT-4

Windows Programming

UNIT-5

Working with Controls

UNIT-6

Dialog Boxes and Internet

Uttar Pradesh Rajarshi Tandon
Open University

PL
O

N
E-

28

BCA-118/83

Course Design Committee

Prof. Ashutosh Gupta

Director

School of Science, UPRTOU Prayagraj

Prof. Suneeta Agarwal

Dept. of Computer Science & Engineering

Motilal Nehru National Institute of Technology, Allahabad, Prayagraj

Dr. Upendra Nath Tripathi

Associate Professor

Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur

Dr. Ashish Khare

Associate Professor

Dept. of Computer Science, University of Allahabad, Prayagraj

Ms. Marisha

Assistant Professor (Computer Science)

School of Science, UPRTOU Prayagraj

Mr. Manoj Kumar Balwant

Assistant Professor (Computer Science)

School of Sciences, UPRTOU Prayagraj

Course Preparation Committee

Dr. Krishan Kumar Author

Assistant Professor

Department of Computer Science,

Gurukula Kangri Vishwavidyalaya Haridwar (UK)

Dr. Brajesh Kumar Editor

Associate Professor, Dept. of CS & IT

M.J.P Rohilkahand University, Bareilly, Uttar Pradesh

Prof. Ashutosh Gupta Director (In-Charge)

School of Computer & Information Sciences

UPRTOU Prayagraj

Mr. Manoj Kumar Balwant Coordinator

Assistant Professor (computer science)

School of Sciences, UPRTOU Prayagraj

©UPRTOU, Prayagraj - 2020
ISBN :

©All Rights are reserved. No part of this work may be reproduced in any form, by
mimeograph or any other means, without permission in writing from the Uttar Pradesh
Rajarshi Tondon Open University, Prayagraj.
Printed and Published by Dr. Arun Kumar Gupta Registrar, Uttar Pradesh Rajarshi
Tandon Open University, 2020.

Printed By : Chandrakala Universal Pvt. 42/7 Jawahar Lal Neharu Road, Prayagraj.

PL
O

N
E-

28

BCA-118/84

BLOCK INTRODUCTION

Unit 4 describes about the Visual Basic programming concepts. Firstly, it
explains the history/evolution of Visual Basic thereafter it deals with the basic
building features like variables, data types, decision making, procedures, looping,
events, functions, modules etc. It also includes the difference between the C++
and VB. After going through this unit it would be able to make the programs in
Visual Basic easily and in less time. This unit focused on Visual Basic 6.0.

Unit 5 describes about the controls available in control/tool box and other
custom controls. It also tells about the creation and use of controls. This unit
basically describes about the controls of Visual Basic like Text box, Command
Buttons, List boxes, Combo Boxes, Picture box, Image Control, Shape Controls,
Timer, Scrollbars, Frames, Checkboxes, Option Boxes, Frames, File, Drive and
Directory List boxes, RichTextBox, Tree View Control, List view Control,
Progessbar, Menus, Grid Controls. For the creation of all controls normally two
ways have been discussed.

Unit 6 explains about the relation between Visual Basic and Internet.
Moreover, it describes about the Model and Modeless dialog boxes. As we know
that dialog boxes are the main components of Windows programming. These
modal and modeless are the two important dialog boxes used in event-driven
programming. Furthermore, it explains Common Dialog Controls viz Message
Dialog Box, Save as dialog box, Font dialog box, File dialog box, Print Dialog
box.

 PL
O

N
E-

28

BCA-118/85

PL
O

N
E-

28

BCA-118/86

UNIT-4 WINDOWS PROGRAMMING

Structure

4.0 Introduction

4.1 Objectives

4.2 Introduction to Visual Basic

4.3 Important Windows

4.4 Variables

4.5 Data Types

4.6 Decision Making

4.7 Operators

4.8 Loops

4.9 Procedure in Visual Basic

4.10 Visual Basic Code Module

4.11 Summary

4.12 Terminal Questions

4.0 INTRODUCTION

This unit basically describes the Visual Basic (VB) programming concepts
in simple way. VB, is a programming language developed by Microsoft, is
commonly used to develop Windows-based applications. It is event-driven
programming language and very easy to use and understand, it provides various
tools to create applications and software easily and quickly. It is based on events
and hence known as event driven programming language. Event driven means the
code is only executed when an event occurs. Almost all applications for Windows
are event driven, for example nothing happens in any program in Windows until
one clicks a menu or type a text or press enter to submit the command or query
like. All actions made by user or any i/o devices are called events.

The most popular version of VB is 6.0. It is a good language to make the
programming concepts more strong. After reading this unit it could be easy to
understand fundamental concepts of VB. It is a popular language for some years.
Still it is very useful and widely used. Especially it is a boon for the beginners.
Applications can be easily developed using the VB in very less time and without
writing too much code. It provides the basic programming concepts and
techniques that the most other languages normally provide. VB was derived from
BASIC (Beginners All-purpose Symbolic Instruction Code). BASIC was PL

O
N

E-
28

BCA-118/87

developed in 1960 by Professor John Kemeny and Thomas Kurtz. The purpose
of BASIC was to provide an easy programming language for Windows
Applications. Microsoft designed VB in 1991 and released its many versions time
to time. But out of all the versions VB 6.0 is very famous due to some reasons
that will be discussed in detail in subsequent sections. The latest version is Visual
Basic.net or VB.Net.

VB is configured in many editions to make it fit for all types of
developers. There are three different type of versions as follows.

1) Learning Edition: Learning edition is released for the students/learners.
It is equipped with all basic controls and tools to get started.

2) Professional Edition: This version is for developers who already have
programming experience. Learning Edition, controls, and wizards are
included.

Enterprise Edition: Enterprise edition is for the advanced developers or
software personnel. In this edition, more number of controls, tools and functions
are included to perform advance database operations.

4.1 OBJECTIVES

At the end of this unit you will be able to understand the following:

 Integrated Development Environment (IDE)

 Object based language

 Object oriented language

 Data types in VB

 Variables

 Decision making

 Loops

 Functions

 Modules

4.2 INTRODUCTION TO VISUAL BASIC

Visual Basic (VB) is a programming language and development
environment created by Microsoft. It is an extension of the BASIC programming
language that combines BASIC functions and commands with visual controls.
Visula Basic provides a graphical user interface GUI that allows the developer to
drag and drop objects into the program as well as manually write program code.
It, also referred to as "VB," is designed to make software development easy and
efficient, while still being powerful enough to create advanced programs. For
example, the Visual Basic language is designed to be "human readable," which
means the source code can be understood without requiring lots of comments. The

PL
O

N
E-

28

BCA-118/88

VB program also includes features like "IntelliSense" and "Code Snippets," which
automatically generate code for visual objects added by the programmer. Another
feature, called "AutoCorrect," can debug the code while the program is running.

Programs created with VB can be designed to run on Windows, on
the Web, within Office applications, or on mobile devices. Visual Studio, the
most comprehensive VB development environment, or IDE, can be used to create
programs for all these mediums. Visual Studio .NET provides development tools
to create programs based on the .NET framework, such as ASP.NET applications,
which are often deployed on the Web. Finally, Visual Basic is available as a
streamlined application that is used primarily by beginning developers and for
educational purposes.

4.2.1 HISTORY

Visual Basic (VB) is a High Level Language having Object Oriented RAD
(Rapid Application Development) environment for Windows operating system.
The First version of VB was written for Windows 3.0, but it was largely accepted
till version 3.1 of Windows. VB programming is Event–Driven, where user
selects different objects according to their use in common interface known as
Form. The Programmer can generate different actions associated with objects to
trigger codes to perform some action as call of procedures, and functions, etc.

VB has several advancements according to computational growth. In 1991
VB 1.0 was introduced for Windows, which had features of connecting GUI to
programming. It was originally developed by Alan Cooper and his associative
developers for Windows. In September 1992, VB 1.0 for DOS was released,
which was also compatible with Windows. In November 1992, VB 2.0 was
introduced that provided better programming environment with better
performance. In 1993, VB 3.0 was released, which had functionality of database
connectivity with MS Access database. In August 1995, VB 4.0 was introduced,
which had features of writing classes. In February 1997, VB 5.0 was released for
32-bit Windows operating system. The programs written in VB 5.0 were
interoperable with version 4.0 and vice versa. In 1998, VB 6.0 was released
having features of web development supporting Internet Explorer. The web based
applications could be developed swith this version.

4.2.2 CHARACTERISTICS OF VB

GUI: Visual Basic is a GUI based language. This means that a Visual Basic
program always shows something on the screen that the user can interact with to
get a job done.

Modularization: The Visual Basic supports concept of modules. It is considered
a good programming practice to modularize your programs. Small modules where
it is clearly indicated what comes into the module and what goes out makes a
program easy to understand.

Object Oriented Features: Object oriented is a concept, where the programmer
thinks of the program in terms of "objects" that also interact with each other. The
Visual Basic supports these features and forces this good programming practice. PL

O
N

E-
28

BCA-118/89

Debugging: The Visual Basic offers two different options for code debugging i.e.
1) Debugging Managed Code Runtime Debugger and 2) The Debugging Managed
Code. These options debug C, C++ applications and Visual Basic Windows
applications. The Runtime Debugger in Visual Basic helps to find and fix bugs in
programs at runtime.

Data Access Feature: By using data access features, we can create databases,
scalable server-side components for most databases, including Microsoft SQL
Server and other enterprise-level databases.

Macros IDE: The Macros integrated development environment is similar in
design and function to the Visual Studio IDE. The Macros IDE includes a code
editor, tool windows, properties windows, and editors.

4.2.3 OBJECT BASED PROGRAMMING

Object based programming languages follow all principles same as object
oriented programming languages have except inheritance and polymorphism. In
VB programming environment every component such as Button, Text box, etc.,
which is visible to programmer or user is an object. The methods, actions, and
properties are associated with these objects and hence can be used for application
development. But object based languages need not to support inheritance and
polymorphism, because there is constraint on objects that they cannot invoke
actions on other objects. It has the following features:

1. Object-based language doesn't support all features of OOPs like
polymorphism and inheritance.

2. Object-based language has in-built objects like JavaScript has window
object.

3. VB is an object based language because you can use class and its objects
but cannot inherit one class into another class i.e. it does not support
inheritance.

4. Moreover, functions cannot be overloaded/overridden i.e. it does not
support polymorphism.

5. Except Visual Basic, another example of object-based language is
JavaScript.

4.2.4 BASIC CONCEPTS

The Visual Basic programming interface is also known as Integrated
Development Environment (IDE) because it provides the tools for creating,
interpreting and generating executable files on one interface. On starting the VB
editor, IDE displays a dialog box as shown in Fig. 4.1. Different options such as
start new project, open exiting project, and list of recently used/opened projects
appear. If you click on the new project option, several options such as Standard
EXE, Active EXE, Active DLL, ActiveX Control appear to develop different
types of applications as per the requirement. To develop an application, which is
executable program, Standard EXE should be selected. PL

O
N

E-
28

BCA-118/90

Fig. 4.1 VB 6.0 Dialog Box

Following applications can be created using VB IDE:

Standard Exe: A Standard EXE project is a typical application.

ActiveX EXE, ActiveX DLL: These options are available only with professional
version of VB. These are OLE automation servers, additional functionality can be
added using these applications.

ActiveX Control: It is the part of professional edition of VB. It provides control
over different objects such as TextBox or Command Button, which is a basic
element of user interface. Moreover, own controls can also be added if they are
not present in ActiveX Control.

ActiveX Document EXE, ActiveX Document DLL: ActiveX documents are
essential for those VB applications, which support hyper linking (as in case of
Web Browsers.)

Application Wizard, Wizard Manager: Wizard is a collection of windows that
collect information from user, when user fills up all the information, the wizard
proceeds to make an application as per user requirement.

Data Project: This is identical to Standard Exe project but has Database
Connectivity feature, adds control to the ToolBox for data retrieval, manipulation;
and also used with ActiveX Control for report generation.

DHTML Application: This is used to create Dynamic HTML pages; these can be
used to display browser’s window on client computer.

IIS Application: It can be used to create applications which can run on the web
server, and communicate with client over local host or over the Internet.

AddIn: These are additional commands that can be used in Application.

VB Enterprise Edition Controls: It creates Standard EXE project and loads all
tools which are with the package of VB 6.0.

PL
O

N
E-

28

BCA-118/91

4.2.5 CREATING FIRST VISUAL BASIC APPLICATION

When we select Standard EXE to develop an application project window appears
as shown in Fig. 4.2.

Fig. 4.2 Project Window

The default page contains the name as Form1, we can change the Project
name as well as Form name if we require. There are different parts of this form,
by double clicking we get code view of the form where different objects can be
used according to our need, the source code window having list of objects and
procedures listed with them. The Different parts of opening window are listed
below:

 Title Bar

 Menu Bar

 Tool Bar

Fig. 4.3 Title Bar, Menu Bar, and Tool Bar

Title Bar: Title Bar shows the current project name, VB operating mode and
current form.

Menu Bar: Menu Bar is next to the Title Bar and contains the various menus like
file menu, edit menu, and project menu, etc. The options available in the menu bar
are described below:

PL
O

N
E-

28

BCA-118/92

1. File ̶ It is used for all file operations like opening and saving projects,
creating exe files, and listing of recent projects.

2. Edit ̶ It contains options such as copy, paste, undo, find, and replace, etc.
for easy editing.

3. View ̶ Used for showing and hiding different components in the user
interface.

4. Project ̶ It contains commands for adding components in the current
project.

5. Format ̶ It can be used for aligning the controls on the form.

6. Debug ̶ Used for debugging options in the current running project.

7. Run ̶ It deals with commands for executing the current project, starting a
project, breaking the project, and ending operations of the project.

8. Query ̶ It is used for database operations based on SQL.

9. Diagram ̶ It contains commands for editing diagrams of database, used for
building database applications.

10. Tools ̶ It consist of tools for creating ActiveX controls and components.

11. Add-Ins ̶ Users can add and remove Add-Ins that are available with VB
IDE using Add-In Manager.

12. Window ̶ It is used for arranging and managing windows.

13. Help ̶Used for helping options supported by VB Developer.

Tool Bar: This is located next to the Menu Bar and contains different icons for
different tasks such as creating a new project, adding a form, opening a file,
saving a project, and running and stopping the project, etc. It also provides
shortcuts to commonly used menus. There are different kinds of tools present in
VB IDE, some of them are listed below:

1. Edit property

2. Debug property

3. Form Editor Toolbar

4. Style property

5. Add and remove methods

6. Customizing toolbar

4.3 IMPORTANT WINDOWS

An important part of Visual Basic is the ability to create Windows Forms
applications that run locally on users' computers. You can use Visual Studio to
create the application and user interface using Windows Forms. A Windows
Forms application is built on classes from the System.Windows. Forms
namespace.

PL
O

N
E-

28

BCA-118/93

4.3.1 FORM WINDOW

When you start VB project (Fig. 4.4), a default form (Form1) with a
standard grid (a window consisting of regularly spaced dots) appears in a pane
called the Form window. You can use the Form window grid to create the user
interface and to line up interface elements. The form is most important object for
application perspective. The form holds other objects that provide
users/programmers ease to use different computing ability present in VB. In the
standard project the form designer creates and modify the form. The designer can
add many forms as per the application requirement. The addition of forms can be
done from project menu.

Fig. 4.4 Adding the Form to Project (left), a new form (right)

The form has two modes as shown in Fig. 4.5:

 The Design Mode ̶ This mode contains the environment where designer
can add different objects to the form as per as requirement.

 The Running Mode ̶ The running mode is the view when the application is
executed.

Fig. 4.5 Design View (left), Runnig View (right)

PL
O

N
E-

28

BCA-118/94

4.3.1.1 BUILDING INTERFACE ELEMENTS

To build the interface elements, you click an interface control in the VB
toolbox, and then you draw the user interface element on your form by using the
mouse. This process is usually a simple matter of clicking to position one corner
of the element and then dragging to create a rectangle the size you want. After
you create an element, suppose a text box, you can refine it by setting properties
for the element. In a text box, for example, you can set properties to make the text
boldface, italic, or underlined. You can adjust the size of the form by using the
mouse — the form can take up part or the entire screen. To control the placement
of the form when you run the program, adjust the placement of the form in the
Form Layout window.

4.3.1.2 FORM PROPERTIES

In VB, every object has properties associated with it. A form is an
important container as it contains other objects within it. It has different
properties, which have default values that can be modified according to the
requirement of user. The changes can be made either by rewriting or by using
down arrow on side. Few of them can be rewritten or browsing computer files
when the designer clicks on dotted button on the right side of property selected.
The important properties are shown in Table 4.1.

Table 4.1 Properties of Form Window

Property Objective Code
State of
Changing

Caption
For Naming
the form

Form1.caption=”User_Defined_Name”
Design
and Run

Backcolor
for setting
Background
color

Form1.Backcolor=”color_name”
Design
and Run

Forecolor
for Setting
Foreground
color

Form1.Forecolor=”color_name”
Design
and Run

Enabled
To enable
or disable
tools

Form1.Enable=”True or False”
Design
and Run

Hide
To hide the
form

Form1.hide Run

Show
To show
the form

Form_no.show Run

PL
O

N
E-

28

BCA-118/95

4.3.1.3 EVENTS

The designer put all his declarations and executable statements within the
procedure or events defined in the code window. Since VB is an event-driven
programming language, where all the objects are associated with events and
produce effects according to event generated by object. Some important events
supported by form are shown in Table 4.2.

Table 4.2 Events of Form

Event Action taken (Event-Driven on)
Click Single click on Form
DbClick Double click on Form
Load Lading the Form

Example:

Private Sub Form_Load ()

Form1.show

Print “Welcome to Visual Basic”

End Sub

4.3.2 PROPERTY WINDOW

With the Properties window (Fig. 4.6), the characteristics of the user
interface elements on a form can be changed. It is known as property settings. A
property setting is a characteristic of a user interface object. For example, you can
change the text displayed by a text box control to a different font, point size, or
alignment. With VB, you can display the text in any font installed on your system,
just as it is done in Microsoft Excel or Microsoft Word.

Fig. 4.6 Property Window PL
O

N
E-

28

BCA-118/96

To display the Properties window, click the Properties Window button on
the toolbar. If the window is currently docked, you can enlarge it by double-
clicking the title bar. To redock the Properties window, double-click its title bar
again.

The Properties window contains the following elements:

 A drop-down list box at the top of the window, from which you select the
object whose properties you want to view or set.

 Two tabs, which list the properties either alphabetically or by category.

 A description pane that shows the name of the selected property and a
short description of it.

You can change property settings by using the Properties window while
you design the user interface or by using program code to make changes while the
program runs.

4.3.3 PROJECT WINDOW

A VB program consists of several files that are linked together to run the
program. The VB 6.0 development environment includes a Project window to
help you switch back and forth between these components as you work on a
project as shown in Fig. 4.7.

Fig. 4.7 Project Window

The Project window lists all the files used in the programming process and
provides access to them with two special buttons: View Code and View Object. To
display the Project window, click the Project Explorer button on the VB toolbar.
If the window is currently docked, you can enlarge it by double-clicking the title
bar. To re-dock the Project window, double-click its title bar again.

The project file maintains a list of all the supporting files in a VB
programming project. You can recognize project files by their. vbp file name
extensions. You can add individual files to and remove them from a project by
using commands on the Project menu. The changes that you make will be
reflected in the Project window. If you load additional projects into Visual Basic
with the File menu’s Add Project command, outlining symbols appear in the
Project window to help you organize and switch between projects.

PL
O

N
E-

28

BCA-118/97

Note:- In VB versions 1 through 3, project files had the .mak file name extension.
In Visual Basic versions 4, 5, and 6.0, project files have the .vbp file name
extension.

4.3.4 CODE WINDOW

You can create a major portion of your program by using controls and
setting properties. However, the most VB programs require some additional
program code that acts as the brain behind the user interface that you create. This
computing logic is created using program statements, keywords, identifiers, and
arguments that clearly spell out what the program should do each step during the
execution. As soon as one enters in program statements of the Code window, a
special text editing window designed specifically for VB program code appears.
The Code window can be displayed in either by clicking View Code in the Project
window or by clicking the View Menu Code command (Fig. 4.8).

Fig. 4.8 The Code window

4.3.5 FOR LAYOUT WINDOW

The Form Layout window is a visual design tool (Fig. 4.9). With it, you
can control the placement of the forms in the Windows environment when they
are executed. When you have more than one form in your program, the Form
Layout window is especially useful. You can arrange the forms onscreen exactly
the way you want. To position a form in the Form Layout window, simply drag
the miniature form to the desired location in the window.

Fig. 4.9 Form Layout Window PL
O

N
E-

28

BCA-118/98

4.4 VARIABLES

Variables are the data names, which are used to store some value defined
by user in a program. The variables are declared and defined by the programmer
according to need during application development. These variables are used to
assign some value associated with the object. On approaching some event the
values associated with object is going to transfer to the variables. Following rules
are used for naming convention of variables in Visual Basic:

1. The first character must be a letter.

2. The variable name may include character, digit, underscore.

3. No more than 40 characters can be included in naming.

4. No use of reserved words is allowed.

The variable declaration has three different forms:

1. Default declaration

2. Implicit declaration

3. Explicit declaration

4.4.1 DEFAULT DECLARATION

If the variables in the program of VB are not declared either implicitly or
explicitly, then the declaration would be done automatically and it would be a
default variant value. It is a special type that can have numeric, string, or date data
i.e. any data type which depends on the type of data being used.

4.4.2 IMPLICIT DECLARATION

If you set Option Explicit to Off, you can implicitly declare a variable by
simply using it in your code. The compiler assigns the Object Data Type to all
implicitly declared variables. However, your application is more efficient if you
declare all your variables explicitly and with a specific data type. This reduces the
incidence of naming-conflict errors and spelling mistakes. It also lets the compiler
detect potential run-time errors such as assigning an Integer to a Short.

You can write a procedure in which you do not declare a local variable.
The following example illustrates this.

Function safeSqrt(num)

' Make sure num is positive for square root.

 tempVal = Math.Abs(num)

 Return Math.Sqrt(tempVal)

PL
O

N
E-

28

BCA-118/99

End Function

Visual Basic automatically creates temp Val as a local variable, which you
can use as if you had declared it explicitly. While this is convenient, it can lead to
subtle errors in your code if you misspell a variable name. Suppose you had
written the procedure in the preceding example as follows:

Function safeSqrt(num)

' Make sure num is positive for square root.

 tempVal = Math.Abs(num)

 Return Math.Sqrt(temVal)

 End Function

At first glance, this code looks the same. But because the tempVal variable
is misspelled as the argument to Sqrt, the compiler creates an additional local
variable called temVal, which is never assigned a value, and your function always
returns zero.

4.4.3 EXPLICIT DECLARATION

Had explicit declaration been in effect for the source file containing
the safeSqrt procedure in the preceding example, Visual Basic would have
recognized tempVal and temVal as undeclared variables and generated errors for
both of them. As a result, you would then explicitly declare tempVal. The
following example illustrates this.

Function safeSqrt(ByVal num As Double) As Double

' Make sure num is positive for square root.

 Dim tempVal As Double = Math.Abs(num)

 Return Math.Sqrt(temVal)

End Function

With this revised code, you would understand the problem immediately
because Visual Basic would display an error message for the incorrectly
spelled temVal. Because explicit declaration helps you catch these kinds of errors,
it is recommended that you use it with all your code.

Hence, Explicit declaration means it is done by programmer, and the
values are predefined hence the variables are called explicit variables.

Example:

Dim number1 As Integer

Dim number2 As Integer

Dim Name As String

PL
O

N
E-

28

BCA-118/100

CHECK YOUR PROGRESS

 How a variable can be defined in VB?

 Compare implicit and explicit declaration.

 Name some crucial properties of Form window.

4.5 DATA TYPES

Usually, we come across all kinds of data in our daily life. For example,
we need to handle data such as names, addresses, money, date, stock quotes,
statistics, and many more everyday. Similarly, in programming, we have to deal
with all sorts of data. Some data elements can be processed mathematically, while
some other data elements are in text format or other forms. VB divides data into
different types so that they are easier to manage when we need to write the code
involving those data. VB 6.0 classifies the data elements into two major data
types: numeric data types and the non-numeric data types.

4.5.1 NUMERIC DATA TYPE

Numeric data types represent those data elements that can be processed
mathematically with standard operators e.g. height, weight, share values, the price
of goods, monthly bills, and fees etc. In VB, numeric data are divided into 7
categories, depending on the range of values they can store. Calculations that only
involve round figures can use Integer or Long integer in the computation.
Programs that require high precision calculation need to use Single and Double
decision data types, they are also called floating point numbers. For currency
calculation, currency data types can be used. Lastly, if even more precision is
required to perform calculations that involve many decimal points, we can use the
decimal data types. These data types summarized in detail in table 4.3.

Table 4.3 Numeric Data Types

Type Storage Range of Values

Byte 1 byte 0 to 255

Integer 2 bytes -32,768 to 32,767

Long 4 bytes -2,147,483,648 to 2,147,483,648

Single 4 bytes
-3.402823E+38 to -1.401298E-45 for negative values
1.401298E-45 to 3.402823E+38 for positive values.

PL
O

N
E-

28

BCA-118/101

Double 8 bytes
-1.79769313486232e+308 to -4.94065645841247E-324
for negative values 4.94065645841247E-324 to
1.79769313486232e+308 for positive values.

Currency 8 bytes
-922,337,203,685,477.5808 to
922,337,203,685,477.5807

Decimal
12
bytes

+/- 79,228,162,514,264,337,593,543,950,335 if no
decimal is use +/- 7.9228162514264337593543950335
(28 decimal places).

4.5.2 NON-NUMERIC DATA TYPE

Non-numeric data types are used for those data elements that cannot be
manipulated mathematically. Non-numeric data comprise strings, date, and
boolean, etc. that store only two values (true or false), object data type and
Variant data type. They are summarized in detail in table 4.4.

Table 4.4 Non-numeric Data Types

Data Type Storage Range

String(fixed
length)

Length of string 1 to 65,400 characters

String(variable
length)

Length + 10 bytes 0 to 2 billion characters

Date 8 bytes January 1, 100 to December 31, 9999

Boolean 2 bytes True or False

Object 4 bytes Any embedded object

Variant(numeric) 16 bytes Any value as large as Double

Variant(text) Length+22 bytes Same as variable-length string

4.6 DECISION MAKING

Decision making structures require that the programmer specifies one or

PL
O

N
E-

28

BCA-118/102

more conditions to be evaluated or tested by the program, along with a statement
or statements to be executed if the condition is determined to be true, and
optionally, other statements to be executed if the condition is determined to be
false. Moreover, the decision making is used to control the flow of program
execution. VB supports control structures such as if... Then, if...Then ...Else, and
Select...Case.

4.6.1 IF...THEN SELECTION STRUCTURE

In VB, the If...Then selection structure performs an indicated action only
when the condition is True; otherwise the action is skipped. It can be understood
using following syntax.

Syntax:

If <condition> Then

statement

End If

e.g.: If average>75 Then

txtGrade.Text = "A"

End If

4.6.2 IF...THEN...ELSE SELECTION STRUCTURE

The If...Then...Else selection structure allows the programmer to specify
that a different action is to be performed when the condition is True in
comparison when the condition is False.

Syntax:

If <condition > Then

statements
Else
statements
End If

e.g.: If average>50 Then

txtGrade.Text = "Pass"

Else
txtGrade.Text = "Fail"

End If

4.6.3 NESTED IF...THEN...ELSE SELECTION STRUCTURE

Nested If...Then...Else selection structures test for multiple cases by
placing If...Then...Else selection structures inside If...Then...Else structures. PL

O
N

E-
28

BCA-118/103

Syntax of the Nested If... Then... Else selection structure. You can use Nested If
either of the methods as shown above

Method 1:

If < condition 1 > Then

statements
ElseIf < condition 2 > Then

statements
ElseIf < condition 3 > Then

statements
Else
Statements
End If

Method 2:

If < condition 1 > Then

statements
Else

If < condition 2 > Then

statements
Else

If < condition 3 > Then

statements
Else
Statements
End If

End If

EndIf

Example: To find the grade using nested if and display in a text box

If average > 75 Then

txtGrade.Text = "A"

ElseIf average > 65 Then

txtGrade.Text = "B"

ElseIf average > 55 Then

txtGrade.text = "C"

ElseIf average > 45 Then

txtGrade.Text = "S"

PL
O

N
E-

28

BCA-118/104

Else
txtGrade.Text = "F"

End If

4.6.4 SELECT...CASE SELECTION STRUCTURE

Select...Case structure is an alternative to If...Then...ElseIf for selectively
executing a single block of statements from among multiple block of
statements. Select...case is more convenient to use than the If...Else...End If. The
following program block illustrate the working of Select...Case.

Syntax:

Select Case Index

Case 0

Statements
Case 1

Statements
End Select

Example: Find the grade using Select...Case and display in the appropriate text
box

Dim average as Integer

average = txtAverage.Text

Select Case average

Case 100 To 75

txtGrade.Text ="A"

Case 74 To 65

txtGrade.Text ="B"

Case 64 To 55

txtGrade.Text ="C"

Case 54 To 45

txtGrade.Text ="S"

Case 44 To 0

txtGrade.Text ="F"

Case Else

MsgBox "Invalid average marks"

End Select

PL
O

N
E-

28

BCA-118/105

4.7 OPERATORS

Simply, an operator operates between two operands e.g. x = y + z. Here
addition is the operator and y and z are the two opearnds. Operators opeatate all
the function using the variables or operands. In VB 6.0, there are three types of
operators:

1) Arithmetic operators- Perform familiar calculations on numeric values,
including shifting their bit patterns.

2) Relational operators- compare two expressions and return
a Boolean value representing the result of the comparison

3) Logical operators- combine Boolean or numeric values and return a result
of the same data type as the values

4.7.1 ARITHMETIC OPERATORS

In Visual Basic, Arithmetic Operators are useful to perform the basic
arithmetic calculations like addition, subtraction, division, etc. based on user’s
requirements. The following table lists the different types of arithmetic operators
available in Visual Basic.

Table 4.5 Arithmetic Operators

Operators Description Example Result

+ Addition 5+5 10

- Substraction 10-5 5

/ Division 25/5 5

\ Integer Division 20\3 6

* Multiplication 5*4 20

^ Exponent (power of) 3^3 27

Mod Remainder of division 20 Mod 6 2

& String concatenation
"ATI"&"
"&"Kurunegala"

"ATI
Kurunegala"

4.7.2 RELATIONAL OPERATORS

Relational operators are used to compare values. These operators always
result in a boolean value. Relational operators in VB like greater than, less than,
equal to etc. play important role in conditional statements. It is to be noted that in
VB, the comparison operator equal to is not like in C and C influenced languages.
Moreover, the relational operators are not limited to numbers. We can use them PL

O
N

E-
28

BCA-118/106

for other objects as well. Although they might not always be meaningful. Detail
of these are shown below in table 4.6.

Table 4.6 Relational Operators

Operators Description Example Result

> Greater than 10 > 8 True

< Less than 10 < 8 False

>= Greater than or equal to 20 >= 10 True

<= Less than or equal to 10 <= 20 True

<> Not Equal to 5 <> 4 True

= Equal to 5 = 7 False

4.7.3 LOGICAL OPERATORS

Logical operators allow you to evaluate one or more expressions and
return a Boolean value (True or False). In Visual Basic, we have the following
logical operators (Table 4.7). Boolean operators are also called logical. Boolean
operators are used to work with truth values. To understand a logical operator,
we construct a table to list its possible inputs and outputs. This table is known
as truth table.

Table 4.7 Logical Operators

Operators Description

OR Operation will be true if either of the operands is
true

NOT Operation will be true if not equal of the operands
is true

AND Operation will be true only if both the operands are
true

4.7.4 ORDER OF OPERATIONS

The evaluation of expressions in Visual Basic is ordered by its operator
precedence as shown below in Table 4.8.

PL
O

N
E-

28

BCA-118/107

Table 4.8 Priority of Operators

Priority Name of Operator Notation Used

11 (Highest) Exponentiation ^

10 Unary identity and negation (unary)+
(unary)–

9 Multiplication and floating-point
division

* /

8 Integer division \

7 Modulus arithmetic Mod

6 Addition and subtraction + –

5 String concatenation &

4 Relational/comparison operators = <> < <= >
>=

3 Negation Not

2 Conjunction And

1 (Lowest) Inclusive disjunction Or

CHECK YOUR PROGRESS

 Describe any two data types.

 What is decision making?

 How many operators does VB support?

PL
O

N
E-

28

BCA-118/108

4.8 LOOPS

In computer programming, a loop is a sequence of instructions that is
continuosally repeated until a certain condition is reached. Typically, a certain
process is done, such as getting an item of data and changing it, and then some
condition is checked such as whether a counter has reached a prescribed number
or not. A repetition structure allows the programmer to repeat an action until
given condition is false. There are different types of loops in VB, which differ in
their structure and way of functioning.

4.8.1 DO WHILE... LOOP STATEMENT

The Do While...Loop is used to execute statements until a certain condition
is met. The following syntax for Do While… Loop counts from 1 to 100.

Dim number As Integer

number = 1

Do While number <= 100

 number = number + 1

Loop

A variable number is initialized to 1 and then the Do While… Loop starts.
Firstly, the condition is tested; if condition is True, then the statement are
executed. When it gets to the Loop it goes back to the Do and tests condition
again. If condition is False on the first pass, the statements are never executed.

4.8.2 WHILE... WEND STATEMENT

A while...Wend statement behaves like the Do While...Loop statement. The
following While...Wend counts from 1 to 100:

Dim number As Integer

number = 1

While number <= 100

 number = number + 1

Wend

4.8.3 DO ... LOOP WHILE STATEMENT

The Do...Loop While statement first executes the statements and then tests
the condition after each execution. The following program block illustrates the
structure:

Dim number As Long

number = 0 PL
O

N
E-

28

BCA-118/109

Do
 number = number + 1

Loop While number < 201

The above code excutes the statements between Do and Loop While
structure at least once, and then it determines whether the counter is less than 201.
If so, the program again executes the statements between Do and Loop While, else
exits the Loop.

4.8.4 DO UNTIL...LOOP STATEMENT

Unlike Do While...Loop and While...Wend repetition structures, the Do
Until... Loop structure tests a condition for falsity. Statements in the body of a Do
Until...Loop are executed repeatedly as long as the loop-continuation test
evaluates to False. An example for Do Until...Loop statement. The coding is typed
inside the click event of the command button

Dim number As Long

number=0
Do Until number > 1000

number = number + 1

Print number

Loop

Numbers between 1 to 1000 will be displayed on the form as soon as you click on
the command button.

4.8.5 FOR...NEXT LOOP

The For...Next Loop is another way to make loops in Visual Basic.
For...Next repetition structure handles all the details of counter-controlled
repetition. The following loop counts the numbers from 1 to 100:

Dim x As Integer

For x = 1 To 50

 Print x

Next

In order to count the numbers from 1 to 50 in steps of 2, the following
loop can be used

For x = 1 To 50 Step 2

 Print x

Next

The code given above displays the numbers vertically. Another loop given

PL
O

N
E-

28

BCA-118/110

as follows counts the numbers alternatively as 1, 3, 5, 7 etc. and displays them
horizontally

For x = 1 To 50

 Print x & Space$ (2);

Next

To increase the difference between the numbers, increase the value inside
the brackets after Space$. Another example of For...Next repetition structure is
given as follows. It also uses the If conditional statement.

Dim number As Integer

For number = 1 To 10

If number = 4 Then

 Print "This is number 4"

Else
 Print number

End If

Next

The output is "This is number 4" instead of number 4.

4.9 PROCEDURES IN VISUAL BASIC

VB offers different types of procedures to execute small sections of code
in applications. VB programs can be broken into smaller logical components
called procedures. Procedures are useful for condensing repeated operations such
as the frequently used calculations, text, and control manipulations, etc. The
benefits of using procedures in programs are:

 It is easier to debug a program with procedures, which breaks a program
into discrete logical limits.

 Procedures used in one program can act as building blocks for other
programs with slight modifications.

 A procedure can be sub function or property procedure.

4.9.1 SUB PROCEDURES

A sub procedure can be placed in standard, class, and form modules. It is
created using keywords Sub and End Sub. Each time the procedure is called, the
statements between keywords i.e. Sub and End Sub are executed. The syntax for a
sub procedure is as follows:

[Private | Public] [Static] Sub Procedurename [(arglist)]

[statements] PL
O

N
E-

28

BCA-118/111

End Sub

Where arglist is a list of argument names separated by commas. Each
argument acts like a variable in the procedure. There are two types of sub
procedures namely general procedures and event procedures.

4.9.2 EVENT PROCEDURES

An event procedure is a procedure block that contains the actual name of
control, an underscore (_), and the event name. The following syntax represents
the event procedure for a Form_Load event.

Private Sub Form_Load()

statement block..

End Sub

Event procedures acquire the declarations as Private by default.

4.9.3 GENERAL PROCEDURES

A general procedure is declared when several event procedures perform
the same actions. It is a good programming practice to write common statements
in a separate procedure (general procedure) and then call them in the event
procedure.

In order to add General procedure:

 The Code Window is opened for the module to which the procedure is to
be added.

 The Add Procedure option is chosen from the Tools menu, which opens an
Add Procedure dialog box as shown in the Fig 4.10 given below.

 The name of the procedure is typed in the Name text box.

 Under Type, Sub is selected to create a Sub procedure, Function is selected
to create a Function procedure or Property to create a Property procedure
as shown in Fig. 4.10.

 Under Scope, Public is selected to create a procedure that can be invoked
outside the module, or Private to create a procedure that can be invoked
only from within the module as shown in Fig. 4.10.

Fig. 4.10 Adding Procedure

PL
O

N
E-

28

BCA-118/112

We can also create a new procedure in the current module by typing Sub
procedure name, Function procedure name, or Property procedure name in the
Code window. A Function procedure returns a value while Sub procedure does
not return a value.

4.9.4 FUNCTION PROCEDURES

Functions are like sub procedures, except they return a value to the calling
procedure. They are especially useful for taking one or more pieces of data, called
arguments and performing some tasks with them. The function returns a value
that indicates the results of the tasks completed by the function. The following
Function procedure calculates the third side or hypotenuse of a right triangle,
where A and B are the other two sides. It takes A and B as two arguments (of data
type Double) and returns the third side.

Function Hypotenuse (A As Double, B As Double) As Double

 Hypotenuse = sqr (A^2 + B^2)

End Function

The above function procedure is written in the general declarations section
of the Code window. A function can also be written by selecting the Add
Procedure dialog box from the Tools menu and by choosing the required scope
and type. In Function, the function Name is followed by argument field.
Arguments are important part as function call is initiated by passing some type of
data. The arguments either could be data elements or reference to memory
address. Therefore, there are two methods to pass arguments to a function,

 Passing arguments by reference

 Passing arguments by Value

4.9.4.1 PASSING ARGUMENT BY REFERENCE

Passing arguments by reference provides the function to access the actual
variables. The calling function passes the addresses of data elements to the called
function. This approach does not require additional copying memory. Any
changes made to the arguments are reflected back to the memory location.
Therefore, if any instruction belonging to the same function/program or any other
program accesses those memory locations, it gets the modified values.

For Example:

Function Add(var1 As integer, var2 As Integer) As Integer

 Add = var1+var2

 var1=0

 var2=0

End Function

PL
O

N
E-

28

BCA-118/113

If above function is called using the following code,

Dim A As Integer, B As Integer

A=20

B=2

Sum=Add(A,B)

Debug.Print A

Debug.Print B

Debug.Print Sum

The output would be

20

2

22

4.9.4.2 PASSING ARGUMENTS BY VALUE

When argument is passed as value, the argument value is copied to its
local variables and function performs its operation on the local variables. Any
changes made to the argument values are not reflected to the original memory
location. It is completely transparent outside the function body. Therefore, the
function needs to explicitly return the resultant value if required.

For Example:

Function Degree (ByVal Celsius as Single) As Single

Degree=(9/5)*celsius +32

End Function

Here the ByVal keyword is used to ensure that the function is always called by
value.

4.9.5 PROPERTY PROCEDURES

A property procedure is a series of Visual Basic statements that
manipulate a custom property on a module, class, or structure. Property
procedures are also known as property accessors. A property procedure is used to
create and manipulate custom properties. It is used to create read only properties
for Forms, Standard modules and Class modules.

Visual Basic provides for the following property procedures:

 A Get procedure returns the value of a property. It is called when you
access the property in an expression.

PL
O

N
E-

28

BCA-118/114

 A Set procedure sets a property to a value, including an object reference. It
is called when you assign a value to the property.

Usually property procedures can be defined in pairs, using
the Get and Set statements, but you can define either procedure alone if the
property is read-only (Get Statement) or write-only (Set Statement). You can omit
the Get and Set procedure when using an auto-implemented property. Moreover,
you can define properties in classes, structures, and modules. Properties
are Public by default, which means you can call them from anywhere in your
application that can access the property's container.

4.9.5.1 DECLARATION SYNTAX

A property itself is defined by a block of code enclosed within
the Property Statement and the End Property statement. Inside this block, each
property procedure appears as an internal block enclosed within a declaration
statement (Get or Set) and the matching End declaration.

4.9.5.2 DATA TYPE

A property's data type and principal access level are defined in
the Property statement, not in the property procedures. A property can have only
one data type. For example, you cannot define a property to store a Decimal value
but retrieve a Double value.

4.9.5.3 ACCESS LEVEL

However, you can define a principal access level for a property and further
restrict the access level in one of its property procedures. For example, you can
define a Public property and then define a Private Set procedure.
The Get procedure remains Public. You can change the access level in only one of
a property's procedures, and you can only make it more restrictive than the
principal access level.

4.10 VISUAL BASIC CODE MODULE

VB application source code is structured into module files with a .vb
suffix. By default, Visual Studio creates a separate module file for each form in an
application containing the code to construct the form. For example, the code to
create a form called Form1 will be placed in a module file named
Form1.Designer.vb. Similarly, any code that has been defined by the developer to
handle events from controls in the form will be placed by Visual Studio into a
module file called Form1.vb.

When writing additional code for an application, the code should ideally
be logically grouped together with other source code in a module file. Logical
grouping means the code should be grouped with other code of a similar nature.
For example, code to work with files might be placed in a module called
FileIO.vb, while mathematical procedures might all reside in a file named
Math.vb. The idea is to ensure VB code must be placed in a file where it makes PL

O
N

E-
28

BCA-118/115

sense for it to be located.

As mentioned previously, the Visual Studio places the code to construct
each form in separate module files. Now it is needed to learn how to create a new
module in a project to contain our own VB code. Beginning by creating a new
Windows Application project in Visual Studio called vbModules, two TextBox
controls (named value1TextBox and value2TextBox) and a button (labeled
Calculate) to the Form have been added as shown in Fig. 4.11.

Fig. 4.11 Simple Form containing Text Box and Button

Once the new project has been opened and the first form is visible,
select Add Module... from the Project menu. The Add Item window will appear
(Fig. 4.12) with the Module item pre-selected.

Fig. 4.12 Adding Module

Name the new module Math.vb and click the Add button. The new module
will be added to the project and a new tab labeled Math.vb for accessing the
module code will appear (Fig. 4.13) in the design area.

PL
O

N
E-

28

BCA-118/116

Fig. 4.13 Code Window for Module

CHECK YOUR PROGRESS

 Define while…wend statement.

 What do you mean by procedure?

 Write the use of code module.

4.11 SUMMARY

Variables are the data names which are used to store some value defined
by user in a program. They are used to assign some value associated with the
objects. On approaching some event the values associated with the objects are
transferred to the variables. In VB, the variables can be declared in three ways-
implicit declarations, explicit declarations, and default declarations.

Numeric data types are used for the variables that are supposed to consist
of numbers for processing mathematically with standard operators such as height,
weight, share values, the price of goods, monthly bills, and fees, etc. In VB,
numeric data types are divided into 7 types, depending on the range of values they
can store. Calculations that only involve round figures can use Integer or Long
integer in the computation. Programs that require high precision calculation need
to use Single and Double decision data types.

Nonnumeric data types are the data types that cannot be manipulated
mathematically. These data types comprise string data types, date data types,
boolean data types, object data type and variant data type.

Decision making structures require that the programmer specify one or
more conditions to be evaluated or tested by the program, along with a statement
or statements to be executed if the condition is determined to be true, and
optionally, other statements to be executed if the condition is determined to be
false. It is used to control the flow of program's execution. Visual Basic supports
control structures such as if... Then, if...Then ...Else, Select...Case. PL

O
N

E-
28

BCA-118/117

Similar to many other languages, VB has three types of operators ̶ 1)
Arithmetic operators e.g. addition, subtraction, division, multiplication; 2)
Relational operators e.g. greater than, greater than or equal to, less than, less than
or equal to etc.; 3) Logical operators e.g. OR, NOT, AND.

The Do While...Loop is used to execute statements until a certain condition
is met. First, the condition is tested; if condition is True, then the statements are
executed. When it gets to the Loop it goes back to the Do and tests condition
again. If condition is False on the first pass, the statements are never executed. It
is called entry control loop. The Do...Loop While statement first executes the
statements and then test the condition after each execution. It is called exit control
loop. The For...Next Loop is another way to code loops in programming of
Visual Basic. For...Next repetition structure handles all the details of counter-
controlled repetition.

Unlike the Do While...Loop and While...Wend repetition structures, the Do
Until... Loop structure tests a condition for falsity. Statements in the body of a Do
Until...Loop are executed repeatedly as long as the loop-continuation test
evaluates to False.

Functions are like sub procedures, except they return a value to the calling
procedure. They are especially useful for taking one or more pieces of data,
called arguments and performing some tasks with them. Then the functions return
a value that indicates the results of the tasks complete within the function.

4.12 TERMINAL QUESTIONS

1. Discuss the evolution of VB programming.

2. Explain important characteristics of VB.

3. Write a short note on Properties window.

4. Explain explicit and implicit declaration in VB.

5. Compare procedure oriented language with object oriented language.

6. Explain numeric data types.

7. Write a program in VB to reverse an entered number.

8. Write a program for the addition of two numbers using function.

9. Discuss the concept of procedures in detail.

10. Define the term loop. Explain types of loop statements in VB.

11. Write a short note on module.

PL
O

N
E-

28

BCA-118/118

UNIT-5 WORKING WITH CONTROLS

Structure

5.0 Introduction

5.1 Objectives

5.2 What is Control

5.3 What is Custom Control

5.4 Control Properties

5.5 The Intrinsic Controls

5.6 Rich Text Box Controls

5.7 Working with Menu Items

5.8 Adding and Removing Control

5.9 Naming a Control

5.10 Summary

5.11 Terminal Questions

5.0 INTRODUCTION

There are so many command controls in Visual Basic to work with it.
Using these controls, programming becomes easy for programmers. These
controls are: command buttons, text boxes, check boxes, picture box, image
controls, labels, lists, scroll bars, combo box, RichTextbox, progress bars, menu,
web browser etc. Some commonly used command controls are buttons, text fields,
and labels. VB is different from other languages as it contains various command
controls and event procedures accordingly.

VB toolbox contains the controls which are used in the form design. The
controls are used by users to interact with the applications. The controls are
categorized as Intrinsic controls, ActiveX controls and Insertable objects. The
built-in VB controls are called as intrinsic controls; these controls are always
available in the toolbox. The intrinsic controls are– Text box, Check box, Combo
box, Command button, Dirlist, Drive list, Frame, Horizontal scrollbar, Vertical
scrollbar, Image control, Label, List box, Option button, Timer etc.

All the controls which exist as separate files with an extension .ocx are
called ActiveX controls. These controls are available in all versions of the
professional and enterprise VB editions. The ActiveX controls are- Common

PL
O

N
E-

28

BCA-118/119

Dialog, DataCombo Box, DataList, MSFlexGrid, ADO Data Control, Animation
Control, Communication control, CoolBar Control, etc. In VB, it is possible to
include other application objects in a program and automate it, the applications
are inserted as objects.

All controls have various properties which could be either set from the
property window or in code window. Before coding an event procedure for the
control to respond to an event, you have to set certain properties for the control to
determine its appearance and actions with the event procedure. You can set the
properties of the controls in the properties window or at runtime. Every control
works on a particular event like mouse up, mouse down, key up, key down, click,
double click, form load unload etc.

5.1 OBJECTIVES

At the end of this unit you will come to know about the following:

 Discussing the various controls

 Adding the controls on the form

 Updating the properties of control

 Command buttons

 Text box

 Combo box

 List box

 Labels

 Progress bars

 Scroll bars

5.2 WHAT IS A CONTROL

A control is a special type of object that a programmer draws on a Form to
enable user interaction with an application. In VB, the most of the objects appear
inside forms. All objects that appear inside a form are called controls. Menus and
menu items are all controls. The tools that appear in the Toolbox are also a kind
of controls and can be placed on a form by double-clicking or by click-drag
operation onto a form. Moreover, controls have some names by default e.g. the
default name of a form window is Frorm1. Controls, normally perform two
things, either they accept user input or display output. Controls have properties
that define attributes of their appearance, such as caption, position, size, and
color; and also aspects of their behavior, such as how they respond to user input.
Controls can respond to events initiated by the user. They also respond to the
events triggered by the system. For example, if one wants that whenever the
command button is selected it should perform the action desired and should
display the result. For this you can write code in a Command Button’s click event

PL
O

N
E-

28

BCA-118/120

procedure that would load a file or perform a calculation and then display the
result.

In addition to properties and events, one can use methods to manipulate
controls from within the code. For example, one can use the Move method with
some controls to change their location and size. Each control has its own set of
properties, events, and methods. Graphical controls include the Image, Label,
Line, and Shape controls. A graphical control uses fewer system resources and
has different drawing and display characteristics than other controls.

5.3 WHAT IS A CUSTOM CONTROL

The custom control is a program that someone has written which can be
included in the VB program. The two types of custom controls that VB can use
are VBX (Visual Basic custom extension controls) and OCX (OLE Custom
extension controls). A file with a .VBX or .OCX extension or an insertable object
that when added to a project using the custom controls dialog box, extends the
toolbox. The custom controls are nothing but also programs. They are also likely
to have the bugs in them. This might create a problem since the source code of
these controls is not available with you and without that it is not possible to
remove the bug.

Custom Controls dialog box can be used to load custom controls and
insertable objects to the project's toolbox. To open the Custom Controls dialog
box, choose Custom Controls from the Tools menu. This operation can also he
performed by pressing Ctrl + T in VB IDE. The dialog box displays the available
custom controls and insertable objects. You also find the box appearing on the left
of the list of controls. If the insertable objects or controls are not appearing
completely, you can click at the respective boxes and then the complete list
appears. Either or both of the options can be selected using the following options:

 Insertable Objects option displays insertable objects, such as a Microsoft
Excel Chart.

 Controls option displays controls with .OCX and .VBX filename
extensions.

 Selected Items Only option displays only those items in the Available
Controls which you have been selected to include in the project.

If you want to load a Custom control each time VB is loaded, use the following
procedure:

 To add a control or insertable object to the Toolbox, click on the check
box next to its name. You find 'X' mark appearing in the box.

 To remove a control or insertable object from the project, click the check
box next to its name. Clicking again will deselect the control from the list
available; and 'X' mark will disappear from the check box.

 When you are finished making selections, click on OK button to update
your Toolbox.

PL
O

N
E-

28

BCA-118/121

5.4 CONTROL PROPERTIES

In properties window, the currently selected
object appears at the top. At the bottom part, the
items listed in the left column represent the
names of various properties associated with the
selected object, while the items listed in the
right column represent the states of the
properties. Properties can be set by highlighting
the items in the right column then change them
by typing or selecting the options available. For
example, in order to change the caption, just
highlight Form1 under the name Caption and
change it to other names. You may also alter the
appearance of the form by setting it to 3D or
flat, change its foreground and background
color, change the font type and font size, enable
or disable, minimize and maximize buttons and
more. You can also change the properties at
runtime to give special effects such as change
of color, shape, animation effect and so on.

Fig. 5.1 Property Window

Example 5.1 shows the code that will change the form color to red every
time the form is loaded. VB uses the hexadecimal system to represent the color.
You can check the color codes in the properties windows which are showing up
under ForeColor and BackColor.

Example 5.1: Program to change background color. This example changes the
background colour of the form using the BackColor property.

Private Sub Form_Load()

Form1.Show

Form1.BackColor = &H000000FF&

End Sub

Example 5.2: Program to change shape. This example is to change the control's
Shape using the Shape property. This code will change the shape to a circle at
runtime.

Private Sub Form_Load()

Shape1.Shape = 3

End Sub

A few important points about setting up the properties are:

 You should set the Caption Property of a control clearly so that a user
knows what to do with that command.

PL
O

N
E-

28

BCA-118/122

 Use a meaningful name for the Name Property because it is easier to write
and read the event procedure and easier to debug or modify the programs
later.

 One more important property is whether to make the control enabled or
not.

 Finally, you must also consider making the control visible or invisible at
runtime, or when should it become visible or invisible.

CHECK YOUR PROGRESS

 Define the term control in Visual Basic programming.

 What is a Custom control and how it can be added?

 Give the name of the properties associated with the form control.

5.5 THE INTRINSIC CONTROLS

The intrinsic controls are available automatically whenever VB program is
created. During design time, you can access the basic controls can be accessed
(see Fig 5.2) from the VB6 Toolbox. Table 5.1 lists the intrinsic controls.

Table 5.1 The VB6 Intrinsic Controls

Control Description

Label Displays text on a form

Frame Serves as a container for other controls

CheckBox Enables users to select or deselect an option

ComboBox
Allows users to select from a list of items or add a new
value

HscrollBar
Allows users to scroll horizontally through a list of data in
another control

Timer
Lets your program perform actions in real time, without
user interaction

DirListBox Enables users to select a directory or folder

Shape Displays a shape on a form

Image
Displays graphics (images) on a form but can't be a
container

PL
O

N
E-

28

BCA-118/123

OLE Container
Enables you to add the functionality of another Control
program to your program

PictureBox
Displays graphics (images) on a form and can serve as a
container

TextBox
Can be used to display text but also enables users to enter
or edit new or existing text

CommandButton Enables users to initiate actions

OptionButton
Lets users select one choice from a group; must be used in
groups of two or more

ListBox Enables users to select from a list of items

VscrollBar
Enables users to scroll vertically through a list of data in
another control

DriveListBox Lets users select a disk drive

FileListBox Lets users select a file

Line Displays a line on a form

Data Lets your program connect to a database

Fig. 5.2 Tool Box

5.5.1 The TextBox

The TextBox control is the standard control for accepting input from the
user as well as to display the output. It can handle string (text) and numeric data PL

O
N

E-
28

BCA-118/124

but not images or pictures. A string entered into a text box can be converted to a
numeric data by using the function Val(text). The following example illustrates a
simple program that processes the input from the user.

Example 5.3: In this program, two text boxes are inserted into the form together
with a few labels. The two text boxes are used to accept inputs from the user and
one of the labels will be used to display the sum of two numbers that are entered
into the two text boxes. Besides, a Command button is also programmed to
calculate the sum of the two numbers using the plus operator. The program
creates a variable sum to accept the summation of values from TextBox1 and
TextBox2. The procedure to calculate and to display the output on the label is
given below.

Private Sub Command1_Click()

'To add the values in TextBox1 and TextBox2

 Sum = Val(Text1.Text) + Val(Text2.Text)

'To display the answer on label 1

 Label1.Caption = Sum

End Sub

The output is shown in Fig. 5.3

Fig. 5.3 TextBox

5.5.2 THE LABEL

This is probably the first control you will master. It is used to display
static text, titles and screen output from operations. The label is a very useful
control for Visual Basic programming, as it is not only used to provide
instructions and guides to the users, it can also be used to display outputs. One of
its most important properties is Caption. Using the syntax Label.Caption, it can
display text and numeric data. You can change its caption either in the properties
window or at runtime. Use of label has been shown in previous Example 5.3 and
Fig. 5.3 which was used to show the working of TextBox.

5.5.3 THE COMMANDBUTTON

The Command Button is one of the most important controls as it is used to

PL
O

N
E-

28

BCA-118/125

execute commands. It displays an illusion that the button is pressed when the user
clicks on it. The most common event associated with the command button is the
click event, and the syntax for the procedure is

Private Sub Command1_Click ()

 Statements

End Sub

Example 5.4 A Simple Password Cracker: In this program, a secret password
entered by the user is to be cracked. In the design phase, insert a command button
and change its name to cmd_ShowPass. Next, insert a TextBox and rename it as
TxtPassword and delete Text1 from the Text property. Besides that, set its
PasswordChr to *. Now, enter the following code in the code window

Private Sub cmd_ShowPass_Click()

 Dim yourpassword As String

 yourpassword = Txt_Password.Text

 MsgBox ("Your password is: " & yourpassword)

End Sub

Run the program and enter a password, then click on the Show Password button
to reveal the password, as shown in Fig. 5.4

Fig. 5.4 Password Cracker

5.5.4 THE PICTUREBOX

The Picture Box is one of the important controls that is used to handle
pictures in graphics. You can load a picture at design phase by clicking on the

PL
O

N
E-

28

BCA-118/126

picture item in the properties window and select the picture from the selected
folder. You can also load the picture at runtime using the LoadPicture method.
For example, the statement will load the picture “apple.gif” into the picture box.

Picture1.Picture=LoadPicture ("C:\VBprogram\Images\apple.gif")

Example 5.5 Loading Picture: In this program, insert a command button and a
picture box. Enter the code given below:

Private Sub cmd_LoadPic_Click()

MyPicture.Picture = LoadPicture("C:\Users\images\planet.jpg")

End Sub

The output is shown in Fig. 5.5.

Fig. 5.5 Picture Viewer

5.5.5 THE IMAGE CONTROL

The Image control is another control that handles images and pictures. It
functions almost identically to the PictureBox. However, there is one major
difference, the image in an Image control is stretchable, which means it can be
resized. This feature is not available in the PictureBox control. Similar to the
PictureBox, it can also use the LoadPicture method to load the picture. For
example, the statement loads the picture applet.gif into the image box.

 Image1.Picture=LoadPicture ("C:\VBprogram\Images\grape.gif")

Example 5.6 Loading Image: In this program, we insert a command button and
an Image control into the form. Besides that, we set the image Strech property to
true. Next, enter to following code:

Private Sub cmd_LoadImg_Click()

 MyImage.Picture = LoadPicture("C:\Users\images\planet.jpg")

PL
O

N
E-

28

BCA-118/127

End Sub

Fig. 5.6 The Image Control

5.5.6 THE LISTBOX

The function of the ListBox control is to present a list of items where the
user can click and select the items from the list. In order to add items to the list,
we can use the AddItem method. For example, if you wish to add a number of
items to List1, following example 5.7 can be used.

Example 5.7

Private Sub Form_Load()

 List1.AddItem “Lesson1”

 List1.AddItem “Lesson2”

 List1.AddItem “Lesson3”

 List1.AddItem “Lesson4”

Fig. 5.7 The ListBox

The items in the ListBox can be identified by the ListIndex property, the
value of the ListIndex for the first item is 0, the second item has a ListIndex 1,
and the third item has a ListIndex 2 and so on.

PL
O

N
E-

28

BCA-118/128

5.5.7 THE COMBOBOX

The function of the ComboBox control is also to present a list of items
where the user can click and select the items from the list. However, the user
needs to click on the small arrowhead on the right of the ComboBox to see the
items which are presented in a drop-down list. In order to add items to the list,
you can also use the AddItem method. For example, if you wish to add a number
of items to Combo1, you can key in the following statements

Example 5.8

Private Sub Form_Load()

 Combo1.AddItem "Item1"

 Combo1.AddItem "Item2"

 Combo1.AddItem "Item3"

 Combo1.AddItem "Item4"

End Sub

Fig. 5.8 The ComboBox

5.5.8 THE CHECKBOX

The CheckBox control lets the user select or unselect an option. When the
CheckBox is checked, its value is set to 1 and when it is unchecked, the value is
set to 0. You can include the statements Check1.Value = 1 to mark the check box
and Check1.Value = 0 to unmark the check box, as well as use them to initiate
certain actions. For example, the program in Example 5.9 will show which items
are selected in a message box.

Example 5.9

Private Sub Cmd_OK_Click()

 If Check1.Value = 1 And Check2.Value = 0 And Check3.Value = 0 Then

 MsgBox "Apple is selected"

 ElseIf Check2.Value = 1 And Check1.Value = 0 And Check3.Value = 0 Then

PL
O

N
E-

28

BCA-118/129

 MsgBox "Orange is selected"

 ElseIf Check3.Value = 1 And Check1.Value = 0 And Check2.Value = 0
Then

 MsgBox "Orange is selected"

 ElseIf Check2.Value = 1 And Check1.Value = 1 And Check3.Value = 0 Then

 MsgBox "Apple and Orange are selected"

 ElseIf Check3.Value = 1 And Check1.Value = 1 And Check2.Value = 0 Then

 MsgBox "Apple and Pear are selected"

 ElseIf Check2.Value = 1 And Check3.Value = 1 And Check1.Value = 0 Then

 MsgBox "Orange and Pear are selected"

 Else

 MsgBox "All are selected"

 End If

End Sub

Fig. 5.9 The CheckBox

5.5.9 THE OPTIONBUTTON

The OptionButton control lets the user select one of the choices. However,
two or more option buttons must work together because as one of the option
button is selected, the other option button will be unselected. In fact, only one
option button can be selected at a time. When an OptionButton control is selected,
its value is set to “True”; and when it is unselected, its value is set to “False”.

Example 5.10: In this example, we want to change the background color of the
form according to the selected option. We insert three option buttons and change
their captions to "Red Background", "Blue Background" and "Green
Background" respectively. Next, insert a command button and change its name to
cmd_SetColor and its caption to "Set Background Color". Now, click on the
command button and enter the following code in the code window: PL

O
N

E-
28

BCA-118/130

Private Sub cmd_SetColor_Click()

 If Option1.Value = True Then

 Form1.BackColor = vbRed

 ElseIf Option2.Value = True Then

 Form1.BackColor = vbBlue

 Else

 Form1.BackColor = vbGreen

 End If

End Sub

Run the program, select an option and click the "Set Background Color" produces
the output, as shown below.

Fig. 5.10 The OptionButton

5.5.10 THE SHAPE CONTROL

In the following example, the shape control is placed in the form together
with six OptionButtons. To determine the shape of the shape control, we use the
shape property. The property values of the shape control are 0, 1, 2, 3, 4, 5 which
will make it appear as a rectangle, a square, an oval, a circle, a rounded rectangle,
and a rounded square respectively.

Example 5.11: In this example, we insert six option buttons. It is better to make
the option buttons into a control array as they perform similar action, i.e. to
change shape. In order to create a control array, click on the first option button,
rename it as MyOption. Next, click on the option button and select copy then
paste. After clicking the paste button, a popup dialog (Fig 5.11) box appears
asking “Do you want to create a control array?”, select yes. The control array
can be accessed via its index value, MyOption Index. In addition, we also insert a
shape control.

Fig. 5.11 Dialog Box for Control Array PL
O

N
E-

28

BCA-118/131

Now, enter the code in the code window. We use the If..Then..Else
program structure to determine which option button is selected by the user.

Private Sub MyOption_Click(Index As Integer)

If Index = 0 Then

MyShape.Shape = 0

ElseIf Index = 1 Then

MyShape.Shape = 1

ElseIf Index = 2 Then

MyShape.Shape = 2

ElseIf Index = 3 Then

MyShape.Shape = 3

ElseIf Index = 4 Then

MyShape.Shape = 4

ElseIf Index = 5 Then

MyShape.Shape = 5

End If

End Sub

Run the program and you can change the shape of the shape control by clicking
one of the option buttons. The output is shown below.

Fig. 5.12 The Shape Selector

Note: - A control array is a group of related controls in a Visual Basic form that
share the same event handlers. Control arrays are always single-
dimensional arrays, and controls can be added or deleted from control arrays at
runtime. PL

O
N

E-
28

BCA-118/132

5.5.11 THE DRIVELISTBOX

The DriveListBox is for displaying a list of drives available in your
computer. When you place this control into the form and run the program, you
will be able to select different drives from your computer as shown in Fig 5.13.

Fig. 5.13 The DriveListBox

5.5.12 THE DRIVELISTBOX

The DirListBox means the Directory List Box. It is for displaying a list of
directories or folders in a selected drive. When you place this control into the
form and run the program, you will be able to select different directories from a
selected drive in your computer as shown below in Fig 5.14.

Fig. 5.14 The DirListBox

5.5.13 THE FILELISTBOX

The FileListBox means the File List Box. It is for displaying a list of
directories or folders in a selected drive. When you place this control into the
form and run the program, you will be able to select different files from a selected
drive in the computer as shown below.

PL
O

N
E-

28

BCA-118/133

Fig. 5.15 The FileListBox

5.5.14 THE FRAME

When you want to group several controls together - name and address, for
example - you use a Frame. The colors of form and frame background can be
same and only the frame borders are obvious. The colors may be different and
clearly stand out. You create the frame before the controls. When you create
controls in a frame, they are tied to the frame and move with it. The frame caption
is the text that appears at the top of the frame- you use it to define the group.

Fig. 5.16 The Frame

5.5.15 THE TIMER

A Timer control is invisible at run time, and its purpose is to send a
periodic pulse to the current application. You can trap this pulse by writing code
in the Timer's Timer event procedure and take advantage of it to execute a task in
the background or to monitor a user's actions. This control exposes only two
meaningful properties: Interval and Enabled. Interval stands for the number of
milliseconds between subsequent pulses (Timer events), while Enabled lets you
activate or deactivate events. When you place the Timer control on a form, its
Interval is 0, which means no events. Therefore, remember to set this property to
a suitable value in the Properties window or in the Form_Load event procedure.

PL
O

N
E-

28

BCA-118/134

Syntax:

Private Sub Form_Load()

Timer1.Interval = 500 ' Fire two Timer events per second.

End Sub

Timer controls let you write interesting programs with just a few lines of code.
The typical example is a digital clock.

5.5.16 SCROLL BARS

There are two types of scroll bars i.e. horizontal and vertical. These are
widely used in windows applications. Theses provide an intuitive way to move
through a list of information and make great input devices. Some properties of
scroll bars are mentioned below.

 LargeChange– Increment added to or subtracted from the scroll bar value
property when the bar area is clicked.

 Max– the value of the horizontal scroll bars at the far right and the value
of the vertical scroll bar at the bottom can range from -32,768 to 32,767.

 Min- The horizontal scroll bar at the left and the vertical scroll bar at the
top can range from -32,768 to 32,767.

Fig. 5.17 The Scrollbars

5.5.17 DATAGRID CONTROL

The textbox is not the only control that can display data from a database,
many other controls in VB can also display data. One of them is the DataGrid
control. DataGrid control can be used to display the entire table of a recordset of a
database. It allows users to view and edit data. DataGrid control is not the default
item in the Visual Basic control toolbox, you have to add it from the VB6
components. To add the DataGrid control, click on the Project on the menu bar
and select components to access the dialog box that displays all the available VB6

PL
O

N
E-

28

BCA-118/135

components, as shown in the Fig 5.18. Select Microsoft DataGrid Control 6.0 by
clicking the checkbox beside this item. Before you exit the dialog box, you also
need to select the Microsoft ADO data control so that you are able to access the
database. Last, click on the OK button to exit the dialog box. Now you would be
able to see that the DataGrid control and the ADO data control are added to the
toolbox. The next step is to drag the DataGrid control and the ADO data control
into the form.

Fig. 5.18 The Component Dialog Box

Fig. 5.19 The Design Interface

PL
O

N
E-

28

BCA-118/136

CHECK YOUR PROGRESS

 Describe the picture box control.

 Write the syntax for command button and text box control briefly.

 Give the use of DataGrid control.

5.6 RICH TEXT BOX CONTROL

The RichTextBox control allows the user to display, enter, and edit text
while also providing more advanced formatting features than the
conventional text box control. The RichTextBox control provides a number of
properties you can use to apply formatting to any portion of text within the
control. To change the formatting of text, it must first be selected. Only selected
text can be assigned character and paragraph formatting. Using these properties,
you can make text bold or italic, change the color, and create superscripts and
subscripts. You can also adjust paragraph formatting by setting both left and right
indents, as well as hanging indents. The RichTextBox control opens and saves
files in both the RTF format and regular ASCII text format. You can use methods
of the control (LoadFile and SaveFile) to directly read and write files, or use
properties of the control such as SelRTF and TextRTF in conjunction with Visual
Basic's file input/output statements.

The RichTextBox control supports object embedding by using
OLEObjects collection. Each object inserted into the control is represented by
an OLEObject object. This allows you to create documents with the control that
contain other documents or objects. For example, you can create a document that
has an embedded Microsoft Excel spreadsheet or a Microsoft Word document or
any other OLE object registered on your system. To insert objects into
the RichTextBox control, you simply drag a file (from the Windows Explorer for
example), or a highlighted portion of a file used in another application (such as
Microsoft Word), and drop the contents directly onto the control.

The RichTextBox control supports both clipboard and OLE drag/drop of
OLE objects. When an object is pasted in from the clipboard, it is inserted at the
current insertion point. When an object is dragged and dropped into the control,
the insertion point will track the mouse cursor until the mouse button is released,
causing the object to be inserted. This behavior is the same as MS Word. To print
all or part of the text in a RichTextBox control SelPrint method is used.

As RichTextBox is a data-bound control, you can bind it with
a Data control to a Binary or Memo field in a Microsoft Access database or a
similar large capacity field in other databases (such as a TEXT data type field in
SQL Server). It supports almost all of the properties, events and methods used
with the standard TextBox control, such
as MaxLength, MultiLine, ScrollBars, SelLength, SelStart, and SelText.
Applications that already use TextBox controls can easily be adapted to make use
of RichTextBox controls. However, the RichTextBox control doesn't have the

PL
O

N
E-

28

BCA-118/137

same 64K character capacity limit of the conventional TextBox control. The
RichTextBox control must be added to the toolbox via the Components dialog
box, as shown in Fig 5.20 below. This dialog box is accessed via
the Project menu, Components item. Once you check "Microsoft Rich Textbox
Control 6.0" and click OK, the control is added to your toolbox (also shown
below, circled).

Fig. 5.20 The Components Dialog Box (left) and RichTextBox

Control Added to Toolbox (right)

5.6.1 PROPERTIES OF THE RICHTEXTBOX CONTROL

Table 5.2 Properties of the RichTextBox

Property Description

AutoVerbMenu Returns or sets a Boolean value that determines if a pop-
up menu containing the RTB's verbs (Cut, Copy Paste) is
displayed when the user clicks the RTB control with the
right mouse button. When this property is set to True,
Click events and MouseDown events don't occur when
the RTB control is clicked with the right mouse button.
In order to display your own menus, the AutoVerbMenu
property must be set to False.

BulletIndent Returns or sets the amount of indent (Integer) used in the
RTB when SelBullet is set to True. The units for the
value is based on the ScaleMode setting (twips, pixels,
etc.) for the form that contains the RTB. The BulletIndent
property returns Null if the selection spans multiple
paragraphs with different margin settings.

PL
O

N
E-

28

BCA-118/138

DisableNoScroll Returns or sets a Boolean value that determines whether
scroll bars in the RichTextBox control are disabled. The
DisableNoScroll property is ignored when the ScrollBars
property is set to 0 (None). However, when ScrollBars is
set to 1 (Horizontal), 2 (Vertical), or 3 (Both), individual
scroll bars are disabled when there are too few lines of
text to scroll vertically or too few characters of text to
scroll horizontally in the RichTextBox control.

FileName Returns or sets the filename of the file loaded into the
RichTextBox control. Only the names of text files or
valid .rtf files can be specified for this property.

HideSelection Returns a Boolean value that determines whether selected
text appears highlighted when the RTB loses focus.

Locked Returns or sets a Boolean value indicating whether the
contents of the RTB can be edited. (Setting Locked to
True makes the contents of the RTB read-only - however,
the content can still be modified by code.)

MaxLength Returns or sets a value (Long) indicating whether there is
a maximum number of characters a RichTextBox control
can hold and, if so, specifies the maximum number of
characters. The default for the MaxLength property is 0,
indicating no maximum other than that created by
memory constraints on the user's system. Any number
greater than 0 indicates the maximum number of
characters. Use the MaxLength property to limit the
number of characters a user can enter in a RichTextBox.
If text that exceeds the MaxLength property setting is
assigned to a RichTextBox from code, no error occurs;
however, only the maximum number of characters is
assigned to the Text property, and extra characters are
truncated. Changing this property doesn't affect the
current contents of a RichTextBox, but will affect any
subsequent changes to the contents.

MultiLine Returns or sets a Boolean value indicating whether the
RTB can accept and display multiple lines of text. (If
False, carriage returns are ignored and text is restricted to
a single line.) A multiple-line RichTextBox control
wraps text as the user types text extending beyond the
text box. Scroll bars can be added to a larger
RichTextBox control using the ScrollBars property. If no
horizontal scroll bar is specified, the text in a multiple-
line RichTextBox automatically wraps.

PL
O

N
E-

28

BCA-118/139

Note: On a form with no default button, pressing
ENTER in a multiple-line RichTextBox control moves
the focus to the next line. If a default button exists, you
must press CTRL+ENTER to move to the next line.

This property is read-only at run-time.

OLEObjects Every embedded OLE object created in the RichTextBox
control is represented in the OLEObjects collection. You
can manually add objects to the OLEObjects collection at
run time by using the Add method, or by dragging an
object from the Windows Explorer into the RichTextBox
control.

The OLEObjects collection is a standard collection and
supports the Add, Item, and Remove methods, as well as
the Count property.

RightMargin The RightMargin property is a Long value used to set the
right most limit for text wrapping, centering, and
indentation. Centering a paragraph is based on the left
most part of the text portion (doesn't include borders) of
the RichTextBox control and the RightMargin property.
Also, when setting the SelRightIndent property, it will be
based on the current setting of the RightMargin property.
The default for the RightMargin property is 0 and will
cause the control to set text wrapping equal to the right
most part of the RichTextBox control so all text is
viewable. Note: Setting this property to a very large
value will essentially remove WordWrap.

ScrollBars Returns or sets a value indicating whether the RTB has
horizontal or vertical scroll bars. Read-only at run-time.
Possible values are 0-rtfNone (default, no scroll bars
shown), 1-rtfHorizontal (horizontal scroll bar only), 2-
rtfVertical (vertical scroll bar only), or 3-rtfBoth (both
horizontal and vertical scroll bars shown).

For a RichTextBox control with setting 1 (Horizontal), 2
(Vertical), or 3 (Both), you must set the MultiLine
property to True.

At run time, the Windows automatically implements a
standard keyboard interface to allow navigation in
RichTextBox controls with the arrow keys (UP ARROW,
DOWN ARROW, LEFT ARROW, and RIGHT
ARROW), the HOME and END keys, and so on.

Scroll bars are displayed only if the contents of the
RichTextBox extend beyond the control's borders. If

PL
O

N
E-

28

BCA-118/140

ScrollBars is set to False, the control won't have scroll
bars, regardless of its contents.

A horizontal scrollbar will appear only when the
RightMargin property is set to a value that is larger than
the width of the control. (The value can also be equal to,
or slightly smaller than the width of the control.)

5.6.2 METHODS OF THE RICHTEXTBOX CONTROL

Method Description

LoadFile Loads an .rtf file or text file into a RichTextBox control.

Syntax: RichTextBox1.LoadFile pathname, filetype

Where pathname is a string defining the path and filename of
the file to load into the control and filetype is an integer or
constant that specifies the type of file loaded. Valid values
for filetype are 0 (or the constant rtfRTF; default, specifies a
valid .rtf file), or 1 (constant rtfText, specifies any text file).

When loading a file with the LoadFile method, the contents
of the loaded file replaces the entire contents of
the RichTextBox control. This will cause the values of
the Text and RTFText properties to change.

SaveFile Saves the contents of a RichTextBox control to a file.

Syntax: RichTextBox1.SaveFile pathname, filetype

Where pathname is a string defining the path and filename of
the file to receive the contents of the control and filetype is an
integer or constant that specifies the type of file to be saved.
Valid values for filetype are 0 (or the constant rtfRTF;
default, saves contents as a .rtf file), or 1 (constant rtfText,
saves contents as a text file).

5.7 WORKING WITH MENUS

Menus, which are located on the menu bar of a form, contain a list of
related commands. When you click a menu title in a Windows-based program, a
list of menu commands should always appear in a well-organized list. Most menu
commands run immediately after they are clicked. For example, when the user
clicks the Edit menu’s copy command, Windows immediately copies information
to the Clipboard. However, if ellipsis points (…) follow the menu command,
Visual Basic displays a dialog box that requests more information before the
command is carried out.

PL
O

N
E-

28

BCA-118/141

This section includes the following topics:

 Using the Menu Editor

 Adding Access and Shortcut Keys

 Processing Menu Choices

5.7.1 USING THE MENU EDITOR

The Menu Editor is a VB dialog box that manages menus in your
programs. With the Menu Editor, you can:

 Add new menus

 Modify and reorder existing menus

 Delete old menus

 Add special effects to your menus, such as access keys, check marks, and
keyboard

 Shortcuts.

Fig. 5.21 The Menu Editor

5.7.1.1 CREATING MENU COMMAND LISTS

 To build lists of menu commands, you first need to create the menus and
then add them to the program menu bar.

To create a list of menu commands on a form

1. Click the form itself (not an object on the form).

2. On the Visual Basic toolbar, click the Menu Editor icon, or select Menu
Editor from the Tools menu. PL

O
N

E-
28

BCA-118/142

3. In the Caption text box, type the menu caption (the name that will appear
on the menu bar), and then press TAB.

4. In the Name text box, type the menu name (the name the menu has in the
program code). By convention, programmers use the mnu object name
prefix to identify both menus and menu commands.

5. To add the menu to your program menu bar, click Next. The Menu Editor
clears the dialog box for the next menu item. As you build your menus,
the structure of the menus and commands appear at the bottom of the
dialog box.

6. In the Caption text box, type the caption of your first menu command.

7. Press tab, and then type the object name of the command in the Name text
box.

8. With this first command highlighted in the menu list box, click the right
arrow button in the Menu Editor. In the Menu list box, the command
moves one indent (four spaces) to the right. Click the right arrow button in
the Menu Editor dialog box to move items to the right, and click the left
arrow button to move items to the left.

9. Click Next, and then continue to add commands to your menu.

5.7.1.2 TO ADD MORE MENUS

1. When you’re ready to add another menu, click the left arrow button to
make the menu flush left in the Menu list box.

2. To add another menu and menu commands, repeat Steps 3 through 9 in the
preceding procedure.

3. When you’re finished entering menus and commands, click OK to close
the Menu Editor. (Don’t accidentally click Cancel or all your menu work
will be lost.) The Menu Editor closes, and your form appears in the
programming environment with the menus you created.

5.7.1.3 ADDING EVENT PROCEDURES

After you add menus to your form, you can use event procedures to
process the menu commands. Clicking a menu command on the form in the
programming environment displays the event procedure that runs when the menu
command is chosen. You’ll learn how to create event procedures that process
menu selections in Processing Menu Choices.

5.7.2 ADDING ACCESS AND SHORTCUT KEYS

Visual Basic makes it easy to provide access key and shortcut key support for
menus and menu commands.

PL
O

N
E-

28

BCA-118/143

5.7.2.1 ACCESS AND SHORTCUT KEYS

 The access key for a command is the letter the user can press to execute
the command when the menu is open. The shortcut key is the key combination the
user can press to run the command without opening the menu. Here's a quick look
at how to add access and shortcut keys to existing menu items:

1. Add an access key to a menu item Start the Menu Editor.

2. Prefix the access key letter in the menu item caption with an ampersand
(&).

3. Add a shortcut key to a menu command Start the Menu Editor.

4. Highlight the command in the menu list box.

5. Pick a key combination from the Shortcut drop-down list box.

5.7.2.2 CREATING ACCESS AND SHORTCUT KEYS

You can create access keys and shortcut keys either when you first create
your menu commands or at a later time. The following illustration shows the
menu commands associated with two menus, File and Clock. Each menu item has
an access key ampersand character, and the Time and Date commands are
assigned shortcut keys (Fig.5.22).

Fig. 5.22 The Menu Editor

5.7.3 PROCESSING MENU CHOICES

In a typical Windows application, not all menu commands are available at
the same time. In a typical Edit menu, for example, the Paste command is
available only when there is data on the Clipboard. When a command is disabled,
it appears in dimmed (gray) type on the menu bar. You can disable a menu item
by:

1. Clearing the Enabled check box for that menu item in the Menu Editor. PL
O

N
E-

28

BCA-118/144

2. Using program code to set the item's Enable property to False. (When
you’re ready to use the menu command again, set its Enable property to
True.)

5.8 ADDING AND REMOVING A CONTROL ON
FORM

You can add controls to a form in two ways: by double-clicking and by
drawing. You learned about double-clicking earlier, whenever you double-click
an icon on the toolbar, the associated control appears on your form. When you do
this, though, you can't control where the control goes: You're at the mercy of VB.
When you draw a control on your form, you can put it wherever you want it.

5.8.1 DRAW A CONTROL ON A FORM

1. Click the control's Toolbox icon.

2. Move the mouse pointer over your form. Notice that your pointer is now
shaped as a crosshair instead of an arrow. Click (and hold) the mouse
button where you want the control to go.

3. Drag the mouse down slightly and to the left. As you move the mouse,
notice that a box starts to appear.

4. When the box is the proper size, let go of the mouse button. The control
you selected now appears on the form.

5.8.2 REMOVE A CONTROL FROM A FORM

1. Select the control you want to delete by clicking it. The control you select
will appear with a box at each corner and side.

2. Press the Delete key.

You can also remove a control by right-clicking it. From the context menu
that appears, select Delete.

5.9 NAMING A CONTROL

A control name is one of its most important attributes because you literally
refer to a control by its name whenever you want it to do something. Names are
so important that every time you put a control on your form, VB automatically
gives a name to it. If you add a command button, VB names it Command1; if you
add a text box, it's automatically named Text1. However, naming controls like
this can be confusing. For example, if you add six command buttons to your form,
VB gives them names as Command1, Command2, Command3, and so on. If you
need 100 buttons, VB assigns a name Command100 to the last one. How are you
supposed to remember what Command67 does? The trick is, you should assign
names yourself instead of VB doing it automatically.

PL
O

N
E-

28

BCA-118/145

Name a Control:

1. After you add a control to a form, make sure that it's selected (it has a box at
each corner and side when it's selected).

2. In the Properties window, click the control's name in the right column.

3. Delete the current name and add the name you want.

A better name for a control is one that tells not only what type of control it
is, but also what it does within your program. Can you see the value here? If you
consistently give your controls descriptive names, you'll always know what they
do. Naturally, there is a convention you can use to help you with this.

When naming a control, the first letter of the friendly name is generally
uppercase. This makes it easier to read the control's name, because you can easily
differentiate between the friendly name and the control's abbreviation. This
convention is quite simple. It consists of a short (usually three-letter) abbreviation
that identifies the type of control (Table 5.2), followed by a longer, friendly name
that describes what the control does within your program. The abbreviation is
lowercase, and the friendly name follows it immediately, without any spaces.

Table 5.2 Common Prefixes for Naming Visual Basic Intrinsic Controls

Control Prefix Control Prefix

Label Lbl PictureBox Pic

Frame Fra TextBox Txt

CheckBox Chk CommandButton Cmd

ComboBox Cbo OptionButton Opt

HscrollBar Hsb ListBox Lst

Timer Tmr VscrollBar Vsb

DirListBox Dir DriveListBox Drv

Shape Shp FileListBox Fil

Image Img Line Lin

OLE Container Control Ole Data Dat

PL
O

N
E-

28

BCA-118/146

CHECK YOUR PROGRESS

 Compare RichTextBox with standard TextBox control.

 Write the significance of naming a control.

 Write the common prefixes for naming Visual Basic Intrinsic
Controls.

5.10 SUMMARY

A Control is an object that enables users to interact with the application.
Controls are available in tool box. These are the building blocks of an application.
Each control has a unique set of properties, which determine its appearance and
behavior. A control has a name property that distinguishes it from other objects in
a project. There are other properties as well which can be changed.

The Custom control is a program that someone has written which can be
included in the VB program. The two types of custom controls that VB can use
are VBX (Visual Basic custom extension controls) and OCX (OLE Custom
extension controls). Moreover, a custom control is a file with a .VBX or .OCX
filename extension or an insertable object that can be added to a project using the
custom controls dialog box to extend the 'Toolbox'. The desired selection can be
made by clicking the box to the left of the list, which shall mark 'X' in the box.
The deselection shall remove the 'X' mark.

The TextBox is the standard control for accepting input from the user as
well as to display the output. It can handle string (text) and numeric data but not
images or pictures. A string entered into a text box can be converted to a numeric
data by using the function Val(text). The CommandButton is one of the most
important controls as it is used to execute commands. It displays an illusion that
the button is pressed when the user clicks on it. The most common event
associated with the command button is the click event. The procedure associated
with the command button is Comman1_click().

The PictureBox is one of the controls that is used to handle graphics. A
picture can be loaded at design phase by clicking on the picture item in the
properties window and select the picture from the selected folder. The picture can
be loaded at runtime using the LoadPicture method.The ImageControl is another
control that handles images and pictures. It functions almost identically to the
PictureBox control. However, there is one major difference, the image in an
ImageControl is stretchable, which means it can be resized. This feature is not
available in the PictureBox. Similar to the PictureBox, it can also use the
LoadPicture method to load the picture.

The function of the ListBox is to present a list of items where the user can
click and select the items from the list. In order to add items to the list, we can use
the AddItem method. The function of the ComboBox is also to present a list of
items where the user can click and select the items from the list. However, the
user needs to click on the small arrowhead on the right of the combo box to see PL

O
N

E-
28

BCA-118/147

the items which are presented in a drop-down list. In order to add items to the list,
AddItem method can aslo be used. The CheckBox control lets the user select or
unselect an option. When the check box is checked, its value is set to 1 and when
it is unchecked, the value is set to 0. You can include the statements
Check1.Value = 1 to mark the Check Box and Check1.Value = 0 to unmark the
Check Box, as well as use them to initiate certain actions.

The OptionButton control also lets the user selects one of the choices.
However, two or more option buttons must work together because as one of the
option buttons is selected, the other Option button will be unselected. In fact, only
one Option Box can be selected at one time. When an option box is selected, its
value is set to “True” and when it is unselected; its value is set to “False”. The
Shape control is used to determine the shape of the shape using the shape
property. The property values of the shape control are 0, 1, 2, 3, 4, 5 which will
make it appear as a rectangle, a square, an oval, a circle, a rounded rectangle, and
a rounded square respectively.

The DriveListBox is for displaying a list of drives available in the
computer. When you place this control into the form and run the program, you
will be able to select different drives from your computer. The DirListBox means
the Directory List Box. It is for displaying a list of directories or folders in a
selected drive. When you place this control into the form and run the program,
you will be able to select different directories from a selected drive in your
computer.

A Timer control is invisible at run time, and its purpose is to send a
periodic pulse to the current application. You can trap this pulse by writing code
in the Timer's timer event procedure and take advantage of it to execute a task in
the background or to monitor a user's actions. This control exposes only two
meaningful properties: Interval and Enabled.

The TextBox is not the only control that can display data from a database,
many other controls in VB can display data. One of them is the DataGrid control.
DataGrid control can be used to display the entire table of a recordset of a
database. The RichTextBox control allows the user to display, enter, and edit text
while also providing more advanced formatting features than the
conventional TextBox control. The RichTextBox control provides a number of
properties can be used use to apply formatting to any portion of text within the
control. To change the formatting of text, it must first be selected. Only selected
text can be assigned character and paragraph formatting.

Controls to a form can be added in two ways: First, by double-clicking,
and second by drawing. Whenever you double-click an icon on the toolbar, the
associated control appears on the form. When you do this, though, you can't
control where the control goes: You're at the mercy of VB. When you draw a
control on your form, you can put it wherever you want it. A control's name is one
of its most important attributes because you literally refer to a control by its name
whenever you want it to do something. Names are so important that every time
you put a control on your form, VB automatically gives a name to it. If you add a
command button, VB names it Command1; if you add a TextBox, it automatically
names Text1 and so on.

PL
O

N
E-

28

BCA-118/148

5.11 TERMINAL QUESTIONS

1. What do you understand by control and its related properties? Explain
briefly.

2. Compare Intrinsic control and Custom control.

3. What do you understand by Custom control? How can these be added on a
form?

4. Write a short note on Intrinsic controls.

5. Differentiate standard TextBox and RichTextBox.

6. What is the difference between PictureBox control and ImageControl?

7. What do you understand by a RichTextBox control? Explain its properties.

8. Write a short note on the addition and removal of a control.

9. Discuss the importance of naming a control.

10. Write a short note on Text and Command control.

PL
O

N
E-

28

BCA-118/149

PL
O

N
E-

28

BCA-118/150

UNIT-6 DIALOG BOXES AND INTERNET

Structure

6.0 Introduction

6.1 Objectives

6.2 Introduction to Dialog Boxes

6.3 Modal Dialog Box

6.4 Modeless Dialog Box

6.5 Model Vs Modeless Dialog Box

6.6 Common Dialog Box

6.7 Visual Basic and Internet

6.8 Summary

6.9 Terminal Questions

6.0 INTRODUCTION

This Unit 6 basically deals with the dialog boxes used in VB. As there are
so many dialog boxes used in various applications like MS office, Notepad,
Wordpad etc. Some popular examples of the dialog boxes are like file open dialog
box, font dialog box, save as dialog box, print dialog box, message dialog box.
Usually, the dialog boxes are divided in two categories modal and modeless
dialog boxes. Control box basically includes various controls like text boxes,
command buttons, check boxes etc.

A dialog box is simply a form in a program that contains input controls
designed to receive information. To make your programming faster, Visual Basic
includes an ActiveX control, named CommonDialog. With this control, you can
easily display six standard dialog boxes in your programs.

Two important categories of dialog boxes are modal and modeless. A
modal dialog box is basically a window that forces the user to interact with it
before they can go back to using the parent application. A good example of this
would be a prompt for saving, or the "open file" dialog. Modal dialog boxes,
which require the user to respond before continuing the program or forces the user
to acknowledge the dialog before moving onto the application. On the other hand,
modeless dialog boxes enable the user to interact with the dialog box and the
application interchangeably.

Moreover, some controls are not avaialable in the control box or tool box,
but they can be added as per the need. Web browser is one of the controls which
can be added as per the need of the application. Like an Internet based application
require the web browser control. Furthermore, apart from the traditional dialog PL

O
N

E-
28

BCA-118/151

boxes, the Common Dialog Control provides a standard interface for operations
such as opening, saving, and printing files or selecting colours and fonts using the
Microsoft Windows dynamic link library COMMDLG.

6.1 OBJECTIVES

At the end of this unit you will come to know about the following

 Dialog box

 Message dialog box

 Modal dialog box

 Modeless dialog box

 Common dialog box

 Font dialog box

 Print dialog box

 Save as dilaog box

 File open dialog box

 Relation between Internet and VB

6.2 INTRODUCTION TO DIALOG BOXES

A dialog box is a form defined with particular properties. Like a form, a
dialog box is referred to as a container. A dialog box is mostly used to host child
controls, insuring the role of dialog between the user and the machine. A dialog
box is simply a form in a program that contains input controls designed to receive
information. To make your programming faster, VB includes an ActiveX control,
named Common Dialog control. With this control, you can easily display six
standard dialog boxes in the programs. These dialog boxes handle routine tasks
such as opening files, saving files, picking fonts, printing etc. If the dialog box
you want to use is not included in this ready-made collection of objects, you can
create a new one by adding a second form to your program. Here is an example of
a dialog box in Fig. 6.1.

Fig. 6.1 The Dialog Box

A dialog box has the following characteristics: PL
O

N
E-

28

BCA-118/152

 The only system button is equipped with is Close . As the only system
button, this button allows the user to dismiss the dialog and ignore
whatever the user would have done on the dialog box.

 It cannot be minimized, maximized, or restored. A dialog box does not
have any other system button but Close.

 It is usually modal, in which case the user is not allowed to continue any
other operation on the same application until the dialog box is dismissed.

 It provides a way for the user to close or dismiss it.

6.2.1 CREATING A DIALOG BOX USING THE COMMON
DIALOG CONTROL

Before you can use the Common Dialog control, you need to verify that it
is in your toolbox. If you don’t see the Common Dialog icon, follow the following
procedure to add it to the toolbox. To add the Common Dialog control to the
toolbox, use the following steps:

1. From the Project menu, click Components.

2. Click the Controls tab.

3. Ensure that the Selected Items Only box is not checked.

4. Place a check mark next to Microsoft Common Dialog Control, and then
click OK.

Follow this procedure to create a dialog box with the CommonDialog control:

1. In the toolbox, double-click the Common Dialog control.

2. When the common dialog object appears on your form (Fig. 6.2), drag it to
an out-of-the-way location.

Note:- You cannot resize a common dialog object, and it disappears when your
program runs. The common dialog object itself displays nothing — its only
purpose is to display a standard dialog box on the screen when you use a method
in program code to request it.

Fig. 6.2 Adding Common Dialog Control

PL
O

N
E-

28

BCA-118/153

This following table lists the name and purpose of the six standard dialog boxes
that the common dialog object provides and the methods you use to display them.

Table 6.1 List of standard dialog boxes

Dialog Box Purpose Method

Open
Gets the drive, folder, name, and file
name for an existing file that is being
opened.

ShowOpen

Save As
Gets the drive, folder name, and file
name for an existing file that is saved.

ShowSave

Print Provide user-defined printing options. ShowPrinter

Font
Provide user-defined font type and
style options.

ShowFont

Help Provide online user information. ShowHelp

Color
Provide user-defined color selection
from a palette.

ShowPrinter

6.2.2 USING THE DIALOG OBJECT EVENT PROCEDURES

To display a standard dialog box in a program, you need to call the
common dialog object. You do this by using the appropriate object method in an
event procedure. If necessary, you also use program code to set one or more
common dialog object properties before the call. (For example, if you are using
the Open dialog box, you might want to control what type of files is displayed in
the list box.) Finally, your event procedure needs to process the choices made by
the user when they complete the standard dialog box. This section presents two
simple event procedures, one that manages an Open dialog box and one that uses
information received from a Color dialog box.

6.2.2.1 CREATING AN OPEN DIALOG BOX

The following code window shows an event procedure named
mnuOpenItem_Click. You can use this event procedure to display an Open dialog
box when the user clicks the Open command on the File menu. The event
procedure assumes that you have already created a File menu containing Open
and Close commands and that you want to open Windows metafiles (.wmf). See
the piece of code given below.

Private Sub mnuOpenItem_Click()

 CommonDialog1.Filter = "Metafiles (*.WMF)|*.WMF"

PL
O

N
E-

28

BCA-118/154

CommonDialog1.ShowOpen

 Image1.Picture = LoadPicture(CommonDialog1.FileName)

mnuCloseItem.Enabled = True

End Sub

The event procedure uses the following properties and methods shown in table
6.2.

Table 6.2 List of Property and Methods by Event Procedures

Object Property/Method Purpose

Common
Dialog

ShowOpen Displays the dialog box.

Common
Dialog

Filter Defines the file type in the dialog box.

Menu Enabled
Enable the Close menu command, which
users can use to unload the picture.

Image Picture Opens the selected file.

6.2.2.2 CREATING A COLOR DIALOG BOX

If you need to update the colour of a user interface element while your
program runs, you can prompt the user to pick a new colour with the Color dialog
box displayed by using the Common Dialog object. The color selections provided
by the Color dialog box are controlled by the Flags property, and the Color dialog
box is displayed with the ShowColor method.

This code window shows an event procedure that you can use to change
the color of a label while your program runs. The value used for the Flags
property— which in this case prompts VB to display a standard palette of color
selections— is a hexadecimal (base 16) number. (To see a list of other potential
values for the Flags property, search for CommonDialog constants in the VB
online Help.) The event procedure assumes that you have already created a menu
command named TextColor with the Menu Editor. See the code given below

Private Sub mnuTextColorItem_Click()

CommonDialog1.Flags = &H1&

CommonDialog1.ShowColor
Label1.ForeColor = CommonDialog1.Color

End Sub

Note: - Normally there are two types of dialog boxes- modal and modeless dialog
box which are discussed in detail below. PL

O
N

E-
28

BCA-118/155

6.3 MODAL DILAOG BOX

A modal dialog box is a window that forces the user to interact with it
before they can go back to using the parent application. Modal dialog boxes force
the user to acknowledge the dialog before moving before moving onto the
application. They are often used when a user is forced to make an important
decision. For example, if you are working on a document in Microsoft Word, and
you want to choose to exit Word before saving. A modal dialog would pop up and
ask you to either Save, Don't Save, or Cancel. Until you make your decision you
cannot use the application, and it will not close. A Modal dialog box is one that
the user must first close in order to have access to any other framed window or
dialog box of the same application. One of the scenarios in which you use a dialog
box is to create an application that is centered around one. In this case, if either
there is no other form or dialog box in your application or all the other forms or
dialog boxes depend on this central dialog box, it must be created as modal. Such
an application is referred to as dialog-based.

Modal dialogs should be used when the user takes an action that needs
additional information to be completed correctly. The print dialog box is also a
good example of modal dialog box or the 'options' dialogs in loading of programs.
When to use modal dialogs is a bit tricky to define, but mostly it should be used
sparingly, and avoided whenever possible. Some applications require various
dialog boxes to complete their functionality. When in case, you may need to call
one dialog box from another and display it as modal. Here is an example in Fig.
6.3.

Fig. 6.3 The Date and Time dialog box of WordPad is modal: when

it is displaying, the user cannot use any other part of

WordPad unless he or she closes this object first

PL
O

N
E-

28

BCA-118/156

6.3.1 EXAMPLES

1. A SSH program requires the password to connect to the server.
That may be implemented via a modal dialog, though you could argue that
opening the options configuration makes sense whether the user is
connected or not.

2. A multi-tabbed browser should not implement HTTP 401 basic
authentication via a modal dialog. A user may well want to open another
tab to read the password from an activation email.

3. A print dialog in a multi-document interface should not be modal. If the
user wants to print two documents, one with 1000 pages and one with 5,
but wrongly starts with the 1000-page document, you should not require
him/her to cancel the dialog (and all settings he/she gave) so that the
smaller job could be printed first.

6.4 MODELESS DILAOG BOX

Modeless dialog boxes enable the user to interact with the dialog and the
application interchangeably. So far we've been looking at modal dialog boxes, the
more common of the two types. Modal dialog boxes (except system modal dialog
boxes) allow the user to switch between the dialog box and other programs.
However, the user cannot switch to another window in the program that initiated
the dialog box until the modal dialog box is destroyed. Modeless dialog boxes
allow the user to switch between the dialog box and the window that created it as
well as between the dialog box and other programs. The modeless dialog box is
thus more akin to the regular popup windows that your program might create.

Modeless dialog boxes are preferred when the user would find it
convenient to keep the dialog box displayed for a while. For instance, word
processors often use modeless dialog boxes for the text Find and Change dialogs.
If the Find dialog box were modal, the user would have to choose Find from the
menu, enter the string to be found, end the dialog box to return to the document,
and then repeat the entire process to search for another occurrence of the same
string. Allowing the user to switch between the document and the dialog box is
much more convenient.

As It has been seen, modal dialog boxes are created using DialogBox. The
function returns a value only after the dialog box is destroyed. It returns the value
specified in the second parameter of the EndDialog call that was used within the
dialog box procedure to terminate the dialog box. Modeless dialog boxes are
created using CreateDialog. This function takes the same parameters
as DialogBox:

hDlgModeless = CreateDialog (hInstance, szTemplate,

 hwndParent, DialogProc);

The difference is that the CreateDialog function returns immediately with
the window handle of the dialog box. Normally, you store this window handle in a

PL
O

N
E-

28

BCA-118/157

global variable. Although the use of the names DialogBox with modal dialog
boxes and CreateDialog with modeless dialog boxes may seem arbitrary, you can
remember which is which by keeping in mind that modeless dialog boxes are
similar to normal windows. CreateDialog should remind you of
the CreateWindow function, which creates normal windows.

A dialog box is referred to as modeless if the user does not have to close it
in order to continue using the application that owns the dialog box. A modeless
dialog box has the following characteristics:

 It has a thin border

 It can be neither minimized nor maximized. This means that it is not
equipped with the Minimize or the Maximize buttons

 It is not represented on the taskbar with a button

 It must provide a way for the user to close it

Example: The Find (and the Replace) dialog box of WordPad (also the Find and
the Replace dialog boxes of most applications) is an example of a modeless dialog
box. If it is opened, the user does not have to close it in order to use the
application or the document in the background (Fig. 6.4).

Fig. 6.4 The Find (and the Replace) dialog box of WordPad

Since the modeless dialog box does not display its button on the task bar,
the user should know that the dialog box is opened. To make the presence of a
modeless dialog box obvious to the user, it typically displays on top of its host
application until the user closes it.

A modeless dialog box is created from a form but it should look like a
regular dialog box or a tool window. Therefore, to create a modeless dialog box,
set the FormBorderStyle property to an appropriate value such

PL
O

N
E-

28

BCA-118/158

as FixedSingle, FixedToolWindow, Sizable or SizableToolWindow. Also, set
its ShowInTaskbar property to False. After creating the dialog box, to display it as
modeless, call the Show() method. The fundamental difference between
the ShowDialog() and the Show() methods is that the former displays a modal
dialog box, which makes sure that the called dialog box cannot go in the
background of the main application. By contrast, the Show() method only calls the
dialog box every time it is requested. For this reason, it is up to you to make sure
that the modeless dialog box always remains on top of the application. This is
easily taken care of by setting the boolean TopMost property of the form to True.

There are two main ways a normal modeless dialog box can be dismissed:

 If the user has finished using it, he or she can close it and recall it at will

 When the form or application that owns the modeless dialog box is closed,
the form or application closes the modeless dialog if it is opened; this
means that you don't need to find out whether a modeless dialog box is
still opened when the application is being destroyed: either the user or the
application itself will take care of closing it.

6.5 MODAL VS MODELESS DILAOG BOX

 Modal dialog boxes force the user to acknowledge the dialog before
moving onto the application. Modeless dialog boxes enable the user to
interact with the dialog and the application interchangeably.

 A modal dialog box doesn’t allow the user to access the parent window
while the dialog is open – it must be dealt with and closed before
continuing. A modeless dialog can be opened in the background.

 Modal dialog boxes, which require the user to respond before continuing
the program.

 Modeless dialog boxes, which stay on the screen and are available for use
at any time but permit other user activities.

 When a modal dialog is open you cannot interact with anything else than
this modal dialog inside your program, as long as the modal dialog is
open. Most dialogs are modal, for example the File-Save As dialogs are
modal.

 On the other hand, a modeless dialog behaves just like a normal window,
you can do anything you want while it is open. The spell checker dialog in
Microsoft Word is an example of such a dialog

 Modal dialog box captures the message loop. Whereas modeless does not.

 Model dialog does not allow its parent window unless it is closed.
Whereas modeless it allows.

 Modal Dialog box occupies the Stack Area that the reason it can't give the
control to its parent. Modeless Dialog box occupies the Heap Area it gives
the control to its parent.

 Modal dialog does not switch the control of dialog box outside the
window. PL

O
N

E-
28

BCA-118/159

 Modeless dialog can perform actions outside dialog box of the window.

 Model dialog box is a static for the model box control application, & the
modeless dialog box is a dynamic, so you can do anything in modeless
dialog box.

CHECK YOUR PROGRESS

 What do you understand by dialog box?

 Compare modal and modeless dialog box.

 Write at least one example for modal and modeless dialog box each.

6.6 COMMON DIALOG BOXES

The Common Dialog Box Library contains a set of dialog boxes for
performing common application tasks, such as opening files, choosing color
values, and printing documents. The common dialog boxes allow you to
implement a consistent approach to your application's user interface. This reduces
the amount of effort that users spend in learning user interface behavior for your
application.

To give the user a standard interface for common operations in Windows-
based applications, Visual Basic provides a set of common dialog boxes, two of
which are the Open and Save As dialog boxes. Such boxes are familiar to any
Windows user and give your application a professional look. And, with Windows,
some context-sensitive help is available while the box is displayed.

The Common Dialog control is a ‘custom control’ which means we have
to make sure some other files are present to use it. In normal setup configurations,
Visual Basic does this automatically. If the common dialog box does not appear in
the Visual Basic toolbox, you need to add it. This is done by selecting
Components under the Project menu. When the selection box appears, click on
Microsoft Common Dialog Control, then click OK. The common dialog tool,
although it appears on your form, is invisible at run-time. You cannot control
where the common dialog box appears on your screen. The tool is invoked at run-
time using one of five ‘Show’ methods (Table 6.3).

Table 6.3 Show Methods

S.No. Method Common Dialog Box

1 ShowOpen Open dialog box

2 ShowSave Save As dialog box

3 ShowColor Color dialog box

4 ShowFont Font dialog box

5 ShowPrinter Printer dialog box

PL
O

N
E-

28

BCA-118/160

6.6.1 OPENFILEDIALOG BOX

The Open common dialog box provides the user a mechanism for
specifying the name of a file to open. The box is displayed by using the
ShowOpen method. Here’s an example of an Open common dialog box (Fig. 6.5).

Fig. 6.5 Open Common Dialog Box

6.6.1.1 OPENFILEDIALOG BOX PROPERTIES

OpenFileDialog Box Properties are shown in Table 6.4 and there are six
properties.

Table 6.4 OpenFileDialog Box Properties

S.No. Property Description

1 CancelError If True, generates an error if the Cancel button is
clicked. Allows you to use error-handling procedures
to recognize that Cancel was clicked.

2 DialogTitle The string appearing in the title bar of the dialog box.
Default is Open. In the example, the DialogTitle is
Open Example.

3 FileName Sets the initial file name that appears in the File name
box. After the dialog box is closed, this property can
be read to determine the name of the selected file.

4 Filter Used to restrict the filenames that appear in the file
list box. Complete filter specifications for forming a
Filter can be found using on-line help. In the
example, the Filter was set to allow Bitmap (*.bmp),
Icon (*.ico), Metafile (*.wmf), GIF (*.gif), and JPEG
(*.jpg) types (only the Bitmap choice is seen).

PL
O

N
E-

28

BCA-118/161

5 FilterIndex Indicates which filter component is default. The
example uses a 1 for the FilterIndex (the default
value).

6 Flags Values that control special features of the Open
dialog box. The example uses no Flags value.

6.6.2 SAVE AS DIALOG BOX

The Save As common dialog box provides the user a mechanism for
specifying the name of a file to save. The box is displayed by using the ShowSave
method as shown in the Fig. 6.6.

Fig. 6.6 Save As Common Dialog Box

6.6.2.1 SAVE AS DIALOG BOX PROPERTIES

Save As Dialog Box Properties are shown in Table 6.5 and there are seven
properties.

Table 6.5 Save As Dialog Box Properties

S.No. Property Description

1 CancelError If True, generates an error if the Cancel button is
clicked. Allows you to use error-handling procedures
to recognize that Cancel was clicked.

2 DefaulText Sets the default extension of a file name if a file is
listed without an extension.

PL
O

N
E-

28

BCA-118/162

3 DialogTitle The string appearing in the title bar of the dialog box.
Default is Save As. In the example, the DialogTitle is
Save As Example.

4 FileName Sets the initial file name that appears in the File name
box. After the dialog box is closed, this property can
be read to determine the name of the selected file.

5 Filter Used to restrict the filenames that appear in the file
list box.

6 FilterIndex Indicates which filter component is default.

7 Flags Values that control special features of the dialog box

6.6.2.2 SAVE AS DIALOG BOX METHODS

Save As Dialog Box methods are shown in Table 6.6 and there are two properties.

Table 6.6 Save As Dialog Box Properties

S.N. Method Name Description

1. OpenFile Opens the file with read/write permission.

2. Reset Resets all dialog box options to their default values.

The Save File box is commonly configured in one of two ways. If a file is
being saved for the first time, the Save As configuration, with some default name
in the FileName property, is used. In the Save configuration, we assume a file has
been previously opened with some name. Hence, when saving the file again, that
same name should appear in the FileName property. You’ve seen both
configuration types before.

6.6.3 FONT DIALOG BOX

The Font dialog box lets the user choose attributes for a logical font, such
as font family and associated font style, point size, effects, and a script. It prompts
the user to choose a font from among those installed on the local computer and
lets the user select the font size and color. It returns the font and color objects.
The font dialog box is shown in Fig 6.7.

PL
O

N
E-

28

BCA-118/163

Fig. 6.7 Font Dialog Box

6.6.3.1 FONT DIALOG BOX PROPERTIES

Font Dialog Box properties are shown in Table 6.7 and there are fourteen
properties.

Table 6.7 Font Dialog Box Properties

S.N. Property Description

1 AllowSimulations Gets or sets a value indicating whether the
dialog box allows graphics device interface
(GDI) font simulations.

2 AllowVectorFonts Gets or sets a value indicating whether the
dialog box allows vector font selections.

3 AllowVerticalFonts Gets or sets a value indicating whether the
dialog box displays both vertical and
horizontal fonts, or only horizontal fonts.

4 Color Gets or sets the selected font color.

5 FixedPitchOnly Gets or sets a value indicating whether the
dialog box allows only the selection of fixed-

PL
O

N
E-

28

BCA-118/164

pitch fonts.

6 Font Gets or sets the selected font.

7 FontMustExist Gets or sets a value indicating whether the
dialog box specifies an error condition if the
user attempts to select a font or style that does
not exist.

8 MaxSize Gets or sets the maximum point size a user
can select.

9 MinSize Gets or sets the minimum point size a user can
select.

10 ScriptsOnly Gets or sets a value indicating whether the
dialog box allows selection of fonts for all
non-OEM and Symbol character sets, as well
as the ANSI character set.

11 ShowApply Gets or sets a value indicating whether the
dialog box contains an Apply�button.

12 ShowColor Gets or sets a value indicating whether the
dialog box displays the color choice.

13 ShowEffects

Gets or sets a value indicating whether the
dialog box contains controls that allow the
user to specify strikethrough, underline, and
text color options.

14 ShowHelp Gets or sets a value indicating whether the
dialog box displays a Help button.

6.6.3.2 METHODS OF THE FONTDIALOG CONTROL

Methods of the FontDialog control are shown in Table 6.8 and there are three
methods. PL

O
N

E-
28

BCA-118/165

Table 6.8 Font Dialog Box Properties

S.N. Method Name Description

1 Reset Resets all options to their default values.

2 RunDialog When overridden in a derived class, specifies a
common dialog box.

3 ShowDialog Runs a common dialog box with a default
owner.

Example: In this example, let's change the font and color of the text from a rich
text control using the Font dialog box. Take the following steps:

1. Drag and drop a RichTextBox control, a Button control and a FontDialog
control on the form.

2. Set the Text property of the button control to 'Change Font'.

3. Set the ShowColor property of the FontDialog control to True.

4. Double-click the Change Color button and modify the code of the Click
event.

6.6.4 PRINT DIALOG BOX

Print dialog box is also very important and it has several features (Fig.6.8).
There are various other controls related to printing of documents. Let us have a
brief look at these controls and their purpose. These other controls are:

 The PrintDocument control- it provides support for actual events and
operations of printing in Visual Basic and sets the properties for printing.

 The PrinterSettings control- it is used to configure how a document is
printed by specifying the printer.

 The PageSetUpDialog control- it allows the user to specify page-related
print settings including page orientation, paper size and margin size.

 The PrintPreviewControl control- it represents the raw preview part of
print previewing from a Windows Forms application, without any dialog
boxes or buttons. PL

O
N

E-
28

BCA-118/166

Fig. 6.8 Print Dialog Box

6.6.4.1 PRINT DIALOG BOX PROPERTIES

Print Dialog Box properties are shown in Table 6.9 and there are nine properties.

Table 6.9 Print Dialog Box Properties

S.No. Property Description

1 AllowCurrentPage Gets or sets a value indicating whether
the Current Page option button is
displayed.

2 AllowPrintToFile Gets or sets a value indicating whether
the Print to file check box is enabled.

3 AllowSelection Gets or sets a value indicating whether
the Selection option button is enabled.

4 AllowSomePages Gets or sets a value indicating whether
the Pages option button is enabled.

5 Document Gets or sets a value indicating the
PrintDocument used to obtain
PrinterSettings.

PL
O

N
E-

28

BCA-118/167

6 PrinterSettings Gets or sets the printer settings the dialog
box modifies.

7 PrintToFile Gets or sets a value indicating whether
the Print to file check box is selected.

8 ShowHelp Gets or sets a value indicating whether
the Help button is displayed.

9 ShowNetwork Gets or sets a value indicating whether
the Network button is displayed.

6.6.4.2 PRINT DIALOG BOX METHODS

Print Dialog Box methods are shown in Table 6.10 and there are three properties.

Table 6.10 Print Dialog Box Properties

S.No. Method Name Description

1 Reset Resets all options to their default values.

2 RunDialog When overridden in a derived class, specifies a
common dialog box.

3 ShowDialog Runs a common dialog box with a default owner.

Example: In this example, let us see how to show a Print dialog box in a form.
Take the following steps:

1. Add a PrintDocument control, a PrintDialog control and a Button control
on the form. The PrintDocument and the PrintDialog controls are found on
the Print category of the controls toolbox.

2. Change the text of the button to 'Print'.

3. Double-click the Print button and modify the code of the Click even

6.7 VISUAL BASIC AND INTERNET

In order to create the web browser, Microsoft Internet Control is PL
O

N
E-

28

BCA-118/168

required. This control is not available in default VB6 IDE, you have to add it from
the components window. To add this control, press Ctrl+T to open up the
components window and select Microsoft Internet Control. After selecting the
control, you will see the control appears in the toolbox as a small globe. To insert
the Microsoft Internet Control into the form, just drag the globe into the form and
a white rectangle will appear in the form. You can resize this control as you wish.
This control is given the default name WebBrowser1.

To design the interface, you need to insert one combo box which will be
used to display the URLs. In addition, you can insert a few images which will
function as command buttons for the user to navigate the web; they are
the Go command, the Back command, the Forward command,
the Refresh command and the Home command. You can actually put in the
command buttons instead of the images, but using images will definitely improve
the appearance of the browser.

The procedures for all the commands are relatively easy to code. There are
many methods, events, and properties associated with the web browser but you
need to know just a few of them to come up with a functional Internet browser.
The method navigate is to go the website specified by its Uniform Resource
Locator(URL). The syntax is WebBrowser1.Navigate (“URL”).

6.7.1 THE CODE

Private Sub Form_Load()

WebBrowser1.Navigate ("http://www.gkv.ac.in")

End Sub

In order to show the URL in the combo box and also to display the page
title at the form caption after the page is completely downloaded, we use the
following statements:

Private Sub

WebBrowser1_DocumentComplete (ByVal pDisp As Object, URL As
Variant)

Combo1.Text = URL

Form1.Caption = WebBrowser1.LocationName

Combo1.AddItem URL

End Sub

The following procedure will tell the user to wait while the page is loading.

Private Sub

WebBrowser1_DownloadBegin ()

Combo1.Text = "Page loading, please wait"

End Sub PL
O

N
E-

28

BCA-118/169

As the time passed Internet applications need more features and methods.
Hence Visual Basic 6 faced some problems too, and hence new things like
complete object oriented features were included in VB.NET. The last version of
VB, VB 6, was released in 1998, but has since been replaced by VB.NET, Visual
Basic for applications (VBA) and Visual Stuido .NET. VBA and Visual Studio
are the two frameworks most commonly used so far.

CHECK YOUR PROGRESS

 What do you understand by common dialog box?

 Give the name of some common dialog boxes.

 Discuss the properties and methods of file open dialog box.

6.8 SUMMARY

A dialog box is simply a form in a program that contains input controls
designed to receive information. To make your programming faster, VB includes
an ActiveX control, named CommonDialog. With this control, it can easily be
displayed six standard dialog boxes in the programs.

A Windows form can be displayed in one of two modes, modal and non-
modal (modeless). When a form is non-modal it means that other forms in the
other forms in the application remain accessible to the user (in that they can still
click on controls or use the keyboard in other forms).When a form is modal, as
soon as it is displayed all other forms in the application are disabled until the
modal dialog is dismissed by the user. Modal forms are typically used when the
user is required to complete a task before proceeding to another part of the
application.

The Common Dialog control provides a standard set of dialog boxes for
operations such as opening, saving, and printing files, as well as selecting colors
and fonts and displaying help. A particular dialog box is displayed by using one
of the six "Show..." methods of the Common Dialog
control: ShowOpen, ShowSave, ShowPrinter, ShowColor, ShowFont,
or ShowHelp.

The Common Dialog control not an intrinsic control; rather, it is an
"Active X" control that must be added to the toolbox via the Components dialog
box. This dialog box is accessed via the Project menu, Components item. Once
"Microsoft Common Dialog Control 6.0" is checked and clicked OK, the control
is added to the toolbox. Thereafter double-click it to make it appear on the form,
as you would with any other control. The Common Dialog control is not visible
at run-time.

To create a web browser, Internet Control is needed in VB
applications. This control is not available in default VB6 IDE, it is to be added
from the components window. To add this control, Ctrl+T can be pressed to open
up the components window and select Microsoft Internet Control. After selected

PL
O

N
E-

28

BCA-118/170

the control, the control appears in the toolbox as a small globe. To insert the
Microsoft Internet Control into the form, the globe is dragged into the form and a
white rectangle will appear in the form. This control can be resized as per the
wish of the user. This control is given the default name WebBrowser1.

6.9 TERMINAL QUESTIONS

1. What do you understand by dialog box? Explain.

2. Explain modal dialog box using example.

3. Write a short note on modeless dialog box with example.

4. Compare modal and modeless dialog box.

5. What do you understand by common dialog control? Explain briefly.

6. Explain font dialog box using its important properties and methods.

7. What do you understand by a print dialog box? Explain its properties and
methods.

8. Write a short note on the use of Internet in Visual Basic.

PL
O

N
E-

28

BCA-118/171

PL
O

N
E-

28

BCA-118/172

Bachelor in Computer
Application

BCA-118

Windows Programming

BLOCK

3
WORKING WITH GRAPHICS

UNIT-7

Document View Architecture

UNIT-8

Graphics and Multimedia

Uttar Pradesh Rajarshi Tandon
Open University

PL
O

N
E-

28

BCA-118/173

Course Design Committee

Prof. Ashutosh Gupta

Director

School of Science, UPRTOU Prayagraj

Prof. Suneeta Agarwal

Dept. of Computer Science & Engineering

Motilal Nehru National Institute of Technology, Allahabad, Prayagraj

Dr. Upendra Nath Tripathi

Associate Professor

Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur

Dr. Ashish Khare

Associate Professor

Dept. of Computer Science, University of Allahabad, Prayagraj

Ms. Marisha

Assistant Professor (Computer Science)

School of Science, UPRTOU Prayagraj

Mr. Manoj Kumar Balwant

Assistant Professor (Computer Science)

School of Sciences, UPRTOU Prayagraj

Course Preparation Committee

Dr. Krishan Kumar Author

Assistant Professor

Department of Computer Science,

Gurukula Kangri Vishwavidyalaya Haridwar (UK)

Dr. Brajesh Kumar Editor

Associate Professor, Dept. of CS & IT

M.J.P Rohilkahand University, Bareilly, Uttar Pradesh

Prof. Ashutosh Gupta Director (In-Charge)

School of Computer & Information Sciences

UPRTOU Prayagraj

Mr. Manoj Kumar Balwant Coordinator

Assistant Professor (computer science)

School of Sciences, UPRTOU Prayagraj

©UPRTOU, Prayagraj - 2020
ISBN :

©All Rights are reserved. No part of this work may be reproduced in any form, by
mimeograph or any other means, without permission in writing from the Uttar Pradesh
Rajarshi Tondon Open University, Prayagraj.
Printed and Published by Dr. Arun Kumar Gupta Registrar, Uttar Pradesh Rajarshi
Tandon Open University, 2020.

Printed By : Chandrakala Universal Pvt. 42/7 Jawahar Lal Neharu Road, Prayagraj.

PL
O

N
E-

28

BCA-118/174

BLOCK INTRODUCTION

Block 3 includes two units 7 and 8. Unit 7 focusses on document view
architecture and Unit 8 is related with graphics and multimedia. At the end of this
block one would be able to know about some of the following crucial concepts

 MFC

 SDI

 MDI

 VC++ resources

 Menu and toolbars

 Multithreading

 Clipboards

Unit 7 describes about the document view architecture concepts using
MFC. MFC plays a very important role in the development of this architecture. It
explains about the SDI and MDI. As we know MFC are the foundation classes
which provides a good platform for the windows programming. It explains about
the MFC library. Moreover, this unit describes about the serialization and
separating documents from the views. Furthermore, it gives the details of Visual
C++ Resources: Application Wizard, Accelerators and Menus, Toolbars.

Unit 8 mainly focusses on the working with graphics and multimedia.
Graphics and multimedia provides a good interface for all the applications.
Without an interface an application leaves a bad impression though it may be very
robust. Hence this unit basically intends with consoles, multitasking process and
threads, drawing graphics in Windows, setting colors, drawing text, lines, ellipses,
arcs, circles, plotting points; filling figures with colors and patterns, Clipbaord
Drag and Drops, using clipboards to transfer images between applications.

PL
O

N
E-

28

BCA-118/175

PL
O

N
E-

28

BCA-118/176

UNIT-7 DOCUMENT VIEW ARCHITECTURE

Structure

7.0 Introduction

7.1 Objectives

7.2 Microsoft Foundation Class

7.3 View Document Architecture Using MFC

7.4 Serialization

7.5 Separating documents from view

7.6 Visual C++ Resources

7.7 Application Wizard

7.8 Accelerators

7.9 Menus

7.10 Toolbars

7.11 Summary

7.12 Terminal Questions

7.0 INTRODUCTION

More complex Microsoft Foundation Class (MFC) applications use the
Document-View architecture, which decouples the user interface (the view) from
the application data and logic (the document). The calculator's number stack is
contained in its document component. This is a common pattern. Often the data of
an MFC application will consist of many objects. In these cases, the document
becomes the manager of these objects, using a container of some type to store and
organize them. Lists, arrays, stacks, queues, tables, and sets are familiar examples
of containers. MFC provides templates for some of these containers.

The MFC library provides a set of functions, constants, data types, and
classes to simplify creating applications for the Microsoft Windows operating
systems. In this unit, you will learn all about how to start and create Windows-based
applications using MFC. To gain the advantage one need to be familiar with
programming for Windows. He/she also need to know the basics of programming in
C++ and understand the fundamentals of object-oriented programming. By default,
the MFC Application Wizard creates an application skeleton with a document class
and a view class. MFC separates data management into these two classes. The
document stores the data and manages printing the data and coordinates updating
multiple views of the data. The view displays the data and manages user interaction PL

O
N

E-
28

BCA-118/177

with it, including selection and editing.

In this model, an MFC document object reads and writes data to persistent
storage. The document may also provide an interface to the data wherever it
resides (such as in a database). A separate view object manages data display, from
rendering the data in a window to user selection and editing of data. The view
obtains display data from the document and communicates back to the document
any data changes.

7.1 OBJECTIVES

At the end of this unit you will come to know about the following

 Microsoft Foundation Classes (MFC)

 View Document Architecture

 Serialization

 Separating documents from view

 Visual C++ Resources

 Application Wizard

 Accelerators

 Menus

 Toolbars

7.2 MICROSOFT FOUNDATION CLASS

The Microsoft Foundation Class (MFC) library provides a set of
functions, constants, data types, and classes to simplify creating applications for
the Microsoft Windows operating systems. In this tutorial, you will learn all
about how to start and create windows based applications using MFC.

7.2.1 PREREQUISITES

It is assumed that you must know the following things before knowing MFC:

 A little about programming for Windows.

 The basics of programming in C++.

 Understand the fundamentals of object-oriented programming.

7.2.2 What is MFC?

The MFC is an "application framework" for programming in Microsoft
Windows. It provides much of the code, which are required for the following:

 Managing Windows.

 Menus and dialog boxes.

PL
O

N
E-

28

BCA-118/178

 Performing basic input/output.

 Storing collections of data objects, etc.

You can easily extend or override the basic functionality of the MFC
framework in C++ applications by adding your application-specific code into
MFC framework.

7.2.3 MFC FRAMEWORK

 The MFC framework provides a set of reusable classes designed to
simplify Windows programming.

 MFC provides classes for many basic objects, such as strings, files, and
collections that are used in everyday programming.

 It also provides classes for common Windows APIs and data structures,
such as windows, controls, and device contexts.

 The framework also provides a solid foundation for more advanced
features, such as ActiveX control and document view processing.

 In addition, MFC provides an application framework, including the
classes that make up the application architecture hierarchy.

7.2.4 SIGNIFICANCE OF MFC

The MFC framework is a powerful approach that lets you build upon the
work of expert programmers for Windows. MFC framework has the following
advantages:

 It shortens development time.

 It makes code more portable.

 It provides tremendous support without reducing programming freedom
and flexibility.

 It gives easy access to "hard to program" user-interface elements and
technologies.

 MFC simplifies database programming through Data Access Objects
(DAO) and Open Database Connectivity (ODBC), and network
programming through Windows Sockets.

7.3 DOCUMENT VIEW ARCHITECTURE USING
MFC

The Document/View architecture is the foundation used to create
applications based on the Microsoft Foundation Classes library. It allows you to
make the different parts that compose a computer program including what the
user sees as part of the application and the document a user would work on. This
is done through a combination of separate classes that work as an ensemble. You

PL
O

N
E-

28

BCA-118/179

can easily extend or override the basic functionality of the MFC framework in
your C++ applications by adding your application-specific code into MFC
framework. The parts that compose the Document/View architecture are a frame,
one or more documents, and the view. These three entities are put together, to
make up a usable application.

View- A view is the platform the user is working on to do his/ her job. To let the
user, do anything on an application, you must provide a view, which is an object
based on the CView class. You can either directly use one of the classes derived
from CView or you can derive your own custom class from CView or one of its
child classes.

Document- A document is similar to a bucket. For a computer application, a
document holds the user's data. To create the document part of this architecture,
you must derive an object from the CDocument class.

Frame- As the name suggests, a frame is a combination of the building blocks, the
structure, and the borders of an item. A frame gives "physical" presence to a
window. It also defines the location of an object with regards to the Windows
desktop.

7.3.1 SINGLE DOCUMENT INTERFACE

The expression Single Document Interface or SDI refers to a document
that can present only one view to the user. This means that the application cannot
display more than one document at a time. If you want to view another type of
document of the current application, you must create another instance of the
application. Notepad and WordPad are good examples of SDI applications.

Now, let us look into a simple example of single document interface or
SDI by creating a new MFC dialog based application.

Step 1− Let us create a new MFC Application MFCSDIDemo with the settings
mentioned in Fig. 7.1.

Fig. 7.1 MFC Application wizard

PL
O

N
E-

28

BCA-118/180

Step 2− Select Single document from the Application type and MFC standard
from Project Style.

Step 3− Click Finish to Continue.

Step 4− Once the project is created, run the application and you will see the
output shown in Fig. 7.2.

Fig. 7.2 MFCSDI Demo

7. 3.2 MULTIPLE DOCUMENT INTERFACE

An application is referred to as a Multiple Document Interface, or MDI, if
the user can open more than one document in the application without closing it.
To provide this functionality, the application provides a parent frame that acts as
the main frame of the computer program. Inside this frame, the application allows
creating views with individual frames, making each view distinct from the other.

Let us look into a simple example of multiple document interface or MDI
by creating a new MFC dialog based application.

Step 1− Let us create a new MFC Application MFCMDIDemo with below
mentioned settings (Fig. 7.3).

Fig. 7.3 MFCMDI Demo-1

PL
O

N
E-

28

BCA-118/181

Step 2− Select Multiple document from the Application type and MFC standard
from Project Style.

Step 3− Click Finish to Continue.

Step 4− Once the project is created, run the application and you will see the
following output shown in Fig. 7.4.

Fig. 7.4 MFCMDI Demo-2

Step 5 − When you click on File → New menu option, it will create another child
window as shown in the following snapshot (Fig. 7.5).

Fig. 7.5 MFCMDI Demo-3

PL
O

N
E-

28

BCA-118/182

Step 6− In Multiple Document Interface (MDI) applications, there is one main
frame per application. In this case, a CMDIFrameWnd, and one CMDIChildWnd
derived child frame for each document.

7.4 SERIALIZATION

Serialization is the process of writing or reading an object to or from a
persistent storage medium such as a disk file. Serialization is ideal for situations
where it is desired to maintain the state of structured data (such as C++ classes or
structures) during or after the execution of a program. When performing file
processing, the values are typically of primitive types (char, short, int, float, or
double). In the same way, we can individually save many values, one at a time.
This technique doesn't include an object created from (as a variable of) a class.
The MFC library has a high level of support for serialization. It starts with the
CObject class that is the ancestor to most MFC classes, which is equipped with a
Serialize() member function.

Now, let us look into a simple example by creating a new MFC project.

Step 1− Remove the TODO line and design your dialog box as shown in the Fig.
7.6 below.

Fig. 7.6 Design a dialog box

Step 2− Add value variables for all the edit controls. For Emp ID and Age mentioned,
the value type is an integer as shown in the Fig. 7.7 below.

PL
O

N
E-

28

BCA-118/183

Fig. 7.7 Adding member variable wizard

Step 3− Add the event handler for both the buttons.

Step 4− Let us now add a simple Employee class, which we need to serialize.
Here is the declaration of Employee class in header file.

class CEmployee : public CObject

{

public:

int empID;

CString empName;

int age;

CEmployee(void);

~CEmployee(void);

private:

public:

void Serialize(CArchive& ar);

DECLARE_SERIAL(CEmployee);

};

Step 5− Here is the definition of Employee class in source (*.cpp) file.

IMPLEMENT_SERIAL(CEmployee, CObject, 0)

CEmployee::CEmployee(void) { }

CEmployee::~CEmployee(void) { }

PL
O

N
E-

28

BCA-118/184

void CEmployee::Serialize(CArchive& ar) {

CObject::Serialize(ar);

if (ar.IsStoring())

ar << empID << empName << age;

else

ar >> empID >> empName >> age;

}

Step 6− Here is the implementation of Save button event handler.

void CMFCSerializationDlg::OnBnClickedButtonSave() {

 // TODO: Add your control notification handler code here

UpdateData(TRUE);

CEmployee employee;

CFile file;

file.Open(L"EmployeeInfo.hse",CFile::modeCreate|CFile::modeWrite);

CArchive ar(&file, CArchive::store);

employee.empID = m_id;

employee.empName = m_strName;

employee.age = m_age;

employee.Serialize(ar);

ar.Close();

}

Step 7− Here is the implementation of Open button event handler.

void CMFCSerializationDlg::OnBnClickedButtonOpen() {

// TODO: Add your control notification handler code here

UpdateData(TRUE);

CFile file;

file.Open(L"EmployeeInfo.hse", CFile::modeRead);

CArchive ar(&file, CArchive::load);

CEmployee employee;

PL
O

N
E-

28

BCA-118/185

employee.Serialize(ar);

m_id = employee.empID;

m_strName = employee.empName;

m_age = employee.age;

ar.Close();

file.Close();

UpdateData(FALSE);

}

Step 8− When the above code is compiled and executed, you will see the
following output (Fig. 7.8).

Fig. 7.8 MFCSerialization- output

Step 9− Enter the info in all the fields shown in the Fig. 7.9 and click Save and
close this program.

Fig. 7.9 MFCSerialization- filling the info PL
O

N
E-

28

BCA-118/186

Step 10− It will save the data. Run the application again and click open. It will
load the Employee information (Fig. 7.10).

Fig. 7.10 MFCSerialization- loading the employee info

CHECK YOUR PROGRESS

 What do you understand by Microsoft Foundation Classes (MFC)?

 Describe the term view document architecture.

 Discuss the term serilization.

7.5 SEPARATING DOCUMENTS FROM VIEW

This topic is intended with the interactions between documents and view.
It is really routing that takes place between the document object and view object.
Basically the data of the user is maintained by the document and the way it is
presented to the user by means of view. The CFormView class is used as the base
class for the users’ views.

7.5.1 DOCUMENT-VIEW INTERACTION FUNCTIONS

You already know that the document object holds the data and that the
view object displays the data and allows editing. An SDI application has a
document class derived from CDocument, and it has one or more view classes,
each ultimately derived from CView. A complex handshaking process takes place
among the document, the view, and the rest of the application framework. To
understand this process, you need to know about five important member functions
in the document and view classes. Two are non-virtual base class functions that
you call in your derived classes; three are virtual functions that you often override
in your derived classes. Let's look at these functions one at a time.

PL
O

N
E-

28

BCA-118/187

7.5.1.1 THE CVIEW::GETDOCUMNET FUNCTION

A view object has one and only one associated document object. The
GetDocument() function allows an application to navigate from a view to its
document. Suppose a view object gets a message that the user has entered new
data into an edit control. The view must tell the document object to update its
internal data accordingly. The GetDocument() function provides the document
pointer that can be used to access document class member functions or public data
embers.

The CDocument::GetNextView function navigates from the document to
the view, but because a document can have more than one view, it's necessary to
call this member function once for each view, inside a loop. You'll seldom call
GetNextView() because the application framework provides a better method of
iterating through a document's views.

When AppWizard generates a derived CView class, it creates a special
type-safe version of the GetDocument() function that returns not a CDocument()
pointer but a pointer to an object of your derived class. This function is an inline
function, and it looks something like:

 CMyDoc* GetDocument()

{

return (CMyDoc*)m_pDocument;

}

 When the compiler sees a call to GetDocument() in your view class code,
it uses the derived class version instead of the CDocument() version, so you do
not have to cast the returned pointer to your derived document class. Because the
CView::GetDocument function is not a virtual function, a statement such as:

 pView->GetDocument(); // pView is declared CView*

 Calls the base class GetDocument() function and thus returns a pointer to
a CDocument object.

7.5.1.2 THE CDOCUMENT::UPDATEALLVIEWS FUNCTION

If the document data changes for any reason, all views must be notified so
that they can update their representations of that data. If UpdateAllViews() is
called from a member function of a derived document class, its first parameter,
pSender, is NULL. If UpdateAllViews() is called from a member function of a
derived view class, set the pSender parameter to the current view, like this:

 GetDocument () ->UpdateAllViews(this);

The non-null parameter prevents the application framework from notifying
the current view. The assumption here is that the current view has already updated
itself. The function has optional hint parameters that can be used to give view-
specific and application-dependent information about which parts of the view to
update. This is an advanced use of the function. How exactly is a view notified PL

O
N

E-
28

BCA-118/188

when UpdateAllViews() gets called? Take a look at the next function,
OnUpdate().

7.5.1.3 THE CVIEW::ONUPDATE FUNCTION

 This virtual function is called by the application framework in response to
your application's call to the CDocument::UpdateAllViews function. You can, of
course, call it directly within your derived CView class. Typically, your derived
view class's OnUpdate() function accesses the document, gets the document's
data, and then updates the view's data members or controls to reflect the changes.
Alternatively, OnUpdate() can invalidate a portion of the view, causing the view's
OnDraw() function to use document data to draw in the window. The OnUpdate()
function might look something like this:

 void CMyView::OnUpdate(CView* pSender, LPARAM lHint, CObject*
pHint)

{

 CMyDocument* pMyDoc = GetDocument();

 CString lastName = pMyDoc->GetLastName();

 // m_pNameStatic is a CMyView data member

 m_pNameStatic->SetWindowText(lastName);

}

 The hint information is passed through directly from the call to
UpdateAllViews(). The default OnUpdate() implementation invalidates the entire
window rectangle. In your overridden version, you can choose to define a smaller
invalid rectangle as specified by the hint information. If the CDocument()
function UpdateAllViews() is called with the pSender parameter pointing to a
specific view object, OnUpdate() is called for all the document's views except the
specified view.

7.5.1.4 THE CVIEW::ONINITIALUPDATE FUNCTION

 This virtual CView function is called when the application starts, when
the user chooses New from the File menu, and when the user chooses Open from
the File menu. The CView base class version of OnInitialUpdate() does nothing
but call OnUpdate(). If you override OnInitialUpdate() in your derived view
class, be sure that the view class calls the base class's OnInitialUpdate() function
or the derived class's OnUpdate() function. You can use your derived class's
OnInitialUpdate() function to initialize your view object. When the application
starts, the application framework calls OnInitialUpdate() immediately after
OnCreate() (if you've mapped OnCreate() in your view class). OnCreate() is
called once, but OnInitialUpdate() can be called many times.

7.5.1.5 THE CDOCUMENT::ONNEWDOCUMENT FUNCTION

 The framework calls this virtual function after a document object is first PL
O

N
E-

28

BCA-118/189

constructed and when the user chooses New from the File menu in an SDI
application. This is a good place to set the initial values of your document's data
members. AppWizard generates an overridden OnNewDocument() function in
your derived document class. Be sure to retain the call to the base class function.

7.5.2 THE SIMPLEST DOCUMENT - VIEW APPLICATION

Suppose you don't need multiple views of your document but you plan to
take advantage of the application framework's file support. In this case, you can
forget about the UpdateAllViews() and OnUpdate() functions. Simply follow the
below steps when you develop the application:

1. In your derived document class header file (generated by AppWizard),
declare your document's data members. These data members are the
primary data storage for your application. You can make these data
members public, or you can declare the derived view class a friend of the
document class.

2. In your derived view class, override the OnInitialUpdate() virtual member
function. The application framework calls this function after the document
data has been initialized or read from disk. OnInitialUpdate() should
update the view to reflect the current document data.

3. In your derived view class, let your window message handlers, command
message handlers and your OnDraw() function read and update the
document data members directly, using GetDocument() to access the
document object.

The sequence of events for this simplified document-view environment is
shown in Table 7.1

Table 7.1 Sequence of events in document-view environment

Sequence Description

Application starts

CMyDocument object constructed

CMyView object constructed

View window created

CMyView::OnCreate called (if mapped)

CMyDocument::OnNewDocument called

CMyView::OnInitialUpdate called

View object initialized

View window invalidated

CMyView::OnDraw called

User edits data
CMyView functions update CMyDocument data
members

PL
O

N
E-

28

BCA-118/190

User exits
application

CMyView object destroyed

CMyDocument object destroyed

7.6 VISUAL C++ RESOURCES

A resource is a text file that allows the compiler to manage objects such
as pictures, sounds, mouse cursors, dialog boxes, etc. Microsoft Visual Studio
makes creating a resource file particularly easy by providing the necessary tools
in the same environment used to program. This means, you usually do not have to
use an external application to create or configure a resource file. Some important
features related to resources are:

 Resources are interface elements that provide information to the user.

 Bitmaps, icons, toolbars, and cursors are all resources.

 Some resources can be manipulated to perform an action such as selecting
from a menu or entering data in dialog box.

 An application can use various resources that behave independently of
each other, these resources are grouped into a text file that has the *.rc
extension.

 Most resources are created by selecting the desired one from the Add
Resource dialog box. The Add Resource dialog box provides an extensive
list of resources which can be used as per requirements.

Note:- If you need something which is not available then you can add it manually
to the *.rc file before executing the program.

7.6.1 IDENTIFIERS

An identifier is a symbol which is a constant integer whose name usually
starts with ID. It consists of two parts − a text string (symbol name) mapped to an
integer value (symbol value). Symbols provide a descriptive way of referring to
resources and user-interface objects, both in your source code and while you're
working with them in the resource editors. When you create a new resource or
resource object, the resource editors provide a default name for the resource, for
example, IDC_DIALOG1, and assign a value to it. The name-plus-value
definition is stored in the Resource.h file.

7.6.2 ICONS

An icon is a small picture used on a window which represents an
application. It is used in two main scenarios – 1) On a Window's frame, it is
displayed on the left side of the Window name on the title bar and 2) In Windows
Explorer, on the Desktop, in My Computer, or in the Control Panel window.

Own icons can be created by the steps given below −

PL
O

N
E-

28

BCA-118/191

Step 1− Right-click on your project and select Add → Resources, you will see
the Add Resources dialog box (Fig. 7.11).

Fig. 7.11 Adding resource dialog box

Step 2− Select Icon (Fig. 7.12) and click New button and you will see the icon
shown in the Fig. 7.13.

Fig. 7.12 Adding resource dialog box

Fig. 7.13 Adding resource dialog box

PL
O

N
E-

28

BCA-118/192

Step 3− In Solution Explorer, go to Resource View and expand
MFCModalDemo > Icon. You will see two icons. The IDR_MAINFRAME is the
default one and IDI_ICON1 is the newly created icon.

Step 4− Right-click on the newly Created icon and select Properties.

Step 5− IDI_ICON1 is the ID of this icon, now Let us change this ID to
IDR_MYICON.

Step 6− You can now change this icon in the designer as per your requirements.

7.7 APPLICATION WIZARD

The MFC Application Wizard generates an application that, when
compiled, implements the basic features of a Windows executable (.exe)
application. The MFC starter application includes C++ source (.cpp) files,
resource (.rc) files, header (.h) files, and a project (.vcxproj) file. The code that is
generated in these starter files is based on MFC. Depending on the options
selected, the wizard creates additional files in the project. This wizard page
describes the current application settings for the MFC application that you are
creating. By default, the wizard creates a project as explained below.

Application Type- The project is created with tabbed MDI support; created using
the Visual Studio project style and enables visual style switching. The project
uses the Document/View Architecture, Unicode libraries, and MFC in a shared
DLL.

Compound Document Support- The project provides no support for compound
documents.

Document Template Strings- The project uses the project name for the default
document template strings.

Database Support - The project provides no support for databases.

User Interface Features- The project implements standard Windows user
interface features such as a system menu, a status bar, maximize and minimize
boxes, an About box, a standard menu bar and docking toolbar, and child frames.

Advanced Features- The project supports printing and print preview. The project
supports ActiveX controls. The project provides no support for Automation,
MAPI, Windows Sockets, or Active Accessibility. The project supports an
Explorer docking pane, an Output docking pane, and a Properties docking pane.

Generated Classes- The project's view class is derived from the CView Class.
The project's application class is derived from the CWinAppEx Class. The
project's document class is derived from the CDocument Class. The project's main
frame class is derived from the CMDIFrameWndEx Class. The project's child
frame class is derived from the CMDIChildWndEx Class.

Note: - To change these default settings, click the appropriate tab title in the left
column of the wizard and make the changes on the page that appears. After you
create an MFC application project, you can add objects or controls to your
project using Visual C++ code wizards. PL

O
N

E-
28

BCA-118/193

CHECK YOUR PROGRESS
 What do you understand by separating documents?
 Describe the VC++ resources.
 Discuss about application wizard.

7.8 ACCELERATORS

A keyboard accelerator is basically a special way of translating a key or
combination of keys pressed by the user into WM_COMMAND messages like
the ones your windows receive when the user clicks on a menu item. For
example, most Windows programs have a menu option Copy under the Edit menu
which copies the currently selected object (or objects) into the clipboard. Most
programs also allow to perform the same operation by pressing the control key
(Ctrl on most keyboards) and the C key at the same time. In fact, the message that
is caused by the user clicking the Copy menu item and the message caused by the
user pressing Ctrl+C is probably the same: a WM_COMMAND message with
an ID associated with the copy operation. Windows uses a table called
an accelerator table to convert keystrokes by the user into messages to send to
the program. These tables are resources which you can be created in a resource
script and include in your programs to get similar functionality. Moreover, an
access key is a letter that allows the user to perform a menu action faster by using
the keyboard instead of the mouse. This is usually faster because the user would
not need to position the mouse anywhere, which reduces the time it takes to
perform the action.

7.8.1 SHORTCUT KEY

A shortcut key is a key or a combination of keys used by advanced users
to perform an action that would otherwise be done on a menu item. Most
shortcuts are a combination of the Ctrl key simultaneously pressed with a letter
key. For example, Ctrl + N, Ctrl + O, or Ctrl + D. To create a shortcut, on the
right side of the string that makes up a menu caption, right click on the menu item
and select properties. In the Caption field type \t followed by the desired
combination as shown below (Fig. 7.14) for the New menu option. Repeat the
step for all menu options.

Fig. 7.14 Adding resource dialog box PL
O

N
E-

28

BCA-118/194

7.8.2 ACCELERATOR TABLE

An Accelerator Table is a list of items where each item of the table
combines an identifier, a shortcut key, and a constant number that specifies the
kind of accelerator key. Applications often define keyboard shortcuts, such as
CTRL+O for the File Open command. You could implement keyboard shortcuts
by handling individual WM_KEYDOWN messages, but accelerator tables provide
a better solution that:

 Requires less coding.

 Consolidates all of your shortcuts into one data file.

 Supports localization into other languages.

 Enables shortcuts and menu commands to use the same application logic.

Just like the other resources, an accelerator table can be created manually
in a .rc file. Follow the steps to create an accelerator table given below.

Step 1− To create an accelerator table (Fig. 7.15), right-click on *.rc file in the
solution explorer.

Fig. 7.15 Creating an accelerator table

Step 2− Select Accelerator and click New. It will display the interface shown in
the Fig. 7.16.

Fig. 7.16 Accelerator table showing combo box PL
O

N
E-

28

BCA-118/195

Step 3− Click the arrow of the ID combo box and select menu Items as shown in
Fig. 7.17.

Fig. 7.17 Selecting menu Items

Step 4− Select Ctrl from the Modifier dropdown.

Step 5− Click the Key box and type the respective keys for both menu options.

7.9 MENUS

Menus allow to arrange commands in a logical and easy-to-find fashion. With
the Menu editor, you can create and edit menus by working directly with a menu
bar that closely resembles the one in your finished application. To create a menu,
follow the steps given below

Step 1− Right-click on your project and select Add → Resources. You will see
the Add Resources dialog box (Fig. 7.18).

Fig. 7.18 Adding resource dialog box

PL
O

N
E-

28

BCA-118/196

Step 2− Select Menu and click New. You will see the rectangle that contains
"Type Here" on the menu bar (Fig. 7.19).

Fig. 7.19 Type here box on the Menu bar

Step 3− Write some menu options like File, Edit, etc. as shown in the following
snapshot (Fig. 7.20).

Fig. 7.20 Menu options

Step 4− If you expand the Menu folder in Resource View, you will see the Menu
identifier IDR_MENU1(7.21). Right-click on this identifier and change it to
IDM_MAINMENU.

PL
O

N
E-

28

BCA-118/197

Fig. 7.21 Menu identifier

Step 5− Save all the changes.

Step 6− We need to attach this menu to our dialog box. Expand your Dialog
folder in Solution Explorer and double click on the dialog box identifier (Fig.
7.22).

Fig. 7.22 Attaching menu to the dialog box

Step 7− You will see the menu field in the Properties. Select the Menu identifier
from the dropdown as shown above (Fig. 7.22).

Step 8− Run this application and you will see the following dialog box which
also contains menu options (Fig. 7.23).

PL
O

N
E-

28

BCA-118/198

Fig. 7.22 Output contatining menu options

7.10 TOOLBAR

A toolbar is a Windows control that allows the user to perform some actions on a
form by clicking a button instead of using a menu. It has the following
characteritics:

 A toolbar provides a convenient group of buttons that simplifies the user's
job by bringing the most accessible actions as buttons.

 A toolbar can bring such common actions closer to the user.

 Toolbars usually display under the main menu.

 They can be equipped with buttons but sometimes their buttons or some
of their buttons have a caption.

 Toolbars can also be equipped with other types of controls.

To create a toolbar, follow the steps given below.

Step 1− Right-click on your project and select Add → Resources. Which gives
the Add Resources dialog box (Fig.7.23) as given below.

Fig. 7.23 Add resource dialog box

PL
O

N
E-

28

BCA-118/199

Step 2− Select Toolbar and click New and it will show the following screen (Fig.
7.24).

Fig. 7.24 Add resource toolbar

Step 3− Design your toolbar in the designer as shown in the following screenshot
and specify the IDs as well.

Fig. 7.25 Designing the toolbar in the design

PL
O

N
E-

28

BCA-118/200

CHECK YOUR PROGRESS

 What do you understand by an accelerator?

 Write the main benefits of menus.

 Discuss about the significance of toolbars.

7.11 SUMMARY

The Microsoft Foundation Class (MFC) library provides a set of
functions, constants, data types, and classes to simplify creating applications for
the Microsoft Windows operating systems. The Document/View architecture is
the foundation used to create applications based on the MFCs’ library. It allows
you to make distinct the different parts that compose a computer program
including what the user sees as part of the application and the document a user
would work on. This is done through a combination of separate classes that work
as an ensemble.

The Single Document Interface or SDI refers to a document that can
present only one view to the user. This means that the application cannot display
more than one document at a time. If you want to view another type of document
of the current application, you must create another instance of the application.
Notepad and WordPad are good examples of SDI applications. An application is
referred to as a Multiple Document Interface, or MDI, if the user can open more
than one document in the application without closing it. To provide this
functionality, the application provides a parent frame that acts as the main frame
of the computer program. Inside this frame, the application allows creating views
with individual frames, making each view distinct from the other.

Serialization is the process of writing or reading an object to or from a
persistent storage medium such as a disk file. Serialization is ideal for situations
where it is desired to maintain the state of structured data (such as C++ classes or
structures) during or after the execution of a program.

Separating from the view is intended with the interactions between
documents and view. It is really routing that takes place between the document
object and view object. Basically the data of the user is maintained by the
document and the way it is presented to the user by means of view. The
CFormView class is used as the base class for the users’ views.

A resource is a text file that allows the compiler to manage objects such as
pictures, sounds, mouse cursors, dialog boxes, etc. Microsoft Visual Studio makes
creating a resource file particularly easy by providing the necessary tools in the
same environment used to program. This means, you usually do not have to use
an external application to create or configure a resource file.

The MFC Application Wizard generates an application that, when
compiled, implements the basic features of a Windows executable (.exe)
application. The MFC starter application includes C++ source (.cpp) files, PL

O
N

E-
28

BCA-118/201

resource (.rc) files, header (.h) files, and a project (.vcxproj) file. The code that is
generated in these starter files is based on MFC. Depending on the options
selected, the wizard creates additional files in the project.

An access key is a letter that allows the user to perform a menu action
faster by using the keyboard instead of the mouse. This is usually faster because
the user would not need to position the mouse anywhere, which reduces the time
it takes to perform the action. An Accelerator Table is a list of items where each
item of the table combines an identifier, a shortcut key, and a constant number
that specifies the kind of accelerator key. Just like the other resources, an
accelerator table can be created manually in a .rc file.

Menus allow to arrange commands in a logical and easy-to-find fashion.
With the Menu editor, menus can be created and edited by working directly with
a menu bar that closely resembles the one in the finished application. A toolbar is
a Windows control that allows the user to perform some actions on a form by
clicking a button instead of using a menu.

7.12 TERMINAL QUESTIONS

1. What do you understand by Microsoft foundation classes? Explain.

2. Compare SDI and MDI.

3. Write a short note on serialization.

4. Write a short note on visual C++ resources.

5. Discuss MFC application wizard.

6. What do you understand by accelerators? Explain briefly.

7. Explain shortcut keys.

8. What do you understand by a menu? Write the steps to create a menu.

9. Write a short note on the use of toolbar.

PL
O

N
E-

28

BCA-118/202

UNIT-8 GRAPHICS AND MULTIMEDIA

Structure

8.0 Introduction

8.1 Objectives

8.2 Working with Graphics

8.3 Consoles

8.4 Multitasking Process and Threads

8.5 Drawing Graphics in Windows

8.6 Clipboards

8.7 Printing Graphics and Text

8.8 Creating Animations with Picture Clip Control

8.9 Summary

8.10 Terminal Questions

8.0 INTRODUCTION

Programming graphics is a lot harder than most people think. It involves
tons of knowledge. More precisely, you need to know the concepts behind data
structures, math, and be fairly good at some programming language. If you look at
your computer screen (look closer), you'll notice that it is made up of little colored
dots. These dots are called pixels. Each pixel has a specific color, and location on
screen. Now, a simple definition of graphics programming is to make sure that
right pixels appear in right places at right times. If one can make this happen, one
can consider himself/herself graphics programmers.

The above definition is easier said than done. Keeping track of each pixel
is next to impossible without some well-designed algorithms. And that's what
most of this document is all about, algorithms! Code examples will mostly be in
Java, since it's the only system independent language capable of graphics in
comparison to the things in C/C++.

Computer screen is two dimensional; each pixel on the screen has some
location, illustrated by the x, and y values. Where x is the horizontal offset from
the left side of the screen, and y is the vertical offset from the top (or sometimes
the bottom), of the screen. So, a location of x = 0, and y = 0, is the top left corner
of the computer screen. Knowing about the x, and y, screen can be considered as a
two dimensional array. With x, horizontal locations and y vertical locations. Each
value inside the array represents a pixel. To plot a pixel on the screen at say x =
75 and y = 100, pixel information can be put into the two dimensional array, at
location [100][75]. PL

O
N

E-
28

BCA-118/203

Now, to see the more abstract way, let us think of computer screen as a
one dimensional array, kind of like starting at the upper left corner going right till
end of line, and starting again on the other line, and continuing like that until it
hits the lower right corner. To use this approach to plot pixels, we'll also need to
know the width of the screen. Luckily, most of the time we know the width and
height of the screen exactly. For example, lets name our one dimensional array
"screen", so, to plot a pixel of color "color" at location x = 75, and y = 100, we'd
do something like this: screen[y * width + x] = color. As you can see, it is exactly
the same thing as screen[y][x] = color, only we're specifying the width manually.

Most of the times, working with graphics means working with a pointer. A
pointer can be to memory, or directly to a video device. Our functions that "do
graphics" don't have to be concerned with where the pointer points, we just need
to draw pixels into that pointer (or it's offsets) as though it was a real screen.

8.1 OBJECTIVES

At the end of this unit you will come to know about the following

 Working with Graphics

 Consoles

 Multitasking process and threads

 Drawing Graphics in Windows

 Filling figures with colors and patterns

 Clipbaord drag and drops

 Using clipboards to transfer images between applications

 Printing graphics and text

 Creating animations with Picture clip control

8.2 WORKING WITH GRAPHICS

A graphic is an image or visual representation of an object. Therefore,
computer graphics are simply images displayed on a computer screen. Graphics
are often contrasted with text, which is comprised of characters, such as numbers
and letters, rather than images. Computer graphics can be either two or three-
dimensional. Early computers only supported 2D monochrome graphics, meaning
they were black and white (or black and green, depending on the monitor).
Eventually, computers began to support color images. While the first machines
only supported 16 or 256 colors, most computers can now display graphics in
millions of colors.

2D Graphics come in two flavors— raster and vector. Raster graphics are
the most common and are used for digital photos, Web graphics, icons, and other PL

O
N

E-
28

BCA-118/204

types of images. They are composed of a simple grid of pixels, which can each be
a different color. Vector graphics, on the other hand are made up of paths, which
may be lines, shapes, letters, or other scalable objects. They are often used for
creating logos, signs, and other types of drawings. Unlike raster graphics, vector
graphics can be scaled to a larger size without losing quality.

3D Graphics started to become popular in the 1990s, along with 3D
rendering software such as CAD and 3D animation programs. By the year 2000,
many video games had begun incorporating 3D graphics, since computers had
enough processing power to support them. Now most computers come with a
3D video card that handles all the 3D processing. This allows even basic home
systems to support advanced 3D games and applications.

The graphics library used in Turbo C++ was called BGI (Borland
Graphics Interface). There are a few "clones" of the library for Visual C++,
MinGW, and other compilers, the most popular called WinBGI. Just for the
record, the BGI is very old and it would only be recommended for compatibility
reasons; for example, if you have some old Turbo C++ code you'd like to run in a
modern OS, or if you're very proficient with BGI and don't have time to learn a
new library. For developing a new application from scratch, I'd recommend using
one of the various modern multiplatform graphics libraries that are being
constantly updated. Moreover, OpenCV does anything the BGI does, and much
more, much better. The basic drawing functions (lines, circles, etc) are just as
easy to use as the ones in BGI, but it also has a ton of image processing functions
that BGI lacks.

The Graphics Device Interface (GDI) is a Microsoft Windows application
programming interface and core operating system component responsible for
representing graphical objects and transmitting them to output devices such as
monitors and printers. GDI is responsible for tasks such as drawing lines and
curves, rendering fonts and handling palettes. It is not directly responsible for
drawing windows, menus, etc.; that task is reserved for the user subsystem, which
resides in user32.dll and is built atop GDI. Other systems have components that
are similar to GDI, for example macOS' Quartz and X Window System's
Xlib/XCB.

Before you can draw lines and shapes, render text, or display and
manipulate images with GDI+, you need to create a Graphics object.
The Graphics object represents a GDI+ drawing surface, and is the object that is
used to create graphical images.

There are two steps in working with graphics

1. Creating a Graphics object.

2. Using the Graphics object to draw lines and shapes, render text, or display
and manipulate images.

Note:- Windows GDI+ is a class-based API for C/C++ programmers. It enables
applications to use graphics and formatted text on both the video display and the
printer. Applications based on the Microsoft Win32 API do not access graphics
hardware directly. Instead, GDI+ interacts with device drivers on behalf of

PL
O

N
E-

28

BCA-118/205

applications.

8.2.1 CREATING A GRAPHICS OBJECT

A graphics object can be created in a variety of ways

 Receive a reference to a graphics object as part of the PaintEventArgs in
the Paint event of a form or control. This is usually how you obtain a
reference to a graphics object when creating painting code for a control.
Similarly, you can also obtain a graphics object as a property of
the PrintPageEventArgs when handling the PrintPage event for
a PrintDocument.

-or-

 Call the CreateGraphics method of a control or form to obtain a reference
to a Graphics object that represents the drawing surface of that control or
form. Use this method if you want to draw on a form or control that
already exists.

-or-

 Create a Graphics object from any object that inherits from Image. This
approach is useful when you want to alter an already existing image.

8.2.2 USING THE GRAPHICS OBJECT

After it is created, a Graphics object may be used to draw lines and shapes,
render text, or display and manipulate images. The principal objects that are used
with the Graphics object are:

 The Pen class— Used for drawing lines, outlining shapes, or rendering
other geometric representations.

 The Brush class— Used for filling areas of graphics, such as filled
shapes, images, or text.

 The Font class— Provides a description of what shapes to use when
rendering text.

 The Color structure — Represents the different colors to display.

8.3 CONSOLES

A console application is a program which runs in a command prompt
window. An example of a console application is shown in Fig 8.1. Console
programs do not have the flash, nor the event-driven capabilities of a Windows
application, however, they still have their place. For example, where screen space
is limited such as a bank ATM, or a device with a very simple display type.

PL
O

N
E-

28

BCA-118/206

Fig. 8.1 Console application

Both input and output statements in console applications reside in the
same class, the System.Console class. The class method mostly used to perform
console output is the WriteLine method. The generic format for the WriteLine
method is:

Console.WriteLine ("string to write to console")

As we have seen in our error to write the string "Hello World!" to the
console, we use the statement:

Console.WriteLine ("Hello World!")

It should be noted that the WriteLine method also writes a carriage
return/line feed (CRLF) following the string argument. The similar Console.Write
method behaves as does the WriteLine method except without the CRLF.

The class method most frequently used to perform console input is the
ReadLine method. The ReadLine method reads the next line of characters from
the input stream and assigns these to the variable via the assignment operator. The
Console.ReadLine method returns a String data type. When using the ReadLine
method, the program will pause and wait until the Enter key is pressed before
continuing (i.e. waits for data to be input). The generic format for the ReadLine
method is:

string_variable = Console.ReadLine()

Data input can be combined with type conversion to form a single line
statement (although there are still 2 parts to the single line statement). An example
looks as follows:

decInput = Convert.ToDecimal (Console.ReadLine())

The Console.ReadLine statement performs the data input, then passes the
input String data directly to the Convert method, which performs the conversion
and assigns the converted data to the Decimal variable. Notice there is no
intermediate String variable for the ReadLine, the data flows directly from the
ReadLine into the Convert method. The Console class belongs to the System
namespace. Since the System namespace is the top most hierarchical namespace,
this namespace is imported by default so the System can be omitted. PL

O
N

E-
28

BCA-118/207

8.4 MULTITASKING PROCESS AND THREADS

Multitasking is the ability of an operating system (OS) to run various
programs simultaneously. But at the background OS uses a round-robin approach
i.e. it provides “time slices” for each running process; and a user thinks that all the
programs are running concurrently. Multitasking is a very old concept which was
even present during the mainframe computers too. Then in those mainframes, jobs
were submitted and executed one-by-one accordingly. It took some time to
become a reality or enter into personal computers. First of all, 16-bit versions of
the OS supported multitasking. On the other hand, 32-bit OS supported
multitasking as well as a new concept – multithreading. Multithreading is the
ability of a program to multitask within itself. The program can be divided further
into smaller separate parts/pieces of execution called threads which also seem to
run concurrently.

8.4.1 MULTITASKING UNDER DOS

Disk Operating System (DOS) does not support the multitasking rather it
is used to do the same work by terminate-and-stay-resident (TSR) programs.
Some TSRs, like print spoolers, hooked into the hardware timer interrupt to
perform true background processing. Some software vendors attempted to mold
task-switching or multitasking shells on top of DOS. Windows 3.x and older were
mostly 16-bit (with the exception of Win32s), were more dependent on DOS, and
used only cooperative multitasking - that's the one where they don't force a
running program to switch out; they wait for the running program to yield control
(basically, say "I'm done" by telling the OS to run the next program that's
waiting). Windows 3.1 uses cooperative multitasking - meaning that each
application that is in the process of running is instructed to periodically check a
message queue to find out if any other application is asking for use of the CPU
and, if so, to yield control to that application. However, many Windows 3.1
applications would check the message queue only infrequently, or not at all, and
monopolize control of the CPU for as much time as they required. A preemptive
multitasking system like Windows 95 will take CPU control away from a running
application and distribute it to those that have a higher priority based on the
system's needs.

8.4.2 NON-PREEMPTING MULTITASKING

In general rule of Non-Preempting Scheduling, a program would sit idle in
memory until it receives a message; which were often direct or indirect result of
user input through the keyboard or mouse and after processing the message,
program returned the control to Windows. All the limitations of the DOS were
overcome in Windows 1.0 introduced in 1985. The main thing that Windows
performed, was to move blocks within the physical memory – a priory for
multitasking. It is also possible in Windowing environment to move quickly data
from one program to another. Data transfer has been supported in Windows in
different ways. Non-Preempting Multitasking was supported by 16-bit OS. This
type of multitasking was possible only due the message-driven architecture of

PL
O

N
E-

28

BCA-118/208

Windows. Windows used Preempting scheduling for DOS programs. This is also
known as cooperative multitasking.

8.4.3 MULTITHREADING

In a multithreaded environment, programs can split themselves into
separate pieces (called threads of execution) that run concurrently (Fig 8.2). This
was the best solution for the problem of queuing or serialization in the
presentation manager. In terms of code, a thread is simply represented by a
function which might also call other functions in the program. Generally, a
program starts execution with its main (or primary) thread, which is main, in
traditional C/C++ programming. This main of C/C++ is WinMain in Windows
programming. Once the main thread is created, it may create other threads too by
making a system call specifying the name of the initial function. The OS
preemptively switches control among the threads in same way it does among
processes.

Fig. 8.2 Process and thread

(Source: http://www.yaldex.com/games-
programming/0672323699_ch02levlsec2.html

The limitations of Presentation Manager or PM, provided programmers
with essential clues to understanding how to use multiple threads of execution in a
program running under a graphical environment. So here's the architecture of your
programs:

 the primary thread creates all the windows that a program needs,

 includes all the window procedures for these windows,

 and processes all the messages for these windows.

Any other threads are simply background problems. They do not interact
with the user except through communication with the primary thread. One way to
think of this is that the primary thread handles user input (and other messages),
perhaps creating secondary threads in the process. These additional threads do the
non-user-related tasks.

In other words, program's primary thread is a governor, and secondary
threads are the governor's staff. The governor delegates all the big jobs to his or
her staff while maintaining contact with the outside world. Because they are staff

PL
O

N
E-

28

BCA-118/209

members, the secondary threads do not hold their own press conferences. They
silently do their work, report back to the governor, and await their next
assignment. Threads within a particular program are all parts of the same process,
so they share the process's resources, such as memory and open files. Because
threads share the program's memory, they also share static variables. However,
each thread has its own stack, so automatic variables are unique to each thread.
Each thread also has its own processor state (and math coprocessor state) that is
saved and restored during thread switches.

8.4.4 THE EVENT MODEL

Windows is a multitasking/multithreaded OS, but it is also an event-
driven. Unlike DOS programs, most Windows programs sit and wait for the user
to do something, which fires an event, and then Windows responds to the event
and takes action which can be seen graphically in Fig 8.3. It depicts a number of
application windows, each sending their events or messages to Windows to be
processed. Windows does some of the processing, but most of the messages or
events are passed through to your application program for processing.

Fig 8.3 Event model

(Source: http://www.yaldex.com/games-
programming/0672323699_ch02lev1sec2.html)

CHECK YOUR PROGRESS

 What do you understand by Computer Graphics?

 Briefly define the term GDI.

 What is console application?

 Give the meaning of multitasking.

 Compare process and thread.

PL
O

N
E-

28

BCA-118/210

8.5 DRAWING GRAPHICS IN WINDOWS

Windows provides a variety of drawing tools to use in device contexts. It
provides pens to draw lines, brushes to fill interiors, and fonts to draw text. MFC
provides graphic-object classes equivalent to the drawing tools in Windows. A
device context is a Windows data structure containing information about the
drawing attributes of a device such as a display or a printer. All drawing calls are
made through a device-context object, which encapsulates the Windows APIs for
drawing lines, shapes, and text. Device contexts allow device-independent
drawing in Windows. Device contexts can be used to draw to the screen, to the
printer, or to a metafile. CDC is the most fundamental class to draw in MFC. The
CDC object provides member functions to perform the basic drawing steps, as
well as members for working with a display context associated with the client
area of a window.

8.5.1 LINES

Step 1– Consider a simple example to draw a line by creating a new MFC based
single document project with MFCGDIDemo name (Fig. 8.4).

Fig. 8.4 MFC Application wizard

Step 2− Once the project is created, go the Solution Explorer and double click on
the MFCGDIDemoView.cpp file under the Source Files folder.

Step 3− Draw the line as shown below in CMFCGDIDemoView::OnDraw()
method.

 void CMFCGDIDemoView::OnDraw(CDC* pDC) {

 pDC->MoveTo(95, 125);

 pDC->LineTo(230, 125);

 CMFCGDIDemoDoc* pDoc = GetDocument();

 ASSERT_VALID(pDoc);

 if (!pDoc)

PL
O

N
E-

28

BCA-118/211

 return;

 // TODO: add draw code for native data here

}

Step 4− Run this application and see the following output shown in the Fig. 8.4.

Fig. 8.4 Output of Line program

Step 5− The CDC::MoveTo() method is used to set the starting position of a line.

When using LineTo(), the program starts from the MoveTo() point to the
LineTo() end. After LineTo() when you do not call MoveTo(), and call again
LineTo() with other point value, the program will draw a line from the previous
LineTo() to the new LineTo() point.

Step 6 − To draw different lines, you can use this property as shown in the
following code.

 void CMFCGDIDemoView::OnDraw(CDC* pDC) {

 pDC->MoveTo(95, 125);

 pDC->LineTo(230, 125);

 pDC->LineTo(230, 225);

 pDC->LineTo(95, 325);

 CMFCGDIDemoDoc* pDoc = GetDocument();

 ASSERT_VALID(pDoc);

 if (!pDoc)

 return;

 // TODO: add draw code for native data here

 }

PL
O

N
E-

28

BCA-118/212

Step 7 − Run this application and see the output shown in the Fig.8.5.

Fig. 8.5 Output of Line program

8.5.2 POLYLINES

A polyline is a series of connected lines. The lines are stored in an array of
POINT or CPoint values. To draw a polyline, use the CDC::Polyline() method. To
draw a polyline, at least two points are required. If you define more than two
points, each line after the first would be drawn from the previous point to the next
point until all points have been included.

Step 1− Let us look into a simple example.

 void CMFCGDIDemoView::OnDraw(CDC* pDC) {

 CPoint Pt[7];

 Pt[0] = CPoint(20, 150);

 Pt[1] = CPoint(180, 150);

 Pt[2] = CPoint(180, 20);

 pDC−Polyline(Pt, 3);

 CMFCGDIDemoDoc* pDoc = GetDocument();

 ASSERT_VALID(pDoc);

 if (!pDoc)

 return;

 // TODO: add draw code for native data here

 }

PL
O

N
E-

28

BCA-118/213

Step 2− When you run this application, you will see the following output (Fig.
8.6).

Fig. 8.6 Output of PolyLines program

8.5.3 RECTANGLES

A rectangle is a geometric figure made of four sides that compose four
right angles. Like the line, to draw a rectangle, you must define where it starts and
where it ends. To draw a rectangle, you can use the CDC::Rectangle() method.

Step 1− Let us look into a simple example.

 void CMFCGDIDemoView::OnDraw(CDC* pDC) {

 pDC->Rectangle(15, 15, 250, 160);

 CMFCGDIDemoDoc* pDoc = GetDocument();

 ASSERT_VALID(pDoc);

 if (!pDoc)

 return;

 // TODO: add draw code for native data here

}

Step 2− When you run this application, you will see the following output (Fig.
8.7).

PL
O

N
E-

28

BCA-118/214

Fig. 8.7 Output of Rectangles program

8.5.4 SQUARES

A square is a geometric figure made of four sides that compose four right angles,
but each side must be equal in length.

Let us look into a simple example.

 void CMFCGDIDemoView::OnDraw(CDC* pDC) {
 pDC->Rectangle(15, 15, 250, 250);

 CMFCGDIDemoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);
 if (!pDoc)
 return;

 // TODO: add draw code for native data here
 }

When you run this application, you will see the following output (Fig. 8.8).

Fig. 8.8 Output of Square program PL
O

N
E-

28

BCA-118/215

8.5.5 ARCS

An arc is a portion or segment of an ellipse, meaning an arc is a non-
complete ellipse. To draw an arc, you can use the CDC::Arc() method (Fig. 8.9).

BOOL Arc(int x1,int y1,int x2,int y2,int x3,int y3,int
x4,int y4);

Fig. 8.9 Arcs’ coordinates

The CDC class is equipped with the SetArcDirection() method. Here is the syntax
− int SetArcDirection(int nArcDirection)

Step 1 − Let us look into a simple example.

 void CMFCGDIDemoView::OnDraw(CDC* pDC) {
 pDC->SetArcDirection(AD_COUNTERCLOCKWISE);
 pDC->Arc(20, 20, 226, 144, 202, 115, 105, 32);

 CMFCGDIDemoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);
 if (!pDoc)
 return;

 // TODO: add draw code for native data here
}

Step 2− When you run this application, you will see the following output (Fig.
8.10).

Fig. 8.10 Output of Arc program PL
O

N
E-

28

BCA-118/216

8.5.6 SETTING COLORS

The color is one the most fundamental objects that enhances the aesthetic
appearance of an object. The color is a non-spatial object that is added to an
object to modify some of its visual aspects. The MFC library, combined with the
Win32 API, provides various actions you can use to take advantage of the various
aspects of colors. The RGB macro behaves like a function and allows you to pass
three numeric values separated by a comma. Each value must be between 0 and
255 as shown in the following code:

 void CMFCGDIDemoView::OnDraw(CDC* pDC) {

 COLORREF color = RGB(239, 15, 225);

 }

Let us look into a simple example.

 void CMFCGDIDemoView::OnDraw(CDC* pDC) {

 COLORREF color = RGB(239, 15, 225);

 pDC->SetTextColor(color);

 pDC->TextOut(100, 80, L"MFC GDI Tutorial", 16);

 CMFCGDIDemoDoc* pDoc = GetDocument();

 ASSERT_VALID(pDoc);

 if (!pDoc)

 return;

 // TODO: add draw code for native data here

}

When you run this application, you will see the following output.

Fig. 8.11 Output of Setting colors

PL
O

N
E-

28

BCA-118/217

8.5.7 FONTS

CFont encapsulates a Windows graphics device interface (GDI) font and
provides member functions for manipulating the font. To use a CFont object,
construct a CFont object and attach a Windows font to it, and then use the object's
member functions to manipulate the font. Here is a list of methods in CFont class
(table 8.1).

Table 8.1 Methods in CFont Class

S.No Name Description

1 CreateFont
Initializes a CFont with the specified
characteristics.

2
CreateFontIndir
ect

Initializes a CFont object with the
characteristics given in a LOGFONT structure.

3 CreatePointFont
Initializes a CFont with the specified height,
measured in tenths of a point, and typeface.

4
CreatePointFont
Indirect

Same as CreateFontIndirect except that the font
height is measured in tenths of a point rather
than logical units.

5 FromHandle
Returns a pointer to a CFont object when given
a Windows HFONT.

6 GetLogFont
Fills a LOGFONT with information about the
logical font attached to the CFont object.

8.5.8 PENS

A pen is a tool used to draw lines and curves on a device context. In the
Graphics programming, a pen is also used to draw the borders of a geometric
closed shape such as a rectangle or a polygon. Microsoft Windows considers two
types of pens — cosmetic and geometric. A pen is referred to as cosmetic when it
can be used to draw only simple lines of a fixed width, less than or equal to 1
pixel. A pen is geometric when it can assume different widths and various ends.
MFC provides a class CPen which encapsulates a Windows graphics device
interface (GDI) pen.

8.5.9 BRUSHES

A brush is a drawing tool used to fill out closed shaped or the interior of
lines. A brush behaves like picking up a bucket of paint and pouring it
somewhere. MFC provides a class CBrush which encapsulates a Windows
graphics device interface (GDI) brush. List of methods in CBrush class has been
shown in Table 8.2.

PL
O

N
E-

28

BCA-118/218

Table 8.2 List of methods for brush class

S.No Name Description

1 CreateBrushIndirect
Initializes a brush with the style, color,
and pattern specified in a LOGBRUSH
structure.

2 CreateDIBPatternBrush
Initializes a brush with a pattern specified
by a device-independent bitmap (DIB)

3 CreateHatchBrush
Initializes a brush with the specified
hatched pattern and color.

4 CreatePatternBrush
Initializes a brush with a pattern specified
by a bitmap.

5 CreateSolidBrush
Initializes a brush with the specified solid
color.

6 CreateSysColorBrush
Creates a brush that is the default system
color

7 FromHandle
Returns a pointer to a CBrush object when
given a handle to a Windows HBRUSH
object

8 GetLogBrush Gets a LOGBRUSH structure

Example:

void CMFCGDIDemoView::OnDraw(CDC* pDC)

{

CBrush brush(RGB(100, 150, 200));

CBrush *pBrush = pDC->SelectObject(&brush) ;

pDC->Rectangle(25, 35, 250, 125) ;

pDC->SelectObject(pBrush);

CMFCGDIDemoDoc* pDoc = GetDocument();

ASSERT_VALID(pDoc);

if (!pDoc)

return ;

}

PL
O

N
E-

28

BCA-118/219

Output(Fig.8.12):

Fig. 8.12 Output of Brush example

8.6 CLIPBOARDS

The clipboard is a buffer that some operating systems provide for short-
term storage and transfer within and between application programs. The clipboard
is usually temporary and unnamed, and its contents reside in the computer's
RAM. The clipboard is sometimes called the paste buffer. In Windows, but also in
other operating systems like Android or Mac OS X, the clipboard is a special
location in the PC or device memory, that is used as a temporary storage area for
any information that is copied. Once some data is copied into the clipboard, it can
be pasted somewhere else, in the same application from which it was copied, or in
a different one, as long as it knows how to work with that type of data. It is also
referred to as pasteboard, is a special location in computer's memory that
temporarily stores data that was cut or copied from a document. This data can
then be pasted to a new location. The clipboard will hold its information until you
cut or copy something else, or log out of the computer. For example, a user may
copy information from a word processor and paste that information into an e-mail
message.

Many operating systems include "clipboard viewers" that display what
information is currently being stored in the clipboard. These utilities may also be
used to configure the clipboard with permissions, or view the clipboard's history.
Unfortunately, Microsoft has decided not to include any clipboard viewer in
Microsoft Windows Vista, 7, 8, and 10. To view the contents of the clipboard,
you need to download a third-party utility or app.

Microsoft Windows 2000 and XP users may find it difficult to locate the
clipboard because it was renamed to the Clipbook viewer. It can be located by
opening Windows Explorer, opening the "Winnt" or "Windows" folder, then the
"System32" folder. Find and double click the clipbrd.exe file. Users can also click
Start, Run, type clipbrd and press Enter to execute this program. Microsoft
Windows 95, 98, NT 4.0, and ME come installed with a clipboard viewer that can
be run by clicking Start, Programs, System Tools, and clicking Clipboard Viewer.
The clipboard viewer is also executable through the clipbrd.exe file in the
Windows directory.

An operating system that supports a clipboard provides an API by which PL
O

N
E-

28

BCA-118/220

programs can specify cut, copy and paste operations. It is left to the program to
define methods for the user to command these operations, which may include
keybindings and menu selections. When an element is copied or cut, the clipboard
must store enough information to enable a sensible result no matter where the
element is pasted. Application programs may extend the clipboard functions that
the operating system provides. A clipboard manager may give the user additional
control over the clipboard. Specific clipboard semantics vary among operating
systems, can also vary between versions of the same system, and can sometimes
be changed by programs and by user preferences.

A clipboard manager is a computer program that adds functionality to an
operating system's clipboard. Many clipboards provide only one buffer for the
"copy and paste" function, and it is overwritten by each new "copy" operation.
The main task of a clipboard manager is to store data copied to the clipboard in a
way that permits extended use of the data. Clipboard managers enhance the basic
functions of cut, copy, and paste operations with one or more of the following
features:

 Multiple buffers and the ability to merge, split, and edit their contents

 Selecting which buffer "cut" or "copy" operations should store data in

 Selecting which buffer(s) "paste" operations should take data from

 Handling formatted text, tabular data, data objects, media content, and
URLs

 Saving copied data to long term storage

 Indexing or tagging of clipped data

 Searching of saved data

8.6.1 THE STANDARD CLIPBOARD DATA FORMATS

A window can place more than one object on the clipboard, each
representing the same information in a different clipboard format. Users need not
be aware of the clipboard formats used for an object on the clipboard. The
clipboard formats defined by the system are called standard clipboard formats.
These clipboard formats are described in Standard Clipboard Formats. Many
applications work with data that cannot be translated into a standard clipboard
format without loss of information. These applications can create their own
clipboard formats. A clipboard format that is defined by an application, is called
a registered clipboard format. For example, if a word-processing application
copied formatted text to the clipboard using a standard text format, the formatting
information would be lost. The solution would be to register a new clipboard
format, such as Rich Text Format (RTF).

8.6.1.1 FORMATS

You can usually copy/paste within a program, and between any two
programs where a common “format” can be agreed upon. For example, you can
copy text from a web browser and paste into a word processor or text editor. But

PL
O

N
E-

28

BCA-118/221

you will not be able to copy an image from a paint program and paste into a
simple text editor like Notepad. That’s because they don’t have any way to
convert the image into plain text. Here are the most common data formats:

 Text– plain text, with no font, formatting, color, images. When pasted into
a word processor, will appear just as if you’d typed it from the keyboard.

 Rich Text Format– Text with formatting, such as you’d use when copying
within a word processor. Contains fonts/formatting, which may clash with
the formatting already present within the word processor.

 HTML– Text and images copied from browsers, also contains formatting
and tables. Can seriously contaminate formatting and style within a word-
processing document.

 Bitmap– Almost all image data on the clipboard uses this format, even if
you copy a Jpeg, GIF, or PNG from a browser window. Bitmap is the
“rosetta stone” of the clipboard, as far as images go. Screen grabs are also
sent to the clipboard as Bitmap.

 Picture– The “other” image format, used for vector drawings like you
make with a CAD program, or the drawing tool in Microsoft Word.

 File Pointers– These are on the clipboard when you “copy” files or folders
within Windows Explorer. This lets you “paste” into another folder,
which causes Windows to copy or move the files. Note that the files
themselves aren’t really on the clipboard – it’s just a “pointer” that
describes where the files are. It would take far too long, to actually place
the contents of the files onto the clipboard.

Moreover, Windows supports various formats which have identifiers in
windows header files. The most common of these are as given below:

1. CF_TEXT– A simplest form of clipboard data, is a null-terminated ANSI
character string containing a carriage return and a linefeed character at the
end of each line.

2. CF_BITMAP– It is a device dependent bitmap which is transferred to the
clipboard using the bitmap handle.

3. CF_METAFILEPICT– It is a metafile with some extra information in the
form of a small structure of type METAFILEPICT. The program transfers
a metafile picture to the clipboard using the handle to a memory block
containing this particular structure.

4. CF_SYLK– It is a memory block containing data in the Data Interchange
Format. It is used to exchange the data among Microsoft Multiplan, Chart
and Excel programs.

8.6.2 TRANSFERRING TEXT TO THE CLIPBOARD

Let’s assume that you want to transfer a character string to the clipboard
and that you have a pointer (Called pString) to this string. You want to transfer
iLength bytes of this string. First, allocate a moveable memory block of iLength

PL
O

N
E-

28

BCA-118/222

size by using GlobalAlloc. Include room for a terminating NULL:

hGlobalMemory= Globalalloc(GHND,iLength+1);

The value of bGlobalMemory will be NULL if the block could not be
allocated. If the allocation is successful, lock the block to get a pointer to it:

pGlobalMemory=GlobalLock(hGlobalMemory);

Copy the character string into the memory block:

for (i=0;i<ilength;i++)

*pGlobalMemory++=*pString++;

You don’t need to add terminating NULL because the GHND flag for
GlobalAlloc zeroes out the entire memory block during allocation. Unlock the
block:

GlobalUnlock(hGlobalMemory)

Now you have a memory handle that references a memory block
containing the NULL terminates text. To get this into the clipboard, open the
clipboard and empty it:

OpenClipboard(hwnd);

EmptyClipboard();

Give the clipboard the memory handle using the CF_TEXT identifier, and
close the clipboard:

SetClipboardData(CF_TEXT,hGlobalMemory);

CloseClipboard();

8.6.3 OPENING AND CLOSING THE CLIPBOARD

Only one program can open the clipboard in one time. The purpose of the
OpenClipboard is to prevent the clipboard contents from changing while a
program is use the clipboard. OpenClipboard returns a Boolean value which
indicates that whether the program is opened or not. If another program is open
already it will return true and not allow to open the program. On the other hand, if
it returns false it allows to open the program.

8.6.4 CLIPBOARD DRAG AND DROPS

Drag and drop operations in windows-based application can be enabled
using or handling various events like DragEnter, DragLeave, and DragDrop.
Working with the information available in the event arguments of these events,
drag-and-drop operations can be easily used. User’s cut/copy/paste support and
user data transfer to the clipboard can also be implemented within the Windows-
based applications using simple method calls.

8.6.4.1 DRAGGING DATA

All drag-and-drop operations begin with dragging. The functionality to
enable data to be collected when dragging begins is implemented in the PL

O
N

E-
28

BCA-118/223

DoDragDrop method. In most of the applications, the MouseDown event is used
to start the drag operation because it is the most intuitive (most drag-and-drop
actions begin with the mouse button being depressed).

Note1: - However, remember that any event could be used to initiate a drag-and-
drop procedure.

Note2: - Certain controls have custom drag-specific events. The ListView and
TreeView controls, for example, have an ItemDrag event.

In the MouseDown event for the control where the drag will begin, use the
DoDragDrop method to set the data to be dragged and the allowed effect dragging
will have. The control where the drag begins is a Button control, the data being
dragged is the string representing the Text property of the Button control, and the
allowed effects are either copying or moving. While a drag operation is in effect,
you can handle the QueryContinueDrag event, which "asks permission" of the
system to continue the drag operation. When handling this method, it is also the
appropriate point for you to call methods that will have an effect on the drag
operation, such as expanding a TreeNode in a TreeView control when the cursor
hovers over it.

Note: - Any data can be used as a parameter in the DoDragDrop method like Text
property of Button control.

8.6.4.2 DROPPING DATA

Once dragging data starts from a location on a Windows Form or control
and want to drop it somewhere. The cursor changes when it crosses an area of a
form or control that is correctly configured for dropping data. Any area within a
Windows Form or control can be made to accept dropped data by setting the
AllowDrop property and handling the DragEnter and DragDrop events.

For a drop operation steps required are:

 Set the AllowDrop property to true.

 In the DragEnter event for the control where the drop will occur, ensure
that the data being dragged is of an acceptable type. The code then sets the
effect that will happen when the drop occurs to a value in the
DragDropEffects enumeration.

8.6.5 USING CLIPBOARDS TO TRANSFER IMAGES
BETWEEN APPLICATIONS

The clipboard function is one of the most common features of Microsoft
Windows. It's something you likely do a dozen—if not a hundred—times a day:
Copy and Paste. Something's somewhere, and you want it someplace else, so you
copy it then paste it in the new place—a modern version of Xeroxing a piece of
paper, cutting out the text you wanted, and gluing (or pasting) it to the other
document where you needed the text. Cutting or copying bits of text or an image
from one application and then pasting it into another application is a process
many of us perform on an almost daily basis. In many ways, it is fundamental to PL

O
N

E-
28

BCA-118/224

our collaborative and social media-centric digital lives.

Windows 10 added a new feature where, if you tap the Win + Printscreen
keys, a screenshot is captured and saved to a folder called Screenshots in the
Picture library. This is by far the easiest way to capture a full screen screenshot of
practically anything. The PrintScreen key, when tapped on its own, also captures
your screen but the image goes to your clipboard. It’s not saved as a file unless
you paste it into an image editor. This is tedious so if you want a quicker way to
save a clipboard image to a file on Windows 10, a free app called Paste InTo File
will do the trick. The Copy Image command places a selections image into the
clipboard and the internal buffer. The internal buffer may be pasted to the
diagram, and the image (bitmap and metafile) in the clipboard may be pasted into
other applications. To copy an image, select an object or region and execute Copy
Image. This command is also available from the pop up menu (click the right
mouse button on the diagram window to make the popup menu appear.)

The Cut Image command places images of a selection into the clipboard
and the internal buffer, then deletes the selection from the diagram. Once the
internal buffer is filled, the selection in it may be pasted into the diagram, and the
clipboard image (bitmap and metafile) may be pasted into other applications. To
cut an image, select an object or region and execute the Cut Image command.
This command is also available from the pop up menu (click the right mouse
button on the diagram window to make the popup menu appear. Paste
Image causes a copy of the internal StateCAD buffer to be placed into the
diagram. To paste, select a region into the buffer (via Cut Image or Copy Image),
then select Paste Image. A green rectangle appears on the screen which should be
moved to the region where the pasted image is desired. Click the left mouse
button to complete the operation. Pasting may be canceled by typing [ESC] after
executing the Paste Image command but before the click that finalizes the paste.
Images may be pasted within StateCAD from the internal buffer. Images in the
clipboard may not be pasted into StateCAD. Once StateCAD has been exited the
internal buffer is flushed, but the clipboard retains whatever information it had up
to that point. Pasting may be done between diagrams and within a diagram, as
long as StateCAD is not exited. This command is also available from the pop up
menu (click the right mouse button on the diagram window to make the popup
menu appear.

When pasting named objects (states, logic, and vectors) new objects are
assigned unique names. If the objects in the buffer are not present in the diagram,
then the objects original names are used. Aliases are not renamed when pasted (or
imported). Whenever a Cut Image or Copy Image command is executed on a
selection, a full color image of the selection is copied to the clipboard
(metafile and bitmap formats) and a description image is copied to the internal
buffer. Once an image has been placed into the clipboard, it may be pasted into
any Windows package which accepts bitmaps or metafiles from the clipboard.
When an area is selected into the clipboard the zoom level is ignored. Anything
sent to the clipboard is shown in the clipboard in its unzoomed size. This makes it
easy to see information about the design (text etc.) when zoomed.

Note: - Images are copied as metafiles and bitmaps. Applications automatically
select the best format. PL

O
N

E-
28

BCA-118/225

When a selection is copied to the clipboard, control points and page breaks
are suppressed. To copy the video screen to the clipboard, use the Windows
feature, print screen ([CTRL]+[PRINT SCRN]), or use print window
([ALT]+[PRINT SCRN]) to copy the currently active window.

Nowadays Cloud Computing Technology has also become very popular as
the images throughout the computers are available due to Cloud Computing. New
cloud-powered clipboard experience included with the October 2018 Update.

8.6.6 LIMITATIONS OF CLIPBOARD

 The clipboard is simply a shared block of memory, and while it can
contain the same chunk of data represented in a variety of formats, it can
only hold one item at a time. So if you copy something that you want to
paste, you need to paste it before you copy something else. Otherwise,
your first item will be overwritten, and lost. This limitation can be
overcome by the use of a Clipboard Extender, such as ClipMate.

 The limit of images for keeping in clipboard is 4MB.

 Once the file is copied and pasted somewhere, it can’t be pasted to other
desired location as it is not available on the device working upon.

Note: - It is impossible to completely "backup" the clipboard and restore it like it
was, without impacting other programs, and causing a negative user experience.

CHECK YOUR PROGRESS

 What do you understand by device context?

 Briefly define the standard clipboard data format.

 What are the limitations of clipboard?

8.7 PRINTING GRAPHICS AND TEXT

Printing from a Windows program usually involves some overhead, as
well as some GDI calls to actually print something. So far, the only experience
you've had with GDI is the processing of the WM_PAINT message in the main
event handler. Remember that GDI, or the Graphics Device Interface, is how all
graphics are drawn under Windows when DirectX is not in use. Alas, you haven't
yet learned how to actually draw anything on the screen with GDI, but this is very
key because rendering on the screen is one of the most important parts of writing
a video game. Basically, a game is just logic that drives a video display. In this
section, the WM_PAINT message has been revisited, cover some basic video
concepts, and see how to draw text within window.

Understanding the WM_PAINT message is very important for standard
GDI graphics and Windows programming because most Windows programs'
displays revolve around this single message. In a DirectX game this isn't true,

PL
O

N
E-

28

BCA-118/226

because DirectX, or more specifically DirectDraw or Direct3D, will do the
drawing, but still need to know GDI to write Windows applications.
The WM_PAINT message is sent to window's WinProc() whenever the window's
client area needs repainting. Until now, you haven't done much processing on this
event. Here's the standard WM_PAINT handler which have been used:

When a window is moved, resized, or in some way graphically obscured
by another window or event, some or all of the window's client area must be
redrawn. When this happens, a WM_PAINT message is sent and you must deal
with it. In the case of the preceding code example, the calls
to BeginPaint() and EndPaint() accomplish a couple of tasks. First, they validate
the client area, and second, they fill the background of the window with the
background brush defined in the Windows class that the window is originally
created with. Now, if you want to do your own graphics within
the BeginPaint()—EndPaint() call, you can. However, there is one problem: You
will only have access to the portion of the window's client area that actually needs
repainting. The coordinates of the invalid rectangle are stored in the rcPaint field
of the ps (PAINSTRUCT) returned by the call to BeginPaint():

8.8 CREATING ANIMATIONS WITH PICTURE
CLIP CONTROL

An animation control is a window that displays an Audio-Video
Interleaved (AVI) clip. An AVI clip is a series of bitmap frames like a movie.
Animation controls can only display AVI clips that do not contain audio. One
common use for an animation control is to indicate system activity during a
lengthy operation. This is possible because the operation thread continues
executing while the AVI clip is displayed. For example, the Find dialog box of
Windows Explorer displays a moving magnifying glass as the system searches for PL

O
N

E-
28

BCA-118/227

a file. An animation control can display an AVI clip originating from either an
uncompressed AVI file or from an AVI file. You can add the AVI clip to your
application as an AVI resource, or the clip can accompany your application as a
separate AVI file.

8.8.1 ANIMATION CONTROL CREATION

An animation control belongs to the ANIMATE_CLASS window class.
An animation control can be created by using
the CreateWindow or CreateWindowEx function or the Animate_Create macro.
The macro positions the animation control in the upper-left corner of the parent
window and, if the ACS_CENTER style is not specified, sets the width and height
of the control based on the dimensions of a frame in the AVI clip.
If ACS_CENTER is specified, Animate_Create sets the width and height of the
control to zero. You can use the SetWindowPos function to set the position and
size of the control. If an animation control is created within a dialog box or from a
dialog box resource, the control is automatically destroyed when the user closes
the dialog box. If It is created within a window, control must be explicitly
destroyed.

8.8.2 ABOUT ANIMATION CONTROL MESSAGES

An application sends messages to an animation control to open, play, stop,
and close the corresponding AVI clip. Each message has one or more macros that
can be used instead of sending the message explicitly. After creating an animation
control, an application sends the ACM_OPEN message to open an AVI clip and
load it into memory. The message specifies either the path of an AVI file or the
name of an AVI resource. The system loads the AVI resource from the module
that created the animation control.

If the animation control has the ACS_AUTOPLAY style, the control
begins playing the AVI clip immediately after the AVI file or AVI resource is
opened. Otherwise, an application can use the ACM_PLAY message to start the
AVI clip. An application can stop the clip at any time by sending
the ACM_STOP message. The last frame played remains displayed when the
control finishes playing the AVI clip or when ACM_STOP is sent. An animation
control can send two notification codes to its parent
window: ACN_START and ACN_STOP. Most applications do not handle either
notification. To close the AVI file or AVI resource and remove it from memory,
an application can use the Animate_Close macro, which sends ACM_OPEN with
the file name or resource name set to NULL.

CHECK YOUR PROGRESS

 What do you mean by the WM_PAINT message?

 Discuss about animation control creation.

 Define BeginPaint() and EndPaint().

PL
O

N
E-

28

BCA-118/228

8.9 SUMMARY

A graphic is an image or visual representation of an object. Therefore,
computer graphics are simply images displayed on a computer screen. Graphics
are often contrasted with text, which is comprised of characters, such as numbers
and letters, rather than images. Computer graphics can be either two or three-
dimensional. Early computers only supported 2D monochrome graphics, meaning
they were black and white (or black and green, depending on the monitor).
Eventually, computers began to support color images. While the first machines
only supported 16 or 256 colors, most computers can now display graphics in
millions of colors.

The Graphics Device Interface (GDI) is a Microsoft Windows application
programming interface and core operating system component responsible for
representing graphical objects and transmitting them to output devices such as
monitors and printers. GDI is responsible for tasks such as drawing lines and
curves, rendering fonts and handling palettes. A console application is a program
which runs in a command prompt window. Console programs do not have the
flash, nor the event-driven capabilities of a Windows application, however, they
still have their place. For example, where screen space is limited such as a bank
ATM, or a device with a very simple display type.

Multitasking, in an operating system, is allowing a user to perform more
than one computer task (such as the operation of an application program) at a
time. The operating system is able to keep track of where you are in these tasks
and go from one to the other without losing information. Moreover, multitasking
is the ability of an operating system to run various programs simultaneously. But
actually at the background, OS uses a round-robin approach or a hardware clock
i.e. it provides “time slices” for each running process; and a user thinks that all the
programs are running concurrently. Multitasking is a very old concept which was
present during the mainframe computers too. Then in those mainframes jobs were
submitted and executed one-by-one accordingly. It took some time to become a
reality or enter into personal computers.

Multithreading is the ability of a program or an operating system process
to manage its use by more than one user at a time and to even manage multiple
requests by the same user without having to have multiple copies of the
programming running in the computer. In a multithreaded environment, programs
can split themselves into separate pieces (called threads of execution) that run
concurrently. This was the best solution for the problem of queuing or
serialization in the presentation manager. In terms of code, a thread is simply
represented by a function which might also call other functions in the program.

The Clipboard is a shared memory area that you copy data into (aka.
"copy", such as in response to the user pressing Ctrl+C) and copy data from (aka
"paste"). The data can be simultaneously represented in dozens of common
formats, and any number of programmer-defined formats.

The clipboard is a buffer that some operating systems provide for short-
term storage and transfer within and between application programs. The clipboard
is usually temporary and unnamed, and its contents reside in the computer's PL

O
N

E-
28

BCA-118/229

RAM. The Clipboard is sometimes called the paste buffer. In Windows, but also
in other operating systems like Android or Mac OS X, the clipboard is a special
location in the PC or device memory, that is used as a temporary storage area for
any information that is copied. Once some data is copied into the clipboard, it can
be pasted somewhere else, in the same application from which it was copied, or in
a different one, as long as it knows how to work with that type of data. It is also
referred to as pasteboard, is a special location in computer's memory that
temporarily stores data that was cut or copied from a document.

Printing from a Windows program usually involves some overhead, as
well as some GDI calls to actually print something. The only experience you've
had with GDI is the processing of the WM_PAINT message in the main event
handler. Remember that GDI, or the Graphics Device Interface, is how all
graphics are drawn under Windows when DirectX is not in use. An animation
control is a window that displays an Audio-Video Interleaved (AVI) clip. An AVI
clip is a series of bitmap frames like a movie. Animation controls can only display
AVI clips that do not contain audio. One common use for an animation control is
to indicate system activity during a lengthy operation. This is possible because the
operation thread continues executing while the AVI clip is displayed.

8.10 TERMINAL QUESTIONS

1. Define the term computer graphics and write the ways for creating
graphics objects.

2. What is the basic difference between 2D graphics and 3D graphics?

3. Write a short note on consoles.

4. Compare the thread and process briefly.

5. Explain the concept and usefulness of multithreading.

6. What is event model? Draw its diagram.

7. Explain the process of drawing arcs and square.

8. Discuss the methods for brush class.

9. Explain the drag and drop operation in clipboard.

10. Write a short note on creating animation with picture clip control.

 PL
O

N
E-

28

BCA-118/230

Bachelor in Computer
Application

BCA-118

Windows Programming

BLOCK

4
INTERFACING AND DATABASE APPLICATION

UNIT-9

Interfacing Other Applications

UNIT-10

Database Application

UNIT-11

Network Programming

UNIT-12

Advanced Topics and Case Study

Uttar Pradesh Rajarshi Tandon
Open University

PL
O

N
E-

28

BCA-118/231

Course Design Committee

Prof. Ashutosh Gupta

Director

School of Science, UPRTOU Prayagraj

Prof. Suneeta Agarwal

Dept. of Computer Science & Engineering

Motilal Nehru National Institute of Technology, Allahabad, Prayagraj

Dr. Upendra Nath Tripathi

Associate Professor

Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur

Dr. Ashish Khare

Associate Professor

Dept. of Computer Science, University of Allahabad, Prayagraj

Ms. Marisha

Assistant Professor (Computer Science)

School of Science, UPRTOU Prayagraj

Mr. Manoj Kumar Balwant

Assistant Professor (Computer Science)

School of Sciences, UPRTOU Prayagraj

Course Preparation Committee

Dr. Krishan Kumar Author

Assistant Professor

Department of Computer Science,

Gurukula Kangri Vishwavidyalaya Haridwar (UK)

Dr. Brajesh Kumar Editor

Associate Professor, Dept. of CS & IT

M.J.P Rohilkahand University, Bareilly, Uttar Pradesh

Prof. Ashutosh Gupta Director (In-Charge)

School of Computer & Information Sciences

UPRTOU Prayagraj

Mr. Manoj Kumar Balwant Coordinator

Assistant Professor (computer science)

School of Sciences, UPRTOU Prayagraj

©UPRTOU, Prayagraj - 2020
ISBN :

©All Rights are reserved. No part of this work may be reproduced in any form, by
mimeograph or any other means, without permission in writing from the Uttar Pradesh
Rajarshi Tondon Open University, Prayagraj.
Printed and Published by Dr. Arun Kumar Gupta Registrar, Uttar Pradesh Rajarshi
Tandon Open University, 2020.

Printed By : Chandrakala Universal Pvt. 42/7 Jawahar Lal Neharu Road, Prayagraj.

PL
O

N
E-

28

BCA-118/232

BLOCK INTRODUCTION

Block 4 includes four units i.e. unit 9, unit 10, unit 11, and unit 12. Unit 9
focusses on Interfacing Other Applications. Unit10 is intended with detail
description of DBMS. Unit 11 is related with network programming. And lastly
unit 12 give an idea of how to dvelop a small Visual Basic application. At the end
of this block, one would be able to understand about the following concepts:

 Exception handling

 OLE

 DBMS

 Database Access

 Creating tables, inserting, deleting and updating records

 VC++ resources

 Network programming with Windows Sockets, Securing Windows
Objects

 COM

 DCOM

 An application using Visual Basic

Unit 9 describes about the Single Document Interface (SDI) and Multiple
Document Interface (MDI). Moreover, it explains about Splitter Windows,
Exception Handling, Debugging, Object Linking and Embedding (OLE).
Exception handling and debugging are two concepts which are very helpful in
finding the error at runtime.

Unit 10 mainly focusses on the Database Management System (DBMS). It
explains about some other things associated to it like Odbc, DAO, Recorset etc. It
also explains about the SQL (Structured Query Language) and its opeartions like
creation of table, updation of table, deleting a record, performing different types
of queries etc.

Unit 11 mainly focusses on the Network programming concepts. It
explains about network programming using Windows Sockets, Windows objects,
and Securing Windows Objects.

Unit 12 discusses about the ActiveX Controls, COM, DCOM, and COM+.
Moreover, the development of an application using Visual Basic has been also
given based on a case study.

PL
O

N
E-

28

BCA-118/233

PL
O

N
E-

28

BCA-118/234

UNIT-9 INTERFACING OTHER
APPLICATIONS

Structure

9.0 Introduction

9.1 Objectives

9.2 Single Document Interface (SDI)

9.3 Multiple Document Interface (MDI)

9.4 Difference Between SDI and MDI

9.5 Explorer Style-Interface

9.6 Splitter Windows

9.7 Exception Handling

9.8 Debugging

9.9 Object Linking and Embedding (OLE)

9.10 Summary

9.11 Terminal Questions

9.0 INTRODUCTION

A Windows Forms or WPF application provides several options for
presenting graphic information. Deciding if the application needs to have a single
document, multiple document, or navigation interface will affect the end user’s
satisfaction with the application’s ability to meet his or her objective. A Windows
Services application is designed to execute and interact with the Computer
Management Console. The Windows Services application is intended to be
executed for monitoring, maintaining, or evaluating functionality.

This Unit basically deals with document applications like single document
interface (SDI), multiple document interface (MDI), splitter windows, exception
handling, debugging, and object linking and embedding. SDI is intended with
opening a single document at a time while on other hand various documents can
be opened using MDI. Switching between various windows is easy in MDI.
Splitter windows is another concept rather way to split the screen into two or
more different panes. Splitting windows can be done using some derived objects.
Splitter windows come in two forms - static and dynamic. This unit will only
cover static splitters since the dynamic ones are slightly more complex. The main
difference between the two is that a dynamic splitter can be split and collapsed by
the user while a static splitter cannot. PL

O
N

E-
28

BCA-118/235

This unit also explain about exception handling. An exception is an error
condition, possibly outside the program's control, that prevents the program from
continuing along its regular execution path. Certain operations, including object
creation, file input/output, and function calls made from other modules, are all
potential sources of exceptions even when the program is running correctly.
Robust code anticipates and handles exceptions.

Without fail, the code written as a software developer, doesn’t always do
what expected it to do. Sometimes it does something completely different! When
this happens, the next task is to figure out why, and although it might be tempted
to just keep staring at code for hours, it’s much easier and efficient to use a
debugging tool, or debugger. A debugger, unfortunately, isn’t something that can
magically reveal all the problems or “bugs” in a code. Debugging means to run
the code step by step in a debugging tool like Visual Studio, to find the exact
point where one made a programming mistake. It is then understood what
corrections are needed to make in code, and debugging tools often allow to make
temporary changes so that the running program remain continue.

Finally, OLE that stands for "Object Linking and Embedding," has been
discussed. OLE can be pronounced as "O-L-E," or "Oh-lay!" in Spanish. OLE is a
framework developed by Microsoft (way back in Windows 3.1) that allows to
take objects from a document in one application and place them in another. For
example, OLE may allow to move an image from a photo-editing program into a
word processing document. The OLE technology was initially created to allow the
linking of objects between "compound documents," or documents that support
multiple types of data. Microsoft has since developed OLE into a wider standard,
known as the Component Object Model (COM). COM is supported by Mac,
Unix, and Windows operating systems, but is primarily used with Microsoft
Windows. The COM framework is the foundation of ActiveX, which allows
developers to create interactive content for the Web.

Document/view applications aren't limited to just one document and one
view of a document's data. MFC Document View Architecture can have two types
of applications i.e. SDI and MDI. Using splitter windows provided by MFC, a
single document interface (SDI) application can present two or more views of the
same document in resizeable "panes" that subdivide the frame window's client
area. The document/view architecture also extends to multiple document interface
(MDI) applications that support multiple views of a document, multiple open
documents, and even multiple document types. Although Microsoft discourages
the use of the multiple document interface, applications that rely on the MDI
model are still prevalent and probably will be for some time to come, as
evidenced by the continued success of Microsoft Word and other leading
Microsoft Windows applications. MDI and SDI are different interface designs
meant to handle documents within a single application. MDI allows an application
to contain child windows per document, while SDI enforces one document per
window.

Neither approach has much effect on performance or stability: despite the
intuition of two SDI applications as being separate entities, they are very often
still implemented as a single process. Similarly, an MDI interface can be
implemented as multiple processes (Google Chrome being a prime example). It's PL

O
N

E-
28

BCA-118/236

also worth noting that tabbed interfaces, although matching the description of
MDI, often don't show multiple documents at the same time in the same window,
and universally support multiple top-level windows as well.

9.1 OBJECTIVES

At the end of this unit you will come to know about:

 Windows application types

 Windows user interface types

 Characteristics of Single Document Interface

 Role and applications of SDI

 Characteristics of Multiple Document Interface

 Difference between SDI and MDI

 Splitter windows

 Object Linking and Embedding

 Exception handling

 Debugging

9.2 SINGLE DOCUMENT INTERFACE

A Windows function that allows an application to display only one
document at a time. The Single Document Interface (SDI) is one of the first UI
designs introduced when the Windows operating system was created. SDI is a
design pattern in which the graphical elements of the window apply only to the
current Window where they reside (Fig. 9.1). The toolbars, menus, and other
common Window elements control only the functionality for the window in
which they are embedded. Each window that appears will have its own set of
toolbars and menus to control its functionality.

Fig. 9.1 Single Document Interface (SDI) example

(Source: http://icodeguru.com/dotnet/Data-Entry-and-Validation-with-
CSharp-and-VB-Dot-NET-Windows-Forms/8214final/LiB0021.html) PL

O
N

E-
28

BCA-118/237

Moreover, SDI is a Single Document Interface as opposed to MDI which
is a Multiple Document Interface; the difference is solely in the number of
documents that can be opened at one time in each instance of the application.
With SDI, only one document can be opened whereas with MDI many documents
can be opened. This type of application can deal with a single document and
single view of the document at one point of time. There is no way to open another
document in the same application. Only way to open another document is to
launch another instance of the application and open the another document.
Notepad, Wordpad are such applications in Windows. This is the simplest
interface one can present to the user. In a complicated program, however, it can
also be the most confusing.

An SDI program requires that one screen must be closed before opening
another. There would be no way to just flip back and forth between screens. This
is the classic definition of an SDI program. Here are some common examples of
SDI:

 Notepad: First document must be closed before editing another.

 WordPad: First document must be closed before editing another.

 Calculator: One calculator can be used at a time.

In a classic SDI program such as Notepad, if one wants to edit two
documents at once he/she need to run two instances of the program. Neither
instance of Notepad knows the other exists, and they do not interact. Fig 9.2
shows what a classic SDI HR application that includes an Employee screen might
look like.

Fig. 9.2 Classic SDI

9.2.1 ANOTHER TYPE OF SDI PROGRAM

Another type of SDI program is common these days. In the case of the
hypothetical HR program, if the user chose the Training module while in the
Employee screen, the program would not replace the Employee screen. It would
instead bring up another form on the desktop, which would look like a separate

PL
O

N
E-

28

BCA-118/238

program altogether. However, it is not. The different screens can interact with
each other and exchange information.

In this scenario, the user can have four forms open on the desktop, one for
each module (Employee, Training, Payroll, and Scheduling). Can you imagine a
program that could have a dozen or more forms open on the desktop at once? For
anyone, this is chaos, but one already might have used a program that does this.
VB 6.0 has an option to work in an SDI environment or an MDI environment.
The default is MDI, and this keeps things organized. Word is arguably the most
ubiquitous program in the world, and many people like to edit many documents at
once. Word is now an SDI application, which means that each document is in a
separate window.

9.2.2 THE MULTIFORM SDI EXAMPLE

Before the coding of an SDI program, one need to come up with a plan for
how it will work. The normal working/plan for this one is based loosely on how
Microsoft Word works:

 The program has a main form with a menu.

 The menu allows the user to choose different parts of the program to work
on.

 Each part of the program is a new form that appears on the desktop in a
random place.

 The main form has a Window menu option that shows all the HR screens
the user has open.

 The Window option has a submenu item called "Close All Windows" that
closes all the currently open windows.

 The Window menu option of the main screen denotes with a check mark
the child form that is currently in focus.

 If the user chooses one of the forms listed under the Window menu option,
that form gains focus.

 Only one instance of any of the forms can be running at a time.

 If the user chooses to edit a form that exists on the desktop, that form will
gain focus.

 If the user closes an existing form, that form is deleted from the Window
menu option.

 If the user closes the main form, the open windows automatically shut
down.

Start a new C# or VB Windows project say "SDIFirst." One would need to follow
the following steps before adding any code:

1. Add a MainMenu to the form.

2. Type File in the MainMenu item and call it mnuFile.

3. Below mnuFile, type in Close and call this item mnuClose.

PL
O

N
E-

28

BCA-118/239

4. Next to mnuFile, type in Edit and call this item mnuEdit.

5. Below mnuEdit, type in Employee and call this item mnuEmp.

6. Below mnuEmp, type in Training and call this item mnuTrain.

7. Below mnuTrain, type in Payroll and call this item mnuPayRoll.

8. Below mnuPayRoll, type in Scheduling and call this item mnuSked.

9. Next to mnuEdit, type in Window and call this item mnuWindow.

10. Next to mnuWindow, type in Help and call this item mnuHelp.

11. Add a status bar to the form.

12. Add a Panel to the Panels collection in the status bar and make it read
Employee Screen. Change the AutoSize property to Spring.

13. Add a Panel to the Panels collection in the status bar and make it read
Operator. Change the AutoSize property to Contents.

14. Add a Panel to the Panels collection in the status bar and type in the date.
Change the AutoSize property to Contents.

15. Set the ShowPanels property to true.

16. Make the form start in the center of the screen.

9.3 MULTIPLE DOCUMENT INTERFACE

MDI stands for Multiple Document Interface. A user or programmer
probably see many MDI applications many times. When multiple documents are
handled, MDI forms are useful in a Windows program.

9.3.1 ADDING AN MDI FORM TO THE CURRENT
PROJECT

Project -> Add MDI form. Click Project from the menu bar, and click Add MDI
form. Remember, a project can have only one MDI form (Fig.9.3).

Fig. 9.3 Adding an MDI form

PL
O

N
E-

28

BCA-118/240

9.3.2 RESTRICTIONS OF THE MDI FORM

Usually there are two restrictions. These restrictions are there because
MDI forms are the special type of forms, especially used to handle multiple child
forms. These restrictions are:

 One MDI form per project can be created.

 Most controls on an MDI form cannot be placed.

 The only controls that can be placed on the surface of the MDI form
are Menus, Timer, CommonDialog, PictureBox, ToolBar, and StatusBar.

9.3.3 WORKING OF THE MDI FORM

There can be only one MDI parent form in a project with one or more
MDI child forms (or simply child forms).

9.3.3.1 MDI CHILD FORM

To add a child form, a regular form is added, and set the MDIchild
property to True. You can have many child forms and can show an MDI child
form using the Show method.

9.3.3.2 AUTOSHOWCHILDREN PROPERTY OF AN MDI FORM

The default value of the AutoShowChildren property is True. When it is
True, the MDI child forms are displayed once they are loaded. When the value is
False only then it can be kept hidden after loading, otherwise not.

9.3.3.3 RESTRICTIONS OF THE MDI CHILD FORMS

Normally there are two restrictions: you can't display an MDI child form
outside its parent, and you can't display a menu bar on the MDI child form. Now
coming to the point - how the MDI form works. The parent form contains a menu
bar on top of it. From there, the user opens or creates a new document. In this
way, the user accomplishes his/her work in one or multiple documents, then saves
and closes the document (form). You can create instances of a single form in the
code using the Set keyword (Using the object variables).

'Inside the MDIForm module

Private Sub mnuFileNew_Click()

 Dim frm As New Form1

 frm.Show

End Sub

9.3.3.4 ACTIVEFORM PROPERTY

This is the Object type read-only property of the MDI form. You can

PL
O

N
E-

28

BCA-118/241

apply this property to one of the children. For example, you can close the active
form using this property from the Close menu command of the menu bar.

'In the MDI form

Private Sub mnuFileClose_Click()

 If Not (ActiveForm Is Nothing) Then Unload ActiveForm

End Sub

Note: - that '(ActiveForm Is Nothing)' represents that there is no active form. The
'Not' keyword before it negates the value.

9.3.4 CREATING MDI APPLICATION USING VB

Following is an application program, that demonstrates about MDI application:

1. Start a new project by selecting file->new project. Select standard EXE as
the project type if you have the project wizard enabled.

2. There will be already a form in the project. Set its name property to form
child and its caption property to MDI child.

3. To create the MDI parent form (Fig. 9.4), right click the forms folder in
the project Explorer and select add ->MDI form. If the form wizard
appears, select MDI form.

4. Set the name property to formMDI and the caption property to MDI parent
to MDI parent.

5. Right click project1 in the project Explorer and select project1 properties
from the top-up menu. Set the startup object list to form MDI. If you omit
this, the application will start with the child form (Fig. 9.5) showing.

6. Select form child from the project Explorer. Set the form’s MDI child
property to true. This will case this form, which is the child, to rest inside
of the MDI parent container.

7. Select form MDI the project Explorer.

8. Start the menu designer by selecting tools->Menu Editor. You will see a
window like the one in

9. Type & file in the caption field.

10. In the name field, type menufile.

11. Click the next button.

12. Click the arrow right button.

13. Enter & new in the caption field.

14. In the name field, type menunew.

15. Click the ok button to close the Menu Editor.

16. The form MDI from should now have a file menu on it. Select file ->New
from the MDI menu. this will open up the window.

PL
O

N
E-

28

BCA-118/242

17. In the private sub menu file New-click () event

18. Save and Run the project.

Fig. 9.4 Parent form

Fig. 9.5 Child Form

CHECK YOUR PROGRESS

 What do you mean by SDI?

 Define about MDI.

 Give examples of SDI and MDI.

9.4 DIFFERENCE BETWEEN SDI & MDI

Features MDI SDI

Maximize
all
documents

Maximize parent window
Can only be implemented through
special code or through a window
manager that can group windows

Switch
between
documents

Using special interface
inside parent window

Through task /window manager

PL
O

N
E-

28

BCA-118/243

Multiple
Desktops

You can only stretch the
parent window and try to
organize individual
windows manually

Easily done

Multiple
Monitors

You can only span the
parent window and try to
organize individual
windows manually

Easily done

Grouping Naturally implemented
Possible only through special
window managers

9.5 EXPLORER STYLE-INTERFACE

File explorer or Microsoft repository browser, previously known as
Windows Explorer, is a file manager application that is included with releases of
the Microsoft Windows operating system from Windows 95 onwards. This type
of interface is very popular for navigating any type of dataset. The explorer has
the several pieces of information that are persisted (Fig. 9.6). It provides a GUI
for accessing the file systems. It is also the component of the operating system
that presents many user interface items on the screen such as the taskbar and
desktop. Controlling the computer is possible without Windows Explorer running
(for example, the File | Run command in Task Manager on NT-derived versions
of Windows will function without it, as will commands typed in a command
prompt window).

Fig. 9.6 Explorer Style Interface

9.6 SPLITTER WINDOWS

MDI applications inherently support multiple views of a document; SDI
applications do not. For SDI applications, the best way to present two or more
concurrent views of a document is to use a splitter window based on MFC's
CSplitterWnd class. A splitter window is a window that can be divided into two or PL

O
N

E-
28

BCA-118/244

more panes horizontally, vertically, or both horizontally and vertically using
movable splitter bars (Fig. 9.6). Each pane contains one view of a document's
data. The views are children of the splitter window, and the splitter window itself
is normally a child of a frame window. In an SDI application, the splitter window
is a child of the top-level frame window. In an MDI application, the splitter
window is a child of an MDI document frame. A view positioned inside a splitter
window can use CView::GetParentFrame to obtain a pointer to its parent frame
window.

MFC supports two types of splitter windows: static and dynamic. The
numbers of rows and columns in a static splitter window are set when the splitter
is created and can't be changed by the user. The user is, however, free to resize
individual rows and columns. A static splitter window can contain a maximum of
16 rows and 16 columns. For an example of an application that uses a static
splitter, look no further than the Windows Explorer. Explorer's main window is
divided in half vertically by a static splitter window.

A dynamic splitter window is limited to at most two rows and two
columns, but it can be split and unsplit interactively. The views displayed in a
dynamic splitter window's panes aren't entirely independent of each other: when a
dynamic splitter window is split horizontally, the two rows have independent
vertical scroll bars but share a horizontal scroll bar. Similarly, the two columns of
a dynamic splitter window split vertically contain horizontal scroll bars of their
own but share a vertical scroll bar. The maximum number of rows and columns a
dynamic splitter window can be divided into are specified when the splitter is
created. Thus, it's a simple matter to create a dynamic splitter window that can be
split horizontally or vertically but not both. Visual C++ uses a dynamic splitter
window to permit two or more sections of a source code file to be edited at once.

Fig. 9.6 A dynamic splitter showing two views of a document in Visual C++

One criterion for choosing between static and dynamic splitter windows is
whether you want the user to be able to change the splitter's row and column
configuration interactively. Use a dynamic splitter window if you do. Another
factor in the decision is what kinds of views you plan to use in the splitter's panes.
It's easy to use two or more different view classes in a static splitter window

PL
O

N
E-

28

BCA-118/245

because you specify the type of view that goes in each pane. MFC manages the
views in a dynamic splitter window, however, so a dynamic splitter uses the same
view class for all of its views unless you derive a new class from CSplitterWnd
and modify the splitter's default behavior.

9.6.1 DYNAMIC SPLITTER WINDOWS

Dynamic splitter windows are created with MFC's CSplitterWnd::Create
function. Creating and initializing a dynamic splitter window is a simple two-step
procedure:

 Add a CSplitterWnd data member to the frame window class.

 Override the frame window's virtual OnCreateClient function, and call
CSplitterWnd::Create to create a dynamic splitter window in the frame
window's client area.

Assuming m_wndSplitter is a CSplitterWnd object that's a member of the
frame window class CMainFrame, the following OnCreateClient override creates
a dynamic splitter window inside the frame window:

BOOL CMainFrame::OnCreateClient (LPCREATESTRUCT lpcs,
CCreateContext* pContext){return
m_wndSplitter.Create(this,2, 1,CSize(1,1),pContext); }

The first parameter to CSplitterWnd::Create identifies the splitter
window's parent, which is the frame window. The second and third parameters
specify the maximum number of rows and columns that the window can be split
into. Because a dynamic splitter window supports a maximum of two rows and
two columns, these parameter values will always be 1 or 2. The fourth parameter
specifies each pane's minimum width and height in pixels. The framework uses
these values to determine when panes should be created and destroyed as splitter
bars are moved. CSize values equal to (1,1) specify that panes can be as little as 1
pixel wide and 1 pixel tall. The fifth parameter is a pointer to a CCreateContext
structure provided by the framework. The structure's m_pNewViewClass member
identifies the view class used to create views in the splitter's panes. The
framework creates the initial view for you and puts it into the first pane. Other
views of the same class are created automatically as additional panes are created.

CSplitterWnd::Create supports optional sixth and seventh parameters
specifying the splitter window's style and its child window ID. In most instances,
the defaults are fine. The default child window ID of AFX_IDW_PANE_FIRST
is a magic number that enables a frame window to identify the splitter window
associated with it. You need to modify the ID only if you create a second splitter
window in a frame window that already contains a splitter.

Once a dynamic splitter window is created, the framework provides the
logic to make it work. If the window is initially unsplit and the user drags a
vertical splitter bar to the middle of the window, for example, MFC splits the
window vertically and creates a view inside the new pane. Because the new view
is created at run time, the view class must support dynamic creation. If the user

PL
O

N
E-

28

BCA-118/246

later drags the vertical splitter bar to the left or right edge of the window (or close
enough to the edge that either pane's width is less than the minimum width
specified when the splitter window was created), MFC destroys the secondary
pane and the view that appears inside it.

The CSplitterWnd class includes a number of useful member functions
you can call on to query a splitter window for information. Among other things,
you can ask for the number of rows or columns currently displayed, for the width
or height of a row or a column, or for a CView pointer to the view in a particular
row and column. If you'd like to add a Split command to your application's menu,
include a menu item whose ID is ID_WINDOW_SPLIT. This ID is prewired to
the command handler CView::OnSplitCmd and the update handler
CView::OnUpdateSplitCmd in CView's message map. Internally,
CView::OnSplitCmd calls CSplitterWnd::DoKeyboardSplit to begin a tracking
process that allows phantom splitter bars to be moved with the up and down arrow
keys. Tracking ends when Enter is pressed to accept the new splitter position or
Esc is pressed to cancel the operation.

CHECK YOUR PROGRESS

 What is the main difference between SDI and MDI?

 Is there any difference between file explorer and the window
explorer?

 Describe the meaning of splitting windows.

9.7 EXCEPTION HANDLING

An exception is an event that occurs during the execution of a program,
and requires the execution of code outside the normal flow of control. There are
two kinds of exceptions: hardware exceptions and software exceptions. Hardware
exceptions are initiated by the CPU and they can result from the execution of
certain instruction sequences, such as division by zero or an attempt to access an
invalid memory address. Software exceptions are initiated explicitly by
applications or the operating system. For example, the system can detect when an
invalid parameter value is specified. There are some types of exceptions, each
with their own way of dealing with them. First, there are Programming and
Environmental errors returned from INtime system calls, defined by status codes.
Then there are Numerics exceptions as a result of numerical operations. Hardware
faults are caused by using hardware resources incorrectly. And then there are
exceptions handled by Structured Exception Handling and C++ exception
handling.

Structured exception handling is a mechanism for handling both hardware
and software exceptions. Therefore, your code will handle hardware and software
exceptions identically. Structured exception handling enables you to have
complete control over the handling of exceptions, provides support for debuggers,
and is usable across all programming languages and machines. Vectored PL

O
N

E-
28

BCA-118/247

exception handling is an extension to structured exception handling. The system
also supports termination handling, which enables you to ensure that whenever a
guarded body of code is executed, a specified block of termination code is also
executed. The termination code is executed regardless of how the flow of control
leaves the guarded body. For example, a termination handler can guarantee that
clean-up tasks are performed even if an exception or some other error occurs
while the guarded body of code is being executed.

9.7.1 PROGRAMMING AND ENVIRONMENTAL EXCEPTIONS

Programmer exceptions are caused by providing incorrect parameters to a
system call. Environmental exceptions occur when the environment cannot
provide the requested resource, such as trying to allocate memory when none is
available. Programming and environmental exceptions are always indicated to the
calling thread by a specific return value from the INtime system call; the actual
return values for success and exceptions are dependent on the type of system call
made. When an exception is indicated, you can call GetLastRtError to retrieve the
status code; you may also want your application to investigate the system's state
by using calls that return system accounting information. If a system call returns a
result that indicates an exception, all other output parameters of that system call
are undefined.

9.7.2 STRUCTURED EXCEPTION HANDLING

Structured Exception handling is a Microsoft specific extension to the C
programming language, implemented by Microsoft Visual Studio and supported
by the operating system, in particular by Windows and also by INtime. You can
use Structured Exception Handling in C source code to deal with Hardware faults
and with user defined exceptions.

Using __try and __except blocks and some APIs like GetExceptionCode
and RaiseException, you can decide how a thread reacts to hardware faults and
user exceptions. An example follows:

/* a filter indicates if the __except clause handles this
type of exception */

/* this filter handles all exceptions */

int Filter(LPEXCEPTION_POINTERS pEP) {

 printf("Exception %x at address %x\n",

 pEP->ExceptionRecord.ExceptionCode,

 pEP->ExceptionRecord.ExceptionAddress);

 return EXCEPTION_EXECUTE_HANDLER;

}

__try {

 /* perform some action that may cause a hardware
exception */

PL
O

N
E-

28

BCA-118/248

}

__except(Filter(GetExceptionInformation())) {

 ExitProcess(1);

}

Example

Module Module1

Sub Main()

Dim i=0, j=1, k As Integer

try
k=j/i
System. Console. WriteLine(“The result is ” & k)

Catch e As Exception

System. Console. WriteLine(e.Message)

End Try

End Sub

End Module

The result of this sample code is that if the action does indeed cause a
hardware exception, the fault code and address are printed in the console window
and the process is terminated. For more details, see __try, __except and __finally
in the Microsoft Visual Studio documentation. In the filter expression (the
expression in parentheses following the __except keyword) you can use the
GetExceptionCode and GetExceptionInformation functions. They return the
exception code and an EXCEPTION_POINTERS pointer that provide details on
the exception. The filter expression indicated if the __except clause is executed to
handle the exception or not. If you wish to force an exception that is handled like
a hardware fault, you can use the RaiseException function.

9.7.2.1 FEATURES OF STRUCTURED EXCEPTION HANDLING

 Code is easy to read, debug and maintain

 Allows to create protected blocks of code

 Allows nested Handling

 Allows filtering of exceptions similar to select case statement

9.7.3 UNSTRUCTURED EXCEPTION HANDLING

 Code is difficult to read, debug and maintain

 Errors may be overlooked

Syntax:

On Error GoTo [line|0|-1]| Resume Next

PL
O

N
E-

28

BCA-118/249

 GoTo Line- Enables the exception handling code that starts at the line
specified in the required line argument. The line argument is any line
number or label. The specified line must be in the same procedure.

 GoTo 0- Disables enabled exception handler in the current procedure and
resets to nothing.

 GoTo -1- same above

 Resume Next- Specifies that when an exception occurs, execution skips
over the statement that caused the problem and goes to the statement
immediately following. Execution continues from that point

Example

Module Module1

Sub Main()

Dim i=0, j=1, k As Integer

On Error GoTo Handler

k=j/i
Exit Sub

Handler:
System. Console. WriteLine(“Divide By Zero”)

End Sub

End Module

9.8 DEBUGGING

Debugging is the routine process of locating and removing computer
program bugs, errors or abnormalities, which is methodically handled by software
programmers via debugging tools. Debugging checks, detects and corrects errors
or bugs to allow proper program operation according to set specifications.
Debugging is also known as debug.

While, a software bug is a problem causing a program to crash or produce
invalid output. The problem is caused by insufficient or erroneous logic. A bug
can be an error, mistake, defect or fault, which may cause failure or deviation
from expected results. Most bugs are due to human errors in source code or its
design. A program is said to be buggy when it contains a large number of bugs,
which affect program functionality and cause incorrect results.

Some bugs might not have serious effects on the functionality of the
program and may remain undetected for a long time. A program might crash
when serious bugs are left unidentified. Another category of bugs called security
bugs may allow a malicious user bypass access controls and obtain unauthorized
privileges.

Some of the worst bugs in history include:

 In the 1980s, bugs in the code controlling the machine called Therac-25,
used for radiation therapy, lead to patient deaths. PL

O
N

E-
28

BCA-118/250

 In 1996, the $1.0 billion rocket called Ariane 5 was destroyed a few
seconds after launch due to a bug in the on-board guidance computer
program.

 In 1962, a bug in the flight software for the Mariner I spacecraft caused
the rocket to change path from the expected path.

 In the 1990s, a bug was found in the new release of AT&T’s software
control #4ESS long distance switches caused many computers to crash.

Developing software programs undergo heavy testing, updating,
troubleshooting and maintenance. Normally, software contains errors and bugs,
which are routinely removed. In the debugging process, complete software
programs are regularly compiled and executed to identify and rectify issues. Large
software programs, which contain millions of source code lines, are divided into
small components. For efficiency, each component is debugged separately at first,
followed by the program as a whole.

Debugging, in computer programming and engineering, is a multistep
process that involves identifying a problem, isolating the source of the problem,
and then either correcting the problem or determining a way to work around it.
The final step of debugging is to test the correction or workaround and make sure
it works.

9.8.1 THE DEBUGGING PROCESS

In software development, debugging involves locating and correcting code
errors in a computer program. Debugging is part of the software testing process
and is an integral part of the entire software development lifecycle. The
debugging process starts as soon as code is written and continues in successive
stages as code is combined with other units of programming to form a software
product. In a large program that has thousands of lines of code, the debugging
process can be made easier by using strategies such as unit tests, code reviews and
pair programming.

Once an error has been identified, it is necessary to actually find the error
in the code. At this point, it can be useful to look at the code's logging and use a
stand-alone debugger tool or the debugging component of an integrated
development environment (IDE). Invariably, the bugs in the functions that get
most use are found and fixed first. In some cases, the module that presents the
problem is obvious, while the line of code itself is not. In that case, unit tests such
as JUnit and xUnit, which allow the programmer to run a specific function with
specific inputs can be helpful in debugging.

The standard practice is to set up a "breakpoint" and run the program until
that breakpoint, at which time program execution stops. The debugging
component of an IDE typically provides the programmer with the capability to
view memory and see variables, run the program to the next breakpoint, execute
just the next line of code, and, in some cases, change the value of variables or
even change the contents of the line of code about to be executed.

PL
O

N
E-

28

BCA-118/251

9.8.2 COMMON DEBUGGING TOOLS

Source code analyzers, which include security, common code errors and
complexity analyzers, can also be helpful in debugging. A complexity analyzer
can find modules that are so typical as to be hard to understand and test. Some
tools can actually analyze a test run to see what lines of code are not executed,
which can aid in debugging. Other debugging tools include advanced logging and
simulators that allow the programmer to model how an app on a mobile device
will display and behave.

Some tools, especially open source tools and scripting languages, do not
run in an IDE and require a more manual approach to debugging. Such techniques
include dropping values to a log, extensive "print" statements added during code
execution or hard-coded "wait" commands that simulate a breakpoint by waiting
for keyboard input at specific times.

The use of the word bug as a synonym for error originated in engineering.
The term's application to computing and the inspiration for using the word
debugging as a synonym for troubleshooting has been attributed to Admiral
Grace Hopper, a pioneer in computer programming, who was also known for her
dry sense of humor. When an actual bug (a moth) got caught between electrical
relays and caused a problem in the U.S. Navy's first computer, Admiral Hopper
and her team "debugged" the computer and saved the moth. It now resides in the
Smithsonian Museum.

9.9 OBJECT LINKING AND EMBEDDING

OLE stands for "Object Linking and Embedding." It can be pronounced as
"O-L-E," or "Oh-lay!" if you are feeling Spanish. OLE is a framework developed
by Microsoft that allows to take objects from a document in one application and
place them in another. For example, OLE may allow to move an image from a
photo-editing program into a word processing document.

OLE Server is an application that can provide objects to other
applications. This is also called as OLE Source application. OLE Client is an
application that uses objects provided by OLE Server. This is also called as OLE
Container as it contains objects provided by OLE Server. Not every application is
an OLE Server. Only a few applications are capable of providing objects. In the
same way not all applications are capable of receiving objects. However, there are
applications, such as MS Word and MS Excel that are capable of being OLE
source as well as OLE Container.

The OLE technology was initially created to allow the linking of objects
between "compound documents," or documents that support multiple types of
data. Microsoft has since developed OLE into a wider standard, known as the
Component Object Model (COM). COM is supported by Mac, Unix, and
Windows systems, but is primarily used with Microsoft Windows. The COM
framework is the foundation of ActiveX, which allows developers to create
interactive content for the Web.

Object Linking & Embedding (OLE) is a technology developed by PL
O

N
E-

28

BCA-118/252

Microsoft that allows embedding and linking to documents and other objects. For
developers, it brought OLE Control Extension (OCX), a way to develop and use
custom user interface elements. On a technical level, an OLE object is any object
that implements the IOleObject interface, possibly along with a wide range of
other interfaces, depending on the object's needs.

OLE allows an editing application to export part of a document to another
editing application and then import it with additional content. For example, a
desktop publishing system might send some text to a word processor or a picture
to a bitmap editor using OLE. The main benefit of OLE is to add different kinds
of data to a document from different applications, like a text editor and an image
editor. This creates a Compound File Binary Format document and a master file
to which the document makes reference. Changes to data in the master file
immediately affect the document that references it. This is called "linking"
(instead of "embedding"). OLE is also used for transferring data between different
applications using drag and drop and clipboard operations.

One of the key point is that OLE transformed software development from
procedural programming languages to object-oriented programming. We can
create self-contained Modules, or objects with the help of OLE, that simplify
programming approach to building large applications. OLE Means that objects
created from different formats that can be linked and embedding application data.

Example: The basic example of OLE is that, when we can insert Excel
spreadsheet into a Word application.

9.9.1 OLE EMBEDDING MEANING

The Definition of Embedding means is that if One window application
document contains a copy of other window application document, if changes
made that affect only the application document that contains it.

Fig. 9.7 OLE Embedding

(Source: https://networkencyclopedia.com/object-linking-and-embedding-ole/)

An object might be a passage of formatted text, a part of a spreadsheet,
some sounds, or a picture. Unlike information that is copied from one document

PL
O

N
E-

28

BCA-118/253

and pasted into another the standard way, a linked or embedded object retains a
connection to the application that originally created it. It can be returned to that
application to edit the object whenever you want to just by double-clicking on the
object-you don't have to bother with finding the icon for the application, loading
the right file, and so on. Better yet, the changes you make automatically appear in
the document where you linked or embedded the object. When you embed an
object, you place a copy of the information into your document. This copy is
connected to the original application, but not to a particular document in that
application. The only advantage to embedding an object instead of copying the
information the ordinary way is that you can edit the object more conveniently.

By contrast, when you link an object, you place a "reference" to a
particular document from another application into the document you're working
with. Let's say you have a spreadsheet that totals your third quarter sales figures.
You link that spreadsheet document into a report you're preparing in your word
processor. Later, when revised sales figures come in, you go back to the
spreadsheet application and change the numbers. The next time you open the
report document in your word processor, the new figures from the spreadsheet
appear automatically in the report. This is the same idea as a "hot link," and it
may help to read the generic definition for link. OLE only works if both
applications involved have been designed to use it, and even then it may only
work in one direction (like, you can link a graphic into a text document, but not
text into a graphic document). And it doesn't work exactly the same way in every
application. Even so, it's easier and more consistent than the old method, called
DDE.

9.9.2 ADVANTAGES AND DISADVANTAGES OF OLE
EMBEDDING

Object linking and embedding (OLE) refers to the practice of providing a
link in a document directly to a source of data or a graphic or embedding that data
or graphic in the document itself. OLE's features make it a convenient tool for
those creating documents or presentations that need to be kept up to date, but it
has some downsides as well. The advantage with Object Embedding is, client
application maintains its own copy of the data. The disadvantage is, changes made
to original data (in source application) will not be incorporated in the data
maintained by client. Some of advantages and disadvantages are described below.

9.9.2.1 CONTROLLABLE INFORMATION

You can maintain control over the source through object linking. The link
goes back to information that you can control, so you can quickly and
conveniently update the information or graphic without needing to point the user
to a new source. A person can go back and revisit the link over and over again to
get the new information.

9.9.2.2 CONVENIENCE

An embedded file can be quite convenient for users of the presentation or

PL
O

N
E-

28

BCA-118/254

document, as they will be able to view the file or graphic right in the document
without having to click through a link or follow a web address, which may require
the user to log in first or jump through other hurdles.

9.9.2.3 RESTRICTED ACCESS

All users have to have access to the file and the application that runs it,
which may prove to be a disadvantage if you have people who need to access the
link who don't have the right permissions or who aren't able to install the correct
program. In that case, your presentation or document is only as good as the
privileges or software that your users have. This is not as big of a problem if you
have a lot of users who are on the same network or work in the same office.

9.9.2.4 EMBED PROBLEMS

An embedded file will show up as just a snapshot or it won't be displayed
at all if a user can't obtain access to the file. This can derail a critical presentation
or document that depends on the information you are embedding within it. You
may have to test the embed from the systems that will need to reach it to ensure
that it works, which may take a lot of time to do.

9.9.3 EXAMPLE OF OLE

The following examples, where we embed a few cells of MS Excel
spreadsheet to a MS Word document, will make this process clear:

 A collection of cells from a spreadsheet of MS Excel is copied to
clipboard. As MS Excel is an OLE Server, it copies the data in the form of
an object.

 Paste the data (now in the form of an object) from Clipboard to a
document in MS Word.

 Now the data is embedded into MS Word document as an object. MS
Word document contains its own copy of the data.

 If you double click on the object in MS Word, then an instance of MS
Excel is invoked and data from MS Word is copied into MS Excel.

 User can edit embedded data using MS Excel.

 If user saves changes and exits MS Excel, then modified data is placed in
MS Word document.

9.9.4 CREATING OLE CONTAINER CONTROL

To create OLE Container control:

 Select OLE control in Toolbox.

 Place the control on the form with the required size.

PL
O

N
E-

28

BCA-118/255

 As soon as OLE control is placed on the form, Insert Object Dialog is
displayed to allow you to either embed or link an object into OLE
Container.

 The available options in insert dialog are - Create New, where you select
an Object Type and create an object using the appropriate application, or
Create from File, where you can create an object by selecting a file from
file system.

9.9.5 EMBEDDING A WORD DOCUMENT INTO OLE
CONTAINER CONTROL

To embed a word document into OLE Container control:

 In Insert Object Dialog box select Create from File radio button.

 Click on Browse button and select a document file.

 Click on Ok

 An object is embedded into OLE Container control and a part of document
is displayed.

 Run the project using F5.

 Double click on OLE Container control. This action will invoke MS Word
and run it in OLE Container control. When OLE Server runs in OLE
Client, it is called as In-Place Activation.

 Make necessary changes using MS Word.

 Press ESC key to come out of In-Place activation.

Note: - When you activate object, If OLE Server runs in client application, it is
called as In-place Activation. A word document in OLE container on Visual Basic
form at runtime.

CHECK YOUR PROGRESS

 What do you mean by exception?

 Compare hardware exception and software exception.

 Write one advantage and disadvantage of OLE embedding.

9.10 SUMMARY

Single Document Interface (SDI) is a design pattern in which the graphical
elements of the window apply only to the current window where they reside. The
toolbars, menus, and other common window elements control only the
functionality for the window in which they are embedded. Each window that
appears will have its own set of toolbars and menus to control its functionality.

PL
O

N
E-

28

BCA-118/256

MDI stands for Multiple Document Interface. A user or programmer probably see
many MDI applications many times. When multiple documents are handled, MDI
forms are useful in a Windows program.

File Explorer, previously known as Windows Explorer, is a file manager
application that is included with releases of the Microsoft Windows operating
system from Windows 95 onwards. It provides a GUI for accessing the file
systems. It is also the component of the operating system that presents many user
interface items on the screen such as the taskbar and desktop.

A Splitter window is a window that can be divided into two or more panes
horizontally, vertically, or both horizontally and vertically using movable splitter
bars. Each pane contains one view of a document's data. The views are children of
the splitter window, and the splitter window itself is normally a child of a frame
window. In an SDI application, the splitter window is a child of the top-level
frame window. In an MDI application, the splitter window is a child of an MDI
document frame.

An exception is an event that occurs during the execution of a program,
and requires the execution of code outside the normal flow of control. There are
two kinds of exceptions: hardware exceptions and software exceptions. Hardware
exceptions are initiated by the CPU. They can result from the execution of certain
instruction sequences, such as division by zero or an attempt to access an invalid
memory address. Software exceptions are initiated explicitly by applications or
the operating system.

Structured Exception Handling is a Microsoft specific extension to the C
programming language, implemented by Microsoft Visual Studio and supported
by the operating system, in particular by Windows and also by INtime. You can
use Structured Exception Handling in C source code to deal with Hardware faults
and with user defined exceptions.

Debugging is the routine process of locating and removing computer
program bugs, errors or abnormalities, which is methodically handled by software
programmers via debugging tools. Debugging checks, detects and corrects errors
or bugs to allow proper program operation according to set specifications. OLE
stands for "Object Linking and Embedding." It can be pronounced as "O-L-E," or
"Oh-lay!" if you are feeling Spanish. OLE is a framework developed by Microsoft
that allows to take objects from a document in one application and place them in
another. For example, OLE may allow to move an image from a photo-editing
program into a word processing document.

9.11 TERMINAL QUESTIONS

1. Describe SDI and MDI using examples.

2. Write the steps to create an MDI application.

3. Compare SDI and MDI.

4. Write a short note on explorer style interface.

5. Explain splitter windows in detail. PL
O

N
E-

28

BCA-118/257

6. Write a short note on exception handling.

7. Differentiate structured and unstructured exception handling.

8. Define the term debugging and also discuss the debugging process.

9. Explain the merit and demerits of OLE.

10. What do you understand by OLE? How can it be created?

PL
O

N
E-

28

BCA-118/258

UNIT-10 INTERFACING OTHER
APPLICATIONS

Structure

10.0 Introduction

10.1 Objectives

10.2 History of DBMS

10.3 Introduction to DBMS

10.4 DBMS Architecture

10.5 Components of DBMS

10.6 Need of DBMS

10.7 Advantages of DBMS

10.8 Disadvantages of DBMS

10.9 Database Administrator (DBA)

10.10 Open Database Connectivity (ODBC)

10.11 Database Access

10.12 Structured Query Language (SQL)

10.13 Database Access with Data Control

10.14 Recordset

10.15 Applications of DBMS

10.16 Summary

10.17 Terminal Questions

10.0 INTRODUCTION

A Database Management System or DBMS in short, is a software used to
store and manage data. The DBMS was introduced during 1960's to store any
data. It also offers manipulation of the data like insertion, deletion, and updating
of the data. DBMS is a very important part of computers. Technically, it is a
collection of interrelated data which exists in the records may be in form of like
tables etc. More specifically it is a set of programs used to access the data from
the database. DBMS basically contains the information of a particular
organization/enterprise. It is the starting point from where generally a software
starts its journey during the time of development. As, it should be very clear for a
developer about the actual facts of the enterprise (s) which are normally available
in some well-defined form which is a database. And the computer program/
software is called the DBMS.

PL
O

N
E-

28

BCA-118/259

This unit is an introduction to the design, use, and internal workings of
DBMS. Moreover, it deals with the DBMS’s definition, main objectives,
functions, advantages, and applications. The unit also describes about the
database manager, ODBC, database access. Moreover, it discusses about the most
commonly used controls like ADO, recordset etc. To understand this chapter
some prerequisites are also necessary. These are like – Data Structures, Discrete
Structures, Structured Programming Language (C++), Software engineering
topics related to project documentation and project design

Databases touch all aspects of our lives, one cannot avoid it rather it can
be said that it is everywhere. Few of its applications are Banking sector, Airlines,
Education, Sales, Manufacturing, Human resource, Social Security Info, Online
shopping etc. You can say it actually makes the current society and your life
work. DBMS system also performs the functions like defining, creating, revising
and controlling the database. It is specially designed to create and maintain data
and enable the individual business application to extract the desired data.

As far as DBMS marketplace is concerned; Relational DBMS companies
– Oracle, Sybase – are among the largest software companies in the world. IBM
offers its relational DB2 system. With IMS, a nonrelational system, IBM is by
some accounts the largest DBMS vendor in the world. Microsoft offers SQL-
Server, plus Microsoft Access for the cheap DBMS on the desktop, answered by
“lite” systems from other competitors. OpenSource: mySQL, postgreSQL.

10.1 OBJECTIVES

At the end of this unit you will come to know about

 Evolution of DBMS
 Difference between the File Processing System and DBMS
 Characteristics of DBMS
 Need of DBMS
 Applications of DBMS
 SQL
 Recordset
 DBA
 Role and applications of DBMS
 DBMS vs RDBMS

10.2 HISTROY OF DBMS

1960's-1970's- The emergence of the first type of DBMS, the hierarchical DBMS.
IBM had the first model, developed on IBM 360 and their (DBMS) was called
IMS, originally it was written for the Apollo program. This type of DBMS was
based on binary trees, where the shape was like a tree and relations were only
limited between parent and child records. The benefits were numerous; less
redundant data, data independence, security and integrity, which all lead to
efficient searches. Nonetheless; there were some disadvantages such as; complex
implementation, was hard to manage because of the absence of standards, which
made it harder to handle many relationships. PL

O
N

E-
28

BCA-118/260

1960's-1970's- The emergence of the network DBMS. Charles Bachmann
developed first DBMS at Honeywell, Integrated Data Store(IDS) then a group
called CODASYL who is responsible for the creation of COBOL, had that system
standardized. However; the CODASYL group invented what they call the
"CODASYL APPROACH.” Based on that approach many systems using network
DBMS were developed for business use. In this model, each record can have
multiple parents in comparison with one in the hierarchical DBMS. It is made of
sets of relationships where a set represents a one to many relationships between
the owner and the member. The main and unfortunate disadvantage was that the
System was complex and there was difficulty in design and maintenance, it is
believed that the Lack of structural independence was the main cause.

1970's- 1990's- The emergence of the relational DBMS on the hands of Edgar
Codd. He worked at IBM, and he was unhappy with the navigational model of the
CODASYL APPROACH. To him, a tool for searching, such as a search facility
was very useful, and it was absent. In 1970, he proposed a new approach to
database construction, which made the creation of a Relational DBMS intended
for Large Shared Data Banks, possible and easy to grab. Moreover; this was a
new system for entering data and working with big databases, where the idea was
to use a table of records. All tables would be then linked by either one-to-one
relationships, one-to-many, or many-to-many. When elements took space and
were not useful, it was easy to remove them from the original table, and all the
other "entries" in other tables linked to this record were removed.

Worth mentioning, is that two initial projects were launched, the R
program at IBM, and INGRES program at the University of California. In 1985,
the object oriented DBMS was developed, but it did not have any booming
commercial profit because of the high unjustified costs to change systems, and
format. In 1990, the DBMS took on a new object oriented approach joint with
relational DBMS. In this approach, text, multimedia, Internet and web use in
conjunction with DBMS were available and possible. In the early years of
computing, a punch card was used in unit record machines for input, data storage
and processing this data. Data was entered offline and for both data, and computer
programs input. This input method is similar to voting machines nowadays. This
was the only method, where it was fast to enter data, and retrieve it, but not to
manipulate or edit it. After that era, there was the introduction of the file type
entries for data, then the DBMS as hierarchical model, network model, and
relational model.

10.3 INTRODUCTION OF DBMS

Before knowing about the DBMS, it is necessary to understand about
database. A database is an organized collection of data, generally stored and
accessed electronically from a computer system. Where databases are more
complex than they are often developed using formal design and modeling
techniques. By data, we mean known facts that can be recorded and have
embedded meaning too. Usually people use software such as Oracle, MS Access,
or MS Excel to store data in the form of databases. A datum is a unit of data.
Meaningful data combined to form information. Hence, information is basically
interpreted data - data provided with semantics. PL

O
N

E-
28

BCA-118/261

Knowledge refers to the useful use of information. As you know, that
information can be transported, stored and shared without much problem and
difficulties but the same cannot be said about knowledge. Knowledge necessarily
involves a personal experience and practice. Database systems are meant to
handle a large collection of information. Management of data involves both
defining structures for storage of information and providing mechanisms that can
do the manipulation of those stored information. Moreover, the database system
must ensure the safety of the information stored, despite system crashes or
attempts at unauthorized access.

A DBMS refers to the technology for creating and managing databases.
DBMS is a software tool to organize (create, retrieve, update and manage) data in
a database. The main aim of a DBMS is to supply a way to store up and retrieve
database information that is both convenient and efficient. The DBMS is the
software that interacts with end users, applications, and the database itself to
capture and analyze the data. The DBMS software additionally encompasses the
core facilities provided to administer the database. The sum total of the database,
the DBMS and the associated applications can be referred to as a "database
system". Often the term "database" is also used to loosely refer to any of the
DBMS, the database system or an application associated with the database.

MS Access is one of the most common examples of the DBMS software.
Microsoft Access is a DBMS from Microsoft that combines the relational
Microsoft Jet Database Engine with a GUI and software-development tools. It is a
member of the MS Office suite of applications, included in the Professional and
higher editions or sold separately. It stores data in its own format based on the
Access Jet Database Engine. It can also import or link directly to data stored in
other applications and databases.

Fig. 10.1 Characteristics of Database and DBMS

10.4 DBMS ARCHITECTURE

The architecture of the DBMS depends on the computer system on which
it runs. For example, in a Client-Server DBMS architecture, the database systems
at server machine can run several requests made by client machine. We will
understand this communication with the help of diagrams. There are three types
of DBMS architectures:

 Single tier architecture
 Two tier architecture

PL
O

N
E-

28

BCA-118/262

 Three tier architecture

10.4.1 SINGLE TIER ARCHITECTURE

In this type of architecture, the database is readily available on the client
machine, any request made by client doesn’t require a network connection to
perform the action on the database. For example, suppose you want to fetch the
records of employee from the database and the database is available at your
computer system. Therefore, the request to fetch employee details is generated by
the computer and the records are fetched from the database by your computer as
well. This type of system is generally referred as local database system.

10.4.2 TWO TIER ARCHITECTURE

In two-tier architecture, the Database system is present at the server
machine and the DBMS application is present at the client machine, these two
machines are connected with each other through a reliable network as shown in
Fig. 10.2. Whenever client machine makes a request to access the database
present at the server using a query language like SQL; the server performs the
request on the database and returns the result back to the client. The application
connection interface such as JDBC, ODBC are used for interaction between the
server and client.

10.4.3 THREE-TIER ARCHITECTURE

In three-tier architecture, another layer is present between the client
machine and server machine. In this architecture, the client application doesn’t
communicate directly with the database systems present at the server machine,
rather the client application communicates with the server application, and the
server application internally communicates with the database system present at
the server as shown in Fig. 10.3.

Fig. 10.2 Two-tier Architecture

Fig. 10.3 Three-tier
Architecture

PL
O

N
E-

28

BCA-118/263

CHECK YOUR PROGRESS

 What do you mean by DBMS?

 What are the main caracteristics of DBMS?

 Define the meaning of single tier architecture and two tier
architecture in DBMS.

10.5 COMPONENTS OF DBMS

In order to facilitate these functions, DBMS has the following key components:

Software- DBMS is primarily a software system that can be considered as a
management console or an interface to interact with and manage databases. The
interfacing also spreads across real-world physical systems that contribute data to
the backend databases. The OS, networking software, and the hardware
infrastructure is involved in creating, accessing, managing, and processing the
databases.

Data- DBMS contains operational data, access to database records and metadata
as a resource to perform the necessary functionality. The data may include files
with such as index files, administrative information, and data dictionaries used to
represent data flows, ownership, structure, and relationships to other records or
objects.

Procedures- While not a part of the DBMS software, procedures can be
considered as instructions on using DBMS. The documented guidelines assist
users in designing, modifying, managing, and processing databases.

Database Languages- These are components of the DBMS used to access,
modify, store, and retrieve data items from databases; specify database schema;
control user access; and perform other associated database management
operations. Types of DBMS languages include Data Definition Language (DDL),
Data Manipulation Language (DML), Database Access Language (DAL) and
Data Control Language (DCL).

Query Processor- As a fundamental component of the DBMS, the query
processor acts as an intermediary between users and the DBMS data engine in
order to communicate query requests. When the users enter an instruction in SQL
language, the command is executed from the high-level language instruction to a
low-level language that the underlying machine can understand and process to
perform the appropriate DBMS functionality. In addition to instruction parsing
and translation, the query processor also optimizes queries to ensure fast
processing and accurate results.

Runtime Database Manager- A centralized management component of DBMS
that handles functionality associated with runtime data, which is commonly used
for context-based database access. This component checks for user authorization
to request the query; processes the approved queries; devises an optimal strategy

PL
O

N
E-

28

BCA-118/264

for query execution; supports concurrency so that multiple users can
simultaneously work on same databases; and ensures integrity of data recorded
into the databases.

Database Manager- Unlike the runtime database manager that handles queries
and data at runtime, the database manager performs DBMS functionality
associated with the data within databases. The database manager allows a set of
commands to perform different DBMS operations that include creating, deleting,
backup, restoring, cloning, and other database maintenance tasks. It may also be
used to update the database with patches from vendors.

Database Engine- This is the core software component within the DBMS
solution that performs the core functions associated with data storage and
retrieval. A database engine is also accessible via APIs that allow users or apps to
create, read, write, and delete records in databases.

Reporting- The report generator extracts useful information from DBMS files
and displays it in structured format based on defined specifications. This
information may be used for further analysis, decision making, or business
intelligence.

10.6 NEED OF DBMS

A DBMS is a system software for easy, efficient and reliable data
processing and management. It can be used for:

 Creation of a database

 Retrieval of information from the database

 Updating the database

 Managing a database

It provides us with the many functionalities and is more advantageous than
the traditional file system in many ways listed below.

10.6.1 PROCESSING QUERIES AND OBJECT MANAGEMENT

In traditional file systems, we cannot store data in the form of objects. In
practical-world applications, data is stored in objects and not files. So in a file
system, some application software maps the data stored in files to objects so that
can be used further.

We can directly store data in the form of objects in a DBMS. Application
level code needs to be written to handle, store and scan through the data in a file
system whereas a DBMS gives us the ability to query the database.

10.6.2 CONTROLLING REDUNDANCY AND INCONSISTENCY

Redundancy refers to repeated instances of the same data. A database
system provides redundancy control whereas in a file system, same data may be
stored multiple times. For example, if a student is studying two different PL

O
N

E-
28

BCA-118/265

educational programs in the same college, say Engineering and History, then his
information such as the phone number and address may be stored multiple times,
once in Engineering department and the other in History department. Therefore, it
increases time taken to access and store data. This may also lead to inconsistent
data states in both places. A DBMS uses a very important feature i.e. data
normalization to avoid redundancy and duplicates.

10.6.3 EFFICIENT MEMORY MANAGEMENT AND
INDEXING

DBMS makes complex memory management easy to handle. In file
systems, files are indexed in place of objects so query operations require entire
file scans whereas in a DBMS, object indexing takes place efficiently through
database schema based on any attribute of the data or a data-property. This helps
in fast retrieval of data based on the indexed attribute.

10.6.4 CONCURRENCY CONTROL AND TRANSACTION
MANAGEMENT

Several applications allow user to simultaneously access data. This may
lead to inconsistency in data in case files are used. Consider two withdrawal
transactions X and Y in which an amount of 100 and 200 is withdrawn from an
account A initially containing 1000. Now since these transactions are taking place
simultaneously, different transactions may update the account differently. X reads
1000, debits 100, updates the account A to 900, whereas Y also reads 1000, debits
200, updates A to 800. In both cases account A has wrong information. This
results in data inconsistency. A DBMS provides mechanisms to deal with this
kind of data inconsistency while allowing users to access data concurrently. A
DBMS implements ACID (atomicity, durability, isolation, consistency) properties
to ensure efficient transaction management without data corruption.

10.6.5 ACCESS CONTROL AND EASE IN ACCESSING
DATA

A DBMS can grant access to various users and determine which part and
how much of the data can they access from the database thus removing
redundancy. Otherwise in file system, separate files have to be created for each
user containing the amount of data that they can access. Moreover, if a user has to
extract specific data, then he needs a code/application to process that task in case
of file system, e.g. Suppose a manager needs a list of all employees having salary
greater than X. Then we need to write business logic for the same in case data is
stored in files. In case of DBMS, it provides easy access of data through queries,
(e.g., SELECT queries) and whole logic need not be rewritten. Users can specify
exactly what they want to extract out of the data.

10.6.6 INTEGRITY CONSTRAINTS

Data stored in databases must satisfy integrity constraints. For example,

PL
O

N
E-

28

BCA-118/266

Consider a database schema consisting of the various educational programs
offered by a university such as (B.Tech/M.Tech/B.Sc/M.Sc/BCA/MCA) etc. Then
we have a schema of students enrolled in these programs. A DBMS ensures that it
is only out of one of the programs offered schema, that the student is enrolled in,
i.e. Not anything out of the blue. Hence, database integrity is preserved.

10.7 ADVANTAGES OF DBMS

The DBMS is preferred ever the conventional file processing system due
to the several benefits which are discussed below.

10.7.1 MINIMIZE DATA REDUNDANCY

In File Processing System, duplicate data is created in many places
because all the programs have their own files. This creates data redundancy which
in turns wastes labor and space. In DBMS, all the files are integrated in a single
database. The whole data is stored only once at a single place so there is no
chance of duplicate data. For example- A student record in library or examination
can contain duplicate values, but when they are converted into a single database,
all the duplicate values are removed. Complete redundancy can be removed
because somehow we need duplicate value to relate tables with each other. But
still DBMS controls data redundancy that saves lots of labour and time.

10.7.2 SHARING OF DATA

In DBMS, Data can be shared in between authorized user of database. All
the users have their own right to access the database up to a level. Database
Administration has complete access of database. He can assign users to access the
database. Others users are also authorized to access database and also they can
share data between them. Many users have same authority to access the database.

10.7.3 DATA CONSISTENCY

The DBMS controls data redundancy which in turn controls data
consistency. Data consistency means if you want to update data in any files then
all the files should not be updated again. As in DBMS, data is stored in a single
database so data becomes more consistent in comparison to file processing
system. Also updated values are available to all the users immediately.

10.7.4 DATA INTEGRITY

Data integrity means unification of so many files into a single file. In
DBMS data is stored in different tables. A database contains different tables that
are linked to each other. Many users feed entries in these tables so it is important
to maintain data items and association between data items. DBMS allows data
integrity that makes it easy to decrease data duplicity. Data integration reduces
redundancy as well as data inconsistency.

PL
O

N
E-

28

BCA-118/267

10.7.5 SEARCH CAPABILITY

Users of database may require to fetch data from the database. There are
numerous queries users may ask about the data. Search speed of the database must
be fast to produce quick results. If users execute any query, then it is required that
he get fastest results from the database. It is an objective of database to maintain
flexible search capability.

10.7.6 SECURITY

Data security means protecting your precious data from unauthorized
access. Data in database should be kept secure and safe to unauthorized
modifications. Only authorized users should have the grant to access the database.
There is a username set for all the users who access the database with password so
that no other person could access this information. The DBMS always keep
database tamperproof, secure and theft free.

10.7.7 PRIVACY

Privacy, in the broadest sense, is the right of individuals, groups, or
organizations to control who can access, observe, or use something they own,
such as their bodies, property, ideas, data, or information. Control is established
through physical, social, or informational boundaries that help prevent unwanted
access, observation, or use. Privacy is the very importatnt feature and it is
handles in DBMS very carefully and intelligently. So many examples are there
where privacy is experienced. For example, many socilka networking platforms
are there where others in one’s friend have access to one’s content upto some
extent. Or in other words, privacy means up to what extent a user can access the
data. It is predetermined by the DBA that who will access the data and up to what
level he will be able to access it. Let say when you make a Facebook page then
you have the power to give rights to other users that who will be the promoter,
editor and admin.

10.7.8 SIMPLICITY

It is easy to implement all levels of DBMS like we normally know in
normalization. Normalization is a way by which the all type of redundant data
insertion can be avoided and in a very simple but powerful way. DBMS provides
users with a simple Query language, using which data can be easily fetched,
inserted, deleted and updated in a database. Simplicity means to represent the
overall logical view of data in a simple and clear manner. The DBMS is very
simple for its users who use it. All the operations like create, insert, delete, alter,
and update are very easy to implement.

10.7.9 BACKUP AND RECOVERY

Data loss is a very big problem for all the organizations. In traditional file
processing system, a user needs to backup the database after a regular interval of

PL
O

N
E-

28

BCA-118/268

time that wastes lots of time and resources. If the volume of data is large then this
process may take a very long time. DBMS solves this problem of taking backup
again and again because it allows automatic backup and recovery of database. For
examples, if a system fails in the middle of any process then DBMS stores the
values of that state in which database were before query execution.

10.7.10 INTEGRITY CONSTRAINTS

Constraints are used to store accurate data because there are many users
who feed data in database. Data stored in database should always be correct and
accurate. DBMS provides the capability to enforce these constraints on database.
For example, the maximum marks obtained by the students can never be more
than 100. Also account balance of Banks like Axis should not be less than 2500
otherwise you will be penalized.

10.7.11 DATA ATOMICITY

Any complete transaction in database is called atomic unit. It is the duty of
DBMS to store a complete transaction in database. If any transaction is partially
completed, then it rolls back them. For example, in railway reservation system, if
user has completed the process of ticket reservation then his record will be stored;
and amount of money will be deducted from his account otherwise no amount
will be deducted and if deducted it will be given back.

10.7.12 DEVELOPMENT OF NEW APPLICATIONS

For IT, providing the technology to support new applications without
adding additional complexity and risk, and while staying within budget, are the
big challenges. IT must sort through a maze of technical options, beginning with
the right database management system (DBMS). If a new application is required
and data is available for creating the application, then it is very easy to develop
new application. No time will be consumed in creating stored data again and
again. As the data is already available and which can be shared easily.

10.7.13 CONCURRENCY CONTROL

In a multiprogramming environment where multiple transactions can be
executed simultaneously, it is highly important to control the concurrency of
transactions. We have concurrency control protocols to ensure atomicity,
isolation, and serializability of concurrent transactions. If two users are accessing
data simultaneously and they both want to update values of same records, then it
may create the problem of concurrency and it should be controlled. The DBMS
has the power to control concurrency so that no transactions are lost.

10.7.14 DATA MIGRATION

Database migration means moving your data from one platform to
another. There are many reasons you might want to move to a different platform.

PL
O

N
E-

28

BCA-118/269

For example, a company might decide to save money by moving to a cloud-based
database. Or, a company might find that some particular database software has
features that are critical for their business needs. Or, the legacy systems are
simply outdated. The process of database migration can involve multiple phases
and iterations — including assessing the current databases and future needs of the
company, migrating the schema, and normalizing and moving the data. Data
migration means adjusting storage of data according to its popularity. In a
database, there is some kind of data that is accessed frequently and at the same
time some data is accessed occasionally. So it is required to store frequently
accessed data in a manner that it can be accessed quickly.

10.7.15 TUNABILITY

Database tuning describes a group of activities used to optimize and
homogenize the performance of a database. It usually overlaps with query tuning,
but refers to design of the database files, selection of the database management
system (DBMS) application, and configuration of the database's environment
(operating system, CPU, etc.). Tuning means adjusting something to get better
performance. Same in the case of DBMS, as it provides tunability to improve
performance. DBA adjust database to get effective results.

10.7.16 SOLVES ENTERPRISE AND INDIVIDUAL
REQUIREMENT

A DBMS provides a wide range of user interfaces to use a database. There
are many users working on the database having a different level of knowledge. So
it is desirable that the DBMS gives GUI to all the users. Still Enterprise
requirement is more than any users so DBMS focus mainly on the Enterprise
requirement.

10.8 DISADVANTAGES OF DBMS

Though DBMS has many benefits however it has some disadvantages too
which are explained below.

10.8.1 INCREASED COST

Cost of Hardware and Software– This is the first disadvantage of database
management system. This is because, for DBMS it is mandatory to have a high
speed processor and also a large memory size because nowadays there is a large
amount of data in every field which needs to be stored safely and with a security.
The requirement of these large amount of space and a high speed processor needs
an expensive hardware and also an expensive software too. That is there is a
requirement of sophisticated hardware and software which means that we need to
upgrade the hardware which is used for file-based system. Hardware and
Software, both requires maintenance which costs very high. All the operating,
Training (all levels including programming, application development, and
database administration), licensing, and regulation compliance costs very high.

PL
O

N
E-

28

BCA-118/270

Cost of Staff Training– Educated staff (database administrator, application
programmers, data entry operations) who maintains the DBMS also requires good
amount of salary. We need the database system designers to be hired along with
application programmers. Alternatively, the services of some software house need
to be taken. So there is a lot of money which needs to be spent for developing
software.

Cost of Data Conversion– We need to convert our data into database
management system, there is a requirement of lot of money as it adds on to the
cost of the DBMS. This is because, for this conversion we need to hire database
system designers whom we have to pay a lot of money and also services of some
software house will be required. All this shows that a high initial investment for
hardware, software and trained staff is required by DBMS. So, altogether DBMS
results in a costlier system.

10.8.2 COMPLEXITY

As we all know that nowadays all companies are using the DBMS as it
fulfils lots of requirement and also solves the problem. But a problem arises, that
is all these functionality has made it an extremely complex software. For the
proper requirement of DBMS, it is very important to have a good knowledge of it
by the developers, DBA, designers and also the end users. This is because if any
one of them do not acquire a proper and complete skills than this may lead to data
loss or database failure.

These failures may lead to bad design decisions due to which there may be
a serious and bad consequences for the organization. So this complex system
needs to be understood by everyone using it. As it cannot be managed very easily.
All this shows that the DBMS is not a child’s game as it cannot be managed very
easily. It requires a lot of management. A good staff is also needed to manage the
database at the times when it becomes very complicated to decide where to pick
data from and where to save it.

10.8.3 CURRENCY MAINTENANCE

This is necessary to keep the system updated because efficiency, which is
one of the biggest factor and need to be overlook must be maximized. That is, we
need to maximize the efficiency of the database system to keep our system
advance. For this, frequent updating must be performed on all the components as
new threats enter daily. The DBMS should be updated according to the current
scenario. Also security measures must be needed. Due to advancement in
database technology, training cost tends to be significant.

10.8.4 PERFORMANCE

Traditional file system is written for small organizations and for some
specific applications due to which performance is generally very good. But for the
small scale firms, the DBMS does not give a good performance as its speed is
very slow. As a result, some applications would not run as fast as they could.
Hence it is not good to use DBMS for the small firms. Because performance is a PL

O
N

E-
28

BCA-118/271

factor which is overlooked by everyone. If performance is good than everyone
(developers, designers, end users) would use it easily and it would be user
friendly too as speed of the system totally depends on the performance and
performance needs to be good.

10.8.5 FREQUENCY UPGRADE/REPLACEMENT CYCLES

Nowadays we need to stay up-to-date about the latest technologies as new
developments are arriving in the market frequently. Frequent upgrade of the
products is done by the DBMS vendors in order to add new functionality to the
systems. New upgrade versions of the software often come bundled. Sometimes
these updates also need hardware upgrades. Sometimes these changes and
updating are so fast that the users feel it difficult to work with that system because
it is uneasy to learn new commands and understanding them again and again
when the new upgrades are done. All these upgrades also costs money in order to
train users, designers, etc. to use the new features.

CHECK YOUR PROGRESS

 Write the main components of DBMS.

 Give any three advatages of DBMS.

 Discuss about any three disadvantages of DBMS.

10.9 DATABASE ADMINISTRATOR

A Database Administrator or DBA in short, is a person or a group of
person who are responsible for managing all the activities related to database
system. This job requires a high level of expertise by a person or group of
persons. There are very rare chances that only a single person can manage all the
database system activities so companies always have a group of people who take
care of database system. In a nut shell, the DBA is the controller of everything
related to database system.

The DBA is responsible for installing the database software. He
configures the software of database and then upgrades it if needed. There are
database software like Oracle, Microsoft SQL, and MySQL in the industry, so
DBA decides installation and configuration of these database software will take
place. The major role duties of a DBA are discussed as follows.

10.9.1 DECIDING THE HARDWARE DEVICE

Depending upon the cost, performance and efficiency of the hardware, it is
the DBA who has the duty of deciding which hardware device would suit the
company requirement. It is hardware that is an interface between end users and
database so it must be of the best quality. Moreover, where is the system going to
be located (physically)? Will you take the system in-house or engage the services
of a company to host the data and the software system for you? This could have
implications for support, cost (including any additional hardware you would
require), security, and possibly speed. PL

O
N

E-
28

BCA-118/272

10.9.2 MANAGING DATA INTEGRITY

Data should be pure and complete; it is known as data integrity. It is of
two types- 1) Entity integrity and 2) Refrential integrity. Enitity integrity is
basically intended with the primary used in the table. Refrentia integrity on the
other hand deals with the foreign key and related with the primary on some table.
Data integrity should be managed accurately because it protects the data from
unauthorized access. The DBA manages relationship between the data to maintain
data consistency.

10.9.3 DECIDING DATA RECOVERY AND BACK UP
METHOD

DBAs are responsible for making a comprehensive backup plan for
databases for which they are accountable. If any company is having a big
database, then it is likely to happen that database may fail at any instance. It is
required that a DBA takes backup of entire database in regular time span. DBA
has to decide that how much data should be backed up and how frequently the
backup should be taken. Also the recovery of database is done by the DBA. It is
imperative that the DBA be aware of database and related OS and application
components that need to be backed up, whether via an online backup or an offline
cold backup.

10.9.4 TUNING DATABASE PERFORMANCE

Database performance plays an important role for any business. If user is
unable to fetch data speedily then it may loss company business. So by tuning and
modifying SQL commands a DBA can improve the performance of database.
Configuration of the database for optimal performance can be done by following
the tuning guidelines like- 1) Good database design 2) Disk I/O optimization 3)
Checkpointing 4) Disk and database overhead 5) Increasing concurrency etc.

10.9.5 CAPACITY ISSUES

All the databases have their limits of storing data in it and the physical
memory too have some limitations. The DBA has to decide the limit and capacity
of database and all the issues related to it. Although storing data on file systems is
intuitively easier to understand, and all databases must ultimately store data on the
file system, there are problems with storing data in files and on file systems: 1)
Access times and overhead 2) Data aggregation 3) Concurrency.

There’s also a “catch-22” situation here: if you have lots of data in a single
file, you run into problems where reading data takes too long. If you put little bits
of data into lots of different files you can typically skirt around the concurrency
issues and to a lesser extent the data aggregation issues, but you spend more time
finding files, and if the “little bits” of data is consistently below (or around) the
block size (i.e. 4kb) of your file system, the file system can’t store data efficiently.

PL
O

N
E-

28

BCA-118/273

10.9.6 DATABASE DESIGN

Database design is the process to define and represent entities and
relations. A structured approach that uses procedures, techniques, tools, and
documentation help to support and make possible the process of design is called
Design Methodology. A design methodology encapsulates various phases, each
containing some stages, which guide the designer in the techniques suitable at
each stage of the project. A design methodology also helps the designer to plan,
manage, control, and evaluate database development and managing projects.
Logical design of the database is designed by the DBA. Also a DBA is
responsible for physical design, external model design, and integrity control. The
main database design principles are based on the normalization, and intended to
represent each enitity as a table, selecting the primary key, assigning entity
attributes to fields etc.

10.9.7 DATABASE ACCESSIBILITY

The DBA writes subschema to decide the accessibility of database. He
decides the users of the database and also which data is to be used by which user.
No user has the power to access the entire database without the permission of
DBA. The parts of access database are- Tables, Forms, Reports, Queries, Macros,
Modules. Using Access, you can:

 Add new data to a database, such as a new item in an inventory

 Edit existing data in the database, such as changing the current location of
an item

 Delete information, perhaps if an item is sold or discarded

 Organize and view the data in different ways

 Share the data with others via reports, e-mail messages, an intranet, or the
Internet

10.9.8 DECIDES VALIDATION CHECKS ON DATA

The DBA has to decide which data should be used and what kind of the
data is accurate for the company. So he always puts validation checks on data to
make it more accurate and consistence. Validation is a process whereby the data
entered in the database is checked to make sure that it is sensible. For example,
validation can be utilized to check that only Male or Female is entered in a sex
field. It cannot check whether or not the data entered is correct. It can only check
whether or not the data makes sense. Validation is a way of trying to lessen the
number of errors during the process of data input. Validation is carried out by the
computer when you input data. It is a way of checking the input data against the
set of validation rules. The purpose of validation is to make sure that data is a)
logical, b) rational, and c) complete and within acceptable limits.

PL
O

N
E-

28

BCA-118/274

10.9.9 MONITORING PERFORMANCE

If database is working properly then it doesn’t mean that there is no task
for the DBA. Yes of course, he has to monitor the performance of the database. A
DBA monitors the CPU and memory usage. Database monitoring is the tracking
of database performance and resources in order to create and maintain a high
performance and highly available application infrastructure. For example,
categories for SQL Server, MySQL and Oracle database monitoring include:

 Query details (top CPU, slow running, and most frequent)

 Session details (current user connections and locks)

 Scheduled jobs

 Replication details

 Database performance (buffer, cache, connection, lock, and latch)

10.9.10 DECIDES CONTENT OF THE DATABASE

A database system has many kind of content information in it. DBA
decides fields, types of fields, and range of values of the content in the database
system. One can say that the DBA decides the structure of database files.
Understanding the purpose of your database will inform your choices throughout
the design process. Make sure you consider the database from every perspective.
For instance, if you were making a database for a public library, you’d want to
consider the ways in which both patrons and librarians would need to access the
data. Here are some ways to gather information before creating the database:

 Interview the people who will use it

 Analyze business forms, such as invoices, timesheets, surveys

 Comb through any existing data systems (including physical and digital
files)

10.9.11 PROVIDES HELP AND SUPPORT TO USER

If any user needs help at any time, then it is the duty of the DBA to help
him. Complete support is given to the users who are new to database by the DBA.
End users are basically those people whose jobs require access to the database for
querying, updating and generating reports. The database primarily exists for their
use. There are several categories of end users these are as follows:

1. Casual End Users– These are the users who occasionally access the
database but they require different information each time. They use a
sophisticated database query language basically to specify their request
and are typically middle or level managers or other occasional browsers.
These users learn very few facilities that they may use repeatedly from the
multiple facilities provided by DBMS to access it.

2. Naive or parametric end users– These are the users who basically make PL
O

N
E-

28

BCA-118/275

up a sizeable portion of database end users. The main job function
revolves basically around constantly querying and updating the database
for this we basically use a standard type of query known as canned
transaction that have been programmed and tested. These users need to
learn very little about the facilities provided by the DBMS they basically
have to understand the users’ interfaces of the standard transaction
designed and implemented for their use.

3. Sophisticated end users– These users basically include engineers,
scientist, business analytics and others who thoroughly familiarize
themselves with the facilities of the DBMS in order to implement their
application to meet their complex requirement. These users try to learn
most of the DBMS facilities in order to achieve their complex
requirements.

4. Standalone users– These are those users whose job is basically to
maintain personal databases by using a ready-made program package that
provides easy to use menu-based or graphics-based interfaces, an example
is the user of a tax package that basically stores a variety of personal
financial data of tax purposes. These users become very proficient in using
a specific software package.

10.9.12 DATABASE IMPLEMENTATION

Database must be implemented before anyone can start using it, so the
DBA implements the database system. The DBA has to supervise the database
loading at the time of its implementation. The implementation phase is where you
install the DBMS on the required hardware, optimize the database to run best on
that hardware and software platform, and create the database and load the data.
The initial data could be either new data captured directly or existing data
imported from a MariaDB database or another DBMS. You also establish
database security in this phase and give the various users that you've identified
access applicable to their requirements. Finally, you also initiate backup plans in
this phase. The following are steps in the implementation phase:

 Install the DBMS.

 Tune the setup variables according to the hardware, software and usage
conditions.

 Create the database and tables.

 Load the data.

 Set up the users and security.

 Implement the backup regime.

10.9.13 IMPROVE QUERY PROCESSING PERFORMANCE

Queries made by the users should be performed speedily. As we have
discussed that users need fast retrieval of answers so the DBA improves query

PL
O

N
E-

28

BCA-118/276

processing by improving their performance. Improving Query Processing
Performance in Database Management Systems has been a research challenge.
This is the most important and is a real problem, this happens to be very crucial in
large organizations with heterogeneous data, online system, billing systems and so
on. The Performance monitoring has been evaluated and used by various tools.
Most DBA's agreed that these tools are valuable.

10.10 OPEN DATABASE CONNECTIVITY

An ODBC driver uses the Open Database Connectivity (ODBC) interface
by Microsoft that allows applications to access data in DBMS using SQL as a
standard for accessing the data. An ODBC driver uses the ODBC interface by
Microsoft that allows applications to access data in DBMS using SQL as a
standard for accessing the data. ODBC permits maximum interoperability, which
means a single application can access different DBMS. Application end users can
then add ODBC database drivers to link the application to their choice of DBMS.

10.10.1 INTRODUCTION TO ODBC

ODBC, is an API that lets software connect with the DBMS while
remaining independent of them. This is important, because it allows applications
to interact with multiple databases simultaneously using SQL. For organizations
that have multiple data streams and must store them on separate databases, ODBC
offers a solution that lets them use the software they need without having to worry
about which DBMS they have to use. It’s useful to think of ODBC as a peripheral
driver which lets specific tools connect to a program. Much like printers require
the specific instructions to allow them to connect with multiple different
computers and devices, ODBC is a bridge between applications and the databases
they require.

Additionally, ODBC allows organizations to centralize their data streams
into a single application or dashboard more efficiently. ODBC works by creating
a link between the application and the database, taking queries from end users and
translating it for the DBMS to process them. Developers connect ODBC’s API
tools to the DBMS by using specific drivers. Applications then call specific
functions installed in these drivers to access the data they need from specific
sources.

10.10.2 ODBC HISTORY

Microsoft introduced the ODBC standard in 1992. It was a standard
designed to unify access to SQL databases. Following the success of ODBC,
Microsoft introduced OLE DB which was to be a broader data access standard.
OLE DB was a data access standard that went beyond just SQL databases and
extended to any data source that could deliver data in tabular format. Microsoft’s
plan was that OLE DB would supplant ODBC as the most common data access
standard.

More recently, Microsoft introduced the ADO data access standard. The
ADO was supposed to go further than OLE DB, in that ADO was more object PL

O
N

E-
28

BCA-118/277

oriented. However, even with Microsoft’s very significant attempts to replace the
ODBC standard with what were felt to be “better” alternatives, the ODBC has
continued to be the defacto data access standard for SQL data sources. In fact,
today the ODBC standard is more common than OLE DB and ADO because
ODBC is widely supported (including support from Oracle and IBM) and is a
cross platform data access standard. Today, the most common data access
standards for SQL data sources continue to be ODBC and JDBC, and it is very
likely that standards like OLE DB and ADO will fade away over time.

10.10.3 ODBC ARCHITECTURE

The ODBC architecture consists of the components given below.

Application— An ODBC application is any program that calls ODBC functions
and uses them to issue SQL statements.

ODBC Driver Manager— The driver manager routes call from an application to
the ODBC driver. The ODBC driver manager loads the requested driver in
response to an application's call to the ODBC SQLConnect or SQLDriverConnect
functions.

ODBC Driver— An ODBC driver is a dynamic link library (DLL) or a shared
library that processes ODBC function calls for a specific data source. The driver
connects to the data source, translates the standard SQL statements into syntax the
data source can process, and returns data to the application.

Data source — A data source is a combination of a database system, the
operating system it uses, and any network software required to access it.

Fig. 10.4 shows the components of an ODBC environment.

Fig. 10.4 Components of an ODBC environment

(Source:https://documentation.progress.com/output/ua/OpenEdge_latest/ind
ex.html#page/dmsdv/odbc-architecture.html)

PL
O

N
E-

28

BCA-118/278

10.10.4 USE OF ODBC

For organizations that use multiple DBMS and streams, ODBC is one of
the easiest ways to centralize and manage data without having to use multiple
systems at the same time. One of the clearest use cases for ODBC is for creating
dashboards. For most organizations, dashboards—even specific ones—tend to
draw data from multiple internal and sometimes external sources. As such, using
an ODBC connector can improve several areas of the analytics process. The
ODBC lets developers connect their existing data visualization tools to any
database, greatly increasing their accuracy and depth. Companies that constantly
interact with multiple databases simultaneously for analytics can also optimize
their querying ability and draw information from a broader range of sources, as
well as create more granular reports.

Additionally, the ODBC allows companies to sort and store their data
more efficiently. Instead of forcing a single DBMS to handle data, it may not be
optimally suited for, organizations, can instead mash up multiple sources without
worrying about their compatibility or accessibility.

10.11 DATBASE ACCESS

When it comes to implementing a data access solution in Visual Basic
applications, you currently have three choices- Data Access Objects (DAO),
Remote Data Objects (RDO), and ActiveX Data Objects (ADO). In these three, it
would be examined each option, noting their similarities and differences. It would
also be looked at some cases where one is better suited for a specific task than
another.

10.11.1 USING DAO FOR DATA ACCESS

DAO is an API available with Microsoft's Visual Basic that lets a
programmer request access to a Microsoft Access database. DAO was Microsoft's
first object-oriented interface with databases. DAO objects encapsulate Access's
Jet functions. Through Jet functions, it can also access other SQL databases.

10.11.1.1 DAO BASICS

DAO, which was created before RDO and ADO, is a set of objects that
enables client applications to programmatically access data. But DAO doesn't just
let you access data—it also lets you control and manage local and remote
databases in various formats. Using DAO, you can create and modify the database
structure; create tables, queries, relationships, and indexes; retrieve, add, update,
and remove data; implement security; work with different file formats; and link
tables to other tables.

10.11.1.2 DAO OBJECTS

To understand DAO better, let's look at the DAO objects given in Table 10.1

PL
O

N
E-

28

BCA-118/279

Table 10.1. List of Common DAO Objects

(Source: https://www.techrepublic.com/article/using-dao-for-data-access-in-your-
vb-apps/)

10.11.1.3 DAO WITH JET

Microsoft Jet objects include TableDef, QueryDef, Field, Index,
Parameter, Relation, Recordset, User, Group, Container, and Document. The
DBEngine object contains two collections- Workspaces and Errors. The
Workspaces collection is the default collection of the DBEngine, so you don't
have to refer to it explicitly. When you don't specifically create a new Workspace
object, DAO will create one for you. The setting of the DefaultType property of
DBEngine determines what type of workspace is created for Microsoft Jet or
ODBCDirect. The default value of this property is dbUseJet, but you can
explicitly set it to dbUseODBC as the type argument of the CreateWorkspace
method.

The Workspace object defines a session for a user based on users'
permissions and allows managing of the current session. It also contains open
databases and offers mechanisms for simultaneous transactions and for securing
the application. The Fields collection is the default collection for TableDef,
QueryDef, Index, Relation, and Recordset objects. Recordset objects can be of the
three types- Table, Dynaset, Snapshot, or Forward-Only.

10.11.1.4 DAO WITH ODBCDIRECT

The DAO ODBCDirect object model includes a subset of the objects in a
Microsoft Jet workspace and the Connection object. To establish a connection
using ODBCDirect, you have to use the OpenConnection method on a new
Connection object or the OpenDatabase method to open a new Database object. A
Connection object represents a connection to an ODBC database in an
ODBCDirect workspace. The Connections collection contains all currently open
Connection objects. When you open a Connection object, it is automatically
appended to the Connections collection of the Workspace object. When you close
a Connection object with the Close method, the Connections object is removed

PL
O

N
E-

28

BCA-118/280

from the Connections collection. In addition to the Table, Dynaset, Snapshot, and
Forward-Only types of Recordsets, ODBCDirect offers the Dynamic type.

10.11.1.5 ADVANTAGES AND DISADVANTAGES OF USING DAO

On the plus side, DAO is fairly easy to use. And since DAO has been
around longer than RDO or ADO and has been used in more projects, it pays to
know how DAO works. Furthermore, if your application is running in a 16-bit
environment, DAO is your only choice.

But DAO is older technology, and it doesn't offer as much functionality as
RDO and ADO. For instance, ADO can provide an interface to e-mail and file
systems and custom business objects, as well as other sources. Microsoft is now
focusing most of its improvements and advances on ADO, as well.

Generally, it's better to use DAO for accessing local databases where the
speed is not the top priority and the number of users is limited, and to use either
RDO or ADO for accessing remote databases and for larger scale projects.

10.11.2 USING RDO FOR DATA ACCESS

Remote Data Objects (RDO) is specifically designed to access remote
ODBC relational data sources, and makes it easier to use ODBC without complex
application code. The RDO is a primary means of accessing SQL Server, Oracle,
or any relational database that is exposed with an ODBC driver. It is an API from
Microsoft that lets programmers writing Windows applications get access to and
from both Microsoft and other Database Providers. In turn, RDO statements in a
program use Microsoft's lower-layer Data Access Objects (DAO) for actual
access to the database. Database providers write to the DAO interface. RDO has
evolved into ActiveX Data Objects (ADO) which is now the program interface
Microsoft recommends for new programs. ADO also provides access to
nonrelational databases and is somewhat easier to use.

Moreover, the RDOs are used to access a remote database through ODBC.
Accessing an ODBC data source using RDO is faster than accessing the same
using DAO. Remote Data Control is an ActiveX control that is used to access an
ODBC data source using RDOs. This is same as a Data Control, except that the
data control uses DAOs and Remote data control uses RDOs.

The general characteristics of RDO are:

 Simplicity (when compared to the ODBC API).

 High performance against remote ODBC data sources.

 Programmatic control of cursors.

 Complex cursors, including batch.

 Ability to return multiple result sets from a single query.

 Synchronous, asynchronous, or event-driven query execution.

 Reusable, property-changeable objects. PL
O

N
E-

28

BCA-118/281

 Ability to expose underlying ODBC handles (for those ODBC functions
that are not handled by RDO).

 Excellent error trapping.

First let us understand RDO object model and key features of RDO and
ODBC. Then we will understand how to use Remote Data Control and RDOs to
access Oracle through ODBC. RDO object model is very small compared with
DAO object model. Here is the list of objects in RDO object model. And most of
them have their counterparts in DAO. The brief description about each object is
given in Table 10.2.

Table 10.2 Objects in RDO Object Model

RDO Object Description

rdoEngine
The base object. Created automatically when you first
access RDO in your application.

rdoError
Used to handle all ODBC errors and messages generated
by RDO. Created automatically.

rdoEnvironment

Defines a logical set of connections and transaction scope
for a particular user name. Contains both open and
allocated (but unopened) connections, provides
mechanisms for simultaneous transactions, and provides
a security context for data manipulation language (DML)
operations on the database. rdoEnvironments(0) created
automatically.

rdoConnection

Represents an open connection to a remote data source
and a specific database on that data source, or an
allocated but as yet unconnected object, which can be
used to subsequently establish a connection.

rdoTable
Represents the stored definition of a base table or an SQL
view.

rdoResultset Represents the rows that result from running a query.

rdoColumn
Represents a column of data with a common data type
and a common set of properties.

rdoQuery
An SQL query definition that can include zero or more
parameters.

rdoParameter
Represents a parameter associated with an rdoQuery
object. Query parameters can be input, output, or both.

PL
O

N
E-

28

BCA-118/282

10.11.3 RDO VS. DAO

Fundamentally RDO is same as DAO; and Remote data control is same as
Data control. However, the RDO was designed and implemented strictly for
relational databases that are accessed using ODBC. The RDO doesn’t have a
query engine like DAO, instead it depends on the query processor of the database
that it is accessing.

Moreover, compared to the older Data Access Objects (DAO) technology,
RDO is a smaller, faster, more sophisticated alternative. RDO is especially
capable of building and executing queries against stored procedures and handling
all types of result sets, including those generated by multiple result set procedures,
those returning output arguments and return status, and those requiring complex
input parameters.

10.11.4 USING ADO FOR DATA ACCESS

ActiveX Data Objects (ADO) is designed to be an easy-to-use application-
level interface to any OLE DB data provider, including relational and non-
relational databases, e-mail and file systems, text and graphics, and custom
business objects, as well as existing ODBC data sources. Virtually all of the data
available throughout the enterprise is available using the ADO data access
technology. It is easy to use, language-independent, implemented with a small
footprint, uses minimal network traffic, and has few layers between the client
application and the data source— all to provide lightweight, high-performance
data access.

The general characteristics of ADO are:

 Ease of use.

 High performance.

 Programmatic control of cursors.

 Complex cursor types, including batch and server and client-side cursors.

 Ability to return multiple result sets from a single query.

 Synchronous, asynchronous, or event-driven query execution.

 Reusable, property-changeable objects.

 Advanced recordset cache management.

 Flexibility — it works with existing database technologies and all OLE
DB providers.

 Excellent error trapping.

PL
O

N
E-

28

BCA-118/283

CHECK YOUR PROGRESS

 Who is DBA? Give any two responsibility of DBA.

 Why ODBC is required?

 Describe any two advantages of DAO.

10.12 STRUCTURED QUERY LANGUAGE

Structured Query Language (SQL), pronounced as "sequel", is a domain-
specific language used in programming and designed for managing data held in
a relational database management system (RDBMS), or for stream processing in
a relational data stream management system (RDSMS). It is particularly useful in
handling structured data, i.e. data incorporating relations among entities and
variables. SQL offers two main advantages over older read–write APIs such
as ISAM or VSAM. Firstly, it introduced the concept of accessing many records
with one single command. Secondly, it eliminates the need to specify how to
reach a record, e.g. with or without an index.

Originally based upon relational algebra and tuple relational calculus, the
SQL consists of many types of statements, which may be informally classed
as sublanguages, commonly: a data query language (DQL), a data definition
language (DDL), a data control language (DCL), and a data manipulation
language (DML). The scope of SQL includes data query, data manipulation
(insert, update and delete), data definition (schema creation and modification),
and data access control. Although SQL is essentially a declarative
language (4GL), it includes procedural elements too.

SQL was one of the first commercial languages to utilize Edgar F.
Codd’s relational model. The model was described in his influential 1970 paper,
"A Relational Model of Data for Large Shared Data Banks." Despite not entirely
adhering to the relational model as described by Codd, it became the most widely
used database language. Moreover, the SQL became a standard of the American
National Standards Institute (ANSI) in 1986, and of the International
Organization for Standardization (ISO) in 1987. Since then, the standard has been
revised to include a larger set of features. Despite the existence of such standards,
most SQL code is not completely portable among different database systems
without adjustments.

10.12.1 CREATE TABLE STATEMENT

The CREATE TABLE statement is used to create a new table in a database. In
that table, if you want to add multiple columns, use the syntax below.

Syntax:

CREATE TABLE table_name (column1 datatype,

column2 datatype,..);

PL
O

N
E-

28

BCA-118/284

The column parameters specify the names of the columns of the table. The data
type parameter specifies the type of data the column can hold (e.g. varchar,
integer, date, etc.).

Example:

CREATE TABLE Employee(EmpId int, LastName varchar(255),

FirstName varchar(255), Address varchar(255),

City varchar(255));

The EmpId column is of type int and will hold an integer. The LastName,
FirstName, Address, and City columns are of type varchar and will hold
characters and the maximum length for these fields is 255 characters.

10.12.2 INSERTING VALUES

The INSERT INTO statement is used to insert new records in a table. It is
possible to write the INSERT INTO statement in two ways.

Syntax:

First way: It specifies both the column names and the values to be inserted. If you
are adding values for all the columns of the table, then no need to specify the
column names in the SQL query. However, make sure that the order of the values
is in the same order as the columns in the table.

INSERT INTO table_name (column1, column2, column3, ...)

VALUES (value1, value2, value3, ...);

Second way:

INSERT INTO table_name

VALUES (value1, value2, value3, ...);

Example: Insert value in a First way. The column names are used here

INSERT INTO Employee(EmpId,LastName,FirstName,ADDRESS,City)

VALUES (1, 'XYZ', 'ABC', 'India', 'Mumbai');

INSERT INTO Employee (EmpId,LastName,FirstName,ADDRESS,City)

VALUES (2, 'X', 'A', 'India', 'Pune');

Insert value in Second way

INSERT INTO Employee

VALUES (3, 'XYZ', 'ABC', 'India', 'Mumbai');

10.12.3 SELECT STATEMENT IN SQL

The SELECT statement is used to select data from a database. The data returned PL
O

N
E-

28

BCA-118/285

is stored in a result table, called the result-set.

SELECT column1, column2, ...

FROM table_name;

Here, column1, column2, ... are the field names of the table you want to select
from the data. If you want to select all the fields available in the table, use the
following syntax:

SELECT * FROM table_name;

If the above query is executed, then all record is displayed.

Example:

Select EmpId, LastName from Employee;

Select * from Employee;

10.12.4 UPDATE STATEMENT IN SQL

The UPDATE statement is used to modify the existing records in a table.

Syntax:

UPDATE table_name

SET column1 = value1, column2 = value2, ...

WHERE condition;

Example:

UPDATE Employee

SET FirstName= 'Krishan', City= 'Haridwar'

WHERE EmpId= 1;

If the above query is executed then for EmpId= 1, "Firstname" and "City" column
data will be updated.

10.12.5 DELETE STATEMENT IN SQL

The DELETE statement is used to delete existing records in a table for a
particular Record.

Syntax:

DELETE FROM table_name WHERE condition;

DELETE FROM Employee WHERE EmpId=1;

In Employee table EmpId = 1 record gets deleted.

PL
O

N
E-

28

BCA-118/286

10.13 DATABASE ACCESS WITH THE DATA
CONTROL

The Data control does a lot "behind the scenes" and you may be tempted
to use it in your applications, but be advised that the Data control is rarely used in
professional applications – the norm is to write your own database access code so
that you have complete control over the process. The intrinsic Data control is
geared toward MS-Access 97 and earlier databases, although a later VB service
pack added connectivity for Access 2000 databases. These articles use the two
sample Access databases provided with Visual Basic (BIBLIO.MDB and
NWIND.MDB). These databases are provided in Access 97 format. On a default
installation of VB6, these databases can be found in the folder: C:\Program
Files\Microsoft Visual Studio\VB98.

To do the exercises, you should make a folder into which you would copy
the two database files mentioned above. Then, within the folder, make separate
subfolder for each exercise, one level below the root of your folder. The
DatabaseName property for the Data control in these exercises assumes that the
database file resides one directory level above the folder in which the exercise
project files reside.

10.13.1 CONNECTING TO AN ACCESS DATABASE USING THE VB
DATA CONTROL

Normally 5-6 steps are used to access database using data control, given below:

Step 1: Open a new Visual Basic project.

Step 2: Put a data control (an intrinsic control, located in the VB toolbox) on the
form and set the properties shown in Table 10.3.

Table 10.3 Properties of the data control

Note:- When you use the Data Control in a project, the properties that must be set
are DatabaseName and RecordSource, in that order. DatabaseName is the name
of the database you want to use, and the RecordSource is the name of the table in
that database that you want to use.

Step3: On your form, create a text box for each field in the Authors table, with

PL
O

N
E-

28

BCA-118/287

labels. (If you were to open the database in Access, you would see that the three
fields of the Authors table are Au_ID, Author, and Year Born.) Set the properties
of the three textboxes as given in Table 10.4.

Table 10.4 Properties of text boxes

In addition, set the Enabled property of txtAuthID to False. When you
want a control (such as a text box) to display data from a database, the properties
that must be set are DataSource and Datafield. The DataSource is the name of the
data control on the form (it should already be configured), and the DataField is
the name of the particular field in the database that should be displayed in the
control (this field will be in the table that was chosen for the RecordSource of the
data control).

Step4: At this point, your form should resemble the screen-shot below (Fig. 10.5).

Fig. 10.5 Data control in a form

Save and run the project. Use the arrows on the data control to scroll through the
data.

Step5: On any record, change the data in the author name or year born
field. Move ahead, then move back to the record you changed. Note that your
changes remain in effect. The data control automatically updates a record when
you move off of the record.

Note:- This exercise demonstrated that you can create a simple but functional
application that allows the user to browse through the rows of a database table (or
result set) and to update rows in that table without writing any code.

10.14 RECORDSET

A recordset is a data structure that consists of a group of database records,

PL
O

N
E-

28

BCA-118/288

and can either come from a base table or as the result of a query to the table. The
concept is common to a number of platforms, notably Microsoft's Data Access
Objects (DAO) and ActiveX Data Objects (ADO). The Recordset object contains
a Fields collection, and a Properties collection. At any time, the Recordset object
refers to only a single record within the set as the current record. The method
TMS uses for sending and receiving data to and from the database is a custom
recordset object (cRecordset). Here, whenever recordset is mentioned i.e.
referring to the custom cRecordset implementation, rather than to the various
DAO/RDO/ADO incarnations.

A recordset is returned from the DAL by calling the OpenRecordset
method. This recordset is completely disconnected from the data source. Updating
a recordset will have no effect on the central data source until you call the
UpdateRecordset method on the DAL. We could have easily returned an array of
data from our DAL, especially since ADO and RDO nicely support GetRows,
which does exactly that, but arrays are limited in a number of ways. Array
manipulation is horrible. In Visual Basic, you can resize only the last dimension
of an array, so forget about adding columns easily. Also, arrays are not self-
documenting. Retrieving information from an array means relying on such
hideous devices as constants for field names and the associated constant
maintenance, or the low-performance method of looping through indexes looking
for fields.

Enabling varying rows and columns involves using a data structure known
as a ragged array-essentially an array of arrays-which can be cumbersome and
counterintuitive to develop against. The advantage of using a custom recordset
object is that we can present the data in a way that is familiar to most
programmers, but we also get full control of what is happening inside the
recordset. We can again simplify and customize its operation to support the rest of
our components. Notice the Serialize method, which allows us to move these
objects easily across machine boundaries. More on this powerful method later.
For the moment, let's look at the typical interface of a cRecordset (Table 10.5).

Table 10.5 cRecordset Interface

Member Description

MoveFirst Moves to first record

MoveNext Moves to next record

MovePrevious Moves to previous record

MoveLast Moves to last record

Name Shows the name of the recordset

Fields Returns a Field object

PL
O

N
E-

28

BCA-118/289

Synchronize Refreshes the contents of the recordset

RowStatus
Shows whether this row has been created, updated,
or deleted

RowCount Shows the number of records in the recordset

AbsolutePosition Shows the current position in the recordset

Edit Copies the current row to a buffer for modification

AddNew Creates an empty row in a buffer for modification

Update
Commits the modification in the buffer to the
recordset

Serialize
Converts or sets the contents of the recordset to an
array

10.15 APPLICATIONS OF DBMS

DBMS touches almost every aspect of real life though some important Database
applications areas are given below:

 Banking: all transactions

 Airlines: reservations, schedules

 Universities: registration, grades

 Sales: customers, products, purchases

 Manufacturing: production, inventory, orders, supply chain

 Human resources: employee records, salaries, tax deductions

CHECK YOUR PROGRESS

 How a table in SQL can be created?

 Compare hardware exception and software exception.

 Write any three applications of DBMS.

PL
O

N
E-

28

BCA-118/290

10.16 SUMMARY

A database is an organized collection of data, generally stored and
accessed electronically from a computer system. Where databases are more
complex than they are often developed using formal design and modeling
techniques. By data, we mean known facts that can be recorded and have
embedded meaning too. Usually people use software such as Oracle, MS Access,
or MS Excel to store data in the form of databases. A datum is a unit of data.
Meaningful data combined to form information. Hence, information is basically
interpreted data- data provided with semantics.

DBMS refers to the technology for creating and managing databases. It is
a software tool to organize (create, retrieve, update and manage) data in a
database. The main aim of a DBMS is to supply a way to store up and retrieve
database information that is both convenient and efficient. DBMS system, stores
data in either a navigational or hierarchical form. DBMS does not support the
integrity constants. Examples of DBMS are a file system, XML, Windows
Registry, etc.

The architecture of DBMS depends on the computer system on which it
runs. For example, in a client-server DBMS architecture, the database systems at
server machine can run several requests made by client machine. DBMS has the
key components: Software, Data, Procedures, Database languages, Query
processor, Runtime database manager, Database manager, Database engine,
Reporting.

A DBMS can be used for- creation of a database, retrieval of information
from the database, updating the database, managing a database. The main
advantages of DBMS are ̶ minimizing data redundancy, sharing of data, data
consistency, data integrity, search capability, security, privacy, simplicity, backup
and recovery, integrity constraints, data atomicity, development of new
applications, concurrency control, data migration, tunability, solves enterprise and
individual requirement, powerful user language, standards can be enforced, very
less chances of data loss.

SQL (Structured Query Language), pronounced as "sequel", is a domain-
specific language used in programming and designed for managing data held in
a relational database management system (RDBMS), or for stream processing in
a relational data stream management system (RDSMS). It is particularly useful in
handling structured data, i.e. data incorporating relations among entities and
variables.

A recordset is a data structure that consists of a group of database records,
and can either come from a base table or as the result of a query to the table. The
concept is common to a number of platforms, notably Microsoft's Data Access
Objects (DAO) and ActiveX Data Objects (ADO). The Recordset object contains
a Fields collection, and a Properties collection. At any time, the Recordset object
refers to only a single record within the set as the current record.

Relational Database Management System (RDBMS) is an advanced
version of the DBMS. The RDBMS uses a tabular structure where the headers are

PL
O

N
E-

28

BCA-118/291

the column names, and the rows contain corresponding values. RDBMS supports
the integrity constraints at the schema level. Examples of RDBMS are- MySQL,
Oracle, SQL Server, etc.

ActiveX Data Objects (ADO) is designed to be an easy-to-use application-
level interface to any OLE DB data provider, including relational and non-
relational databases, e-mail and file systems, text and graphics, and custom
business objects, as well as existing ODBC data sources. Virtually all of the data
available throughout the enterprise is available using the ADO data access
technology.

A recordset is returned from the DAL by calling the OpenRecordset
method. This recordset is completely disconnected from the data source. Updating
a recordset will have no effect on the central data source until you call the
UpdateRecordset method on the DAL.

10.17 TERMINAL QUESTIONS

1. What do you understand by DBMS? Explain its need.

2. Explain the important components of DBMS.

3. Write a short note on advantages and disadvantages of DBMS.

4. Explain the responsibilities of DBA.

5. What do you understand by ODBC? Explain its architecture.

6. Describe the advantages and disadvantages of using DAO.

7. Explain the general characteristics of RDO.

8. What do you understand by SQL? Write the syntax for – creation of table,
updation of table, inserting the records in a table.

9. Write a short note on recordset.

10. Discuss the main applications of DBMS.

PL
O

N
E-

28

BCA-118/292

UNIT-11 NETWORK PROGRAMMING

Structure

11.0 Introduction

11.1 Objectives

11.2 Introduction to Winsock

11.3 Windows Socket in General

11.4 Creating Sockets

11.5 Miscellaneous API

11.6 Winsock Catalog

11.7 Windows Objects

11.8 Access Control Story

11.9 Security Descriptors

11.10 Summary

11.11 Terminal Questions

11.0 INTRODUCTION

This unit primarily focuses on network programming and termed as
Winsock programming. Winsock programming is basically Winsock application
programming interface or Winsock API. If one wants to know about the windows
network programming, then the first need to understand about Transmission
Control Protocol (TCP), User Datagram Protocol (UDP), and Internet Protocol i.e.
IPV4 & IPV6. The IPV4 and IPV6 are basically intended with the multicasting.

Moreover, the unit also discusses about the Sockets. Sockets are the
fundamental "things" behind any kind of network communications done by a
computer. For example, when you type www.google.com in your web
browser, it opens a socket and connects to google.com to fetch the page and
shown it to you. Same thing happens with any chat clients like Gtalk or Skype.
Generally, any network communication goes through a socket. The computer
programming using socket is also called socket programming.

Winsock2.h is the header file to be included for winsock functions.
ws2_32.lib is the library file to be linked with the program to be able to use
winsock functions. The WSAStartup function is used to start or initialize winsock
library. It takes two parameters; the first one is the version we want to load and
second one is a WSADATA structure which will hold additional information after
winsock has been loaded. If any error occurs, then the WSAStartup function PL

O
N

E-
28

BCA-118/293

would return a non-zero value and WSAGetLastError can be used to get more
information about what error happened.

11.1 OBJECTIVES

At the end of this unit you will come to know about:

 Concept of Winsock

 Windows Socket

 Creation of Sockets

 Winsock Catalog

 Windows Objects

 Access Control Story

 Security Descriptors

11.2 INTRODUCTION TO WINSOCK

Winsock is a standard application programming interface (API) that
allows two or more applications (or processes) to communicate either on the same
machine or across a network and is primarily designed to foster data
communication over a network. It is important to understand that Winsock is a
network programming interface and not a protocol. Winsock provides the
programming interface for applications to communicate using popular network
protocols such as Transmission Control Protocol/Internet Protocol (TCP/IP) and
Internetwork Packet Exchange (IPX). The Winsock interface inherits a great deal
from the BSD Sockets implementation on UNIX platforms. In Windows
environments, the interface has evolved into a truly protocol-independent
interface, especially with the release of Winsock 2.

You can differentiate the two functions with the WSA prefix. If Winsock
2 updated or added a new API function in its specification, the function name is
prefixed with WSA. For example, the Winsock 1 function to create a socket is
simply socket(). Winsock 2 introduces a newer version named WSASocket() that
is capable of using some of the new features made available in Winsock 2. There
are a few exceptions to this naming rule. WSAStartup(), WSACleanup(),
WSARecvEx(), and WSAGetLastError() are in the Winsock 1.1 specification.

11.2.1 WINSOCK SYSTEM ARCHITECTURE

The majority of the Winsock API is implemented in WS2_32.DLL and is
declared in WINSOCK2.H. The only exception is for the Microsoft-specific
Winsock extensions (such as TransmitFile, AcceptEx, etc.), which are located in
MSWSOCK.DLL. These extensions are not a part of the formal Winsock
specification but have been added by Microsoft. Also, because these are
Microsoft-specific extensions and are not part of the formal Winsock
specification, some of the extension APIs are available only on certain versions of PL

O
N

E-
28

BCA-118/294

Windows.

When an application calls into the Winsock API, it calls into
WS2_32.DLL. The Winsock DLL performs some parameter validation and then
determines which protocol service provider the call should be routed to. There
may be multiple providers installed in the Winsock catalog and WS2_32.DLL
determines which provider should handle the call.

There are two types of providers ― base and layered. A base provider sits
on top of a transport protocol, such as Microsoft TCP/IP and UDP/IP providers or
the Resource Reservation Protocol (RSVP) provider, which implements QOS.
The Microsoft base provider consists of MSAFD.DLL and MSWSOCK.DLL, but
actually exposes one or more providers for the individual protocols of TCP/IP,
IPX/SPX, NetBIOS, AppleTalk, etc. A layered provider sits below WS2_32.DLL
and above a base provider and can intercept and manipulate the Winsock calls.
That is, if an application creates a socket from the layered provider, the layered
provider will intercept all Winsock calls using that socket. The layered provider
may block, modify, or pass the call unmodified to the underlying provider. Also,
there may be numerous layered providers installed, one on top of another.

Once a Winsock call makes it to the base provider, the base provider will
in turn make calls to the Winsock kernel mode component. Unlike some other
operating systems, the Windows NT transport protocols do not have a Winsock-
like interface that applications can use to directly talk to them. Instead, they
implement a much more general API called the Transport Driver Interface (TDI).
The generality of this API allows the Windows NT subsystems to free themselves
from being tied to a particular version-of-the-decade network-programming
interface. The sockets emulation is provided by the Winsock kernel mode driver
(currently implemented in AFD.SYS). This driver is responsible for the
connection and buffer management related to providing a sockets-like interface to
an application. AFD, in turn, talks TDI to the transport protocol driver as shown
in Fig 11.1.

Fig. 11.1 Winsock System Architecture PL
O

N
E-

28

BCA-118/295

11.2.2 WINSOCK HEADERS AND LIBRARIES

When developing new application, you should target the Winsock 2
specification by including WINSOCK2.H in your application. For compatibility
with older Winsock applications and when developing on Windows CE platforms,
WINSOCK.H is available. There is also an additional header
file―MSWSOCK.H, which targets Microsoft-specific programming extensions
that are normally used for developing high performance Winsock applications.

When compiling your application with WINSOCK2.H, you should link
with WS2_32.LIB library. When using WINSOCK.H (as on Windows CE) you
should use WSOCK32.LIB. If you use extension APIs from MSWSOCK.H, you
must also link with MSWSOCK.LIB. Once you have included the necessary
header files and link environment, you are ready to begin coding your application,
which requires initializing Winsock.

11.2.3 INITIALIZING WINSOCK

Every Winsock application must load the appropriate version of the
Winsock DLL. If you fail to load the Winsock library before calling a Winsock
function, the function returns a SOCKET_ERROR; the error will be
WSANOTINITIALISED. Loading the Winsock library is accomplished by
calling the WSAStartup() function, which is defined as:

int WSAStartup(

 WORD wVersionRequested,

 LPWSADATA lpWSAData

);

 The wVersionRequested parameter is used to specify the version of the
Winsock library you want to load. The high-order byte specifies the minor version
of the requested Winsock library, while the low-order byte is the major version.
You can use the handy macro MAKEWORD(x, y), in which x is the high byte
and y is the low byte, to obtain the correct value for wVersionRequested. The
lpWSAData parameter is a pointer to a LPWSADATA structure that
WSAStartup() fills with information related to the version of the library it loads:

typedef struct WSAData

{

 WORD wVersion;

 WORD wHighVersion;

 char szDescription[WSADESCRIPTION_LEN + 1];

 char szSystemStatus[WSASYS_STATUS_LEN + 1];

 unsigned short iMaxSockets;

 unsigned short iMaxUdpDg;

PL
O

N
E-

28

BCA-118/296

 char FAR * lpVendorInfo;

} WSADATA, * LPWSADATA;

WSAStartup() sets the first field, wVersion, to the Winsock version you
will be using. The wHighVersion parameter holds the highest version of the
Winsock library available. Remember that in both of these fields, the high-order
byte represents the Winsock minor version, and the low-order byte is the major
version. The szDescription and szSystemStatus fields are set by the particular
implementation of Winsock and aren't really useful. Do not use the next two
fields, iMaxSockets and iMaxUdpDg. They are supposed to be the maximum
number of concurrently open sockets and the maximum datagram size; however,
to find the maximum datagram size you should query the protocol information
through WSAEnumProtocols().The maximum number of concurrent sockets isn't
some magic number, it depends more on the physical resources available. Finally,
the lpVendorInfo field is reserved for vendor-specific information regarding the
implementation of Winsock. This field is not used on any Windows platforms.

For the most part, when writing new applications, you would load the
latest version of the Winsock library currently available. Remember that if, for
example, Winsock 3 is released, your application that loads version 2.2 should run
as expected. If you request a Winsock version later than that which the platform
supports, WSAStartup() will fail. Upon return, the wHighVersion of the
WSADATA structure will be the latest version supported by the library on the
current system. When your application is completely finished using the Winsock
interface, you should call WSACleanup(), which allows Winsock to free up any
resources allocated by Winsock and cancel any pending Winsock calls that your
application made. WSACleanup() is defined as:

 int WSACleanup(void);

Failure to call WSACleanup when your application exits is not harmful
because the operating system will free up resources automatically; however, your
application will not be following the Winsock specification. Also, you should call
WSACleanup for each call that is made to WSAStartup.

11.2.4 ERROR CHECKING AND HANDLING

We'll first cover error checking and handling, as they are vital to writing a
successful Winsock application. It is actually common for Winsock functions to
return an error; however, there are some cases in which the error is not critical and
communication can still take place on that socket. The most common return value
for an unsuccessful Winsock call is SOCKET_ERROR, although this is certainly
not always the case. When covering each API call in detail, we'll point out the
return value corresponding to an error. The constant SOCKET_ERROR actually
is -1. If you make a call to a Winsock function and an error condition occurs, you
can use the function WSAGetLastError() to obtain a code that indicates
specifically what happened. This function is defined as:

 int WSAGetLastError (void);

 A call to the function after an error occurs will return an integer code for

PL
O

N
E-

28

BCA-118/297

the particular error that occurred. These error codes returned from
WSAGetLastError() all have predefined constant values that are declared in either
WINSOCK.H or WINSOCK2.H, depending on the version of Winsock. The only
difference between the two header files is that WINSOCK2.H contains more error
codes for some of the newer API functions and capabilities introduced in Winsock
2. The constants defined for the various error codes (with #define directives)
generally begin with WSAE. On the flip side of WSAGetLastError(), there is
WSASetLastError(), which allows you to manually set error codes that
WSAGetLastError() retrieves.

The following program demonstrates how to construct a skeleton Winsock
application based on the discussion so far:

#include <winsock2.h>

void main(void)

{

 WSADATA wsaData;

 // Initialize Winsock version 2.2

 if ((Ret = WSAStartup(MAKEWORD(2,2), &wsaData)) != 0)

 {

 printf("WSAStartup failed with error %ld\n",

 WSAGetLastError());

 return;

 }

 // Setup Winsock communication code here

 // When your application is finished call WSACleanup

 if (WSACleanup() == SOCKET_ERROR)

 {

 printf("WSACleanup failed with error %d\n",

 WSAGetLastError());

 }

}

Let’s try this program using Visual C++ 2008 Express Edition. First and
foremost, let change the newly installed VC++ startup page to last loaded
solution. You can skip this ‘optional’ step. Click Tools menu > Options sub menu
(Fig.11.2).

PL
O

N
E-

28

BCA-118/298

Fig. 11.2 Tools menu

Expand Environment folder > Select Startup link > Set the At Startup: to Load
last loaded solution > Click OK (Fig. 11).

Fig. 11.3 Options- load last loaded options

1. Then we can start creating the Win32 console application project. Click
File menu > Project sub menu to create a new project (Fig. 11.4).

Fig. 11.4 Creating a new project

PL
O

N
E-

28

BCA-118/299

2. Select Win32 for the Project types, and Win32 Console Application for
the Templates, Put the project and solution name. Adjust the project
location if needed and click OK (Fig. 11.5).

Fig. 11.5 Win32 Console Aplication

3. Click Next for the Win32 Application Wizard Overview page. We will
remove all the unnecessary project items (Fig. 11.6).

Fig. 11.6 Application Wizard

PL
O

N
E-

28

BCA-118/300

4. In the Application page, select Empty project for the Additional options:
Leave others as given and click Finish (Fig. 11.7).

Fig. 11.7 Application Settings

5. Next, we need to add new source file. Click Project menu > Add New
Item sub menu or select the project folder in the Solution Explorer >
Select Add menu > Select New Item sub menu (Fig. 11.8).

Fig. 11.8 Winsocskeleton PL
O

N
E-

28

BCA-118/301

6. Select C++ File (.cpp) for the Templates: Put the source file name and
click Add. Although the extension is .cpp, Visual C++ IDE will recognize
that the source code used is C based on the Compile as C Code (/TC)
option which will be set in the project property page later (Fig. 11.9).

Fig. 11.9 Adding new item

7. Now, add the source code as given below.

#include <winsock2.h>

#include <stdio.h>

int main(void)

{

WSADATA wsaData;

int RetCode;

 // Initialize Winsock version 2.2

if ((RetCode= WSAStartup(MAKEWORD(2,2), &wsaData)) != 0)

{

printf("WSAStartup failed with error %d\n", RetCode);

return 1;

 }

 else

 {

PL
O

N
E-

28

BCA-118/302

printf("The Winsock dll found!\n");

printf("The current status is: %s.\n",

wsaData.szSystemStatus);

 }

if(LOBYTE(wsaData.wVersion)!=2||HIBYTE(wsaData.wVersion)!= 2)

{

//Tell the user that we could not find a usable WinSock DLL

printf("The dll do not support the Winsock version
%u.%u!\n",

LOBYTE(wsaData.wVersion),HIBYTE(wsaData.wVersion));

 // When your application is finished call WSACleanup

WSACleanup();

 // and exit

 return 0;

}

else

{

printf("The dll supports the Winsock version %u.%u!\n",

LOBYTE(wsaData.wVersion),HIBYTE(wsaData.wVersion));

printf("The highest version this dll can support: %u.%u\n",

LOBYTE(wsaData.wHighVersion),
HIBYTE(wsaData.wHighVersion));

 // Setup Winsock communication code here

// When your application is finished call WSACleanup

 if (WSACleanup() == SOCKET_ERROR)

printf("WSACleanup failed with error %d\n",
WSAGetLastError());

 // and exit

 return 1;

 }

}

8. Before we can build this Winsock C Win32 console application project,

PL
O

N
E-

28

BCA-118/303

we need to set the project to be compiled as C code and link to ws2_32.lib,
the Winsock2 library. Invoke the project property page (Fig. 11.10).

Fig. 11.10 Invoking project property

9. Expand the Configuration folder > Expand the C/C++ sub folder. Select
the Advanced link and for the Compile As option, select Compile as C
Code (/TC) (Fig. 11.11).

Fig. 11.11 Winsocskeleton property pages

10. Next, expand the Linker folder and select the Input link. For the
Additional Dependencies option, click the ellipses at the end of the empty
field on the right side (Fig. 11.12).

PL
O

N
E-

28

BCA-118/304

Fig. 11.12 Selecting the input link

11. Manually, type the library name and click OK (Fig. 11.13).

Fig. 11.13 Typing the library

12. Or you can just directly type the library name in the empty field on the
right of the Additional Dependencies, Click OK (Fig. 11.14).

PL
O

N
E-

28

BCA-118/305

Fig. 11.14 Additional dependencies

13. Build the project and make sure there is no error which can be seen (if
any) in the Output window normally docked at the bottom of the IDE by
default (Fig. 11.15).

Fig. 11.15 Building the solution

14. Run the project (Fig. 11.16).

Fig. 11.16 Starting without debugging

PL
O

N
E-

28

BCA-118/306

15. If there is no error, a sample of expected output is shown below (Fig.
11.7).

Fig. 11.17 Output

Well, after completing this exercise you should be familiar with the steps
to create an empty Win32 console application project. Those steps will be
repeated for almost all the Winsock2 projects in this tutorial.

11.3 WINDOWS SOCKET IN GENERAL

The Windows Sockets specification defines a binary-compatible network
programming interface for Microsoft Windows. Windows Sockets are based on
the UNIX sockets implementation in the Berkeley Software Distribution (BSD)
from the University of California at Berkeley. The specification includes both
BSD-style socket routines and extensions specific to Windows. Using Windows
Sockets permits your application to communicate across any network that
conforms to the Windows Sockets API. On Win32, Windows Sockets provide for
thread safety.

Many network software vendors support Windows Sockets under network
protocols including TCP/IP, Xerox Network System (XNS), Digital Equipment
Corporation’s DECNet protocol, Novell Corporation’s Internet Packet
Exchange/Sequenced Packed Exchange (IPX/SPX), and others. Although the
present Windows Sockets specification defines the sockets abstraction for
TCP/IP, any network protocol can comply with Windows Sockets by supplying
its own version of the dynamic link library (DLL) that implements Windows
Sockets. Examples of commercial applications written with Windows Sockets
include X Window servers, terminal emulators, and electronic mail systems.

Note:- The purpose of Windows Sockets is to abstract away the underlying
network so you don’t have to be knowledgeable about that network and so your
application can run on any network that supports sockets.

The Microsoft Foundation Class Library (MFC) supports programming
with the Windows Sockets API by supplying two classes. One of these classes,
CSocket, provides a high level of abstraction to simplify your network
communications programming.

The Windows Sockets specification, Windows Sockets: An Open

PL
O

N
E-

28

BCA-118/307

Interface for Network Computing Under Microsoft Windows, now at version 1.1,
was developed as an open networking standard by a large group of individuals
and corporations in the TCP/IP community and is freely available for use. The
sockets programming model supports one “communication domain” currently,
using the Internet Protocol Suite. The specification is available in the Win32
SDK.

Note:- Because sockets use the Internet Protocol Suite, they are the preferred
route for applications that support Internet communications on the “information
highway.”

11.3.1 DEFINITION OF A SOCKET

A socket is a communication endpoint — an object through which a
Windows Sockets application sends or receives packets of data across a network.
A socket has a type and is associated with a running process, and it may have a
name. Currently, sockets generally exchange data only with other sockets in the
same “communication domain,” which uses the Internet Protocol Suite.

Both kinds of sockets are bi-directional― they are data flows that can be
communicated in both directions simultaneously (full-duplex).

Two socket types are available:

 Stream sockets― Stream sockets provide for a data flow without record
boundaries i.e. a stream of bytes. Streams are guaranteed to be delivered
and to be correctly sequenced (means that packets are delivered in the
order sent) and unduplicated (means that you get a particular packet only
once).

 Datagram sockets― Datagram sockets support a record-oriented data
flow that is not guaranteed to be delivered and may not be sequenced as
sent or unduplicated.

Note:- Under some network protocols, such as XNS, streams can be record-
oriented— streams of records rather than streams of bytes. Under the more
common TCP/IP protocol, however, streams are byte streams. Windows Sockets
provides a level of abstraction independent of the underlying protocol.

11.3.2 THE SOCKET DATA TYPE

Each MFC socket object encapsulates a handle to a Windows Sockets
object. The data type of this handle is SOCKET. A SOCKET handle is analogous
to the HWND for a window. MFC socket classes provide operations on the
encapsulated handle.

11.3.3 USES FOR SOCKETS

Sockets are highly useful in at least three communications contexts:

 Client/Server models

PL
O

N
E-

28

BCA-118/308

 Peer-to-peer scenarios, such as chat applications

 Making remote procedure calls (RPC) by having the receiving application
interpret a message as a function call

CHECK YOUR PROGRESS

 Define the term Winsock.

 What do you understand by error checking and handling?

 Describe stream sockets.

11.4 CREATING A SOCKET

If you're familiar with Winsock, you know that the API is based on the
concept of a socket. A socket is a handle to a transport provider. In Windows, a
socket is not the same thing as a file descriptor and therefore is a separate type:
SOCKET in WINSOCK2.H. There are two functions that can be used to create a
socket: socket and WSASocket.

Syntax:

SOCKET socket(int af, int type, int protocol);

The first parameter, af, is the protocol's address family. Since we describe
Winsock in this Unit using only the IPv4 protocol, you should set this field to
AF_INET. The second parameter, type, is the protocol's socket type. When you
are creating a socket to use TCP/IP, set this field to SOCK_STREAM, for
UDP/IP use SOCK_DGRAM. The third parameter is protocol and is used to
qualify a specific transport if there are multiple entries for the given address
family and socket type. For TCP you should set this field to IPPROTO_TCP; for
UDP use IPPROTO_UDP.

There are four useful Winsock functions to control various socket options
and socket behaviors ― setsockopt, getsockopt, ioctlsocket, and WSAIoctl. For
simple Winsock programming, you will not need to use them specifically. Once
you have successfully created a socket, you are ready to set up communication on
the socket to prepare it for sending and receiving data. In Winsock there are two
basic communication techniques: connection-oriented and connectionless
communication.

11.4.1 CONNECTION-ORIENTED COMMUNICATION

A connection-oriented service is one that establishes a dedicated
connection between the communicating entities before data communication
commences. It is modeled after the telephone system. To use a connection-
oriented service, the user first establishes a connection, uses it and then releases it.
In connection-oriented services, the data streams/packets are delivered to the
receiver in the same order in which they have been sent by the sender.

PL
O

N
E-

28

BCA-118/309

Connection-oriented services may be done in either of the following ways −

 Circuit-switched connection: In circuit switching, a dedicated physical
path or a circuit is established between the communicating nodes and then
data stream is transferred.

 Virtual circuit-switched connection: Here, the data stream is transferred
over a packet switched network, in such a way that it seems to the user
that there is a dedicated path from the sender to the receiver. A virtual path
is established here. However, other connections may also be using this
path.

Connection-oriented services may be of the following types −

 Reliable Message Stream: e.g. sequence of pages

 Reliable Byte Stream: e.g. song download

 Unreliable Connection: e.g. VoIP (Voice over Internet Protocol)

In IP, connection-oriented communication is accomplished through the
TCP/IP protocol. TCP provides reliable error-free data transmission between two
computers. When applications communicate using TCP, a virtual connection is
established between the source computer and the destination computer. Once a
connection is established, data can be exchanged between the computers as a two-
way stream of bytes.

11.4.2 CONNECTIONLESS COMMUNICATION

A Connectionless service is a data communication between two nodes
where the sender sends data without ensuring whether the receiver is available to
receive the data. Here, each data packet has the destination address and is routed
independently irrespective of the other packets. Thus the data packets may follow
different paths to reach the destination. There’s no need to setup connection
before sending a message and relinquish it after the message has been sent. The
data packets in a connectionless service are usually called datagrams.

Protocols for connectionless services are −

 Internet Protocol (IP)

 User Datagram Protocol (UDP)

 Internet Control Message Protocol (ICMP)

Connectionless services may be of the following types −

 A datagram with Acknowledgement: e.g. text messages with delivery
report

 Request-Reply: e.g. queries from remote databases

Connectionless communication behaves differently than connection-
oriented communication, so the method for sending and receiving data is
substantially different. In IP, connectionless communication is accomplished

PL
O

N
E-

28

BCA-118/310

through UDP/IP. UDP doesn't guarantee reliable data transmission and is capable
of sending data to multiple destinations and receiving it from multiple sources.
For example, if a client sends data to a server, the data is transmitted immediately
regardless of whether the server is ready to receive it. If the server receives data
from the client, it doesn't acknowledge the receipt. Data is transmitted using
datagrams, which are discrete message packets.

11.5 MISCELLANEOUS API

In this section, few Winsock API functions have been covered that you
might find useful when you put together your own network applications.

11.5.1 GETPEERNAME

This function is used to obtain the peer's socket address information on a
connected socket. The function is defined as:

int getpeername(

SOCKET s,

struct sockaddr FAR* name,

int FAR* namelen

);

The first parameter is the socket for the connection; the last two
parameters are a pointer to a SOCKADDR structure of the underlying protocol
type and its length. For datagram sockets, this function returns the address passed
to a connect call; however, it will not return the address passed to a sendto or
WSASendTo call.

11.5.2 GETSOCKNAME

This function is the opposite of getpeername. It returns the address
information for the local interface of a given socket. The function is defined as
follows:

int getsockname(

SOCKET s,

struct sockaddr FAR* name,

int FAR* namelen

);

The parameters are the same as the getpeername parameters except that
the address information returned for socket s is the local address information. In
the case of TCP, the address is the same as the server socket listening on a
specific port and IP interface.

PL
O

N
E-

28

BCA-118/311

11.5.3 WSADUPLICATESOCKET

The WSADuplicateSocket function is used to create a
WSAPROTOCOL_INFO structure that can be passed to another process, thus
enabling the other process to open a handle to the same underlying socket so that
it too can perform operations on that resource. Note that this is necessary only
between processes; threads in the same process can freely pass the socket
descriptors. This function is defined as:

int WSADuplicateSocket(

SOCKET s,

DWORD dwProcessId,

LPWSAPROTOCOL_INFO lpProtocolInfo

);

The first parameter is the socket handle to duplicate. The second
parameter, dwProcessId, is the process ID of the process that intends to use the
duplicated socket. Third, the lpProtocolInfo parameter is a pointer to a
WSAPROTOCOL_INFO structure that will contain the necessary information for
the target process to open a duplicate handle. Some form of interprocess
communication must occur so that the current process can pass the
WSAPROTOCOL_INFO structure to the target process, which then uses this
structure to create a handle to the socket (using the WSASocket function).

Both socket descriptors can be used independently for I/O. Winsock
provides no access control, however, so it is up to the programmer to enforce
some kind of synchronization. All of the state information associated with a
socket is held in common across all the descriptors because the socket descriptors
are duplicated, not the actual socket. For example, any socket option set by the
setsockopt function on one of the descriptors is subsequently visible using the
getsockopt function from any or all descriptors. If a process calls closesocket on a
duplicated socket, it causes the descriptor in that process to become deallocated.
The underlying socket, however, will remain open until closesocket is called on
the last remaining descriptor.

11.6 WINSOCK CATALOG

The Winsock catalog is a database that contains the different protocols
available on the system. Winsock provides a method for determining which
protocols are installed on a given workstation and returning a variety of
characteristics for each protocol. If a protocol is capable of multiple behaviors,
each distinct behavior type has its own catalog entry within the system. For
example, if you install TCP/IP on your system, there will be two IP entries: one
for TCP, which is reliable and connection-oriented, and one for UDP, which is
unreliable and connectionless.

The function call to obtain information on installed network protocols is
WSAEnumProtocols and is defined as:

PL
O

N
E-

28

BCA-118/312

int WSAEnumProtocols (

LPINT lpiProtocols,

LPWSAPROTOCOL_INFO lpProtocolBuffer,

LPDWORD lpdwBufferLength

);

This function supersedes the Winsock 1.1 function EnumProtocols, the
necessary function for Windows CE. The only difference is that
WSAEnumProtocols returns an array of WSAPROTOCOL_INFO structures,
whereas EnumProtocols returns an array of PROTOCOL_INFO structures that
contain fewer fields than the WSAPROTOCOL_INFO structure (but more or less
the same information).

The WSAPROTOCOL_INFO structure is defined as

typedef struct _WSAPROTOCOL_INFO {

DWORD dwServiceFlags1;

DWORD dwServiceFlags2;

DWORD dwServiceFlags3;

DWORD dwServiceFlags4;

DWORD dwProviderFlags;

GUID ProviderId;

DWORD dwCatalogEntryId;

WSAPROTOCOLCHAIN ProtocolChain;

int iVersion;

int iAddressFamily;

int iMaxSockAddr;

int iMinSockAddr;

int iSocketType;

int iProtocol;

int iProtocolMaxOffset;

int iNetworkByteOrder;

int iSecurityScheme;

DWORD dwMessageSize;

DWORD dwProviderReserved;

TCHAR szProtocol[WSAPROTOCOL_LEN + 1];

} WSAPROTOCOL_INFO, FAR * LPWSAPROTOCOL_INFO;

The easiest way to call WSAEnumProtocols is to make the first call with PL
O

N
E-

28

BCA-118/313

lpProtocolBuffer equal to NULL and set lpdwBufferLength to 0. The call fails
with WSAENOBUFS, but lpdwBufferLength then contains the correct size of the
buffer required to return all the protocol information. Once you allocate the
correct buffer size and make another call with the supplied buffer, the function
returns the number of WSAPROTOCOL_INFO structures returned. At this point,
you can step through the structures to find the protocol entry with your required
attributes. The sample program called ENUMCAT.C on the companion CD
enumerates all installed protocols and prints out each protocol's characteristics.

Note:- On 64-bit Windows, it is possible to run 32-bit applications under the
WOW64 (Windows on Windows) subsystem. Because both 32-bit and 64-bit
applications may need to access the Winsock catalog, the system maintains two
separate catalogs. When a 64-bit Winsock application runs and calls
WSAEnumProtocols, the 64-bit catalog is used. Likewise, when a 32-bit Winsock
application calls WSAEnumProtocols, the 32-bit catalog is used. This will
become more important when dealing with the Winsock Service Provider
Interface.

CHECK YOUR PROGRESS

 Compare connection oriented and connection less communication.

 What for getpeername function is used?

 What do you understand Winsock catalog?

11.7 WINDOWS OBJECTS

MFC supplies class CWnd to encapsulate the HWND handle of a window.
The CWnd object is a C++ window object, distinct from the HWND that
represents a Windows window but containing it. Use CWnd to derive your own
child window classes, or use one of the many MFC classes derived from CWnd.
Class CWnd is the base class for all windows, including frame windows, dialog
boxes, child windows, controls, and control bars such as toolbars. A good
understanding of the relationship between a C++ window object and an HWND is
crucial for effective programming with MFC.

MFC provides some default functionality and management of windows,
but you can derive your own class from CWnd and use its member functions to
customize the provided functionality. You can create child windows by
constructing a CWnd object and calling its Create member function, then
customize the child windows using CWnd member functions. You can embed
objects derived from CView, such as form views or tree views, in a frame
window. And you can support multiple views of your documents via splitter
panes, supplied by class CSplitterWnd. Each object derived from class CWnd
contains a message map, through which you can map Windows messages or
command IDs to your own handlers. The general literature on programming for
Windows is a good resource for learning how to use the CWnd member functions,
which encapsulate the HWND APIs.

PL
O

N
E-

28

BCA-118/314

11.7.1 FUNCTIONS FOR OPERATING ON A CWND

CWnd and its derived window classes provide constructors, destructors,
and member functions to initialize the object, create the underlying Windows
structures, and access the encapsulated HWND. CWnd also provides member
functions that encapsulate Windows APIs for sending messages, accessing the
window's state, converting coordinates, updating, scrolling, accessing the
Clipboard, and many other tasks. Most Windows window-management APIs that
take an HWND argument are encapsulated as member functions of CWnd. The
names of the functions and their parameters are preserved in the CWnd member
function. For details about the Windows APIs encapsulated by CWnd, see class
CWnd.

11.7.2 CWND AND WINDOWS MESSAGES

One of the primary purposes of CWnd is to provide an interface for
handling Windows messages, such as WM_PAINT or WM_MOUSEMOVE.
Many of the member functions of CWnd are handlers for standard messages —
those beginning with the identifier afx_msg and the prefix "On," such as OnPaint
and OnMouseMove. Message Handling and Mapping covers messages and
message handling in detail. The information there applies equally to the
framework's windows and those that you create yourself for special purposes.

11.8 ACCESS CONTROL STORY

In this Module and that follows, we try to learn how the security is
implemented in Windows Operating Systems. Access Control is one of the
important and fundamental topics in Windows SDK Platform from Security point
of view. We would start with the access control model used by Windows OSes
and then dig deeper the details of every component in the model. On the way we
will also be introduced with functions that available for manipulation and
interaction with various objects of the Windows OS in the security aspect.

11.8.1 ACCESS CONTROL

 It has been mentioned in MSDN documentation that at the beginning,
Windows OSes follow already an obsolete Class C2 standard, formally known as
Trusted Computer System Evaluation Criteria (TCSEC) then superseded by
Common Criteria and the ISO version is ISO 15408 Common Criteria for
Information Technology Security Evaluation (Part 1, 2 and 3). Access control
refers to security features that control who can access which resources in the
operating system. Applications call access control functions to set who can
access specific resources or control access to resources provided by the
applications.

11.8.2 ACCESS CONTROL MODEL

The access control model enables you to control the ability of a process to

PL
O

N
E-

28

BCA-118/315

access securable objects or to perform various system administration tasks. A
process is a security context under which an application runs. Typically, the
security context is associated with a user, so all applications running under a
given process take on the permissions and privileges of the owning user.

11.8.3 ACCESS CONTROL COMPONENTS

There are two basic components of the access control model:

1. Access tokens, which contain information about a logged-on user.

2. Security descriptors, which contain the security information that protects a
securable object.

 When a user logs on, the system authenticates the user's account name
and password. If the logon is successful, the system creates an access
token. Every process executed on behalf of this user will have a copy of this
access token. The access token contains security identifiers (SID) that identify
the user's account and any group accounts to which the user belongs. The token
also contains a list of the privileges held by the user or the user's groups. The
system uses this token to identify the associated user when a process tries to
access a securable object or perform a system administration task that requires
privileges.

When a securable object is created, the system assigns it a security
descriptor that contains security information specified by its creator, or default
security information if none is specified. Applications can use functions to
retrieve and set the security information for an existing object. A security
descriptor identifies the object's owner and can also contain the following access
control lists (ACLs):

1. A discretionary access control list (DACL) that identifies the users and
groups allowed or denied access to the object.

2. A system access control list (SACL) that controls how the system audits
attempt to access the object.

 An ACL contains a list of access control entries (ACEs). Each ACE
specifies a set of access rights and contains a security identifier that identifies a
trustee for whom the rights are allowed, denied, or audited. A trustee can be a
user account, group account, or logon session. A logon session begins whenever
a user logs on to a computer. All processes in a logon session have the same
primary access token. The access token contains information about the security
context of the logon session, including the user's SID, the logon identifier, and the
logon SID. Keep in mind that the user is nothing because user’s credential such
as his/her username and password was created in the system. User’s credential
just another Windows object.

11.8.3 ACCESS TOKENS

An access token is an object that describes the security context of a
process or thread. The information in a token includes the identity and privileges PL

O
N

E-
28

BCA-118/316

of the user account associated with the process or thread. When a user logs on,
the system verifies the user's password by comparing it with information stored in
a security database. If the password is authenticated, the system produces an
access token. Every process executed on behalf of this user has a copy of this
access token.

The system uses an access token to identify user when a thread interacts
with a securable object or tries to perform a system task that requires
privileges. Access tokens contain the following information:

 The SID for the user's account.

 SIDs for the groups of which the user is a member.

 A logon SID that identifies the current logon session.

 A list of the privileges held by either the user or the user's groups.

 An owner SID.

 The SID for the primary group.

 The default DACL that the system uses when the user creates a securable
object without specifying a security descriptor.

 The source of the access token.

 Whether the token is a primary or impersonation token.

 An optional list of restricting SIDs.

 Current impersonation levels.

 Other statistics.

A primary token is an access token that is typically created only by the
Windows kernel. It may be assigned to a process to represent the default security
information for that process. The impersonation token is an access token that has
been created to capture the security information of a client process, allowing a
server to "impersonate" the client process in security operations.

Every process has a primary token that describes the security context of
the user account associated with the process. By default, the system uses the
primary token when a thread of the process interacts with a securable
object. Moreover, a thread can impersonate a client account. Impersonation
allows the thread to interact with securable objects using the client's security
context.

A thread that is impersonating a client has both a primary token and an
impersonation token. You can use theOpenProcessToken() function to retrieve a
handle to the primary token of a process. Use theOpenThreadToken() function to
retrieve a handle to the impersonation token of a thread. You can use the
functions shown in Table 11.1 to manipulate access tokens.

PL
O

N
E-

28

BCA-118/317

Table 11.1 Functions to manipulate access tokens

Function Description

AdjustTokenGroups()
Changes the group information in an access
token.

AdjustTokenPrivileges()
Enables or disables the privileges in an access
token. It does not grant new privileges or
revoke existing ones.

CheckTokenMembership()
Determines whether a specified SID is enabled
in a specified access token.

CreateRestrictedToken()

Creates a new token that is a restricted version
of an existing token. The restricted token can
have disabled SIDs, deleted privileges, and a
list of restricted SIDs.

DuplicateToken()
Creates a new impersonation token that
duplicates an existing token.

DuplicateTokenEx()
Creates a new primary token or impersonation
token that duplicates an existing token.

GetTokenInformation() Retrieves information about a token.

IsTokenRestricted()
Determines whether a token has a list of
restricting SIDs.

OpenProcessToken()
Retrieves a handle to the primary access token
for a process.

OpenThreadToken()
Retrieves a handle to the impersonation access
token for a thread.

SetThreadToken()
Assigns or removes an impersonation token for
a thread.

SetTokenInformation()
Changes a token's owner, primary group, or
default DACL.

The access token functions use the following structures (Table 11.2) to describe
the components of an access token. PL

O
N

E-
28

BCA-118/318

Table 11.2 Structures to describe the components

Structure Description

TOKEN_CONTROL Information that identifies an access token.

TOKEN_DEFAULT_DACL
The default DACL that the system uses in
the security descriptors of new objects
created by a thread.

TOKEN_GROUPS
Specifies the SIDs and attributes of the group
SIDs in an access token.

TOKEN_OWNER
The default owner SID for the security
descriptors of new objects.

TOKEN_PRIMARY_GROUP
The default primary group SID for the
security descriptors of new objects.

TOKEN_PRIVILEGES
The privileges associated with an access
token. Also determines whether the
privileges are enabled.

TOKEN_SOURCE The source of an access token.

TOKEN_STATISTICS Statistics associated with an access token.

TOKEN_USER
The SID of the user associated with an
access token.

The access token functions use the following enumeration types (Table 11.3).

Table 11.3 Enumeration Types

Enumeration type Specifies

TOKEN_INFORMATION_CLASS
Identifies the type of information being
set or retrieved from an access token.

TOKEN_TYPE
Identifies an access token as a primary
or impersonation token.

11.8.3 ACCESS RIGHTS FOR ACCESS-TOKEN OBJECTS

An application cannot change the access control list of an object unless the
application has the rights to do so. These rights are controlled by a security
descriptor in the access token for the object. To get or set the security descriptor
for an access token, call the GetKernelObjectSecurity() and PL

O
N

E-
28

BCA-118/319

SetKernelObjectSecurity() functions. When you call the OpenProcessToken() or
OpenThreadToken() function to get a handle to an access token, the system
checks the requested access rights against the DACL in the token's security
descriptor. The following are valid access rights for access-token objects:

 The DELETE, READ_CONTROL,WRITE_DAC, andWRITE_OWNER
standard access rights. Access tokens do not support theSYNCHRONIZE
standard access right.

 The ACCESS_SYSTEM_SECURITY right to get or set the SACL in the
object's security descriptor.

 The specific access rights for access tokens, which are listed in Table
11.4.

Table 11.4 Access rights for access tokens

Value Meaning

TOKEN_ADJUS
T_DEFAULT

Required to change the default owner, primary group, or
DACL of an access token.

TOKEN_ADJUS
T_GROUPS

Required to adjust the attributes of the groups in an
access token.

TOKEN_ADJUS
T_PRIVILEGES

Required to enable or disable the privileges in an access
token.

TOKEN_ADJUS
T_SESSIONID

Required to adjust the session ID of an access token. The
SE_TCB_NAME privilege is required.

TOKEN_ASSIG
N_PRIMARY

Required to attach a primary token to a process. The
SE_ASSIGNPRIMARYTOKEN_NAME privilege is
also required to accomplish this task.

TOKEN_DUPLI
CATE

Required to duplicate an access token.

TOKEN_EXECU
TE

CombinesSTANDARD_RIGHTS_EXECUTE and
TOKEN_IMPERSONATE.

TOKEN_IMPER
SONATE

Required to attach an impersonation access token to a
process.

TOKEN_QUER
Y

Required to query an access token.

TOKEN_QUER
Y_SOURCE

Required to query the source of an access token.

TOKEN_READ
CombinesSTANDARD_RIGHTS_READ and
TOKEN_QUERY.

PL
O

N
E-

28

BCA-118/320

TOKEN_WRITE
CombinesSTANDARD_RIGHTS_WRITE,TOKEN_AD
JUST_PRIVILEGES,TOKEN_ADJUST_GROUPS, and
TOKEN_ADJUST_DEFAULT.

TOKEN_ALL_A
CCESS

Combines all possible access rights for a token

11.9 SECURITY DESCRIPTORS

A security descriptor contains the security information associated with a
securable object. A security descriptor consists of a SECURITY_DESCRIPTOR
structure and its associated security information. A security descriptor can
include the following security information:

 SIDs for the owner and primary group of an object.

 A DACL that specifies the access rights allowed or denied to particular
users or groups.

 A SACL that specifies the types of access attempts that generate audit
records for the object.

 A set of control bits that qualify the meaning of a security descriptor or its
individual members.

The Windows API provides functions for setting and retrieving the
security information in an object's security descriptor. In addition, there are
functions for creating and initializing a security descriptor for a new object.
Applications working with security descriptors on Active Directory objects can
use the Windows security functions or the security interfaces provided by the
Active Directory Service Interfaces (ADSI).

11.9.1 SECURABLE OBJECTS

A securable object is an object that can have a security descriptor. All
named Windows objects are securable. Some unnamed objects, such as process
and thread objects, can have security descriptors too. For most securable objects,
you can specify an object's security descriptor in the function call that creates the
object. For example, you can specify a security descriptor in the CreateFile and
CreateProcess functions.

In addition, the Windows security functions enable you to get and set the
security information for securable objects created on operating systems other than
Windows. The Windows security functions also provide support for using
security descriptors with private, application-defined objects.

The following Table 11.5 shows the functions to use to manipulate the
security information for some common securable objects.

PL
O

N
E-

28

BCA-118/321

Table 11.5 Some common securable objects

Object type Security descriptor functions

Files or
directories on an
NTFS file system

GetNamedSecurityInfo, SetNamedSecurityInfo,
GetSecurityInfo, SetSecurityInfo

Named pipes
Anonymous
pipes

GetSecurityInfo, SetSecurityInfo

Processes
Threads

GetSecurityInfo, SetSecurityInfo

File-mapping
objects

GetNamedSecurityInfo, SetNamedSecurityInfo,
GetSecurityInfo, SetSecurityInfo

Access tokens SetKernelObjectSecurity, GetKernelObjectSecurity

Window-
management
objects (window
stations and
desktops)

GetSecurityInfo, SetSecurityInfo

Registry keys
GetNamedSecurityInfo, SetNamedSecurityInfo,
GetSecurityInfo, SetSecurityInfo

Windows
services

GetNamedSecurityInfo, SetNamedSecurityInfo,
GetSecurityInfo, SetSecurityInfo

Local or remote
printers

GetNamedSecurityInfo, SetNamedSecurityInfo,
GetSecurityInfo, SetSecurityInfo

Network shares
GetNamedSecurityInfo, SetNamedSecurityInfo,
GetSecurityInfo, SetSecurityInfo

Interprocess
synchronization
objects (events,
mutexes,
semaphores, and
waitable timers)

GetNamedSecurityInfo, SetNamedSecurityInfo,
GetSecurityInfo, SetSecurityInfo

PL
O

N
E-

28

BCA-118/322

Job objects
GetNamedSecurityInfo, SetNamedSecurityInfo,
GetSecurityInfo, SetSecurityInfo

Directory service
objects

These objects are handled by Active Directory Objects.
For more information, see Active Directory Service
Interfaces.

CHECK YOUR PROGRESS

 Define the term Windows object.

 Write three access rights and their description for access tokens.

 What do you understand by security descriptor?

11.10 SUMMARY

Winsock is a standard application programming interface (API) that
allows two or more applications (or processes) to communicate either on the same
machine or across a network and is primarily designed to foster data
communication over a network. It is important to understand that Winsock is a
network programming interface and not a protocol. The MFC supports
programming with the Windows Sockets API by supplying two classes. One of
these classes, CSocket, provides a high level of abstraction to simplify the
network communications programming.

In Internet Protocol (IP), connection-oriented communication is
accomplished through the TCP/IP protocol. TCP provides reliable error-free data
transmission between two computers. When applications communicate using
TCP, a virtual connection is established between the source computer and the
destination computer. Connectionless communication behaves differently than
connection-oriented communication, so the method for sending and receiving data
is substantially different. In IP, connectionless communication is accomplished
through UDP/IP.

The Winsock Catalog is a database that contains the different protocols
available on the system. Winsock provides a method for determining which
protocols are installed on a given workstation and returning a variety of
characteristics for each protocol. If a protocol is capable of multiple behaviors,
each distinct behavior type has its own catalog entry within the system. The
CWnd object is a C++ window object, distinct from the HWND that represents a
Windows window but containing it. CWnd can be used to derive child window
classes, or use one of the many MFC classes derived from CWnd. Class CWnd is
the base class for all windows, including frame windows, dialog boxes, child
windows, controls, and control bars such as toolbars.

Access control refers to security features that control who can access PL
O

N
E-

28

BCA-118/323

which resources in the operating system. Applications call access control
functions to set who can access specific resources or control access to resources
provided by the applications. Access Control is one of the important and
fundamental topics in Windows SDK Platform from Security point of view. A
security descriptor contains the security information associated with a securable
object. A security descriptor consists of a SECURITY_DESCRIPTOR structure
and its associated security information.

11.11 TERMINAL QUESTIONS

1. What do you understand by Winsock? Explain its architecture.

2. Discuss about the windows socket and its types.

3. Describe the functions getpeername and getsockname.

4. Write a short note on Winsock Catalog.

5. Discuss about windows objects.

6. Give the meaning of access tokens. Explain about the information it
contains.

7. What do you understand by security descriptors? Explain briefly.

8. Explain some common securable objects.

PL
O

N
E-

28

BCA-118/324

UNIT-12 ADVANCE TOPICS AND CASE
STUDY

Structure

12.0 Introduction

12.1 Objectives

12.2 Active X Control

12.3 Component Object Model (COM)

12.4 COM+

12.5 Distributed Component Object Model (DCOM)

12.6 Application using Visual Basic

12.7 Example – Customer Database Input Screen

12.8 Summary

12.9 Terminal Questions

12.0 INTRODUCTION

This unit basically describes about the ActiveX, ActiveX control, COM
(Component Object Model), enhanced version of COM ie COM+, DCOM
(Distributed Component Object Model), and finally a project based on a case
study which has been developed in Visual Basic programming. The ActiveX
controls are based on the Active Template Library (ATL) with no external
dependencies on third-party libraries such as the Visual C++ runtime. They can be
used with Visual Basic 6.0, Visual C++, PowerBuilder and any other language
that supports the Component Object Model (COM) and ActiveX standard. This
also includes Visual Basic for Applications (VBA) in Microsoft Office, and
scripting languages such as VBScript. Moreover, the ability to create a full-
fledged ActiveX control using VB is an extremely important step for VB
developers. Furthermore, a COM+ application is the primary unit of
administration and security for Component Services and consists of a group of
COM components that generally perform related functions.

On the other hand, DCOM provides the ability to use and reuse
components dynamically, without recompiling, on any platform, from any
language, at any time. This is perhaps the single most important aspect of DCOM.
It also has a highly optimized marshaler for a set of common parameter types (ole
automation), which gives DCOM advantage over CORBA, whose marshaler is
more general and therefore slower. It allows for static and dynamic invocation of
objects, multithreading, callback events, object locator, remote server activation,

PL
O

N
E-

28

BCA-118/325

security, and persistence. And most of all, it is already highly deployed in all
Windows platforms since DCOM is really COM ‘with a longer wire’. Lastly, a
brief overview about the application development using a small project in Visual
Basic programming has been described which would be helpful for the project
building.

12.1 OBJECTIVES

At the end of this unit you will come to know about the following:

 ActiveX control
 Component Object Model (COM)
 COM+
 Distributed Component Object Model (DCOM)
 Difference between the COM and DCOM
 Characteristics of COM, COM+, DCOM
 Issues/limitations of COM, COM+, DCOM
 Design and development of an application using Visual Basic

12.2 ACTIVEX CONTROL

ActiveX technology was introduced in Visual Basic 5.0 for the first time.
ActiveX is the name for programmable elements, formerly known as OLE
controls (OCXs) or OLE custom controls. The ActiveX programming
specification is an extension of Microsoft Windows and the Object Linking and
Embedding API. Microsoft uses the term ActiveX to describe a number of its
COM (Component Object Model) technologies. However, when most people say
"ActiveX", they are really referring to ActiveX controls which are nowadays used
in most of the Internet programs; Microsoft's answer to Java applets. Earlier,
ActiveX, was basically used for the windows like Win3.1, WinNT, Win2000;
moreover, it was wrapped around the OLE and COM. Furthermore, like applets,
programs that use ActiveX controls run on the client computers, not the server.

Microsoft first introduced the term ActiveX at the Internet Professional
Developers Conference in March of 1996. ActiveX referred to the conference
slogan “Activate the Internet” and was more a call-to-arms than a technology or
architecture for developing applications. In a very short time, it became
Microsoft's answer to the Java technology from Sun Microsystems. An ActiveX
control is roughly equivalent to a Java applet. The difference is that while
ActiveX controls can interface with Microsoft Windows better than Java, they
only offer limited cross-platform support. Currently, ActiveX controls run in
Windows and in Macintosh.

ActiveX controls can be created using a variety of languages or
development tools, including C++, Visual Basic, PowerBuilder, or with scripting
tools such as VBScript. ActiveX controls are small program building blocks that
can be used to create distributed applications that work over the Internet through
web browsers. Examples include customized applications for gathering data,
viewing certain kinds of files, and displaying animation. PL

O
N

E-
28

BCA-118/326

The ActiveX programming specification is an extension of Microsoft
Windows and the Object Linking and Embedding (OLE) API. ActiveX
applications are used mainly with Microsoft's Internet Explorer web browser. It is
to be noted here that ActiveX and ActiveX controls are similar in that they are
both designed to be downloaded and executed by web browsers. The difference is
that while ActiveX controls can interface with Microsoft Windows more
effectively than Java, they offer very little cross-platform support.

12.2.1 ACTIVEX COMPONENTS

The components that you create using ActiveX technology are of different
types. The following are the different types of ActiveX components.

12.2.1.1 ACTIVEX APPLICATIONS (ACTIVEX .EXE)

An ActiveX application is a standalone application, such as MS-Word,
MS-Excel etc. These applications provide objects that you can access and
manipulate programmatically from an application written in Visual Basic or any
application development tool that supports ActiveX.

Note:- Each component has a collection of properties, methods and events that
can be accessed from outside. These properties, methods and events are
collectively called as interface of the component.

12.2.1.2 ACTIVEX CODE COMPONENTS (ACTIVEX .DLL)

ActiveX code component is a collection (library) of programmable
objects, where objects are generally related to a specific topic such as, financial
functions, date and time functions etc. ActiveX code components do not run as
separate applications, instead they are run in the same process area as the client
(the application that is using the code component).

12.2.1.3 ACTIVEX CONTROLS (.OCX CONTROLS)

ActiveX controls are user-defined controls. Formally they were called as
OLE controls. Each ActiveX control does a specific job. For example, an ActiveX
control may deal with displaying a calendar, another may deal with displaying
running digital clock and so on. There are hundreds of ActiveX controls available
from various vendors, whose primary job is creating ActiveX controls and sell
them to developers.

12.2.1.4 ACTIVEX DOCUMENT (.VBD DOCUMENT)

ActiveX documents are Internet pages. You can use ActiveX documents
to create interactive Internet application. Each ActiveX document is a Web page.
An ActiveX document can host ActiveX controls and can invoke the dialog boxes
and so on. Visual Basic 6.0 has introduced DHTML application. DHTML
application provides better alternative to ActiveX document application.

PL
O

N
E-

28

BCA-118/327

12.2.2 ACTIVEX CONTROL IN VISUAL BASIC

An ActiveX control is a component that may be added to the Form, like
the controls in ToolBox. Three different types of ActiveX control in Visual Basic
can be made. You can build an ActiveX Control without using any existing
controls, designing your control completely from scratch. Moreover, you can
build a control that takes an existing control and extends its functionality. For
example― validating data entered into a TextBox. Furthermore, you can build an
ActiveX control that is made up of existing controls (Constituent Controls).
For example― grouping a Label and a TextBox to make a control that provides
text input with a read-only prompt.

12.2.3 CREATING YOUR FIRST ACTIVEX CONTROL

The Visual Basic 6.0 Control Creation Edition makes creating ActiveX
controls as easy as creating typical Visual Basic applications. If you have never
seen just how easy it can be, you should definitely read on. This document is
designed to give you a fast track overview of the simple process involved in
creating ActiveX controls with Visual Basic.

If you follow the steps given below, and when you reach the end you will
have built what is commonly called a "spinner" control. A spinner control is a
graphical ActiveX control that allows the user to increment or decrement a value
using a mouse instead of using a keyboard, as shown in the Fig. 12.1.

Fig. 12.1 First ActiveX Control

Step 1: Create A Test Container

Start the Control Creation Edition, highlight Standard EXE, and click Open as
shown below (Fig. 12.2). This creates the host application. This host will be used
as the test container for the spinner control that is about to be created below.

Fig. 12.2 Creating A Test Container

PL
O

N
E-

28

BCA-118/328

Step 2: Add A Blank ActiveX Control Project

From the File Menu, select the Add Project Command (Fig. 12.3)

Fig. 12.3 Adding A Blank ActiveX Control

In the Add Project dialog, highlight ActiveX Control and Click Open (Fig. 12.4).

Fig. 12.4 Adding Project

At this point there should be two projects open. As you can see in the following
diagram, both projects look extremely similar. Also note that there is a new
control that is now visible in the toolbox (Fig 12.5). If you hover your mouse over
this control in the Toolbox, the Tooltip should popup and display the current
name of the control, “UserControl1”. However, the icon in the Toolbox will be
gray (disabled) at this point. Visual Basic uses the same visual metaphor for
building ActiveX Controls as it does applications. Using this metaphor, you first
"draw" the interface, set some properties, write some event driven code, and you
are on your way.

PL
O

N
E-

28

BCA-118/329

Fig. 12.5 A new project IDE

Step 3: Draw The Visual Interface for The Control

Now, it is time to create the visual interface for the spinner control. The
spinner control can be created using a powerful new feature of the Control
Creation Edition - the ability to combine existing controls into new, more
specialized controls. To create the spinner control, a standard textbox and a
vertical scrollbar would be combined.

First, click on the textbox control in the Visual Basic toolbox. The textbox
control is identified with the number 1 (Fig 12.6) below. Using the mouse, draw a
small textbox in the upper left hand corner of the Project2 window. Second, click
on the vertical scrollbar control in the toolbox and draw it just to the right of the
textbox control. The vertical scrollbar control is identified with the number 2 (Fig
12.6) below. Finally, drag the control sizing handle to surround the newly drawn
controls. The control sizing handle is identified with the number 3 in the Fig. 12.6
below. Your ActiveX spinner control should now look similar to the diagram
below (Fig 12.6).

Fig. 12.6 Labelling of controls PL
O

N
E-

28

BCA-118/330

Step 4: Write Event Driven Code

At this point we now have a visual interface for a spinner control. The
next step is to write some event driven code that will place the current value of the
vertical scrollbar into the textbox. When the user clicks on the up or down arrow
of the vertical scrollbar, the value displayed in the textbox needs to increment or
decrement. To make this happen, some code needs to be written in the Change
event of the vertical scrollbar. Double click on the vertical scrollbar that you just
drew. This will display the code window. In the code window, type the following
line of code:

text1.text = vscroll1.value

As soon as you type the "dot", Visual Basic displays a list of all allowable
properties for the textbox. All ActiveX components contain this type of
information and Visual Basic makes it automatically available when needed.
After the code is entered, close the code window by clicking on the close box (#1
in Fig. 12.7). Finally, close the spinner control form by clicking on its close box
(#2 in Fig 7 below).

Fig. 12.7 Close box

Step 5: Use and Test the Control

At this point, if all has gone well and you closed the spinner form, the
spinner control will no longer appear gray in the toolbox and is ready to be
used/tested (#1 in Fig 12.8). Your environment should now look similar to the Fig
12.8.

Fig. 12.8 Test the control PL
O

N
E-

28

BCA-118/331

To test the newly created control, click on it in the toolbox and draw it on
Form1 as shown below. Press F5 to run the application. As you click the up and
down arrow in the spinner control, the value in the textbox changes, just as we
coded it.

Fig. 12.9 Sinner control on Form1

12.3 COMPONENT OBJECT MODEL

Basically, component object model or COM in short is the architecture on
which ActiveX is based. COM is the software architecture that allows
programmers to create components, which can be later used to build applications.
The main theme of COM is its reusability. In other words, if one creates a
component using COM specifications, it can be used in any language and any
platform where COM is supported (Fig 12.10).

Moreover, COM is the underlying architecture that forms the foundation
for higher-level software services, like those provided by OLE and ActiveX. The
COM specifies the standards using which components are to be created. Microsoft
is using COM to address specific areas like creating controls, servers etc. And the
components created using COM specifications have the following characteristics:

 Defines a binary standard for component interoperability.

 They are platform independent.

 Provides for robust evolution of component-based applications and
systems

 They are usable in Windows, Windows NT, Macintosh, and Unix.

 They are language independent. If one creates a component in Visual
Basic, later can use that component in VC++, PowerBuilder or anywhere,
where COM is supported.

 They are also extensible.

 COM is a general architecture for component software.

 Provides rich error and status reporting.

 Allows for shared memory management between components.

 Allows dynamic loading and unloading of components. PL
O

N
E-

28

BCA-118/332

Fig. 12.10 COM as the foundation for OLE technologies

(Source: https://www.cs.umd.edu/~pugh/com/)

It is important to note that COM is a general architecture for component
software. Although Microsoft is applying COM to address specific areas such as
controls, compound documents, automation, data transfer, storage and naming,
and others, any developer can take advantage of the structure and foundation that
COM provides.

12.3.1 THE COMPONENT SOFTWARE PROBLEM

The most fundamental problem that COM solves is― “How can a system be
designed so that binary executables from different vendors, written in different
parts of the world and at different times, are able to interoperate?” To solve this
problem, we must first find answers to these four questions:

 Basic Interoperability- How can developers create their own unique
binary components, yet be assured that these binary components would
interoperate with other binary components built by different developers?

 Versioning- How can one system component be upgraded without
requiring all the system components to be upgraded?

 Language Independence- How can components written in different
languages communicate?

 Transparent Cross-Process Interoperability- How can we give
developers the flexibility to write components to run in-process or cross-
process, and even cross-network, using one simple programming model?

Additionally, high performance is a requirement for a component software
architecture. Although cross-process and cross-network transparency is a laudable
goal, it is critical for the commercial success of a binary component marketplace
that components interacting within the same address space be able to use each
other's services without any undue "system" overhead. Otherwise, the components PL

O
N

E-
28

BCA-118/333

will not realistically be scalable down to very small, lightweight pieces of
software equivalent to C++ classes or graphical user interface (GUI) controls.

12.3.2 COM FUNDAMENTALS

The Component Object Model defines several fundamental concepts that
provide the model's structural underpinnings. These include:

 A binary standard for function calling between components.

 A provision for strongly-typed groupings of functions into interfaces.

 A base interface providing.

 A way for components to dynamically discover the interfaces
implemented by other components.

 Reference counting to allow components to track their own lifetime and
delete themselves when appropriate.

 A mechanism to identify components and their interfaces uniquely,
worldwide.

 A "component loader" to set up component interactions and, additionally
(in the cross-process and cross-network cases), to help manage component
interactions.

12.3.3 BINARY STANDARD

For any given platform (hardware and operating system combination),
COM defines a standard way to lay out virtual function tables (vtables) in
memory, and a standard way to call functions through the vtables. Thus, any
language that can call functions via pointers (C, C++, Smalltalk, Ada, and even
BASIC) all can be used to write components that can interoperate with other
components written to the same binary standard. Indirection (the client holds a
pointer to a vtable) allows for vtable sharing among multiple instances of the
same object class. On a system with hundreds of object instances, vtable sharing
can reduce memory requirements considerably, because additional vtables
pointing to the same component instance consume much less memory than
multiple instances of the same component.

CHECK YOUR PROGRESS

 Describe some ActiveX components.

 What do you undesratnd by the COM?

 Write any three basic concepts of COM.

12.4 COM+

PL
O

N
E-

28

BCA-118/334

COM+ is an enhanced version of COM that provides better security and
improved performance. Component Object Model+ (COM+) is a binary
interoperability standard defined by Microsoft that specifies a model for
distributed object communication. The COM+ defines communication by
separating objects into clients and servers. The client is defined as an object that
wants to access a particular service, while the server is an object that provides
service. The client and server can communicate with each other independently of
the programming language in which they are defined and independently of the
operating system that lies between them.

The basic COM specification only established a distributed
communication model between a client and a server without any performance
optimizations. COM+ can be considered a successor to COM, with features
related to Microsoft Transaction Server (MTS).

COM+ provides the following features:

 Enhanced security compared to COM with the help of access regulation.

 Support for application recycling.

 Support of partitions, where several COM+ versions can be installed
simultaneously on the same machine.

 COM+ components can also provide services without components.

 COM+ applications possess external interfaces that provide a Web service
interface for communication using XML.

To ensure reliability, COM+ uses a memory activation mechanism. With
this mechanism, the amount of virtual memory is calculated prior to the creation
of a server object. If less memory is available, the activation or creation of a
COM+ object fails. Thus, COM+ components cannot suffer a software crash due
to overload. The COM+ can be used to develop enterprise-wide, mission-critical,
distributed applications for Windows.

Moreover, it is applicable; If you are a system administrator, you will be
installing, deploying, and configuring COM+ applications and their components.
If you are an application programmer, you will be writing components and
integrating them as applications. If you are a tools vendor, you will be developing
or modifying tools to work in the COM+ environment.

Note:- COM+ is designed primarily for Microsoft Visual C++ and Microsoft
Visual Basic developers. COM+ version 1.5 is included in Windows starting with
Windows XP and Windows Server 2003. COM+ version 1.0 is included in
Windows 2000.

12.5 DISTRIBUTED COMPONENT OBJECT MODEL

Distributed Component Object Model (DCOM) is a proprietary Microsoft
technology that allows Component Object Model (COM) software to
communicate across a network. The DCOM is enhanced with COM applications
to facilitate remote procedural calls (RPC) and a Distributed Computing

PL
O

N
E-

28

BCA-118/335

Environment (DCE) dedicated to Windows application and platform support.
Initially, Microsoft developed COM to communicate with processes running on
one machine. Microsoft created DCOM to allow distributed application and
process communication with machines across an entire network.

Traditional COM components can only perform inter-process
communication across process boundaries on the same machine. DCOM uses the
RPC mechanism to transparently send and receive information between COM
components (i.e., clients and servers) on the same network. DCOM was first made
available in 1995 with the initial release of Windows NT 4. It serves the same
purpose as IBM's DSOM protocol, which is the most popular implementation of
CORBA. Unlike CORBA, which runs on many operating systems, DCOM is
currently implemented only for Windows.

12.5.1 PROBLEMS SOLVED BY DCOM

An extension of COM, DCOM solves a few inherent problems with the
COM model to better use over a network.

12.5.1.1 MARSHALLING

Marshalling solves a need to pass data from one COM object instance to
another on a different computer – in programming terms, this is called “passing
arguments.” For example, if I wanted Zaphod’s last name, I would call the COM
Object LastName with the argument of Zaphod. The LastName function would
use a Remote Procedure Call (RPC) to ask the other COM object on the target
server for the return value for LastName(Zaphod), and then it would send the
answer – Beeblebrox – back to the first COM object.

12.5.1.2 DISTRIBUTED GARBAGE COLLECTION

Designed to scale DCOM in order to support high volume internet traffic,
Distributed Garbage Collection also addresses a way to destroy and reclaim
completed or abandoned DCOM objects to avoid blowing up the memory on web
servers. In turn, it communicates with the other servers in the transaction chain to
let them know they can get rid of the objects related to a transaction.

12.5.1.3 USING DCE/RPC AS THE UNDERLYING RPC MECHANISM

To achieve the previous items and to attempt to scale to support high
volume web traffic, Microsoft implemented DCE (Distributed Computing
Environment)/RPC as the underlying technology for DCOM – which is where the
D in DCOM came from.

12.5.2 WORKING OF DCOM

In order for the DCOM to work, the COM object needs to be configured
correctly on both computers – in our experience they rarely were, and you had to
uninstall and reinstall the objects several times to get them to work.

PL
O

N
E-

28

BCA-118/336

The Windows Registry contains the DCOM configuration data in three
identifiers:

 CLSID– The Class Identifier (CLSID) is a Global Unique Identifier
(GUID). Windows stores a CLSID for each installed class in a program.
When you need to run a class, you need the correct CLSID, so Windows
knows where to go and find the program.

 PROGID– The Programmatic Identifier (PROGID) is an optional
identifier a programmer can substitute for the more complicated and strict
CLSID. PROGIDs are usually easier to read and understand. A basic
PROGID for our previous example could be Hitchiker.LastName. There
are no restrictions on how many PROGIDs can have the same name,
which causes issues on occasion.

 APPID– The Application Identifier (APPID) identifies all of the classes
that are part of the same executable and the permissions required to access
it. DCOM cannot work if the APPID isn’t correct. You will probably get
permissions errors trying to create the remote object, in my experience.

A basic DCOM transaction looks like the following

 The client computer requests the remote computer to create an object by
its CLSID or PROGID. If the client passes the APPID, the remote
computer looks up the CLSID using the PROGID.

 The remote machine checks the APPID and verifies the client has
permissions to create the object.

 DCOMLaunch.exe (if an exe) or DLLHOST.exe (if a dll) will create an
instance of the class the client computer requested.

 Communication is successful!

 The Client can now access all functions in the class on the remote
computer

One widely criticized aspect of the DCOM model however, is that there is
no absolute way of addressing an object instance – everything is done through
object interfaces. As such, it can be difficult to manage a large set of worker
object instances or temporarily disconnect and reconnect at a later time.

Another problem DCOM is facing is that currently there is no good
solution to the problem of keeping track of possibly thousands of objects spread
over thousands of computers on the network. The user has to supply the network
address of the host machine for the server object, or that address must be hard-
coded in the client application itself.

Some also say that DCOM is hard to program but that depends entirely on
the language being used and the level of support it offers for DCOM
programming. Writing DCOM objects in VC++ can be pretty involving but
allows for slimmer and faster implementations. Using VB5 or J++ for that
purpose is really trivial and COM+ will soon make it trivial for VC++ as well.

PL
O

N
E-

28

BCA-118/337

12.5.3 DCOM VS. CORBA

Common Object Request Broker Architecture (CORBA) is a JAVA based
application and functions basically the same as DCOM. Unlike DCOM, CORBA
isn’t tied to any particular OS, and works on UNIX, Linux, SUN, OS X, and other
UNIX-based platforms. Neither proved secure or scalable enough to become a
standard for high volume web traffic. DCOM and CORBA didn’t play well with
firewalls, so HTTP became the default standard protocol for the internet.

12.5.4 SIGNIFICANCE OF DCOM

DCOM didn’t win the battle to become the standard protocol for the
Internet, but it remains integrated into the Windows OS and is how many
Windows services communicate – like Microsoft Management Console (MMC).
Since DCOM can run programs on other computers, hackers can leverage it for
lateral movement attacks through your network, gaining access to more data. This
activity can be difficult to detect because it’s not malware or hacker tools: all it
takes to access DCOM is PowerShell.

CHECK YOUR PROGRESS

 Define the term COM+.

 Write any two features of COM+.

 What do you understand by DCOM?

 Explain the need of DCOM.

12.6 DESIGNING APPLICATION USING VISUAL
BASIC

We've finished looking at most of the Visual Basic tools and been
introduced to most of the Basic language features. Thus far, to run any of the
applications studied, we needed Visual Basic. Now in this topic, we would learn
the steps of developing a stand-alone application that can be run on any
Windows-based machine. We’d also look at some new components that help
make up applications. In this application we would see how a small project can be
developed in Visual Basic.

12.6.1 DESIGNING AN APPLICATION

Before starting the actual process of application development for a good
interface, setting the object properties, inserting the basic code for various
controls, menus etc.; we need to look about many things ahead.

Step 1: First step is to know the processes and functions needed for the
application after knowing the main problems or requirements of the organization
or on which it is intended to be developed and performed accordingly. Moreover,

PL
O

N
E-

28

BCA-118/338

note down the inputs and outputs. For this a flowchart or framework of
application’s process is to be made.

Step 2: Decide what tools are needed for the application. Do the built-in Visual
Basic tools and functions are sufficient for the application? Or some tools or
functions are to be taken of your own?

Step 3: Third step is to make a good and simple interface so that the users could
easily interact with the application. Some good images can also be used for good
looking but should not be much. Make the interface consistent with other
Windows applications. Familiarity is always good in program design.

Step 4: Make the code readable and traceable for the functions, procedures, inputs
and outputs. Code must be very simple but robust; and it must cover all the inputs
and outputs. Moreover, the important thing is easy to debug. It must also be
understood easily by other programmers whenever needed. It should be reusable
so that it could be used in future too and save time. Make your code 'user-
friendly.' Try to anticipate all possible ways a user can mess up in using your
application. It's fairly easy to write an application that works properly when the
user does everything correctly. It's difficult to write an application that can handle
all the possible wrong things a user can do.

Step 5: Last step is the debugging of code. It can be done manually if application
is small or having less lines of code or can be done using tools if lines of code is
larger. It is better to test the application by giving or letting other people to use.
Other people input the values as per their choice and this really works good in
finding bugs of code. Other testing methods like black box testing and white box
testing can also be used.

12.6.2 USING GENERAL SUB PROCEDURES IN
APPLICATIONS

So far in this class, the only procedures we have studied are the event-
driven procedures associated with the various tools. Most applications have tasks
not related to objects that require some code to perform these tasks. Such tasks are
usually coded in a general Sub procedure (essentially the same as a subroutine in
other languages).

Using general Sub procedures can help in dividing a complex application
into more manageable units of code. This helps meet the above stated goals of
readability and reusability.

Defining a Sub Procedure: The form for a general Sub procedure named
GenlSubProc is:

Sub GenlSubProc(Arguments) 'Definition header

End Sub

The definition header names the Sub procedure and defines any arguments
passed to the procedure. Arguments are a comma-delimited list of variables
passed to and/or from the procedure. If there are arguments, they must be declared
and typed in the definition header in this form: PL

O
N

E-
28

BCA-118/339

Var1 As Type1, Var2 As Type2, ...

Example: Here is a Sub procedure (USMexConvert) that accepts as inputs an
amount in US dollars (USDollars) and an exchange rate (UStoPeso). It then
outputs an amount in Mexican pesos (MexPesos).

Sub USMexConvert (USDollars As Single,

UStoPeso As Single, MexPesos As Single)

MexPesos = UsDollars * UsToPeso

End Sub

12.6.2.1 CALLING A SUB PROCEDURE

There are two ways to call or invoke a Sub procedure. You can also use these to
call event-driven procedures.

Method-1: Call GenlSubProc(Arguments) (if there are no Arguments, do not type
the parentheses)

Method-2: GenlSubProc Arguments

Method-1 is normally preferred ― it's more consistent with calling protocols in
other languages and it cleanly delineates the argument list. It seems most Visual
Basic programmers use Method-2, though. I guess they hate typing parentheses!
Choose the method you feel more comfortable with.

Example: To call our dollar exchange routine, we could use:

Call USMexConvert (USDollars, UStoMex, MexPesos) or

USMexConvert USDollars, UStoMex, MexPesos

12.6.2.2 LOCATING GENERAL SUB PROCEDURES

General Sub procedures can be located in one of two places in your
application: attached to a form or attached to a module. Place the procedure in the
form if it has a purpose specifically related to the form. Place it in a module if it is
a general purpose procedure that might be used by another form or module or
another application.

Whether placing the procedure in a form or module, the methods of
creating the procedure are the same. Select or open the form or module's code
window. Make sure the window's Object list says (General) and the Procedure list
says (Declarations). You can now create the procedure by selecting Add
Procedure from Visual Basic's Tools menu. A window appears allowing you to
select Type Sub and enter a name for your procedure.

Another way to create a Sub is to go to the last line of the General
Declarations section, type Sub followed by a space and the name of your
procedure, then, hit Enter. With either method for establishing a Sub, Visual Basic
will form a template for your procedure. Fill in the argument list and write your
Basic code. In selecting the Insert Procedure menu item, note another option for

PL
O

N
E-

28

BCA-118/340

your procedure is Scope. You have the choice of Public or Private. The scope
word appears before the Sub word in the definition heading. If a module
procedure is Public, it can be called from any other procedure in any other
module. If a module procedure is Private, it can only be called from the module it
is defined in. Note, scope only applies to procedures in modules. By default, all
event procedures and general procedures in a form are Private - they can only be
called from within the form. You must decide the scope of your procedures.

12.6.2.3 PASSING ARGUMENTS TO SUB PROCEDURES

A quick word on passing arguments to procedures. By default, they are
passed by reference. This means if an argument is changed within the procedure,
it will remain changed once the procedure is exited. C programmers have
experienced the concept of passing by value, where a parameter changed in a
procedure will retain the value it had prior to calling the routine. Visual Basic also
allows calling by value. To do this, place the word ByVal in front of each such
variable in the Argument list.

12.6.2.4 USING GENERAL FUNCTION PROCEDURES IN
APPLICATIONS

Related to Sub procedures are Function procedures. A Function procedure,
or simply Function, performs a specific task within a Visual Basic program and
returns a value. We've seen some built-in functions such as the MsgBox and the
Format function.

Defining a Function: The form for a general Function named GenlFcn is given as:

Function GenlFcn(Arguments) As Type 'Definition header

.

.

GenlFcn = ...

End Function

The definition header names the Function and specifies its Type (the type
of the returned value) and defines any input Arguments passed to the function.
Note that somewhere in the function, a value for GenlFcn must be computed for
return to the calling procedure.

Function Example: Here is a Function named CylVol that computes the volume
of a cylinder of known height (Height) and radius (Radius).

Function CylVol(Height As Single, Radius As Single) As
Single

Dim Area As Single

Const PI = 3.1415926

Area = PI * Radius ^ 2

CylVol = Area * Height PL
O

N
E-

28

BCA-118/341

End Sub

Calling a Function: To call or use a Function, you equate a variable (of proper
type) to the Function, with its arguments. That is, if the Function GenlFunc is of
Type Integer, then use the code segment:

Dim RValue as Integer

.

.

RValue = GenlFunc(Arguments)

Example: To call the volume computation function, we could use:

Dim Volume As Single

.

.

Volume = CylVol(Height, Radius)

Locating Function Procedures: Like Sub procedures, Functions can be located in
forms or modules. They are created using exactly the same process described for
Sub procedures, the only difference being you use the keyword Function. And,
like Sub procedures, Functions (in modules) can be Public or Private.

12.6.3 ADDING MENUS TO AN APPLICATION

As mentioned earlier, it is important that the interface of the application be
familiar to a seasoned, or not-so-seasoned, Windows user. One such familiar
application component is the Menu bar. Menus are used to provide a user with
choices that control the application. Menus are easily incorporated into Visual
Basic programs using the Menu Editor. A good way to think about elements of a
menu structure is to consider them as a hierarchical list of command buttons that
only appear when pulled down from the menu bar. When you click on a menu
item, some action is taken. Like command buttons, menu items are named, have
captions, and have properties.

Example: Here is a typical menu structure:

File Edit Format

New Cut Bold

Open Copy Italic

Save Paste Underline

 Size

 10

 16

 20

PL
O

N
E-

28

BCA-118/342

The level of indentation indicates position of a menu item within the
hierarchy. For example, New is a sub-element of the File menu. The line under
Save in the File menu is a separator bar (separates menu items).

With this structure, the Menu bar would display:

File Edit Format

The sub-menus appear when one of these ‘top’ level menu items is
selected. Note the Size sub-menu under Format has another level of hierarchy. It
is good practice to not use more than two levels in menus. Each menu element
will have a Click event associated with it. The Menu Editor allows us to define
the menu structure, adding access keys and shortcut keys, if desired. We then add
code to the Click events we need to respond to.

The Menu Editor is selected from the Tools menu bar or by clicking the
Menu Editor on the toolbar. This selection can only be made when the form
needing the menu is active. Upon selecting the editor, and entering the example
menu structure, the editor window looks like below in Fig. 12.13.

Fig. 12.13 Menu editor

The Caption box is where you type the text that appears in the menu bar.
Access keys are defined in the standard way using the ampersand (&). Separator
bars (a horizontal line used to separate menu items) are defined by using a
Caption of a single hyphen (-). When assigning captions and access keys, try to
use conform to any established Windows standards.

The Name box is where you enter a control name for each menu item.
This is analogous to the Name property of command buttons and is the name used
to set properties and establish the Click event procedure for each menu item. Each
menu item must have a name, even separator bars! The prefix mnu is used to
name menu items. Sub-menu item names usually refer back to main menu
headings. For example, if the menu item New is under the main heading File
menu, use the name mnuFileNew. PL

O
N

E-
28

BCA-118/343

The Index box is used for indexing any menu items defined as control
arrays. The Shortcut dropdown box is used to assign shortcut keystrokes to any
item in a menu structure. The shortcut keystroke will appear to the right of the
caption for the menu item. An example of such a keystroke is using Ctrl+X to cut
text. The HelpContextID and NegotiatePosition boxes relate to using on-line help
and object linking embedding, and are beyond the scope of this discussion. Each
menu item has four properties associated with it. These properties can be set at
design time using the Menu Editor or at run-time using the standard dot notation.
These properties are given in Table 12.1.

Table 12.1 Properties of Menu Editor

Property Description

Checked
Used to indicate whether a toggle option is turned on or off. If
True, a check mark appears next to the menu item.

Enabled
If True, menu item can be selected. If False, menu item is
grayed and cannot be selected.

Visible Controls whether the menu item appears in the structure.

WindowList WindowList

At the bottom of the Menu Editor form is a list box displaying the
hierarchical list of menu items. Sub-menu items are indented to their level in the
hierarchy. The right and left arrows adjust the levels of menu items, while the up
and down arrows move items within the same level. The Next, Insert, and Delete
buttons are used to move the selection down one line, insert a line above the
current selection, or delete the current selection, respectively.

12.7 EXAMPLE - CUSTOMER DATABASE INPUT
SCREEN

Now, let us discuss an application intended with the sports store for the
entry of customer database containing some fields. A new sports store wants you
to develop an input screen for its customer database as shown in Fig. 12.15. The
required input information is:

1. Name

2. Age

3. City of Residence

4. Sex (Male or Female)

5. Activities (Running, Walking, Biking, Swimming, Skiing and/or In-Line
Skating)

6. Athletic Level (Extreme, Advanced, Intermediate, or Beginner)

PL
O

N
E-

28

BCA-118/344

Set up the screen so that only the Name and Age (use text boxes) and,
perhaps, City (use a combo box) need to be typed; all other inputs should be set
with check boxes and option buttons. When a screen of information is complete,
display the summarized profile in a message box. This profile message box will
look like shown in Fig. 12.14.

Fig. 12.14 Profile message box

Fig. 12.15 Output of the program

12.7.1 SETTING THE PROPERTIES

Form frmCustomer:

BorderStyle = 1 - Fixed Single

Caption = Customer Profile

CommandButton cmdExit:

Caption = Exit

Frame Frame3: PL
O

N
E-

28

BCA-118/345

Caption = City of Residence

FontName = MS Sans Serif

FontBold = True

FontSize = 9.75

FontItalic = True

ComboBox cboCity:

Sorted = True

Style = 1 - Simple Combo

CommandButton cmdNew:

Caption = New Profile

CommandButton cmdShow:

Caption = Show Profile

Frame Frame4:

Caption = Athletic Level

FontName = MS Sans Serif

FontBold = True

FontSize = 9.75

FontItalic = True

OptionButton optLevel:

Caption = Beginner Index = 3

OptionButton optLevel:

Caption = Intermediate Index = 2

Value = True

OptionButton optLevel:

Caption = Advanced Index = 1

OptionButton optLevel:

Caption = Extreme

Index = 0

Frame Frame1:

Caption = Sex

FontName = MS Sans Serif

FontBold = True

FontSize = 9.75

FontItalic = True

OptionButton optSex:

Caption = Female PL
O

N
E-

28

BCA-118/346

Index = 1

OptionButton optSex:

Caption = Male

Index = 0

Value = True

Frame Frame2:

Caption = Activities

FontName = MS Sans Serif

FontBold = True FontSize = 9.75

FontItalic = True

CheckBox chkAct:

Caption = In-Line Skating

Index = 5

CheckBox chkAct:

Caption = Skiing

Index = 4

CheckBox chkAct:

Caption = Swimming

Index = 3

CheckBox chkAct:

Caption = Biking

Index = 2

CheckBox chkAct:

Caption = Walking

Index = 1

CheckBox chkAct:

Caption = Running

Index = 0

TextBox txtName:

FontName = MS Sans Serif

FontSize = 12

Label Label1:

Caption = Name

FontName = MS Sans Serif

FontBold = True

FontSize = 9.75 PL
O

N
E-

28

BCA-118/347

FontItalic = True

TextBox txtAge:

FontName = MS Sans Serif

FontSize = 12

Label Label2:

Caption = Age

FontName = MS Sans Serif

FontBold = True

FontSize = 9.75

FontItalic = True

12.7.2 CODE

General Declarations:

Option Explicit

Dim Activity As String

cmdExit Click Event:

Private Sub cmdExit_Click()

End End Sub

cmdNew Click Event:

Private Sub cmdNew_Click()

'Blank out name and reset check boxes

Dim I As Integer

txtName.Text = ""

txtAge.Text = ""

For I = 0 To 5

chkAct(I).Value = vbUnchecked

Next I

End Sub

cmdShow Click Event:

Private Sub cmdShow_Click()

Dim NoAct As Integer, I As Integer

Dim Msg As String, Pronoun As String

'Check to make sure name entered

If txtName.Text = "" Then

PL
O

N
E-

28

BCA-118/348

MsgBox "The profile requires a name.", vbOKOnly +

vbCritical, "No Name Entered"

Exit Sub

End If

'Check to make sure age entered

If txtAge.Text = "" Then

MsgBox "The profile requires an age.", vbOKOnly +

vbCritical, "No Age Entered"

Exit Sub

End If

'Put together customer profile message

Msg = txtName.Text + " is" + Str$(txtAge.Text) + "
years old."

+ vbCr

If optSex(0).Value = True Then

Pronoun = "He " Else Pronoun = "She "

Msg = Msg + Pronoun + "lives in " + cboCity.Text + "."
+ vbCr

Msg = Msg + Pronoun + "is a" If optLevel(3).Value =
False Then

Msg = Msg + "n " Else Msg = Msg + " " Msg = Msg +
Activity + "

level athlete." + vbCr NoAct = 0

For I = 0 To 5

If chkAct(I).Value = vbChecked Then

NoAct = NoAct + 1

Next I

If NoAct > 0 Then

Msg = Msg + "Activities include:" + vbCr

For I = 0 To 5

PL
O

N
E-

28

BCA-118/349

If chkAct(I).Value = vbChecked Then

Msg = Msg + String$(10, 32) + chkAct(I).Caption +
vbCr

Next I

Else

Msg = Msg + vbCr

End If

MsgBox Msg, vbOKOnly, "Customer Profile"

End Sub

Form Load Event:

Private Sub Form_Load()

'Load combo box with potential city names

cboCity.AddItem "Seattle"

cboCity.Text = "Seattle"

cboCity.AddItem "Bellevue"

cboCity.AddItem "Kirkland"

cboCity.AddItem "Everett"

cboCity.AddItem "Mercer Island"

cboCity.AddItem "Renton"

cboCity.AddItem "Issaquah"

cboCity.AddItem "Kent"

cboCity.AddItem "Bothell"

cboCity.AddItem "Tukwila"

cboCity.AddItem "West Seattle"

cboCity.AddItem "Edmonds"

cboCity.AddItem "Tacoma"

cboCity.AddItem "Federal Way"

cboCity.AddItem "Burien"

cboCity.AddItem "SeaTac"

cboCity.AddItem "Woodinville"

Activity = "intermediate"

End Sub

 PL
O

N
E-

28

BCA-118/350

optLevel Click Event:

Private Sub optLevel_Click(Index As Integer)

‘Determine activity level Select Case Index

Case 0 Activity = "extreme"

Case 1 Activity = "advanced"

Case 2 Activity = "intermediate"

Case 3 Activity = "beginner"

End Select

End Sub

txtAge KeyPress Event:

Private Sub

txtAge_KeyPress(KeyAscii As Integer)

'Only allow numbers for age

If (KeyAscii >= vbKey0 And KeyAscii <= vbKey9)

Or KeyAscii = vbKeyBack Then

Exit Sub

Else

 KeyAscii = 0

End If

End Sub

12.8 SUMMARY

ActiveX is the name for programmable elements, formerly known as OLE
controls (OCXs) or OLE custom controls. The ActiveX programming
specification is an extension of Microsoft Windows and the Object Linking and
Embedding API. Microsoft uses the term ActiveX to describe a number of its
COM (Component Object Model) technologies.

ActiveX controls can be created using a variety of languages or
development tools, including C++, Visual Basic, PowerBuilder, or with scripting
tools such as VBScript. Different types of ActiveX components are: ActiveX
Applications (ActiveX .EXE), ActiveX Code Components (ActiveX .DLL),
ActiveX Controls (.OCX controls), ActiveX Document (. VBD Document).

Component Object Model (COM) is the software architecture that allows PL
O

N
E-

28

BCA-118/351

programmers to create components, which can be later used to build applications.
The main theme of COM is its reusability. In other words, if one creates a
component using COM specifications, it can be used in any language and any
platform where COM is supported.

COM+ is an enhanced version of COM that provides better security and
improved performance. Component Object Model+ (COM+) is a binary
interoperability standard defined by Microsoft that specifies a model for
distributed object communication. COM+ defines communication by separating
objects into clients and servers.

Distributed Component Object Model (DCOM) is a proprietary Microsoft
technology that allows COM software to communicate across a network. The
DCOM is enhanced with COM applications to facilitate remote procedural calls
(RPC) and a Distributed Computing Environment (DCE) dedicated to Windows
application and platform support. Initially, Microsoft developed the COM to
communicate with processes running on one machine. Microsoft created the
DCOM to allow distributed application and process communication with
machines across an entire network.

12.9 TERMINAL QUESTIONS

1. What do you understand by ActiveX controls? Explain its components.

2. Discuss about the creation of first ActiveX control.

3. What do you understand by COM? Explain its characteristics.

4. Write a short note on basic concepts of COM.

5. Give the meaning of COM+. Moreover, explain its main features.

6. What do you understand by DCOM? Explain the problems solved by it.

7. Discuss and Develop an application entitled “Student Enrollment
System.” using Visual Basic.

BIBLIOGRAPH

[1]. https://en.wikipedia.org/wiki/Windows_API

[2]. https://www.computerhope.com/

[3]. Programming Windows with MFC, Second Edition, by Jeff Prosise

[4]. https://en.wikibooks.org/wiki/Windows_Programming

[5]. Programming Windows, 5th edition, by Charles Petzold

PL
O

N
E-

28

BCA-118/352

