Bachelor in Computer

Application
nﬂmﬂﬂ'#wmu BCA_ Elo
Uttar Pradesh Rajarshi Tandon
Open University Client Server Technology

Block-1 INTRODUCTION TO CLIENT-

SERVER COMPUTING 3-66
UNIT-1 Introduction to Client Server Computing 7
UNIT-2 Distributed Comupting 29
UNIT-3 Designing Client Server Applications 49

Block-2 INTRODUCTION TO ASP.NET 67-126

UNIT-4 Introduction to .NET Framework 71
UNIT-5 Traditional ASP Basics 89
UNIT-6 ASP.NET Introductions and Controls 107
INTRODUCTION TO ASP.NET
127-212
UNIT-7 Working with Forms and Controls 131
UNIT-8 ADO.NET 155
UNIT-9 ASP.NET State Management 173
UNIT-10 Configuration 197
CLIENT SIDE AND SERVER SIDE
LOGIN SERVICES 215-328
UNIT-11 HTML and JAVA Script 219
UNIT-12 ASP.NET Web Services 239
UNIT-13 AJAX 257

UNIT-14 Developing a Small Application Using ASP.NET 277

BCA-E10/1

BCA-E10/2

Bachelor in Computer
Application

b BCA-E10

Uttar Pradesh Rajarshi Tandon .
Open University Client Server Technology

BLOCK

INTRODUCTION TO CLIENT-SERVER COMPUTING

UNIT-1

Introduction to Client Server Computing

UNIT-2

Distributed Computing

UNIT-3

Designing Client Server Applications

BCA-E10/3

Course Design Committee

Dr. Ashutosh Gupta, Chairman
Director (In-charge)
School of Computer and Information Science, UPRTOU, Allahabad

Prof. R.S. Yadav Member
Dept. of Computer Science and Engineering, MNNIT, Allahabad
Ms. Marisha Member

Assistant Professor (Computer Science)
School of Science, UPRTOU, Allahabad

Mr. Manoj Kumar Balwant Member
Assistant Professor (Computer Science)
School of Science, UPRTOU, Allahabad

Course Preparation Committee

Dr. Krishan Kumar Author
Assistant Professor,

Department of Comuter Science Faculty of Technology
Gurukula Kangri Vishwavidyalaya, Haridwar (UK)

Dr. V.K. Saraswat Editor
Director (IET, Khandare Campus)

Institute of Engineering and Technology

Dr. B.R. Ambedkar University, Agra-282002

Dr. Ashutosh Gupta,
Director (In-charge)
School of Computer and Information Science, UPRTOU, Allahabad

Mr. Manoj Kumar Balwant Coordinator
Assistant Professor (Computer Science)
School of Science, UPRTOU, Allahabad

©UPRTOU, Prayagraj-2020
ISBN : 978-93-83328-13-0

O©AII Rights are reserved. No part of this work may be reproduced in any
form, by mimeograph or any other means, without permission in writing
from the Uttar Pradesh Rajarshi Tondon Open University, Prayagraj.
Printed and Published by Dr. Arun Kumar Gupta Registrar, Uttar Pradesh
[TESLA-009] Rajarshi Tandon Open University, 2020.
Printed By : Chandrakala Universal Pvt. 42/7 Jawahar Lal Neharu Road,
Prayagraj.
BCA-E10/4

BLOCK INTRODUCTION

Block-1 basically contains three units which are mainly intended with
Client-Server technology and its design applications. Unit 1 introduces the
history, evolution and notion of Client-Server technology and also gives
its fundamental principles. Moreover, Client/server is a program
relationship in which one program (the client) requests a service or
resource from another program (the server). Although the Client-Server
model can be used by programs within a single computer, it is an
important concept for networking. In this case, the client establishes a
connection to the server over a local area network (LAN) or wide-area
network (WAN), such as the Internet. Once the server has fulfilled the
client's request, the connection is terminated. Web browser is a client
program that has requested a service from a server; in fact, the service and
resource the server provided is the delivery of this Web page.

Client-Server networks are basically combination of client and
server software which are basically used to respond clients’ request.
Earlier, the starting of client-server network was with the inception of
computer networks which later took the vast shape of Internet and many
more technologies. In the beginning, only four cities were connected and
the network named as ARPANET (Advance Research Project Agency
Network). Things were gradually added giving birth to LAN (local area
network), MAN (metropolitan area network), WAN (wide area network)
etc. Today, it has changed and has become the network of networks and
abbreviated as Internet. Internet has not only given a new shape and
direction to new research but has opened doors for several technologies. In
such a way, It has changed the simple life of individuals to modern. The
present available Client-Server network and its communication is actually
a collection of one or more networks, rather than a single network. What
characterizes it is the use of the TCP/IP protocol stack throughout.

Unit-2 covers the basic concepts and the need of distributed
computing. It also explores its role and change in the today’s changing
environment. Distributed computing is an important area of computer
science and because of distributive nature of database it has become the
necessity of world. Most of the Internet applications are having a large
database which cannot be handled by a single or simple server computer.
Hence, it is required to have the database on multiple satellite servers
which needs a similar powerful technology in parallel.

Before studying the other concepts of client-server network and
communication one needs to understand its design concepts. Therefore,
Unit 3 describes the principles of designing a Client-Server network.
Division of labour and transition from one domain to other domain has
also been explained. New Business Requirements, recent government
initiatives to expedite the purchase ordering process, improve inventory
control and deliver better services to the public have created demands for

BCA-E10/5

BCA-E10/6

applications that would link up the government agencies to their vendors,
partners and customers. These types of business systems have to be
scalable to accommodate a large and growing number of users (in the
range of hundreds or thousands). In addition, not only is multi-platform
support essential, these applications also have to be adaptable to emerging
client operating systems (e.g. Taligent).

UNIT-1 INTRODUCTION TO CLIENT-
SERVER COMPUTING

Structure

1.0 Introduction

1.1 Objectives

1.2 Introduction to Client-Server Computing

1.3 Evolution of Client-Server Computing

1.4 Client-Server Systems

1.5 Two-tier architecture

1.6 Three-tier architecture

1.7 Multi/ N-tier architecture

1.8 Tiers vs layers

1.9 Client-Server computing and its uses / benefits
1.10 Downsizing With Client-Server computing
1.11 Mainframe Computing

1.12 Client-Server Technology & Heterogeneous Computing
1.13 Summary

1.14 Terminal questions

1.0 INTRODUCTION

A client-server computing aims at removing the barriers of
traditional mainframe centralized computing. As in past, the entire control
of any organization was at some central server and high degree of control
was limited for system managers. In traditional mainframe systems, end
users were not involved. Many barriers of information sharing and access
used to exist which caused problems. On the other hand, today, sharing of
the information and access has become the main concern for end user
computing and developer as well. System managers are not responsible for
the entire control. Or Client-server computing has replaced the big
mainframe computing. Client-server is any formal system architecture
describing technologies that cooperate together on a computer network
where users operate PCs (clients) that connect to central computers
(servers) over a computer network. Both computers cooperate to split the
work of performing various tasks.

BCA-E10/7

BCA-E10/8

One can also say that the set of management strategies for creating
systems that improve organizational effectiveness depends upon this
client/server request and response. These are strategies for distributing
computing resources within an organization to support interpersonal
communication, organizational coordination, and business collaboration.
Client-server model is an arrangement of the organizing hardware,
software, telecommunications, and data resources to put more computing
power on the desktop and create a company-wide network linking smaller
networks. Moreover, data and processing power are distributed throughout
the organization rather than being centrally located. Furthermore it also
emphasizes the user interaction with data and hence splits the processing
between client and server.

1.1 OBJECTIVES

At the end of this unit one would come to know about:
The definition of client and server.

Difference between client and server
Mainframe computers

Client server systems

Model of the client-server system

Architecture of the client-server system

YV V. .V V V VYV V

Advantages of client-server system

=
N

INTRODUCTION TO CLIENT-SERVER
COMPUTING

A client-server network is designed for end-users called clients,
used to access resources such as files, songs, video collections, or some
other service from a central computer called a server. A server's sole
purpose is to do what its name implies - serve its clients. One may have
been using this configuration and not even have known it. Have you ever
played Xbox Live or used the PlayStation Network? Your Xbox One is the
client, and when it logs into the network, it contacts the Xbox Live servers
to retrieve gaming resources like updates, video, and game demos.

Moreover; a client-server system is "a networked computing model
that distributes processes between clients and servers, which supply the
requested service." A client-server network connects many computers,
called the clients, to a main computer, called a server. A client can be
defined as a networked information solicitor, usually a desktop computer
or workstation that can query database and/or other information from a
server. The Client handles the presentations logic, processing logic, and
much of the storage logic. The client provides the graphical interface,

while the server provides access to shared resources, typically a database.
Objects break up the client and server sides of an application into smart
components that can work across networks.

A server can be defined as a device that manages applications
programs and is shared by each of the client computers that are attached to
the local area network (LAN). The server is usually a high-powered
workstation, a minicomputer, or a mainframe, that stores information for
use by networked clients. A file server is the computer that manages file
operations. It is shared by each of the client computers attached to the
LAN. This connection allows the client computers to share the server
computer's resources, such as printers, files and programs. The server runs
software that coordinates the information flow among the other computers,
called clients. The file server is like an additional hard drive for each of
the computers attached. If most of the processing occurs on the client
rather than on a server then client is called a fat client.

Clients (e D

Internet P, Cerver

,-I"_'A\—‘Hh_ j

Figure 1.1: Basic Client-Server Diagram

The major difference between the server and the client computers
is that the server is ordinarily faster and has more storage space. The
server generally performs most of the processing tasks. Some servers are
dedicated to performing a specific task such as printing or managing files.
A "thin" server is intended for the home user and provides access to the
Internet. A client-server network typically provides an efficient means to
connect ten or more computers together. Because of the size of a client-
server network, most client-server networks have a network administrator
who manages this system.

In a file server environment, each client computer is authorized to
use the database management system (DBMS) when a database
application program runs on that computer. The primary characteristic of
file server architecture is that all the data manipulation is performed at the
client computers not at the file server. The file server acts solely as a

BCA-E10/9

BCA-E10/10

shared data storage device. Software at the file server queues access
requests, but it is up to the application program at each client computer to
handle all data management functions.

One of the most used buzzwords of the 1990's is client-server.
Nearly all hardware and software vendors have something to say on the
subject. New developments in distributed computing and object-
orientation together have brought about the creation of a new class of
database systems. These systems use a client-server computing model to
provide quick response times for users and also support for complex,
shared data in a distributed environment. Current relational DBMS
products are based on a query-shipping approach in which most query
processing is performed within the servers. The clients are mainly used to
administer the wuser interface. Object-oriented database systems
(OODBMS) on the other hand, support data-shipping, which allows data
request processing to be performed at the clients.

1.2.1 CHARACTERISTICS OF CLIENT

» ltinitiates the communication

It sends the request message.

It waits for server's response.

It is the first active (or master);

Sends requests to the server;

It expects and receives responses from the server.

Usually connects to a small number of servers at one time

YV V V VYV VY V VY

Typically interacts directly with end-users using a graphical user
interface

=
N
N

CHARACTERISTICS OF SERVER

It acknowledges the communication.

It sends the response message.

It processes the request.

It is initially passive (or slave, waiting for a query);

It is listening, ready to respond to requests sent by clients;
When a request comes, he treats it and sends a response.

Usually accepts connections from a large number of clients

V V V VYV VYV V V V

Typically, does not interact directly with end-users

1.3 EVOLUTION OF CLIENT-SERVER
COMPUTING

1970s and 1980s was the era of centralized computing, with IBM
mainframe occupied over 70% of the world's computer business. Business
transactions, activities and database retrieval, queries and maintenance are
all performed by the omnipresent IBM mainframe. We are now in the
transition phase towards Client-Server Computing, a totally new concept
and technology to re-engineer the entire business world. Someone has
called it the wave of the future - the computing paradigm of the 1990s.

One may wonder that how client-server computing is different
from traditional mainframe computing and what the benefits from
employing it in business are. The main emphasis of client-server
architecture is to allow large application to be split into smaller tasks and
to perform the tasks among host (server machine) and desktops (client
machines) in the network. Client machine usually manages the front-end
processes such as GUIs (Graphical User Interfaces), dispatch requests to
server programs, validate data entered by the user and also manages the
local resources that the user interacts with such as the monitor, keyboard,
workstation, CPU and other peripherals.

The evolution of client-server computing has been driven by
business needs, as well as the increasing costs for host (mainframe and
midrange) machines and maintenance, the decreasing costs and increasing
power of micro-computers and the increased reliability of LANS.

In the past twenty-five years, there are dramatic improvements in
the hardware and software technologies for micro-computers. Micro-
computers become affordable for small businesses and organizations. And
at the same time their performances are becoming more and more reliable.
On the other hand, the drop in price for mainframe is growing at a slower
rate than the drop in its price. Little developments have achieved with
mainframes.

Client machine server machine

Figure 1.2 : Elements of Client-Server Computing

BCA-E10/11

BCA-E10/12

1.4 CLIENT-SERVER SYSTEMS

Computer system architecture has evolved along with the
capabilities of the hardware used to run applications. The simplest (and
earliest) of all was the "mainframe architecture™ in which all operations
and functionality are contained within the central (or "host") computer.
Users interacted with the host through ‘dumb’ terminals which transmitted
instructions, by capturing keystrokes, to the host and displayed the results
of those instructions for the user. Such applications were typically
character based and, despite the relatively large computing power of the
mainframe hosts were often relatively slow and cumbersome to use
because of the need to transmit every keystroke back to the host.

The introduction and widespread acceptance of the pc, with its
own native computing power and graphical user interface made it possible
for applications to become more sophisticated and the expansion of
networked systems led to the second major type of system architecture,
"file sharing”. In this architecture the pc (or "workstation™) downloads
files from a dedicated "file server" and then runs the application (including
data) locally. This works well when the shared usage is low, update
contention is low, and the volume of data to be transferred is low.
However, it rapidly became clear that file sharing choked as networks
grew larger, and the applications running on them grew more complex and
required ever larger amounts of data to be transmitted back and forth.

The problems associated with handling large, data-centric
applications, over file sharing networks led directly to the development of
the client-server architecture in the early 1980s. In this approach the file
server is replaced by a database server (the "server") which, instead of
merely transmitting and saving files to its connected workstations
(the clients™) receives and actually executes requests for data, returning
only the result sets to the client. By providing a query response rather than
a total file transfer; this architecture significantly decreases network
traffic. This allowed for the development of applications in which multiple
users could update data through GUI front ends connected to a single
shared database.

Typically either structured query language (sql) or remote
procedure calls (rpcs) are used to communicate between the client and
server. There are several variants of the basic client/server architecture as
described ahead.

Check Your Progress

> Define the term client software and server software.

» Write a short note on client-server evolution.

1.5 TWO-TIER ARCHITECTURE

In two-tier architecture, the workload is divided between the server
(which hosts the database) and the client (which hosts the user interface).
Actually these are usually located on separate physical machines but there
is no absolute requirement for this to be the case. Providing that the tiers
are logically separated they can be hosted (e.g. for development and
testing) on the same computer (figure 1.3).

lient Server
eques — g :5 Sagils —|-
- Fest _ Feques
Feturn
Fesult

Figure 1.3 : Basic two-tier architecture

The distribution of application logic and processing in this model
was problematic. If the client is 'smart' and hosts the main application
processing then there are issues associated with distributing, installing and
maintaining the application because each client needs its own local copy
of the software. If the client is 'dumb’ the application logic and processing
must be implemented in the database and then becomes totally dependent
on the specific DBMS being used. In either scenario, each client must also
have a login to the database and the necessary rights to carry out whatever
functions are required by the application. However, the two-tier client-
server architecture proved to be a good solution when the user population
work is relatively small (up to about 100 concurrent users) but it rapidly
proved to have a number of limitations. These limitations are explained
below.

1.5.1 PERFORMANCE

As the user population grows, performance begins to deteriorate.
This is the direct result of each user having their own connection to the
server which means that the server has to keep all these connections live
(using "keep-alive" messages) even when no work is being done.

1.5.2 SECURITY

Each user must have its own individual access to the database, and
be granted whatever rights may be required in order to run the application.
Apart from the security issues that this raises, maintaining users rapidly
becomes a major task in its own right. This is especially problematic when

BCA-E10/13

BCA-E10/14

new features/functionality has to be added to the application and users’
rights need to be updated.

1.5.3 CAPABILITY

No matter what type of client is used, much of the data processing
has to be located in the database which means that it is totally dependent
upon the capabilities, and implementation, provided by the database
manufacturer. This can seriously limit application functionality because
different databases support different functionality, use different
programming languages and even implement such basic tools as triggers
differently.

1.54 PORTABILITY

Since the two-tier architecture is so dependent upon the specific
database implementation, porting an existing application to a different
DBMS becomes a major issue. This is especially apparent in the case of
vertical market applications where the choice of DBMS is not determined
by the vendor having said that, this architecture found a new lease of life
in the internet age. It can work well in a disconnected environment where
the browser is essentially dumb. however, in many ways this
implementation harks back to the original mainframe architecture and
indeed, a browser based, two-tier application, can (and usually does)
suffer from many of the same issues.

1.5.5 RELIABILITY

Reliability is an important term of software engineering. As per the
software engineering, the software must be reliable enough as per the
requirements of the client and server. Client-server architecture, as the
basic medium of communication on network is the most reliable
technique. The data which is to be send through this mechanism is secured
and reliable at any point of time. Normally, all the present technologies in
minicomputers and mainframe computers provide services to support
reliability. Moreover, reliability needs availability factors to be resolved
first. Applications must also be protected from being modified one
another. Memory should be shared by only authorized tasks. Furthermore,
as far as security is concerned, only authorised users must be allowed to
access various available resources. Specifically, the software must
automatically handle multiple user contention, provide full recovery after
failure of in-flight updates, and provide utility functions to recover a
damaged magnetic disk.

1.5.6 REMOTE ACCESS TO DATABASE

Basically remote access is the ability to access the information
from a computer residing at some distance. For example, in corporations,

people at their branch offices, telecommuters, and people who are
travelling may often need access to the corporation's network. Home users
get access to the Internet through remote access to an Internet service
provider. Remote access is also possible using a dedicated line between a
computer or a remote local area network and the "central” or main
corporate local area network. A remote access server is the computer and
associated software that is set up to handle users seeking access to network
remotely. Data can be accessed from anywhere at any point of time
because it is available remotely for all users. It describes the connection of
a database client to a database server. It includes features for the
following:

> Communicating database operations and parameters from the
client to the server.

> Transporting result data from the server to the client.
> Database transaction management.

> Exchange of information.

1.6 THREE-TIER ARCHITECTURE

In an effort to overcome the limitations of the two-tier architecture
outlined above, an additional tier was introduced — creating what is now
the standard three-tier client-server model. The purpose of the additional
tier (usually referred to as the "middle™ or "rules" tier) is to handle
application execution and database management. As with the two-tier
model, the tiers can either be implemented on different physical machines
(figure 2), or multiple tiers may be co-hosted on a single machine.

: Application
Client PP Data
Server Servar
D ——Renuest —-f]—Hequest = EH]E Eviniiia fer L0
—Fesult —E -—F ezt — Request W
Return
ResUlt

Figure 1.4 : Three-tier architecture

After introducing the middle tier, the limitations of the two-tier
architecture are largely removed and the result is a much more flexible,
and scalable, system. Since clients now connect only to the application
server, not directly to the data server, the load of maintaining connections
is removed, as is the requirement to implement application logic within the BCA-E10/15

https://en.wikipedia.org/wiki/Database_transaction

BCA-E10/16

database. The database can now be backed to its proper role of managing
the storage and retrieval of data, while application logic and processing
can be handled in whatever application is most appropriate for the task.
The development of operating systems to include such features as
connection pooling, queuing and distributed transaction processing has
enhanced (and simplified) the development of the middle tier.

It is to be noted here that, in this model, the application server does
not drive the user interface, nor does it actually handle data requests
directly. Instead it allows multiple clients to share business logic,
computations, and access to the data retrieval engine that it exposes. This
has the major advantage that the client needs less software and no longer
need a direct connection to the database, so there is less security to worry
about.

Consequently applications are more scalable, and support and
installation costs are significantly less for a single server than for
maintaining applications directly on a desktop client or even a two-tier
design. There are many variants of the basic three-tier model designed to
handle different application requirements. These include distributed
transaction processing (where multiple DBMS are updated in a single
transaction), message based applications (where applications do not
communicate in real-time) and cross-platform interoperability (object
request broker or "orb" applications).

1.7 MULTIIN-TIER ARCHITECTURE

With the rapid growth of internet based applications a common
enhancement of the basic three-tier client server model has been the
addition of extra tiers, such architecture is referred to as 'n-tier' and
typically comprises four tiers (figure 3) where the web server is
responsible for handling the connection between client browsers and the
application server. The main benefit of this is simply that multiple web
servers can connect to a single application server, thereby handling more
concurrent users.

Wiieb

Browser
Yielh

Server
L e

Figure 1.4 : N-tier architecture

Check Your Progress

> Define the term client software and server software.

> Write a short note on client-server evolution.

1.8 TIERS VS LAYERS

These terms are often (regrettably) used interchangeably. Rather
they really are distinct and have definite meanings. The basic difference is
that tiers are physical, while layers are logical. In other words a tier can
theoretically be deployed independently on a dedicated computer, while
a layer is a logical separation within a tier (figure 1.5). The typical three-
tier model described above normally contains at least seven layers, split
across the three tiers. The key concept to remember about a layered
architecture is that requests and responses each flow in one direction only
and that layers may never be "skipped”. Therefore, in the model shown in
figure 1.5, the only layer that can address layer "e" (the data access layer)
is layer "d" (the rules layer). Similarly layer "c" (the application validation
layer) can only respond to requests from layer "b" (the error handling
layer).

Laver & Us=er Interface ‘R
Client R Laver B: Error Handling
E
S
)) Q | | Layer C: Walidation
Application P
u Layer D Business Logic (Rules=s)
Server o
E Layer E: Data Acoess
H
S
Data T Lawer F: Stored ProcedurerTrigoers
Server ¥ Laver & TakbesiZonstraints E

Figure 1.5 : Tiers are divided into logical layers

1.9 CLIENT-SERVER USES/BENEFITS

As client-server is fast-becoming the enabling factor for business
process reengineered organizations, because of its flexibility and speedy
application development times - it takes around six months to develop a

BCA-E10/17

BCA-E10/18

client-server application compared to around 2 years for a mainframe
version. Therefore, time taken to develop client-server applications has
reduced remarkably. By adopting the client-server technology, the
organizations have changed from steep hierarchies to flattened hierarchies.

Also, network management is replacing vertical management. As a
whole, the development and implementation of client-server technology is
more complex, more difficult and more expensive than traditional single
process applications. However, they are still badly needed because the
business demands the increased benefits.

Client-server systems have become the computing architecture for
many business organizations. Technically, a client-server system places
application processing close to the user and thus increases performance.
Due to the recent improvements in the price and performance
characteristics of workstations and the networking capabilities, the client-
server system architecture has become very popular for database systems.

A client-server DBMS provides the management of a database
within a client-server system. The database is stored on disks that can be
accessed only by the servers. Copies of database items are cached in the
global memory, which consist of all the memories of the computers
connected to the system. This reduces the disk access. This efficient global
memory design reduces the handling and creating fewer disks input/output
during the use of the database.

Some of the advantages are described below:

1) Centralization: Unlike P2P, where there is no central
administration, here in this architecture there is a centralized
control. Servers help in administering the whole set-up. Access
rights and resource allocation is done by Servers.

2) Proper Management : All the files are stored at the same place.
In this way, management of files becomes easy. Also it becomes
easier to find files.

3) Back-up and Recovery possible: As all the data is stored on
server it is easy to make a back-up of it. Also, in case of some
break-down if data is lost, it can be recovered easily and
efficiently. While in peer computing we have to take back-up at
every workstation.

4) Upgradation and Scalability in Client-server set-up: Changes
can be made easily by just upgrading the server. Also new
resources and systems can be added by making necessary changes
in server.

5) Accessibility: From various platforms in the network, server can
be accessed remotely.

6) As new information is uploaded in database; each workstation
need not have its own storage capacities increased (as may be the

http://www.ianswer4u.com/2011/12/earned-value-management-analysis.html
http://www.ianswer4u.com/2011/10/characteristics-of-good-software.html

case in peer-to-peer systems). All the changes are made only in
central computer on which server database exists.

7) Security: Rules defining security and access rights can be defined
at the time of set-up of server.

8) Servers can play different roles for different clients.

Figure 1.6 : Benefits of Client-Server

1.10 DOWNSIZING WITH CLIENT-SERVER
COMPUTING

One of the best ways to downsize is by using the new generation of
SQL based client-server computing technologies from vendors such as
Oracle, Sybase, Gupta and Novell. In the client-server model, the
application is split between functions that execute on the client, a PC or
workstation, and functions that run on the server, a multiuser data
repository. Most application logic runs at the client desktop machine.
When the application requires data, it generates the necessary SQL
command and then passes high-level code to the communications facility.
This facility then directs the SQL commands to the server, where the
database request is executed (figure-1.7). The idea of managing data on a
separate machine fits well with the management approach of treating data
as a corporate resource. In addition to executing the SQL statement, the

BCA-E10/19

BCA-E10/20

server handles security and provides for concurrent access to the data by
many queries.

response

client

guery = search

Figure 1.7 : Request/Response in Client-Server Computing

A Dbenefit of using SQL client-server computing is that the
hardware and software products supporting this approach are new and take
advantage of the latest developments, such as application languages in a
windowing environment. Another benefit is network efficiency. In
traditional file-serving PC LAN approaches, the entire data file must be
transmitted across a network to the client machine. With SQL as the basis
for database management, this problem is resolved, since only the
necessary query response data (a table) is transmitted to the client
machine. SQL on the server also enables the implementation of advanced
facilities, such as triggers and automatic procedures in the database.

Check Your Progress

» Write the main benefits of client-server computing.

» Draw and explain the diagram of request-response in client-server
environment.

1.11 MAINFRAME COMPUTING

Mainframe computing is used for critical applications, bulk data
processing, enterprise resource planning and transaction processing. Most
of this is Mainframe/Mid-Range and includes, but is not limited to,
operating system, application design & development, operations, support,
storage and security. Moreover, It is a very large and expensive computer
capable of supporting hundreds, or even thousands, of users
simultaneously. In the hierarchy that starts with a simple microprocessor

(in watches, for example) at the bottom and moves to supercomputers at
the top, mainframes are just below supercomputers.

In some ways, mainframes are more powerful than supercomputers
because they support more simultaneous programs. But supercomputers
can execute a single program faster than a mainframe. The distinction
between small mainframes and minicomputers is vague, depending really
on how the manufacturer wants to market its machines.

Figure 1.8 : Mainframe Computer in a Network

1.11.1 MAINFRAME COMPUTERS

One of the first types of computers to be used commercially was
the mainframe. This system operates by sharing a processor between a
large number of 'dumb terminals'. These terminals are composed of a
monitor and a keyboard, but they do not have their own processor, hence
the term 'dumb'’. Large businesses, such as banks and insurance
companies, use mainframes to allow their remote branches access to the
processor, which is held in a central location. The processor has to be very
powerful as huge amounts of data are dealt with. Imagine the number of
credit card transactions throughout the country that are processed in a
single day. Mainframes support multi-access and multi-programming
capabilities for the users. Mainframe computers have the following
characteristics :

Processing power : A mainframe computer will have several processors
that work together, making the machine extremely powerful.

Memory size : There is usually a vast amount of memory. Some modern
mainframes can support more than 32 GB of main memory.

Backing store devices : These are typically greater than 100 GB hard
disk. Tape drives are also used for back-up or batch processing.

Input /Output devices : Keyboard, Line printers, page printers and
monitors. BCA-E10/21

BCA-E10/22

1.12 CLIENT-SERVER TECH AND
HETEROGENEOUS COMPUTING

1.12.1 CLIENT-SERVER MODEL

Client-Server technology is a means for separating the functions of
an application into two or more distinct parts. Client/ server describes the
relationship between two computer programs in which one program, the
client, makes a service request from another program, the server, which
fulfills the request. The client presents and manipulates data on the
desktop computer. The server acts like a mainframe to store and retrieve
protected data. It is network architecture in which each computer or
process on the network is either a client or a server. Servers are powerful
computers or processes dedicated to managing disk drives (file servers),
printers (print servers), or network traffic (network servers). Clients are
PCs or workstations on which users run applications. Clients rely on
servers for resources, such as files, devices, and even processing power.

| — B
L.-‘:: 'UTER

Ar
CIETY

Client-Server Technology

NETWORK
— R _________,"' e Request
Request
%sponse Response
Request
CLIENT SERVER

Figure 1.9 : Client-Server Technology

A client/ server model has following three distinct components,
each focusing on a specific job:

> Database server
» Client application
> Network.

1.121.1 DATABASE SERVER

A server (or "back end") manages the resources such as database,
efficiently and optimally among various clients that simultaneously
request the server for the same resources. Database server mainly
concentrates on the following tasks:

1. Managing a single database of information among many
concurrent users.

2. Controlling database access and other security requirements.

3. Protecting database of information with backup and recovery
features.

4. Centrally enforcing global data integrity rules across all client
applications.

1.12.1.2 CLIENT APPLICATION

A client application (the "front end") is the part of the system that
users apply to interact with data. The client application in a client/ server
model focuses on the following job:

» Presenting an interface between the user and the resource to
complete the job.

» Managing presentation logic.
» Performing application logic and validating data entry.

» Managing the request traffic of receiving and sending information
from database server.

1.121.3 NETWORK

The third component of a client-server system is network. The
communication software is the vehicle that transmits data between the
clients and the server. Both the client and the server run communication
software that allows them to talk across the network. Client-server is an
important idea in a network; however, it can be used by programs within a
single computer. In a network, the client-server model provides a
convenient way to interconnect programs that are distributed efficiently
across different locations. Computer transactions using the client-server
model are very common. For example, to check your bank account from
your computer, a client program in your computer forwards your request
to a server program at the bank. That program may in turn forward the
request to its own client program that sends a request to a database server
at another bank computer to retrieve your account balance.

BCA-E10/23

BCA-E10/24

1.12.2 HETEROGENEOUS COMPUTING

It refers to systems that use more than one kind of processor or
cores. These systems gain performance or energy efficiency not just by
adding the same type of processors, but by adding dissimilar coprocessors,
usually incorporating specialized processing capabilities to handle
particular tasks. Usually heterogeneity in the context of computing
referred to different instruction set architectures (ISA), where the main
processor has one and the rest have another, usually a very different
architecture (maybe more than one), not just a different micro
architecture (floating point number processing is a special case of this not
usually referred to as heterogeneous). E.g. ARM big. LITTLEis an
exception where the ISAs of cores are the same and heterogeneity refers to
the speed of different micro architectures of the same ISA, then making it
more like a symmetric multiprocessor system (SMP).

In the past heterogeneous computing meant different ISAs had to
be handled differently, while a modern example, Heterogeneous (HSA)
systems, eliminate the difference (for the user); use multiple processor
types (typically CPUs and GPUs), usually on the same integrated circuit,
to provide the best of both worlds: general GPU processing (apart from its
well-known 3D graphics rendering capabilities, it can also perform
mathematically intensive computations on very large data sets), while
CPUs can run the operating system and perform traditional serial tasks.

The level of heterogeneity in modern computing systems is
gradually increasing as further scaling of fabrication technologies allows
for formerly discrete components to become integrated parts of a system-
on-chip (SoC). For example, many new processors now include built-in
logic for interfacing with other devices (SATA, PCI, Ethernet, USB,
RFID, Radios, UARTs, and memory controllers), as well as
programmable functional units and hardware accelerators
(GPUs, cryptography co-processors, programmable network processors,
A/V encoders/decoders, etc.).

Recent findings show that a heterogeneous-ISA chip
multiprocessor that exploits diversity offered by multiple ISAs can
outperform the best same-ISA heterogeneous architecture by as much as
21% with 23% energy savings and a reduction of 32% in Energy Delay
Product. Heterogeneous computing systems present new challenges not
found in typical homogeneous systems. The presence of multiple
processing elements raises all of the issues involved with homogeneous
parallel processing systems, while the level of heterogeneity in the system
can introduce non-uniformity in system development, programming
practices, and overall system capability.

Areas of heterogeneity may include:

ISA or instruction set architecture : Compute elements may have
different instruction set architectures, leading to binary incompatibility.

https://en.wikipedia.org/wiki/Coprocessors
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/Floating_point
https://en.wikipedia.org/wiki/ARM_big.LITTLE
https://en.wikipedia.org/wiki/Symmetric_multiprocessor_system
https://en.wikipedia.org/wiki/CPU
https://en.wikipedia.org/wiki/GPU
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/System_on_a_chip
https://en.wikipedia.org/wiki/System_on_a_chip
https://en.wikipedia.org/wiki/SATA
https://en.wikipedia.org/wiki/Conventional_PCI
https://en.wikipedia.org/wiki/Ethernet
https://en.wikipedia.org/wiki/USB
https://en.wikipedia.org/wiki/RFID
https://en.wikipedia.org/wiki/Radio
https://en.wikipedia.org/wiki/UART
https://en.wikipedia.org/wiki/Memory_controller
https://en.wikipedia.org/wiki/Hardware_acceleration
https://en.wikipedia.org/wiki/GPU
https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Coprocessor
https://en.wikipedia.org/wiki/Instruction_set

ABI or application binary interface: Compute elements may interpret
memory in different ways. This may include both endianness, calling
convention, and memory layout, and depends on both the architecture
and compiler being used.

API or application programming interface: Library and OS services
may not be uniformly available to all compute elements.

Low-Level Implementation of Language Features: Language features
such as functions and threads are often implemented using function
pointers, a mechanism which requires additional translation or abstraction
when used in heterogeneous environments.

Memory Interface and Hierarchy: Compute elements may have
different cache structures, cache coherency protocols, and memory access
may be uniform or non-uniform memory access (NUMA). Differences can
also be found in the ability to read arbitrary data lengths as some
processors/units can only perform byte-, word-, or burst accesses.

Interconnect: Compute elements may have differing types of interconnect
aside from basic memory/bus interfaces. This may include dedicated
network interfaces, direct memory access (DMA) devices,
mailboxes, FIFOs, and scratchpad memories, etc. Furthermore, certain
portions of a heterogeneous system may be cache-coherent, whereas
others may require explicit software-involvement for maintaining
consistency and coherency.

Performance: A heterogeneous system may have CPUs that are identical
in terms of architecture, but have underlying micro-architectural
differences that lead to various levels of performance and power
consumption.

Unix

license server

repository server for Windows XP

maodel x client 1 works on

model z model x :

‘ model y ‘
X heterogene network

Unix

repository server for | :

model y Windows 7
Windows Vista client n works on
client 2 works on model x
model y model 2

model z

Figure 1.10 : Heterogeneous Network

=
p— = =

BCA-E10/25

https://en.wikipedia.org/wiki/Application_binary_interface
https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Calling_convention
https://en.wikipedia.org/wiki/Calling_convention
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Function_pointer
https://en.wikipedia.org/wiki/Function_pointer
https://en.wikipedia.org/wiki/Memory_hierarchy
https://en.wikipedia.org/wiki/Cache_(computing)
https://en.wikipedia.org/wiki/Cache_coherency
https://en.wikipedia.org/wiki/Non-uniform_memory_access
https://en.wikipedia.org/wiki/Direct_memory_access
https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)
https://en.wikipedia.org/wiki/Scratchpad_memory

BCA-E10/26

Check Your Progress

» What is mainframe computing?
Explain the Heterogeneous network.

> What are the different components used in a client server
model?

1.13 SUMMARY

Computer networks can be used for numerous services, both for
companies and for individuals. For companies, networks of personal
computers using shared server often provide access to corporate
information. Typically, they follow the client-server model, with client
workstations on employee desktops accessing powerful servers in the
machine room. For individuals, networks offer access to a variety of
information and entertainment resources. Individuals often access the
Internet by calling up an ISP using a modem, although increasingly many
people have a fixed connection at home. An up-and-coming area is
wireless networking with new applications such as mobile e-mail access
and m-commerce.

Mainframe system operates by sharing a processor between a large
number of 'dumb terminals'. These terminals are composed of a monitor
and a keyboard, but they do not have their own processor, hence the term
'‘dumb’. Large businesses, such as banks and insurance companies, use
mainframes to allow their remote branches access to the processor, which
is held in a central location.

Heterogeneous network refers to systems that use more than one
kind of processor or cores. These systems gain performance or energy
efficiency not just by adding the same type of processors, but by adding
dissimilar coprocessors, usually incorporating specialized processing
capabilities to handle particular tasks. Usually heterogeneity in the context
of computing referred to different instruction set architectures (ISA),
where the main processor has one and the rest have another, usually a very
different architecture.

1.14 TERMINAL QUESTIONS

1. What do you understand by Client and server software?
2. Give the evolution of Client-Server Computing.

3. What are the main elements of Client-Server Computing? Draw a
diagram also.

4. Why we need Client-Server Computing? Explain its benefits.

https://en.wikipedia.org/wiki/Coprocessors
https://en.wikipedia.org/wiki/Instruction_set

© N o o

Define Mainframe computing.
Write a short note on Heterogeneous Computing.
Compare tier and layers.

“Today Client-Server Computing has become the need of almost
all computer networks”, justify this statement with respect to
arguments of present scenario.

Is there any drawback of Client-Server Computing? If yes then
discuss.

BCA-E10/27

BCA-E10/28

UNIT-2 DISTRIBUTED COMPUTING

Structure

2.0 Introduction

2.1 Objectives

2.2 Introduction to Distributed Computing

2.3 File Server Versus Client Server Database

2.4 Computing platform

2.5 Microprocessor integration & client-server computing
2.6 Implementation and scalability

2.7 Summary

2.8 Terminal questions

2.0 INTRODUCTION

Distributed computing is a very important area of Computer
Science. The term distributed means the things are scattered but they are
directly or indirectly related with each other. Nothing, in computer
Science and other technologies is untouched with this word ie distributed
computing. Distributed computing also refers to the use of distributed
systems to solve computational problems. In distributed computing, a
problem is divided into many tasks, each of which is solved by one or
more computers, which communicate with each other by message passing.

The word distributed in terms such as "distributed system",
"distributed programming", and "distributed algorithm™ originally referred
to computer networks where individual computers are physically
distributed within some geographical area. For example, Bank’s ATMs are
distributed at several places and whenever money is withdrawn from an
ATM the whole Database of the Bank is updated. Hence the load is
distributed from one main computer to many computers. In this unit the
main emphasis is to know the Distributed computing and similar
technologies. This also aims to develop a distributed system using various
technologies. Client-server systems and computing is also discussed.

Distributed systems are groups of networked computers, which
have the same goal for their work. The terms "concurrent computing”,
"parallel computing”, and "distributed computing” have a lot of overlap,
and no clear distinction exists between them. The same system may be
characterized both as "parallel” and "distributed”; the processors in a
typical distributed system run concurrently in parallel. Parallel computing
may be seen as a particular tightly coupled form of distributed

BCA-E10/29

https://en.wikipedia.org/wiki/Distributed_algorithm
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Parallel_computing

BCA-E10/30

computing, and distributed computing may be seen as a loosely coupled
form of parallel computing.

2.1 OBJECTIVE

At the end of this unit you would come to know

» The meaning of distributed computing

» Difference between Distributed systems and Distributed computing
» Client software.
» Server software
» Client-server computing
» File server
» Characteristics of Distributed computing
» Advantages of distributed computing
» Microprocessor integration
» Scaling
» Main issues of Distributed Computing
2.2 INTRODUCTION TO DISTRIBUTED

COMPUTING

Distributed Computing is a field of computer science that studies
distributed systems. A distributed system is a model in which components
located on networked computers communicate and coordinate their actions
by passing messages. The components interact with each other in order to
achieve a common goal. Three significant characteristics of distributed
systems are:

» Concurrency of components
» Lack of a global clock
» Independent failure of components.

Examples of distributed systems vary from SOA-based
systems to massively multiplayer online games to peer-to-peer
applications. A computer program that runs in a distributed system is
called a distributed program, and distributed programming is the process
of writing such programs. There are many alternatives for the message
passing mechanism, including pure HTTP, RPC-like connectors
and message queues. A goal and challenge pursued each other by message
passing.

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Message_passing
https://en.wikipedia.org/wiki/Clock_synchronization
https://en.wikipedia.org/wiki/Service-oriented_architecture
https://en.wikipedia.org/wiki/Service-oriented_architecture
https://en.wikipedia.org/wiki/Massively_multiplayer_online_game
https://en.wikipedia.org/wiki/Peer-to-peer
https://en.wikipedia.org/wiki/Peer-to-peer
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Remote_procedure_call
https://en.wikipedia.org/wiki/Message-oriented_middleware

There is no single definition of a distributed system, however some
computer scientists and practitioners in distributed systems is location
transparency; this goal has fallen out of favour in industry, as distributed
systems are different from conventional non-distributed systems, and the
differences, such as network partitions, partial system failures, and partial
upgrades, cannot simply be "papered over" by attempts at "transparency".

Distributed computing also refers to the use of distributed systems
to solve computational problems. In distributed computing, a problem is
divided into many tasks, each of which is solved by one or more
computers, which communicate with each other by message passing. The
word distributed in terms such as "distributed system”, "distributed
programming", and "distributed algorithm™ originally referred to computer
networks where individual computers are physically distributed within
some geographical area. The terms are nowadays used in a much wider
sense, even referring to autonomous processes that run on the same
physical computer and interact with There are several autonomous
computational entities, each of which has its own local memory. The
entities communicate with each other by message passing. In this article,
the computational entities are called computers or nodes.

A distributed system may have a common goal, such as solving a
large computational problem. Alternatively, each computer may have its
own user with individual needs, and the purpose of the distributed system
is to coordinate the use of shared resources or provide communication
services to the users. Other typical properties of distributed systems
include the following: The system has to tolerate failures in individual
computers.

()
() | Processor |
!
/| Mermory |
| Processor |
+
[mMermory |
M | Processor |
| Prc:ciessc:r | / | Mer-tr-..:.r}.r |
Memory |
(e
| Processor || Processor || Processor |
| Mermory |

Figure 2.1: (a) Simple System (b) Distributed System (c) Parallel System

BCA-E10/31

https://en.wikipedia.org/wiki/Location_transparency
https://en.wikipedia.org/wiki/Location_transparency
https://en.wikipedia.org/wiki/Network_partition
https://en.wikipedia.org/wiki/Distributed_algorithm
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Memory_(computers)
https://en.wikipedia.org/wiki/Message_passing
https://en.wikipedia.org/wiki/Node_(networking)
https://en.wikipedia.org/wiki/Fault_tolerance
https://en.wikipedia.org/wiki/File:Distributed-parallel.svg

BCA-E10/32

Distributed systems are groups of networked computers, which
have the same goal for their work. The terms "concurrent computing”,
"parallel computing”, and "distributed computing” have a lot of overlap,
and no clear distinction exists between them. The same system may be
characterized both as "parallel” and "distributed"; the processors in a
typical distributed system run concurrently in parallel. Parallel computing
may be seen as a particular tightly coupled form of distributed
computing, and distributed computing may be seen as a loosely coupled
form of parallel computing.

Nevertheless, it is possible to roughly classify concurrent systems
as "parallel” or "distributed” using the following criteria:

> In parallel computing, all processors may have access to a shared
memory to exchange information between processors.

> In distributed computing, each processor has its own private
memory called distributed memory. Information is exchanged by
passing messages between the processors.

> Figure (a) is a schematic view of a typical distributed system; as
usual, the system is represented as a network topology in which
each node is a computer and each line connecting the nodes is a
communication link.

> Figure (b) shows the same distributed system in more detail: each
computer has its own local memory, and information can be
exchanged only by passing messages from one node to another by
using the available communication links.

> Figure (c) shows a parallel system in which each processor has a
direct access to a shared memory.

The situation is further complicated by the traditional uses of the
terms parallel and distributed algorithm that do not quite match the above
definitions of parallel and distributed systems. Nevertheless, as a rule of
thumb, high-performance parallel computation in a shared-memory
multiprocessor uses parallel algorithms while the coordination of a large-
scale distributed system uses distributed algorithm.

221 PARALLEL ALGORITHMS IN SHARED-
MEMORY MODEL

> All processors have access to a shared memory. The algorithm
designer chooses the program executed by each processor.

> One theoretical model is the parallel random access
machines (PRAM) that are used. However, the classical PRAM
model assumes synchronous access to the shared memory.

> Shared-memory programs can be extended to distributed systems
if the underlying operating system encapsulates the

https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Shared_memory_architecture
https://en.wikipedia.org/wiki/Shared_memory_architecture
https://en.wikipedia.org/wiki/Distributed_memory

communication between nodes and virtually unifies the memory
across all individual systems.

> A model that is closer to the behavior of real-world multiprocessor
machines and takes into account the use of machine instructions,
such as Compare-and-swap (CAS), is that of asynchronous shared
memory. There is a wide body of work on this model, a summary
of which can be found in the literature.

2.2.2 ALGORITHMS IN MESSAGE-PASSING MODEL

> The algorithm designer chooses the structure of the network, as
well as the program executed by each computer.

> Models such as Boolean circuits and sorting networks are used.A
Boolean circuit can be seen as a computer network: each gate is a
computer that runs an extremely simple computer program.
Similarly, a sorting network can be seen as a computer network:
each comparator is a computer.

223 DISTRIBUTED ALGORITHMS IN MESSAGE-
PASSING MODEL

> The algorithm designer only chooses the computer program. All
computers run the same program. The system must work correctly
regardless of the structure of the network.

> A commonly used model is agraphwith one finite-state
machine per node.

In the case of distributed algorithms, computational problems are
typically related to graphs. Often the graph that describes the structure of
the computer network is the problem instance.

Example: Consider the computational problem of finding a coloring of a
given graph G. Different fields might take the following approaches.

Centralized algorithms:The graph G is encoded as a string, and the
string is given as input to a computer. The computer program finds a
coloring of the graph, encodes the coloring as a string, and outputs the
result.

Parallel algorithms:Again, the graph Gis encoded as a string.
However, multiple computers can access the same string in parallel. Each
computer might focus on one part of the graph and produce a coloring for
that part. The main focus is on high-performance computation that
exploits the processing power of multiple computers in parallel.

Distributed algorithms:The graph Gis the structure of the
computer network. There is one computer for each node of G and one
communication link for each edge of G. Initially, each computer only
knows about its immediate neighbors in the graph G; the computers must
exchange messages with each other to discover more about the structure

BCA-E10/33

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine

BCA-E10/34

of G. Each computer must produce its own color as output. The main
focus is on coordinating the operation of an arbitrary distributed system.
While the field of parallel algorithms has a different focus than the field of
distributed algorithms, there is a lot of interaction between the two fields.

E.g., the Cole-Vishkin algorithm for graph coloring was originally
presented as a parallel algorithm, but the same technique can also be used
directly as a distributed algorithm. So far the focus has been
on designing a distributed system that solves a given problem. A
complementary research problem is studying the properties of a given
distributed system.

Example: The halting problem is an analogous example from the field of
centralized computation: we are given a computer program and the task is
to decide whether it halts or runs forever.

The halting problem isundecidable in the general case, and
naturally understanding the behaviour of a computer network is at least as
hard as understanding the behaviour of one computer. However, there are
many interesting special cases that are decidable. In particular, it is
possible to reason about the behaviour of a network of finite-state
machines. One example is telling whether a given network of interacting
(asynchronous and non-deterministic) finite-state machines can reach a
deadlock. This problem is PSPACE-complete,it is decidable, but it is not
likely that there is an efficient (centralized, parallel or distributed)
algorithm that solves the problem in the case of large networks.

23 FILE SERVER VS CLIENT-SERVER
DATABASE

2.3.1 FILE SERVER

In computing, a file server (or fileserver) is a computer attached to
a network that has the primary purpose of providing a location for shared
disk access, i.e. shared storage of computer files (such as documents,
sound files, photographs, movies, images, databases, etc.) that can be
accessed by the workstations that are attached to the same computer
network. The term server highlights the role of the machine in the client-—
server scheme, where the clients are the workstations using the storage. A
file server is not intended to perform computational tasks, and does not
run programs on behalf of its clients. It is designed primarily to enable the
storage and retrieval of data while the computation is carried out by the
workstations File servers are commonly found in schools and offices,
where users use a LAN to connect their client computers.

2311 TYPES OF FILE SERVERS

A file server may be dedicated or non-dedicated. A dedicated
server is designed specifically for use as a file server, with workstations

https://en.wikipedia.org/wiki/Cole%E2%80%93Vishkin_algorithm
https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Undecidable_problem
https://en.wikipedia.org/wiki/PSPACE-complete

attached for reading and writing files and databases. File servers may also
be categorized by the method of access: Internet file servers are frequently
accessed by File Transfer Protocol (FTP) or by HTTP (but are different
from web servers, that often provide dynamic web content in addition to
static files). Servers on a LAN are wusually accessed
by SMB/CIFS protocol (Windows and Unix-like) or NFSprotocol (Unix-
like systems). Database servers, that provide access to a shared database
via a database device driver, are not regarded as file servers as they may
require Record locking.

2.3.1.2 DESIGN OF FILE SERVERS

In modern businesses the design of file servers is complicated by
competing demands for storage space, access speed, recoverability,
administration, security, and budget. This is further complicated by a
constantly changing environment, where new hardware and technology
rapidly obsolesces old equipment, and yet must seamlessly come online in
a fashion compatible with the older machinery. To manage throughput,
peak loads, and response time, vendors may utilize queuing theory to
model how the combination of hardware and software will respond over
various levels of demand. Servers may also employ dynamic load
balancing scheme to distribute requests across various pieces of hardware.
The primary piece of hardware equipment for servers over the last couple
of decades has proven to be the hard disk drive. Although other forms of
storage are viable (such as magnetic tape and solid-state drives) disk
drives have continued to offer the best fit for cost, performance, and
capacity.

2.3.1.3 STORAGE

Since the crucial function of a file server is storage, technology has
been developed to operate multiple disk drives together as a team, forming
adisk array. A disk array typically hascache, as well as advanced
functions like RAID and storage virtualization. Typically disk arrays
increase level of availability by using redundant components other than
RAID, such as power supplies. Disk arrays may be consolidated or
virtualized in a SAN.

2314 NETWORK-ATTACHED STORAGE

Network-attached storage (NAS) is file-level computer data
storage connected to acomputer network providing data access to
a heterogeneous group of clients. NAS devices specifically are
distinguished from file servers generally in a NAS being a computer
appliance — a specialized computer built from the ground up for serving
files — rather than a general purpose computer being used for serving files
(possibly with other functions). In discussions of NASs, the term "file
server" generally stands for a contrasting term, referring to general
purpose computers only. As of 2010 NAS devices are gaining popularity,

BCA-E10/35

https://en.wikipedia.org/wiki/File_Transfer_Protocol
https://en.wikipedia.org/wiki/Web_server
https://en.wikipedia.org/wiki/Server_Message_Block
https://en.wikipedia.org/wiki/CIFS
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Network_File_System_(protocol)
https://en.wikipedia.org/wiki/Database_server
https://en.wikipedia.org/wiki/Record_locking
https://en.wikipedia.org/wiki/Computer_data_storage
https://en.wikipedia.org/wiki/Computer_data_storage
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Heterogeneous_computing
https://en.wikipedia.org/wiki/Computer_appliance
https://en.wikipedia.org/wiki/Computer_appliance

BCA-E10/36

offering a convenient method for sharing files between multiple
computers.

Potential benefits of network-attached storage, compared to non-
dedicated file servers, include faster data access, easier administration, and
simple configuration. NAS systems are networked appliances containing
one or more hard drives, often arranged into logical, redundant storage
containers or RAID arrays. Network Attached Storage removes the
responsibility of file serving from other servers on the network. They
typically provide access to files using network file sharing protocols such
as NFS, SMBJ/CIFS (Server Message Block/Common Internet File
System), or AFP.

23.15 SECURITY

File servers generally offer some form of system security to limit
access to files to specific users or groups. In large organizations, this is a
task usually delegated to what is known as directory services such as open
LDAP, Novell's e-Directory or Microsoft's Active Directory. These
servers work within the hierarchical computing environment which treat
users, computers, applications and files as distinct but related entities on
the network and grant access based on user or group credentials. In many
cases, the directory service spans many file servers, potentially hundreds
for large organizations. In the past, and in smaller organizations,
authentication could take place directly at the server itself.

2.3.2 CLIENT-SERVER

The client-server model is a distributed application structure that
partitions tasks or workloads between the providers of a resource or
service, called servers, and service requesters, called clients. Often clients
and servers communicate over a computer networkon separate hardware,
but both client and server may reside in the same system. A
server host runs one or more server programs which share their resources
with clients. A client does not share any of its resources, but requests a
server's content or service function. Clients therefore initiate
communication sessions with servers which await incoming requests.
Examples of computer applications that use the client—server model
are Email, network printing, and the World Wide Web.

2.3.21 CLIENT AND SERVER ROLE

The Client-server characteristic describes the relationship of
cooperating programs in an application. The server component provides a
function or service to one or many clients, which initiate requests for such
services. Servers are classified by the services they provide. For instance,
aweb server serves web pages and a file server serves computer files. A
shared resource may be any of the server computer's software and

https://en.wikipedia.org/wiki/Computer_appliance
https://en.wikipedia.org/wiki/RAID
https://en.wikipedia.org/wiki/Network_File_System_(protocol)
https://en.wikipedia.org/wiki/CIFS
https://en.wikipedia.org/wiki/CIFS
https://en.wikipedia.org/wiki/Apple_Filing_Protocol
https://en.wikipedia.org/wiki/Directory_services
https://en.wikipedia.org/wiki/OpenLDAP
https://en.wikipedia.org/wiki/OpenLDAP
https://en.wikipedia.org/wiki/Novell_eDirectory
https://en.wikipedia.org/wiki/Active_Directory
https://en.wikipedia.org/wiki/Distributed_application
https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/Client_(computing)
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Host_(network)
https://en.wikipedia.org/wiki/Email
https://en.wikipedia.org/wiki/Network_printing
https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/Web_server
https://en.wikipedia.org/wiki/Web_page
https://en.wikipedia.org/wiki/File_server
https://en.wikipedia.org/wiki/Computer_file

electronic components, from programs and data to processors and storage
devices. The sharing of resources of a server constitutes a service.

Whether a computer is a client, a server, or both, is determined by
the nature of the application that requires the service functions. For
example, a single computer can run web server and file server software at
the same time to serve different data to clients making different kinds of
requests. Client software can also communicate with server software
within the same computer. Communication between servers, such as to
synchronize data, is sometimes called inter-server or server-to-
server communication.

2.3.2.2 CLIENT AND SERVER COMMUNICATION

The client only has to understand the response based on the well-
known application protocol, i.e. the content and the formatting of the data
for the requested service. Clients and servers exchange messages in
a request—response messaging pattern: The client sends a request, and the
server returns a response. This exchange of messages is an example
of inter-process communication.

To communicate, the computers must have a common language,
and they must follow rules so that both the client and the server know
what to expect. The language and rules of communication are defined in
a communications protocol. All client-server protocols operate in
the application layer. The application-layer protocol defines the basic
patterns of the dialogue. To formalize the data exchange even further, the
server may implement an API. The API is an abstraction layer for such
resources as databases and custom software. By restricting communication
to a specific content format, it facilitates parsing. By abstracting access, it
facilitates cross-platform data exchange.

A server may receive requests from many different clients in a
very short period of time. Because the computer can perform a limited
number of tasks at any moment, it relies on ascheduling system to
prioritize incoming requests from clients in order to accommodate them all
in turn.

Example

When abank customer accesses online banking services with
a web browser, the client initiates a request to the bank's web server. The
customer's login details may be stored in a database, and the web server
accesses the database server as a client. An application server interprets
the returned data by applying the bank’s business logic, and provides
the output to the web server. Finally, the web server returns the result to
the client web browser for display. In each step of this sequence of client-
server communication, a computer processes a request and returns data.
This is the request-response messaging pattern. When all the requests are
met, the sequence is complete and the web browser presents the data to the

BCA-E10/37

https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Data_(computing)
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Data_storage_device
https://en.wikipedia.org/wiki/Data_storage_device
https://en.wikipedia.org/wiki/Inter-server

BCA-E10/38

customer. This example illustrates a design pattern applicable to the
client-server model.

Check Your Progress

Compare file server and client server database.

> What is distributed computing?

24 COMPUTING PLATFORM

A computing platform is whatever a pre-existing piece of computer
software or code object is designed to run within, obeying its constraints,
and making use of its facilities. The term computing platform can refer to
different abstraction levels, including a certain hardware architecture,
an operating system (OS), and runtime libraries. In total it can be said to
be the stage on which computer programs can run. Binary
executables have to be compiled for a specific hardware platform, since
different central processor units have different machine codes.

In addition, operating systems and runtime libraries allow re-use of
code and provide abstraction layers which allow the same high-level
source code to run on differently configured hardware. For example, there
are many kinds of data storage device, and any individual computer can
have a different configuration of storage devices; but the application is
able to call a generic save or write function provided by the OS and
runtime libraries, which then handle the details themselves.

241 COMPONENTS

Computing platforms may also include:

> Hardware alone, in the case of small embedded systems.
Embedded systems can access hardware directly, without an OS;
this is referred to as running on "bare metal™.

> Abrowser in the case of web-based software. The browser itself
runs on a hardware + OS platform, but this is not relevant to
software running within the browser.

> An application, such as a spreadsheet or word processor, which
hosts software written in an application-specific scripting
language, such as an Excel macro. This can be extended to writing
fully-fledged applications with the Microsoft Office suite as a
platform.

> Software frameworks that provide ready-made functionality.

> Cloud computing and Platform as a Service. Extending the idea of
a software framework, these allow application developers to build

https://en.wikipedia.org/wiki/Computer_software
https://en.wikipedia.org/wiki/Computer_software
https://en.wikipedia.org/wiki/Code_object
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Runtime_library
https://en.wikipedia.org/wiki/Binary_executable
https://en.wikipedia.org/wiki/Binary_executable
https://en.wikipedia.org/wiki/Computer_hardware_platforms
https://en.wikipedia.org/wiki/Central_processor_unit
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Code_reuse
https://en.wikipedia.org/wiki/Code_reuse
https://en.wikipedia.org/wiki/Abstraction_layer
https://en.wikipedia.org/wiki/Data_storage_device
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Bare_metal_(computing)
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/Scripting_language
https://en.wikipedia.org/wiki/Scripting_language
https://en.wikipedia.org/wiki/Excel_macro
https://en.wikipedia.org/wiki/Microsoft_Office
https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Platform_as_a_Service

software out of components that are hosted not by the developer,
but by the provider, with internet communication linking them
together. The social networking sites Twitter and Facebook are
also considered development platforms.

> Avirtual machine (VM) such as the Java virtual machine. or .NET
CLR. Applications are compiled into a format similar to machine
code, known as byte code, which is then executed by the VM.

> Avirtualized version of a complete system, including virtualized
hardware, OS, software and storage. These allow, for instance, a
typical Windows program to run on what is physically a Mac.

> Some architectures have multiple layers, with each layer acting as
a platform to the one above it. In general, a component only has to
be adapted to the layer immediately beneath it. For instance, a Java
program has to be written to use the Java virtual machine (JVM)
and associated libraries as a platform, but does not have to be
adapted to run for the Windows, Linux or Macintosh OS platforms.
However, the JVM, the layer beneath the application, does have to
be built separately for each OS.

242 HARDWARE EXAMPLE

» Wintel, that 1is, Intel x86or compatible personal computer
hardware with Windows operating system.

Macintosh, custom Apple Computer hardware and Classic Mac OS
Newton devices running the Newton OS, also from Apple

ARM architecture used in mobile devices

Video game consoles

Multimedia player platform for video game console development

RISC processor based machines running Unix variants

vV V. V ¥V V V V

Midrange computers with their custom operating systems, such as
IBM OS/400

Y

Mainframe computers with their custom operating systems, such
as IBM z/0OS

» Supercomputer architectures

2.4.3 SOFTWARE EXAMPLE

> Windows 7
> i0S 9

» Android Lolipop
BCA-E10/39

https://en.wikipedia.org/wiki/Twitter
https://en.wikipedia.org/wiki/Facebook
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Java_virtual_machine
https://en.wikipedia.org/wiki/Common_Language_Runtime
https://en.wikipedia.org/wiki/Common_Language_Runtime
https://en.wikipedia.org/wiki/Bytecode
https://en.wikipedia.org/wiki/Virtualization

BCA-E10/40

Android 4.0
Windows 10
Windows 8.1
mac OS 4.1
i0S 8
Windows XP

YV V. .V V VYV VYV V

Linux

2.5 MICROPROCESSOR INTEGRATION &
CLIENT-SERVER COMPUTING

251 MICROPROCESSOR INTEGRATION

A microprocessor is a computer processor which incorporates the
functions of a computer's CPU on a single integrated circuit (IC), or at
most a few integrated circuits. The microprocessor is a multipurpose,
clock driven, register based, programmable electronic device which
accepts digital or binary data as input, processes it according to
instructions stored in its memory, and provides results as output.
Microprocessors contain both combinational logic and sequential digital
logic. Microprocessors operate on numbers and symbols represented in
the binary numeral system. The integration of a whole CPU onto a
single chip or on a few chips greatly reduced the cost of processing power.

Integrated circuit processors are produced in large numbers by
highly automated processes resulting in a low per unit cost. Single-chip
processors increase reliability as there are many fewer electrical
connections to fail. As microprocessor designs get faster, the cost of
manufacturing a chip (with smaller components built on a semiconductor
chip the same size) generally stays the same. Before microprocessors,
small computers had been built using racks of circuit boards with
many medium- and small-scale integrated circuits. Microprocessors
combined this into one or a few large-scale ICs. Continued increases in
microprocessor capacity have since rendered other forms of computers
almost completely obsolete, with one or more microprocessors used in
everything from the smallest embedded systems and handheld devices to
the largest mainframes and supercomputers.

2511 ORGANIZATION

A microprocessor normally has the arithmetic and logic section,
register file, control logic section, and buffers to external address and data
lines The internal arrangement of a microprocessor (eg Z80) varies
depending on the age of the design and the intended purposes of the
microprocessor. The complexity of an integrated circuit (IC) is bounded

https://en.wikipedia.org/wiki/IOS_8

by physical limitations of the number of transistors that can be put onto
one chip, the number of package terminations that can connect the
processor to other parts of the system, the number of interconnections it is
possible to make on the chip, and the heat that the chip can dissipate.

A minimal hypothetical microprocessor might only include
an arithmetic logic unit (ALU) and a control logic section. The ALU
performs operations such as addition, subtraction, and operations such as
AND or OR. Each operation of the ALU sets one or more flags in a status
register, which indicate the results of the last operation (zero value,
negative number, overflow, or others). The control logic retrieves
instruction codes from memory and initiates the sequence of operations
required for the ALU to carry out the instruction. A single operation
code might affect many individual data paths, registers, and other elements
of the processor. As integrated circuit technology advanced, it was feasible
to manufacture more and more complex processors on a single chip.

Additional features were added to the processor architecture; more
on-chip registers speed up programs, and complex instructions could be
used to make more compact programs. Floating-point arithmetic, for
example, was often not available the same microprocessor chip, speed up
floating point calculations. Instead of processing all of a long word on one
integrated circuit, multiple circuits in parallel processed subsets of each
data word. While this required extra logic to handle, for example, carry
and overflow within each slice, the result was a system that could handle,
for example, 32-bit words using integrated circuits with a capacity for only
four bits each.

2512 SPECIAL-PURPOSE DESIGNS

A microprocessor is a general purpose system. Several specialized
processing devices have followed from the technology. A digital signal
processor (DSP) is specialized for signal processing. Graphics processing
units (GPUs) are processors designed primarily for real time rendering of
3D images. They may be fixed function (as was more common in the
1990s), or support programmable shaders. With the continuing rise
of GPU, GPUs are evolving into increasingly general purpose stream
processors (running compute shaders), whilst retaining hardware assist for
rasterizing, but still differ from CPUs in that they are optimized for
throughput over latency, and are not suitable for running application or OS
code. Other specialized units exist for video processing and machine
vision. Microcontrollers integrate a microprocessor with peripheral
devices in embedded systems. These tend to have different tradeoffs
compared to CPUs.32-bit processors have more digital logic than narrower
processors, so 32-bit (and wider) processors produce more digital noise
and have higher static consumption than narrower processors.

Reducing digital noise improves ADC conversion results. So, 8-
or 16-bit processors are better than 32-bit processors for system on a
chip and microcontrollers that require extremely low-power electronics, or
are part of a mixed-signal integrated circuit with noise-sensitive on-chip

BCA-E10/41

https://en.wikipedia.org/wiki/32-bit
https://en.wikipedia.org/wiki/Digital_signal_processor
https://en.wikipedia.org/wiki/Digital_signal_processor
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Shader
https://en.wikipedia.org/wiki/GPGPU
https://en.wikipedia.org/wiki/Stream_processing
https://en.wikipedia.org/wiki/Stream_processing
https://en.wikipedia.org/wiki/Compute_kernel
https://en.wikipedia.org/wiki/Video_processing
https://en.wikipedia.org/wiki/Vision_processing_unit
https://en.wikipedia.org/wiki/Vision_processing_unit
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/16-bit
https://en.wikipedia.org/wiki/System_on_a_chip
https://en.wikipedia.org/wiki/System_on_a_chip
https://en.wikipedia.org/wiki/Low-power_electronics
https://en.wikipedia.org/wiki/Mixed-signal_integrated_circuit

BCA-E10/42

analog electronics such as high-resolution analog to digital converters, or
both. Nevertheless, trade-offs apply: running 32-bit arithmetic on an 8-bit
chip could end up using more power, as the chip must execute software
with multiple instructions. Modern microprocessors go into low power
states when possible, and the 8-bit chip running 32-bit software is active
most of the time. This creates a delicate balance between software,
hardware and use patterns, plus costs. When manufactured on a similar
process, 8-bit microprocessors use less power when operating and less
power when sleeping than 32-bit microprocessors. However, some people
say a 32-bit microprocessor may use less average power than an 8-bit
microprocessor when the application requires certain operations such as
floating-point math that take many more clock cycles on an 8-bit
microprocessor than a 32-bit microprocessor so the 8-bit microprocessor
spends more time in high-power operating mode.

2513 EMBEDDED APPLICATIONS

Thousands of items that were traditionally not computer-related
include microprocessors. These include large and small
household appliances, cars (and their accessory equipment units), car keys,
tools and test instruments, toys, light switches/dimmers and electrical
circuit breakers, smoke alarms, battery packs, and hi-fi audio/visual
components (from DVD players to phonograph turntables). Such products
as cellular telephones, DVD video system and HDTV broadcast systems
fundamentally require consumer devices with powerful, low-cost,
microprocessors. Increasingly stringent pollution control standards
effectively require automobile manufacturers to use microprocessor
engine management systems, to allow optimal control of emissions over
widely varying operating conditions of an automobile. Non-programmable
controls would require complex, bulky, or costly implementation to
achieve the results possible with a microprocessor.

A microprocessor control program (embedded software) can be
easily tailored to different needs of a product line, allowing upgrades in
performance with minimal redesign of the product. Different features can
be implemented in different models of a product line at negligible
production cost. Microprocessor control of a system can provide control
strategies that would be impractical to implement using electromechanical
controls or purpose-built electronic controls. For example, an engine
control system in an automobile can adjust ignition timing based on
engine speed, load on the engine, ambient temperature, and any observed
tendency for knocking—allowing an automobile to operate on a range of
fuel grades.

252 CLIENT-SERVER COMPUTING

2.5.2.1 INTRODUCTION

In the 1970s and 1980s was the era of centralized computing, with IBM

https://en.wikipedia.org/wiki/Home_appliance
https://en.wikipedia.org/wiki/Arc-fault_circuit_interrupter
https://en.wikipedia.org/wiki/Arc-fault_circuit_interrupter

mainframe occupied over 70% of the world's computer business. Business
transactions, activities and database retrieval, queries and maintenance are
all performed by the omnipresent IBM mainframe. We are now in the
transition phase towards Client-Server Computing, a totally new concept
and technology to re-engineer the entire business world. Someone has
called it the wave of the future - the computing paradigm of the 1990s.You
may start to wonder how is Client-Server computing is different from
traditional mainframe computing and what are the benefits from
employing it in business. The main emphasis of Client-Server Architecture
is to allow large application to be split into smaller tasks and to perform
the tasks among host (server machine) and desktops (client machine) in
the network. Client machine usually manages the front-end processes such
as GUIs (Graphical User Interfaces), dispatch requests to server programs,
validate data entered by the user and also manages the local resources that
the user interacts with such as the monitor, keyboard, workstation, CPU
and other peripherals. On the other hand, the server fulfills the client
request by performing the service requested. After the server receives
requests from clients, it executes database retrieval, updates and manages
data integrity and dispatches responses to client requests.

The goals of Client-Server Computing are to allow every
networked workstation (Client) and host (Server) to be accessible, as
needed by an application, and to allow all existing software and hardware
components from various vendors to work together. When these two
conditions are met, the environment can be successful and the benefits of
client/server computing, such as cost savings, increased productivity,
flexibility, and resource utilization, can be realized.

The evolution of Client-Server Computing has been driven by
business needs, as well as the increasing costs for host (mainframe and
midrange) machines and maintenance, the decreasing costs and increasing
power of micro-computers and the increased reliability of LANs (Local
Area Networks).

In the past twenty years, there are dramatic improvements in the
hardware and software technologies for micro-computers. Micro-
computers become affordable for small businesses and organizations. And
at the same time their performances are becoming more and more reliable.
On the other hand, the drop in price for mainframe is growing at a slower
rate than the drop in its price. Little developments have achieved with
mainframes.

The following are the improvements made by micro-computers:

Hardware: The speed of desktop microprocessors has grown
exponentially, from a 8MHz 386-based computers to 100Hz-based
Pentium-based microprocessors. These mass-produced microprocessors
are cheaper and more powerful than those used in mainframe and
midrange computers. On the other hand, the capacity of main memory in
micro-computers has been quadrupling every three years. Typically main
memory size is 16 Megabytes nowadays. Besides, the amount of backup

BCA-E10/43

BCA-E10/44

storage and memory such as hard disks and CD-ROMs that are able to
support micro-computers has also puts an almost unlimited amount of data
in reach for end-users.

Software: The development and acceptance of GUIs (Graphical User
Interfaces) such as Windows 3.1 and OS/2 has made the PC working
environment more user-friendly. And the user are more efficient in
learning new application software in a graphical environment. Besides
GUIs, the use of multithreaded processing and relational databases has
also contributed to the popularity of Client-Server Computing.

Configurations in Client-Server Computing:Client-Server Computing
is divided into three components, a Client Process requesting service and a
Server Process providing the requested service, with a Middleware in
between them for their interaction.

Client : A Client Machine usually manages the user-interface portion of
the application, validate data entered by the user, dispatch requests to
server programs. It is the front-end of the application that the user sees and
interacts with. Besides, the Client Process also manages the local
resources that the user interacts with such as the monitor, keyboard,
workstation, CPU and other peripherals.

Server: On the other hand, the Server Machine fulfils the client request by
performing the service requested. After the server receives requests from
clients, it executes database retrieval, updates and manages data integrity
and dispatches responses to client requests. The server-based process may
run on another machine on the network; the server is then provided both
file system services and application services. Or in some cases, another
desktop machine provides the application services. The server acts as
software engine that manages shared resources such as databases, printers,
communication links, or high powered-processors. The main aim of the
Server Process is to perform the back-end tasks that are common to similar
applications. The simplest forms of servers are disk servers and file
servers. With a file server, the client passes requests for files or file
records over a network to the file server. This form of data service requires
large bandwidth and can slow a network with many users. The more
advanced form of servers are Database servers, Transaction server and
Application servers.

The Four Dominant Client/Server Application Models: Having had a
deeper look into the terms and architectures of client/server technology,
let's consider the dominant application models available. Nowadays, there
are four client/server application models that are widely used in the
market. They are Structured Query Language (SQL) databases,
Transaction Processing (TP) monitors, groupware and distributed
objects. Each one of them is capable of creating its own complete
client/server applications with its own tools. Moreover, they also introduce
their own favourable form of middleware (all this will be further
discussed later). But first, what is the reason for having different models

instead of having just one model, and what is the
advantages/disadvantages of having just one particular model. The reason
why we need different models for different applications is because each
one of them have their own advantages and disadvantages, and sometimes
one model performs better than the others in one particular situation.
Furthermore, standardizing the whole market with one particular model
will not only discourage the vendors from developing other new (and
better) models, but also put off other potential small companies from
competing with those gigantic ones. Having said that, standardizing the
market with one particular model does have the advantage of
concentrating the development of that particular model-based software,
and hence improvements can be achieved much faster and as a result, cost
of running/implementing/services will reduce significantly.

2.6 IMPLEMENTATION AND SCALABILITY
26.1 IMPLEMENTATION

Implementation is the carrying out, execution, or practice of a plan,
a method, or any design, idea, model, specification, standard or policy for
doing something. As such, implementation is the action that must follow
any preliminary thinking in order for something to actually happen.
In computer science, an implementation is a realization of a technical
specification or algorithm as aprogram, software component, or
other computer system through computer programming and deployment.
Many implementations may exist for a given specification or standard. For
example, web browsers contain implementations of WWW Consortium-
recommended specifications, and software development tools contain
implementations of programming languages. A special case occurs
in object-oriented programming, when a concrete class implements
an interface; in this case the concrete class is an implementation of the
interface and it includes methods which are implementations of
those methods specified by the interface.

In the Information Technology (IT) industry, implementation
refers to post-sales process of guiding a client from purchase to use of the
software or hardware that was purchased. This includes requirements
analysis, scope analysis, customizations, systems integrations, user
policies, user training and delivery. These steps are often overseen by a
project manager using project management methodologies. Software
Implementations involve several professionals that are relatively new to
the knowledge based economy such as business analysts, technical
analysts, solutions architects, and project managers. To implement a
system successfully, a large number of inter-related tasks need to be
carried out in an appropriate sequence.

In political science, implementation refers to the carrying out
of public policy. Legislatures pass laws that are then carried out by public
servants working in bureaucratic agencies. This process consists of rule-
making, rule-administration and rule-adjudication. Factors impacting

BCA-E10/45

https://en.wikipedia.org/wiki/Software_deployment
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/World_Wide_Web_Consortium
https://en.wikipedia.org/wiki/Programming_languages
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Concrete_class
https://en.wikipedia.org/wiki/Class_(object-oriented_programming)
https://en.wikipedia.org/wiki/Interface_(object-oriented_programming)
https://en.wikipedia.org/wiki/Method_(object-oriented_programming)
https://en.wikipedia.org/wiki/Information_technology
https://en.wikipedia.org/wiki/Industry
https://en.wikipedia.org/wiki/Project_management
https://en.wikipedia.org/wiki/Business_analysis
https://en.wikipedia.org/wiki/Technical_analysis
https://en.wikipedia.org/wiki/Technical_analysis
https://en.wikipedia.org/wiki/Solutions_architect
https://en.wikipedia.org/wiki/Political_science
https://en.wikipedia.org/wiki/Public_policy
https://en.wikipedia.org/wiki/Legislatures
https://en.wikipedia.org/wiki/Public_servants
https://en.wikipedia.org/wiki/Public_servants
https://en.wikipedia.org/wiki/Bureaucracy

BCA-E10/46

implementation include the legislative intent, the administrative capacity
of the implementing bureaucracy, interest group activity and opposition,
and presidential or executive support.

26.1 SCALABILITY

Scalability is the capability of a system, network, or process to
handle a growing amount of work, or its potential to be enlarged in order
to accommodate that growth. For example, it can refer to the capability of
a system to increase its total output under an increased load when
resources (typically hardware) are added.

An analogous meaning is implied when the word is used in
an economic context, where scalability of a company implies that the
underlying business model offers the potential for economic growth within
the company. Scalability, as a property of systems, is generally difficult to
define and in any particular case it is necessary to define the specific
requirements for scalability on those dimensions that are deemed
important. It is a highly significant issue in electronics systems, databases,
routers, and networking. A system whose performance improves after
adding hardware, proportionally to the capacity added, is said to be
a scalable system. An algorithm, design, networking protocol, program, or
other system is said to scale if it is suitably efficient and practical when
applied to large situations (e.g. a large input data set, a large number of
outputs or users, or a large number of participating nodes in the case of a
distributed system).

Check Your Progress

» What is computing platform?
What is scalability?

» Explain the term Implementation.

2./ SUMMARY

The term distributed means the things are scattered but they are
directly or indirectly related with each other. Nothing, in computer
Science and other technologies is untouched with this word ie distributed
computing. Distributed computing also refers to the use of distributed
systems to solve computational problems.

A computer program that runs in a distributed system is called
a distributed program, and distributed programming is the process of
writing such programs. There are many alternatives for the message
passing mechanism, including pure HTTP, RPC-like connectors
and message queues. A goal and challenge pursued each other by message
passing.

https://en.wikipedia.org/wiki/Economics
https://en.wikipedia.org/wiki/Business_model
https://en.wikipedia.org/wiki/Economic_growth
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Protocol_(computing)
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Algorithmic_efficiency
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Remote_procedure_call
https://en.wikipedia.org/wiki/Message-oriented_middleware

The terms "concurrent computing”, "parallel computing”, and
"distributed computing” have a lot of overlap, and no clear distinction
exists between them. The same system may be characterized both as
"parallel™ and "distributed"; the processors in a typical distributed system
run concurrently in parallel. Parallel computing may be seen as a
particular tightly coupled form of distributed computing, and distributed
computing may be seen as a loosely coupled form of parallel computing.

In computing, a file server (or fileserver) is a computer attached to
a network that has the primary purpose of providing a location for shared
disk access, i.e. shared storage of computer files (such as documents,
sound files, photographs, movies, images, databases, etc.) that can be
accessed by the workstations that are attached to the same computer
network.

2.8 TERMINAL QUESTIONS

1. What do you understand by Distributed Computing?

2. Give the meaning of file server database.

3. What are the main benefits of Distributed Computing?
4

Discuss the term parallel computing with reference to Distributed
computing.

5. Write a short note on Four Dominant Client/Server Application
Models.

6. Compare implementation and scalability.
7. Explain embedded applications.

8. Is there any drawback of Distributed Computing? If any then
discuss.

BCA-E10/47

https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Parallel_computing

BCA-E10/48

UNIT-3 DESIGNING CLIENT-SERVER
APPLICATIONS

Structure

3.0 Introduction

3.1 Objectives

3.2 Fundamentals of Client-Server Application
3.3 Types of Logic

3.4 Division of Labor

3.5 Client-Server communication

3.6 Interaction of Client-Server with Protocols
3.7 Goals for Client-Server Design

3.8 Client-Server Performance Optimization
3.9 Implementation of Client-Server Application
3.10 Summary

3.11 Terminal questions

3.0 INTRODUCTION

The trend of business process reengineering has generated the need
to improve communications, reduce overhead, enhance work-process
efficiencies and facilitate information sharing across departmental and
organizational boundaries. As a result, information technology is faced
with a new set of application requirements and pressures toward
distributed computing.

New Business Requirements Recent government initiatives to
expedite the purchase ordering process, improve inventory control and
deliver better services to the public have created demands for applications
that would link up the government agencies to their vendors, partners and
customers. These types of business systems have to be scalable to
accommodate a large and growing number of users (in the range of
hundreds or thousands). In addition, not only is multi-platform support
essential, these applications also have to be adaptable to emerging client
operating systems (e.g., Taligent). Finally, considerations have to be made
for dial-up (or remote) users.

BCA-E10/49

BCA-E10/50

Current Approach to Application Design Today's most popular
approach to application design cannot meet the aforementioned business
needs. Most of the commonly used client/server development tools allow
only client-side processing. In most organizations, client/server
applications are developed using one of these tools in addition to a SQL
database server that supports stored procedures. A stored procedure is
written in a vendor-specific SQL dialect. It resides in a database for
processing data requests sent from clients. Application created using this
approach generally has two-tier architecture. The first tier is a single
process running on the user machine. It consists of the presentation and
application layers bundled together to form one executable, generated by
the client/server development software.

The second tier is the database server with stored procedures
residing in it. This type of application architecture performs well in single-
vendor/single-database environments with fewer than 100 users. Each user
connection takes up some resources on the database server. As the number
of users increases, the single database server will sooner or later run out of
resources. More database servers will be required to accommodate the
growing install base. One way to solve the problem is with a two-tier
model and database replication. By replicating data on one server to
another server, the number of users supported can be doubled. Data
replication, however, is only suited for certain types of applications - those
with a low chance of simultaneous record updates. In other words, when it
is unlikely that two or more users will be updating the same record at the
same time, data replication could be an appropriate approach to solving
the scalability problem. However, for those applications with a high
volume of transactions and with potentially hundreds or thousands of
users, one may wish to find an alternative solution.

Some of the things that you may need to think about include:

> Designing a Distributed Database: This brings a new level of
complexity to applications. What's on the client(s)? What's on the
server(s)? How much disk space? What client/server model is to be
used? Object Locking?

» Designing a Distributed Application: What runs on the client(s)?
What runs on the server(s)? What runs on both? What client/server
model is to be used?

» Performance and Communications Loads: How much load on the
LAN? Can it run on twinax? What about slow leased line and dial-
up access?

» Security and Integrity Considerations: Backup what? Backup
when? Backup where? Software distribution and upgrade
procedures across "n" PCs? Security administration across "n"
PCs?

» The User Interface: What about OOD? GUI WIMP constructs?
Action bar object-action designs? This is not a traditional i5/0S
"menu driven" system.

3.1 OBJECTIVES

At the end of this unit you would come to know
» The meaning of designing client-server application
Types of logic
Division of Labor
Client-Server communication
Basic idea of protocols like SMTP
Interaction of Client-Server with Protocols
Goals for Client/Server Design

Client/Server Performance Optimization

YV V V V VYV V V V

Implementing a Client/Server Application

.°°
N

FUNDAMENTALS OF CLIENT-SERVER
APPLICATION

Client-server is a program relationship in which one program
(the client) requests a service or resource from another program
(the server). Although the client/server model can be used by programs
within a single computer, it is a more important concept for networking.
In this case, the client establishes a connection to the server over a local
area network (LAN) or wide-area network (WAN), such as the Internet.
Once the server has fulfilled the client's request, the connection is
terminated. Your Web browser is a client program that has requested a
service from a server; in fact, the service and resource the server provided
is the delivery of this Web page.

3.21 BASIC CLIENT/SERVER ARCHITECTURE

The most basic form of the client/server architecture involves two
computers: one computer, the server, is responsible for storing some sort
of data and handing it to the other computer, the client, for user
interaction. The user can modify that data and save it back to the server.
The Web implements this simple form of client/server architecture for
multiple client machines. Your computer, the client, uses a Web browser
to display HTML documents stored across the Internet on a Web server.

There are four software components to the Web system:

BCA-E10/51

BCA-E10/52

> A browser such as Netscape that displays HTML documents on a
client machine.

> A server program running on the server that hands HTML
documents to client browsers.

» The HTML documents stored on the server machine.

> The communications protocol that handles the communication of
data between the client and server.

The Figure 3.1 shows how this architecture fits together.

I
Il
N

I Z_
HTTP aver the Intemet

HTKML Filas Web Browser
HTTP (Webk) Server

Server Client

Figure 3.1 : The Client/Server Architecture of the Web

3.2.2 PROCESS CLASSIFICATION

Client process, the process that requires a service is called a client
process and on the other hand the process that provides the required
service is called server process. The client requires a service and the server
provides the service and makes the results available to the client. In
general, client software:

» It is an arbitrary application program that becomes a client
temporarily when remote access is needed, but also performs other
computation locally.

It is invoked locally by a user, and executes only for one session.
It runs locally on a user personal computer.

It actively initiates contact with a server.

vV V VY V

It can access multiple services as needed, but actively contacts one
remote server at a time.

» It does not require special hardware or a sophisticated operating
system.

http://www.gbengasesan.com/fyp/7/f25-1.gif

3.2.3 SERVER FUNCTIONS

Any server function has the following properties:

>

YV V V V

Is a special purpose, privileged program dedicated to providing
one service, but can handle multiple remote clients at the same
time.

It runs on a shared computer (i.e. not a user’s personal computer).
Waits for contact from arbitrary remote clients.

Accepts contact from arbitrary clients, but offers a single service.

Requires powerful hardware and a sophisticated operating system.

3.24 APPLISCATION SERVER

3.24.1 KINDS OF CLIENT SERVICES

» mail server

» file server

» terminal server

» name server

» authentication server

» Qateway server

» administration server

3.24.2 A SERVER MUST GUARANTEE

» Authentication: client identity verification

» Authorization: verification of the possibility for a client to access
to a particular service

» Data security: guarantee that specific data cannot be read and/or
modified.

3.25 CHARACTERISTICS OF CLIENT-SERVER
ARCHITECTURE

» Client and server machines need different types of hardware and
software resources.

» Client and server machines may belong to different vendors.

» Horizontal scalability (increase of the client machines) and vertical
scalability (migration to a more powerful server or to a multi-
server solution).

» A client or server application interacts directly with a transport

layer protocol to establish communication and to send or receive
information.

BCA-E10/53

» The transport protocol then uses lower layer protocols to send or
receive individual messages. Thus, a computer needs a complete
stack of protocols to run either a client or a server.

» A single server-class computer can offer multiple services at the
same time; a separate server program is needed for each service.

> ldentifying a particular service TCP uses 16-bit integer values
(protocol port numbers) to identify services, and assign a unique
port number to each service.

» A client specifies the protocol port number of the desired service
when sending a request.

3.2.6 CLASSIFICATION OF CLIENT-SERVER
STRUCTURES

In a client/server application three functions are present: user
interface, application programs, data management. Following the
assignment of functions among client and server we have three possible
types of structures:

Host- based processing: is not true client server computing. It refers to
the traditional mainframe environment in which all or virtually all of the
processing is done on a central host. The user’s station is generally limited
to the role of a terminal emulator.

Server-based processing: The client is principally responsible for
providing a graphical user interface, while virtually all the processing is
done on the server.

Client-based processing: Virtually all application processing may be
done at the client, with the exception of database logic functions that are
best performed at the server. This configuration is perhaps the most
common client server approach in current use.

Cooperative processing: That application processing is performed in an
optimized fashion, taking advantage of the strength of both client and
server machines and of distribution of data.

client server

Presentation logic
Application logic

Database logic

DBEMS

Host-based processing

Presentation logic
Application logic
Database logic

DBEMS

Server-based processing 24

Figure 3.2: Host-Based and Server-Based Processing
BCA-E10/54

client server

Presentation logic

Application logic Application logic

Database logic

DBMS

Cooperative processing

Presentation logic
Application logic

Database Logic Database logic
DBMS
Client-based processing 26

Figure 3.2: Cooperative-Based and Client-Based Processing

3.3 TYPESOF LOGIC

For purposes of distribution, it is possible to divide application
software into three distinct types of logic:

> Presentation, which is associated with the user interface

> Business rule, which is associated with accomplishing a basic
business process

> Data manipulation, which is associated with reading and writing
persistent data

Presentation logic is associated with a procedure step definition.
Business rule logic and data manipulation logic are generally found in
elementary processes or process action blocks. In some applications, little
or no business logic exists except for that directly governing data.

In simple client/server applications, these three types of logic can
be divided into two components executing on different machines, one for
presentation and one for data manipulation. Business rule logic is
generally embedded in whichever component it appears to make sense, or
it may be segmented into reusable action blocks. One reason for putting
business rule logic in a reusable component is that you can easily generate
and install the component for a different platform.

You do not have to decide what processing logic is required to
support network communications. CA Gen for client/server products
includes a communications runtime for you. For more information about
the communications runtime components, see Understanding Distributed
Processing.

The important task to remember is to design client/server
applications to be modular and flexible. Maintain a clear distinction

BCA-E10/55

BCA-E10/56

between presentation logic, business rule logic, and data manipulation
logic so that you can change between client/server styles as needed.
Maintain data manipulation logic as separate action diagrams or common
action blocks to be used by server procedures. This approach also allows
many client procedures to use the server procedures.

3.3.1 PRESENTATION LOGIC

The client component of a client/server application requires a
graphical user interface. For information about the special action
statements for GUI applications, see Designing Action Diagrams.

3.3.2 BUSINESS RULE LOGIC

A major design consideration for the processing logic is what logic
is required to fully support the tasks performed by the user. After you
determine this, you can decide if the logic must be distributed or not. If the
logic is distributed, you have considerations of which platform, client or
server, is best suited for the particular functionality.

3.3.3 DATA MANIPULATION LOGIC

A key design consideration concerning data is how important is
access to current data. Depending on the application and business needs,
data that is updated periodically, instead of continually, may be adequate.
Data that is replicated on the client platform is often used only for read
access (data look up). If other actions are required, such as create, update,
and delete, the database management system (DBMS) must have the
capability to handle the data integrity, node directories, and two-phase
commits. Typically, the DBMS provides these capabilities and not the
generated application. You can, however, build with CA Gen the time
stamping and locking logic in your application, but you must also design
for various failure conditions.

Dividing the logic also gives rise to three basic design alternatives for
client-server:

> remote presentation
> distributed process

> remote data access

3.4 DIVISION OF LABOR

Businesses of various sizes have various computer needs. Larger
businesses necessarily need to use more computers than smaller
businesses do. Large businesses routinely have large computer setups,
such as mainframes and networks. A network for a large business

commonly has client-server architecture, also known as two-tier
architecture. No matter what it is called, this type of architecture is a
division of labor for the computing functions required by a large business.

Under the structure of the client-server architecture, a business's
computer network will have a server computer, which functions as the
"brains” of the organization, and a group of client computers, which are
commonly called workstations. The server part of this architecture will be
a large-capacity computer, perhaps even a mainframe, with a large amount
of data and functionality stored on it. The client portions are smaller
computers that employees use to perform their computer-based
responsibilities.

Servers commonly contain data files and applications that can be
accessed across the network, by workstations or employee computers. An
employee who wants to access company-wide data files, for instance,
would use his or her client computer to access the data files on the server.
Other employees may use a common-access application by accessing the
server through their client computers.

Check Your Progress

What is implementation of client-server application?

> Give the important goals of client/server design.

3.5 CLIENT-SERVER COMMUNICATION

A key part of any Asynchronous JavaScript and XML (Ajax)-
based web application is the communication layer between the client and
the server. Modern web applications are all based on various Ajax-related
concepts. The use of Ajax techniques led to an increase in interactive or
dynamic interfaces on web pages. The Ajax revolution began with the
notion that web applications can retrieve data from the server
asynchronously in the background, and interaction between the web page
and the server is not limited to the moment when the page is fetched. The
web page concept extended into a long-living web application that
interacts with the user through ongoing communication with the
application’s back end. A few examples for what this ongoing
communication allows are

> Sending and receiving of information
> Ad-hoc input validation (for example, password strength)

> Auto-completion of user input based on rules and analysis done on
the server

To perform the tasks related to the client-server interaction, an
application needs an optimal communication layer that provides the proper
communication mechanism for each communication task.

BCA-E10/57

BCA-E10/58

3.6 INTERACTION OF CLIENT-SERVER
WITH PROTOCOLS

3.6.1 TRANSMISSION CONTROL
PROTOCOL/INTERNET PROTOCOL

The TCP/IP protocol suite is now being used in many commercial
applications. It is particularly evident in internetworking between different
LAN environments. TCP/IP is specifically designed to handle
communications through "networks of interconnected networks." In fact, it
has now become the de facto protocol for LAN-based Client/Server
connectivity and is supported on virtually every computing platform. More
importantly, most inter-process communications and development tools
embed support for TCP/IP where multiplatform interoperability is
required. It is worth noting that IBM has followed this growth and not
only provides support for TCP/IP on all its platforms, but now enables the
transport of its own interoperability interfaces (such as CPIC, APPC) on
TCP/IP.

3.6.2 TCP/IP'S ARCHITECTURE

The TCP/IP protocol suite is composed of the following
components: a network protocol (IP) and its routing logic, three transport
protocols (TCP, UDP, and ICMP), and a series of session, presentation
and application services. The following sections highlight those of
interest.

3.6.3 INTERNET PROTOCOL

IP represents the network layer and is equivalent to OSl's IP or
X.25. A unique network address is assigned to every system, whether the
system is connected to a LAN or a WAN. The system comes with its
associated routing protocols and lower level functions such as network-to-
physical address resolution protocols (ARP). Commonly used routing
protocols include RIP, OSPF, IGRP, and Cisco's proprietary protocol.
OSPF has been adopted by the community to be the standards-based
preferred protocol for large networks.

3.6.3.1 INTERNET ADDRESSING SCHEME

An addressing scheme is clearly a requirement for communications
in a computer network. With an addressing scheme, packets are forwarded
from one location to another.An IP address is a unique identifier used to
locate a device on the IP network. Conceptually an IP address is a unique
global address for a network interface. It is a 32 bit long identifier and
encodes a network number (network prefix) and a host number. IP has
two versions i.e; IPv4 and IPv6, out of which IPv4 is currently used in

India. IPv4 has 32- bit address which is divided into four octates. It is
represented in a so-called Dotted Decimal notation. Eg. 123. 65. 1. 92.
Each byte is identified by a decimal number in the range [0..255].

To make the system scalable, the address structure is subdivided
into the network ID and the host ID. The network ID identifies the
network the device belongs to; the host ID identifies the device. This
implies that all devices belonging to the same network have a single
network ID. Based on the bit positioning assigned to the network ID and
the host ID, the IP address is further subdivided into classes A, B, C, D
(multicast), and E (reserved).

10000000 | 10001111 | 10001001 | 10010000
15! Byte 2nd Byte 3 Byte 4'h Byte

=128 =143 =137 =144

~ N\ /7

128.143.137.144

Figure 3.3 : Dotted Decimal Notation

3.6.4 TRANSPORT PROTOCOLS

TCP provides Transport services over IP. It is connection-oriented,
meaning it requires a session to be set up between two parties to provide
its services. It ensures end-to-end data transmission, error recovery,
ordering of data, and flow control. TCP provides the kind of
communications that users and programs expect to have in locally
connected sessions. UDP provides connectionless transport services, and
is used in very specific applications that do not require end-to-end
reliability such as that provided by TCP.

3.641 TCP CONNECTION

TCP is a connection oriented protocol due to 3-way handshaking.
TCP has 3 phases:

1. Connection establishment
2. Data transfer
3. Connection release

Out of which connection establishment and connection release
both takes place through 3 way

Handshaking (figure 3.4) BCA-E10/59

BCA-E10/60

Chent Server Claent Server

. SYN FIN |
; (

SYN+ACK FIN+ACK |
ACK ACK _|
Conmeetion Establishment (cmmection Release

Figure 3.4 : TCP Connection

3.6.5 TELNET

Telnet is an application service that uses TCP. It provides terminal
emulation services and supports terminal-to-host connections over an
internetwork. It is composed of two different portions: a client entity that
provides services to access hosts and a server portion that provides
services to be accessed by clients. Even workstation operating systems
such as OS/2 and Windows can provide telnet server support, thus
enabling a remote user to log onto the workstation using this method.

3.6.6 FILE TRANSFER PROTOCOL (FTP)

FTP uses TCP services to provide file transfer services to
applications. FTP includes a client and server portion. Server FTP listens
for a session initiation request from client FTP. Files may be transferred in
either direction, and ASCII and binary file transfer is supported. FTP
provides a simple means to perform software distribution to hosts, servers,
and workstations.

3.6.7 SIMPLE NETWORK MANAGEMENT
PROTOCOL (SNMP)

SNMP provides intelligence and services to effectively manage an
internetwork. It has been widely adopted by hub, bridge, and router
manufacturers as the preferred technology to monitor and manage their
devices. SNMP uses UDP to support communications between agents—
intelligent software that runs in the devices—and the manager, which runs
in the management workstation. Two basic forms of communications can
occur: SNMP polling (in which the manager periodically asks the agent to

provide status and performance data) and trap generation (in which the
agent proactively notifies the manager that a change of status or an
anomaly is occurring).

3.6.8 NETWORK FILE SYSTEM (NFS)

The NFS protocol enables the use of IP by servers to share disk
space and files the same way a Novell or LAN Manager-network server
does. It is useful in environments in which servers are running different
operating systems. However, it does not offer support for the same
administration facilities that a NetWare environment typically provides.

3.6.9 SIMPLE MAIL TRANSFER PROTOCOL (SMTP)

SMTP uses TCP connections to transfer text-oriented electronic
mail among users on the same host or among hosts over the network.
Developments are under way to adopt a standard to add multimedia
capabilities (MIME) to SMTP. Its use is widespread on the Internet, where
it enables any user to reach millions of users in universities, vendor
organizations, standards bodies, and so on. Most electronic mail systems
today provide some form of SMTP gateway to let users benefit from this
overall connectivity.

3.7 GOALS FOR CLIENT-SERVER DESIGN

When you design a client-server application, you're balancing
several sets of requirements. You want to build the fastest, most
productive application for your users. You also want to ensure the
integrity of application data, make the most of existing hardware
investments, and build in scalability for the future. In addition, as a
developer, you want to make the development process as streamlined and
cost-efficient as possible. Some common goals for the client-server
systems are:

> Portability: Server can be installed on a variety of machines and
operating systems and functions in a variety of networking
environments.

> Transparency: The server might itself be distributed (why?), but
should provide a single "logical” service to the user.

> Performance: Client should be customized for interactive
display-intensive tasks and Server should provide CPU-intensive
operations.

> Scalability: Server has spare capacity to handle larger number of
clients.

Flexibility: Should be usable for a variety of user interfaces.

Reliability: System should survive individual node and/or
communication link problems.

BCA-E10/61

BCA-E10/62

3.8 CLIENT-SERVER PERFORMANCE
OPTIMIZATION

When you have implemented your client-server application, you
might find areas where you'd like to improve performance. For example,
you can fine-tune your application to gain maximum performance by
speeding up forms and queries and increasing data throughput. This
section discusses optimization strategies for application performance on
the client, network, and server.

3.8.1 CONNECTION USE OPTIMIZATION

Establishing a connection uses time and memory on both the client
and the server. When you optimize connections, you balance your need for
high performance against the resource requirements of your application.

3.8.2 SPEEDING UP DATA RETRIEVAL

You can speed up data retrieval by managing the number of rows
fetched during progressive fetching, controlling fetch size, and using
delayed Memo fetching.

3.8.3 QUERY AND VIEW ACCELERATION

You can improve query and view performance by adding indexes,
optimizing local and remote processing, and optimizing parameter
expressions.

3.84 FORM ACCELERATION

When you design a form based primarily on server data, take a
minimalist approach for the best performance.

3.8.5 PERFORMANCE IMPROVEMENT ON
UPDATES AND DELETES

You can speed up Update and Delete statements by, adding
timestamps to your remote tables, using the CompareMemo property,
using manual transaction mode, using server stored procedures, and
batching updates.

3.8.6 RELATED SECTIONS

Creating Client/Server Solutions

Client/server applications combine the functionality of Microsoft® Visual
FoxPro® on your local computer with the storage and security benefits
provided by a remote server.

Client/Server Application Design

Building on multi-user development technologies, learn how to design a
powerful client/server application.

Upsizing Visual FoxPro Databases

Creating local prototypes of your design can reduce development time and
costs. When you have a tested local prototype, it is easy and beneficial to
upsize your application, so it can take advantage of all the features
provided by the remote server.

3.9 IMPLEMENTION OF CLIENT/SERVER
APPLICATION

Whether you have created and upsized a working local prototype
or developed your application against remote data using remote views,
you have gained access to the large data stores typically available in a
server database. In addition, you can take advantage of the security and
transaction processing capabilities of the remote server. While remote
views handle the main data management tasks, you can enhance your
application by using SQL pass-through (SPT) technology to create objects
on the server, run server stored procedures, and execute commands using
native server syntax.

The techniques for implementing client/server technology in a
working application that uses remote views are given below:

3.9.1 USING SQL PASS-THROUGH TECHNOLOGY

Remote views provide the most common and easiest method for
accessing and updating remote data. The upsizing wizards can create
remote views automatically in your database as part of upsizing, or you
can use Microsoft Visual FoxPro to create remote views after upsizing.

3.9.2 WORKING WITH REMOTE DATA USING SQL
PASS-THROUGH

After you retrieve a result set using SQL pass-through, you can
view and control the properties of your result set cursor using the
Microsoft Visual FoxPro functions CURSORGETPROP() and
CURSORSETPROP().

3.9.3 HANDLING SQL PASS-THROUGH ERRORS

If a SQL pass-through function returns an error, Microsoft Visual
FoxPro stores the error message in an array.

BCA-E10/63

BCA-E10/64

3.9.4 RELATED SECTIONS

Creating Client/Server Solutions

Client/server applications combine the functionality of Microsoft Visual
FoxPro on the local computer with the storage and security benefits
provided by a remote server.

Client/Server Application Design

Building on multi-user development technologies, learn how to design a
powerful client/server application.

Upsizing Visual FoxPro Databases

Creating local prototypes of your design can reduce development time and
costs. When you have a tested local prototype, it is easy and beneficial to
upsize your application, so it can take advantage of all the features
provided by the remote server.

Client/Server Performance Optimization

After upsizing and implementing, you can take additional steps to
optimize the performance of your application. Find out what you can do in
Microsoft Visual FoxPro and on the remote server to optimize your client-
server application.

Check Your Progress

» What is implementation of client-server application?

> Give the important goals of client/server design.

3.10 SUMMARY

Today, over 80 percent of the applications running on a Microsoft
Windows platform access data. More and more of these applications are
used where the client/server architecture is not only recommended, it is a
requirement. Unfortunately, most of these applications fail to succeed for a
variety of reasons, including poor planning, design, and implementation.
Here, we have examined the most common mistakes, and discussed the
benefits of using the Active Platform. Developers use the Active Platform
so that client/server applications work seamlessly over the Internet, an
Intranet, or corporate network.

There are many answers about what differentiates client/server
architecture from some other design. There is no single correct answer, but
generally, an accepted definition describes a client application as the user
interface to an intelligent database engine—the server. Well-designed
client applications do not hard code details of how or where data is

physically stored, fetched, and managed, nor do they perform low-level
data manipulation. Instead, they communicate their data needs at a more
abstract level, the server performs the bulk of the processing, and the
result set isn’t raw data but rather an intelligent answer. The word
"design" here does not simply refer to the design of the User Interface
with its action bars, push buttons, drop downs, etc. but to much larger and
infinitely more complex issues that you will have to resolve as part of the
design process.

3.11 TERMINAL QUESTIONS

1
2
3.
4

© 0o N o O

What do you understand by Client-server design?
Discuss the main goals of Client-Server design.
Define the term communication and protocol.

Explain the few different communication protocols important in
data communication.

Explain different characteristics of Client-Server architecture.
What are the main elements of Client-Server Computing?

Write a short note on Client-Server classification.

Why we need Client-Server performance optimization? Explain.

Give the dos and don’ts during the design of Client-Server
application.

Write a short note on types of logic.

BCA-E10/65

BCA-E10/66

Bachelor in Computer
Application

b BCA-E10

Uttar Pradesh Rajarshi Tandon .
Open University Client Server Technology

BLOCK

INTRODUCTION TO ASP.NET

UNIT-4

Introduction to.NET Framework

UNIT-5

Traditional ASP Basics

UNIT-6

ASP.NET Introduction and Controls

BCA-E10/67

Course Design Committee

Dr. Ashutosh Gupta, Chairman
Director (In-charge)
School of Computer and Information Science, UPRTOU, Allahabad

Prof. R.S. Yadav Member
Dept. of Computer Science and Engineering, MNNIT, Allahabad
Ms. Marisha Member

Assistant Professor (Computer Science)
School of Science, UPRTOU, Allahabad

Mr. Manoj Kumar Balwant Coordinator
Assistant Professor (Computer Science)
School of Science, UPRTOU, Allahabad

Course Preparation Committee

Dr. Krishan Kumar Author
Assistant Professor,

Department of Comuter Science Faculty of Technology
Gurukula Kangri Vishwavidyalaya, Haridwar (UK)

Dr. V.K. Saraswat Editor
Director (IET, Khandare Campus)

Institute of Engineering and Technology

Dr. B.R. Ambedkar University, Agra-282002

Dr. Ashutosh Gupta,
Director (In-charge)
School of Computer and Information Science, UPRTOU, Allahabad

Mr. Manoj Kumar Balwant Member
Assistant Professor (Computer Science)
School of Science, UPRTOU, Allahabad

©UPRTOU, Prayagraj-2020
ISBN : 978-93-83328-13-0

O©AII Rights are reserved. No part of this work may be reproduced in any
form, by mimeograph or any other means, without permission in writing
from the Uttar Pradesh Rajarshi Tondon Open University, Prayagraj.
Printed and Published by Dr. Arun Kumar Gupta Registrar, Uttar Pradesh
Rajarshi Tandon Open University, 2020.

Printed By : Chandrakala Universal Pvt. 42/7 Jawahar Lal Neharu Road,
Prayagraj.

BCA-E10/68

BLOCK INTRODUCTION

Block 2 basically contains three units which are mainly intended with
ASP.NET technology and its applications. Unit 4 introduces the history,
evolution and notion of .NET framework and also gives its overview. It
overview contains features, advantages, disadvantages, main challenges
etc. Moreover, .NET Framework (pronounced dot net) is a software
framework developed by Microsoft that runs primarily on Microsoft
Windows. The .Net frame work Provide and environment for building and
running Web services and other application. It consist
of components such as common language runtime (CLR) and the .NET
Framework class library, which includes classes, interfaces, and value
types that support wide range of technologies.

As Dot Net programming logic can be developed in any Dot Net
framework compatible languages; hence Dot Net is called as language
independent. Microsoft is introducing approximately 40 languages into
Dot Net framework, out of which as of now approximately 24 languages
and one specification are released.

Unit 5 covers the basics of Active Server Pages (ASP). It explores ASP’s
role and change in the today’s changing environment. ASP is basically a
language used to develop server side programs. It is normally used along
with the .NET framework and becomes ASP.NET. Moreover, Active
Server Pages were introduced by Microsoft in 1996 as a downloadable
feature of Internet Information Server 3.0. The concept is pretty simple: an
Active Server Page allows code written in the JavaScript or VBScript
languages to be embedded within the HTML tags of a Web page and
executed on the Web server. There are great advantages to this, not the
least of which is security. Since your code is executed on the Web server,
only HTML tags are sent to the browser. The result is that the ASP code is
“invisible” to the end user.

Last Unit 6 describes the principles of designing a application using
ASP.NET and Web form controls. Before proceeding with this tutorial,
you must also have a basic understanding of .NET programming language.
As you are going to develop web-based applications using ASP.NET web
application framework, it will be good if you have an understanding of
other web technologies such as HTML, CSS, AJAX, etc.

We also need to understand about the Web application. A Web application
consists of document and code pages in various formats. The simplest kind
of document is a static HTML page, which contains information that will
be formatted and displayed by a Web browser. An HTML page may also
contain hyperlinks to other HTML pages. A hyperlink (or just link)
contains an address, or a Uniform Resource Locator (URL), specifying
where the target document is located. The resulting combination of
content and links is sometimes called hypertext and provides easy
navigation to a vast amount of information on the World Wide Web.

BCA-E10/69

BCA-E10/70

UNIT-4 INTRODUCTION TO .NET

FRAMEWORK
Structure
4.0 Introduction
4.1 Objectives
4.2 Fundamental of .NET Framework
4.3 Common Type System (CTS)
4.4 Common Language Runtime (CLR)
4,5 Common Language Specification (CLS)
4.6 Microsoft Intermediate Language (MSIL)
4.7 Justin Time (JIT)
4.8 Summary
4.9 Terminal questions
4.0 INTRODUCTION

The .NET Framework is a class of reusable libraries (collection of

classes) given by Microsoft to be used in other .Net applications and to
develop, build and deploy many types of applications on the Windows
platform including the following:

>

YV V.V V V V

Y

A\

Console Applications

Windows Forms Applications

Windows Presentation Foundation (WPF) Applications
Web Applications

Web Services

Windows Services

Services-oriented applications using Windows Communications
Foundation (WCF)

Workflow-enabled applications using Windows Workflow
Foundation(WF)

Silverlight Application
WCF workflow service application
Crystal Reports Application

BCA-E10/71

BCA-E10/72

That primarily runs on the Microsoft Windows operating system. What
really happens when we compile a .NET program?

» The exe file that is created doesn't contain executable code, rather
it's MicroSoft Intermediate Language (MSIL) code.

> When you run the EXE, a special runtime environment (the
Common Language Runtime or CLR) is launched and the IL
instructions are executed by the CLR to the machine language.

> The CLR comes up with a Just In Time Compiler that translates
the IL to native language the first it is encountered.

Therefore the process of programming goes like:
» We write a program in C#, VB.Net and other languages.

» We compile our code to IL code based on the language compiler
(csc.exe, vbc.exe and so on).

» Runyour IL program that launches the CLR to execute your IL,
using its JIT to translate your program into native code as it
executes.

4.1 OBJECVTIVES

At the end of this unit you would come to know

» The meaning of dot net framework
Basic knowledge of Common Type System
What is Common Language Runtime (CLR)
Common Language Specification (CLS)
Microsoft Intermediate Language (MSIL)
What is Just in time compilation
platform independent concepts
language independent concepts

YV V.V V V VYV VYV V

To simplify Web application development

B
N

FUNDAMENTAL OF .NET FRAMEWORK

NET Framework (pronounced dot net) is asoftware
framework developed by Microsoft that runs primarily on Microsoft
Windows. The .Net frame work Provide and environment for building and
running Web services and other application. It consist
of components such as common language runtime (CLR) and the .NET
Framework class library, which includes classes, interfaces, and value
types that support wide range of technologies.

As Dot Net programming logic can be developed in any Dot Net
framework compatible languages; hence Dot Net is called as language
independent. Microsoft is introducing approximately 40 languages into
Dot Net framework, out of which as of now approximately 24 languages
and one specification are released.

Eg:C#.Net,VB.Net,VC++,VJ#,VF#PHP,COBOL,PERL,PHYTH
ON,JSCRIPT...etc
One specification is ASP.Net. VC#.Net is case sensitive, VB.Net is not
case sensitive, and ASP.Net case sensitivity depends on integrated
language.

The .NET development framework provides a new and simplified
model for programming and deploying applications on the Windows
platform. It provides such advantages as multiplatform applications,
automatic resource management, and simplification of application
deployment. As security is an essential part of .NET, it provides security
support, such as code authenticity check, resources access authorizations,
declarative and imperative security, and cryptographic security methods
for embedding into the user’s application.

.NET provides a simple object-oriented model to access most of
the Windows application programming interfaces (APIs). It also provides
mechanisms by which you can use the existing native code. In addition, it
significantly extends the development platform by providing tools and
technologies to develop Internet-based distributed applications. .Net
framework support more than 57 language eg:VC++, VB.NET, C#.NET,
J# , WPF, WCF, LINQ, AJAX e.t.c. The .NET Framework consists of
three main parts:

1. Common Language Runtime,
2. Unified class libraries
3. Active Server Pages called ASP.NET.

MET Compliant Languages
[C#, B MET, WC++ W&, dscript. NET |, etel)

Common Language Specifications Comman Type Systemn
ASP MET Windows Farms ASP MET
AL Web Services YWeb Forms

Data and XML Classes
ADOMNET, SOL, XML, et

Visual Studio .NET 2003

Microsoft MET Framework Base Class Library

Common Language Runtime

Figure 4.1: The .NET Framework Architecture

BCA-E10/73

BCA-E10/74

411 THE ORIGIN OF .NET TECHNOLOGY

.NET technology was originally known as NGWS which means
Next Generation Windows Services. Net is actually a thoughtful
combination of technologies and development tools and the infrastructure
is well integrated into Microsoft's operating systems and other products.

If we talk about technological advancements, there are various
changes in the IT world in terms of infrastructure, hardware and advanced
programming services. But for those seeking high end web application
services, they are mostly mightily pleased with advanced .Net
development services. It is one of the most used web technologies which
IS in vogue among web developers today. .NET is a combination of a
number of technologies, tools as well as international coding standards.
The evolution in web development is commonly attributed to .NET
development which has generated tremendous interest in creating cloud-
based solutions too.

There are a plethora of .NET applications in the online world too
which are connected to diverse domains and industries. There is intense
competition in the field but there is also the need to generate more
business online with expertise and experience. To achieve this, optimal
use of .Net development services is of huge importance. This latest web
technology has encapsulated huge amount of information and critical data
which include facts about customers, operations, services and the like. If
one wants to create an impressive and marketable website with dynamic
features and incredible functionalities, .Net application development is
what you must resort to.

412 WHY .NET DEVELOPMENT RULES THE WEB
DEVELOPMENT WORLD

Y

.NET technology gives varied support to different authentication
services including e-wallets, passwords, and various types of smart
cards.

> It delivers smooth browsing capabilities, navigation and innovative
website functionalities for software development.

> By employing .NET technology one can take advantage of a
plethora of directory services that can solve XML queries.

> One can develop web services using the SOAP toolkit and making
optimum use of .Net framework.

Some of the .Net development services provided by vendors include

> .Net Ajax development solutions
> Web Services /WCF development
> Crystal reports development and implementation

Windows forms development
WPF and Windows Services application development

Legacy modernization services and migration from ASP classic to
NET platform

> Custom web parts and SharePoint development
Azure and custom cloud computing services

It is important for vendors to have a cohesive methodology in
place derived from combining industry experience, standard principles and
concepts, and analytical expertise of creating industry-specific solutions. It
is important for clients to choose the best software development
methodology considering the usefulness of the project such as project
scope, deliverables, and the like. Different vendors have different
methodologies to follow most of them assign dedicated teams for each of
the .NET development projects. Usually every project has a Project Lead,
senior .NET Developer and software engineers specializing in .NET
working for every project.

For more information about .NET Development, visit Elan
Emerging Technologies who have been one of the leading Offshore .NET
Application Development company providing innovative ASP.NET Web
Apps by their expert .NET Application Developers to meet unique
business challenges in the web.

Components of .Net Framework
It has many components but mainly used in two components:

1. System class Library
2 Common Type System

3 Garbage Collection

4. Class Loader

5 Common Language Run Time

Systerm Base Class Library

| A MNMET II AL II Sl | | Threading I

[T I | MET I I Security] [E fichlgingdl I

Common T ype Systerm

1L Compiler I Execution Suppart I Security

S arbage Collection

Class Loader

Cormmon Language Runtime

Fllermo ry

hlan ag erment | | Type System I | Life Tirme

Figure 4.2 : CLR Components

BCA-E10/75

BCA-E10/76

1. System Class Library (BCL):

This is also called as Base Class Library and it is common for all
types of applications i.e. the way you access the Library Classes
and Methods in VB.NET will be the same in C#, and it is common
for all other languages in .NET.

The following are different types of applications that can make use of .net
class library.

Windows Application.
Console Application
Web Application.
XML Web Services.
Windows Services.

YVYVYYVYYV

In short, developers just need to import the BCL in their language
code and use its predefined methods and properties to implement common
and complex functions like reading and writing to file, graphic rendering,
database interaction, and XML document manipulation. The base class
library contains standard programming features such as Collections, XML,
Data Type definitions, 10 (for reading and writing to files), Reflection
and Globalization to name a few. All of which are contained in the System
namespace. As well, it contains some non-standard features such as LINQ,
ADO.NET (for database interactions), drawing capabilities, forms and
web support.

The below table provides a list each class of the base class library and a
brief description of what they provide.

Table 4.1 : Base Class Library Namespaces & Their Meaning

Base Class Library Namespace Brief Description

Contains the fundamentals for
System programming such as the data types,
console, match and arrays, etc.

Supports the creation of code at

System.CodeDom runtime and the ability to run it.

Contains Lists, stacks, hashtables and

System.Collections dictionaries

Provides licensing, controls and type

System.ComponentModel) S
conversion capabilities

System.Configuration

Used for reading and writing program
configuration data

System.Data

Is the namespace for ADO.NET

System.Deployment

Upgrading capabilities via ClickOnce

System.Diagnostics

Provides tracing, logging, performance
counters, etc. functionality

System.DirectoryServices

Is the namespace used to access the
Active Directory

System.Drawing

Contains the GDI+ functionality for
graphics support

System.EnterpriseServices

Used when working with COM+ from
NET

System.Globalization

Supports the localization of custom
programs

Provides connection to file system and

System.10 the reading and writing to data streams
such as files
System.Ling Interface to LINQ providers and the

execution of LINQ queries

System.Ling.Expressions

Namespace which contains delegates
and lambda expressions

System.Management

Provides access to system information
such as CPU utilization, storage space,
etc.

System.Media

Contains methods to play sounds

System.Messaging

Used when message queues are
required within an application,
superseded by WCF

BCA-E10/77

BCA-E10/78

System.Net

Provides access to network protocols
such as SSL, HTTP, SMTP and FTP

System.Reflection

Ability to read, create and invoke class
information.

System.Resources

Used when localizing a program in
relation to language support on web or
form controls

System.Runtime

Contains functionality which allows
the management of runtime behavior.

System.Security

Provides hashing and the ability to
create custom security systems using
policies and permissions.

System.ServiceProcess

Used when a windows service is
required

System.Text

Provides the StringBuilder class, plus
regular expression capabilities

System.Threading

Contains methods to manage the
creation, synchronization and pooling
of program threads

System.Timers

Provides the ability to raise events or
take an action within a given timer
period.

System.Transactions

Contains methods for the management
of transactions

System.Web

Namespace for ASP.NET capabilities
such as Web Services and browser
communication.

System.Windows.Forms

Namespace containing the interface
into the Windows API for the creation
of Windows Forms programs.

Provides the methods for reading,
System.Xml writing, searching and changing XML
documents and entities.

4.3 COMMON TYPE SYSTEM (CTS)

It describes set of data types that can be used in different .Net
languages in common. The Common Type System (CTS) standardizes the
data types of all programming languages using .NET under the umbrella
of .NET to a common data type for easy and smooth communication
among these .NET languages.

How CTS converts the data type to a common data type

To implement or see how CTS is converting the data type to a common
data type, for example, when we declare an int type data type in C# and
VB.Net then they are converted to int32. In other words, now both will
have common data type that provides flexible communication between
these two languages.

Sytem Int 32

Figure 4.3 : Conversion of data type to Common data type

The common type system supports two general categories of types:
Value types

Value types directly contain their data, and instances of value types are
either allocated on the stack or allocated inline in a structure. Value types
can be built-in (implemented by the runtime), user-defined, or
enumerations.

Reference types

Reference types store a reference to the value's memory address, and are
allocated on the heap. Reference types can be self-describing types,

BCA-E10/79

BCA-E10/80

pointer types, or interface types. The type of a reference type can be
determined from values of self-describing types. Self-describing types are
further split into arrays and class types. The class types are user-defined
classes, boxed value types, and delegates

Functions of the Common Type System (CTYS)

» To establish a framework that helps enable cross-language
integration, type safety, and high performance code execution.

» To provide an object-oriented model that supports the complete
implementation of many programming languages.

» To define rules that languages must follow, which helps ensure
that objects written in different languages can interact with each
other.

» The CTS also defines the rules that ensure that the data types of
objects written in various languages are able to interact with each
other.

» The CTS also specifies the rules for type visibility and access to
the members of a type, i.e. the CTS establishes the rules by which
assemblies form scope for a type, and the Common Language
Runtime enforces the visibility rules.

» The CTS defines the rules governing type inheritance, virtual
methods and object lifetime.

» Languages supported by .NET can implement all or some common
data types...

» When rounding fractional values, the halfway-to-even ("banker's")
method is used by default, throughout the Framework. Since
version 2, "Symmetric Arithmetic Rounding™ (round halves away
from zero) is also available by programmer's option.

» Itis used to communicate with other language.

44 COMMON LANGUAGE RUNTIME (CLR)

.Net Framework provides runtime environment called Common
Language Runtime (CLR).It provides an environment to run all the .Net
Programs. The code which runs under the CLR is called as Managed
Code. Programmers need not to worry on managing the memory if the
programs are running under the CLR as it provides memory management
and thread management. Programmatically, when our program needs
memory, CLR allocates the memory for scope and de-allocates the
memory if the scope is completed.

» Language Compilers (e.g. C#, VB.Net, J#) will convert the
Code/Program to Microsoft Intermediate Language (MSIL)
intern this will be converted toNative Code by CLR. See the

below Fig.
Visual C# Project
e | Resources |
File(s
llels) | References |

1. l

|' C# Compiler _1
l Creates

Managed Assembly (exe or .dil)
MSIL Metadata

IL metadata & references
loaded by CLR

.NET Framewaork

Common Language Runtime
Security [Garbage

Collection / JIT Compiler Class Libraries

ses ‘ .NET Framework

Converted to native
machine code

L 4

Operating System |

Figure 4.4 : Converting Code to Native Code

» There are currently over 15 language compilers being built by
Microsoft and other companies also producing the code that will
execute under CLR

441 FUNCTIONS OF THE CLR

Convert code into CLI.

Exception handling

Type safety

Memory management (using the Garbage Collector)
Security

Improved performance

N o g M v DR

Language independency

BCA-E10/81

BCA-E10/82

8. Platform independency

9. Architecture independency

442 COMPONENTS OF THE CLR

> Class Loader: Used to load all classes at run time.

» MSIL to Native code: The Just in Time (JIT) compiler will
convert MSIL code into native code.

» Code Manager: It manages the code at run time.

» Garbage Collector: It manages the memory. Collect all unused
objects and deallocate them to reduce memory.

» Thread Support: It supports multithreading of our application.

» Exception Handler: It handles exceptions at run time.

45 COMMON LANGUAGE SPECIFICATION
(CLS)

The Common Language Specification (CLS) is a fundamental set
of language features supported by the Common Language Runtime (CLR)
of the .NET Framework. CLS is a part of the specifications of the .NET
Framework. CLS was designed to support language constructs commonly
used by developers and to produce verifiable code, which allows all CLS-
compliant languages to ensure the type safety of code. CLS includes
features common to many object-oriented programming languages. It
forms a subset of the functionality of common type system (CTS) and has
more rules than defined in CTS.

Itis a sub set of CTS and it specifies a set of rules that needs to be adhered
or satisfied by all language compilers targeting CLR. It helps in cross
language inheritance and cross language debugging.

451 COMMON LANGUAGE SPECIFICATION
RULES

It describes the minimal and complete set of features to
produce code that can be hosted by CLR. It ensures that products of
compilers will work properly in .NET environment. CLS defines the base
rules necessary for any language targeting common language
infrastructure to interoperate with other CLS-compliant languages. For
example, a method with parameter of "unsigned int" type in an object
written in C# is not CLS-compliant, just as some languages, like VB.NET,
do not support that type.

CLS represents the guidelines to the compiler of a language, which
targets the .NET Framework. CLS-compliant code is the code exposed and

expressed in CLS form. Even though various .NET languages differ in
their syntactic rules, their compilers generate the Common Intermediate
Language instructions, which are executed by CLR. Hence, CLS allows
flexibility in using non-compliant types in the internal implementation of
components with CLS-compliant requirements. Thus, CLS acts as a tool
for integrating different languages into one umbrella in a seamless
manner.

45.2 SAMPLE RULES

1. Representation of text strings
Internal representation of enumerations

Definition of static members and this is a subset of the CTS which
all .NET languages are expected to support.

4. Microsoft has defined CLS which are nothing but guidelines that
language to follow so that it can communicate with other .NET
languages in a seamless manner

4.6 MICROSOFT INTERMIDIATE LANGUAGE
(MSIL)

A.NET programming language (C#, VB.NET, J# etc.) does not
compile into executable code; instead it compiles into an intermediate
code called Microsoft Intermediate Language (MSIL). As a programmer
one need not worry about the syntax of MSIL - since our source code in
automatically converted to MSIL. The MSIL code is then send to the CLR
(Common Language Runtime) that converts the code to machine
language, which is then run on the host machine. MSIL is similar to Java
Byte code. MSIL is the CPU-independent instruction set into which .NET
Framework programs are compiled. It contains instructions
for
loading, storing, initializing, and calling methods on objects. Combined
with metadata and the common type system, MSIL allows for true cross-
language integration Prior to execution, MSIL is converted to machine
code. It is not interpreted.

Microsoft Intermediate Language (MSIL) is a CPU-independent
set of instructions that can be efficiently converted to the native code.
During the runtime the Common Language Runtime (CLR)'sJust In
Time (JIT) compiler converts the Microsoft Intermediate Language
(MSIL) code into native code to the Operating System.

MSIL stands for Microsoft Intermediate Language. We can call it
as Intermediate Language (IL) or Common Intermediate Language (CIL).
During the compile time , the compiler convert the source code into
Microsoft Intermediate Language (MSIL) .Microsoft Intermediate
Language (MSIL) is a CPU-independent set of instructions that can be
efficiently converted to the native code. During the runtime the Common
Language Runtime (CLR)'s Just In Time (JIT) compiler converts the

BCA-E10/83

BCA-E10/84

Microsoft Intermediate Language (MSIL) code into native code to the
Operating System. When a compiler produces Microsoft Intermediate
Language (MSIL), it also produces Metadata. The Microsoft Intermediate
Language (MSIL) and Metadata are contained in a portable executable
(PE) file.

Microsoft Intermediate Language (MSIL) includes instructions for
loading, storing, initializing, and calling methods on objects, as well as
instructions for arithmetic and logical operations, control flow, direct
memory access, exception handling, and other operations Just In Time
Compiler The .Net language, which conforms to the Common Language
Specification (CLS), uses its corresponding runtime to run the application
on different Operating Systems. During the code execution time, the
Managed Code compiled only when it is needed, that is it converts the
appropriate instructions to the native code for execution just before when
each function is called. This process is called Just in Time (JIT)
compilation, also known as Dynamic Translation.

With the help of Just in Time Compiler (JIT) the Common
Language Runtime (CLR) doing these tasks. The Common Language
Runtime (CLR) provides various Just In Time compilers (JIT) and each
works on a different architecture depending on Operating System. That is
why the same Microsoft Intermediate Language (MSIL) can be executed
on different Operating Systems without rewrite the source code. Just In
Time (JIT) compilation preserves memory and save time during
application initialization. Just In Time (JIT) compilation is used to run at
high speed, after an initial phase of slow interpretation. Just In Time
Compiler (JIT) code generally offers far better performance than
interpreter.

4.7 JUST IN TIME (JIT)

Before the Microsoft Intermediate Language (MSIL) can be
executed, it must be converted by a .NET Framework Just-In-Time (JIT)
compiler to native code, which is CPU-specific code that runs on the same
computer architecture as the JIT compiler. The JIT compiler is part of the
Common Language Runtime (CLR). The CLR manages the execution of
all .NET applications. In addition to JIT compilation at runtime, the CLR
is also responsible for garbage collection, type safety and for exception
handling.

4.7.1 JIT COMPILER

A Web Service or Web Forms file must be compiled to run within
the CLR. Compilation can be implicit or explicit. Although you could
explicitly call the appropriate compiler to compile your Web Service or
Web Forms files, it is easier to allow the file to be complied implicitly.
Implicit compilation occurs when you request the .asmx via HTTP-
SOAP, HTTP-GET, or HTTP-POST. The parser (xsp.exe) determines

whether a current version of the assembly resides in memory or in the
disk. If it cannot use an existing version, the parser makes the appropriate
call to the respective compiler (as you designated in the Class property of
the .asmx page).

When the Web Service (or Web Forms page) is implicitly
compiled, it is actually compiled twice. On the first pass, it is compiled
into IL. On the second pass, the Web Service (now an assembly in IL) is
compiled into machine language. This process is called Just-In-Time JIT
compilation because it does not occurs until the assembly is on the target
machine. The reason you do not compile it ahead of time is so that the
specific JIT for your OS and processor type can be used. As a result, the
assembly is compiled into the fastest possible machine language code,
optimized and enhanced for your specific configuration. It also enables
you to compile once and then run on any number of operating systems.

4,72 HOW JIT WORKS?

Before MSIL(MS Intermediate Language) can be executed, it must
converted by .net Framework Just in time (JIT) compiler to native code,
which is CPU specific code that run on some computer architecture as the
JIT compiler. Rather than using time and memory to convert all the MSIL
in portable executable (PE) file to native code, it converts the MSIL as it is
needed during execution and stored in resulting native code so it is
accessible for subsequent calls.

The runtime supplies another mode of compilation called install-
time code generation. The install-time code generation mode converts
MSIL to native code just as the regular JIT compiler does, but it converts
larger units of code at a time, storing the resulting native code for use
when the assembly is subsequently loaded and executed. As part of
compiling MSIL to native code, code must pass a verification process
unless an administrator has established a security policy that allows code
to bypass verification. Verification examines MSIL and metadata to find
out whether the code can be determined to be type safe, which means that
it is known to access only the memory locations it is authorized to access.

473 JITTYPES

In Microsoft .NET there are three types of JIT (Just-In-Time)
compilers which are Explained as Under:

1. Pre-JIT Compiler (Compiles entire code into native code
completely)

2. Econo JIT Compiler (Compiles code part by part freeing when
required)

3. Normal JIT Compiler (Compiles only that part of code when called
and places in cache

BCA-E10/85

BCA-E10/86

JIT (JUST-IN-TIME) COMPILER

Pre-JIT Compiler Econo-JIT Compiler

Normal-JIT Compiler

Figure 4.5 : Just In Time Types

4,74 DESCRIPTION

Pre-JIT Compiler

Pre-JIT compiles complete source code into native code in a single
compilation cycle. This is done at the time of deployment of the
application.

Econo-JIT Compiler

Econo-JIT compiles only those methods that are called at runtime.
However, these compiled methods are removed when they are not
required.

Normal-JIT Compiler

Normal-JIT compiles only those methods that are called at runtime. These
methods are compiled the first time they are called, and then they are
stored in cache. When the same methods are called again, the compiled
code from cache is used for execution. These methods are compiled the
first time they are called, and then they are stored in cache. When the same
methods are called again, the compiled code from cache is used for
execution

=1
J

exe or .dll

JIT Compiler

untime

1
. |

Figure 4.6 : .NET compiler

Different machine configurations use different machine level

instructions. As Figure 1shows, the source code is compiled
to exe or dll by the .NET compiler. Common Intermediate Language (CIL)
consists of instructions that any environment supporting .NET can execute
and includes metadata describing structures of both data and code. The JIT
Compiler processes the CIL instructions into machine code specific for an
environment. Program portability is ensured by utilizing CIL instructions
in the source code. The JIT compiler compiles only those methods called
at runtime. It also keeps track of any variable or parameter passed through
methods and enforces type-safety in the runtime environment of the .NET

Framework.
4.8 SUMMARY

» NET Framework is a code execution platform — the environment
which .NET programs run

» .NET Framework consists of two primary parts: Common
Language Runtime and .NET Class Libraries

» The CLS (Common Language Specification) allows different
languages to interact seamlessly.

» The CTS (Common Type System) allows all languages to share
base data types.

» .NET languages are compiled to MSIL by their respective
compilers

» MSIL code is compiled to machine code by the JIT compiler

» Al .NET languages have equal access to the FCL (Framework
Class Library) which is a rich set of classes for developing
software

» Base Class Library is set of basic classes: Collections, 1/0,
Networking, Security, etc.

» ADO.NET provides .NET applications with access to relational
databases

» .NET has great XML support including: DOM, XSLT, XPath, and
XSchema

» Windows Forms provides GUI interface for the .NET applications

» ASP.NET allows creating web interface to .NET applications

» Web Services expose functionality from web sites and make it
remotely accessible through standard XML-based protocols

» Visual Studio .NET is powerful development IDE for all .NET

languages and technologies
BCA-E10/87

BCA-E10/88

B
©

TERMINAL QUESTIONS

© © N o g &~ w0 DN E

N e =
w NN o

What is .NET Framework?

What are the main components of .NET Framework?
What is an IL?

What is DLL as per Dot Net?

What are the advantages of .Net?

How to invoke garbage collector programmatically?

What is a Managed Code?

What are the different types of JIT's?

What are Value types and Reference types?

Explain the concept of Boxing and Unboxing?

What is Code Document Object Model (CodeDom)?
Difference between .exe and .dlI?

What is a DIl Hell?

UNIT-5 INTRODUCTION TO ASP
BASIC

Structure

5.0 Introduction

5.1 Objectives

5.2 ASPand The SETUP
5.3 ASP Object

54 How does It work
5.5 Advantages

56 ASP OBJECT

5.7 Working with Database in ASP
5.8 Example

5.9 Limitations

5.10 Summary

5.11 Terminal questions

5.0 INTRODUCTION

Basically ASP is a development framework for building web
pages. Do you have any problem with the development of static HTML
pages? Do you want to create dynamic web pages? Do you want to enable
your web pages with database access? If your answer is “Yes”, ASP might
be a solution for you. In May 2000, Microsoft estimated that there are over
800,000 ASP developers in the world. You may come up with a question
what the heck ASP is. After reading this unit, you will be able to know
what it is, how it works and what it can do for you.

Active Server Pages were introduced by Microsoft in 1996 as a
downloadable feature of Internet Information Server 3.0. The concept is
pretty simple: an Active Server Page allows code written in the JavaScript
or VBScript languages to be embedded within the HTML tags of a Web
page and executed on the Web server. There are great advantages to this,
not the least of which is security. Since your code is executed on the Web
server, only HTML tags are sent to the browser. The result is that the ASP
code is “invisible” to the end user.

Another upside to the “server-side script” concept is that it allows
things like database connections to be made from the Web server rather

BCA-E10/89

BCA-E10/90

than from the client. Therefore, any special configurations that might need
to be set up, like ODBC data sources, only have to exist on the server. Of
course, before you can create an Active Server Page (ASP), you’ll need to
look at the software requirements.

ASP is in very high demand in web development field. it is a server-side
scripting language which is very popular due to its features. it runs on IS
(Internet Information Services) server. So coming to the topic this has
been designed in a very efficient way and in avery understandable
way. Before you continue, you should also have a basic understanding of
HTML, CSS, JavaScript and SQL. In this course you will learn the basics
of ASP. This is a beginners’ level course and this course is not for experts
in ASP.

ASP supports different development models like Classic ASP,
ASP.NET Web Forms, ASP.NET MVC, ASP.NET Web Pages, ASP.NET
API, ASP.NET Core.

5.1 OBJECVTIVES

At the end of this unit you would come to know

» Fundamental meaning of ASP

» The difference between client side programming and server side
programming

The ASP setup

Why we choose ASP

How ASP works

Basic syntax rule of ASP
ASP’S object model

Working with Database in ASP
Limitations of ASP

Summary

V V.V V V VYV VYV V

52 ASP & THE SETUP

ASP stands for Active Server Pages. Microsoft introduced Active Server
Pages in December 1996, beginning with Version 3.0. Microsoft officially
defines ASP as: “Active Server Pages is an open, compile-free application
environment in which you can combine HTML, scripts, and reusable
ActiveX server components to create dynamic and powerful Web-based
business solutions. Active Server Pages enables server side scripting for
IIS with native support for both VBScript and Jscript”. In other words,
ASP is a Microsoft technology that enables you to create dynamic web
sites with the help of server side script, such as VBScript and Jscript. ASP

technology is supported on all Microsoft Web servers that are freely
available. If you have Window NT 4.0 Server installed, you can download
I1S (Internet Information Server) 3.0 or 4.0. If you are using. Window
2000, I1S 5.0 comes with it as a free component. If you have Window
95/98, you can download Personal Web Server (PWS), which is a smaller
version of 11S, from Window 95/98 CD.

Before you can create an Active Server Page, you’ll need a Web
server that supports Active Server Pages. The most obvious choice would
be Microsoft’s Internet Information Server (11S) version 3.0 or higher. 1S
is available for Windows NT 4.0 or higher as part of the Windows NT
option pack, which can be downloaded from Microsoft’s Web site. For the
highest level of compatibility and functionality, you’ll want to use the
most recent version of 11S.

Another option that you might not have considered is Microsoft’s
Personal Web Server for Windows 9xand Windows ME. If you’re running
Windows 95 or above, Personal Web Server can be installed by running
“setup.exe” from the setup CD. Alternatively, it can be downloaded from
Microsoft’s Web site as part of the Windows NT option pack. Earlier this
download is the only choice for Windows 95 or Windows ME. It’s
important to note that Microsoft does not support running Personal Web
Server under Windows ME. While Personal Web Server is not the optimal
choice for a production Web server, it is a great option for developing and
testing your ASP scripts. If you’re running IIS or Personal Web Server, no
additional software is required to support Active Server Pages. To allow a
user to access an ASP, the ability to do so must be enabled on the 11S
server. This is done by selecting “Scripts” or “Execution (Including
Scripts)” from the “Home Directory” tab of the Properties window for
your Web site, as shown in Figure 5.1.

Default web Site Properties EE3
D ocurnents] Directorny Securiky] HTTF Headers] Custom Errors]
wieh Site] Operators] Perfarmance] 1S4PI Filers Home Directany
when connecting to thiz rezource. the content should come from:
e & directary located on this computer
A share located on another computer
A redirection to a URL
Local Path: [CoMInetPub ot Browse...
Access Permission: Content Control Centent Control
I+ Bead [+ Log access [Index this directary
[wiite [Directory browesing allowed —
Application Settings
M ame: Default Application Remove
Starting Poink: e,
[Run in separate memorny zpace (izolated process)
FPermizzions: Unload
O Mone
" Script
% Execute [including script]
I% Ok, | Cancel | | Help |

Figure 5.1: Active Server Pages are enabled by adding script permission

BCA-E10/91

BCA-E10/92

For other operating systems or Web servers, it gets a little tricky,
but is possible. For Unix or Linux servers running the Apache Web server,
you can use a bolt-on product to add ASP support. Sun Microsystems’ Sun
ONE Active Server Pages (formerly called Chili'Soft ASP) is one of these
products. This product supports most, but not all, of the controls available
in I1S. This is just one product that can add Active Server Page support to
non-Microsoft Web servers. Table 2.1 has a more complete list of ASP
compatibility products and the operating systems and Web servers they
run on. There are products to allow ASPs to be used on just about any
Web server out there. This fact makes using ASPs that much more
attractive because you aren’t limited in the choice of hardware, operating
system, or Web server to host your Web pages. As you can see, there are
even ASP-compatibility products for the iSeries.

5.3 ASPFILE

An ASP file is quite like an HTML file. It contains text, HTML
tags and scripts, which are executed on the server. The two widely used
scripting languages for an ASP page are VBScript and JScript. VBScript is
pretty much like Visual Basic, whereas Jscript is the Microsoft’s version
of JavaScript. However, VBScript is the default scripting language for
ASP. Besides these two scripting languages, you can use other scripting
language with ASP as long as you have an ActiveX scripting engine for
the language installed, such as PerlScript.

ASP contains the server scripts, which can contain any
expressions, statements, procedures, operators valid for the scripting
language. These server scripts are enclosed by the delimiters <% and %>

1. VBScript
2. JavaScript
3. Other Scripting Languages

The difference between an HTML file and an ASP file is that an
ASP file has the “.asp” extension. Furthermore, script delimiters for
HTML tags and ASP code are also different. A script delimiter is a
character that marks the starting and ending of a unit. HTML tags begins
with lesser than (<) and greater than (>) brackets, whereas ASP script
typically starts with <% and ends with %>. In between the delimiters are
the server-side scripts.

To write an ASP script, you don’t need any additional software
because it can be written with any HTML editor, such as Notepad.
Nonetheless, if you feel bored with the plain text and would like to use
some special software, you can use Microsoft visual InterDev, which helps
you to easily create an ASP page by giving you nice highlights and
debugging dialogue boxes. | hope that you already have an idea of what an
ASP file is and how it is different from an HTML file. In the next step,
you will learn how ASP works.

54 HOW DOES IT WORK?

As you have learned, scripts in an ASP file are server-side scripts,
which means that the scripts are processed on the server and then the
result of the scripts will be converted to HTML before sending to the web
browser. To illustrate, let’s take a look at this table to compare the process
of retrieving an HTML page and an ASP page .

HTML process

ASP process

A user requests a web page (i.e.,
http://www.gkv.ac.in/index.html

in the web browser.

A user requests a web page (i.e.,
http://www.gkv.ac.in/index.html

in the web browser.

The browser finds the appropriate
web server, and asks for the
required page.

The browser finds the appropriate
web server (like IS or PWS), and
asks for the required page.

The web server locates the required
page and sends it back to the
browser as HTML text.

The web server locates the required
page, and parses out the ASP code
within the ASP script delimiters
(<%...%>), produces a standard
HTML page. The server sends that

HTML page back to the browser,
SO

the user cannot see ASP code.

The browser executes the client side
scripting (like JavaScript)
determining how to display the

results

The browser executes the client
side

scripting (like JavaScript)
determining how to display the

results

Web page is not coupled with any
other

programming language.

Web page is coupled with another
programming language for database

maintenance.

It is used for web designing purpose
so dynamic websites are not
possible.

It is used for web development
purposes so dynamic web sites are
possible.

BCA-E10/93

As you can see, the whole process of the two is quite similar. Since
ASP is a server-side technology, the required page is executed on the
server before the HTML is created and served to the client. To make it
clearer, Figurel shows the processing behind a browser request to an ASP
page . For example, a client types in a URL into your browser. The
browser requests the ASP page from the web server. The server proceeds
the file with “.asp” extension to ASP Engine in which Objects or ActiveX
Components can be used to extend the web server with application-
specific functionality. In addition, ASP will use ADO to connect to a
Client Browser Server ASP Engine ADO ODBC Object / Component
Provider Driver ASP Script Oracle SQL Server Access FoxPro Request

ASP page
Request ASP page Request ASP page
Client P Browser [P Server
] ——
Send result Send result
Recognize
Creating * asp” extension
HTML file
. | y
Obyect / i _
Component ASP Engine ASP Script
poiett ¢——» “«——»

—— Call for Call for
e

Oracle
—
T Provider Cullor ADO

. All 10T -
20.1 Drrver (ActiveX Data Object)
Erver

e
T
e

Access 4—— ODRC > I
e
E Connect to data access

FoxPro
e

Figure 5.2 : How ASP works

For example, a client types in a URL into your browser. The browser
requests the ASP page from the web server. The server proceeds the file

BCA-E10/94 with “.asp” extension to ASP Engine in which Objects or ActiveX

Components can be used to extend the web server with application-
specific functionality. In addition, ASP will use ADO to connect to a
database (SQL, Access, Oracle, etc.) to pull out the relevant data, such as
the current weather in a specific area. Thus, a different page is generated
according to the area specified and time that the page is accessed. Then,
the server generates HTML tags before sending it back to the client.
Therefore, when you view the source of an ASP file, you will not see any
different from a standard HTML file.

ASP includes several build-in objects:

>

Application Objects- Describes the methods, properties, and
collections of the object that stores information related to the entire
Web application, including variables and objects that exist for the
lifetime of the application.

ASP Error Object- Describes the properties of the object that stores
information about an error condition.

Object Context Objects- Describes a wrapper for the COM +
ObjectContext object, which provides methods and events that are
used only for transaction processing.

Request Object- Describes the methods, properties, and collections
of the object that stores information related to the HTTP request.
This includes forms, cookies, server variables, and certificate data.

Response Object- Describes the methods, properties, and
collections of the object that stores information related to the
server's response. This includes displaying content, manipulating
headers, setting locales, and redirecting requests.

Scripting Context Object- In a component, the ScriptingContext
object returns references to the ASP built-in objects; however, this
is an obsolete and unsupported method, removed in 11S 4.0. Use
the COM+ ObjectContext object to return references to the ASP
built-in objects. For more information, see COM+ ObjectContext
Reference to the ASP Built-In Objects.

9.5

ADVANTAGES

Certainly, ASP must have some strength; otherwise, it won’t be

popular as such. Let’s count on its strong points and functionality.

>

Dynamic web page — Since ASP supports scripting languages,
which run on the web server, your web page can be dynamically
created. For example, you can create your web page so as to
greeting each user when they log into your page differently.

Browser independent — ASP is browser independent because all
the scripting code runs on the server. The browser only gets the
results from the server in a standard HTML page.

BCA-E10/95

BCA-E10/96

» Database Access — One of the greatest assets of ASP is database
connectivity. ASP enables you to easily build rich database
functionality into your web site, such as form processing.

» Building-in objects — The five built-in objects that come with ASP
facilitate Web application development. For example, you can use
Request object to retrieve browser request information.

» Free availability — Yes, it’s free. You can download web server
(IS or PWS) for free from Microsoft’s web site. You don’t even
have to have any special tool to write an ASP file. In other words,
you can simply use any text editor, like NotePad.

Check Your Progress
> Define ASP.
» Write the benefits of ASP.

5.6 ASP OBJECT

An application on the Web may consists of several ASP files that
work together to perform some purpose. The Application object is used to
tie these files together. The Application object is used to store and access
variables from any page, just like the Session object. The difference is that
ALL users share ONE Application object (with Sessions there is ONE
Session object for EACH user). The Application object holds information
that will be used by many pages in the application (like database
connection information). The information can be accessed from any page.
The information can also be changed in one place, and the changes will
automatically be reflected on all pages. The Application object's
collections, methods, and events are described below:

5.6.1 COLLECTIONS

Contents The Contents collection contains all the items added to the
application through the use of scripts (not through the use
of the <OBJECT> tag).

StaticObjects The StaticObjects collection contains all session-level
objects added to the application through the use of the
<OBJECT> tag. The collection can be used to retrieve the
value of a specific property for an object, or to retrieve all
properties for all static objects.

5.6.2 METHODS

Contents.Remove

Contents.RemoveAll

Lock

Unlock

The Contents.Remove method deletes the specified
item from the Application object Contents
collection.

The Contents.RemoveAll method deletes all the
items from the Application object Contents
collection.

The Lock method locks the Application Object,
preventing other users from modifying the same
application-level variables at the same time. The
individual user retains control of the Application
object until the Application.UnLock method is
declared. If the Unlock method is not called
explicitly, 11S will unlock the locked Application
object when the script ends or times out.

The Unlock method releases control of the locked
application variables. Once Unlock has been called,
other clients can again alter the values of the
variables in the Application object. If the Unlock
method is not called explicitly, 11S will unlock the
locked Application object when the script ends or
times out.

5.6.3 EVENTS

Application_OnStart

Application_OnEnd

The Application_OnStart event occurs before the
first new session is created (when the first client
request is received).

The Application_OnEnd event occurs when the
ASP application is explicitly unloaded from the
web server or when the web service on the web
server is stopped.

BCA-E10/97

BCA-E10/98

5.7 WORKING WITH DATABASE IN ASP

One of ASP's greatest assets is that it allows you to tap into a
database with ease. It's common to work with either an Access or a SQL
database. Since Access is the easiest to start with, and is a tool you may
already have, we'll use it for these examples. Once you learn core ASP
techniques for working with your Access database, you'll find that many
of the same skills will be necessary when you start workin