
Bachelor in Computer
Application

BCA-E10
Client Server Technology

Block-1 INTRODUCTION TO CLIENT-
SERVER COMPUTING 3-66

UNIT-1 Introduction to Client Server Computing 7

UNIT-2 Distributed Comupting 29

UNIT-3 Designing Client Server Applications 49

Block-2 INTRODUCTION TO ASP.NET 67-126

UNIT-4 Introduction to .NET Framework 71

UNIT-5 Traditional ASP Basics 89

UNIT-6 ASP.NET Introductions and Controls 107

Block-3 INTRODUCTION TO ASP.NET
 127-212
UNIT-7 Working with Forms and Controls 131

UNIT-8 ADO.NET 155

UNIT-9 ASP.NET State Management 173

UNIT-10 Configuration 197

Block-4 CLIENT SIDE AND SERVER SIDE
LOGIN SERVICES 215-328

UNIT-11 HTML and JAVA Script 219

UNIT-12 ASP.NET Web Services 239

UNIT-13 AJAX 257

UNIT-14 Developing a Small Application Using ASP.NET 277

Uttar Pradesh Rajarshi Tandon
Open University

BCA-E10/1

BCA-E10/2

Bachelor in Computer
Application

BCA-E10
Client Server Technology

BLOCK

1
INTRODUCTION TO CLIENT-SERVER COMPUTING

UNIT-1

Introduction to Client Server Computing

UNIT-2

Distributed Computing

UNIT-3

Designing Client Server Applications

Uttar Pradesh Rajarshi Tandon
Open University

BCA-E10/3

Course Design Committee
Dr. Ashutosh Gupta, Chairman
Director (In-charge)
School of Computer and Information Science, UPRTOU, Allahabad

Prof. R.S. Yadav Member
Dept. of Computer Science and Engineering, MNNIT, Allahabad

Ms. Marisha Member
Assistant Professor (Computer Science)
School of Science, UPRTOU, Allahabad

Mr. Manoj Kumar Balwant Member
Assistant Professor (Computer Science)
School of Science, UPRTOU, Allahabad

Course Preparation Committee
Dr. Krishan Kumar Author
Assistant Professor,
Department of Comuter Science Faculty of Technology
Gurukula Kangri Vishwavidyalaya, Haridwar (UK)

Dr. V.K. Saraswat Editor
Director (IET, Khandare Campus)
Institute of Engineering and Technology
Dr. B.R. Ambedkar University, Agra-282002

Dr. Ashutosh Gupta,
Director (In-charge)
School of Computer and Information Science, UPRTOU, Allahabad

Mr. Manoj Kumar Balwant Coordinator
Assistant Professor (Computer Science)
School of Science, UPRTOU, Allahabad

©UPRTOU, Prayagraj-2020
ISBN : 978-93-83328-13-0

©All Rights are reserved. No part of this work may be reproduced in any
form, by mimeograph or any other means, without permission in writing
from the Uttar Pradesh Rajarshi Tondon Open University, Prayagraj.
Printed and Published by Dr. Arun Kumar Gupta Registrar, Uttar Pradesh
Rajarshi Tandon Open University, 2020.
Printed By : Chandrakala Universal Pvt. 42/7 Jawahar Lal Neharu Road,
Prayagraj.

BCA-E10/4

[TESLA-009]

BLOCK INTRODUCTION

Block-1 basically contains three units which are mainly intended with
Client-Server technology and its design applications. Unit 1 introduces the
history, evolution and notion of Client-Server technology and also gives
its fundamental principles. Moreover, Client/server is a program
relationship in which one program (the client) requests a service or
resource from another program (the server). Although the Client-Server
model can be used by programs within a single computer, it is an
important concept for networking. In this case, the client establishes a
connection to the server over a local area network (LAN) or wide-area
network (WAN), such as the Internet. Once the server has fulfilled the
client's request, the connection is terminated. Web browser is a client
program that has requested a service from a server; in fact, the service and
resource the server provided is the delivery of this Web page.

Client-Server networks are basically combination of client and
server software which are basically used to respond clients’ request.
Earlier, the starting of client-server network was with the inception of
computer networks which later took the vast shape of Internet and many
more technologies. In the beginning, only four cities were connected and
the network named as ARPANET (Advance Research Project Agency
Network). Things were gradually added giving birth to LAN (local area
network), MAN (metropolitan area network), WAN (wide area network)
etc. Today, it has changed and has become the network of networks and
abbreviated as Internet. Internet has not only given a new shape and
direction to new research but has opened doors for several technologies. In
such a way, It has changed the simple life of individuals to modern. The
present available Client-Server network and its communication is actually
a collection of one or more networks, rather than a single network. What
characterizes it is the use of the TCP/IP protocol stack throughout.

Unit-2 covers the basic concepts and the need of distributed
computing. It also explores its role and change in the today’s changing
environment. Distributed computing is an important area of computer
science and because of distributive nature of database it has become the
necessity of world. Most of the Internet applications are having a large
database which cannot be handled by a single or simple server computer.
Hence, it is required to have the database on multiple satellite servers
which needs a similar powerful technology in parallel.

Before studying the other concepts of client-server network and
communication one needs to understand its design concepts. Therefore,
Unit 3 describes the principles of designing a Client-Server network.
Division of labour and transition from one domain to other domain has
also been explained. New Business Requirements, recent government
initiatives to expedite the purchase ordering process, improve inventory
control and deliver better services to the public have created demands for BCA-E10/5

applications that would link up the government agencies to their vendors,
partners and customers. These types of business systems have to be
scalable to accommodate a large and growing number of users (in the
range of hundreds or thousands). In addition, not only is multi-platform
support essential, these applications also have to be adaptable to emerging
client operating systems (e.g. Taligent).

BCA-E10/6

UNIT-1 INTRODUCTION TO CLIENT-
SERVER COMPUTING

Structure
1.0 Introduction

1.1 Objectives

1.2 Introduction to Client-Server Computing

1.3 Evolution of Client-Server Computing

1.4 Client-Server Systems

1.5 Two-tier architecture

1.6 Three-tier architecture

1.7 Multi/ N-tier architecture

1.8 Tiers vs layers

1.9 Client-Server computing and its uses / benefits

1.10 Downsizing With Client-Server computing

1.11 Mainframe Computing

1.12 Client-Server Technology & Heterogeneous Computing

1.13 Summary

1.14 Terminal questions

1.0 INTRODUCTION

A client-server computing aims at removing the barriers of
traditional mainframe centralized computing. As in past, the entire control
of any organization was at some central server and high degree of control
was limited for system managers. In traditional mainframe systems, end
users were not involved. Many barriers of information sharing and access
used to exist which caused problems. On the other hand, today, sharing of
the information and access has become the main concern for end user
computing and developer as well. System managers are not responsible for
the entire control. Or Client-server computing has replaced the big
mainframe computing. Client-server is any formal system architecture
describing technologies that cooperate together on a computer network
where users operate PCs (clients) that connect to central computers
(servers) over a computer network. Both computers cooperate to split the
work of performing various tasks. BCA-E10/7

One can also say that the set of management strategies for creating
systems that improve organizational effectiveness depends upon this
client/server request and response. These are strategies for distributing
computing resources within an organization to support interpersonal
communication, organizational coordination, and business collaboration.
Client-server model is an arrangement of the organizing hardware,
software, telecommunications, and data resources to put more computing
power on the desktop and create a company-wide network linking smaller
networks. Moreover, data and processing power are distributed throughout
the organization rather than being centrally located. Furthermore it also
emphasizes the user interaction with data and hence splits the processing
between client and server.

1.1 OBJECTIVES

At the end of this unit one would come to know about:

 The definition of client and server.

 Difference between client and server

 Mainframe computers

 Client server systems

 Model of the client-server system

 Architecture of the client-server system

 Advantages of client-server system

1.2 INTRODUCTION TO CLIENT-SERVER
COMPUTING

A client-server network is designed for end-users called clients,
used to access resources such as files, songs, video collections, or some
other service from a central computer called a server. A server's sole
purpose is to do what its name implies - serve its clients. One may have
been using this configuration and not even have known it. Have you ever
played Xbox Live or used the PlayStation Network? Your Xbox One is the
client, and when it logs into the network, it contacts the Xbox Live servers
to retrieve gaming resources like updates, video, and game demos.

Moreover; a client-server system is "a networked computing model
that distributes processes between clients and servers, which supply the
requested service." A client-server network connects many computers,
called the clients, to a main computer, called a server. A client can be
defined as a networked information solicitor, usually a desktop computer
or workstation that can query database and/or other information from a
server. The Client handles the presentations logic, processing logic, and
much of the storage logic. The client provides the graphical interface,

BCA-E10/8

while the server provides access to shared resources, typically a database.
Objects break up the client and server sides of an application into smart
components that can work across networks.

A server can be defined as a device that manages applications
programs and is shared by each of the client computers that are attached to
the local area network (LAN). The server is usually a high-powered
workstation, a minicomputer, or a mainframe, that stores information for
use by networked clients. A file server is the computer that manages file
operations. It is shared by each of the client computers attached to the
LAN. This connection allows the client computers to share the server
computer's resources, such as printers, files and programs. The server runs
software that coordinates the information flow among the other computers,
called clients. The file server is like an additional hard drive for each of
the computers attached. If most of the processing occurs on the client
rather than on a server then client is called a fat client.

Figure 1.1: Basic Client-Server Diagram

The major difference between the server and the client computers
is that the server is ordinarily faster and has more storage space. The
server generally performs most of the processing tasks. Some servers are
dedicated to performing a specific task such as printing or managing files.
A "thin" server is intended for the home user and provides access to the
Internet. A client-server network typically provides an efficient means to
connect ten or more computers together. Because of the size of a client-
server network, most client-server networks have a network administrator
who manages this system.

In a file server environment, each client computer is authorized to
use the database management system (DBMS) when a database
application program runs on that computer. The primary characteristic of
file server architecture is that all the data manipulation is performed at the
client computers not at the file server. The file server acts solely as a BCA-E10/9

shared data storage device. Software at the file server queues access
requests, but it is up to the application program at each client computer to
handle all data management functions.

One of the most used buzzwords of the 1990's is client-server.
Nearly all hardware and software vendors have something to say on the
subject. New developments in distributed computing and object-
orientation together have brought about the creation of a new class of
database systems. These systems use a client-server computing model to
provide quick response times for users and also support for complex,
shared data in a distributed environment. Current relational DBMS
products are based on a query-shipping approach in which most query
processing is performed within the servers. The clients are mainly used to
administer the user interface. Object-oriented database systems
(OODBMS) on the other hand, support data-shipping, which allows data
request processing to be performed at the clients.

1.2.1 CHARACTERISTICS OF CLIENT

 It initiates the communication

 It sends the request message.

 It waits for server's response.

 It is the first active (or master);

 Sends requests to the server;

 It expects and receives responses from the server.

 Usually connects to a small number of servers at one time

 Typically interacts directly with end-users using a graphical user
interface

1.2.2 CHARACTERISTICS OF SERVER

 It acknowledges the communication.

 It sends the response message.

 It processes the request.

 It is initially passive (or slave, waiting for a query);

 It is listening, ready to respond to requests sent by clients;

 When a request comes, he treats it and sends a response.

 Usually accepts connections from a large number of clients

 Typically, does not interact directly with end-users

BCA-E10/10

1.3 EVOLUTION OF CLIENT-SERVER
COMPUTING

1970s and 1980s was the era of centralized computing, with IBM
mainframe occupied over 70% of the world's computer business. Business
transactions, activities and database retrieval, queries and maintenance are
all performed by the omnipresent IBM mainframe. We are now in the
transition phase towards Client-Server Computing, a totally new concept
and technology to re-engineer the entire business world. Someone has
called it the wave of the future - the computing paradigm of the 1990s.

One may wonder that how client-server computing is different
from traditional mainframe computing and what the benefits from
employing it in business are. The main emphasis of client-server
architecture is to allow large application to be split into smaller tasks and
to perform the tasks among host (server machine) and desktops (client
machines) in the network. Client machine usually manages the front-end
processes such as GUIs (Graphical User Interfaces), dispatch requests to
server programs, validate data entered by the user and also manages the
local resources that the user interacts with such as the monitor, keyboard,
workstation, CPU and other peripherals.

The evolution of client-server computing has been driven by
business needs, as well as the increasing costs for host (mainframe and
midrange) machines and maintenance, the decreasing costs and increasing
power of micro-computers and the increased reliability of LANs.

In the past twenty-five years, there are dramatic improvements in
the hardware and software technologies for micro-computers. Micro-
computers become affordable for small businesses and organizations. And
at the same time their performances are becoming more and more reliable.
On the other hand, the drop in price for mainframe is growing at a slower
rate than the drop in its price. Little developments have achieved with
mainframes.

Figure 1.2 : Elements of Client-Server Computing BCA-E10/11

1.4 CLIENT-SERVER SYSTEMS

Computer system architecture has evolved along with the
capabilities of the hardware used to run applications. The simplest (and
earliest) of all was the "mainframe architecture" in which all operations
and functionality are contained within the central (or "host") computer.
Users interacted with the host through 'dumb' terminals which transmitted
instructions, by capturing keystrokes, to the host and displayed the results
of those instructions for the user. Such applications were typically
character based and, despite the relatively large computing power of the
mainframe hosts were often relatively slow and cumbersome to use
because of the need to transmit every keystroke back to the host.

The introduction and widespread acceptance of the pc, with its
own native computing power and graphical user interface made it possible
for applications to become more sophisticated and the expansion of
networked systems led to the second major type of system architecture,
"file sharing". In this architecture the pc (or "workstation") downloads
files from a dedicated "file server" and then runs the application (including
data) locally. This works well when the shared usage is low, update
contention is low, and the volume of data to be transferred is low.
However, it rapidly became clear that file sharing choked as networks
grew larger, and the applications running on them grew more complex and
required ever larger amounts of data to be transmitted back and forth.

The problems associated with handling large, data-centric
applications, over file sharing networks led directly to the development of
the client-server architecture in the early 1980s. In this approach the file
server is replaced by a database server (the "server") which, instead of
merely transmitting and saving files to its connected workstations
(the” clients") receives and actually executes requests for data, returning
only the result sets to the client. By providing a query response rather than
a total file transfer; this architecture significantly decreases network
traffic. This allowed for the development of applications in which multiple
users could update data through GUI front ends connected to a single
shared database.

Typically either structured query language (sql) or remote
procedure calls (rpcs) are used to communicate between the client and
server. There are several variants of the basic client/server architecture as
described ahead.

Check Your Progress

 Define the term client software and server software.

 Write a short note on client-server evolution.

BCA-E10/12

1.5 TWO-TIER ARCHITECTURE

In two-tier architecture, the workload is divided between the server
(which hosts the database) and the client (which hosts the user interface).
Actually these are usually located on separate physical machines but there
is no absolute requirement for this to be the case. Providing that the tiers
are logically separated they can be hosted (e.g. for development and
testing) on the same computer (figure 1.3).

Figure 1.3 : Basic two-tier architecture

The distribution of application logic and processing in this model
was problematic. If the client is 'smart' and hosts the main application
processing then there are issues associated with distributing, installing and
maintaining the application because each client needs its own local copy
of the software. If the client is 'dumb' the application logic and processing
must be implemented in the database and then becomes totally dependent
on the specific DBMS being used. In either scenario, each client must also
have a login to the database and the necessary rights to carry out whatever
functions are required by the application. However, the two-tier client-
server architecture proved to be a good solution when the user population
work is relatively small (up to about 100 concurrent users) but it rapidly
proved to have a number of limitations. These limitations are explained
below.

1.5.1 PERFORMANCE

As the user population grows, performance begins to deteriorate.
This is the direct result of each user having their own connection to the
server which means that the server has to keep all these connections live
(using "keep-alive" messages) even when no work is being done.

1.5.2 SECURITY

Each user must have its own individual access to the database, and
be granted whatever rights may be required in order to run the application.
Apart from the security issues that this raises, maintaining users rapidly
becomes a major task in its own right. This is especially problematic when BCA-E10/13

new features/functionality has to be added to the application and users’
rights need to be updated.

1.5.3 CAPABILITY

No matter what type of client is used, much of the data processing
has to be located in the database which means that it is totally dependent
upon the capabilities, and implementation, provided by the database
manufacturer. This can seriously limit application functionality because
different databases support different functionality, use different
programming languages and even implement such basic tools as triggers
differently.

1.5.4 PORTABILITY

Since the two-tier architecture is so dependent upon the specific
database implementation, porting an existing application to a different
DBMS becomes a major issue. This is especially apparent in the case of
vertical market applications where the choice of DBMS is not determined
by the vendor having said that, this architecture found a new lease of life
in the internet age. It can work well in a disconnected environment where
the browser is essentially dumb. however, in many ways this
implementation harks back to the original mainframe architecture and
indeed, a browser based, two-tier application, can (and usually does)
suffer from many of the same issues.

1.5.5 RELIABILITY

Reliability is an important term of software engineering. As per the
software engineering, the software must be reliable enough as per the
requirements of the client and server. Client-server architecture, as the
basic medium of communication on network is the most reliable
technique. The data which is to be send through this mechanism is secured
and reliable at any point of time. Normally, all the present technologies in
minicomputers and mainframe computers provide services to support
reliability. Moreover, reliability needs availability factors to be resolved
first. Applications must also be protected from being modified one
another. Memory should be shared by only authorized tasks. Furthermore,
as far as security is concerned, only authorised users must be allowed to
access various available resources. Specifically, the software must
automatically handle multiple user contention, provide full recovery after
failure of in-flight updates, and provide utility functions to recover a
damaged magnetic disk.

1.5.6 REMOTE ACCESS TO DATABASE

Basically remote access is the ability to access the information
from a computer residing at some distance. For example, in corporations,

BCA-E10/14

people at their branch offices, telecommuters, and people who are
travelling may often need access to the corporation's network. Home users
get access to the Internet through remote access to an Internet service
provider. Remote access is also possible using a dedicated line between a
computer or a remote local area network and the "central" or main
corporate local area network. A remote access server is the computer and
associated software that is set up to handle users seeking access to network
remotely. Data can be accessed from anywhere at any point of time
because it is available remotely for all users. It describes the connection of
a database client to a database server. It includes features for the
following:

 Communicating database operations and parameters from the
client to the server.

 Transporting result data from the server to the client.

 Database transaction management.

 Exchange of information.

1.6 THREE-TIER ARCHITECTURE

In an effort to overcome the limitations of the two-tier architecture
outlined above, an additional tier was introduced – creating what is now
the standard three-tier client-server model. The purpose of the additional
tier (usually referred to as the "middle" or "rules" tier) is to handle
application execution and database management. As with the two-tier
model, the tiers can either be implemented on different physical machines
(figure 2), or multiple tiers may be co-hosted on a single machine.

Figure 1.4 : Three-tier architecture

After introducing the middle tier, the limitations of the two-tier
architecture are largely removed and the result is a much more flexible,
and scalable, system. Since clients now connect only to the application
server, not directly to the data server, the load of maintaining connections
is removed, as is the requirement to implement application logic within the BCA-E10/15

https://en.wikipedia.org/wiki/Database_transaction

database. The database can now be backed to its proper role of managing
the storage and retrieval of data, while application logic and processing
can be handled in whatever application is most appropriate for the task.
The development of operating systems to include such features as
connection pooling, queuing and distributed transaction processing has
enhanced (and simplified) the development of the middle tier.

It is to be noted here that, in this model, the application server does
not drive the user interface, nor does it actually handle data requests
directly. Instead it allows multiple clients to share business logic,
computations, and access to the data retrieval engine that it exposes. This
has the major advantage that the client needs less software and no longer
need a direct connection to the database, so there is less security to worry
about.

Consequently applications are more scalable, and support and
installation costs are significantly less for a single server than for
maintaining applications directly on a desktop client or even a two-tier
design. There are many variants of the basic three-tier model designed to
handle different application requirements. These include distributed
transaction processing (where multiple DBMS are updated in a single
transaction), message based applications (where applications do not
communicate in real-time) and cross-platform interoperability (object
request broker or "orb" applications).

1.7 MULTIIN-TIER ARCHITECTURE

With the rapid growth of internet based applications a common
enhancement of the basic three-tier client server model has been the
addition of extra tiers, such architecture is referred to as 'n-tier' and
typically comprises four tiers (figure 3) where the web server is
responsible for handling the connection between client browsers and the
application server. The main benefit of this is simply that multiple web
servers can connect to a single application server, thereby handling more
concurrent users.

Figure 1.4 : N-tier architecture

BCA-E10/16

Check Your Progress

 Define the term client software and server software.

 Write a short note on client-server evolution.

1.8 TIERS VS LAYERS

These terms are often (regrettably) used interchangeably. Rather
they really are distinct and have definite meanings. The basic difference is
that tiers are physical, while layers are logical. In other words a tier can
theoretically be deployed independently on a dedicated computer, while
a layer is a logical separation within a tier (figure 1.5). The typical three-
tier model described above normally contains at least seven layers, split
across the three tiers. The key concept to remember about a layered
architecture is that requests and responses each flow in one direction only
and that layers may never be "skipped". Therefore, in the model shown in
figure 1.5, the only layer that can address layer "e" (the data access layer)
is layer "d" (the rules layer). Similarly layer "c" (the application validation
layer) can only respond to requests from layer "b" (the error handling
layer).

Figure 1.5 : Tiers are divided into logical layers

1.9 CLIENT-SERVER USES / BENEFITS

As client-server is fast-becoming the enabling factor for business
process reengineered organizations, because of its flexibility and speedy
application development times - it takes around six months to develop a BCA-E10/17

client-server application compared to around 2 years for a mainframe
version. Therefore, time taken to develop client-server applications has
reduced remarkably. By adopting the client-server technology, the
organizations have changed from steep hierarchies to flattened hierarchies.

Also, network management is replacing vertical management. As a
whole, the development and implementation of client-server technology is
more complex, more difficult and more expensive than traditional single
process applications. However, they are still badly needed because the
business demands the increased benefits.

Client-server systems have become the computing architecture for
many business organizations. Technically, a client-server system places
application processing close to the user and thus increases performance.
Due to the recent improvements in the price and performance
characteristics of workstations and the networking capabilities, the client-
server system architecture has become very popular for database systems.

A client-server DBMS provides the management of a database
within a client-server system. The database is stored on disks that can be
accessed only by the servers. Copies of database items are cached in the
global memory, which consist of all the memories of the computers
connected to the system. This reduces the disk access. This efficient global
memory design reduces the handling and creating fewer disks input/output
during the use of the database.

Some of the advantages are described below:

1) Centralization: Unlike P2P, where there is no central
administration, here in this architecture there is a centralized
control. Servers help in administering the whole set-up. Access
rights and resource allocation is done by Servers.

2) Proper Management : All the files are stored at the same place.
In this way, management of files becomes easy. Also it becomes
easier to find files.

3) Back-up and Recovery possible: As all the data is stored on
server it is easy to make a back-up of it. Also, in case of some
break-down if data is lost, it can be recovered easily and
efficiently. While in peer computing we have to take back-up at
every workstation.

4) Upgradation and Scalability in Client-server set-up: Changes
can be made easily by just upgrading the server. Also new
resources and systems can be added by making necessary changes
in server.

5) Accessibility: From various platforms in the network, server can
be accessed remotely.

6) As new information is uploaded in database; each workstation
need not have its own storage capacities increased (as may be the BCA-E10/18

http://www.ianswer4u.com/2011/12/earned-value-management-analysis.html
http://www.ianswer4u.com/2011/10/characteristics-of-good-software.html

case in peer-to-peer systems). All the changes are made only in
central computer on which server database exists.

7) Security: Rules defining security and access rights can be defined
at the time of set-up of server.

8) Servers can play different roles for different clients.

Figure 1.6 : Benefits of Client-Server

1.10 DOWNSIZING WITH CLIENT-SERVER
COMPUTING

One of the best ways to downsize is by using the new generation of
SQL based client-server computing technologies from vendors such as
Oracle, Sybase, Gupta and Novell. In the client-server model, the
application is split between functions that execute on the client, a PC or
workstation, and functions that run on the server, a multiuser data
repository. Most application logic runs at the client desktop machine.
When the application requires data, it generates the necessary SQL
command and then passes high-level code to the communications facility.
This facility then directs the SQL commands to the server, where the
database request is executed (figure-1.7). The idea of managing data on a
separate machine fits well with the management approach of treating data
as a corporate resource. In addition to executing the SQL statement, the BCA-E10/19

server handles security and provides for concurrent access to the data by
many queries.

Figure 1.7 : Request/Response in Client-Server Computing

A benefit of using SQL client-server computing is that the
hardware and software products supporting this approach are new and take
advantage of the latest developments, such as application languages in a
windowing environment. Another benefit is network efficiency. In
traditional file-serving PC LAN approaches, the entire data file must be
transmitted across a network to the client machine. With SQL as the basis
for database management, this problem is resolved, since only the
necessary query response data (a table) is transmitted to the client
machine. SQL on the server also enables the implementation of advanced
facilities, such as triggers and automatic procedures in the database.

Check Your Progress
 Write the main benefits of client-server computing.

 Draw and explain the diagram of request-response in client-server
environment.

1.11 MAINFRAME COMPUTING

Mainframe computing is used for critical applications, bulk data
processing, enterprise resource planning and transaction processing. Most
of this is Mainframe/Mid-Range and includes, but is not limited to,
operating system, application design & development, operations, support,
storage and security. Moreover, It is a very large and expensive computer
capable of supporting hundreds, or even thousands, of users
simultaneously. In the hierarchy that starts with a simple microprocessor

BCA-E10/20

(in watches, for example) at the bottom and moves to supercomputers at
the top, mainframes are just below supercomputers.

In some ways, mainframes are more powerful than supercomputers
because they support more simultaneous programs. But supercomputers
can execute a single program faster than a mainframe. The distinction
between small mainframes and minicomputers is vague, depending really
on how the manufacturer wants to market its machines.

Figure 1.8 : Mainframe Computer in a Network

1.11.1 MAINFRAME COMPUTERS

One of the first types of computers to be used commercially was
the mainframe. This system operates by sharing a processor between a
large number of 'dumb terminals'. These terminals are composed of a
monitor and a keyboard, but they do not have their own processor, hence
the term 'dumb'. Large businesses, such as banks and insurance
companies, use mainframes to allow their remote branches access to the
processor, which is held in a central location. The processor has to be very
powerful as huge amounts of data are dealt with. Imagine the number of
credit card transactions throughout the country that are processed in a
single day. Mainframes support multi-access and multi-programming
capabilities for the users. Mainframe computers have the following
characteristics :

Processing power : A mainframe computer will have several processors
that work together, making the machine extremely powerful.

Memory size : There is usually a vast amount of memory. Some modern
mainframes can support more than 32 GB of main memory.

Backing store devices : These are typically greater than 100 GB hard
disk. Tape drives are also used for back-up or batch processing.
Input /Output devices : Keyboard, Line printers, page printers and
monitors.

BCA-E10/21

1.12 CLIENT-SERVER TECH AND
HETEROGENEOUS COMPUTING

1.12.1 CLIENT-SERVER MODEL

Client-Server technology is a means for separating the functions of
an application into two or more distinct parts. Client/ server describes the
relationship between two computer programs in which one program, the
client, makes a service request from another program, the server, which
fulfills the request. The client presents and manipulates data on the
desktop computer. The server acts like a mainframe to store and retrieve
protected data. It is network architecture in which each computer or
process on the network is either a client or a server. Servers are powerful
computers or processes dedicated to managing disk drives (file servers),
printers (print servers), or network traffic (network servers). Clients are
PCs or workstations on which users run applications. Clients rely on
servers for resources, such as files, devices, and even processing power.

Figure 1.9 : Client-Server Technology

A client/ server model has following three distinct components,
each focusing on a specific job:

 Database server

 Client application

 Network.
BCA-E10/22

1.12.1.1 DATABASE SERVER

A server (or "back end") manages the resources such as database,
efficiently and optimally among various clients that simultaneously
request the server for the same resources. Database server mainly
concentrates on the following tasks:

1. Managing a single database of information among many
concurrent users.

2. Controlling database access and other security requirements.

3. Protecting database of information with backup and recovery
features.

4. Centrally enforcing global data integrity rules across all client
applications.

1.12.1.2 CLIENT APPLICATION

A client application (the "front end") is the part of the system that
users apply to interact with data. The client application in a client/ server
model focuses on the following job:

 Presenting an interface between the user and the resource to
complete the job.

 Managing presentation logic.

 Performing application logic and validating data entry.

 Managing the request traffic of receiving and sending information
from database server.

1.12.1.3 NETWORK

The third component of a client-server system is network. The
communication software is the vehicle that transmits data between the
clients and the server. Both the client and the server run communication
software that allows them to talk across the network. Client-server is an
important idea in a network; however, it can be used by programs within a
single computer. In a network, the client-server model provides a
convenient way to interconnect programs that are distributed efficiently
across different locations. Computer transactions using the client-server
model are very common. For example, to check your bank account from
your computer, a client program in your computer forwards your request
to a server program at the bank. That program may in turn forward the
request to its own client program that sends a request to a database server
at another bank computer to retrieve your account balance.

BCA-E10/23

1.12.2 HETEROGENEOUS COMPUTING

It refers to systems that use more than one kind of processor or
cores. These systems gain performance or energy efficiency not just by
adding the same type of processors, but by adding dissimilar coprocessors,
usually incorporating specialized processing capabilities to handle
particular tasks. Usually heterogeneity in the context of computing
referred to different instruction set architectures (ISA), where the main
processor has one and the rest have another, usually a very different
architecture (maybe more than one), not just a different micro
architecture (floating point number processing is a special case of this not
usually referred to as heterogeneous). E.g. ARM big. LITTLE is an
exception where the ISAs of cores are the same and heterogeneity refers to
the speed of different micro architectures of the same ISA, then making it
more like a symmetric multiprocessor system (SMP).

In the past heterogeneous computing meant different ISAs had to
be handled differently, while a modern example, Heterogeneous (HSA)
systems, eliminate the difference (for the user); use multiple processor
types (typically CPUs and GPUs), usually on the same integrated circuit,
to provide the best of both worlds: general GPU processing (apart from its
well-known 3D graphics rendering capabilities, it can also perform
mathematically intensive computations on very large data sets), while
CPUs can run the operating system and perform traditional serial tasks.

The level of heterogeneity in modern computing systems is
gradually increasing as further scaling of fabrication technologies allows
for formerly discrete components to become integrated parts of a system-
on-chip (SoC). For example, many new processors now include built-in
logic for interfacing with other devices (SATA, PCI, Ethernet, USB,
RFID, Radios, UARTs, and memory controllers), as well as
programmable functional units and hardware accelerators
(GPUs, cryptography co-processors, programmable network processors,
A/V encoders/decoders, etc.).

Recent findings show that a heterogeneous-ISA chip
multiprocessor that exploits diversity offered by multiple ISAs can
outperform the best same-ISA heterogeneous architecture by as much as
21% with 23% energy savings and a reduction of 32% in Energy Delay
Product. Heterogeneous computing systems present new challenges not
found in typical homogeneous systems. The presence of multiple
processing elements raises all of the issues involved with homogeneous
parallel processing systems, while the level of heterogeneity in the system
can introduce non-uniformity in system development, programming
practices, and overall system capability.

Areas of heterogeneity may include:

ISA or instruction set architecture : Compute elements may have
different instruction set architectures, leading to binary incompatibility.

BCA-E10/24

https://en.wikipedia.org/wiki/Coprocessors
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/Floating_point
https://en.wikipedia.org/wiki/ARM_big.LITTLE
https://en.wikipedia.org/wiki/Symmetric_multiprocessor_system
https://en.wikipedia.org/wiki/CPU
https://en.wikipedia.org/wiki/GPU
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/System_on_a_chip
https://en.wikipedia.org/wiki/System_on_a_chip
https://en.wikipedia.org/wiki/SATA
https://en.wikipedia.org/wiki/Conventional_PCI
https://en.wikipedia.org/wiki/Ethernet
https://en.wikipedia.org/wiki/USB
https://en.wikipedia.org/wiki/RFID
https://en.wikipedia.org/wiki/Radio
https://en.wikipedia.org/wiki/UART
https://en.wikipedia.org/wiki/Memory_controller
https://en.wikipedia.org/wiki/Hardware_acceleration
https://en.wikipedia.org/wiki/GPU
https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Coprocessor
https://en.wikipedia.org/wiki/Instruction_set

ABI or application binary interface: Compute elements may interpret
memory in different ways. This may include both endianness, calling
convention, and memory layout, and depends on both the architecture
and compiler being used.

API or application programming interface: Library and OS services
may not be uniformly available to all compute elements.

Low-Level Implementation of Language Features: Language features
such as functions and threads are often implemented using function
pointers, a mechanism which requires additional translation or abstraction
when used in heterogeneous environments.

Memory Interface and Hierarchy: Compute elements may have
different cache structures, cache coherency protocols, and memory access
may be uniform or non-uniform memory access (NUMA). Differences can
also be found in the ability to read arbitrary data lengths as some
processors/units can only perform byte-, word-, or burst accesses.

Interconnect: Compute elements may have differing types of interconnect
aside from basic memory/bus interfaces. This may include dedicated
network interfaces, direct memory access (DMA) devices,
mailboxes, FIFOs, and scratchpad memories, etc. Furthermore, certain
portions of a heterogeneous system may be cache-coherent, whereas
others may require explicit software-involvement for maintaining
consistency and coherency.

Performance: A heterogeneous system may have CPUs that are identical
in terms of architecture, but have underlying micro-architectural
differences that lead to various levels of performance and power
consumption.

Figure 1.10 : Heterogeneous Network BCA-E10/25

https://en.wikipedia.org/wiki/Application_binary_interface
https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Calling_convention
https://en.wikipedia.org/wiki/Calling_convention
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Function_pointer
https://en.wikipedia.org/wiki/Function_pointer
https://en.wikipedia.org/wiki/Memory_hierarchy
https://en.wikipedia.org/wiki/Cache_(computing)
https://en.wikipedia.org/wiki/Cache_coherency
https://en.wikipedia.org/wiki/Non-uniform_memory_access
https://en.wikipedia.org/wiki/Direct_memory_access
https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)
https://en.wikipedia.org/wiki/Scratchpad_memory

Check Your Progress
 What is mainframe computing?

 Explain the Heterogeneous network.

 What are the different components used in a client server
model?

1.13 SUMMARY

Computer networks can be used for numerous services, both for
companies and for individuals. For companies, networks of personal
computers using shared server often provide access to corporate
information. Typically, they follow the client-server model, with client
workstations on employee desktops accessing powerful servers in the
machine room. For individuals, networks offer access to a variety of
information and entertainment resources. Individuals often access the
Internet by calling up an ISP using a modem, although increasingly many
people have a fixed connection at home. An up-and-coming area is
wireless networking with new applications such as mobile e-mail access
and m-commerce.

Mainframe system operates by sharing a processor between a large
number of 'dumb terminals'. These terminals are composed of a monitor
and a keyboard, but they do not have their own processor, hence the term
'dumb'. Large businesses, such as banks and insurance companies, use
mainframes to allow their remote branches access to the processor, which
is held in a central location.

Heterogeneous network refers to systems that use more than one
kind of processor or cores. These systems gain performance or energy
efficiency not just by adding the same type of processors, but by adding
dissimilar coprocessors, usually incorporating specialized processing
capabilities to handle particular tasks. Usually heterogeneity in the context
of computing referred to different instruction set architectures (ISA),
where the main processor has one and the rest have another, usually a very
different architecture.

1.14 TERMINAL QUESTIONS

1. What do you understand by Client and server software?

2. Give the evolution of Client-Server Computing.

3. What are the main elements of Client-Server Computing? Draw a
diagram also.

4. Why we need Client-Server Computing? Explain its benefits.

BCA-E10/26

https://en.wikipedia.org/wiki/Coprocessors
https://en.wikipedia.org/wiki/Instruction_set

5. Define Mainframe computing.

6. Write a short note on Heterogeneous Computing.

7. Compare tier and layers.

8. “Today Client-Server Computing has become the need of almost
all computer networks”, justify this statement with respect to
arguments of present scenario.

9. Is there any drawback of Client-Server Computing? If yes then
discuss.

BCA-E10/27

BCA-E10/28

UNIT-2 DISTRIBUTED COMPUTING
Structure

2.0 Introduction

2.1 Objectives

2.2 Introduction to Distributed Computing

2.3 File Server Versus Client Server Database

2.4 Computing platform

2.5 Microprocessor integration & client-server computing

2.6 Implementation and scalability

2.7 Summary

2.8 Terminal questions

2.0 INTRODUCTION

Distributed computing is a very important area of Computer
Science. The term distributed means the things are scattered but they are
directly or indirectly related with each other. Nothing, in computer
Science and other technologies is untouched with this word ie distributed
computing. Distributed computing also refers to the use of distributed
systems to solve computational problems. In distributed computing, a
problem is divided into many tasks, each of which is solved by one or
more computers, which communicate with each other by message passing.

The word distributed in terms such as "distributed system",
"distributed programming", and "distributed algorithm" originally referred
to computer networks where individual computers are physically
distributed within some geographical area. For example, Bank’s ATMs are
distributed at several places and whenever money is withdrawn from an
ATM the whole Database of the Bank is updated. Hence the load is
distributed from one main computer to many computers. In this unit the
main emphasis is to know the Distributed computing and similar
technologies. This also aims to develop a distributed system using various
technologies. Client-server systems and computing is also discussed.

Distributed systems are groups of networked computers, which
have the same goal for their work. The terms "concurrent computing",
"parallel computing", and "distributed computing" have a lot of overlap,
and no clear distinction exists between them. The same system may be
characterized both as "parallel" and "distributed"; the processors in a
typical distributed system run concurrently in parallel. Parallel computing
may be seen as a particular tightly coupled form of distributed BCA-E10/29

https://en.wikipedia.org/wiki/Distributed_algorithm
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Parallel_computing

computing, and distributed computing may be seen as a loosely coupled
form of parallel computing.

2.1 OBJECTIVE

At the end of this unit you would come to know

 The meaning of distributed computing

 Difference between Distributed systems and Distributed computing

 Client software.

 Server software

 Client-server computing

 File server

 Characteristics of Distributed computing

 Advantages of distributed computing

 Microprocessor integration

 Scaling

 Main issues of Distributed Computing

2.2 INTRODUCTION TO DISTRIBUTED
COMPUTING

Distributed Computing is a field of computer science that studies
distributed systems. A distributed system is a model in which components
located on networked computers communicate and coordinate their actions
by passing messages. The components interact with each other in order to
achieve a common goal. Three significant characteristics of distributed
systems are:

 Concurrency of components

 Lack of a global clock

 Independent failure of components.

Examples of distributed systems vary from SOA-based
systems to massively multiplayer online games to peer-to-peer
applications. A computer program that runs in a distributed system is
called a distributed program, and distributed programming is the process
of writing such programs. There are many alternatives for the message
passing mechanism, including pure HTTP, RPC-like connectors
and message queues. A goal and challenge pursued each other by message
passing.

BCA-E10/30

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Message_passing
https://en.wikipedia.org/wiki/Clock_synchronization
https://en.wikipedia.org/wiki/Service-oriented_architecture
https://en.wikipedia.org/wiki/Service-oriented_architecture
https://en.wikipedia.org/wiki/Massively_multiplayer_online_game
https://en.wikipedia.org/wiki/Peer-to-peer
https://en.wikipedia.org/wiki/Peer-to-peer
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Remote_procedure_call
https://en.wikipedia.org/wiki/Message-oriented_middleware

There is no single definition of a distributed system, however some
computer scientists and practitioners in distributed systems is location
transparency; this goal has fallen out of favour in industry, as distributed
systems are different from conventional non-distributed systems, and the
differences, such as network partitions, partial system failures, and partial
upgrades, cannot simply be "papered over" by attempts at "transparency".

Distributed computing also refers to the use of distributed systems
to solve computational problems. In distributed computing, a problem is
divided into many tasks, each of which is solved by one or more
computers, which communicate with each other by message passing. The
word distributed in terms such as "distributed system", "distributed
programming", and "distributed algorithm" originally referred to computer
networks where individual computers are physically distributed within
some geographical area. The terms are nowadays used in a much wider
sense, even referring to autonomous processes that run on the same
physical computer and interact with There are several autonomous
computational entities, each of which has its own local memory. The
entities communicate with each other by message passing. In this article,
the computational entities are called computers or nodes.

A distributed system may have a common goal, such as solving a
large computational problem. Alternatively, each computer may have its
own user with individual needs, and the purpose of the distributed system
is to coordinate the use of shared resources or provide communication
services to the users. Other typical properties of distributed systems
include the following: The system has to tolerate failures in individual
computers.

Figure 2.1: (a) Simple System (b) Distributed System (c) Parallel System BCA-E10/31

https://en.wikipedia.org/wiki/Location_transparency
https://en.wikipedia.org/wiki/Location_transparency
https://en.wikipedia.org/wiki/Network_partition
https://en.wikipedia.org/wiki/Distributed_algorithm
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Memory_(computers)
https://en.wikipedia.org/wiki/Message_passing
https://en.wikipedia.org/wiki/Node_(networking)
https://en.wikipedia.org/wiki/Fault_tolerance
https://en.wikipedia.org/wiki/File:Distributed-parallel.svg

Distributed systems are groups of networked computers, which
have the same goal for their work. The terms "concurrent computing",
"parallel computing", and "distributed computing" have a lot of overlap,
and no clear distinction exists between them. The same system may be
characterized both as "parallel" and "distributed"; the processors in a
typical distributed system run concurrently in parallel. Parallel computing
may be seen as a particular tightly coupled form of distributed
computing, and distributed computing may be seen as a loosely coupled
form of parallel computing.

Nevertheless, it is possible to roughly classify concurrent systems
as "parallel" or "distributed" using the following criteria:

 In parallel computing, all processors may have access to a shared
memory to exchange information between processors.

 In distributed computing, each processor has its own private
memory called distributed memory. Information is exchanged by
passing messages between the processors.

 Figure (a) is a schematic view of a typical distributed system; as
usual, the system is represented as a network topology in which
each node is a computer and each line connecting the nodes is a
communication link.

 Figure (b) shows the same distributed system in more detail: each
computer has its own local memory, and information can be
exchanged only by passing messages from one node to another by
using the available communication links.

 Figure (c) shows a parallel system in which each processor has a
direct access to a shared memory.

The situation is further complicated by the traditional uses of the
terms parallel and distributed algorithm that do not quite match the above
definitions of parallel and distributed systems. Nevertheless, as a rule of
thumb, high-performance parallel computation in a shared-memory
multiprocessor uses parallel algorithms while the coordination of a large-
scale distributed system uses distributed algorithm.

2.2.1 PARALLEL ALGORITHMS IN SHARED-
MEMORY MODEL

 All processors have access to a shared memory. The algorithm
designer chooses the program executed by each processor.

 One theoretical model is the parallel random access
machines (PRAM) that are used. However, the classical PRAM
model assumes synchronous access to the shared memory.

 Shared-memory programs can be extended to distributed systems
if the underlying operating system encapsulates the

BCA-E10/32

https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Shared_memory_architecture
https://en.wikipedia.org/wiki/Shared_memory_architecture
https://en.wikipedia.org/wiki/Distributed_memory

communication between nodes and virtually unifies the memory
across all individual systems.

 A model that is closer to the behavior of real-world multiprocessor
machines and takes into account the use of machine instructions,
such as Compare-and-swap (CAS), is that of asynchronous shared
memory. There is a wide body of work on this model, a summary
of which can be found in the literature.

2.2.2 ALGORITHMS IN MESSAGE-PASSING MODEL

 The algorithm designer chooses the structure of the network, as
well as the program executed by each computer.

 Models such as Boolean circuits and sorting networks are used.A
Boolean circuit can be seen as a computer network: each gate is a
computer that runs an extremely simple computer program.
Similarly, a sorting network can be seen as a computer network:
each comparator is a computer.

2.2.3 DISTRIBUTED ALGORITHMS IN MESSAGE-
PASSING MODEL

 The algorithm designer only chooses the computer program. All
computers run the same program. The system must work correctly
regardless of the structure of the network.

 A commonly used model is a graph with one finite-state
machine per node.

In the case of distributed algorithms, computational problems are
typically related to graphs. Often the graph that describes the structure of
the computer network is the problem instance.

Example: Consider the computational problem of finding a coloring of a
given graph G. Different fields might take the following approaches.

Centralized algorithms:The graph G is encoded as a string, and the
string is given as input to a computer. The computer program finds a
coloring of the graph, encodes the coloring as a string, and outputs the
result.

Parallel algorithms:Again, the graph G is encoded as a string.
However, multiple computers can access the same string in parallel. Each
computer might focus on one part of the graph and produce a coloring for
that part. The main focus is on high-performance computation that
exploits the processing power of multiple computers in parallel.

Distributed algorithms:The graph G is the structure of the
computer network. There is one computer for each node of G and one
communication link for each edge of G. Initially, each computer only
knows about its immediate neighbors in the graph G; the computers must
exchange messages with each other to discover more about the structure BCA-E10/33

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine

of G. Each computer must produce its own color as output. The main
focus is on coordinating the operation of an arbitrary distributed system.
While the field of parallel algorithms has a different focus than the field of
distributed algorithms, there is a lot of interaction between the two fields.

E.g., the Cole–Vishkin algorithm for graph coloring was originally
presented as a parallel algorithm, but the same technique can also be used
directly as a distributed algorithm. So far the focus has been
on designing a distributed system that solves a given problem. A
complementary research problem is studying the properties of a given
distributed system.

Example: The halting problem is an analogous example from the field of
centralized computation: we are given a computer program and the task is
to decide whether it halts or runs forever.

The halting problem is undecidable in the general case, and
naturally understanding the behaviour of a computer network is at least as
hard as understanding the behaviour of one computer. However, there are
many interesting special cases that are decidable. In particular, it is
possible to reason about the behaviour of a network of finite-state
machines. One example is telling whether a given network of interacting
(asynchronous and non-deterministic) finite-state machines can reach a
deadlock. This problem is PSPACE-complete,it is decidable, but it is not
likely that there is an efficient (centralized, parallel or distributed)
algorithm that solves the problem in the case of large networks.

2.3 FILE SERVER VS CLIENT-SERVER
DATABASE

2.3.1 FILE SERVER

In computing, a file server (or fileserver) is a computer attached to
a network that has the primary purpose of providing a location for shared
disk access, i.e. shared storage of computer files (such as documents,
sound files, photographs, movies, images, databases, etc.) that can be
accessed by the workstations that are attached to the same computer
network. The term server highlights the role of the machine in the client–
server scheme, where the clients are the workstations using the storage. A
file server is not intended to perform computational tasks, and does not
run programs on behalf of its clients. It is designed primarily to enable the
storage and retrieval of data while the computation is carried out by the
workstations File servers are commonly found in schools and offices,
where users use a LAN to connect their client computers.

2.3.1.1 TYPES OF FILE SERVERS

A file server may be dedicated or non-dedicated. A dedicated
server is designed specifically for use as a file server, with workstations

BCA-E10/34

https://en.wikipedia.org/wiki/Cole%E2%80%93Vishkin_algorithm
https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Undecidable_problem
https://en.wikipedia.org/wiki/PSPACE-complete

attached for reading and writing files and databases. File servers may also
be categorized by the method of access: Internet file servers are frequently
accessed by File Transfer Protocol (FTP) or by HTTP (but are different
from web servers, that often provide dynamic web content in addition to
static files). Servers on a LAN are usually accessed
by SMB/CIFS protocol (Windows and Unix-like) or NFSprotocol (Unix-
like systems). Database servers, that provide access to a shared database
via a database device driver, are not regarded as file servers as they may
require Record locking.

2.3.1.2 DESIGN OF FILE SERVERS

In modern businesses the design of file servers is complicated by
competing demands for storage space, access speed, recoverability,
administration, security, and budget. This is further complicated by a
constantly changing environment, where new hardware and technology
rapidly obsolesces old equipment, and yet must seamlessly come online in
a fashion compatible with the older machinery. To manage throughput,
peak loads, and response time, vendors may utilize queuing theory to
model how the combination of hardware and software will respond over
various levels of demand. Servers may also employ dynamic load
balancing scheme to distribute requests across various pieces of hardware.
The primary piece of hardware equipment for servers over the last couple
of decades has proven to be the hard disk drive. Although other forms of
storage are viable (such as magnetic tape and solid-state drives) disk
drives have continued to offer the best fit for cost, performance, and
capacity.

2.3.1.3 STORAGE

Since the crucial function of a file server is storage, technology has
been developed to operate multiple disk drives together as a team, forming
a disk array. A disk array typically has cache, as well as advanced
functions like RAID and storage virtualization. Typically disk arrays
increase level of availability by using redundant components other than
RAID, such as power supplies. Disk arrays may be consolidated or
virtualized in a SAN.

2.3.1.4 NETWORK-ATTACHED STORAGE

Network-attached storage (NAS) is file-level computer data
storage connected to a computer network providing data access to
a heterogeneous group of clients. NAS devices specifically are
distinguished from file servers generally in a NAS being a computer
appliance – a specialized computer built from the ground up for serving
files – rather than a general purpose computer being used for serving files
(possibly with other functions). In discussions of NASs, the term "file
server" generally stands for a contrasting term, referring to general
purpose computers only. As of 2010 NAS devices are gaining popularity, BCA-E10/35

https://en.wikipedia.org/wiki/File_Transfer_Protocol
https://en.wikipedia.org/wiki/Web_server
https://en.wikipedia.org/wiki/Server_Message_Block
https://en.wikipedia.org/wiki/CIFS
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Network_File_System_(protocol)
https://en.wikipedia.org/wiki/Database_server
https://en.wikipedia.org/wiki/Record_locking
https://en.wikipedia.org/wiki/Computer_data_storage
https://en.wikipedia.org/wiki/Computer_data_storage
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Heterogeneous_computing
https://en.wikipedia.org/wiki/Computer_appliance
https://en.wikipedia.org/wiki/Computer_appliance

offering a convenient method for sharing files between multiple
computers.

Potential benefits of network-attached storage, compared to non-
dedicated file servers, include faster data access, easier administration, and
simple configuration. NAS systems are networked appliances containing
one or more hard drives, often arranged into logical, redundant storage
containers or RAID arrays. Network Attached Storage removes the
responsibility of file serving from other servers on the network. They
typically provide access to files using network file sharing protocols such
as NFS, SMB/CIFS (Server Message Block/Common Internet File
System), or AFP.

2.3.1.5 SECURITY

File servers generally offer some form of system security to limit
access to files to specific users or groups. In large organizations, this is a
task usually delegated to what is known as directory services such as open
LDAP, Novell's e-Directory or Microsoft's Active Directory. These
servers work within the hierarchical computing environment which treat
users, computers, applications and files as distinct but related entities on
the network and grant access based on user or group credentials. In many
cases, the directory service spans many file servers, potentially hundreds
for large organizations. In the past, and in smaller organizations,
authentication could take place directly at the server itself.

2.3.2 CLIENT-SERVER

The client–server model is a distributed application structure that
partitions tasks or workloads between the providers of a resource or
service, called servers, and service requesters, called clients. Often clients
and servers communicate over a computer networkon separate hardware,
but both client and server may reside in the same system. A
server host runs one or more server programs which share their resources
with clients. A client does not share any of its resources, but requests a
server's content or service function. Clients therefore initiate
communication sessions with servers which await incoming requests.
Examples of computer applications that use the client–server model
are Email, network printing, and the World Wide Web.

2.3.2.1 CLIENT AND SERVER ROLE

The Client-server characteristic describes the relationship of
cooperating programs in an application. The server component provides a
function or service to one or many clients, which initiate requests for such
services. Servers are classified by the services they provide. For instance,
a web server serves web pages and a file server serves computer files. A
shared resource may be any of the server computer's software and

BCA-E10/36

https://en.wikipedia.org/wiki/Computer_appliance
https://en.wikipedia.org/wiki/RAID
https://en.wikipedia.org/wiki/Network_File_System_(protocol)
https://en.wikipedia.org/wiki/CIFS
https://en.wikipedia.org/wiki/CIFS
https://en.wikipedia.org/wiki/Apple_Filing_Protocol
https://en.wikipedia.org/wiki/Directory_services
https://en.wikipedia.org/wiki/OpenLDAP
https://en.wikipedia.org/wiki/OpenLDAP
https://en.wikipedia.org/wiki/Novell_eDirectory
https://en.wikipedia.org/wiki/Active_Directory
https://en.wikipedia.org/wiki/Distributed_application
https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/Client_(computing)
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Host_(network)
https://en.wikipedia.org/wiki/Email
https://en.wikipedia.org/wiki/Network_printing
https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/Web_server
https://en.wikipedia.org/wiki/Web_page
https://en.wikipedia.org/wiki/File_server
https://en.wikipedia.org/wiki/Computer_file

electronic components, from programs and data to processors and storage
devices. The sharing of resources of a server constitutes a service.

Whether a computer is a client, a server, or both, is determined by
the nature of the application that requires the service functions. For
example, a single computer can run web server and file server software at
the same time to serve different data to clients making different kinds of
requests. Client software can also communicate with server software
within the same computer. Communication between servers, such as to
synchronize data, is sometimes called inter-server or server-to-
server communication.

2.3.2.2 CLIENT AND SERVER COMMUNICATION

The client only has to understand the response based on the well-
known application protocol, i.e. the content and the formatting of the data
for the requested service. Clients and servers exchange messages in
a request–response messaging pattern: The client sends a request, and the
server returns a response. This exchange of messages is an example
of inter-process communication.

To communicate, the computers must have a common language,
and they must follow rules so that both the client and the server know
what to expect. The language and rules of communication are defined in
a communications protocol. All client-server protocols operate in
the application layer. The application-layer protocol defines the basic
patterns of the dialogue. To formalize the data exchange even further, the
server may implement an API. The API is an abstraction layer for such
resources as databases and custom software. By restricting communication
to a specific content format, it facilitates parsing. By abstracting access, it
facilitates cross-platform data exchange.

A server may receive requests from many different clients in a
very short period of time. Because the computer can perform a limited
number of tasks at any moment, it relies on a scheduling system to
prioritize incoming requests from clients in order to accommodate them all
in turn.

Example

When a bank customer accesses online banking services with
a web browser, the client initiates a request to the bank's web server. The
customer's login details may be stored in a database, and the web server
accesses the database server as a client. An application server interprets
the returned data by applying the bank's business logic, and provides
the output to the web server. Finally, the web server returns the result to
the client web browser for display. In each step of this sequence of client–
server communication, a computer processes a request and returns data.
This is the request-response messaging pattern. When all the requests are
met, the sequence is complete and the web browser presents the data to the

BCA-E10/37

https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Data_(computing)
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Data_storage_device
https://en.wikipedia.org/wiki/Data_storage_device
https://en.wikipedia.org/wiki/Inter-server

customer. This example illustrates a design pattern applicable to the
client–server model.

Check Your Progress

 Compare file server and client server database.

 What is distributed computing?

2.4 COMPUTING PLATFORM

A computing platform is whatever a pre-existing piece of computer
software or code object is designed to run within, obeying its constraints,
and making use of its facilities. The term computing platform can refer to
different abstraction levels, including a certain hardware architecture,
an operating system (OS), and runtime libraries. In total it can be said to
be the stage on which computer programs can run. Binary
executables have to be compiled for a specific hardware platform, since
different central processor units have different machine codes.

In addition, operating systems and runtime libraries allow re-use of
code and provide abstraction layers which allow the same high-level
source code to run on differently configured hardware. For example, there
are many kinds of data storage device, and any individual computer can
have a different configuration of storage devices; but the application is
able to call a generic save or write function provided by the OS and
runtime libraries, which then handle the details themselves.

2.4.1 COMPONENTS

Computing platforms may also include:

 Hardware alone, in the case of small embedded systems.
Embedded systems can access hardware directly, without an OS;
this is referred to as running on "bare metal".

 A browser in the case of web-based software. The browser itself
runs on a hardware + OS platform, but this is not relevant to
software running within the browser.

 An application, such as a spreadsheet or word processor, which
hosts software written in an application-specific scripting
language, such as an Excel macro. This can be extended to writing
fully-fledged applications with the Microsoft Office suite as a
platform.

 Software frameworks that provide ready-made functionality.

 Cloud computing and Platform as a Service. Extending the idea of
a software framework, these allow application developers to build

BCA-E10/38

https://en.wikipedia.org/wiki/Computer_software
https://en.wikipedia.org/wiki/Computer_software
https://en.wikipedia.org/wiki/Code_object
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Runtime_library
https://en.wikipedia.org/wiki/Binary_executable
https://en.wikipedia.org/wiki/Binary_executable
https://en.wikipedia.org/wiki/Computer_hardware_platforms
https://en.wikipedia.org/wiki/Central_processor_unit
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Code_reuse
https://en.wikipedia.org/wiki/Code_reuse
https://en.wikipedia.org/wiki/Abstraction_layer
https://en.wikipedia.org/wiki/Data_storage_device
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Bare_metal_(computing)
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/Scripting_language
https://en.wikipedia.org/wiki/Scripting_language
https://en.wikipedia.org/wiki/Excel_macro
https://en.wikipedia.org/wiki/Microsoft_Office
https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Platform_as_a_Service

software out of components that are hosted not by the developer,
but by the provider, with internet communication linking them
together. The social networking sites Twitter and Facebook are
also considered development platforms.

 A virtual machine (VM) such as the Java virtual machine. or .NET
CLR. Applications are compiled into a format similar to machine
code, known as byte code, which is then executed by the VM.

 A virtualized version of a complete system, including virtualized
hardware, OS, software and storage. These allow, for instance, a
typical Windows program to run on what is physically a Mac.

 Some architectures have multiple layers, with each layer acting as
a platform to the one above it. In general, a component only has to
be adapted to the layer immediately beneath it. For instance, a Java
program has to be written to use the Java virtual machine (JVM)
and associated libraries as a platform, but does not have to be
adapted to run for the Windows, Linux or Macintosh OS platforms.
However, the JVM, the layer beneath the application, does have to
be built separately for each OS.

2.4.2 HARDWARE EXAMPLE

 Wintel, that is, Intel x86 or compatible personal computer
hardware with Windows operating system.

 Macintosh, custom Apple Computer hardware and Classic Mac OS

 Newton devices running the Newton OS, also from Apple

 ARM architecture used in mobile devices

 Video game consoles

 Multimedia player platform for video game console development

 RISC processor based machines running Unix variants

 Midrange computers with their custom operating systems, such as
IBM OS/400

 Mainframe computers with their custom operating systems, such
as IBM z/OS

 Supercomputer architectures

2.4.3 SOFTWARE EXAMPLE

 Windows 7

 iOS 9

 Android Lolipop
BCA-E10/39

https://en.wikipedia.org/wiki/Twitter
https://en.wikipedia.org/wiki/Facebook
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Java_virtual_machine
https://en.wikipedia.org/wiki/Common_Language_Runtime
https://en.wikipedia.org/wiki/Common_Language_Runtime
https://en.wikipedia.org/wiki/Bytecode
https://en.wikipedia.org/wiki/Virtualization

 Android 4.0

 Windows 10

 Windows 8.1

 mac OS 4.1

 iOS 8

 Windows XP

 Linux

2.5 MICROPROCESSOR INTEGRATION &
CLIENT-SERVER COMPUTING

2.5.1 MICROPROCESSOR INTEGRATION

A microprocessor is a computer processor which incorporates the
functions of a computer's CPU on a single integrated circuit (IC), or at
most a few integrated circuits. The microprocessor is a multipurpose,
clock driven, register based, programmable electronic device which
accepts digital or binary data as input, processes it according to
instructions stored in its memory, and provides results as output.
Microprocessors contain both combinational logic and sequential digital
logic. Microprocessors operate on numbers and symbols represented in
the binary numeral system. The integration of a whole CPU onto a
single chip or on a few chips greatly reduced the cost of processing power.

Integrated circuit processors are produced in large numbers by
highly automated processes resulting in a low per unit cost. Single-chip
processors increase reliability as there are many fewer electrical
connections to fail. As microprocessor designs get faster, the cost of
manufacturing a chip (with smaller components built on a semiconductor
chip the same size) generally stays the same. Before microprocessors,
small computers had been built using racks of circuit boards with
many medium- and small-scale integrated circuits. Microprocessors
combined this into one or a few large-scale ICs. Continued increases in
microprocessor capacity have since rendered other forms of computers
almost completely obsolete, with one or more microprocessors used in
everything from the smallest embedded systems and handheld devices to
the largest mainframes and supercomputers.

2.5.1.1 ORGANIZATION

A microprocessor normally has the arithmetic and logic section,
register file, control logic section, and buffers to external address and data
lines The internal arrangement of a microprocessor (eg Z80) varies
depending on the age of the design and the intended purposes of the
microprocessor. The complexity of an integrated circuit (IC) is bounded BCA-E10/40

https://en.wikipedia.org/wiki/IOS_8

by physical limitations of the number of transistors that can be put onto
one chip, the number of package terminations that can connect the
processor to other parts of the system, the number of interconnections it is
possible to make on the chip, and the heat that the chip can dissipate.

A minimal hypothetical microprocessor might only include
an arithmetic logic unit (ALU) and a control logic section. The ALU
performs operations such as addition, subtraction, and operations such as
AND or OR. Each operation of the ALU sets one or more flags in a status
register, which indicate the results of the last operation (zero value,
negative number, overflow, or others). The control logic retrieves
instruction codes from memory and initiates the sequence of operations
required for the ALU to carry out the instruction. A single operation
code might affect many individual data paths, registers, and other elements
of the processor. As integrated circuit technology advanced, it was feasible
to manufacture more and more complex processors on a single chip.

Additional features were added to the processor architecture; more
on-chip registers speed up programs, and complex instructions could be
used to make more compact programs. Floating-point arithmetic, for
example, was often not available the same microprocessor chip, speed up
floating point calculations. Instead of processing all of a long word on one
integrated circuit, multiple circuits in parallel processed subsets of each
data word. While this required extra logic to handle, for example, carry
and overflow within each slice, the result was a system that could handle,
for example, 32-bit words using integrated circuits with a capacity for only
four bits each.

2.5.1.2 SPECIAL-PURPOSE DESIGNS

A microprocessor is a general purpose system. Several specialized
processing devices have followed from the technology. A digital signal
processor (DSP) is specialized for signal processing. Graphics processing
units (GPUs) are processors designed primarily for real time rendering of
3D images. They may be fixed function (as was more common in the
1990s), or support programmable shaders. With the continuing rise
of GPU, GPUs are evolving into increasingly general purpose stream
processors (running compute shaders), whilst retaining hardware assist for
rasterizing, but still differ from CPUs in that they are optimized for
throughput over latency, and are not suitable for running application or OS
code. Other specialized units exist for video processing and machine
vision. Microcontrollers integrate a microprocessor with peripheral
devices in embedded systems. These tend to have different tradeoffs
compared to CPUs.32-bit processors have more digital logic than narrower
processors, so 32-bit (and wider) processors produce more digital noise
and have higher static consumption than narrower processors.

Reducing digital noise improves ADC conversion results. So, 8-
or 16-bit processors are better than 32-bit processors for system on a
chip and microcontrollers that require extremely low-power electronics, or
are part of a mixed-signal integrated circuit with noise-sensitive on-chip BCA-E10/41

https://en.wikipedia.org/wiki/32-bit
https://en.wikipedia.org/wiki/Digital_signal_processor
https://en.wikipedia.org/wiki/Digital_signal_processor
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Shader
https://en.wikipedia.org/wiki/GPGPU
https://en.wikipedia.org/wiki/Stream_processing
https://en.wikipedia.org/wiki/Stream_processing
https://en.wikipedia.org/wiki/Compute_kernel
https://en.wikipedia.org/wiki/Video_processing
https://en.wikipedia.org/wiki/Vision_processing_unit
https://en.wikipedia.org/wiki/Vision_processing_unit
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/16-bit
https://en.wikipedia.org/wiki/System_on_a_chip
https://en.wikipedia.org/wiki/System_on_a_chip
https://en.wikipedia.org/wiki/Low-power_electronics
https://en.wikipedia.org/wiki/Mixed-signal_integrated_circuit

analog electronics such as high-resolution analog to digital converters, or
both. Nevertheless, trade-offs apply: running 32-bit arithmetic on an 8-bit
chip could end up using more power, as the chip must execute software
with multiple instructions. Modern microprocessors go into low power
states when possible, and the 8-bit chip running 32-bit software is active
most of the time. This creates a delicate balance between software,
hardware and use patterns, plus costs. When manufactured on a similar
process, 8-bit microprocessors use less power when operating and less
power when sleeping than 32-bit microprocessors. However, some people
say a 32-bit microprocessor may use less average power than an 8-bit
microprocessor when the application requires certain operations such as
floating-point math that take many more clock cycles on an 8-bit
microprocessor than a 32-bit microprocessor so the 8-bit microprocessor
spends more time in high-power operating mode.

2.5.1.3 EMBEDDED APPLICATIONS

Thousands of items that were traditionally not computer-related
include microprocessors. These include large and small
household appliances, cars (and their accessory equipment units), car keys,
tools and test instruments, toys, light switches/dimmers and electrical
circuit breakers, smoke alarms, battery packs, and hi-fi audio/visual
components (from DVD players to phonograph turntables). Such products
as cellular telephones, DVD video system and HDTV broadcast systems
fundamentally require consumer devices with powerful, low-cost,
microprocessors. Increasingly stringent pollution control standards
effectively require automobile manufacturers to use microprocessor
engine management systems, to allow optimal control of emissions over
widely varying operating conditions of an automobile. Non-programmable
controls would require complex, bulky, or costly implementation to
achieve the results possible with a microprocessor.

A microprocessor control program (embedded software) can be
easily tailored to different needs of a product line, allowing upgrades in
performance with minimal redesign of the product. Different features can
be implemented in different models of a product line at negligible
production cost. Microprocessor control of a system can provide control
strategies that would be impractical to implement using electromechanical
controls or purpose-built electronic controls. For example, an engine
control system in an automobile can adjust ignition timing based on
engine speed, load on the engine, ambient temperature, and any observed
tendency for knocking—allowing an automobile to operate on a range of
fuel grades.

2.5.2 CLIENT-SERVER COMPUTING

2.5.2.1 INTRODUCTION

In the 1970s and 1980s was the era of centralized computing, with IBM
BCA-E10/42

https://en.wikipedia.org/wiki/Home_appliance
https://en.wikipedia.org/wiki/Arc-fault_circuit_interrupter
https://en.wikipedia.org/wiki/Arc-fault_circuit_interrupter

mainframe occupied over 70% of the world's computer business. Business
transactions, activities and database retrieval, queries and maintenance are
all performed by the omnipresent IBM mainframe. We are now in the
transition phase towards Client-Server Computing, a totally new concept
and technology to re-engineer the entire business world. Someone has
called it the wave of the future - the computing paradigm of the 1990s.You
may start to wonder how is Client-Server computing is different from
traditional mainframe computing and what are the benefits from
employing it in business. The main emphasis of Client-Server Architecture
is to allow large application to be split into smaller tasks and to perform
the tasks among host (server machine) and desktops (client machine) in
the network. Client machine usually manages the front-end processes such
as GUIs (Graphical User Interfaces), dispatch requests to server programs,
validate data entered by the user and also manages the local resources that
the user interacts with such as the monitor, keyboard, workstation, CPU
and other peripherals. On the other hand, the server fulfills the client
request by performing the service requested. After the server receives
requests from clients, it executes database retrieval, updates and manages
data integrity and dispatches responses to client requests.

The goals of Client-Server Computing are to allow every
networked workstation (Client) and host (Server) to be accessible, as
needed by an application, and to allow all existing software and hardware
components from various vendors to work together. When these two
conditions are met, the environment can be successful and the benefits of
client/server computing, such as cost savings, increased productivity,
flexibility, and resource utilization, can be realized.

The evolution of Client-Server Computing has been driven by
business needs, as well as the increasing costs for host (mainframe and
midrange) machines and maintenance, the decreasing costs and increasing
power of micro-computers and the increased reliability of LANs (Local
Area Networks).

In the past twenty years, there are dramatic improvements in the
hardware and software technologies for micro-computers. Micro-
computers become affordable for small businesses and organizations. And
at the same time their performances are becoming more and more reliable.
On the other hand, the drop in price for mainframe is growing at a slower
rate than the drop in its price. Little developments have achieved with
mainframes.

The following are the improvements made by micro-computers:

Hardware: The speed of desktop microprocessors has grown
exponentially, from a 8MHz 386-based computers to 100Hz-based
Pentium-based microprocessors. These mass-produced microprocessors
are cheaper and more powerful than those used in mainframe and
midrange computers. On the other hand, the capacity of main memory in
micro-computers has been quadrupling every three years. Typically main
memory size is 16 Megabytes nowadays. Besides, the amount of backup BCA-E10/43

storage and memory such as hard disks and CD-ROMs that are able to
support micro-computers has also puts an almost unlimited amount of data
in reach for end-users.

Software: The development and acceptance of GUIs (Graphical User
Interfaces) such as Windows 3.1 and OS/2 has made the PC working
environment more user-friendly. And the user are more efficient in
learning new application software in a graphical environment. Besides
GUIs, the use of multithreaded processing and relational databases has
also contributed to the popularity of Client-Server Computing.

Configurations in Client-Server Computing:Client-Server Computing
is divided into three components, a Client Process requesting service and a
Server Process providing the requested service, with a Middleware in
between them for their interaction.

Client : A Client Machine usually manages the user-interface portion of
the application, validate data entered by the user, dispatch requests to
server programs. It is the front-end of the application that the user sees and
interacts with. Besides, the Client Process also manages the local
resources that the user interacts with such as the monitor, keyboard,
workstation, CPU and other peripherals.

Server: On the other hand, the Server Machine fulfils the client request by
performing the service requested. After the server receives requests from
clients, it executes database retrieval, updates and manages data integrity
and dispatches responses to client requests. The server-based process may
run on another machine on the network; the server is then provided both
file system services and application services. Or in some cases, another
desktop machine provides the application services. The server acts as
software engine that manages shared resources such as databases, printers,
communication links, or high powered-processors. The main aim of the
Server Process is to perform the back-end tasks that are common to similar
applications. The simplest forms of servers are disk servers and file
servers. With a file server, the client passes requests for files or file
records over a network to the file server. This form of data service requires
large bandwidth and can slow a network with many users. The more
advanced form of servers are Database servers, Transaction server and
Application servers.

The Four Dominant Client/Server Application Models: Having had a
deeper look into the terms and architectures of client/server technology,
let's consider the dominant application models available. Nowadays, there
are four client/server application models that are widely used in the
market. They are Structured Query Language (SQL) databases,
Transaction Processing (TP) monitors, groupware and distributed
objects. Each one of them is capable of creating its own complete
client/server applications with its own tools. Moreover, they also introduce
their own favourable form of middleware (all this will be further
discussed later). But first, what is the reason for having different models

BCA-E10/44

instead of having just one model, and what is the
advantages/disadvantages of having just one particular model. The reason
why we need different models for different applications is because each
one of them have their own advantages and disadvantages, and sometimes
one model performs better than the others in one particular situation.
Furthermore, standardizing the whole market with one particular model
will not only discourage the vendors from developing other new (and
better) models, but also put off other potential small companies from
competing with those gigantic ones. Having said that, standardizing the
market with one particular model does have the advantage of
concentrating the development of that particular model-based software,
and hence improvements can be achieved much faster and as a result, cost
of running/implementing/services will reduce significantly.

2.6 IMPLEMENTATION AND SCALABILITY

2.6.1 IMPLEMENTATION

Implementation is the carrying out, execution, or practice of a plan,
a method, or any design, idea, model, specification, standard or policy for
doing something. As such, implementation is the action that must follow
any preliminary thinking in order for something to actually happen.
In computer science, an implementation is a realization of a technical
specification or algorithm as a program, software component, or
other computer system through computer programming and deployment.
Many implementations may exist for a given specification or standard. For
example, web browsers contain implementations of WWW Consortium-
recommended specifications, and software development tools contain
implementations of programming languages. A special case occurs
in object-oriented programming, when a concrete class implements
an interface; in this case the concrete class is an implementation of the
interface and it includes methods which are implementations of
those methods specified by the interface.

In the Information Technology (IT) industry, implementation
refers to post-sales process of guiding a client from purchase to use of the
software or hardware that was purchased. This includes requirements
analysis, scope analysis, customizations, systems integrations, user
policies, user training and delivery. These steps are often overseen by a
project manager using project management methodologies. Software
Implementations involve several professionals that are relatively new to
the knowledge based economy such as business analysts, technical
analysts, solutions architects, and project managers. To implement a
system successfully, a large number of inter-related tasks need to be
carried out in an appropriate sequence.

In political science, implementation refers to the carrying out
of public policy. Legislatures pass laws that are then carried out by public
servants working in bureaucratic agencies. This process consists of rule-
making, rule-administration and rule-adjudication. Factors impacting BCA-E10/45

https://en.wikipedia.org/wiki/Software_deployment
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/World_Wide_Web_Consortium
https://en.wikipedia.org/wiki/Programming_languages
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Concrete_class
https://en.wikipedia.org/wiki/Class_(object-oriented_programming)
https://en.wikipedia.org/wiki/Interface_(object-oriented_programming)
https://en.wikipedia.org/wiki/Method_(object-oriented_programming)
https://en.wikipedia.org/wiki/Information_technology
https://en.wikipedia.org/wiki/Industry
https://en.wikipedia.org/wiki/Project_management
https://en.wikipedia.org/wiki/Business_analysis
https://en.wikipedia.org/wiki/Technical_analysis
https://en.wikipedia.org/wiki/Technical_analysis
https://en.wikipedia.org/wiki/Solutions_architect
https://en.wikipedia.org/wiki/Political_science
https://en.wikipedia.org/wiki/Public_policy
https://en.wikipedia.org/wiki/Legislatures
https://en.wikipedia.org/wiki/Public_servants
https://en.wikipedia.org/wiki/Public_servants
https://en.wikipedia.org/wiki/Bureaucracy

implementation include the legislative intent, the administrative capacity
of the implementing bureaucracy, interest group activity and opposition,
and presidential or executive support.

2.6.1 SCALABILITY

Scalability is the capability of a system, network, or process to
handle a growing amount of work, or its potential to be enlarged in order
to accommodate that growth. For example, it can refer to the capability of
a system to increase its total output under an increased load when
resources (typically hardware) are added.

An analogous meaning is implied when the word is used in
an economic context, where scalability of a company implies that the
underlying business model offers the potential for economic growth within
the company. Scalability, as a property of systems, is generally difficult to
define and in any particular case it is necessary to define the specific
requirements for scalability on those dimensions that are deemed
important. It is a highly significant issue in electronics systems, databases,
routers, and networking. A system whose performance improves after
adding hardware, proportionally to the capacity added, is said to be
a scalable system. An algorithm, design, networking protocol, program, or
other system is said to scale if it is suitably efficient and practical when
applied to large situations (e.g. a large input data set, a large number of
outputs or users, or a large number of participating nodes in the case of a
distributed system).

Check Your Progress

 What is computing platform?

 What is scalability?

 Explain the term Implementation.

2.7 SUMMARY

The term distributed means the things are scattered but they are
directly or indirectly related with each other. Nothing, in computer
Science and other technologies is untouched with this word ie distributed
computing. Distributed computing also refers to the use of distributed
systems to solve computational problems.

A computer program that runs in a distributed system is called
a distributed program, and distributed programming is the process of
writing such programs. There are many alternatives for the message
passing mechanism, including pure HTTP, RPC-like connectors
and message queues. A goal and challenge pursued each other by message
passing. BCA-E10/46

https://en.wikipedia.org/wiki/Economics
https://en.wikipedia.org/wiki/Business_model
https://en.wikipedia.org/wiki/Economic_growth
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Protocol_(computing)
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Algorithmic_efficiency
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Remote_procedure_call
https://en.wikipedia.org/wiki/Message-oriented_middleware

The terms "concurrent computing", "parallel computing", and
"distributed computing" have a lot of overlap, and no clear distinction
exists between them. The same system may be characterized both as
"parallel" and "distributed"; the processors in a typical distributed system
run concurrently in parallel. Parallel computing may be seen as a
particular tightly coupled form of distributed computing, and distributed
computing may be seen as a loosely coupled form of parallel computing.

In computing, a file server (or fileserver) is a computer attached to
a network that has the primary purpose of providing a location for shared
disk access, i.e. shared storage of computer files (such as documents,
sound files, photographs, movies, images, databases, etc.) that can be
accessed by the workstations that are attached to the same computer
network.

2.8 TERMINAL QUESTIONS

1. What do you understand by Distributed Computing?

2. Give the meaning of file server database.

3. What are the main benefits of Distributed Computing?

4. Discuss the term parallel computing with reference to Distributed
computing.

5. Write a short note on Four Dominant Client/Server Application
Models.

6. Compare implementation and scalability.

7. Explain embedded applications.

8. Is there any drawback of Distributed Computing? If any then
discuss.

 BCA-E10/47

https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Parallel_computing

BCA-E10/48

UNIT-3 DESIGNING CLIENT-SERVER
APPLICATIONS

Structure

3.0 Introduction

3.1 Objectives

3.2 Fundamentals of Client-Server Application

3.3 Types of Logic

3.4 Division of Labor

3.5 Client-Server communication

3.6 Interaction of Client-Server with Protocols

3.7 Goals for Client-Server Design

3.8 Client-Server Performance Optimization

3.9 Implementation of Client-Server Application

3.10 Summary

3.11 Terminal questions

3.0 INTRODUCTION

The trend of business process reengineering has generated the need
to improve communications, reduce overhead, enhance work-process
efficiencies and facilitate information sharing across departmental and
organizational boundaries. As a result, information technology is faced
with a new set of application requirements and pressures toward
distributed computing.

New Business Requirements Recent government initiatives to
expedite the purchase ordering process, improve inventory control and
deliver better services to the public have created demands for applications
that would link up the government agencies to their vendors, partners and
customers. These types of business systems have to be scalable to
accommodate a large and growing number of users (in the range of
hundreds or thousands). In addition, not only is multi-platform support
essential, these applications also have to be adaptable to emerging client
operating systems (e.g., Taligent). Finally, considerations have to be made
for dial-up (or remote) users.

BCA-E10/49

Current Approach to Application Design Today's most popular
approach to application design cannot meet the aforementioned business
needs. Most of the commonly used client/server development tools allow
only client-side processing. In most organizations, client/server
applications are developed using one of these tools in addition to a SQL
database server that supports stored procedures. A stored procedure is
written in a vendor-specific SQL dialect. It resides in a database for
processing data requests sent from clients. Application created using this
approach generally has two-tier architecture. The first tier is a single
process running on the user machine. It consists of the presentation and
application layers bundled together to form one executable, generated by
the client/server development software.

The second tier is the database server with stored procedures
residing in it. This type of application architecture performs well in single-
vendor/single-database environments with fewer than 100 users. Each user
connection takes up some resources on the database server. As the number
of users increases, the single database server will sooner or later run out of
resources. More database servers will be required to accommodate the
growing install base. One way to solve the problem is with a two-tier
model and database replication. By replicating data on one server to
another server, the number of users supported can be doubled. Data
replication, however, is only suited for certain types of applications - those
with a low chance of simultaneous record updates. In other words, when it
is unlikely that two or more users will be updating the same record at the
same time, data replication could be an appropriate approach to solving
the scalability problem. However, for those applications with a high
volume of transactions and with potentially hundreds or thousands of
users, one may wish to find an alternative solution.

Some of the things that you may need to think about include:

 Designing a Distributed Database: This brings a new level of
complexity to applications. What's on the client(s)? What's on the
server(s)? How much disk space? What client/server model is to be
used? Object Locking?

 Designing a Distributed Application: What runs on the client(s)?
What runs on the server(s)? What runs on both? What client/server
model is to be used?

 Performance and Communications Loads: How much load on the
LAN? Can it run on twinax? What about slow leased line and dial-
up access?

 Security and Integrity Considerations: Backup what? Backup
when? Backup where? Software distribution and upgrade
procedures across "n" PCs? Security administration across "n"
PCs?

BCA-E10/50

 The User Interface: What about OOD? GUI WIMP constructs?
Action bar object-action designs? This is not a traditional i5/OS
"menu driven" system.

3.1 OBJECTIVES

At the end of this unit you would come to know

 The meaning of designing client-server application

 Types of logic

 Division of Labor

 Client-Server communication

 Basic idea of protocols like SMTP

 Interaction of Client-Server with Protocols

 Goals for Client/Server Design

 Client/Server Performance Optimization

 Implementing a Client/Server Application

3.2 FUNDAMENTALS OF CLIENT-SERVER
APPLICATION

Client-server is a program relationship in which one program
(the client) requests a service or resource from another program
(the server). Although the client/server model can be used by programs
within a single computer, it is a more important concept for networking.
 In this case, the client establishes a connection to the server over a local
area network (LAN) or wide-area network (WAN), such as the Internet.
Once the server has fulfilled the client's request, the connection is
terminated. Your Web browser is a client program that has requested a
service from a server; in fact, the service and resource the server provided
is the delivery of this Web page.

3.2.1 BASIC CLIENT/SERVER ARCHITECTURE

The most basic form of the client/server architecture involves two
computers: one computer, the server, is responsible for storing some sort
of data and handing it to the other computer, the client, for user
interaction. The user can modify that data and save it back to the server.
The Web implements this simple form of client/server architecture for
multiple client machines. Your computer, the client, uses a Web browser
to display HTML documents stored across the Internet on a Web server.

There are four software components to the Web system:
BCA-E10/51

 A browser such as Netscape that displays HTML documents on a
client machine.

 A server program running on the server that hands HTML
documents to client browsers.

 The HTML documents stored on the server machine.

 The communications protocol that handles the communication of
data between the client and server.

The Figure 3.1 shows how this architecture fits together.

Figure 3.1 : The Client/Server Architecture of the Web

3.2.2 PROCESS CLASSIFICATION

Client process, the process that requires a service is called a client
process and on the other hand the process that provides the required
service is called server process. The client requires a service and the server
provides the service and makes the results available to the client. In
general, client software:

 It is an arbitrary application program that becomes a client
temporarily when remote access is needed, but also performs other
computation locally.

 It is invoked locally by a user, and executes only for one session.

 It runs locally on a user personal computer.

 It actively initiates contact with a server.

 It can access multiple services as needed, but actively contacts one
remote server at a time.

 It does not require special hardware or a sophisticated operating
system.

BCA-E10/52

http://www.gbengasesan.com/fyp/7/f25-1.gif

3.2.3 SERVER FUNCTIONS

Any server function has the following properties:

 Is a special purpose, privileged program dedicated to providing
one service, but can handle multiple remote clients at the same
time.

 It runs on a shared computer (i.e. not a user’s personal computer).

 Waits for contact from arbitrary remote clients.

 Accepts contact from arbitrary clients, but offers a single service.

 Requires powerful hardware and a sophisticated operating system.

3.2.4 APPLISCATION SERVER

3.2.4.1 KINDS OF CLIENT SERVICES

 mail server
 file server
 terminal server
 name server
 authentication server
 gateway server
 administration server

3.2.4.2 A SERVER MUST GUARANTEE

 Authentication: client identity verification

 Authorization: verification of the possibility for a client to access
to a particular service

 Data security: guarantee that specific data cannot be read and/or
modified.

3.2.5 CHARACTERISTICS OF CLIENT-SERVER
ARCHITECTURE

 Client and server machines need different types of hardware and
software resources.

 Client and server machines may belong to different vendors.
 Horizontal scalability (increase of the client machines) and vertical

scalability (migration to a more powerful server or to a multi-
server solution).

 A client or server application interacts directly with a transport
layer protocol to establish communication and to send or receive
information. BCA-E10/53

 The transport protocol then uses lower layer protocols to send or
receive individual messages. Thus, a computer needs a complete
stack of protocols to run either a client or a server.

 A single server-class computer can offer multiple services at the
same time; a separate server program is needed for each service.

 Identifying a particular service TCP uses 16-bit integer values
(protocol port numbers) to identify services, and assign a unique
port number to each service.

 A client specifies the protocol port number of the desired service
when sending a request.

3.2.6 CLASSIFICATION OF CLIENT-SERVER
STRUCTURES

In a client/server application three functions are present: user
interface, application programs, data management. Following the
assignment of functions among client and server we have three possible
types of structures:

Host- based processing: is not true client server computing. It refers to
the traditional mainframe environment in which all or virtually all of the
processing is done on a central host. The user’s station is generally limited
to the role of a terminal emulator.

Server-based processing: The client is principally responsible for
providing a graphical user interface, while virtually all the processing is
done on the server.

Client-based processing: Virtually all application processing may be
done at the client, with the exception of database logic functions that are
best performed at the server. This configuration is perhaps the most
common client server approach in current use.

Cooperative processing: That application processing is performed in an
optimized fashion, taking advantage of the strength of both client and
server machines and of distribution of data.

Figure 3.2: Host-Based and Server-Based Processing
BCA-E10/54

Figure 3.2: Cooperative-Based and Client-Based Processing

3.3 TYPES OF LOGIC

For purposes of distribution, it is possible to divide application
software into three distinct types of logic:

 Presentation, which is associated with the user interface

 Business rule, which is associated with accomplishing a basic
business process

 Data manipulation, which is associated with reading and writing
persistent data

Presentation logic is associated with a procedure step definition.
Business rule logic and data manipulation logic are generally found in
elementary processes or process action blocks. In some applications, little
or no business logic exists except for that directly governing data.

In simple client/server applications, these three types of logic can
be divided into two components executing on different machines, one for
presentation and one for data manipulation. Business rule logic is
generally embedded in whichever component it appears to make sense, or
it may be segmented into reusable action blocks. One reason for putting
business rule logic in a reusable component is that you can easily generate
and install the component for a different platform.

You do not have to decide what processing logic is required to
support network communications. CA Gen for client/server products
includes a communications runtime for you. For more information about
the communications runtime components, see Understanding Distributed
Processing.

The important task to remember is to design client/server
applications to be modular and flexible. Maintain a clear distinction BCA-E10/55

between presentation logic, business rule logic, and data manipulation
logic so that you can change between client/server styles as needed.
Maintain data manipulation logic as separate action diagrams or common
action blocks to be used by server procedures. This approach also allows
many client procedures to use the server procedures.

3.3.1 PRESENTATION LOGIC

The client component of a client/server application requires a
graphical user interface. For information about the special action
statements for GUI applications, see Designing Action Diagrams.

3.3.2 BUSINESS RULE LOGIC

A major design consideration for the processing logic is what logic
is required to fully support the tasks performed by the user. After you
determine this, you can decide if the logic must be distributed or not. If the
logic is distributed, you have considerations of which platform, client or
server, is best suited for the particular functionality.

3.3.3 DATA MANIPULATION LOGIC

A key design consideration concerning data is how important is
access to current data. Depending on the application and business needs,
data that is updated periodically, instead of continually, may be adequate.
Data that is replicated on the client platform is often used only for read
access (data look up). If other actions are required, such as create, update,
and delete, the database management system (DBMS) must have the
capability to handle the data integrity, node directories, and two-phase
commits. Typically, the DBMS provides these capabilities and not the
generated application. You can, however, build with CA Gen the time
stamping and locking logic in your application, but you must also design
for various failure conditions.

Dividing the logic also gives rise to three basic design alternatives for
client-server:

 remote presentation

 distributed process

 remote data access

3.4 DIVISION OF LABOR

Businesses of various sizes have various computer needs. Larger
businesses necessarily need to use more computers than smaller
businesses do. Large businesses routinely have large computer setups,
such as mainframes and networks. A network for a large business

BCA-E10/56

commonly has client-server architecture, also known as two-tier
architecture. No matter what it is called, this type of architecture is a
division of labor for the computing functions required by a large business.

Under the structure of the client-server architecture, a business's
computer network will have a server computer, which functions as the
"brains" of the organization, and a group of client computers, which are
commonly called workstations. The server part of this architecture will be
a large-capacity computer, perhaps even a mainframe, with a large amount
of data and functionality stored on it. The client portions are smaller
computers that employees use to perform their computer-based
responsibilities.

Servers commonly contain data files and applications that can be
accessed across the network, by workstations or employee computers. An
employee who wants to access company-wide data files, for instance,
would use his or her client computer to access the data files on the server.
Other employees may use a common-access application by accessing the
server through their client computers.

Check Your Progress

 What is implementation of client-server application?

 Give the important goals of client/server design.

3.5 CLIENT-SERVER COMMUNICATION

A key part of any Asynchronous JavaScript and XML (Ajax)-
based web application is the communication layer between the client and
the server. Modern web applications are all based on various Ajax-related
concepts. The use of Ajax techniques led to an increase in interactive or
dynamic interfaces on web pages. The Ajax revolution began with the
notion that web applications can retrieve data from the server
asynchronously in the background, and interaction between the web page
and the server is not limited to the moment when the page is fetched. The
web page concept extended into a long-living web application that
interacts with the user through ongoing communication with the
application's back end. A few examples for what this ongoing
communication allows are

 Sending and receiving of information

 Ad-hoc input validation (for example, password strength)

 Auto-completion of user input based on rules and analysis done on
the server

To perform the tasks related to the client-server interaction, an
application needs an optimal communication layer that provides the proper
communication mechanism for each communication task. BCA-E10/57

3.6 INTERACTION OF CLIENT-SERVER
WITH PROTOCOLS

3.6.1 TRANSMISSION CONTROL
PROTOCOL/INTERNET PROTOCOL

The TCP/IP protocol suite is now being used in many commercial
applications. It is particularly evident in internetworking between different
LAN environments. TCP/IP is specifically designed to handle
communications through "networks of interconnected networks." In fact, it
has now become the de facto protocol for LAN-based Client/Server
connectivity and is supported on virtually every computing platform. More
importantly, most inter-process communications and development tools
embed support for TCP/IP where multiplatform interoperability is
required. It is worth noting that IBM has followed this growth and not
only provides support for TCP/IP on all its platforms, but now enables the
transport of its own interoperability interfaces (such as CPIC, APPC) on
TCP/IP.

3.6.2 TCP/IP'S ARCHITECTURE

The TCP/IP protocol suite is composed of the following
components: a network protocol (IP) and its routing logic, three transport
protocols (TCP, UDP, and ICMP), and a series of session, presentation
and application services. The following sections highlight those of
interest.

3.6.3 INTERNET PROTOCOL

IP represents the network layer and is equivalent to OSI's IP or
X.25. A unique network address is assigned to every system, whether the
system is connected to a LAN or a WAN. The system comes with its
associated routing protocols and lower level functions such as network-to-
physical address resolution protocols (ARP). Commonly used routing
protocols include RIP, OSPF, IGRP, and Cisco's proprietary protocol.
OSPF has been adopted by the community to be the standards-based
preferred protocol for large networks.

3.6.3.1 INTERNET ADDRESSING SCHEME

An addressing scheme is clearly a requirement for communications
in a computer network. With an addressing scheme, packets are forwarded
from one location to another.An IP address is a unique identifier used to
locate a device on the IP network. Conceptually an IP address is a unique
global address for a network interface. It is a 32 bit long identifier and
encodes a network number (network prefix) and a host number. IP has
two versions i.e; IPv4 and IPv6, out of which IPv4 is currently used in

BCA-E10/58

India. IPv4 has 32- bit address which is divided into four octates. It is
represented in a so-called Dotted Decimal notation. Eg. 123. 65. 1. 92.
Each byte is identified by a decimal number in the range [0..255].

 To make the system scalable, the address structure is subdivided
into the network ID and the host ID. The network ID identifies the
network the device belongs to; the host ID identifies the device. This
implies that all devices belonging to the same network have a single
network ID. Based on the bit positioning assigned to the network ID and
the host ID, the IP address is further subdivided into classes A, B, C, D
(multicast), and E (reserved).

Figure 3.3 : Dotted Decimal Notation

3.6.4 TRANSPORT PROTOCOLS

TCP provides Transport services over IP. It is connection-oriented,
meaning it requires a session to be set up between two parties to provide
its services. It ensures end-to-end data transmission, error recovery,
ordering of data, and flow control. TCP provides the kind of
communications that users and programs expect to have in locally
connected sessions. UDP provides connectionless transport services, and
is used in very specific applications that do not require end-to-end
reliability such as that provided by TCP.

3.6.4.1 TCP CONNECTION

TCP is a connection oriented protocol due to 3-way handshaking.
TCP has 3 phases:

1. Connection establishment

2. Data transfer

3. Connection release

Out of which connection establishment and connection release
both takes place through 3 way

Handshaking (figure 3.4)
BCA-E10/59

Figure 3.4 : TCP Connection

3.6.5 TELNET

Telnet is an application service that uses TCP. It provides terminal
emulation services and supports terminal-to-host connections over an
internetwork. It is composed of two different portions: a client entity that
provides services to access hosts and a server portion that provides
services to be accessed by clients. Even workstation operating systems
such as OS/2 and Windows can provide telnet server support, thus
enabling a remote user to log onto the workstation using this method.

3.6.6 FILE TRANSFER PROTOCOL (FTP)

FTP uses TCP services to provide file transfer services to
applications. FTP includes a client and server portion. Server FTP listens
for a session initiation request from client FTP. Files may be transferred in
either direction, and ASCII and binary file transfer is supported. FTP
provides a simple means to perform software distribution to hosts, servers,
and workstations.

3.6.7 SIMPLE NETWORK MANAGEMENT
PROTOCOL (SNMP)

SNMP provides intelligence and services to effectively manage an
internetwork. It has been widely adopted by hub, bridge, and router
manufacturers as the preferred technology to monitor and manage their
devices. SNMP uses UDP to support communications between agents—
intelligent software that runs in the devices—and the manager, which runs
in the management workstation. Two basic forms of communications can
occur: SNMP polling (in which the manager periodically asks the agent to

BCA-E10/60

provide status and performance data) and trap generation (in which the
agent proactively notifies the manager that a change of status or an
anomaly is occurring).

3.6.8 NETWORK FILE SYSTEM (NFS)

The NFS protocol enables the use of IP by servers to share disk
space and files the same way a Novell or LAN Manager-network server
does. It is useful in environments in which servers are running different
operating systems. However, it does not offer support for the same
administration facilities that a NetWare environment typically provides.

3.6.9 SIMPLE MAIL TRANSFER PROTOCOL (SMTP)

SMTP uses TCP connections to transfer text-oriented electronic
mail among users on the same host or among hosts over the network.
Developments are under way to adopt a standard to add multimedia
capabilities (MIME) to SMTP. Its use is widespread on the Internet, where
it enables any user to reach millions of users in universities, vendor
organizations, standards bodies, and so on. Most electronic mail systems
today provide some form of SMTP gateway to let users benefit from this
overall connectivity.

3.7 GOALS FOR CLIENT-SERVER DESIGN

When you design a client-server application, you're balancing
several sets of requirements. You want to build the fastest, most
productive application for your users. You also want to ensure the
integrity of application data, make the most of existing hardware
investments, and build in scalability for the future. In addition, as a
developer, you want to make the development process as streamlined and
cost-efficient as possible. Some common goals for the client-server
systems are:

 Portability: Server can be installed on a variety of machines and
operating systems and functions in a variety of networking
environments.

 Transparency: The server might itself be distributed (why?), but
should provide a single "logical" service to the user.

 Performance: Client should be customized for interactive
display-intensive tasks and Server should provide CPU-intensive
operations.

 Scalability: Server has spare capacity to handle larger number of
clients.

 Flexibility: Should be usable for a variety of user interfaces.

 Reliability: System should survive individual node and/or
communication link problems. BCA-E10/61

3.8 CLIENT-SERVER PERFORMANCE
OPTIMIZATION

When you have implemented your client-server application, you
might find areas where you'd like to improve performance. For example,
you can fine-tune your application to gain maximum performance by
speeding up forms and queries and increasing data throughput. This
section discusses optimization strategies for application performance on
the client, network, and server.

3.8.1 CONNECTION USE OPTIMIZATION

Establishing a connection uses time and memory on both the client
and the server. When you optimize connections, you balance your need for
high performance against the resource requirements of your application.

3.8.2 SPEEDING UP DATA RETRIEVAL

You can speed up data retrieval by managing the number of rows
fetched during progressive fetching, controlling fetch size, and using
delayed Memo fetching.

3.8.3 QUERY AND VIEW ACCELERATION

You can improve query and view performance by adding indexes,
optimizing local and remote processing, and optimizing parameter
expressions.

3.8.4 FORM ACCELERATION

When you design a form based primarily on server data, take a
minimalist approach for the best performance.

3.8.5 PERFORMANCE IMPROVEMENT ON
UPDATES AND DELETES

You can speed up Update and Delete statements by, adding
timestamps to your remote tables, using the CompareMemo property,
using manual transaction mode, using server stored procedures, and
batching updates.

3.8.6 RELATED SECTIONS

Creating Client/Server Solutions

BCA-E10/62

Client/server applications combine the functionality of Microsoft® Visual
FoxPro® on your local computer with the storage and security benefits
provided by a remote server.

Client/Server Application Design
Building on multi-user development technologies, learn how to design a
powerful client/server application.

Upsizing Visual FoxPro Databases
Creating local prototypes of your design can reduce development time and
costs. When you have a tested local prototype, it is easy and beneficial to
upsize your application, so it can take advantage of all the features
provided by the remote server.

3.9 IMPLEMENTION OF CLIENT/SERVER
APPLICATION

Whether you have created and upsized a working local prototype
or developed your application against remote data using remote views,
you have gained access to the large data stores typically available in a
server database. In addition, you can take advantage of the security and
transaction processing capabilities of the remote server. While remote
views handle the main data management tasks, you can enhance your
application by using SQL pass-through (SPT) technology to create objects
on the server, run server stored procedures, and execute commands using
native server syntax.

The techniques for implementing client/server technology in a
working application that uses remote views are given below:

3.9.1 USING SQL PASS-THROUGH TECHNOLOGY

Remote views provide the most common and easiest method for
accessing and updating remote data. The upsizing wizards can create
remote views automatically in your database as part of upsizing, or you
can use Microsoft Visual FoxPro to create remote views after upsizing.

3.9.2 WORKING WITH REMOTE DATA USING SQL
PASS-THROUGH

After you retrieve a result set using SQL pass-through, you can
view and control the properties of your result set cursor using the
Microsoft Visual FoxPro functions CURSORGETPROP() and
CURSORSETPROP().

3.9.3 HANDLING SQL PASS-THROUGH ERRORS

If a SQL pass-through function returns an error, Microsoft Visual
FoxPro stores the error message in an array. BCA-E10/63

3.9.4 RELATED SECTIONS

Creating Client/Server Solutions

Client/server applications combine the functionality of Microsoft Visual
FoxPro on the local computer with the storage and security benefits
provided by a remote server.

Client/Server Application Design

Building on multi-user development technologies, learn how to design a
powerful client/server application.

Upsizing Visual FoxPro Databases

Creating local prototypes of your design can reduce development time and
costs. When you have a tested local prototype, it is easy and beneficial to
upsize your application, so it can take advantage of all the features
provided by the remote server.

Client/Server Performance Optimization

After upsizing and implementing, you can take additional steps to
optimize the performance of your application. Find out what you can do in
Microsoft Visual FoxPro and on the remote server to optimize your client-
server application.

Check Your Progress

 What is implementation of client-server application?

 Give the important goals of client/server design.

3.10 SUMMARY

Today, over 80 percent of the applications running on a Microsoft
Windows platform access data. More and more of these applications are
used where the client/server architecture is not only recommended, it is a
requirement. Unfortunately, most of these applications fail to succeed for a
variety of reasons, including poor planning, design, and implementation.
Here, we have examined the most common mistakes, and discussed the
benefits of using the Active Platform. Developers use the Active Platform
so that client/server applications work seamlessly over the Internet, an
Intranet, or corporate network.

There are many answers about what differentiates client/server
architecture from some other design. There is no single correct answer, but
generally, an accepted definition describes a client application as the user
interface to an intelligent database engine—the server. Well-designed
client applications do not hard code details of how or where data is

BCA-E10/64

physically stored, fetched, and managed, nor do they perform low-level
data manipulation. Instead, they communicate their data needs at a more
abstract level, the server performs the bulk of the processing, and the
result set isn’t raw data but rather an intelligent answer. The word
"design" here does not simply refer to the design of the User Interface
with its action bars, push buttons, drop downs, etc. but to much larger and
infinitely more complex issues that you will have to resolve as part of the
design process.

3.11 TERMINAL QUESTIONS

1. What do you understand by Client-server design?

2. Discuss the main goals of Client-Server design.

3. Define the term communication and protocol.

4. Explain the few different communication protocols important in
data communication.

5. Explain different characteristics of Client-Server architecture.

6. What are the main elements of Client-Server Computing?

7. Write a short note on Client-Server classification.

8. Why we need Client-Server performance optimization? Explain.

9. Give the dos and don’ts during the design of Client-Server
application.

10. Write a short note on types of logic.

 BCA-E10/65

BCA-E10/66

Bachelor in Computer
Application

BCA-E10
Client Server Technology

BLOCK

2
INTRODUCTION TO ASP.NET

UNIT-4

Introduction to.NET Framework

UNIT-5

Traditional ASP Basics

UNIT-6

ASP.NET Introduction and Controls

Uttar Pradesh Rajarshi Tandon
Open University

BCA-E10/67

Course Design Committee
Dr. Ashutosh Gupta, Chairman
Director (In-charge)
School of Computer and Information Science, UPRTOU, Allahabad

Prof. R.S. Yadav Member
Dept. of Computer Science and Engineering, MNNIT, Allahabad

Ms. Marisha Member
Assistant Professor (Computer Science)
School of Science, UPRTOU, Allahabad

Mr. Manoj Kumar Balwant Coordinator
Assistant Professor (Computer Science)
School of Science, UPRTOU, Allahabad

Course Preparation Committee
Dr. Krishan Kumar Author
Assistant Professor,
Department of Comuter Science Faculty of Technology
Gurukula Kangri Vishwavidyalaya, Haridwar (UK)

Dr. V.K. Saraswat Editor
Director (IET, Khandare Campus)
Institute of Engineering and Technology
Dr. B.R. Ambedkar University, Agra-282002

Dr. Ashutosh Gupta,
Director (In-charge)
School of Computer and Information Science, UPRTOU, Allahabad

Mr. Manoj Kumar Balwant Member
Assistant Professor (Computer Science)
School of Science, UPRTOU, Allahabad

©UPRTOU, Prayagraj-2020
ISBN : 978-93-83328-13-0

©All Rights are reserved. No part of this work may be reproduced in any
form, by mimeograph or any other means, without permission in writing
from the Uttar Pradesh Rajarshi Tondon Open University, Prayagraj.
Printed and Published by Dr. Arun Kumar Gupta Registrar, Uttar Pradesh
Rajarshi Tandon Open University, 2020.
Printed By : Chandrakala Universal Pvt. 42/7 Jawahar Lal Neharu Road,
Prayagraj.

BCA-E10/68

BLOCK INTRODUCTION

Block 2 basically contains three units which are mainly intended with
ASP.NET technology and its applications. Unit 4 introduces the history,
evolution and notion of .NET framework and also gives its overview. It
overview contains features, advantages, disadvantages, main challenges
etc. Moreover, .NET Framework (pronounced dot net) is a software
framework developed by Microsoft that runs primarily on Microsoft
Windows. The .Net frame work Provide and environment for building and
running Web services and other application. It consist
of components such as common language runtime (CLR) and the .NET
Framework class library, which includes classes, interfaces, and value
types that support wide range of technologies.

As Dot Net programming logic can be developed in any Dot Net
framework compatible languages; hence Dot Net is called as language
independent. Microsoft is introducing approximately 40 languages into
Dot Net framework, out of which as of now approximately 24 languages
and one specification are released.

Unit 5 covers the basics of Active Server Pages (ASP). It explores ASP’s
role and change in the today’s changing environment. ASP is basically a
language used to develop server side programs. It is normally used along
with the .NET framework and becomes ASP.NET. Moreover, Active
Server Pages were introduced by Microsoft in 1996 as a downloadable
feature of Internet Information Server 3.0. The concept is pretty simple: an
Active Server Page allows code written in the JavaScript or VBScript
languages to be embedded within the HTML tags of a Web page and
executed on the Web server. There are great advantages to this, not the
least of which is security. Since your code is executed on the Web server,
only HTML tags are sent to the browser. The result is that the ASP code is
“invisible” to the end user.

Last Unit 6 describes the principles of designing a application using
ASP.NET and Web form controls. Before proceeding with this tutorial,
you must also have a basic understanding of .NET programming language.
As you are going to develop web-based applications using ASP.NET web
application framework, it will be good if you have an understanding of
other web technologies such as HTML, CSS, AJAX, etc.

We also need to understand about the Web application. A Web application
consists of document and code pages in various formats. The simplest kind
of document is a static HTML page, which contains information that will
be formatted and displayed by a Web browser. An HTML page may also
contain hyperlinks to other HTML pages. A hyperlink (or just link)
contains an address, or a Uniform Resource Locator (URL), specifying
where the target document is located. The resulting combination of
content and links is sometimes called hypertext and provides easy
navigation to a vast amount of information on the World Wide Web. BCA-E10/69

BCA-E10/70

UNIT-4 INTRODUCTION TO .NET
FRAMEWORK

Structure

4.0 Introduction

4.1 Objectives

4.2 Fundamental of .NET Framework

4.3 Common Type System (CTS)

4.4 Common Language Runtime (CLR)

4.5 Common Language Specification (CLS)

4.6 Microsoft Intermediate Language (MSIL)

4.7 Just in Time (JIT)

4.8 Summary

4.9 Terminal questions

4.0 INTRODUCTION

The .NET Framework is a class of reusable libraries (collection of
classes) given by Microsoft to be used in other .Net applications and to
develop, build and deploy many types of applications on the Windows
platform including the following:

 Console Applications

 Windows Forms Applications

 Windows Presentation Foundation (WPF) Applications

 Web Applications

 Web Services

 Windows Services

 Services-oriented applications using Windows Communications
Foundation (WCF)

 Workflow-enabled applications using Windows Workflow
Foundation(WF)

 Silverlight Application

 WCF workflow service application

 Crystal Reports Application BCA-E10/71

That primarily runs on the Microsoft Windows operating system. What
really happens when we compile a .NET program?

 The exe file that is created doesn't contain executable code, rather
it's MicroSoft Intermediate Language (MSIL) code.

 When you run the EXE, a special runtime environment (the
Common Language Runtime or CLR) is launched and the IL
instructions are executed by the CLR to the machine language.

 The CLR comes up with a Just In Time Compiler that translates
the IL to native language the first it is encountered.

Therefore the process of programming goes like:

 We write a program in C#, VB.Net and other languages.

 We compile our code to IL code based on the language compiler
(csc.exe, vbc.exe and so on).

 Run your IL program that launches the CLR to execute your IL,
using its JIT to translate your program into native code as it
executes.

4.1 OBJECVTIVES

At the end of this unit you would come to know

 The meaning of dot net framework

 Basic knowledge of Common Type System

 What is Common Language Runtime (CLR)

 Common Language Specification (CLS)

 Microsoft Intermediate Language (MSIL)

 What is Just in time compilation

 platform independent concepts

 language independent concepts

 To simplify Web application development

4.2 FUNDAMENTAL OF .NET FRAMEWORK

.NET Framework (pronounced dot net) is a software
framework developed by Microsoft that runs primarily on Microsoft
Windows. The .Net frame work Provide and environment for building and
running Web services and other application. It consist
of components such as common language runtime (CLR) and the .NET
Framework class library, which includes classes, interfaces, and value
types that support wide range of technologies.

BCA-E10/72

As Dot Net programming logic can be developed in any Dot Net
framework compatible languages; hence Dot Net is called as language
independent. Microsoft is introducing approximately 40 languages into
Dot Net framework, out of which as of now approximately 24 languages
and one specification are released.

Eg:C#.Net,VB.Net,VC++,VJ#,VF#,PHP,COBOL,PERL,PHYTH
ON,JSCRIPT...etc
One specification is ASP.Net. VC#.Net is case sensitive, VB.Net is not
case sensitive, and ASP.Net case sensitivity depends on integrated
language.

The .NET development framework provides a new and simplified
model for programming and deploying applications on the Windows
platform. It provides such advantages as multiplatform applications,
automatic resource management, and simplification of application
deployment. As security is an essential part of .NET, it provides security
support, such as code authenticity check, resources access authorizations,
declarative and imperative security, and cryptographic security methods
for embedding into the user’s application.

.NET provides a simple object-oriented model to access most of
the Windows application programming interfaces (APIs). It also provides
mechanisms by which you can use the existing native code. In addition, it
significantly extends the development platform by providing tools and
technologies to develop Internet-based distributed applications. .Net
framework support more than 57 language eg:VC++, VB.NET, C#.NET,
J# , WPF, WCF, LINQ, AJAX e.t.c. The .NET Framework consists of
three main parts:

1. Common Language Runtime,

2. Unified class libraries

3. Active Server Pages called ASP.NET.

Figure 4.1: The .NET Framework Architecture
BCA-E10/73

4.1.1 THE ORIGIN OF .NET TECHNOLOGY

.NET technology was originally known as NGWS which means
Next Generation Windows Services. .Net is actually a thoughtful
combination of technologies and development tools and the infrastructure
is well integrated into Microsoft's operating systems and other products.

If we talk about technological advancements, there are various
changes in the IT world in terms of infrastructure, hardware and advanced
programming services. But for those seeking high end web application
services, they are mostly mightily pleased with advanced .Net
development services. It is one of the most used web technologies which
is in vogue among web developers today. .NET is a combination of a
number of technologies, tools as well as international coding standards.
The evolution in web development is commonly attributed to .NET
development which has generated tremendous interest in creating cloud-
based solutions too.

There are a plethora of .NET applications in the online world too
which are connected to diverse domains and industries. There is intense
competition in the field but there is also the need to generate more
business online with expertise and experience. To achieve this, optimal
use of .Net development services is of huge importance. This latest web
technology has encapsulated huge amount of information and critical data
which include facts about customers, operations, services and the like. If
one wants to create an impressive and marketable website with dynamic
features and incredible functionalities, .Net application development is
what you must resort to.

4.1.2 WHY .NET DEVELOPMENT RULES THE WEB
DEVELOPMENT WORLD

 .NET technology gives varied support to different authentication
services including e-wallets, passwords, and various types of smart
cards.

 It delivers smooth browsing capabilities, navigation and innovative
website functionalities for software development.

 By employing .NET technology one can take advantage of a
plethora of directory services that can solve XML queries.

 One can develop web services using the SOAP toolkit and making
optimum use of .Net framework.

Some of the .Net development services provided by vendors include

 .Net Ajax development solutions

 Web Services /WCF development

 Crystal reports development and implementation
BCA-E10/74

 Windows forms development

 WPF and Windows Services application development

 Legacy modernization services and migration from ASP classic to
.NET platform

 Custom web parts and SharePoint development

 Azure and custom cloud computing services

It is important for vendors to have a cohesive methodology in
place derived from combining industry experience, standard principles and
concepts, and analytical expertise of creating industry-specific solutions. It
is important for clients to choose the best software development
methodology considering the usefulness of the project such as project
scope, deliverables, and the like. Different vendors have different
methodologies to follow most of them assign dedicated teams for each of
the .NET development projects. Usually every project has a Project Lead,
senior .NET Developer and software engineers specializing in .NET
working for every project.

For more information about .NET Development, visit Elan
Emerging Technologies who have been one of the leading Offshore .NET
Application Development company providing innovative ASP.NET Web
Apps by their expert .NET Application Developers to meet unique
business challenges in the web.

Components of .Net Framework

It has many components but mainly used in two components:

1. System class Library

2. Common Type System

3. Garbage Collection

4. Class Loader

5. Common Language Run Time

Figure 4.2 : CLR Components
BCA-E10/75

1. System Class Library (BCL):

This is also called as Base Class Library and it is common for all
types of applications i.e. the way you access the Library Classes
and Methods in VB.NET will be the same in C#, and it is common
for all other languages in .NET.

The following are different types of applications that can make use of .net
class library.

 Windows Application.
 Console Application
 Web Application.
 XML Web Services.
 Windows Services.

In short, developers just need to import the BCL in their language
code and use its predefined methods and properties to implement common
and complex functions like reading and writing to file, graphic rendering,
database interaction, and XML document manipulation. The base class
library contains standard programming features such as Collections, XML,
Data Type definitions, IO (for reading and writing to files), Reflection
and Globalization to name a few. All of which are contained in the System
namespace. As well, it contains some non-standard features such as LINQ,
ADO.NET (for database interactions), drawing capabilities, forms and
web support.

The below table provides a list each class of the base class library and a
brief description of what they provide.

Table 4.1 : Base Class Library Namespaces & Their Meaning

 Base Class Library Namespace Brief Description

System
Contains the fundamentals for
programming such as the data types,
console, match and arrays, etc.

System.CodeDom Supports the creation of code at
runtime and the ability to run it.

System.Collections Contains Lists, stacks, hashtables and
dictionaries

System.ComponentModel Provides licensing, controls and type
conversion capabilities

BCA-E10/76

System.Configuration Used for reading and writing program
configuration data

System.Data Is the namespace for ADO.NET

System.Deployment Upgrading capabilities via ClickOnce

System.Diagnostics Provides tracing, logging, performance
counters, etc. functionality

System.DirectoryServices Is the namespace used to access the
Active Directory

System.Drawing Contains the GDI+ functionality for
graphics support

System.EnterpriseServices Used when working with COM+ from
.NET

System.Globalization Supports the localization of custom
programs

System.IO
Provides connection to file system and
the reading and writing to data streams
such as files

System.Linq Interface to LINQ providers and the
execution of LINQ queries

System.Linq.Expressions Namespace which contains delegates
and lambda expressions

System.Management
Provides access to system information
such as CPU utilization, storage space,
etc.

System.Media Contains methods to play sounds

System.Messaging
Used when message queues are
required within an application,
superseded by WCF

BCA-E10/77

System.Net Provides access to network protocols
such as SSL, HTTP, SMTP and FTP

System.Reflection Ability to read, create and invoke class
information.

System.Resources
Used when localizing a program in
relation to language support on web or
form controls

System.Runtime Contains functionality which allows
the management of runtime behavior.

System.Security
Provides hashing and the ability to
create custom security systems using
policies and permissions.

System.ServiceProcess Used when a windows service is
required

System.Text Provides the StringBuilder class, plus
regular expression capabilities

System.Threading
Contains methods to manage the
creation, synchronization and pooling
of program threads

System.Timers
Provides the ability to raise events or
take an action within a given timer
period.

System.Transactions Contains methods for the management
of transactions

System.Web
Namespace for ASP.NET capabilities
such as Web Services and browser
communication.

System.Windows.Forms
Namespace containing the interface
into the Windows API for the creation
of Windows Forms programs.

BCA-E10/78

System.Xml
Provides the methods for reading,
writing, searching and changing XML
documents and entities.

4.3 COMMON TYPE SYSTEM (CTS)

It describes set of data types that can be used in different .Net
languages in common. The Common Type System (CTS) standardizes the
data types of all programming languages using .NET under the umbrella
of .NET to a common data type for easy and smooth communication
among these .NET languages.

How CTS converts the data type to a common data type

To implement or see how CTS is converting the data type to a common
data type, for example, when we declare an int type data type in C# and
VB.Net then they are converted to int32. In other words, now both will
have common data type that provides flexible communication between
these two languages.

Figure 4.3 : Conversion of data type to Common data type

The common type system supports two general categories of types:
Value types

Value types directly contain their data, and instances of value types are
either allocated on the stack or allocated inline in a structure. Value types
can be built-in (implemented by the runtime), user-defined, or
enumerations.

Reference types

Reference types store a reference to the value's memory address, and are
allocated on the heap. Reference types can be self-describing types, BCA-E10/79

pointer types, or interface types. The type of a reference type can be
determined from values of self-describing types. Self-describing types are
further split into arrays and class types. The class types are user-defined
classes, boxed value types, and delegates

Functions of the Common Type System (CTS)

 To establish a framework that helps enable cross-language
integration, type safety, and high performance code execution.

 To provide an object-oriented model that supports the complete
implementation of many programming languages.

 To define rules that languages must follow, which helps ensure
that objects written in different languages can interact with each
other.

 The CTS also defines the rules that ensure that the data types of
objects written in various languages are able to interact with each
other.

 The CTS also specifies the rules for type visibility and access to
the members of a type, i.e. the CTS establishes the rules by which
assemblies form scope for a type, and the Common Language
Runtime enforces the visibility rules.

 The CTS defines the rules governing type inheritance, virtual
methods and object lifetime.

 Languages supported by .NET can implement all or some common
data types…

 When rounding fractional values, the halfway-to-even ("banker's")
method is used by default, throughout the Framework. Since
version 2, "Symmetric Arithmetic Rounding" (round halves away
from zero) is also available by programmer's option.

 It is used to communicate with other language.

4.4 COMMON LANGUAGE RUNTIME (CLR)

.Net Framework provides runtime environment called Common
Language Runtime (CLR).It provides an environment to run all the .Net
Programs. The code which runs under the CLR is called as Managed
Code. Programmers need not to worry on managing the memory if the
programs are running under the CLR as it provides memory management
and thread management. Programmatically, when our program needs
memory, CLR allocates the memory for scope and de-allocates the
memory if the scope is completed.

BCA-E10/80

 Language Compilers (e.g. C#, VB.Net, J#) will convert the
Code/Program to Microsoft Intermediate Language (MSIL)
intern this will be converted toNative Code by CLR. See the
below Fig.

Figure 4.4 : Converting Code to Native Code

 There are currently over 15 language compilers being built by
Microsoft and other companies also producing the code that will
execute under CLR

4.4.1 FUNCTIONS OF THE CLR

1. Convert code into CLI.

2. Exception handling

3. Type safety

4. Memory management (using the Garbage Collector)

5. Security

6. Improved performance

7. Language independency BCA-E10/81

8. Platform independency

9. Architecture independency

4.4.2 COMPONENTS OF THE CLR

 Class Loader: Used to load all classes at run time.

 MSIL to Native code: The Just in Time (JIT) compiler will
convert MSIL code into native code.

 Code Manager: It manages the code at run time.

 Garbage Collector: It manages the memory. Collect all unused
objects and deallocate them to reduce memory.

 Thread Support: It supports multithreading of our application.

 Exception Handler: It handles exceptions at run time.

4.5 COMMON LANGUAGE SPECIFICATION
(CLS)

The Common Language Specification (CLS) is a fundamental set
of language features supported by the Common Language Runtime (CLR)
of the .NET Framework. CLS is a part of the specifications of the .NET
Framework. CLS was designed to support language constructs commonly
used by developers and to produce verifiable code, which allows all CLS-
compliant languages to ensure the type safety of code. CLS includes
features common to many object-oriented programming languages. It
forms a subset of the functionality of common type system (CTS) and has
more rules than defined in CTS.

It is a sub set of CTS and it specifies a set of rules that needs to be adhered
or satisfied by all language compilers targeting CLR. It helps in cross
language inheritance and cross language debugging.

4.5.1 COMMON LANGUAGE SPECIFICATION
RULES

It describes the minimal and complete set of features to
produce code that can be hosted by CLR. It ensures that products of
compilers will work properly in .NET environment. CLS defines the base
rules necessary for any language targeting common language
infrastructure to interoperate with other CLS-compliant languages. For
example, a method with parameter of "unsigned int" type in an object
written in C# is not CLS-compliant, just as some languages, like VB.NET,
do not support that type.

CLS represents the guidelines to the compiler of a language, which
targets the .NET Framework. CLS-compliant code is the code exposed and BCA-E10/82

expressed in CLS form. Even though various .NET languages differ in
their syntactic rules, their compilers generate the Common Intermediate
Language instructions, which are executed by CLR. Hence, CLS allows
flexibility in using non-compliant types in the internal implementation of
components with CLS-compliant requirements. Thus, CLS acts as a tool
for integrating different languages into one umbrella in a seamless
manner.

4.5.2 SAMPLE RULES

1. Representation of text strings

2. Internal representation of enumerations

3. Definition of static members and this is a subset of the CTS which
all .NET languages are expected to support.

4. Microsoft has defined CLS which are nothing but guidelines that
language to follow so that it can communicate with other .NET
languages in a seamless manner

4.6 MICROSOFT INTERMIDIATE LANGUAGE
(MSIL)

A.NET programming language (C#, VB.NET, J# etc.) does not
compile into executable code; instead it compiles into an intermediate
code called Microsoft Intermediate Language (MSIL). As a programmer
one need not worry about the syntax of MSIL - since our source code in
automatically converted to MSIL. The MSIL code is then send to the CLR
(Common Language Runtime) that converts the code to machine
language, which is then run on the host machine. MSIL is similar to Java
Byte code. MSIL is the CPU-independent instruction set into which .NET
Framework programs are compiled. It contains instructions
for
loading, storing, initializing, and calling methods on objects. Combined
with metadata and the common type system, MSIL allows for true cross-
language integration Prior to execution, MSIL is converted to machine
code. It is not interpreted.

Microsoft Intermediate Language (MSIL) is a CPU-independent
set of instructions that can be efficiently converted to the native code.
During the runtime the Common Language Runtime (CLR)'s Just In
Time (JIT) compiler converts the Microsoft Intermediate Language
(MSIL) code into native code to the Operating System.

MSIL stands for Microsoft Intermediate Language. We can call it
as Intermediate Language (IL) or Common Intermediate Language (CIL).
During the compile time , the compiler convert the source code into
Microsoft Intermediate Language (MSIL) .Microsoft Intermediate
Language (MSIL) is a CPU-independent set of instructions that can be
efficiently converted to the native code. During the runtime the Common
Language Runtime (CLR)'s Just In Time (JIT) compiler converts the BCA-E10/83

Microsoft Intermediate Language (MSIL) code into native code to the
Operating System. When a compiler produces Microsoft Intermediate
Language (MSIL), it also produces Metadata. The Microsoft Intermediate
Language (MSIL) and Metadata are contained in a portable executable
(PE) file.

Microsoft Intermediate Language (MSIL) includes instructions for
loading, storing, initializing, and calling methods on objects, as well as
instructions for arithmetic and logical operations, control flow, direct
memory access, exception handling, and other operations Just In Time
Compiler The .Net language, which conforms to the Common Language
Specification (CLS), uses its corresponding runtime to run the application
on different Operating Systems. During the code execution time, the
Managed Code compiled only when it is needed, that is it converts the
appropriate instructions to the native code for execution just before when
each function is called. This process is called Just in Time (JIT)
compilation, also known as Dynamic Translation.

With the help of Just in Time Compiler (JIT) the Common
Language Runtime (CLR) doing these tasks. The Common Language
Runtime (CLR) provides various Just In Time compilers (JIT) and each
works on a different architecture depending on Operating System. That is
why the same Microsoft Intermediate Language (MSIL) can be executed
on different Operating Systems without rewrite the source code. Just In
Time (JIT) compilation preserves memory and save time during
application initialization. Just In Time (JIT) compilation is used to run at
high speed, after an initial phase of slow interpretation. Just In Time
Compiler (JIT) code generally offers far better performance than
interpreter.

4.7 JUST IN TIME (JIT)

Before the Microsoft Intermediate Language (MSIL) can be
executed, it must be converted by a .NET Framework Just-In-Time (JIT)
compiler to native code, which is CPU-specific code that runs on the same
computer architecture as the JIT compiler. The JIT compiler is part of the
Common Language Runtime (CLR). The CLR manages the execution of
all .NET applications. In addition to JIT compilation at runtime, the CLR
is also responsible for garbage collection, type safety and for exception
handling.

4.7.1 JIT COMPILER

A Web Service or Web Forms file must be compiled to run within
the CLR. Compilation can be implicit or explicit. Although you could
explicitly call the appropriate compiler to compile your Web Service or
Web Forms files, it is easier to allow the file to be complied implicitly.
Implicit compilation occurs when you request the .asmx via HTTP-
SOAP, HTTP-GET, or HTTP-POST. The parser (xsp.exe) determines

BCA-E10/84

whether a current version of the assembly resides in memory or in the
disk. If it cannot use an existing version, the parser makes the appropriate
call to the respective compiler (as you designated in the Class property of
the .asmx page).

When the Web Service (or Web Forms page) is implicitly
compiled, it is actually compiled twice. On the first pass, it is compiled
into IL. On the second pass, the Web Service (now an assembly in IL) is
compiled into machine language. This process is called Just-In-Time JIT
compilation because it does not occurs until the assembly is on the target
machine. The reason you do not compile it ahead of time is so that the
specific JIT for your OS and processor type can be used. As a result, the
assembly is compiled into the fastest possible machine language code,
optimized and enhanced for your specific configuration. It also enables
you to compile once and then run on any number of operating systems.

4.7.2 HOW JIT WORKS?

Before MSIL(MS Intermediate Language) can be executed, it must
converted by .net Framework Just in time (JIT) compiler to native code,
which is CPU specific code that run on some computer architecture as the
JIT compiler. Rather than using time and memory to convert all the MSIL
in portable executable (PE) file to native code, it converts the MSIL as it is
needed during execution and stored in resulting native code so it is
accessible for subsequent calls.

The runtime supplies another mode of compilation called install-
time code generation. The install-time code generation mode converts
MSIL to native code just as the regular JIT compiler does, but it converts
larger units of code at a time, storing the resulting native code for use
when the assembly is subsequently loaded and executed. As part of
compiling MSIL to native code, code must pass a verification process
unless an administrator has established a security policy that allows code
to bypass verification. Verification examines MSIL and metadata to find
out whether the code can be determined to be type safe, which means that
it is known to access only the memory locations it is authorized to access.

4.7.3 JIT TYPES

 In Microsoft .NET there are three types of JIT (Just-In-Time)
compilers which are Explained as Under:

1. Pre-JIT Compiler (Compiles entire code into native code
completely)

2. Econo JIT Compiler (Compiles code part by part freeing when
required)

3. Normal JIT Compiler (Compiles only that part of code when called
and places in cache BCA-E10/85

Figure 4.5 : Just In Time Types

4.7.4 DESCRIPTION

Pre-JIT Compiler

Pre-JIT compiles complete source code into native code in a single
compilation cycle. This is done at the time of deployment of the
application.

Econo-JIT Compiler

Econo-JIT compiles only those methods that are called at runtime.
However, these compiled methods are removed when they are not
required.

Normal-JIT Compiler

Normal-JIT compiles only those methods that are called at runtime. These
methods are compiled the first time they are called, and then they are
stored in cache. When the same methods are called again, the compiled
code from cache is used for execution. These methods are compiled the
first time they are called, and then they are stored in cache. When the same
methods are called again, the compiled code from cache is used for
execution

Figure 4.6 : .NET compiler BCA-E10/86

Different machine configurations use different machine level
instructions. As Figure 1shows, the source code is compiled
to exe or dll by the .NET compiler. Common Intermediate Language (CIL)
consists of instructions that any environment supporting .NET can execute
and includes metadata describing structures of both data and code. The JIT
Compiler processes the CIL instructions into machine code specific for an
environment. Program portability is ensured by utilizing CIL instructions
in the source code. The JIT compiler compiles only those methods called
at runtime. It also keeps track of any variable or parameter passed through
methods and enforces type-safety in the runtime environment of the .NET
Framework.

4.8 SUMMARY

 NET Framework is a code execution platform – the environment
which .NET programs run

 .NET Framework consists of two primary parts: Common
Language Runtime and .NET Class Libraries

 The CLS (Common Language Specification) allows different
languages to interact seamlessly.

 The CTS (Common Type System) allows all languages to share
base data types.

 .NET languages are compiled to MSIL by their respective
compilers

 MSIL code is compiled to machine code by the JIT compiler

 All .NET languages have equal access to the FCL (Framework
Class Library) which is a rich set of classes for developing
software

 Base Class Library is set of basic classes: Collections, I/O,
Networking, Security, etc.

 ADO.NET provides .NET applications with access to relational
databases

 .NET has great XML support including: DOM, XSLT, XPath, and
XSchema

 Windows Forms provides GUI interface for the .NET applications

 ASP.NET allows creating web interface to .NET applications

 Web Services expose functionality from web sites and make it
remotely accessible through standard XML-based protocols

 Visual Studio .NET is powerful development IDE for all .NET
languages and technologies

 BCA-E10/87

4.9 TERMINAL QUESTIONS

1. What is .NET Framework?

2. What are the main components of .NET Framework?

3. What is an IL?

4. What is DLL as per Dot Net?

5. What are the advantages of .Net?

6. How to invoke garbage collector programmatically?

7. What is a Managed Code?

8. What are the different types of JIT's?

9. What are Value types and Reference types?

10. Explain the concept of Boxing and Unboxing?

11. What is Code Document Object Model (CodeDom)?

12. Difference between .exe and .dll?

13. What is a Dll Hell?

BCA-E10/88

UNIT-5 INTRODUCTION TO ASP
BASIC

Structure

5.0 Introduction

5.1 Objectives

5.2 ASP and The SETUP

5.3 ASP Object

5.4 How does It work

5.5 Advantages

5.6 ASP OBJECT

5.7 Working with Database in ASP

5.8 Example

5.9 Limitations

5.10 Summary

5.11 Terminal questions

5.0 INTRODUCTION

Basically ASP is a development framework for building web
pages. Do you have any problem with the development of static HTML
pages? Do you want to create dynamic web pages? Do you want to enable
your web pages with database access? If your answer is “Yes”, ASP might
be a solution for you. In May 2000, Microsoft estimated that there are over
800,000 ASP developers in the world. You may come up with a question
what the heck ASP is. After reading this unit, you will be able to know
what it is, how it works and what it can do for you.

Active Server Pages were introduced by Microsoft in 1996 as a
downloadable feature of Internet Information Server 3.0. The concept is
pretty simple: an Active Server Page allows code written in the JavaScript
or VBScript languages to be embedded within the HTML tags of a Web
page and executed on the Web server. There are great advantages to this,
not the least of which is security. Since your code is executed on the Web
server, only HTML tags are sent to the browser. The result is that the ASP
code is “invisible” to the end user.

Another upside to the “server-side script” concept is that it allows
things like database connections to be made from the Web server rather BCA-E10/89

than from the client. Therefore, any special configurations that might need
to be set up, like ODBC data sources, only have to exist on the server. Of
course, before you can create an Active Server Page (ASP), you’ll need to
look at the software requirements.

ASP is in very high demand in web development field. it is a server-side
scripting language which is very popular due to its features. it runs on IIS
(Internet Information Services) server. So coming to the topic this has
been designed in a very efficient way and in a very understandable
way. Before you continue, you should also have a basic understanding of
HTML, CSS, JavaScript and SQL. In this course you will learn the basics
of ASP. This is a beginners’ level course and this course is not for experts
in ASP.

ASP supports different development models like Classic ASP,
ASP.NET Web Forms, ASP.NET MVC, ASP.NET Web Pages, ASP.NET
API, ASP.NET Core.

5.1 OBJECVTIVES

At the end of this unit you would come to know

 Fundamental meaning of ASP

 The difference between client side programming and server side
programming

 The ASP setup

 Why we choose ASP

 How ASP works

 Basic syntax rule of ASP

 ASP’S object model

 Working with Database in ASP

 Limitations of ASP

 Summary

5.2 ASP & THE SETUP

ASP stands for Active Server Pages. Microsoft introduced Active Server
Pages in December 1996, beginning with Version 3.0. Microsoft officially
defines ASP as: “Active Server Pages is an open, compile-free application
environment in which you can combine HTML, scripts, and reusable
ActiveX server components to create dynamic and powerful Web-based
business solutions. Active Server Pages enables server side scripting for
IIS with native support for both VBScript and Jscript”. In other words,
ASP is a Microsoft technology that enables you to create dynamic web
sites with the help of server side script, such as VBScript and Jscript. ASP

BCA-E10/90

technology is supported on all Microsoft Web servers that are freely
available. If you have Window NT 4.0 Server installed, you can download
IIS (Internet Information Server) 3.0 or 4.0. If you are using. Window
2000, IIS 5.0 comes with it as a free component. If you have Window
95/98, you can download Personal Web Server (PWS), which is a smaller
version of IIS, from Window 95/98 CD.

Before you can create an Active Server Page, you’ll need a Web
server that supports Active Server Pages. The most obvious choice would
be Microsoft’s Internet Information Server (IIS) version 3.0 or higher. IIS
is available for Windows NT 4.0 or higher as part of the Windows NT
option pack, which can be downloaded from Microsoft’s Web site. For the
highest level of compatibility and functionality, you’ll want to use the
most recent version of IIS.

Another option that you might not have considered is Microsoft’s
Personal Web Server for Windows 9xand Windows ME. If you’re running
Windows 95 or above, Personal Web Server can be installed by running
“setup.exe” from the setup CD. Alternatively, it can be downloaded from
Microsoft’s Web site as part of the Windows NT option pack. Earlier this
download is the only choice for Windows 95 or Windows ME. It’s
important to note that Microsoft does not support running Personal Web
Server under Windows ME. While Personal Web Server is not the optimal
choice for a production Web server, it is a great option for developing and
testing your ASP scripts. If you’re running IIS or Personal Web Server, no
additional software is required to support Active Server Pages. To allow a
user to access an ASP, the ability to do so must be enabled on the IIS
server. This is done by selecting “Scripts” or “Execution (Including
Scripts)” from the “Home Directory” tab of the Properties window for
your Web site, as shown in Figure 5.1.

Figure 5.1: Active Server Pages are enabled by adding script permission
BCA-E10/91

For other operating systems or Web servers, it gets a little tricky,
but is possible. For Unix or Linux servers running the Apache Web server,
you can use a bolt-on product to add ASP support. Sun Microsystems’ Sun
ONE Active Server Pages (formerly called Chili!Soft ASP) is one of these
products. This product supports most, but not all, of the controls available
in IIS. This is just one product that can add Active Server Page support to
non-Microsoft Web servers. Table 2.1 has a more complete list of ASP
compatibility products and the operating systems and Web servers they
run on. There are products to allow ASPs to be used on just about any
Web server out there. This fact makes using ASPs that much more
attractive because you aren’t limited in the choice of hardware, operating
system, or Web server to host your Web pages. As you can see, there are
even ASP-compatibility products for the iSeries.

5.3 ASP FILE

An ASP file is quite like an HTML file. It contains text, HTML
tags and scripts, which are executed on the server. The two widely used
scripting languages for an ASP page are VBScript and JScript. VBScript is
pretty much like Visual Basic, whereas Jscript is the Microsoft’s version
of JavaScript. However, VBScript is the default scripting language for
ASP. Besides these two scripting languages, you can use other scripting
language with ASP as long as you have an ActiveX scripting engine for
the language installed, such as PerlScript.

ASP contains the server scripts, which can contain any
expressions, statements, procedures, operators valid for the scripting
language. These server scripts are enclosed by the delimiters <% and %>

1. VBScript

2. JavaScript

3. Other Scripting Languages

The difference between an HTML file and an ASP file is that an
ASP file has the “.asp” extension. Furthermore, script delimiters for
HTML tags and ASP code are also different. A script delimiter is a
character that marks the starting and ending of a unit. HTML tags begins
with lesser than (<) and greater than (>) brackets, whereas ASP script
typically starts with <% and ends with %>. In between the delimiters are
the server-side scripts.

To write an ASP script, you don’t need any additional software
because it can be written with any HTML editor, such as Notepad.
Nonetheless, if you feel bored with the plain text and would like to use
some special software, you can use Microsoft visual InterDev, which helps
you to easily create an ASP page by giving you nice highlights and
debugging dialogue boxes. I hope that you already have an idea of what an
ASP file is and how it is different from an HTML file. In the next step,
you will learn how ASP works.

BCA-E10/92

5.4 HOW DOES IT WORK?

As you have learned, scripts in an ASP file are server-side scripts,
which means that the scripts are processed on the server and then the
result of the scripts will be converted to HTML before sending to the web
browser. To illustrate, let’s take a look at this table to compare the process
of retrieving an HTML page and an ASP page .

HTML process ASP process

A user requests a web page (i.e.,

http://www.gkv.ac.in/index.html

in the web browser.

A user requests a web page (i.e.,

http://www.gkv.ac.in/index.html

in the web browser.

The browser finds the appropriate
web server, and asks for the
required page.

The browser finds the appropriate
web server (like IIS or PWS), and
asks for the required page.

The web server locates the required

page and sends it back to the

browser as HTML text.

The web server locates the required

page, and parses out the ASP code

within the ASP script delimiters

(<%…%>), produces a standard

HTML page. The server sends that

HTML page back to the browser,
so

the user cannot see ASP code.

The browser executes the client side

scripting (like JavaScript)

determining how to display the

results

The browser executes the client
side

scripting (like JavaScript)

determining how to display the

results

Web page is not coupled with any
other

programming language.

Web page is coupled with another

programming language for database

maintenance.

It is used for web designing purpose
so dynamic websites are not
possible.

It is used for web development
purposes so dynamic web sites are
possible.

BCA-E10/93

As you can see, the whole process of the two is quite similar. Since
ASP is a server-side technology, the required page is executed on the
server before the HTML is created and served to the client. To make it
clearer, Figure1 shows the processing behind a browser request to an ASP
page . For example, a client types in a URL into your browser. The
browser requests the ASP page from the web server. The server proceeds
the file with “.asp” extension to ASP Engine in which Objects or ActiveX
Components can be used to extend the web server with application-
specific functionality. In addition, ASP will use ADO to connect to a
Client Browser Server ASP Engine ADO ODBC Object / Component
Provider Driver ASP Script Oracle SQL Server Access FoxPro Request
ASP page

Figure 5.2 : How ASP works

For example, a client types in a URL into your browser. The browser
requests the ASP page from the web server. The server proceeds the file
with “.asp” extension to ASP Engine in which Objects or ActiveX BCA-E10/94

Components can be used to extend the web server with application-
specific functionality. In addition, ASP will use ADO to connect to a
database (SQL, Access, Oracle, etc.) to pull out the relevant data, such as
the current weather in a specific area. Thus, a different page is generated
according to the area specified and time that the page is accessed. Then,
the server generates HTML tags before sending it back to the client.
Therefore, when you view the source of an ASP file, you will not see any
different from a standard HTML file.

ASP includes several build-in objects:

 Application Objects- Describes the methods, properties, and
collections of the object that stores information related to the entire
Web application, including variables and objects that exist for the
lifetime of the application.

 ASP Error Object- Describes the properties of the object that stores
information about an error condition.

 Object Context Objects- Describes a wrapper for the COM +
ObjectContext object, which provides methods and events that are
used only for transaction processing.

 Request Object- Describes the methods, properties, and collections
of the object that stores information related to the HTTP request.
This includes forms, cookies, server variables, and certificate data.

 Response Object- Describes the methods, properties, and
collections of the object that stores information related to the
server's response. This includes displaying content, manipulating
headers, setting locales, and redirecting requests.

 Scripting Context Object- In a component, the ScriptingContext
object returns references to the ASP built-in objects; however, this
is an obsolete and unsupported method, removed in IIS 4.0. Use
the COM+ ObjectContext object to return references to the ASP
built-in objects. For more information, see COM+ ObjectContext
Reference to the ASP Built-In Objects.

5.5 ADVANTAGES

Certainly, ASP must have some strength; otherwise, it won’t be
popular as such. Let’s count on its strong points and functionality.

 Dynamic web page – Since ASP supports scripting languages,
which run on the web server, your web page can be dynamically
created. For example, you can create your web page so as to
greeting each user when they log into your page differently.

 Browser independent – ASP is browser independent because all
the scripting code runs on the server. The browser only gets the
results from the server in a standard HTML page.

BCA-E10/95

 Database Access – One of the greatest assets of ASP is database
connectivity. ASP enables you to easily build rich database
functionality into your web site, such as form processing.

 Building-in objects – The five built-in objects that come with ASP
facilitate Web application development. For example, you can use
Request object to retrieve browser request information.

 Free availability – Yes, it’s free. You can download web server
(IIS or PWS) for free from Microsoft’s web site. You don’t even
have to have any special tool to write an ASP file. In other words,
you can simply use any text editor, like NotePad.

Check Your Progress
 Define ASP.

 Write the benefits of ASP.

5.6 ASP OBJECT

An application on the Web may consists of several ASP files that
work together to perform some purpose. The Application object is used to
tie these files together. The Application object is used to store and access
variables from any page, just like the Session object. The difference is that
ALL users share ONE Application object (with Sessions there is ONE
Session object for EACH user). The Application object holds information
that will be used by many pages in the application (like database
connection information). The information can be accessed from any page.
The information can also be changed in one place, and the changes will
automatically be reflected on all pages. The Application object's
collections, methods, and events are described below:

5.6.1 COLLECTIONS

Collections Description

Contents The Contents collection contains all the items added to the
application through the use of scripts (not through the use
of the <OBJECT> tag).

StaticObjects The StaticObjects collection contains all session-level
objects added to the application through the use of the
<OBJECT> tag. The collection can be used to retrieve the
value of a specific property for an object, or to retrieve all
properties for all static objects.

BCA-E10/96

5.6.2 METHODS

Methods Description

Contents.Remove The Contents.Remove method deletes the specified
item from the Application object Contents
collection.

Contents.RemoveAll The Contents.RemoveAll method deletes all the
items from the Application object Contents
collection.

Lock The Lock method locks the Application Object,
preventing other users from modifying the same
application-level variables at the same time. The
individual user retains control of the Application
object until the Application.UnLock method is
declared. If the Unlock method is not called
explicitly, IIS will unlock the locked Application
object when the script ends or times out.

Unlock The Unlock method releases control of the locked
application variables. Once Unlock has been called,
other clients can again alter the values of the
variables in the Application object. If the Unlock
method is not called explicitly, IIS will unlock the
locked Application object when the script ends or
times out.

5.6.3 EVENTS

Events Description

Application_OnStart The Application_OnStart event occurs before the
first new session is created (when the first client
request is received).

Application_OnEnd The Application_OnEnd event occurs when the
ASP application is explicitly unloaded from the
web server or when the web service on the web
server is stopped.

BCA-E10/97

5.7 WORKING WITH DATABASE IN ASP

One of ASP's greatest assets is that it allows you to tap into a
database with ease. It's common to work with either an Access or a SQL
database. Since Access is the easiest to start with, and is a tool you may
already have, we'll use it for these examples. Once you learn core ASP
techniques for working with your Access database, you'll find that many
of the same skills will be necessary when you start working with SQL
server.

When you want to tap into a database, you have to open it on the
server. You can connect to and open the database by using either a Data
Source Name (DSN) or by making a DSN-less connection directly in your
script.

The normal way to access a database from inside an ASP page is to:

1. Create an ADO connection to a database

2. Open the database connection

3. Create an ADO recordset

4. Open the recordset

5. Extract the data you need from the recordset

6. Close the recordset

7. Close the connection

The easiest way to connect to a database is to use a DSN-less
connection. A DSN-less connection can be used against any Microsoft
SQL database on your web site. If you have a database called "northwind "
located in your SQL Server, you can connect to the database with the
following ASP code:

5.7.1 CREATING A DATA SOURCE NAME (DSN)

You can prep your database for use with ASP by setting up a
System DSN for it in the control panel. On your local machine you can set
up DSNs for any of the databases with which you are working. Then you
can test your pages on your local server. If your site is being hosted by an
ISP, and the ISP supports ASP, then it's likely you'll be provided with a
GUI interface for creating a DSN for your database.

 In Windows 95/98/NT, open the Control Panel
(Start/Settings/Control Panel) and double-click the ODBC entry.

 Select the System DSN tab and click Add.

 Select Microsoft Access Driver and click Finish.

BCA-E10/98

 Fill in the Data Source Name. This is the name with which you'll
refer to the database, so it operates as an alias.

 Click the Select button in the Database section and browse to find
the Access database on your system.

 Click OK.

The new DSN will now be in the list of System DSNs and ready to use on
your local server.

5.7.2 CONNECTING TO A DATABASE

Let's run through creating a DSN-less connection and look at how
you connect to the database. When you create a DSN, you are storing a
chunk of information about the database, so you don't have to repeat it
every time you need it: type of database, name, location, and, optionally,
user and password. To create a DSN-less connection, you'll have to supply
the same information the long way. This sample, for example, shows a
DSN-less connection being made to an Access database called products:

<%

StrConnect = "Driver={Microsoft Access Driver (*.mdb)};

DBQ=C:\db\products.mdb" Set objConn = Server.CreateObject
("ADODB.Connection")
objConn.Open StrConnect
%>

The second line defines the driver and the physical path for the
database. To use a DSN-less connection, you need to know the actual
location of the file from the root. Server.MapPath offers an easy work-
around for anyone using a hosting service where the actual path can be
hard to track down.

If we had set up a System DSN called products, the connection
string would simply be:

< %
Set objConn = Server.CreateObject ("ADODB.Connection")
objConn.Open "products"
%>

Now that the database is open, what can you do? Lots. The first
thing to try, of course, is to read a set of records from the database and
plop them onto your page. Before that, however, you'll need a recordset.

5.7.3 RECORDSET

A recordset is a collection of all the information stored in a
specific database table. So, all the rows and columns in the table are
available when you open the recordset. You need to open the recordset BCA-E10/99

just as you needed to open the database connection. The commands are
similar:

Set objRec = Server.CreateObject ("ADODB.Recordset")
objRec.Open "downloadable", strConnect, 0,1,2

This creates a recordset (objRec) of the table named downloadable
that sits in the products database defined in strConnect. With the
Recordset open, we can loop through the table and write all the contents to
the screen. Or, we can test for specific contents and only write the data
that matches our criteria to the screen.

Writing the Recordset contents

It's really easy to work with a Recordset. If you wanted to loop through the
database and print all the information to the screen, you could do this:

 While NOT objRec.EOF
' says to do this as long as we haven't reached the end of the file
 Response.Write objRec("ProductID") & ", "
 Response.Write objRec("SKU") & ", "
 Response.Write objRec("Name") & ", "
 Response.Write objRec("File") & "
"
 objRec.MoveNext
 Wend

Even if you haven't used a loop like this before, you can probably
tell by looking that this prints the information in a comma-delimited string
and starts a new row for each new row in the table. You could use this
same technique to write the data to an HTML table. Just insert your
TABLE tags appropriately using Response.Write and keep a few things in
mind:

1. Your HTML tags and content go in quote marks.

2. If your tag or content uses quote marks, double them:
.

3. Concatenate the variables and HTML/content information with
ampersands

Picking and choosing within the Recordset

Imagine our products database also contains a field called OS for, you
guessed it, a platform delimiter. Let's also imagine that the data stored in
that field can only be one of the following values: Windows NT, Windows
95, Windows 98, Windows, Mac, Unix, or Linux. We then could specify
which records we wanted to write to the screen and ignore the others. Or,
we could choose to format some results one way and others another—in
different colors, for example.

BCA-E10/100

A simple If...Then loop will quickly give us more control over the
database. Let's first print out the records that are tagged as Windows NT
products:

< TABLE BORDER=0 WIDTH=600>

<TR><TD COLSPAN=4 ALIGN=CENTER><FONT
SIZE="+1"<Windows NT Products</TD></TR>

<%
 While NOT objRec.EOF

 If objRec("OS") = "Windows NT" THEN ' specifies the criteria

Response.Write "<TR><TD BGCOLOR=""#FFFF66"">" &
objRec("ProductID") & "</TD>"
Response.Write "<TD>" & objRec("SKU") & "</TD>"
Response.Write "<TD>" & objRec("Name") & "</TD>"
Response.Write "<TD>" & objRec("File") & "</TD></TR>"

 end if
 objRec.MoveNext
 Wend

%>
< /TABLE>

Adding a record

Once you start working with the recordset and ASP, you'll soon be itching
to add to a database via the Web. Adding is important whether you want
your site visitors to be able to add comments or if you want to be able to
make administrative updates.

The following code opens the recordset for a table that holds a list
of books and their authors. You've seen this before, but this time the last
three specifications defining the cursor type are different: adOpenStatic,
adLockOptimistic, adCmdTable:

< % ' database connection already made; code not shown here
Set objRec = Server.CreateObject ("ADODB.Recordset")
 objRec.Open "books", bookdb, adOpenStatic, adLockOptimistic,
adCmdTable
%>

(If you are not using a copy of adovbs.inc, the line would be: objRec.Open
"books", bookdb, 3,3,2).

The recordset is now ready to accept data. You just need to tell it
what to add. In this case, let's assume we have pulled variables from a
form: strBookTitle and strBookAuthor. Our table, books, has two fields,
called Title and Author, so we can add a new record by doing this:

< %
objRec.AddNew BCA-E10/101

 ObjRec("Title") = strBookTitle
 objRec("Author") = strBookAuthor
 objRec.Update
%>

strBookTitle and strBookAuthor represent values, possibly entered
by a user in a form. If you just want to test the add function, you can slot
in a title and author in place of the variables—just remember to use quote
marks. The first few times you try it, you'll probably want to open your
database immediately to ensure that the update happened.

Recordset types

In the sample objRec.Open statement shown, you'll see the 0,1,2 at the
end. These numbers stand for various cursor types. The type you use
depends on what you are going to do. For example, if you're not going to
add or edit any records, you use one Lock type. You'll use a different type
when you plan to make changes or updates to the database.

0,1,2 actually stands for:

adOpenForwardOnly, adLockReadOnly, adCmdTable

You can use the words rather than the numbers if you have a copy
of adovbs.inc stored on your server. It contains a list of these constants
and many others.

5.8 EXAMPLE

A management system of a small chat room: In this management system
of the chat room, files are used to record the data. This management
system is used to kick out some users.

 BCA-E10/102

http://www.asp101.com/articles/john/adovbs/adovbs.inc

source code

<%Response.Expires=0

manage=Session("hqtchatmanage")

if manage<>"Administrator" then Response.Write “visit declined" :
Response.end

username=Request.QueryString("username")

dim online()

onfile=server.mappath("online.asp") get the path of the online.asp

Set fs=CreateObject("Scripting.FileSystemObject")

establish the “Filesystemobject” objection，and set the fs as the
variable

Set thisfile = fs.OpenTextFile(onfile,1,False)

counton = 0

do while not thisfile.AtEndOfStream

thisline = thisfile.readline Get a line of data from the file

Redim preserve online(counton) define an array

online(counton) = thisline

counton = counton + 1

loop

thisfile.Close

Set outfile = fs.CreateTextFile(onfile)

for i=0 to counton-1 step 3

if online(i)<>username then

If the user are not deleted

outfile.WriteLine online(i)output all of the data of this user, and rewrite
the

outfile.WriteLine online(i+1)data to the online.asp. And replace the
original

outfile.WriteLine online(i+2)data ofonline.asp. So you can just see the
users

end if except the name of this user who was kicked out!

next

outfile.CloseClose this file BCA-E10/103

set fs=nothing

Response.Redirect "onlinelist.asp"

%>

This function is achieved all by files instead of the database. At
first, establish a temporary file folder (outfile). Output the data of the
users’ information such as username, IP address and so on and store in this
folder. Then write into the file (online.asp) that recorded the users’
information orderly and replace the original data in this file.

5.9 LIMITATIONS OF ASP

 Many of the functions of ASP will perform often in a data driven
website take several lines of repetitive code each time to perform.

 Sometimes, the code of ASP will become repetitive and is
somewhat time consuming.

 ASP is the lack of a good development environment. ASP is
extremely robust, working well with the Windows platform on
many levels, but is often convoluted and finding good support
documentation and code examples can be excruciating.

 And if you are not proficient in Visual Basic or programming, ASP
is a very difficult language to learn.

BCA-E10/104

Check Your Progress

 How ASP can interact with the database?

 Discuss about the limitations of ASP.

5.10 SUMMARY

ASP was designed as a faster and easier alternative to CGI
scripting using Perl or C. It provides an easy-to-learn scripting interface
(including native support for VBScript and JScript), along with a number
of predefined objects that simplify many development tasks, such as
maintaining user state and defining global variables within an application.
ADO components can be used to perform additional functions, including
accessing ODBC-compliant databases, and outputting data to text files.
Java components and XML can be used to extend ASP scripts.

ASP technology is a server-side programming developed to enable
dynamic web pages. With its build-in objects and ActiveX components,
ASP developers can create a dynamic web page and make use of database
access. Now that you have basic knowledge about ASP, it is better to have
a hands-on experience, which is the best way to learn to learn how to write
an ASP file. There are tons of ASP tutorials out there on the Web. You
can also find some tutorials included at the end of this paper.

5.11 TERMINAL QUESTIONS

1. What is the basic difference between ASP and ASP.NET?

2. What are the Major Built- in object in ASP.Net?

3. Which is the parent class of the Web server control?

4. What are the advantages of the code-behind feature?

5. What is IIS? Why is it used?

6. What is actually returned from server to the browser when a
browser requests an .aspx file and the file is displayed?

7. Which ASP.NET objects encapsulate the state of the client and the
browser?

8. Which method is used to force all the validation controls to run?

9. Differentiate between client-side and server-side validations in
Web pages.?

10. What is the difference between HTML and Web Server Control?

BCA-E10/105

BCA-E10/106

UNIT-6 ASP.NET INTRODUCTION &
CONTROLS

Structure

6.0 Introduction

6.1 Objectives

6.2 Fundamental of ASP.NET

6.3 ASP.NET Key Features

6.4 Advantages of ASP.NET

6.5 ASP Challenges

6.6 Client-Side Scripting and Server-Side Scripting

6.7 Web Form Architecture

6.8 ADO.NET Connectivity

6.9 Summary

6.10 Terminal questions

6.0 INTRODUCTION
ASP.NET is a web application framework developed and marketed

by Microsoft to allow programmers to build dynamic web sites. It allows
you to use a full-featured programming language such as C# or VB.NET
to build web applications easily. This tutorial covers all the basic elements
of ASP.NET that a beginner would require to get started.

This tutorial is prepared for the beginners to help them understand
basic ASP.NET programming. After completing this tutorial, you will find
yourself at a moderate level of expertise in ASP.NET programming from
where you can take yourself to next levels.

Before proceeding with this tutorial, you should have a basic
understanding of .NET programming language. As you are going to
develop web-based applications using ASP.NET web application
framework, it will be good if you have an understanding of other web
technologies such as HTML, CSS, AJAX, etc.

We also need to understand about the Web application. A Web
application consists of document and code pages in various formats. The
simplest kind of document is a static HTML page, which contains
information that will be formatted and displayed by a Web browser. An
HTML page may also contain hyperlinks to other HTML pages. A BCA-E10/107

hyperlink (or just link) contains an address, or a Uniform Resource
Locator (URL), specifying where the target document is located. The
resulting combination of content and links is sometimes called hypertext
and provides easy navigation to a vast amount of information on the
World Wide Web.

6.1 OBJECVTIVES

This unit aims to achieve the following objectives:

 About ASP

 About ASP.NET

 Main features of ASP.NET

 Main challenges of ASP.NET

 Advantages of ASP.NET

 Web form architecture

 Basic syntax of ASP.NET

 A small program

 Role of different types of controls.

 Life cycle of ASP.Net page

 Life cycle events

 ADO.NET and its working

6.2 FUNDAMENTAL OF ASP.NET
ASP.NET is a programming framework developed by Microsoft

for building powerful Web-based applications. While not a programming
language, ASP.NET is the cornerstone of the .NET platform’s Internet-
centric orientation. It is the latest version of Microsoft’s ASP, a powerful,
server-based technology for creating dynamic Web pages. Being a core
element in the .NET platform, all .NET languages utilize ASP.NET as
their entry point for Internet development.

Perhaps the biggest difference between earlier versions of ASP and
ASP.NET is the way in which code runs on the Web server. With
ASP.NET, code is compiled into executable classes that are compiled to
native code by the common language runtime layer of the .NET
Framework. All the earlier versions of ASP supported only scripting
languages, which were interpreted. Since ASP.NET pages are now
executable classes, they have access to all the other powerful features of
the common language runtime, such as memory management, debugging,
security, and strong data typing.

BCA-E10/108

ASP.NET has built-in support for three languages: Visual Basic
.NET, C#, and JScript.NET. The user can install support for other .NET-
compatible languages as well. JScript.NET is Microsoft’s latest version
and implementation of JavaScript. Although this version still maintains its
“scripting” feel, it is fully object-oriented and compiles to MSIL.

Because all ASP.NET code must be written in a .NET language,
the ASP.NET programming framework is the foundation of Web services
and Web Forms, the two components of ASP.NET Application Services.

The following list illustrates how developers can exploit ASP.NET
in developing Internet-centric applications:

 XML Web services give developers the ability to access server
functionality remotely. Using Web services, organizations can
share their data and component libraries with other applications.
Web services enable client/server and server/server communication
through the HTTP protocol by using XML. Consequently,
programs written in any language, using a component model and
running on any operating system, can access Web services.

 ASP.NET Web Forms gives the developer the ability to create
Web pages on the .NET platform. Web Forms enables developers
to program embedded controls on either the client or the server.
Using ASP Server Controls, Web applications enable the easy
maintenance of state as information is communicated between the
browser and the Web server.

 ASP.NET and the .NET Framework provide default authorization
and authentication schemes for Web applications.

 Developers can easily remove, add to, or replace these schemes,
depending on the needs of the application.

 Simple ASP pages can be migrated easily to ASP.NET
applications. ASP.NET offers complete syntax and processing
compatibility with ASP applications. Developers simply need to
change the file extensions from .asp to .aspx to migrate their files
to the ASP.NET page framework.

6.2.1 CLASS LIBRARY

ASP.NET includes an enormous class library which was built by
Microsoft. Because this class library is so large, it encapsulates a huge
number of common functions. For example, if you want to retrieve data
from a database and display that data in a simple grid control through
classic ASP, then you would have to write a lot of code.

In ASP.NET, we don’t write any code to display the data, we just
write the code to bind the data to an object called a DataGrid (which can
be done in just a couple of lines). Then, we just have to create a reference
on our page to where that DataGrid should go. The DataGrid will be BCA-E10/109

rendered as a table and will contain all of the data extracted from the
database.

Microsoft has created an amazingly well designed MSDN library
for ASP.NET and all of the other .NET languages. It includes full class
library containing information and examples on every class, function,
method and property accessible through ASP.NET.

The MSDN library also includes some tutorials and examples to
get us started. It may take us a while to get used to the format and layout
of the MSDN ASP.NET library, however, once we do, we will find that it
is an invaluable resource to aid us throughout our ASP.NET learning
experience. The .NET MSDN library can be found at
http://msdn.microsoft.com/net/

6.2.2 COMPLETE COMPATIBILITY

One of the most important goals of .NET was to allow developers
to write an ASP.NET application using multiple programming languages.
As long as each ASP.NET page contains only one programming language,
we can mix and match different pages using different languages and they
will work together seamlessly. This means that we can now have a team of
developers with half programming in C# and the other half in VB.NET,
with no need to worry about language incompatibilities, etc. A cool little
side-effect of all this is that all the programming languages look very
similar, and differ only by their language syntax.

For example, take the following code snippets. They both do
exactly the same thing but the first is written in C# and the second in
VB.NET.

The C# version:

void Page_Load (object S, EventArgs E) { myLabel.Text=”Hello
world!!” ;}

</script>

The VB.NET version:

Sub Page_Load(S As Object, E As EventArgs) myLabel.Text= “Hello
world!!”

End Sub

</script>

6.2.3 PROGRAMMING BASICS

Page Syntax

 The most basic page is just static text. Any HTML page can be
renamed .aspx

BCA-E10/110

http://msdn.microsoft.com/net/

 Pages may contain:

i) Directives: <%@ Page Language=“C#” %>

ii) Server controls: <asp:Button runat=“server”>

iii) Code blocks: <script runat=“server”>…</script>

iv) Data bind expressions: <%# %>

v) Server side comments: <%-- --%>

vi) Render code: <%= %> and <% %>, Use is discouraged; use

<script runat=server> with code in event handlers instead

The Page Directive

Lets you specify page-specific attributes, e.g.

 Asp Compat: Compatibility with ASP

 Buffer: Controls page output buffering

 CodePage: Code page for this .aspx page

 ContentType: MIME type of the response

 ErrorPage: URL if unhandled error occurs

 Inherits: Base class of Page object

 Language: Programming language

 Trace: Enables tracing for this page

 Transaction: COM+ transaction setting

Note:Only one page directive per .aspx file

Page Events

Pages are structured using events

 Enables clean code organization

 Avoids the “Monster IF” statement

 Less complex than ASP pages

Code can respond to page events

 E.g. Page_Load, Page_Unload

 Code can respond to control events

 Button1_Click

 Textbox1_Changed

6.2.4 FIRST PROGRAM

Example: HelloWorld.aspx BCA-E10/111

<html>

<head><title>HelloWorld.asp</title></head>

<body>

<form method=“post">

<input type="submit" id=button1 name=button1

value="Push Me" />

<%

if (Request.Form("button1") <> "") then

Response.Write "<p>Hello, the time is "&Now()

end if

%>

</form>

</body>

</html>

6.3 ASP.NET KEY FEATURES

Following are the main features of ASP.NET:

1. Web Forms

2. Web Services

3. Built on .NET Framework

4. Simple programming

5. model

6. Maintains page state

7. Multibrowser support

8. XCOPY deployment

9. XML configuration

10. Complete object model

11. Session management

12. Caching

13. Debugging

14. Extensibility
BCA-E10/112

15. Separation of code and UI

16. Security

17. Simplified form validation

18. Cookieless sessions

19. Bundling and magnification feature

20. Strongly typed data controls

21. Model binding- isolation of web form from Model

22. Value providers

23. Support for OpenID in OAuth Logins

24. Support for improved paging in ASP.NET 4.5 GridView control

25. Enhanced support for asynchronous programming

26. Support for web sockets

27. Support for HTML5 form types

28. ASP.NET Web API

6.4 ADVANTAGES OF ASP.NET

ASP.NET has many advantages over other platforms when it
comes to creating Web applications. Probably the most significant
advantage is its integration with the Windows server and programming
tools. Web applications created with ASP.NET are easier to create, debug,
and deploy because those tasks can all be performed within a single
development environment—Visual Studio .NET.

ASP.NET delivers the following other advantages to Web application
developers:

 Executable portions of a Web application compiled so they
execute more quickly than interpreted scripts.

 On-the-fly updates of deployed Web applications without
restarting the server.

 Access to the .NET Framework, which extends the Windows API.

 Use of the widely known Visual Basic programming language,
which has been enhanced to fully support object-oriented
programming.

 Introduction of the new Visual C# programming language, which
provides a type-safe, object-oriented version of the C
programming language.

BCA-E10/113

 Automatic state management for controls on a Web page (called
server controls) so that they behave much more like Windows
controls.

 The ability to create new, customized server controls from existing
controls.

 Built-in security through the Windows server or through other
authentication/authorization methods.

 Integration with Microsoft ADO.NET to provide database access
and database design tools from within Visual Studio .NET.

 Full support for Extensible Markup Language (XML), cascading
style sheets (CSS), and other new and established Web standards.

 Built-in features for caching frequently requested Web pages on
the server, localizing content for specific languages and cultures,
and detecting browser capabilities.

Check Your Progress

 Write a program for HelloWorld.

 What are the advantages of ASP.NET?

6.5 ASP CHALLENGES

 Coding overhead (too much code)- Everything requires writing
code!

 Code readability (too complex; code and UI intermingled)

 Maintaining page state [After submit button is clicked, if we click
the back button, we expect to maintain scroll position, maintain
which control had focus, and restore focus, or allow server code to
focus a new control] requires more code

 Session state scalability and availability

 Limited support for caching, tracing, debugging, etc.

 Performance and safety limitations of script

6.6 CLIENT-SIDE SCRIPTING AND SERVER-
SIDE SCRIPTING

Client-side refers to the browsers and the machine running the
browser. Server-side on the other hand refers to a Web server.

BCA-E10/114

6.6.1 CLIENT-SIDE SCRIPTING

JavaScript and VBScript are generally used for Client-Side
scripting. Client-Side scripting executes in the browser after the page is
loaded. Using Client-Side scripting, we can add cool features to our page.
Both, HTML and the script are together in the same file and the script is
downloading as part of the page which anyone can view. A Client-Side
script runs only on a browser that supports scripting and specifically the
scripting language that is used. Since the script is in the file as the HTML
and as it executes on the machinery we use, the page may rake longer time
to download.

6.6.2 SERVER-SIDE SCRIPTING

ASP.NET is purely server-side technology. ASP.NET code
executes on the server before it is sent to the browser. The code that is sent
back to the browser is pure HTML and not ASP.NET code. Like client-
side scripting, ASP.NET code is similar in a way that it allows us to write
our code alongside HTML. Unlike client-side scripting, ASP.NET code is
executed on the server and not in the browser. The script that we write
alongside our HTML is not sent back to the browser and that prevents
others from stealing the code we developed.

6.7 WEB FORM ARCHITECTURE

A Web Form consists of two parts:

 The visual content or presentation, typically specified by HTML
elements.

 Code that contains the logic for interacting with the visual
elements.

A Web Form is physically expressed by a file with the extension
.aspx. Any HTML page could be renamed to have this extension and
could be accessed using the new extension with identical results to the
original. Thus Web Forms are upwardly compatible with HTML pages.

The way code can be separated from the form is what makes a
Web Form special. This code can be either in a separate file (having an
extension corresponding to a .NET language, such as .vb for VB.NET) or
in the .aspx file, within a <SCRIPT RUNAT=“SERVER”> ... /SCRIPT>
block. When your page is run in the Web server, the user interface code
runs and dynamically generates the output for the page.

We can understand the architecture of a Web Form most clearly by
looking at the code-behind version of our “Echo” example. The visual
content is specified by the .aspx file.

HelloCodebehind.aspx.

<!-- HelloCodebehind.aspx --> BCA-E10/115

<%@ Page Language="VB#" Src="HelloCodebehind.aspx.vb"

Inherits= MyWebPage %>

<HTML>

<HEAD>

</HEAD>

<BODY>

<FORM RUNAT="SERVER">YOUR NAME:

<asp:textbox id=txtName Runat="server"></asp:textbox>

<p><asp:button id=cmdEcho onclick=cmdEcho_Click Text="Echo"

runat="server" tooltip="Click to echo your name">

</asp:button></p>

<asp:label id=lblGreeting runat="server"></asp:label>

<P></P>

</FORM>

</BODY>

</HTML>

The user interface code is in the file HelloCodebehind.aspx.vb,

'

HelloCodebehind.aspx.vb

Imports System

Imports System.Web

Imports System.Web.UI

Imports System.Web.UI.WebControls

Public Class MyWebPage

Inherits System.Web.UI.Page

Protected txtName As TextBox

Protected cmdEcho As Button

Protected lblGreeting As Label

Protected Sub cmdEcho_Click(Source As Object, _

e As EventArgs)

lblGreeting.Text="Hello, "& txtName.Text
BCA-E10/116

End Sub

End Class

6.7.1 PAGE CLASS

The key namespace for Web Forms and Web services is
System.Web. Support for Web Forms is in the namespace
System.Web.UI. Support for server controls such as textboxes and
buttons is in the namespace System. Web.UI.WebControls. The class
that dynamically generates the output for an .aspx page is the Page class,
in the System.Web.UI namespace, and classes derived from Page, as
illustrated in the code-behind page in this last example.

Inheriting From Page Class

The elements in the .aspx file, the code in the code-behind file (or script
block), and the base Page class work together to generate the page output.
This cooperation is achieved by ASP.NET’s dynamically creating a class
for the .aspx file, which is derived from the code-behind class, which in
turn is derived from Page. This relationship is created by the Inherits
attribute in the .aspx file. Here MyWebPage is a class we implement,
derived from Page. The most derived page class, shown as My .aspx Page,
is dynamically created by the ASP.NET runtime. This class extends the
page class, shown as MyWebPage in the figure, to incorporate the controls
and HTML text on the Web Form. This class is compiled into an
executable, which is run when the page is requested from a browser. The
executable code creates the HTML that is sent to the browser.

6.7.2 WEB FORMS PAGE LIFE CYCLE

We can get a good high-level understanding of the Web Forms
architecture by following the life cycle of our simple Echo application. We
will use the code behind version (the example), HelloCodebehind.aspx.

1. User requests the HelloCodebehind.aspx Web page in the
browser.

2. Web server compiles the page class from the .aspx file and its
associated code-behind page. The Web server executes the code,
creating HTML, which is sent to the browser. (In Internet Explorer
you can see the HTML code from the menu View | Source.) Note
that the server controls are replaced by straight HTML. The
following code is what arrives at the browser, not the original code
on the server.

<!-- HelloCodebehind.aspx -->

<HTML>

<HEAD>

</HEAD> BCA-E10/117

<BODY>

<form name="ctrl0" method="post"
action="HelloCodebehind.aspx" id="ctrl0">

<input type="hidden" name="__VIEWSTATE"
value="dDwxMzc4MDMwNTk1Ozs+" />YOUR NAME:
<input name="txtName" type="text" id="txtName" /><p>

<input type="submit" name="cmdEcho" value="Echo"
id="cmdEcho" title="Click to echo your name" /></p>

<P></P>

</form>

</BODY>

</HTML>

3. The browser renders the HTML, displaying the simple form shown
in Figure. To distinguish this example from the first one, we show
“YOUR NAME” in all capitals. Since this is the first time the form
is displayed, the text box is empty, and no greeting message is
displayed.

4. The user types in a name (e.g., Mary Smith) and clicks the Echo
button. The browser recognizes that a Submit button has been
clicked. The method for the form is POST1 and the action is
HelloCodebehind.aspx. We thus have what is called a postback to
the original .aspx file.

5. The server now performs processing for this page. An event was
raised when the user clicked the Echo button, and an event handler
in the MyWebPage class is invoked.

6. The Text property of the TextBox server control txtName is used
to read the name submitted by the user. A greeting string is
composed and assigned to the Label control lblGreeting, again
using property notation.

7. The server again generates straight HTML for the server controls
and sends the whole response to the browser. Here is the HTML.

....

<form name="ctrl0" method="post"
action="HelloCodebehind.aspx" id="ctrl0">

<input type="hidden" name="__VIEWSTATE"
value="dDwxMzc4MDMwNTk1O3Q8O2w8aTwyPjs+O2w8dDw
7bDxpPDU+Oz47

BCA-E10/118

bDx0PHA8cDxsPFRleHQ7PjtsPEhlbGxvLCBNYXJ5IFNtaXRoO
z4+Oz47Oz4 7Pj47Pj47Pg==" />

YOUR NAME: <input name="txtName" type="text"
value="KRISHAN KUMAR" id="txtName" /><p>

<input type="submit" name="cmdEcho" value="Echo"
id="cmdEcho" title="Click to echo your name" /></p><span
id="lblGreeting">Hello, KRISHAN KUMAR

...

8. The browser renders the page, now a greeting message is
displayed.

6.7.3 VIEW STATE

An important characteristic of Web Forms is that all information
on forms is “remembered” by the Web server. Since HTTP is a stateless
protocol, this preservation of state does not happen automatically but must
be programmed. A nice feature of ASP.NET is that this state information,
referred to as “view state,” is preserved automatically by the framework,
using a “hidden” control.

...

<input type="hidden" name="__VIEWSTATE"

value="dDwxMzc4MDMwNTk1O3Q8O2w8aTwyPjs+O2w8dDw7bDxp
PDU+Oz47

bDx0PHA8cDxsPFRleHQ7PjtsPEhlbGxvLCBNYXJ5IFNtaXRoOz4+Oz
47Oz4

7Pj47Pj47Pg==" />

...

6.7.4 WEB FORMS EVENT MODEL

From the standpoint of the programmer, the event model for Web
Forms is very similar to the event model for Windows Forms. Indeed, this
similarity is what makes programming with Web Forms so easy. What is
actually happening in the case of Web Forms, though, is rather different.
The big difference is that events get raised on the client and processed on
the server.

Our simple form with one textbox and one button is not rich
enough to illustrate event processing very thoroughly. Let’s imagine a
more elaborate form with several textboxes, listboxes, checkboxes,
buttons, and the like. Because round trips to the server are expensive,
events do not automatically cause a postback to the server. Server controls
have what is known as an intrinsic event set of events that automatically BCA-E10/119

cause a postback to the server. The most common such intrinsic event is a
button click. Other events, such as selecting an item in a list box, do not
cause an immediate postback to the server. Instead, these events are
cached, until a button click causes a post to the server. Then, on the server
the various change events are processed, in no particular order, and the
button-click event that caused the post is processed.

6.7.5 PAGE PROCESSING

Processing a page is a cooperative endeavour between the Web
server, the ASP.NET runtime, and your own code. The Page class
provides a number of events, which you can handle to hook into page
processing. The Page class also has properties and methods that you can
use. We cover some of the major ones here. For a complete description,
consult the .NET Framework documentation. The example programs in
this chapter will illustrate features of the Page class.

Page Events

A number of events are raised on the server as part of the normal
processing of a page. These events are actually defined in the Control
base class and so are available to server controls also. The most important
ones are listed below.

 Initis the first step in the page’s life cycle and occurs when the
page is initialized. There is no view-state information for any of
the controls at this point.

 Loadoccurs when the controls are loaded into the page. View-state
information for the controls is now available.

 PreRenderoccurs just before the controls are rendered to the output
stream. Normally this event is not handled by a page but is
important for implementing your own server controls.

 Unloadoccurs when the controls are unloaded from the page. At
this point it is too late to write your own data to the output stream.

Page Properties

The Page class has a number of important properties. Some of the most
useful are listed below.

 EnableViewStateindicates whether the page maintains view state
for itself and its controls. You can get or set this property. The
default is true, view state is maintained.

 ErrorPagespecifies the error page to which the browser should be
redirected in case an unhandled exception occurs.

 IsPostBackindicates whether the page is being loaded in response
to a postback from the client or is being loaded for the first time.

BCA-E10/120

 IsValidindicates whether page validation succeeded.

 Requestgets the HTTP Request object, which allows you to access
data from incoming HTTP requests.

 Responsegets the HTTP Response object, which allows you to
send response data to a browser.

 Sessiongets the current Session object, which is provided by
ASP.NET for storing session state.

6.8 ADO.NET CONNECTIVITY

ADO.NET is an evolution of the ADO data access model that
directly addresses user requirements for developing scalable applications.
It was designed specifically for the web with scalability, statelessness, and
XML in mind.

ADO.NET is a set of libraries included in the Microsoft .NET
Framework that help us to communicate with various data stores from
.NET applications. The ADO.NET libraries include classes for connecting
to a data source, submitting queries, and processing results. We can also
use ADO.NET as a robust, hierarchical, disconnected data cache to work
with data offline. The central disconnected object, the DataSet, allows us
to sort, search, filter, store pending changes, and navigates through
hierarchical data. The DataSet also includes a number of features that
bridge the gap between traditional data access and XML development.
Developers can now work with XML data through traditional data access
interfaces and vice-versa.

Some objects of ADO.NET are:-

 Connections : For connection and managing transactions against a
database.

 Commands : For issuing SQL commands against a database.

 DataReaders : For reading a forward-only stream of data records
from a SQL Server data source.

 DataSets : For storing, remoting and programming against flat
data, XML data and relational data.

 DataAdapters : For pushing data into a DataSet, and reconciling
data against a database.

When dealing with connections to a database, there are two
different options: SQL Server.NET Data Provider (System.Data.SqlClient)
and OLE DB.NET Data Provider (System.Data.OleDb). We will use the
SQL Server.NET Data Provider. These are written to talk directly to
Microsoft SQL Server. The OLE DB.NET Data Provider is used to talk to
any OLE DB provider (as it uses OLE DB underneath).

BCA-E10/121

6.8.1 CONNECTIONS

A Connection object represents a connection to data source. For
SQL Server we use the name space System Data. SQL Client. Sql
Connection and for OLE DB we use the System. Data. OleDb. OleDb
Connection. We can specify the type of data source, its location, and other
attributes through the various properties of the Connection object. A
Connection object is roughly equivalent to an ADO Connection object; we
use it to connect to and disconnect from our database. A Connection
object acts as a conduit through which other objects, such as a
DataAdapter and Command objects, communicate with our database to
submit queries and retrieve results.

6.8.2 COMMANDS

The process of interacting with a database means that we must
specify the actions we want from database to occur. This is done with a
command object. Commands contain the information that is submitted to a
database, and are represented by provider-specific classes such as
SQLCommand. For SQL Server we use the namespace
System.Data.SQLClient.SqlCommand and for OLE DB we use the
namespace System.Data.OleDb.OleDbCommand. A command can be a
stored procedure call, an UPDATE statement, or a statement that returns
results. We can also use input and output parameters, and return values as
part of our command syntax.

6.8.3 DATAREADERS

The DataReader object is designed to help us retrieve and examine
the rows returned by our query as quickly as possible. We can use the
DataReader object to examine the results of a query one row at a time.
When we move forward to the next row, the contents of the previous row
are discarded. The DataReader doesn’t support updating. The data
returned by the DataReader is read-only. Because the DataReader object
supports such a minimal set of features, it’s extremely fast and
lightweight. The disadvantage of using a DataReader object is that it
requires an open database connection and increases network activity. The
DataReader provides a non-buffered stream of data that allows procedural
logic to efficiently process results from a data source sequentially. The
DataReader is a good choice when retrieving large amount of data; only
one row of data will be cached in memory at a time.

6.8.4 DATASETS

A DataSet object, as its name indicates, contains a set of data. It is
a container for a number of DataTable objects (stored in the DataSet
object’s Tables collection). ADO.NET was created to help developers
build large multi-tiered database applications. At times, we might want to BCA-E10/122

access a component running on a middle-tier server to retrieve the
contents of many tables. Rather than having to repeatedly call the server
in order to fetch that data one table at a time, we can package all of the
data into a DataSet object and return it in a single call. However, a
DataSet object does a great deal more than act as a container for multiple
DataTable objects.

The DataSet object has features that allow you to write it to and
read it from a file or and area of memory. We can save just the contents of
the DataSet object, just the structure of the DataSet object, or both.
ADO.NET stores this data as an XML document. Because ADO.NET and
XML are so tightly coupled, moving data back and forth between
ADO.NET DataSet objects and XML documents is easy.

6.8.5 DATA ADAPTERS

The DataAdapter object represents a new concept for Microsoft
data access models. It acts as a bridge between a database and the
disconnected objects in the ADO.NET object model. The DataAdapter
object’s Fill method provides an efficient mechanism to fetch the results
of a query into a DataSet or a DataTable so that we can work with our data
off-line. We can also use DataAdapter objects to submit the pending
changes stored in your DataSet objects to our database.

The ADO.NET DataAdapter object exposes a number of properties
that are actually Command objects. For instance, the SelectCommand
property contains a Command object that represents the query that we’ll
use to populate our DataSet object. The DataAdapter object also has
UpdateCommand, InsertCommand and DeleteCommand properties that
correspond to Command objects used when we submit modified, new, or
deleted rows to our database, respectively. We can set the
UpdateCommand, InsertCommand, and DeleteCommand properties to call
stored procedures or a SQL statement. Then we can simply call the
Update method on the DataAdapter object and ADO.NET will use the
Command objects which we have created to submit the cached changes in
DataSet to our database.

6.9 SUMMARY

ASP.NET is a unified Web development platform that greatly
simplifies the implementation of sophisticated Web applications. In this
unit we introduced the fundamentals of ASP.NET and Web Forms, which
make it easy to develop interactive Web sites. Server controls present the
programmer with an event model similar to what is provided by controls
in ordinary Windows programming. This high-level programming model
rests on a lower-level request/response programming model that is
common to earlier approaches to Web programming and is still accessible
to the ASP.NET programmer.

BCA-E10/123

The Visual Studio .NET development environment includes a
Form Designer, which makes it very easy to visually lay out Web forms,
and with a click you can add event handlers. ASP.NET makes it very easy
to handle state management. Configuration is based on XML files and is
very flexible. There are a great variety of server controls, including
wrappers around HTML controls, validation controls, and rich controls
such as a Calendar. Data binding makes it easy to display data from a
variety of data sources.

JavaScript and VBScript are generally used for Client-Side
scripting. Client-Side scripting executes in the browser after the page is
loaded. Using Client-Side scripting, we can add cool features to our page.
Both, HTML and the script are together in the same file and the script is
downloading as part of the page which anyone can view. A Client-Side
script runs only on a browser that supports scripting and specifically the
scripting language that is used. Since the script is in the file as the HTML
and as it executes on the machinery we use, the page may rake longer time
to download.

ASP.NET is purely server-side technology. ASP.NET code
executes on the server before it is sent to the browser. The code that is sent
back to the browser is pure HTML and not ASP.NET code. Like client-
side scripting, ASP.NET code is similar in a way that it allows us to write
our code alongside HTML.

Unlike client-side scripting, ASP.NET code is executed on the
server and not in the browser. The script that we write alongside our
HTML is not sent back to the browser and that prevents others from
stealing the code we developed.

A Web Form is physically expressed by a file with the extension
.aspx. Any HTML page could be renamed to have this extension and
could be accessed using the new extension with identical results to the
original. Thus Web Forms are upwardly compatible with HTML pages.

The way code can be separated from the form is what makes a
Web Form special. This code can be either in a separate file (having an
extension corresponding to a .NET language, such as .vb for VB.NET) or
in the .aspx file, within a <SCRIPT RUNAT=“SERVER”> ... /SCRIPT>
block. When your page is run in the Web server, the user interface code
runs and dynamically generates the output for the page.

ADO.NET is an evolution of the ADO data access model that
directly addresses user requirements for developing scalable applications.
It was designed specifically for the web with scalability, statelessness, and
XML in mind.

BCA-E10/124

Check Your Progress

 Give the meaning of ADO.NET.

 What is page life cycle in Web form architecture?

6.10 TERMINAL QUESTIONS

1. Define the term ASP and its features.

2. What do you understand by ASP.NET challenges? Explain.

3. Write programming fundamental of ASP.NET.

4. What is page life cycle in Web form architecture? Explain.

5. Define .NET framework.

6. Give the advantages of ASP.NET.

7. Write a short note on Web form architecture.

8. What do you understand by ADO.NET? Explain in detail.

BCA-E10/125

BCA-E10/126

Bachelor in Computer
Application

BCA-E10
Client Server Technology

BLOCK

3
INTRODUCTION TO ASP.NET

UNIT-7

Working With Forms and Controls

UNIT-8

ADO.NET

UNIT-9

ASP.NET State Management

UNIT-10

Configuration

Uttar Pradesh Rajarshi Tandon
Open University

BCA-E10/127

Course Design Committee
Dr. Ashutosh Gupta, Chairman
Director (In-charge)
School of Computer and Information Science, UPRTOU, Allahabad

Prof. R.S. Yadav Member
Dept. of Computer Science and Engineering, MNNIT, Allahabad

Ms. Marisha Member
Assistant Professor (Computer Science)
School of Science, UPRTOU, Allahabad

Mr. Manoj Kumar Balwant Member
Assistant Professor (Computer Science)
School of Science, UPRTOU, Allahabad

Course Preparation Committee
Dr. Krishan Kumar Author
Assistant Professor,
Department of Comuter Science Faculty of Technology
Gurukula Kangri Vishwavidyalaya, Haridwar (UK)

Dr. V.K. Saraswat Editor
Director (IET, Khandare Campus)
Institute of Engineering and Technology
Dr. B.R. Ambedkar University, Agra-282002

Dr. Ashutosh Gupta,
Director (In-charge)
School of Computer and Information Science, UPRTOU, Allahabad

Mr. Manoj Kumar Balwant Coordinator
Assistant Professor (Computer Science)
School of Science, UPRTOU, Allahabad

©UPRTOU, Prayagraj-2020
ISBN : 978-93-83328-13-0

©All Rights are reserved. No part of this work may be reproduced in any
form, by mimeograph or any other means, without permission in writing
from the Uttar Pradesh Rajarshi Tondon Open University, Prayagraj.
Printed and Published by Dr. Arun Kumar Gupta Registrar, Uttar Pradesh
Rajarshi Tandon Open University, 2020.
Printed By : Chandrakala Universal Pvt. 42/7 Jawahar Lal Neharu Road,
Prayagraj.

BCA-E10/128

BLOCK INTRODUCTION

Block-3 basically contains four units which are intended with client-server
technology and its design applications. The entire block revolves around
the knowledge of ASP.NET framework and its related components like
from and controls, state management, and configuration. Hence it has been
broken into four units.

Unit-7 aims to describe the basics of Web forms and controls. Some
controls like button, text field, labels etc. are the common controls. This
unit deals with the windows forms and controls. As windows forms and
controls are important for any programming language. Theses working
control and forms make programming easy and useful. This also gives
birth to event driven programming. As we know for every click an event is
generated for which you need to write the code of different procedures.
Moreover, Forms are used to create (rather primitive) GUIs on Web pages.
Usually the main purpose is to ask the user for information. The
information is then sent back to the server.

Unit-8 deals with the database connectivity. Controls like ADO and data
controls are the important controls used as the basic elements between
front end and back end. Connection pooling is another advance concept
which is being widely used in many patterns. ADO.NET is a large set of
.NET classes that enable us to retrieve and manipulate data, and update
data sources, in very many different ways. As an integral part of the .NET
framework, it shares many of its features: features such as multi-language
support, garbage collection, just-in-time compilation, object-oriented
design, and dynamic caching, and is far more than an upgrade of previous
versions of ADO. ADO.NET is set to become a core component of any
data-driven .NET application or Web Service, and understanding its power
will be essential to anyone wishing to utilize .NET data support to
maximum effect.

Unit-9 handles the session of different types. Session management is very
important not only for time saving as well as for security. Assemblies and
its types are explained. As a consequence, Web programmers must be very
conscious about state management. Unlike traditional applications, Web
applications must be very explicit about any state that is maintained on
behalf of a client, and there is no one standard way to maintain that state.
Moreover, remember that ASP.NET (and the Web) is stateless and the
Web server does not keep track of past client requests. Furthermore,
different technologies handle the issue of statement management
differently like ASP.NET is somewhat unique in this regard but PHP
works similarly.

Unit-10 aims to describe the Windows configuration, .net configuration,
caching and its Types, SQL Cache Invalidation. Moreover, the
configuration also plays important role for all software. Improper BCA-E10/129

configuration or installation of the software may lead to errors or
sometimes it may be harmful to such extent that it may crash the hardware
or system for which it intended. Hence it becomes necessary to know
about the proper configuration or installation of the software. Normally
when we purchase a computer or any other hardware like router, switch,
printer etc; some configuration is automatically done and some need to be
done manually. We are intended with the second case i.e. manual
configuration. In this unit, Windows and .NET configuration has been
discussed however there may me other configurations like Linux
configuration etc.

 BCA-E10/130

UNIT-7 WORKING WITH FORMS
AND CONTROLS

Structure

7.0 Introduction

7.1 Objectives

7.2 Life cycle of ASP.NET Page

7.3 Creating Web Forms

7.4 Creating an ASP.NET Web Application Project

7.5 Using Server Control & Web Server Controls

7.6 Using Code Behind Pages (HTML Sever)

7.7 Validation controls usage of skins and themes

7.8 Summary

7.9 Terminal questions

7.0 INTRODUCTION

This unit deals with the windows forms and controls. As windows
forms and controls are important for any programming language. Theses
working control and forms make programming easy and useful. This also
gives birth to event driven programming. As we know for every click an
event is generated for which you need to write the code of different
procedures. Moreover, Forms are used to create (rather primitive) GUIs on
Web pages. Usually the main purpose is to ask the user for information.
The information is then sent back to the server.

A form is an area that can contain form elements. Form elements
include: buttons, checkboxes, text fields, radio buttons, drop-down menus,
etc. Other kinds of tags can be mixed in with the form elements. A form
usually contains a Submit button to send the information in the form
elements to the server. The form’s parameters tell JavaScript how to send
the information to the server (there are two different ways it could be
sent). Forms can be used for other things, such as a GUI for simple
programs.

7.1 OBJECVTIVES

This unit aims to achieve the following objectives:

 Definition of forms and its working. BCA-E10/131

 Multiple tags used in HTML to work with forms.
 Role of different types of controls.
 Life cycle of ASP.Net page
 Life cycle events
 Creation of web form
 Submitting the information through web from
 Creating a web based project
 Knowing the code behind the server

7.2 LIFE CYCLE OF ASP.NET PAGE

When a page is requested, it is loaded into the server memory,
processed, and sent to the browser. Then it is unloaded from the memory.
At each of these steps, methods and events are available, which could be
overridden according to the need of the application. In other words, you
can write your own code to override the default code. The Page class
creates a hierarchical tree of all the controls on the page. All the
components on the page, except the directives, are part of this control tree.
You can see the control tree by adding trace= "true" to the page directive.
We will cover page directives and tracing under 'directives' and 'event
handling'.

The page life cycle phases are:

 Initialization

 Instantiation of the controls on the page

 Restoration and maintenance of the state

 Execution of the event handler codes

 Page rendering

Figure 7.1: ASP.NET Page Life Cycle
BCA-E10/132

Understanding the page cycle helps in writing codes for making
some specific thing happen at any stage of the page life cycle. It also helps
in writing custom controls and initializing them at right time, populate
their properties with view-state data and run control behavior code.

Following are the different stages of an ASP.NET page:

 Page request - When ASP.NET gets a page request, it decides
whether to parse and compile the page, or there would be a cached
version of the page; accordingly the response is sent.

 Starting of page life cycle - At this stage, the Request and
Response objects are set. If the request is an old request or post
back, the IsPostBack property of the page is set to true. The
UICulture property of the page is also set.

 Page initialization - At this stage, the controls on the page are
assigned unique ID by setting the UniqueID property and the
themes are applied. For a new request, postback data is loaded and
the control properties are restored to the view-state values.

 Page load - At this stage, control properties are set using the view
state and control state values.

 Validation - Validate method of the validation control is called
and on its successful execution, the IsValid property of the page is
set to true.

 Postback event handling - If the request is a postback (old
request), the related event handler is invoked.

 Page rendering - At this stage, view state for the page and all
controls are saved. The page calls the Render method for each
control and the output of rendering is written to the OutputStream
class of the Response property of page.

 Unload - The rendered page is sent to the client and page
properties, such as Response and Request, are unloaded and all
cleanup done

7.1.1 ASP.NET PAGE LIFE CYCLE EVENTS

At each stage of the page life cycle, the page raises some events,
which could be coded. An event handler is basically a function or
subroutine, bound to the event, using declarative attributes such as Onclick
or handle.

Following are the page life cycle events:

 PreInit - PreInit is the first event in page life cycle. It checks the
IsPostBack property and determines whether the page is a
postback. It sets the themes and master pages, creates dynamic
controls, and gets and sets profile property values. This event can
be handled by overloading the OnPreInit method or creating a BCA-E10/133

Page_PreInit handler. The IsCallbackand and
IsCrossPagePostBack properties have also been set at this time.

 Init - Init event initializes the control property and the control tree
is built. This event can be handled by overloading the OnInit
method or creating a Page_Init handler. The Init event of
individual controls occurs before the Init event of the page.

 InitComplete - InitComplete event allows tracking of view state.
All the controls turn on view-state tracking.

 PreLoad - PreLoad occurs before the post back data is loaded in
the controls. This event can be handled by overloading the
OnPreLoad method or creating a Page_PreLoad handler.

 Load - The Load event is raised for the page first and then
recursively for all child controls. The controls in the control tree
are created. This event can be handled by overloading the OnLoad
method or creating a Page_Load handler.

 LoadComplete - The loading process is completed, control event
handlers are run, and page validation takes place. This event can be
handled by overloading the OnLoadComplete method or creating a
Page_LoadComplete handler

 PreRender - The PreRender event occurs just before the output is
rendered. By handling this event, pages and controls can perform
any updates before the output is rendered.

 PreRenderComplete - As the PreRender event is recursively fired
for all child controls, this event ensures the completion of the pre-
rendering phase.

 SaveStateComplete - State of control on the page is saved.
Personalization, control state and view state information is saved.
The HTML markup is generated. This stage can be handled by
overriding the Render method or creating a Page_Render handler.

 UnLoad - The UnLoad phase is the last phase of the page life
cycle. It raises the UnLoad event for all controls recursively and
lastly for the page itself. Final cleanup is done and all resources
and references, such as database connections, are freed. This event
can be handled by modifying the OnUnLoad method or creating a
Page_UnLoad handler.

7.3 CREATING AN ASP.NET WEB
APPLICATION PROJECT

ASP.NET provides an abstraction layer on top of HTTP on which
the web applications are built. It provides high-level entities such as
classes and components within an object-oriented paradigm. The key
development tool for building ASP.NET applications and front ends is BCA-E10/134

Visual Studio. Visual Studio is an integrated development environment for
writing, compiling, and debugging the code. It provides a complete set of
development tools for building ASP.NET web applications, web services,
desktop applications, and mobile applications.

7.3.1 STEPS FOR CREATING A PROJECT

1. Open Visual Studio.

2. Select New Project from the File menu in Visual Studio.

3. Select the Templates -> Visual C# -> Web templates group on the
left.

4. Choose the ASP.NET Web Application template in the center
column.
This tutorial series is using .NET Framework 4.5.2.

5. Name your project WingtipToys and choose the OK button.

Note : The name of the project in this tutorial series
is WingtipToys. It is recommended that you use this exact project

BCA-E10/135

name so that the code provided throughout the tutorial series
functions as expected.

6. Next, select the Web Forms template and choose the Create
Project button.

The project will take a little time to create. When it's ready, open
the Default.aspx page.

7.4 CREATING WEB FORMS

ASP.NET Web Forms is a part of the ASP.NET web application
framework and is included with Visual Studio. It is one of the four
programming models you can use to create ASP.NET web applications,
the others are ASP.NET MVC, ASP.NET Web Pages, and ASP.NET
Single Page Applications.

Web Forms are pages that your users request using their browser.
These pages can be written using a combination of HTML, client-script,
server controls, and server code. When users request a page, it is compiled
and executed on the server by the framework, and then the framework
generates the HTML markup that the browser can render. An ASP.NET
Web Forms page presents information to the user in any browser or client
device.

Using Visual Studio, you can create ASP.NET Web Forms. The
Visual Studio Integrated Development Environment (IDE) lets you drag
and drop server controls to lay out your Web Forms page. You can then
easily set properties, methods, and events for controls on the page or for
the page iteself. These properties, methods, and events are used to define
the web page's behavior, look and feel, and so on. To write server code to

BCA-E10/136

http://www.asp.net/downloads/

handle the logic for the page, you can use a .NET language like Visual
Basic or C#.

7.4.1 ASP.NET WEB FORMS

 Based on Microsoft ASP.NET technology, in which code that runs
on the server dynamically generates Web page output to the
browser or client device.

 Compatible with any browser or mobile device. An ASP.NET Web
page automatically renders the correct browser-compliant HTML
for features such as styles, layout, and so on.

 Compatible with any language supported by the .NET common
language runtime, such as Microsoft Visual Basic and
Microsoft Visual C#.

 Built on the Microsoft .NET Framework. This provides all the
benefits of the framework, including a managed environment, type
safety, and inheritance.

 Flexible because you can add user-created and third party controls
to them.

Check Your Progress

 What do you understand by a Web form?

 Give the steps to create a Web project.

 Write the important terms of ASP.Net page life cycle.

7.5 USING SERVER CONTROL & WEB
SERVER CONTROLS

Controls are small building blocks of the graphical user interface,
which include text boxes, buttons, check boxes, list boxes, labels, and
numerous other tools. Using these tools, the users can enter data, make
selections and indicate their preferences.

Controls are also used for structural jobs, like validation, data
access, security, creating master pages, and data manipulation.

ASP.NET uses five types of web controls, which are:

 HTML controls
 HTML Server controls
 ASP.NET Server controls
 ASP.NET Ajax Server controls
 User controls and custom controls BCA-E10/137

ASP.NET server controls are the primary controls used in ASP.NET.
These controls can be grouped into the following categories:

 Validation controls - These are used to validate user input and
they work by running client-side script.

 Data source controls - These controls provides data binding to
different data sources.

 Data view controls - These are various lists and tables, which can
bind to data from data sources for displaying.

 Personalization controls - These are used for personalization of a
page according to the user preferences, based on user information.

 Login and security controls - These controls provide user
authentication.

 Master pages - These controls provide consistent layout and
interface throughout the application.

 Navigation controls - These controls help in navigation. For
example, menus, tree view etc.

 Rich controls - These controls implement special features. For
example, AdRotator, FileUpload, and Calendar control.

The syntax for using server controls is:

<asp:controlType ID ="ControlID" runat="server" Property1=value1
[Property2=value2] />

In addition, visual studio has the following features, to help produce in
error-free coding:

 Dragging and dropping of controls in design view

 IntelliSense feature that displays and auto-completes the properties

 The properties window to set the property values directly

7.5.1 PROPERTIES OF THE SERVER CONTROLS

ASP.NET server controls with a visual aspect are derived from the
WebControl class and inherit all the properties, events, and methods of
this class. The WebControl class itself and some other server controls that
are not visually rendered are derived from the System.Web.UI.Control
class. For example, PlaceHolder control or XML control. ASP.Net server
controls inherit all properties, events, and methods of the WebControl and
System.Web.UI.Control class.

The following table shows the inherited properties, common to all server
controls:

BCA-E10/138

Property Description

AccessKey Pressing this key with the Alt key moves
focus to the control.

Attributes
It is the collection of arbitrary attributes (for
rendering only) that do not correspond to
properties on the control.

BackColor Background color.

BindingContainer The control that contains this control's data
binding.

BorderColor Border color.

BorderStyle Border style.

BorderWidth Border width.

CausesValidation Indicates if it causes validation.

ChildControlCreated It indicates whether the server control's child
controls have been created.

ClientID Control ID for HTML markup.

Context The HttpContext object associated with the
server control.

Controls Collection of all controls contained within the
control.

ControlStyle The style of the Web server control.

CssClass CSS class

DataItemContainer
Gets a reference to the naming container if
the naming container implements
IDataItemContainer.

BCA-E10/139

DataKeysContainer
Gets a reference to the naming container if
the naming container implements
IDataKeysControl.

DesignMode It indicates whether the control is being used
on a design surface.

DisabledCssClass
Gets or sets the CSS class to apply to the
rendered HTML element when the control is
disabled.

Enabled Indicates whether the control is grayed out.

EnableTheming Indicates whether theming applies to the
control.

EnableViewState Indicates whether the view state of the control
is maintained.

Events Gets a list of event handler delegates for the
control.

Font Font.

Forecolor Foreground color.

HasAttributes Indicates whether the control has attributes
set.

HasChildViewState
Indicates whether the current server control's
child controls have any saved view-state
settings.

Height Height in pixels or %.

ID Identifier for the control.

IsChildControlStateCleared Indicates whether controls contained within
this control have control state.

IsEnabled Gets a value indicating whether the control is
BCA-E10/140

enabled.

IsTrackingViewState It indicates whether the server control is
saving changes to its view state.

IsViewStateEnabled It indicates whether view state is enabled for
this control.

LoadViewStateById It indicates whether the control participates in
loading its view state by ID instead of index.

Page Page containing the control.

Parent Parent control.

RenderingCompatibility It specifies the ASP.NET version that the
rendered HTML will be compatible with.

Site The container that hosts the current control
when rendered on a design surface.

SkinID Gets or sets the skin to apply to the control.

Style
Gets a collection of text attributes that will be
rendered as a style attribute on the outer tag
of the Web server control.

TabIndex Gets or sets the tab index of the Web server
control.

TagKey Gets the HtmlTextWriterTag value that
corresponds to this Web server control.

TagName Gets the name of the control tag.

TemplateControl The template that contains this control.

TemplateSourceDirectory Gets the virtual directory of the page or
control containing this control.

ToolTip Gets or sets the text displayed when the
mouse pointer hovers over the web server BCA-E10/141

control.

UniqueID Unique identifier.

ViewState

Gets a dictionary of state information that
saves and restores the view state of a server
control across multiple requests for the same
page.

ViewStateIgnoreCase It indicates whether the StateBag object is
case-insensitive.

ViewStateMode Gets or sets the view-state mode of this
control.

Visible It indicates whether a server control is visible.

Width Gets or sets the width of the Web server
control

7.6 USING CODE BEHIND PAGES (HTML
SEVER)

The HTML server controls are basically the standard HTML
controls enhanced to enable server side processing. The HTML controls
such as the header tags, anchor tags, and input elements are not processed
by the server but are sent to the browser for display. They are specifically
converted to a server control by adding the attribute runat="server" and
adding an id attribute to make them available for server-side processing.

For example, consider the HTML input control:

<input type="text" size="40">

It could be converted to a server control, by adding the runat and id
attribute:

<input type="text" id="testtext" size="40" runat="server">

7.6.1 ADVANTAGES OF USING HTML SERVER
CONTROLS

Although ASP.NET server controls can perform every job
accomplished by the HTML server controls, the later controls are useful in
the following cases:

BCA-E10/142

• Using static tables for layout purposes.

• Converting a HTML page to run under ASP.NET

The following table describes the HTML server controls:

Control Name HTML tag

HtmlHead <head>element

HtmlInputButton <input type=button|submit|reset>

HtmlInputCheckbox <input type=checkbox>

HtmlInputFile <input type = file>

HtmlInputHidden <input type = hidden>

HtmlInputImage <input type = image>

HtmlInputPassword <input type = password>

HtmlInputRadioButton <input type = radio>

HtmlInputReset <input type = reset>

HtmlText <input type = text|password>

HtmlImage element

HtmlLink <link> element

HtmlAnchor <a> element

HtmlButton <button> element

HtmlButton <button> element

HtmlForm <form> element

HtmlTable <table> element
BCA-E10/143

HtmlTableCell <td> and <th>

HtmlTableRow <tr> element

HtmlTitle <title> element

HtmlSelect <select&t; element

HtmlGenericControl All HTML controls not listed

7.6.2 EXAMPLE

The following example uses a basic HTML table for layout. It
uses some boxes for getting input from the users such as name, address,
city, state etc. It also has a button control, which is clicked to get the user
data displayed in the last row of the table. The page should look like this
in the design view:

The code for the content page shows the use of the HTML table element
for layout.

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Default.aspx.cs" Inherits="htmlserver._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

<title>Untitled Page</title>

BCA-E10/144

<style type="text/css">

.style1

{

width: 156px;

}

.style2

{

width: 332px;

}

</style>

</head>

<body>

<form id="form1" runat="server">

<div>

<table style="width: 54%;">

<tr>

<td class="style1">Name:</td>

<td class="style2">

<asp:TextBox ID="txtname" runat="server" style="width:230px">

</asp:TextBox>

</td>

</tr>

<tr>

<td class="style1">Street</td>

<td class="style2">

<asp:TextBox ID="txtstreet" runat="server" style="width:230px">

</asp:TextBox>

</td>

</tr>

<tr>

<td class="style1">City</td>
BCA-E10/145

<td class="style2">

<asp:TextBox ID="txtcity" runat="server" style="width:230px">

</asp:TextBox>

</td>

</tr>

<tr>

<td class="style1">State</td>

<td class="style2">

<asp:TextBox ID="txtstate" runat="server" style="width:230px">

</asp:TextBox>

</td>

</tr>

<tr>

<td class="style1"> </td>

<td class="style2"></td>

</tr>

<tr>

<td class="style1"></td>

<td ID="displayrow" runat ="server" class="style2">

</td>

</tr>

</table>

</div>

<asp:Button ID="Button1" runat="server" onclick="Button1_Click"
Text="Click" />

</form>

</body>

</html>

The code behind the button control:

protected void Button1_Click(object sender, EventArgs e)

{
BCA-E10/146

string str = "";

str += txtname.Text + "
";

str += txtstreet.Text + "
";

str += txtcity.Text + "
";

str += txtstate.Text + "
";

displayrow.InnerHtml = str;

}

Note: The standard HTML tags have been used for the page layout. The
last row of the HTML table is used for data display. It needed server side
processing, so an ID attribute and the runat attribute has been added to it.

7.7 VALIDATION CONTROLS USAGE OF
SKINS AND THEMES

ASP.NET validation controls validate the user input data to
ensure that useless, unauthenticated, or contradictory data don't get
stored. ASP.NET provides the following validation controls:

 RequiredFieldValidator

 RangeValidator

 CompareValidator

 RegularExpressionValidator

 CustomValidator

 ValidationSummary

7.7.1 BASEVALIDATOR CLASS

The validation control classes are inherited from the
BaseValidator class hence they inherit its properties and methods.
Therefore, it would help to take a look at the properties and the methods
of this base class, which are common for all the validation controls:

Members Description

ControlToValidate Indicates the input control to validate.

Display Indicates how the error message is shown.

BCA-E10/147

EnableClientScript Indicates whether client side validation will
take.

Enabled Enables or disables the validator.

ErrorMessage Indicates error string.

Text Error text to be shown if validation fails.

IsValid Indicates whether the value of the control is
valid.

SetFocusOnError
It indicates whether in case of an invalid
control, the focus should switch to the
related input control.

ValidationGroup The logical group of multiple validators,
where this control belongs.

Validate() This method revalidates the control and
updates the IsValid property.

7.7.2 REQUIREDFIELDVALIDATOR CONTROL

The RequiredFieldValidator control ensures that the required
field is not empty. It is generally tied to a text box to force input into the
text box.

The syntax of the control is as given:

<asp:RequiredFieldValidator ID="rfvcandidate" runat="server"
ControlToValidate ="ddlcandidate" ErrorMessage="Please choose a
candidate" InitialValue="Please choose a candidate">

</asp:RequiredFieldValidator>

7.7.3 RANGEVALIDATOR CONTROL

The Range Validator control verifies that the input value falls
within a predetermined range.

It has three specific properties:

BCA-E10/148

Properties Description

Type
It defines the type of the data. The available
values are: Currency, Date, Double, Integer, and
String.

MinimumValue It specifies the minimum value of the range.

MaximumValue It specifies the maximum value of the range.

The syntax of the control is as given:

<asp:RangeValidator ID="rvclass" runat="server"
ControlToValidate="txtclass"

ErrorMessage="Enter your class (6 - 12)" MaximumValue="12"

MinimumValue="6" Type="Integer">

</asp:RangeValidator>

7.7.4 COMPAREVALIDATOR CONTROL

The CompareValidator control compares a value in one control
with a fixed value or a value in another control. It has the following
specific properties:

Properties Description

Type It specifies the data type.

ControlToCompare It specifies the value of the input control to
compare with.

ValueToCompare It specifies the constant value to compare with.

Operator

It specifies the comparison operator, the available
values are: Equal, NotEqual, GreaterThan,
GreaterThanEqual, LessThan, LessThanEqual,
and DataTypeCheck.

 BCA-E10/149

The basic syntax of the control is as follows:

<asp:CompareValidator ID="CompareValidator1" runat="server"

ErrorMessage="CompareValidator">

</asp:CompareValidator>

7.7.5 REGULAREXPRESSIONVALIDATOR

The RegularExpressionValidator allows validating the input text
by matching against a pattern of a regular expression. The regular
expression is set in the ValidationExpression property. The following
table summarizes the commonly used syntax constructs for regular
expressions:

Character Escapes Description

\b Matches a backspace.

\t Matches a tab.

\r Matches a carriage return.

\v Matches a vertical tab.

\f Matches a form feed.

\n Matches a new line.

\ Escape character.

Apart from single character match, a class of characters could be
specified that can be matched, called the metacharacters.

Metacharacters Description

. Matches any character except \n.

[abcd] Matches any character in the set.

BCA-E10/150

[^abcd] Excludes any character in the set.

[2-7a-mA-M] Matches any character specified in the range.

\w Matches any alphanumeric character and
underscore.

\W Matches any non-word character.

\s Matches whitespace characters like, space, tab,
new line etc.

\S Matches any non-whitespace character.

\d Matches any decimal character.

\D Matches any non-decimal character.

Quantifiers could be added to specify number of times a character could
appear.

Quantifier Description

* Zero or more matches.

+ One or more matches.

? Zero or one matches.

{N} N matches.

{N,} N or more matches.

{N,M} Between N and M matches.

The syntax of the control is as given:

<asp:RegularExpressionValidator ID="string" runat="server"
ErrorMessage="string"

BCA-E10/151

ValidationExpression="string" ValidationGroup="string">

</asp:RegularExpressionValidator>

7.7.6 CUSTOMVALIDATOR

The CustomValidator control allows writing application specific
custom validation routines for both the client side and the server side
validation. The client side validation is accomplished through the
ClientValidationFunction property. The client side validation routine
should be written in a scripting language, such as JavaScript or
VBScript, which the browser can understand. The server side validation
routine must be called from the control's ServerValidate event handler.
The server side validation routine should be written in any .Net
language, like C# or VB.Net.

The basic syntax for the control is as given:

<asp:CustomValidator ID="CustomValidator1" runat="server"

ClientValidationFunction=.cvf_func.
ErrorMessage="CustomValidator">

</asp:CustomValidator>

7.7.7 VALIDATIONSUMMARY

The ValidationSummary control does not perform any validation
but shows a summary of all errors in the page. The summary displays the
values of the ErrorMessage property of all validation controls that failed
validation.

The following two mutually inclusive properties list out the error
message:

 ShowSummary: shows the error messages in specified format.

 ShowMessageBox: shows the error messages in a separate
window.

The syntax for the control is as given:

<asp:ValidationSummary ID="ValidationSummary1" runat="server"

DisplayMode = "BulletList" ShowSummary = "true"
HeaderText="Errors:" />

7.7.8 VALIDATION GROUPS

Complex pages have different groups of information provided in

different panels. In such situation, a need might arise for performing
BCA-E10/152

Check Your Progress
 Define the terms skin and themes.
 What is HTML server? Explain

7.8 SUMMARY

Understanding the page cycle helps in writing codes for making
some specific thing happen at any stage of the page life cycle. It also helps
in writing custom controls and initializing them at right time, populate
their properties with view-state data and run control behavior code.

A form is an area that can contain form elements. Form elements
include: buttons, checkboxes, text fields, radio buttons, drop-down menus,
etc. Other kinds of tags can be mixed in with the form elements. A form
usually contains a Submit button to send the information in the form
elements to the server.

The different stages of an ASP.NET page are: Page request,
Starting of page life cycle, Page initialization, Page load, Validation,
Postback event handling, Page rendering, Unload.

At each stage of the page life cycle, the page raises some events,
which could be coded. An event handler is basically a function or
subroutine, bound to the event, using declarative attributes such as Onclick
or handle.

The main page life cycle events are: PreInit, Init, InitComplete,
LoadViewState, LoadPostData, PreLoad, Load, LoadComplete,
PreRender, PreRenderComplete, SaveStateComplete, UnLoad.

The HTML server controls are basically the standard HTML
controls enhanced to enable server side processing. The HTML controls
such as the header tags, anchor tags, and input elements are not processed
by the server but are sent to the browser for display. They are specifically
converted to a server control by adding the attribute runat="server" and
adding an id attribute to make them available for server-side processing.

7.9 TERMINAL QUESTIONS

1. Define the term Web form.

2. What is ASP.Net page life cycle?

validation separately for separate group. This kind of situation is handled

using validation groups. To create a validation group, you should put the

input controls and the validation controls into the same logical group by

setting their ValidationGroup property.

BCA-E10/153

3. Explain the life cycle events.

4. Give the meaning of HTML Server control.

5. Write the advantages of HTML Server control.

6. Write and explain the Steps for Creating a Project using diagram.

7. Explain the properties of the Server Controls.

8. What do you mean by RegularExpressionvalidator?

BCA-E10/154

UNIT-8 ADO.NET
Structure

8.0 Introduction

8.1 Objectives

8.2 The .NET Framework

8.3 Brief History of Data Access

8.4 Introduction to ADO.NET

8.5 High Definition of ADO.NET

8.6 Architectural Overview of ADO.NET

8.7 ADO.NET and XML

8.8 Summary

8.9 Terminal questions

8.0 INTRODUCTION

ADO.NET is a set of classes (a framework) to interact with data
sources such as databases and XML files. ADO is the acronym for
ActiveX Data Objects. It allows us to connect to underlying data or
databases. It has classes and methods to retrieve and manipulate data. The
following are a few of the .NET applications that use ADO.NET to
connect to a database, execute commands and retrieve data from the
database.

 ASP.NET Web Applications

 Console Applications

 Windows Applications

ADO.NET is a large set of .NET classes that enable us to retrieve
and manipulate data, and update data sources, in very many different
ways. As an integral part of the .NET framework, it shares many of its
features: features such as multi-language support, garbage collection, just-
in-time compilation, object-oriented design, and dynamic caching, and is
far more than an upgrade of previous versions of ADO.

ADO.NET is set to become a core component of any data-driven
.NET application or Web Service, and understanding its power will be

BCA-E10/155

essential to anyone wishing to utilize .NET data support to maximum
effect.

This unit is aimed at developers, who already have some
experience of developing or experimenting within the .NET framework,
with either C# or Visual Basic .NET. We have already discussed about the
ASP and ASP.NET. But, we have not covered the basics of C# or Visual
Basic .NET, and assume some prior experience of Microsoft data access
technologies.

Moreover, In this unit, we're just going to take a fairly quick
overview of ADO.NET. This will be fast-paced, and we won't shy away
from showing snippets of code, as this really is the best way to get to grips
with the concepts. Hopefully this chapter will give you a basic
understanding of the basic workings of ADO.NET, and give you a taste of
some of its best features. By the end of the chapter, we hope that you'll be
convinced of the advantages of ADO.NET, and eager to go further.

ADO.NET is the latest in a long line of data access technologies
released by Microsoft. ADO.NET differs somewhat from the previous
technologies, however, in that it comes as part of a whole new platform
called the .NET Framework. This platform is set to revolutionize every
area of development, and ADO.NET is just one aspect of that. We'll
therefore start by looking quickly at the main features of .NET.

Furthermore, ADO.NET provides a bridge between the front end
controls and the back end database. The ADO.NET objects encapsulate all
the data access operations and the controls interact with these objects to
display data, thus hiding the details of movement of data.

This unit is designed for anyone that wants to learn how to use
ADO.NET to access data in databases. Throughout this unit you will be
introduced to the concepts of the data handling using the Microsoft .NET
Framework. Emphasis will be on ADO.NET programming standards and
practices. In this unit you will learn the following: - Using the Connection
Class - Using the Command Class - Using DataSets - Using DataTables -
Using Parameters - Using Stored Procedures. This unit will show how to
use ADO.NET to manipulate data in OLE DB and SQL Server databases.
After reading this book you will be able to retrieve data, insert, update and
delete data from relational databases using ADO.NET.

8.1 OBJECVTIVES

This unit aims to achieve the following objectives:

 Definition of ADO.NET and its working

 advantages of ADO.NET

 Required main features of .NET like CLS, MSIL etc.
BCA-E10/156

 retrieve data, insert, update and delete data from relational
databases using ADO.NET

 Brief history of data access

 ADO.NET architecture

 Knowing the code behind the ADO and XML

8.2 THE .NET FRAMEWORK

It's no exaggeration to say that Microsoft's release of its new
development and run-time environment, the .NET Framework, will
revolutionize all aspects of programming in the Microsoft world. The
benefits of this new platform will be felt in all areas of our code and in all
types of application we develop. The .NET Framework is in itself a huge
topic, and we can't cover every aspect in detail here, but since it's
important to understand the basic principles behind .NET before
attempting any ADO.NET programming, we'll quickly review the basics
here.

8.2.1 THE COMMON LANGUAGE RUNTIME

The foundation on which the .NET Framework is built is the
Common Language Runtime (CLR). The CLR is the execution
environment that manages .NET code at run time. In some ways, it is
comparable to the Java Virtual Machine (JVM), or to the Visual Basic 6
runtime (msvbvm60.dll). Like these, the .NET Framework needs to be
installed on any machine where .NET programs will be run. Unlike these,
however, the CLR was designed specifically to support code written in
many different languages. It's true that many different languages have
been written that target the JVM (at present more than there are for .NET),
but multiple language support wasn't one of the primary design
considerations of the JVM. In the case of the CLR, this really was one of
the most important considerations.

In order to achieve cross-language support, all .NET programs are
compiled prior to deployment into a low-level language called
Intermediate Language (IL). Microsoft's implementation of this language
is called Microsoft Intermediate Language, or MSIL. This IL code is then
just-in-time compiled into native code at run time. This means that,
whatever the original language of the source code, .NET executables and
DLLs are always deployed in IL, so there are no differences between
components originally written in C# and those written in VB .NET. This
aids cross-language interoperability (such as the ability to derive a class
written in one language from one written in any of the other .NET
languages). However, it also allows applications to be deployed without
modifications onto any supported platform (currently Windows 9x/ME,
Windows NT4, Windows 2000, or Windows XP) – the JIT compiler
handles optimizations for the processor/OS of the deployment machine. BCA-E10/157

Microsoft provides compilers for four .NET languages:

 C# - a new C-based language designed specifically for the .NET
Framework.

 Visual Basic.NET – a version of the Visual Basic language
updated for .NET (for example, with full object-oriented features,
structured exception handling, and many of the other things VB
developers have been demanding for years!).

 JScript.NET – Microsoft's implementation of the JavaScript
scripting language, updated for .NET.

 Managed C++ – C++ with "managed extensions" to support .NET
features that couldn't be implemented using the existing features of
the language. Unlike the other three languages, the C++ compiler
doesn't come free with the .NET Framework SDK, but is shipped
with Visual Studio.NET.

 J# – essentially Visual J++ (including Microsoft extensions to Java
such as COM support) for the .NET Framework.

Garbage Collection

One of the most important services provided by the CLR is garbage
collection. In C and C++, if an object is instantiated, the memory it uses
needs to be released before it can be reused. Failure to do this result in a
"memory leak" – unused memory that can't be reclaimed by the system.
As the amount of leaked memory increases, the performance of the
application obviously deteriorates. However, because the error isn't
obvious and only takes effect over time, these errors are notoriously
difficult to trace. The CLR solves this problem by implementing a garbage
collector. At periodic intervals (when there is no more room on the heap),
the garbage collector will check all object references, and release the
memory held by objects that have run out of scope and can no longer be
accessed by the application. This exempts the programmer from having to
destroy the objects explicitly, and solves the problem of memory leaks.
There are a couple of points to remember here: firstly, we can't predict
exactly when the garbage collector will run (although we can force a
collection), so objects can remain in memory for some time after we've
finished with them; secondly, the CLR won't clear up unmanaged
resources – we need to do that ourselves. The usual way of doing this is to
expose a method named Dispose, which will release all external resources
and which can be called when we've finished with the object.
The Common Language Infrastructure
Although the .NET Framework is currently only available for Windows
platforms, Microsoft has submitted a subset of .NET (the Common
Language Infrastructure, or CLI) to the European Computer
Manufacturers' Association (ECMA) for acceptance as an open standard.

BCA-E10/158

Versions of the CLI are in development for the FreeBSD and Linux
operating systems. Similarly, specifications for C# and IL (the latter
termed Common Intermediate Language, or CIL) have also been
submitted to ECMA, and non-Microsoft implementations of the CLI will
also implement these.

8.2.2 ASSEMBLIES

.NET code is deployed as an assembly. Assemblies consist of
compiled IL code, and must contain one primary file (except in the case of
dynamic assemblies, which are stored entirely in memory). This can be an
executable (.exe) file, a DLL, or a compiled ASP.NET web application or
Web Service. As well as the primary file, an assembly can contain
resource files (such as images or icons) and other code modules. Most
importantly, however, assemblies contain metadata. This metadata
consists of two parts: the type metadata includes information about all the
exported types and their methods defined in the assembly. As well as IL
code, .NET assemblies contain a section known as the manifest. This
section contains the assembly metadata, or information about the assembly
itself, such as the version and build numbers.

This metadata allows assemblies to be completely self-describing:
the assembly itself contains all the information necessary to install and run
the application. There's no longer any need for type libraries or registry
entries. Installation can be as simple as copying the assembly onto the
target machine. Better still, because the assembly contains version
information, multiple versions of the same component can be installed
side-by-side on the same machine. This ends the problem known as "DLL
Hell", where an application installing a new version of an existing
component would break programs that used the old version.

8.2.3 THE COMMON TYPE SYSTEM

The foundation on which the CLR's cross-language features are
built is the Common Type System (CTS). In order for classes defined in
different languages to be able to communicate with each other, they need a
common way to represent data – a common set of data types. All the
predefined types that are available in IL are defined in the CTS. This
means that all data in .NET code is ultimately stored in the same data
types, because all .NET code compiles to IL.

The CTS distinguishes between two fundamental categories of data
types – value types and reference types. Value types (including most of
the built-in types, as well as structs and enumerations) contain their data
directly. For example, a variable of an integer type stores the integer
directly on the program's stack. Reference types (including String and
Object, as well as arrays and most user-defined types such as classes and
interfaces) store only a reference to their data on the stack – the data itself
is stored in a different area of memory known as the heap. The difference
between these types is particularly evident when passing parameters to BCA-E10/159

methods. All method parameters are by default passed by value, not by
reference. However, in the case of reference types, the value is nothing
more than a reference to the location on the heap where the data is stored.
As a result, reference-type parameters behave very much as we would
expect arguments passed by reference to behave – changing the value of
the variable within the body of the method will affect the original variable,
too. This is an important point to remember if you pass ADO.NET objects
into a method.

The Common Language Specification

One important point to note about the CTS is that not all features are
exposed by all languages. For example, C# has a signed byte data type
(sbyte), which isn't available in Visual Basic.NET. This could cause
problems with language interoperability, so the Common Language
Specification (CLS) defines a subset of the CTS, which all compilers must
support. It's perfectly possible to expose features that aren't included in the
CLS (for example, a C# class with a public property of type sbyte).
However, it's important to remember that such features can't be guaranteed
to be accessible from other languages – in this example, we wouldn't be
able to access the class from VB.NET.

8.2.4 NET CLASS LIBRARIES

Finally, we come to perhaps the most important feature of all – a
vast set of class libraries to accomplish just about any programming task
conceivable. Classes and other types within the .NET Framework are
organized into namespaces, similar to Java packages. These namespaces
can be nested within other namespaces, and allow us to identify our
classes and distinguish them from third-party classes with the same name.

Together with the .NET Framework, Microsoft provides a huge set
of classes and other types, mostly within the System namespace, or one of
the many nested namespaces. This includes the primitive types such as
integers – the C# int and VB.NET Integer types are just aliases for the
System.Int32 type. However, it also includes classes used for Windows
applications, web applications, directory services, file access, and many
others – including, of course, data access. These data access classes are
collectively known as ADO.NET. In fact, .NET programming is
effectively programming with the .NET class libraries – it's impossible to
write any program in C# or VB NET that doesn't use these libraries.

8.3 BRIEF HISTORY OF DATA ACCESS

At first, programmatic access to databases was performed by
native libraries, such as DBLib for SQL Server, and the Oracle Call
Interface (OCI) for Oracle. This allowed for fast database access because
no extra layer was involved – we simply wrote code that accessed the
database directly. However, it also meant that developers had to learn a

BCA-E10/160

different set of APIs for every database system they ever needed to access,
and if the application had to be updated to run against a different database
system, all the data access code would have to be changed.

8.3.1 ODBC

As a solution to this, in the early 1990s Microsoft and other
companies developed Open Database Connectivity, or ODBC. This
provided a common data access layer, which could be used to access
almost any relational database management system (RDBMS). ODBC
uses an RDBMS -specific driver to communicate with the data source. The
drivers (sometimes no more than a wrapper around native API calls) are
loaded and managed by the ODBC Driver Manager. This also provides
features such as connection pooling – the ability to reuse connections,
rather than destroying connections when they are closed and creating a
new connection every time the database is accessed. The application
communicates with the Driver Manager through a standard API, so (in
theory) if we wanted to update the application to connect to a different
RDBMS, we only needed to change the connection details (in practice,
there were often differences in the SQL dialect supported). Perhaps the
most important feature of ODBC, however, was the fact that it was an
open standard, widely adopted even by the Open Source community. As a
result, ODBC drivers have been developed for many database systems that
can't be accessed directly by later data access technologies. As we'll see
shortly, this means ODBC still has a role to play in conjunction with
ADO.NET.

8.3.2 DAO

One of the problems with ODBC is that it was designed to be used
from low-level languages such as C++. As the importance of Visual Basic
grew, there was a need for a data access technology that could be used
more naturally from VB. This need was met in VB 3 with Data Access
Objects (DAO). DAO provided a simple object model for talking to Jet,
the database engine behind Microsoft's Access desktop database. As DAO
was optimized for Access (although it can also be used to connect to
ODBC data sources), it is very fast – in fact, still the fastest way of talking
to Access from VB 6.

8.3.3 RDO

Due to its optimization for Access, DAO was very slow when used
with ODBC data sources. To get round this, Microsoft introduced Remote
Data Objects (RDO) with the Enterprise Edition of VB 4 (32-bit version
only). RDO provides a simple object model, similar to that of DAO,
designed specifically for access to ODBC data sources. RDO is essentially
a thin wrapper over the ODBC API.

BCA-E10/161

8.3.4 OLE DB

The next big shake-up in the world of data access technologies
came with the release of OLE DB. Architecturally, OLE DB bears some
resemblance to ODBC: communication with the data source takes place
through OLE DB providers (similar in concept to ODBC drivers), which
are designed for each supported type of data source. OLE DB providers
implement a set of COM interfaces, which allow access to the data in a
standard row/column format. An application that makes use of this data is
known as an OLE DB consumer. As well as these standard data providers,
which extract data from a data source and make it available through the
OLE DB interfaces, OLE DB also has a number of service providers.
These form a "middle tier" of the OLE DB architecture, providing services
that are used with the data provider. These services include connection
pooling, transaction enlistment (the ability to register MTS/COM+
components automatically within an MTS/COM+ transaction), data
persistence, client-side data manipulation (the Client Cursor Engine, or
CCE), hierarchical recordsets (data shaping), and data remoting (the
ability to instantiate an OLE DB data provider on a remote machine).

The real innovation behind OLE DB was Microsoft's strategy for
Universal Data Access (UDA). The thinking behind UDA is that data is
stored in many places – e-mails, Excel spreadsheets, web pages, and so on,
as well as traditional databases – and that we should be able to access all
this data programmatically, through a single unified data access
technology. OLE DB is the base for Microsoft's implementation of this
strategy. The number of OLE DB providers has been gradually rising to
cover both relational database systems (even the opensource MySQL
database now has an OLE DB provider), and non-relational data sources
such as the Exchange 2000 Web Store, Project 2000 files, and IIS virtual
directories. However, even before these providers became available,
Microsoft ensured wide-ranging support for OLE DB by supplying an
OLE DB provider for ODBC drivers, This meant that right from the start
OLE DB could be used to access any data source that had an ODBC
driver. As we shall see, this successful tactic has been adopted again for
ADO.NET.

8.3.5 ADO

ActiveX Data Objects (ADO) is the technology that gave its name
to ADO.NET (although in reality the differences are far greater than the
similarities). ADO is merely an OLE DB consumer – a thin layer allowing
users of high-level languages such as VB and script languages to access
OLE DB data sources through a simple object model; ADO is to OLE DB
more or less what RDO was to ODBC. Its popularity lay in the fact it gave
the vast number of Visual Basic, ASP, and Visual J++ developers easy
access to data in many different locations. If OLE DB was the foundation
on which UDA was built, ADO was the guise in which it appeared to the
majority of developers. And, in certain scenarios, ADO still represents a BCA-E10/162

valid choice for developers on the .NET Framework. Moreover, because
many of the classes and concepts are similar, knowledge of ADO is a big
advantage when learning ADO.NET. We will look at the relationship
between ADO and ADO.NET in more detail later on in the chapter.

8.4 INTRODUCTION TO ADO.NET

Although we've presented it as something of an inevitability that
.NET would bring a new data access API, we haven't yet really said why.
After all, it's perfectly possible to carry on using ADO in .NET
applications through COM interoperability. However, there are some very
good reasons why ADO wasn't really suited to the new programming
environment. We'll look quickly at some of the ways in which ADO.NET
improves upon ADO called from .NET, before looking at the ADO.NET
architecture in more detail.

8.4.1 ADVANTAGES OF USING MANAGED CLASSES

Firstly, and most obviously, if we're using .NET then COM
interoperability adds overhead to our application. .NET communicates
with COM components via proxies called Runtime Callable Wrappers,
and method calls need to be marshaled from the proxy to the COM object.
In addition, COM components can't take advantage of the benefits of the
CLR such as JIT compilation and the managed execution environment –
they need to be compiled to native code prior to installation. This makes it
essential to have a genuine .NET class library for data access.

8.4.2 CROSS-LANGUAGE SUPPORT

Another factor is the fact that ADO wasn't really designed for
cross-language use; it was aimed primarily at VB programmers. As a
result, ADO makes much use of optional method parameters, which are
supported by VB and VB.NET, but not by C-based languages such as C#.
This means that if you use ADO from C#, you will need to specify all
parameters in method calls; for example, if you call the Connection.Open
method and don't want to specify any options, you will need to include the
adConnectUnspecified parameter! This makes ADO programming under
.NET considerably more time-consuming.

8.4.3 CLEANER ARCHITECTURE

As we noted above, ADO is no more than a thin layer over OLE
DB. This makes the ADO architecture slightly cumbersome, as extra
layers are introduced between the application and the data source. While
much ADO.NET code will still use OLE DB for the immediate future, this
will decrease as more native .NET data providers become available.
Where a native provider exists, ADO.NET can be much faster than ADO,
as the providers communicate directly with the data source. BCA-E10/163

8.4.4 XML SUPPORT

One of the key features of the .NET Framework is its support for
XML. XML is the standard transport and persistence format throughout
the .NET Framework. While ADO had some support for XML from
version 2.1 onwards, this was very limited, and required XML documents
to be in exactly the right format.

8.4.5 OPTIMIZED OBJECT MODEL

Finally, it's important to remember that the .NET Framework is
aimed squarely at developing distributed applications, and particularly
Internet-enabled applications. In this context, it's clear that certain types of
connection are better than others. In an Internet application, we don't want
to hold a connection open for a long time, as this could create a bottleneck
as the number of open connections to the data source increase, and hence
destroy scalability. ADO didn't encourage disconnected recordsets,
whereas ADO.NET has different classes for connected and disconnected
access, and doesn't permit updateable connected recordsets. We'll look at
this issue in more detail later in the chapter.

Check Your Progress

 What do you mean by data access

 Give the advantages using the managed classes

8.5 HIGH DEFINITION OF ADO.NET

If you have a background in Microsoft’s previous COM-based data
access model (Active Data Objects, or ADO), understand that ADO.NET
has very little to do with ADO beyond the letters “A,” “D,” and “O.”
While it is true that there is some relationship between the two systems
(e.g., each has the concept of connection and command objects), some
familiar ADO types (e.g., the Recordset) no longer exist. Furthermore,
there are a number of new ADO.NET types that have no direct equivalent
under classic ADO (e.g., the data adapter). Unlike classic ADO, which
was primarily designed for tightly coupled client/server systems,
ADO.NET was built with the disconnected world in mind, using DataSets.
This type represents a local copy of any number of related data tables,
each of which contain a collection of rows and column. Using the DataSet,
the calling assembly (such as a web page or desktop executable) is able to
manipulate and update a DataSet’s contents while disconnected from the
data source, and send any modified data back for processing using a
related data adapter.

BCA-E10/164

Another major difference between classic ADO and ADO.NET is
that ADO.NET has deep support for XML data representation. In fact, the
data obtained from a data store is serialized (by default) as XML. Given
that XML is often transported between layers using standard HTTP,
ADO.NET is not limited by firewall constraints. Perhaps the most
fundamental difference between classic ADO and ADO.NET is that
ADO.NET is a managed library of code, therefore it plays by the same
rules as any managed library. The types that make up ADO.NET use the
CLR memory management protocol, adhere to the same type system
(classes, interfaces, enums, structures, and delegates), and can be accessed
by any .NET language.

From a programmatic point of view, the bulk of ADO.NET is
represented by a core assembly named System.Data.dll. Within this
binary, you may find a good number of namespaces (Figure 8.1), many of
which represent the types of a particular ADO.NET data provider.

Figure 8.1: Core ADO.NET assembly

The ADO.NET libraries can be used in two conceptually unique
manners: connected or disconnected. When you make use of the
connected layer, your code base will explicitly connect to and disconnect
from the underlying data store. When you are using ADO.NET in this
manner, you typically interact with the data store using connection objects,
command objects, and data reader objects. The disconnected layer, allows
you to manipulate a set of DataTable objects (contained within a DataSet)
that functions as a client-side copy of the external data. When you obtain a
DataSet using a related data adapter object, the connection is
automatically opened and closed on your behalf. As you would guess, this
approach helps quickly free up connections for other callers and goes a
long way to increasing the scalability of the systems.

Moreover, once a caller receives a DataSet, it is able to traverse
and manipulate the contents without incurring the cost of network traffic. BCA-E10/165

As well, if the caller wishes to submit the changes back to the data store,
the data adapter (in conjunction with a set of SQL statements) is used once
again to update the data source, at which point the connection is closed
immediately.

8.6 ARCHITECTURAL OVERVIEW OF
ADO.NET

The ADO.NET object model consists of two fundamental
components: the DataSet, which is disconnected from the data source and
doesn't need to know where the data it holds came from; and the .NET
data provider. The .NET data providers allow us to connect to the data
source, and to execute SQL commands against it.

8.6.1 .NET DATA PROVIDERS

At the time of writing, there are three .NET data providers
available: for SQL Server, for OLE DB data sources, and for ODBC-
compliant data sources. Each provider exists in a namespace within the
System.Data namespace, and consists of a number of classes.

Data Provider Components

Each .NET data provider consists of four main components:

 Connection – used to connect to the data source

 Command– used to execute a command against the data source
and retrieve a DataReader or

 DataSet, or to execute an INSERT, UPDATE, or DELETE
command against the data source

 DataReader– a forward-only, read-only connected resultset

 DataAdapter – used to populate a DataSet with data from the data
source, and to update the data Source

The Connection Classes

The connection classes are very similar to the ADO Connection object,
and like that, they are used to represent a connection to a specific data
source. The connection classes store the information that ADO.NET needs
to connect to a data source in the form of a familiar connection string (just
as in ADO). The IDbConnection interface's ConnectionString property
holds information such as the username and password of the user, the
name and location of the data source to connect to, and so on. In addition,
the connection classes also have methods for opening and closing
connections, and for beginning a transaction, and properties for setting the

BCA-E10/166

timeout period of the connection and for returning the current state (open
or closed) of the connection.

The Command Classes

The command classes expose the IDbCommand interface and are similar
to the ADO Command object – they are used to execute SQL statements
or stored procedures in the data source. Also, like the ADO Command
object, the command classes have a CommandText property, which
contains the text of the command to be executed against the data source,
and a CommandType property, which indicates whether the command is a
SQL statement, the name of a stored procedure, or the name of a table.

There are three distinct execute methods: ExecuteReader, which returns a
DataReader; ExecuteScalar, which returns a single value; and
ExecuteNonQuery, for use when no data will be returned from the query
(for example, for a SQL UPDATE statement).

Again like their ADO equivalent, the command classes have a Parameters
collection – a collection of objects to represent the parameters to be passed
into a stored procedure. These objects expose the IDataParameter
interface, and form part of the .NET provider. That is, each provider has a
separate implementation of the IDataParameter (and
IDataParameterCollection) interfaces.

The Data Reader

The DataReader is ADO.NET's answer to the connected recordset in
ADO. However, the DataReader is forward-only and read-only – you can't
navigate through it at random, and you can't use it to update the data
source. It therefore allows extremely fast access to data that we just want
to iterate through once, and it is recommended to use the DataReader
(rather than the DataSet) wherever possible. A DataReader can only be
returned from a call to the ExecuteReader method of a command object;
we can't instantiate it directly. This forces us to instantiate a command
object explicitly, unlike in ADO, where we could retrieve a Recordset
object without ever explicitly creating a Command object. This makes the
ADO.NET object model more transparent than the "flat" hierarchy of
ADO.

The Data Adapter

The last main component of the .NET data provider is the DataAdapter.
The DataAdapter acts as a bridge between the disconnected DataSet and
the data source. It exposes two interfaces; the first of these, IDataAdapter,
defines methods for populating a DataSet with data from the data source,
and for updating the data source with changes made to the DataSet on the
client. The second interface, IDbDataAdapter, defines four properties,
each of type IDbCommand. These properties each set or return a
command object specifying the command to be executed when the data
source is to be queried or updated:

BCA-E10/167

8.6.2 EXISTING DATA PROVIDERS

Three .NET data providers are currently available; these allow us
to access any type of data source that we could access using ADO 2.1. The
reason we've said ADO 2.1 rather than 2.5 (or later) is that the OLE DB
2.5 interfaces –IRow, IStream, etc. (exposed by the ADO Record and
Stream objects) – are not supported by the OleDb provider. This means
that we'll still need to use "classic" ADO with data sources such as web
directories and the Exchange 2000 Web Store, until such time as
ADO.NET equivalents for the Internet Publishing (MSDAIPP) and
Exchange 2000 (ExOLEDB) OLE DB providers become available.

The SqlClient Provider

The SqlClient provider ships with ADO.NET and resides in the
System.Data.SqlClient namespace. It can be used to access SQL Server
7.0 or later databases, or MSDE databases. The SqlClient provider can't be
used with SQL Server 6.5 or earlier databases, so you will need to use the
OleDb .NET provider with the OLE DB provider for SQL Server
(SQLOLEDB) if you want to access an earlier version of SQL Server.
However, if you can use the SqlClient provider, it is strongly
recommended that you do so – using the OleDb provider adds an extra
layer to your data access code, and uses COM interoperability behind the
scenes (OLE DB is COM-based).

The OleDb Provider

If you're not using SQL Server 7.0 or later, it's almost certain that your
best bet will be to use the OleDb provider, at least until more .NET
providers are released. There are a couple of exceptions to this rule – if
your data source has an ODBC driver, but not an OLE DB provider, then
you will need to use the Odbc .NET provider. Support for MSDASQL (the
OLE DB provider for ODBC drivers) was withdrawn from the OleDb
provider somewhere between Beta 1 and Beta 2 of the .NET Framework,
so there really is no alternative to this. This was probably done to prevent
the use of ODBC Data Source Names (DSNs) with ADO.NET, except
where ODBC really is required. Even in ADO, using DSNs involved a
substantial performance penalty (particularly when an OLE DB provider
was available), but the extra layers would be intolerable under .NET.

Think of the architecture involved: ADO.NET – COM interop – (optional)
OLE DB services – OLE DB provider – ODBC driver – data source!

The Odbc Provider

Unlike the other two .NET providers, the Odbc provider isn't shipped with
the .NET Framework. The current beta version can be downloaded as a
single .exe file of 503KB from the MSDN site and simply run this
executable to install the classes – this program will install the assembly
into the Global Assembly Cache, so the classes will automatically be
globally available on the local machine. However, you will need to add a

BCA-E10/168

reference to the assembly (System.Data.Odbc.dll) to your projects to use
the provider. The Odbc provider should be used whenever you need to
access a data source with no OLE DB provider (such as PostgreSQL or
older databases such as Paradox or dBase), or if you need to use an ODBC
driver for functionality that isn't available with the OLE DB provider.
Architecturally, the Odbc provider is similar to the OleDb provider – it
acts as a .NET wrapper around the ODBC API, and allows ADO.NET to
access a data source through an ODBC driver.

8.6.3 THE DATASET

The other major component of ADO.NET is the DataSet; this
corresponds very roughly to the ADO recordset. It differs, however, in two
important respects. The first of these is that the DataSet is always
disconnected, and as a consequence doesn't care where the data comes
from – the DataSet can be used in exactly the same way to manipulate data
from a traditional data source or from an XML document. In order to
connect a DataSet to a data source, we need to use the DataAdapter as an
intermediary between the DataSet and the .NET data provider.

After opening the connection just as we did before, there are three steps
involved to populating the DataSet:

 Instantiate a new DataAdapter object: Before we fill the
DataSet, we'll obviously need to specify the connection
information and the data we want to fill it with. There are a number
of ways of doing that, but probably the easiest is to pass the
command text for the SQL query and either a connection string or
an open connection into the DataAdapter's constructor, as we do
above.

 Create the new DataSet:For doing this we have to create object
of DataSet class by giving a call to the constructor of DataSet calss
by using the following syntax.

DataSet ds=new DataSet(), this line creates a new data set object
whose memory location will be pointed by variable ds.

 Call the DataAdapter's Fill method: We pass the DataSet we
want to populate as a parameter to this method, and also the name
of the table within the DataSet we want to fill. If we call the Fill
method against a closed connection, the connection will
automatically be opened, and then reclosed when the DataSet has
been filled.

 In order to do so you need to create object of SqlDataAdapter
class. It is predefined class of C# class library to create its object
we need to call its constructor by passing two parameters; first one
is a string which represents sql query to be executed in sql
environment and second is connection string contains information:
information about data source, information about database and

BCA-E10/169

information about sql credentials. Following we are giving a
sample of object creation of SqlDataAdapter class.

SqlDataAdapter da=new SqlDataAdapter (“select * from
table_name, “Data Source=.,Initial Catalog=database_name, User
Id=sa, password=1”);

The DataTable Class

This last parameter gives a clue to the second important difference
between a DataSet and an ADO recordset – the DataSet can contain more
than one table of data. True, something similar was available in ADO with
data shaping, but the tables in a DataSet can even be taken from different
data sources. And, better still, we don't have the horrible SHAPE syntax to
deal with. To achieve this, ADO.NET also has a DataTable class, which
represents a single table within a DataSet. The DataSet has a Tables
property, which returns a collection of these objects (a
DataTableCollection). The DataTable represents data in the usual tabular
format, and has collections of DataColumn and DataRow objects
representing each column and row in the table.

8.7 ADO.NET AND XML

Perhaps the single most impressive new feature of ADO.NET is its
built-in support for XML. In fact, XML is now the standard persistence
format for ADO.NET DataSets. While we've been able to save recordsets
in XML format since ADO 2.1, the default format remained the
proprietary Advanced Data TableGram (ADTG) format, and XML support
was always limited. We couldn't, for example, load an arbitrary XML
document into an ADO recordset – the document had to be in exactly the
right format. XML support in ADO.NET is far more complete – XML is
absolutely integral to ADO.NET, and not just an add-on. XML is the
format used to serialize and transport DataSets. Serializing a DataSet as an
XML document (to a file, a stream, or a TextWriter object) is a trivial
matter:

// Save the DataSet as an XML file

ds.WriteXml(@"C:\CSharp\Employees.xml");

The format of the generated XML document is far more readable
than the ADO equivalent – the columns are represented by elements, not
attributes, and there aren't a lot of unnecessary XML namespaces:

<?xml version="1.0" standalone="yes"?>

<NewDataSet>

<Employees>

<EmployeeID>1</EmployeeID>

<FirstName>Nancy</FirstName> BCA-E10/170

<LastName>Davolio</LastName>

</Employees>

<Employees>

<EmployeeID>2</EmployeeID>

<FirstName>Andrew</FirstName>

<LastName>Fuller</LastName>

</Employees>

<!-- and so on... -->

</NewDataSet>

In addition, we can load any well-formed XML document into a
DataSet, without having to use a predefined structure (although we might
lose content if the structure of the document is not basically tabular).

Check Your Progress

 What do you mean by .NET data provider

 Compare ADO.NET and XML

8.10 SUMMARY

ADO.NET is the data access component of Microsoft’s new .NET
Framework. Microsoft bills ADO.NET as “an evolutionary improvement”
over previous versions of ADO, a claim that has been hotly debated since
its announcement. It is certainly true that the ADO.NET object model
bears very little relationship to earlier versions of ADO.

In fact, whether you decide to love it or hate it, one fact about the
.NET Framework seems undeniable: it levels the playing ground. Whether
you’ve been at this computer game longer than you care to talk about or
you’re still sorting out your heaps and stacks, learning the .NET
Framework will require a major investment. We’re all beginners now. So
welcome to Microsoft ADO.NET Step by Step. Through the exercises in
this book, I will introduce you to the ADO.NET object model, and you’ll
learn how to use that model in developing data-bound Windows Forms
and Web Forms. In later topics, we’ll look at how ADO.NET interacts
with XML and how to access older versions of ADO from the .NET
environment. Since we’re all beginners, an exhaustive treatment would be,
well, exhausting, so this book is necessarily limited in scope. My goal is to
provide you with an understanding of the ADO.NET objects—what they
are and how they work together. So fair warning: this book will not make
you an expert in ADO.NET. (How I wish it were that simple!) What this
book will give you is a road map, a fundamental understanding of the BCA-E10/171

environment, from which you will be able to build expertise. You’ll know
what you need to do to start building data applications. The rest will come
with time and experience. This book is a place to start. Although I’ve
pointed out language differences where they might be confusing, in order
to keep the book within manageable proportions I’ve assumed that you are
already familiar with Visual Basic .NET or Visual C# .NET. If you’re
completely new to the .NET environment, you might want to start with
Microsoft Visual Basic .NET Step by Step by Michael Halvorson
(Microsoft Press, 2002) or Microsoft Visual C# .NET Step by Step by
John Sharp and Jon Jagger (Microsoft Press, 2002), depending on your
language of choice.

The exercises that include programming are provided in both
Microsoft Visual Basic and Microsoft C#. The two versions are identical
(except for the difference between the languages), so simply choose the
exercise in the language of your choice and skip the other version.

8.10 TERMINAL QUESTIONS

1. What do you understand by ADO.NET?

2. Give the evolution of data access.

3. What are the ADO.NET components?

4. Write a short note on DataSet.

5. How can you define the DataSet structure?

6. What is the difference Between DataReader and DataSet?

7. Explain relation of ADO.NET with XML.

BCA-E10/172

UNIT-9 ASP.NET STATE MANAGEMENT

Structure

9.0 Introduction

9.1 Objectives

9.2 TYPES OF STATE

9.3 ASP.NET – Managing State

9.4 Application and Session Variable

9.5 Counting Sessions

9.6 What is a Cookie

9.7 Storing Variables in Database

9.8 Clearing ASP.NET Session Variables

9.9 Asssemblies

9.10 Summary

9.11 Terminal questions

9.0 INTRODUCTION

Before the discussion of state management in ASP.NET, let’s get
one thing straight: Attempting to manage state in Web applications goes
against the fundamental design principles of the Web. One of the primary
goals of the Web and its underlying protocol, HTTP, is to provide a
scalable medium for sharing information. Adding user state inherently
reduces scalability because the pages shown to a particular user will be
different from those shown to another user and thus cannot be reused or
cached.

In spite of this fact, many applications deployed on the Web
require user-specific state to function properly. Applications ranging from
e-commerce shopping sites to local company intranet sites depend on the
ability to track individual requests from distinct users and store state on
behalf of each client, whether it’s items in a shopping cart or which days
were selected on a calendar as requested vacation days. Although
maintaining client-specific state is not officially part of the HTTP
protocol, there is a proposal in place for adding state management to
HTTP. RFC 210914 defines a proposed standard for state management for
HTTP also known as cookies. Although it is only a proposed standard and
not yet an official part of the HTTP specification, cookies are in

BCA-E10/173

widespread use today in almost all browsers, and many Web sites rely on
cookies for their functionality.

 As a consequence, Web programmers must be very conscious
about state management. Unlike traditional applications, Web applications
must be very explicit about any state that is maintained on behalf of a
client, and there is no one standard way to maintain that state. Moreover,
remember that ASP.NET (and the Web) is stateless and the Web server
does not keep track of past client requests. Furthermore, different
technologies handle the issue of statement management differently like
ASP.NET is somewhat unique in this regard but PHP works similarly.

 Moreover, there some issues like client state management
consumes bandwidth and introduces security risks because sensitive data
is passed back and forth with each page post-back. Preserving state on a
server can overburden servers: we also must consider Web farms and Web
gardens.

9.1 OBJECVTIVES

At the end of this unit you would be familiar with the following topics:

 Definition of state management

 Types of state management

 Session management

 Client state management

 Cookies

 Issues in Cookies

 Server side state management

 Managing site

 Session variables

9.2 TYPES OF STATE

One of the most important decisions you face when designing a
Web application is where to store your state. ASP.NET provides four
types of state: application state, session state, cookie state, and view state.
In this unit, we explore each type of state, when it is most applicable, and
any disadvantages you should be aware of if you decide to make use of it.
ASP.NET, like its predecessor, ASP, provides a pair of objects for
managing application-level state and session-level state. Application state
is where information that is global to the application may be stored. For
efficiency, this state is typically stored once and then read from many
times. Session state is maintained on a per-client basis. When a client first

BCA-E10/174

accesses any page in an application, an ASP.NET generated session ID is
created. That session ID is then transmitted between the server and the
client via HTTP either using client-side cookies or encoded in a mangled
version of the URL (URL mangling is discussed in detail later in this
chapter). On subsequent accesses by the same client, state associated with
that session ID may be viewed and modified. Cookies provide the ability
to store small amounts of data on a client’s machine. Once a cookie is set,
all subsequent pages accessed by the same client will transmit the cookie
and its value.

Finally, view state is a yet another way of storing state on behalf of
a client by saving and restoring values from a hidden field when a form is
posted. Although this technique for retaining state has been used by Web
developers in the past, ASP.NET provides a simplified mechanism for
taking advantage of it. As we have seen, it is possible to place items into
the ViewState property bag available in every Page-derived class. When
that page issues a POST request to itself, the values placed in the
ViewState property bag can then be retrieved, the key restriction being
that view state works only when a page posts to itself. Table 9.1
summarizes the advantages and disadvantages of each of the four types of
state available in ASP.NET.

Table 9.1:State Type Comparison in ASP.NET

Type of
State

Scope of
State

Advantages Disadvantages

Application Global to the

application

Shared across
all

clients

o Overuse limits
scalability

o Not shared across
multiple machines
in a Web farm or
processors in a Web
garden

o Primary purpose
subsumed by data

cache in ASP.NET

Session Per client Can configure
to

be shared
across

machines in a

Web farm and

processors in a

o Requires cookies or
URL mangling to
manage client
association

o Off-host storage can
be inefficient

BCA-E10/175

Web garden

Cookie Per client o Works
regardless of
server
configuratio
n

o State stored
on Client

o State can
live beyond
current
session

o Limited memory
(~4KB)

o Clients may not
support cookies or
may explicitly
disable them

o State is sent back
and forth with each
request

View Across POST

requests to

the same

page

o Works
regardless of
server
configuratio
n

o State is retained
only with POST
request made to the
same page

o State is sent back
and forth with each
request

9.2.1 APPLICATION STATE

Application state is something that should be used with care, and in
most cases, avoided altogether. Although it is a convenient repository for
global data in a Web application, its use can severely limit the scalability
of an application, especially if it is used to store shared, updateable state. It
is also an unreliable place to store data, because it is replicated with each
application instance and is not saved if the application is recycled. With
this warning in mind, let’s explore how it works. Application state is
accessed through the Application property of the HttpApplication class,
which returns an instance of class HttpApplicationState. This class is a
named object collection, which means that it can hold data of any type as
part of a key/value pair. Listing 9.1 shows a typical use of application
state. As soon as the application is started, it loads the data from the
database. Subsequent data accesses will not need to go to the database but
will instead access the application state object’s cached version. Data that
is pre-fetched in this way must be static, because it will not be unloaded
from the application until the application is recycled or otherwise stopped
and restarted.

The one feature of application state that cannot be replaced by the
data cache is the ability to have shared updateable state. Arguably,
however, this type of state should not be used at all in a Web application,
because it inherently limits scalability and is unreliable as a mechanism

BCA-E10/176

for storing meaningful data. In the previous example, we were using
application state to save statistics on browser type access. This
information is maintained only as long as the application is running, and it
is stored separately in each instance of the application. This means that
when the process recycles, the data is lost. It also means that if this
application is deployed in a Web farm (or a Web garden), separate
browser statistics will be kept for each running instance of the application
across different machines (or CPUs). To more reliably collect this type of
statistical information, it would make more sense to save the data to a
central database and avoid application state altogether.

Example: Use of Application State for Data Prefetching

// Inside of global.asax

void Application_Start(object src, EventArgs e)

{

DataSet ds = new DataSet();

// population of dataset from ADO.NET query not shown

// Cache DataSet reference

Application["FooDataSet"] = ds;

}

// In some page within the application

private void Page_Load(object src, EventArgs e)

{

DataSet ds = (DataSet)(Application["FooDataSet"]);

// ...

MyDataGrid.DataSource = ds;

// ...

}

9.2.2 Session State

Maintaining state on behalf of each client is often necessary in
Web applications, whether it is used to keep track of items in a shopping
cart or to note viewing preferences for a particular user. ASP.NET
provides three ways of maintaining client-specific state: session state,
cookie state, and view state. Each technique has its advantages and
disadvantages. Session state is the most flexible and, in general, the most
efficient. ASP.NET has enhanced session state to address some of the
problems associated with it in previous versions of ASP, including the

BCA-E10/177

abilities to host session state out of process (or in a database) and to track
session state without using cookies.

Session state is maintained on behalf of each client within an
ASP.NET application. When a new client begins to interact with the
application, a new session ID (or session key) is generated and associated
with all subsequent requests from that same client (either using a cookie or
via URL mangling). By default, the session state is maintained in the same
process and AppDomain as your application, so you can store any data
type necessary in session state. If you elect to house session state in
another process or in a database, however, there are restrictions on what
can be stored, as we will discuss shortly. Session state is maintained in an
instance of the HttpSessionState class and is accessible through the
Session property of both the Page and HttpContext classes. When a
request comes in to an application, the Session properties of the Page and
HttpContext class used to service that request are initialized to the current
instance of HttpSession- State that is associated with that particular client.

Example: HttpSessionState Class

public sealed class HttpSessionState : ICollection,

IEnumerable

{

// properties

public int CodePage {get; set;}

public int Count {get;}

public bool IsCookieless {get;}

public bool IsNewSession {get;}

public bool IsReadOnly {get;}

public KeysCollection Keys {get;}

public int LCID {get; set;}

public SessionStateMode Mode {get;}

public string SessionID {get;}

public HttpStaticObjectsCollection StaticObjects {get;}

public int Timeout {get; set;}

// indexers

public object this[string] {get; set;}

public object this[int] {get; set;}

// methods
BCA-E10/178

public void Abandon();

public void Add(string name, object value);

public void Clear();

public void Remove(string name);

public void RemoveAll();

public void RemoveAt(int index);

//...

}

public class Page : TemplateControl, IHttpHandler

{

public virtual HttpSessionState Session {get;}

//..

}

public sealed class HttpContext : IServiceProvider

{

public HttpSessionState Session {get;}

//...

}

9.2.3 COOKIE STATE

Although not part of the HTTP specification (yet), cookies are
often used to store user preferences, session variables, or identity. The
server issues a Set-Cookie header in its response to a client that contains
the value it wants to store. The client is then expected to store the
information associated with the URL or domain that issued the cookie. In
subsequent requests to that URL or domain, the client should include the
cookie information using the Cookie header. Some limitations of cookies
include the fact that many browsers limit the amount of data sent through
cookies (only 4,096 bytes are guaranteed) and that clients can potentially
disable all cookie support in their browser.

ASP.NET provides an HttpCookie class for managing cookie data.
Listing 10-16 shows the HttpCookie class definition and the cookie
collection properties exposed by the request and response objects. Note
that the request and response objects both expose the collection of cookies
through the HttpCookieCollection type, which is just a type-safe
derivative of the NameObjectCollectionBase class, designed for storing
HttpCookie class instances. Each cookie can store multiple name/value
pairs, as specified by RFC 2109, which are accessible through the Values BCA-E10/179

collection of the Http-Cookie class or indirectly through the default
indexer provided by the class.

Example: The HttpCookie Class

public sealed class HttpCookie

{

public string Domain {get; set;}

public DateTime Expires {get; set;}

public bool HasKeys {get; }

public string this[string key] {get; set;}

public string Name {get; set;}

public string Path {get; set;}

public string Secure {get; set;}

public string Value {get; set;}

public NameValueCollection Values {get; }

//...

}

public sealed class HttpRequest

{

public HttpCookieCollection Cookies {get;}

//...

}

public sealed class HttpResponse

{

public HttpCookieCollection Cookies {get;}

//...

}

9.3 ASP.NET - MANAGING STATE

Hyper Text Transfer Protocol HTTP is a stateless protocol. When
the client disconnects from the server, the ASP.NET engine discards the
page objects. This way, each web application can scale up to serve
numerous requests simultaneously without running out of server memory.
However, there needs to be some technique to store the information

BCA-E10/180

between requests and to retrieve it when required. This information i.e.,
the current value of all the controls and variables for the current user in the
current session is called the State.

ASP.NET manages four types of states: View State, Control State,
Session State, and Application State.

9.3.1 VIEW STATE

The view state is the state of the page and all its controls. It is
automatically maintained across posts by the ASP.NET framework. When
a page is sent back to the client, the changes in the properties of the page
and its controls are determined, and stored in the value of a hidden input
field named _VIEWSTATE. When the page is again posted back, the
_VIEWSTATE field is sent to the server with the HTTP request. The view
state could be enabled or disabled for the following:

 The entire application by setting the EnableViewState property in
the <pages> section of web.config file.

 A page by setting the EnableViewState attribute of the Page
directive, as <%@ Page Language="C#" EnableViewState="false"
%>

 A control by setting the Control.EnableViewState property

It is implemented using a view state object defined by the StateBag
class which defines a collection of view state items. The state bag is a data
structure containing attribute value pairs, stored as strings associated with
objects.

Table 9.2: StateBag Class Properties

Properties Description

Itemname The value of the view state item with the specified
name. This is the default property of the StateBag
class.

Count The number of items in the view state collection.

Keys Collection of keys for all the items in the
collection.

Values Collection of values for all the items in the
collection.

BCA-E10/181

Table 9.3 : StateBag Class Methods

Methods Description

Addname,value Adds an item to the view state collection and
existing item is updated.

Clear Removes all the items from the collection.

EqualsObject Determines whether the specified object is equal
to the current object.

Finalize Allows it to free resources and perform other
cleanup operations.

GetEnumerator Returns an enumerator that iterates over all the
key/value pairs of the StateItem objects stored in
the StateBag object.

GetType Gets the type of the current instance.

IsItemDirty Checks a StateItem object stored in the StateBag
object to evaluate whether it has been modified.

Removename Removes the specified item.

SetDirty Sets the state of the StateBag object as well as the
Dirty property of each of the StateItem objects
contained by it.

SetItemDirty Sets the Dirty property for the specified StateItem
object in the StateBag object.

ToString Returns a string representing the state bag object.

Example: The concept of storing view state.

Let us keep a counter, which is incremented each time the page is posted
back by clicking a button on the page. A label control shows the value in
the counter.

BCA-E10/182

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Default.aspx.cs" Inherits="statedemo._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

<title> Untitled Page </title>

</head>

<body>

<form>

<div>

<h3>View State demo</h3>

Page Counter:

<asp:Label ID="lblCounter" runat="server" />

<asp:Button ID="btnIncrement" runat="server"
Text="Add Count" onclick="btnIncrement_Click" />

</div>

</form>

</body>

</html>

Example:

public partial class _Default : System.Web.UI.Page

{

public int counter

{

get

{

if (ViewState["pcounter"] != null)

{ BCA-E10/183

return ((int)ViewState["pcounter"]);

}

else

{

return 0;

}

}

set

{

ViewState["pcounter"] = value;

}

}

protected void Page_Load(object sender, EventArgs e)

{

lblCounter.Text = counter.ToString(); counter++;

}

}

9.3.2 CONTROL STATE

Control state cannot be modified, accessed directly, or disabled.

9.3.2 SESSION STATE

When a user connects to an ASP.NET website, a new session
object is created. When session state is turned on, a new session state
object is created for each new request. This session state object becomes
part of the context and it is available through the page. Session state is
generally used for storing application data such as inventory, supplier list,
customer record, or shopping cart. It can also keep information about the
user and his preferences, and keep the track of pending operations.
Sessions are identified and tracked with a 120-bit SessionID, which is
passed from client to server and back as cookie or a modified URL. The
SessionID is globally unique and random. The session state object is

BCA-E10/184

created from the HttpSessionState class, which defines a collection of
session state items.

Table 9.4: Http SessionState class Properties

Properties Description

SessionID The unique session identifier.

Itemname The value of the session state item with the specified
name. This is the default property of the
HttpSessionState class.

Count The number of items in the session state collection.

TimeOut Gets and sets the amount of time, in minutes, allowed
between requests before the session-state provider
terminates the session.

Table 9.5 : HttpSessionState Class Methods

Method Description

Addname,value Adds an item to the session state collection.

Clear Removes all the items from session state collection.

Removename Removes the specified item from the session state
collection

RemoveAll Removes all keys and values from the session-state
collection.

RemoveAt Deletes an item at a specified index from the session-
state collection.

The session state object is a name-value pair to store and retrieve some
information from the session state object.

BCA-E10/185

Example :

void StoreSessionInfo()

{

String fromuser = TextBox1.Text; Session["fromuser"] = fromuser;

}

void RetrieveSessionInfo()

{

String fromuser = Session["fromuser"]; Label1.Text = fromuser;

}

The above code stores only strings in the Session dictionary object,
however, it can store all the primitive data types and arrays composed of
primitive data types, as well as the DataSet, DataTable, HashTable, and
Image objects, as well as any user-defined class that inherits from the
ISerializable object.

9.3.4 APPLICATION STATE

The ASP.NET application is the collection of all web pages, code
and other files within a single virtual directory on a web server. When
information is stored in application state, it is available to all the users. To
provide for the use of application state, ASP.NET creates an application
state object for each application from the HTTPApplicationState class and
stores this object in server memory. This object is represented by class file
global.asax. Application State is mostly used to store hit counters and
other statistical data, global application data like tax rate, discount rate etc.
and to keep the track of users visiting the site. The properties and methods
of HttpApplicationState class are shown in table 9.1 & 9.2 respectively.

Table 9.6 : Properties of Http Application State

Properties Description

Itemname The value of the session state item with the specified name.
This is the default property of the HttpSessionState class.

Count The number of items in the session state collection.

BCA-E10/186

Table 9.7: Methods of HttpApplicationState

Method Description

Addname,value Adds an item to the application state collection.

Clear Removes all the items from application state
collection.

Removename Removes the specified item from the application state
collection

RemoveAll Removes all objects from the application -state
collection.

RemoveAt Removes an HttpApplicationState object from a
collection by index.

Lock Locks the application state collection so only the
current user can access it.

Unlock Unlocks the application state collection so all the
users can access it.

Application state data is generally maintained by writing handlers for the
events: Application_Start, Application_End, Application_Error,
Session_Start, Session_End.

The following code snippet shows the basic syntax for storing application
state information:

Void Application_Start(object sender, EventArgs e)

{

Application["startMessage"] = "The application has started.";

}

Void Application_End(object sender, EventArgs e)

{

Application["endtMessage"] = "The application has ended.";

}

BCA-E10/187

Check Your Progress

 What do you mean by state management?

 Give the names of different types of state management.

9.4 APPLICATION AND SESSION VARIABLES

The Application and Session objects can be used to store values
that are global either to a particular user (the Session) or to all users (the
Application). Within the onStart events, we can initialize these variables.
We can also store new variables, or change existing values, in the code
inside any other ASP page. Initializing variables is very important,
especially with a language like VBScript that uses Variants. Imagine the
following code in a page:

Response.Write("The current value is: " & Session("MyValue"))

This places the contents of the Session variable MyValue in the
page. The only problem with this code is if the variable has not been
initialized.

The current value is: Any Variant (the only data type available in
VBScript) that has not been assigned a value is said to be Empty. Because
we are dumping the variable as its default type, we get nothing. The best
way to solve this type of problem is either assign a default value to it, or
examine the variable using the IsEmpty() function.

Here's how we could use

Is Empty():

varTheValue = Session("MyValue")

If IsEmpty(varTheValue) Then varTheValue = "* Undefined *"

Response.Write("The current value is: " & varTheValue)

Alternatively, we can set any default value we like in
the Session_onStart event, so that we have a value ready for access in that
session:

Sub Session_OnStart

Session("MyValue") = 42

End Sub

BCA-E10/188

9.5 COUNTING SESSIONS

An immediately obvious use of this technique is to count how
many sessions have occurred during the current application. All we do is
use a variable stored in the Application object, which is then available to
all sessions:

Sub Application_OnStart

Application("NumVisitors") = 0

End Sub

Now, in Session_onStart, we can increment the value for each new
session:

Sub Session_OnStart

Application.Lock

Application("NumVisitors") = Application("NumVisitors") + 1

Application.Unlock

End Sub

Them we can drop it into the 'welcome' page with a few lines of code:

<% Application.Lock %>

<H3> Your are visitor number <% = Application("NumVisitors")
%></H3>

<% Application.Unlock %>

9.6 WHAT IS COOKIE

A cookie is often used to identify a user. A cookie is a small file
that the server embeds on the user's computer. Each time the same
computer requests a page with a browser, it will send the cookie too. With
ASP, you can both create and retrieve cookie values.

9.6.1 HOW TO CREATE A COOKIE?

The "Response.Cookies" command is used to create cookies.

Note : The Response.Cookies command must appear BEFORE the
<html> tag.

In the example below, we will create a cookie named "firstname" and
assign the value "Alex" to it:

BCA-E10/189

<%
Response.Cookies("firstname")="Alex"
%>

It is also possible to assign properties to a cookie, like setting a date when
the cookie should expire:

<%
Response.Cookies("firstname")="Alex"

Response.Cookies("firstname").Expires=#May 10,2012#

%>

9.6.2 HOW TO RETRIEVE A COOKIE VALUE

The "Request.Cookies" command is used to retrieve a cookie
value. In the example below, we retrieve the value of the cookie named
"firstname" and display it on a page :

<%
fname=Request.Cookies("firstname")
response.write("Firstname=" & fname)

%>

Output: Firstname=Alex

9.6.3 LIMITATIONS OF COOKIES

While simple, cookies have disadvantages too

 A cookie can only be 4096 bytes in size

 Most browsers restrict the total number of cookies per site

 Users can refuse to accept cookies so don’t try to use them to store
critical information

9.7 STORING VARIABLES IN DATABASE

Following code can been used to store the variables in the database

SqlConnection con = new SqlConnection("Initial Catalog=Thumbnail

Data Source='OWNER- PC\\SQLEXPRESS';integrated security=true;"))

{

using (SqlCommand command = new Sql Command ("Get User Login
Details", con))

{

command.Parameters.Add (new Sql Parameter ("@UserName",
BCA-E10/190

SqlDbType.VarChar)).Value = username;

command.Parameters.Add(new Sql Parameter ("@Password",

SqlDbType.VarChar)).Value = password

con.Open();

if (con.State == ConnectionState.Open)

{

using (SqlDataReader reader = comm.ExecuteReader())

{

if (reader.Read())

{

if (reader["username"] != DBNull.Value)

 {

Session["Username"] = reader["username"].ToString();

 }

return true;

}

else

{

return false;

}

}

}

else

{

throw new Exception("Could not open database");

}

}

}

9.8 CLEARING ASP.NET SESSION
VARIABLES

ASP.NET Session is one of most common state management
technique for any ASP.NET Web Application. If you want to do a quick
refresh or want to know something more, please go ahead and read one of
my article “Exploring Session in ASP.NET” published at Code Project.
ASP.NET provides several methods for removing Session. But which BCA-E10/191

http://www.codeproject.com/KB/aspnet/ExploringSession.aspx

methods needs to use at what time, is a must known stuff for asp.net
developer. In this post I going to talk about bit internals of removing
session variables from applications. Why this Post ? I found many people
having some confusion around removing / clearing the session variable (
Mainly with Session.Clear(), Session.RemoveAll(), Session.Abandon()) ,
which method needs to use, what is the purpose of particular method etc.
ASP.NET Provides below methods to clearing or removing Session
information:

 Session.Clear()

 Session.RemoveAll()

 Session.Abandon()

 Session.RemoveAt(index)

 Session.Remove(string)

We will be mainly focusing the first three methods. Let’s start
with Session.Clear() and Session.RemoveAll(). Well, you may ask, why I
am starting with two methods together. Yes, we are in same track.
Both Session.Clear() and Session.RemoveAll()does the same job. Let’s
explore it

Let’s assume stored below information with in session variable.

protected void Page_Load(object sender, EvenArgs e)

{

Session[“Item1”] = “My session Info 1”;

Session[“Item2”] = “My session Info 2”;

Session[“Item3”] = “My session Info 3”;

Session[“Item4”] = “My session Info 4”;

Session[“Item5”] = “My session Info 5”;

}

now, if you want to remove all the items from session you can use
either Session.RemoveAll() or Session.Clear().if you check the definition
from meta data file you will get below details, where description says the
same.

//

// Summary

// Removes all keys and values from the session-state collection.

public void Clear ();

//
BCA-E10/192

// Summary

// Removes all keys and values from the session-state collection.

public void removeAll();

9.8 ASSEMBLIES

Assembly is a compiled output of program which are used for easy
deployment of an application. They are executables in the form of exe or
dll. It also is a collection of resources that were used while building the
application and is responsible for all the logical functioning.

9.8.1 TYPES OF ASSEMBLIES

Private Assemblies: are accessible by a single application. They reside
within the application folder and are unique by name. They can be directly
used by copying and pasting them to the bin folder.

Shared Assemblies: are shared between multiple applications to ensure
reusability. They are placed in GAC.

Satellite Assemblies: are the assemblies to provide the support for
multiple languages based on different cultures. These are kept in different
modules based on the different categories available.

9.8.2 DIFFERENCE BETWEEN PRIVATE AND
SHARED ASSEMBLY

The terms 'private' and 'shared' refer to how an assembly is
deployed, not any intrinsic attributes of the assembly. A private assembly
is normally used by a single application, and is stored in the application's
directory, or a sub-directory beneath. A shared assembly is intended to be
used by multiple applications, and is normally stored in the global
assembly cache (GAC), which is a central repository for assemblies. A
shared assembly can also be stored outside the GAC, in which case each
application must be pointed to its location via a codebase entry in the
application's configuration file. The main advantage of deploying
assemblies to the GAC is that the GAC can support multiple versions of
the same assembly side-by-side. Assemblies deployed to the GAC must be
strong-named. Outside the GAC, strong-naming is optional.

9.8.3 CREATING AND USING STRONG-NAMED
ASSEMBLIES

A strong name consists of the assembly's identity—its simple text
name, version number, and culture information (if provided)—plus a
public key and a digital signature. It is generated from an assembly file
using the corresponding private key. (The assembly file contains the

BCA-E10/193

assembly manifest, which contains the names and hashes of all the files
that make up the assembly.)

A strong-named assembly can only use types from other strong-
named assemblies. Otherwise, the security of the strong-named assembly
would be compromised.

The following scenario outlines the process of signing an assembly
with a strong name and later referencing it by that name.

1. Assembly A is created with a strong name using one of the
following methods:

 Using a development environment that supports creating strong
names, such as Visual Studio 2005.

 Creating a cryptographic key pair using the Strong Name tool
(Sn.exe) and assigning that key pair to the assembly using either
a command-line compiler or the Assembly Linker (Al.exe). The
Windows Software Development Kit (SDK) provides both
Sn.exe and Al.exe.

2. The development environment or tool signs the hash of the file
containing the assembly's manifest with the developer's private
key. This digital signature is stored in the portable executable (PE)
file that contains Assembly A's manifest.

3. Assembly B is a consumer of Assembly A. The reference section
of Assembly B's manifest includes a token that represents
Assembly A's public key. A token is a portion of the full public
key and is used rather than the key itself to save space.

4. The common language runtime verifies the strong name signature
when the assembly is placed in the global assembly cache. When
binding by strong name at run time, the common language runtime
compares the key stored in Assembly B's manifest with the key
used to generate the strong name for Assembly A. If the .NET
Framework security checks pass and the bind succeeds, Assembly
B has a guarantee that Assembly A's bits have not been tampered
with and that these bits actually come from the developers of
Assembly A.

Check Your Progress
 What is session variable?

 Discuss the limitations of cookies.

9.10 SUMMARY

State management influences almost every aspect of a Web
application’s design, and it is important to understand all the options
available for state management as well as their implications for usability,

BCA-E10/194

https://msdn.microsoft.com/en-us/library/k5b5tt23(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/k5b5tt23(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/c405shex(v=vs.110).aspx

performance, and scalability. ASP.NET provides four types of state, each
of which may be the best choice in different parts of your application.
State that is global to an application may be stored in the application state
bag, although it is typically preferable to use the new data cache instead of
application state in ASP.NET. Client-specific state can be stored either in
the session state bag, as client-side cookies, or as view state.

Session state is most commonly used for storing data that should
not be sent back and forth with each request, either because it is too large
or because the information should not be visible on the Internet. Cookie
state is useful for small client-specific pieces of information such as
preferences, authentication keys, and session keys. View state is a useful
alternative to session state for information that needs to be retained across
posts back to the same page. Finally, enhancements to the session state
model in ASP.NET give developers the flexibility to rely on session state
even for applications that are deployed on Web farms or Web gardens
through remote session storage.

9.11 TERMINAL QUESTIONS

1. Define the term state management.

2. Write the categories and need of state management.

3. Discuss about the role of state management.

4. What do you understand by session management? Explain.

5. Explain the meaning of application state.

6. Write the role of control state.

7. Discuss about cookies and its limitations.

8. What do you understand by assembly?

9. Explain multiple types of assembly.

10. Write a short note on Creating and Using Strong-Named
Assemblies.

 BCA-E10/195

BCA-E10/196

UNIT-10 CONFIGURATION
Structure

10.0 Introduction

10.1 Objectives

10.2 What is Configuration

10.3 Need of Configuration

10.4 Windows Configuration

10.5 .NET Configuration

10.6 Caching

10.7 Types Caching

10.8 SQL Cache Invalidation

10.9 Summary

10.10 Terminal questions

10.0 INTRODUCTION

It is very clear that computer includes two parts which are
hardware and software. Software is the soul of the hardware and termed as
very important part for it. Without software, the hardware is nothing or it
cannot work properly. This software differs from computer to computer or
we can say hardware to hardware. The software is intended with a
particular machine e.g. client machines have some kind of software while
server computer have other kind of software. Moreover, operating system
is very popular software which provides more or less all the things that
hardware requires to come into running position or implementation.
Operating systems are of many types like single-user, multi-user,
distributed, network, hand-held, client-server etc. More or less the
functions of all the operating systems are same.

Moreover, the configuration also plays important role for all
software. Improper configuration or installation of the software may lead
to errors or sometimes it may be harmful to such extent that it may crash
the hardware or system for which it intended. Hence it becomes necessary
to know about the proper configuration or installation of the software.
Normally when we purchase a computer or any other hardware like router,
switch, printer etc; some configuration is automatically done and some
need to be done manually. We are intended with the second case i.e.
manual configuration. In this unit, Windows and .NET configuration has

BCA-E10/197

been discussed however there may me other configurations like Linux
configuration etc.

As computer system requires configuration. This is obvious to
anyone who has used even the simplest consumer grade machines, which
demand that you supply your name and the computer’s name when they
are first unpacked. Anyone who has worked with system or network
administrators knows that full configuration is far more complex,
including the ability — and sometimes the need — to set options that most
people don’t even know exist. What is less obvious, even to many system
administrators, is that configuration management is a vital part of system
and site security. Not only do security devices themselves require
configuration, many rather ordinary aspects of life with computers (e.g.,
the fact that laptops are sometimes turned off and hence can’t be
reconfigured) have implications for security. Security configuration has
another unique feature: it has strong interactions with business and
personnel policy. Many security decisions are concrete instantiations of
management decisions.

Security configuration has another unique feature: it has strong
interactions with business and personnel policy. Many security decisions
are concrete instantiations of management decisions. Incorrect
configuration can endanger business relationships or have legal
ramifications. Conversely, by definition security involves dealing with
enemies. That is, someone will try to counter your moves. Managing
security configuration is not simply a matter of designing the right
configuration and distributing it, contending only with Murphy’s Law;
instead, the administrator must contend with active attempts to subvert
configurations, evade them, or drive the system into an improbable state
not anticipated by the configuration. Note well that “enemies” can include
a site’s own employees.

10.1 OBJECTIVES

At the end of this unit you would be familiar with the following topics:

 About configuration

 Windows configuration

 .NET configuration

 Issues in configuration

 Caching

 Types of Caching

10.2 WHAT IS CONFIGURATION

Configuration can refer to either hardware or software, or the
combination of both. Generally a configuration is the arrangement of the

BCA-E10/198

multiple parts in a machine. In the computer world when, people talk
about their computer configuration, basically they refer to the technical
specification or the “tech specs” of those computers. These specs typically
include processor speed, the amount of RAM, hard Drive Space, and the
type of video card in the machine etc. Without configuration a computer is
incomplete. Therefore, it is evident that Computer systems require
configuration. This is obvious to anyone who has used even the simplest
consumer grade machines, which demand that you supply your name and
the computer’s name when they are first unpacked. Anyone who has
worked with system or network administrators knows that full
configuration is far more complex, including the ability — and sometimes
the need — to set options that most people don’t even know exist. What is
less obvious, even to many system administrators, is that configuration
management is a vital part of system.

And other aspect of configuration is site security. Not only security
devices themselves require configuration, many rather ordinary aspects of
life with computers (e.g., the fact that laptops are sometimes turned off
and hence can’t be reconfigured) have implications for security.

Normally configuration of a computer is used in different ways:

 In networks, a configuration often means the Networks’ Topology
or its physical structre.

 During the Installation of hardware and software configuration is
the method or process of defining options that are provided.

 For instance a typical configuration for a PC consist of main
memory in MB, a CD/DVD, a hard disk, a modem, CD ROM
drive, a VGA monitor and the Windows Operating System.

When you install a new device or program, sometimes you need to
configure it, which means to set Various Switches Jumpers (for hardware)
and to define value of parameters (for Software).

Security configuration has another unique feature: It has strong
interactions with business and personnel policy. Many security decisions
are concrete instantiations of management decisions. Incorrect
configuration can endanger business relationships or have legal
ramifications. Conversely, by definition security involves dealing with
enemies. That is, someone will try to counter your moves. Managing
security configuration is not simply a matter of designing the right
configuration and distributing it, contending only with Murphy’s Law;
instead, the administrator must contend with active attempts to subvert
configurations, evade them, or drive the system into an improbable state
not anticipated by the configuration. Note well that “enemies” can include
a site’s own employees.

BCA-E10/199

Some form of centralized configuration management is necessary,
then both for correct operation and security. While there are many ways to
accomplish this, a number of requirements must be satisfied:

10.2.1 SECURITY

The configuration management scheme must be secure, in many
senses of the word. Its databases must be protected against unauthorized
access or modification, the communications with the managed hosts must
be authenticated, integrity-protected, and often encrypted; the commands
to the management system must be properly authenticated.

10.2.2 DATABASE-DRIVEN

Different machines have different roles; as such, they require
different configurations. A desktop machine may have no need for a web
server; depending on the user’s needs, though, it may need a database
server. Other machines — says, mail servers — may need neither, but may
need other specialized software.

10.2.3 ROBUSTNESS

There will be configuration failures. Machines may be down
during attempted updates; other, unmanaged changes may have occurred;
changes — specifically including vendor-supplied patches—may fail to
install. If the configuration changes are security-relevant, this could have
serious consequences.

10.3 NEED OF CONFIGURATION

The need of software can be explained using the following:

 So that a hardware work properly and without errors.

 To reduce the probability of hardware crash.

 Efficient and effective use of memory.

 To reduce the idle time of the CPU.

 The correct version of the software module that one has to
continue its coding.

 An accurate copy of the last year’s version 4.1 of the TMY
software package.

 The version of the design document matches the software version
we are adapting to a new customer.

 The version of the software system is installed at ABC Industries.

BCA-E10/200

 The changes which have been introduced in the version installed at
the Industries’ site.

 Changes introduced in the new version of the software.

 The full list of customers that use version of one’s software.

 For surety that the version installed at some company must not
include undocumented changes.

 Multiple people have to work on software that is changing

 More than one version of the software has to be supported:

 Released systems

 Custom configured systems (different functionality)

 System(s) under development

 Software on different machines & operating systems

10.4 WINDOWS CONFIGURATION

Windows configuration is a system utility to troubleshoot the
Microsoft windows Startup process it can disable or enable Software,
Drivers and windows. Services that run at startup or change boot
parameters. Configuration will be applied during either user login or
computer startup. It also provides the Status of the applied configuration
which is related to System Configuration. Desktop central, in addition to
windows configurations, also offers various Desktop Management
Capabilities to meet the administration need of a Windows Networks. It is
often used for speeding up the Microsoft windows startup process of the
machine. According to Microsoft, MSConfig was not meant to be used as
a startup management.

 BCA-E10/201

Figure 10.1: Windows Configuration

The Windows configuration falls under three categories: 1) Desktop
Configuration 2) Computer Configuration 3) Application configuration

10.4.1 DESKTOP CONFIGURATION

What is available at the desktop level depends on your network
configuration and specifically what group policy setting has been applied. BCA-E10/202

You control the information and the software that a user can access. The
user does not need to be involved in this. Setting might also include the
data that application need to preserve the user state such as a user’s
custom dictionary, lost files, and data that control the interface and the
behavior of the application. It also includes setting path, environment
variables, display properties, driver mapping, managing shortcut,
configuring IP / shared printers, displaying message box, launching
applications, launching games, and better interface.

10.4.2 COMPUTER CONFIGURATION

Computer configuration includes like managing local users,
groups, windows’ services, and scheduling application, manipulating
registry entries, installing software configuring power schemes and
executing custom scripts.

10.4.3 APPLICATION CONFIGURATION

Application configuration files contain settings specific to an
application .this file contains configuration settings that the common
language runtime reads and settings that the application can read. This
type configuration includes configuring windows applications such as MS
Office, Matlab, MS Outlook, Internet Explorer etc.

10.4.4 SECURITY CONFIGURATION

The security Configuration is a stand-alone snap-in tool that users
can use to import one or more saved configuration to a private security
database. Importing configurations builds a machine-specific security
database that stores a composite configuration .you can apply this
composite configuration to the computer and analyze the current system
configuration against the stored composite configuration stored in the
database. It includes configuring firewall settings, security policies,
displaying legal messages and alerts.

10.4.5 USER CONFIGURATION

User group policy setting are the setting located under the user
configuration node in group policy, which affect users and are obtained
when a user logs on.

Note: Windows configuration is bundled with all versions of Microsoft
Windows operating system since windows 98 except windows 2000 and
windows vista.

10.5 .NET CONFIGURATION

Using the features of the .Net configuration system, you can
configure all .Net application on an entire server, a single .Net application, BCA-E10/203

or Individual pages or applications, subdirectories. You can configure
features, such as authentication modes, page caching compiler, custom
errors, debug and trace option and much more.

The features of .Net configuration system can be applied only to
.Net resources. E.g. forms authentication only restricts access to .Net files,
not to static files or ASP classic files unless those resources are mapped to
.NET files name extensions. Use the configuration features of internet
information services (IIS) to configure other .NET resources.

Figure 10.2: .NET Configuration

10.5.1 .NET CONFIGURATION FILES

.Net configuration data is stored in XML text files that are named
as Web config. Web config files can appear in multiple directories in .Net
Application. These files allow you to easily edit configuration data before
during or after application are deployed on server. You can create and edit
.NET configuration files by using standard text editors like the .NET
MMC snap-in, the web site administration tool, or the .Net configuration
API.

.NET configuration files keep application configuration setting
separate from application code. Keeping configuration data separate from
code makes it easy for you to associate settings with application, change

BCA-E10/204

setting as needed after deploying an application, and extend the
configuration schema.

10.5.2 CONFIGURATION FILES HIERARCHY AND
INHERITANCE

Each Web.Config file applies configuration setting to the directory
that it is in and to all of the child directories below it. Setting in child
directories can override or modify setting that is specified in parent
directories. Configuration setting in a web config file can optionally be
applied to individual files or subdirectories by specifying a path in a
location element. The root of the .NET configuration hierarchy is the
systemroot\Microsoft.NET\Framework\versionNumber\CONFIG\Web.Con
fig file, which includes settings that apply to all .NET application that run
a specific version of the .NET Framework. As each .NET application
inherit default configuration setting from the root Web.Config file, you
need to create these config files only for settings that override the default
settings.

10.5.3 .NET CONFIGURATION TOOLS

The .NET Framework Configuration tool is a Microsoft
Management Console (MMC) snap-in that allows you to manage and
configure assemblies in the Global Assembly Cache, adjust code access
security policy, and adjust remoting services. Mscorcfg.msc is installed
with the .NET Framework SDK.

Starting the .NET Framework Configuration Tool

To run Mscorcfg.msc from the Start menu we can do the following

1. On a computer running Windows 2000 Professional, click Start,
point to Settings, and click Control Panel. Double-click
Administrative Tools. In the Administrative Tools window,
double-click Microsoft .NET Framework Configuration.

2. On a computer running Windows XP Professional, click Start,
click Control Panel, click Performance and Maintenance, and
click Administrative Tools. In the Administrative Tools
window, double-click Microsoft .NET Framework
Configuration.

3. On a computer running Windows 2000 Server or Windows Server
2003 family, click Start, point to Programs, and point to
Administrative Tools. Click Microsoft .NET Framework
Configuration.

To run Mscorcfg.msc from the Microsoft Management Console

1. Start the Microsoft Management Console by typing the following
at a command prompt: mmc.

BCA-E10/205

2. On the File menu, click Add/Remove Snap-in (or press
CTRL+M) to display the Add/Remove Snap-in dialog box.

3. In the Add/Remove Snap-in dialog box, click Add to display the
Add Standalone Snap-in dialog box.

4. In the Add Standalone Snap-in dialog box, select a version of the
.NET Framework Configuration tool, and then click Add.

CHECK YOUR PROGRESS

 Define the term configuration.

 What is windows configuration?
 What is .NET configuration?

10.6 CACHING

Other aspect in the configuration is Caching. Cache memory is a
small but fast memory meant to hold data for reuse in the near future.
Maurice V. Wilkes introduced the concept to fulfill the speed gap between
the CPU and main memory. He envisioned that cache memory would
bridge that gap by using the principles of spatial and temporal locality.
Recent advances in computer systems engineering have pushed cache
memory to higher levels in the computer systems hierarchy. On each new
level, the implementation details differ (to reflect the concrete
requirements of the particular system level), but the essence stays the same
(to reflect the chosen methods for using the principles of spatial and
temporal locality). So, the principles of spatial and temporal locality help
the concept survive and spread into the newly opened layers of the
emerging computer system hierarchies.

Caching is the process of storing data in cache. Caching is an area
of a computer’s memory devoted to temporarily Storing recently used
information. The content, which includes HTML pages, images, files, and
Web objects, is stored on the local hard drive in order to make is faster for
the user to access it . And, it helps in improving the efficiency of the
computer and its overall performance e.g. the files you request by looking
at the web page are stored on your disk in a cache.

Most caching occurs without the knowing to the user about it. For
example when a user returns to a web page which has been recently
accessed the browser. That can pull those files from the cache instead of
the original server because it has stored the user’s activity. The storage of
information saves the user time by getting to it faster traffic on the
networks.

BCA-E10/206

10.6.1 LAYERS OF CACHING

A careful analysis on various system levels in current systems
reveals seven layers of caching. These are as under:

1. CPU (in uniprocessor systems)
2. SMP (in shared memory multiprocessor systems)
3. DSM (in distributed shared memory systems)
5. DFM (in distributed file management and smart disk systems)
6. DPC (in distributed proxy cache systems)
7. WWW (on the World Wide Web level), and
8. IAI (on the Internet application and integration level).

In principle, this number could be higher (if a higher granularity of
system analysis is implied) or lower (because different caching layers are
highly correlated). We can define the principles of spatial and temporal
locality on each layer.

1. CPU (In Uniprocessor Systems)
The traditional definition of spatial and temporal localities comes
from the Uniprocessor environment. Spatial locality implies that
the next data item in the address space is most likely to be used
next, while temporal locality implies that the last data item used is
most likely to be used next. Implementation is typically based on a
fast but expensive memory (the price is affordable because, by
definition, cache memory is small). Even if we use the same
technology for the main memory and cache memory, the cache
memory will be faster because smaller memories have a shorter
access time. Recent research tries to split the CPU cache into two
sub caches: one for spatial locality and one for temporal locality.

2. SMP (in shared memory multiprocessor systems)
On the SMP level, spatial and temporal locality continues to be
present on the uniprocessor level. However, on the multiprocessor
level, new forms of locality gain importance: processor locality,
locality of shared data, and so forth. Implementation also includes
mechanisms for maintaining data consistency, on either the
hardware or software levels. Recent research concentrates on cache
miss and bus traffic reduction by combining conventional and new
approaches, such as the prefetch and injection approaches.

3. DSM (in distributed shared memory systems)
Caches on the DSM level also exist onthe CPU and SMP levels (a
DSM system often consists of clusters implemented as SMP
systems). Misses on the DSM level can be extremely costly;
however, the caches on the DSM level have much more difficulty
capturing locality.

4. DFM (in distributed file management and smart disk systems) BCA-E10/207

On the DFM level, caches can help implement several different
applications (media servers, file distribution, and so forth). Spatial
locality is present much more than temporal locality. Additional
types of locality, stemming from the specific internal and external
disk structure, can also be defined and used for better system
efficiency. Recent research concentrates on the so-called smart
disks, using different specialized resources to maximize
performance

5. DPC (in distributed proxy cache systems)
The DPC level uses caching in conjunction with protection. In
addition to spatial locality (present to a smaller extent) and
temporal locality (present to a larger extent), we can define and use
many different types of locality: URL, geographical (if it can be
defined), user, institutional, and so forth. Often, distinguishing the
specifics of the distributed proxy cache is difficult; consequently,
strategic errors in proxy cache design are possible.

6. WWW (on the World Wide Web level)
On the WWW level, caches subdivide into client, server, and
network caches. The client cache’s primary goal is to handle data
reusability, which, improves the Web latency. The server cache’s
primary goal is to reduce the server node workload, and the
network cache’s primary goal is to help clients benefit from the
earlier accesses (to the same data) by other clients sharing the
network cache. Types of locality in the three cache subtypes are
the subject of ongoing research. Current implementations
concentrate on problems in the domain of cache management (for
example, replacement protocols) and cache cooperation
(cooperation protocols).

7. IAI (on the Internet application and integration level)
On the IAI level, we try to detect reusability and use the principles
of locality in the systems responsible for Web oriented application
and integration software. The existing types of locality depend on
the specific types of software in use. Concrete implementations
differ greatly and mainly concentrate on the issues of importance
for cache management and cache replacement.

10.7 TYPES OF CACHING

As it has been discussed in previous topic Caching is a technique
widely used in computing to increase performance by keeping frequently
accessed or expensive data in memory. In context of web application,
Caching is used to retain the pages or data across HTTP request and reuse
them without the expense of recreating them. There are different types of
caching.

BCA-E10/208

10.7.1 PAGE OUTPUT CACHING

Page output caching refer to the ability of the web server to cache a
certain webpage after user request in its memory so that further request for
the same page will check for the cached page’s validity and not result in
resource usage and the page will be returned to user from cache. Caching
the dynamic output generated by a request .sometimes it is useful to
cache the output of a website even for a minute which will Result in a
better performance for caching the whole page should have output.

Cache directive=<%@.

<%Output cache duration =”60”.

VaryByParam=”states”%>

10.7.2 FRAGMENT CACHING

Caches the portion of the page generated by the request. Some time
it is not practical to cache the entire page , in such cases We can cache a
portion of page

<%@.Output cache duration=”120”

varyByParam=”category ID; Selected ID%>

10.7.3 DATA CACHING

Caches the objects programmatically for caching .Net provides a
Cache objects for eg; cache [“States”] = ds states.

10.7.4 APPLICATION CACHING

Application data caching is a mechanism for storing the data
objects on cache. it has nothing to do with the page caching.

10.8 SQL CACHE INVALIDATION

SQL cache invalidation enables you to make the cache entry
dependent On the database, so the cache entry will only be cleared When
data in the data base is changed. SQL cache invalidation is two types:

1. Polling based invalidation.

2. Notification-based invalidation.

10.8.1 POLLING BASED INVALIDATION

This mechanism uses polling to check if a table has been updated
since the page was cached. To enable table based caching we requires the
following technique.

BCA-E10/209

A) Enable notification for the database using the asp net regsql.exe tool

>aspnet_regsql.exe –S”.\SQLExpress”-E-d”pubs”-ed

This only needs to be done once for each database.

B) Enable notification for the table(s) you want to have dependencies
On using aspnet_regsql.exe tool.

>aspnet_regsql.exe –S”.\SQLExpress”-E-d”pubs”-et-t”authors”

C) Register the notification in the configuration for the applications.

 <system.web>

<Caching>

 <sqlCacheDependency enabled =”true pollTime=”1000”>

<Database>

<add name=”PubsDB” connectionStringName=”Pubs”/>

</database>

</sqlCacheDependency>

</caching>

</system.web>

The poll time specifies how often the application checks to see whether
the data has changed.

The following example uses output caching for a data-source using a table
based notification.

10.7.2 NOTIFICATION-BASED CACHE
INVALIDATION

This mechanism uses the query change notification mechanism of
sql server 2005 to detect changes to the result of queries. Unlike polling
based invalidation for sql server 7.0 and 2000 , notification based
invalidation requires much less setup.

1. Unlike polling based validation, no <sqlCacheDependency> needs
to be registered in your application’s configuration furthermore, no
special configuration using the aspnet_regsql.exe tool is needed.

BCA-E10/210

2. A notification based dependency is configured on the OutputCache
directive using the string command notification. This value
indicates to ASP.NET that a notification based dependency should
be created for the page or data source control.

On a page

<%@OutputCache
Duration=”999999”SqlDependency=”CommandNotification”Vary
ByParam”%>

On a data-source control

<asp: Sql Data Source

EnableCaching=”ture”SqlCacheDependency=”CommandNotificati
on”CacheDuration=”infinite…/>

3. System.Data.sqlClient.SqlDependency.Start () method must be
called somewhere in the application before the first SQL Query is
executed. This method could be placed in application Start () event
in global.asax file.

Whenever a command is issued to sql server 2005, ASP.NET and
ADO.NET will automatically create a cache dependency that listens to
change notification sent from the sql server. As data is changed in sql
server these notification will cause the cached queries to be invalidated on
the web server.

CHECK YOUR PROGRESS

 What are types of caching?

 What is SQL Cache Invalidation?

10.9 SUMMARY

The fallout of the unit is to know the basic concepts of
configuration. Configuration is nothing but step by step process for the
successful implementation of hardware or software or both. Hardware and
software, two are important categories. It is clear that configuration, and
hence configuration management, are crucial to security. We assert that it
is equally clear that even in moderate-size environments, it should not be
done by hand. Too much can be wrong if done manually. Configuration is
essential for software as well as hardware. Software configuration deals
operating systems, application software, system software, and many more.

BCA-E10/211

Moreover, you can say that new software may be at client-side as well as
server side it plays a very important role.

Three elements are necessary for successful management of
security configuration: clear policies; accurate knowledge of all computers
and network elements; and proper management software. To be sure, all of
these are needed for other types of configuration management. However,
in a security setting, a failure can have consequences far beyond the
failure of one device or system. Furthermore, the way a system is set up,
or the assortment of components that make up the system. Configuration
can refer to either hardware or software, or the combination of both. For
instance, a typical configuration for a PC consists of 32MB (megabytes)
main memory, a floppy drive, a hard disk, a modem, a CD-ROM drive, a
VGA monitor, and the Windows operating system.

Many software products require that the computer have a certain
minimum configuration. For example, the software might require a
graphics display monitor and a video adapter, a particular microprocessor,
and a minimum amount of main memory. When you install a new device
or program, you sometimes need to configure it, which means to set
various switches and jumpers (for hardware) and to define values of
parameters (for software). For example, the device or program may need
to know what type of video adapter you have and what type of printer is
connected to the computer. Thanks to new technologies, such as plug-and-
play, much of this configuration is performed automatically.

First, we must understand what configurations should be like, and
how they should be set. This is not just a question of file contents and the
like; the human element — how people understand and specify
configurations — is at least as important.

Second, we need to be able to abstract and parameterize
configurations. That is, we need to be able to create meta configurations,
and merge these with the knowledge of the machines that actually exist.
The difficulty of doing these raises a third issue: can we create
configuration mechanisms that are more amenable to such specification?
Today’s systems were designed for hand configuration, with few nods to
automation. Can we do better?

Fourth, we need effective ways to understand exactly what our
networks really consist of. Note that this needs to be done in ways that
protect privacy, not so much for business reasons as because often,
consumer-grade machines are used for business purposes. It may be
acceptable for corporate machines to respond to “who’s out there, and
what are your capabilities” messages; it certainly is not acceptable in a
consumer environment.

10.10 TERMINALQUESTIONS

1. What do you mean by configuration? Explain.
BCA-E10/212

2. Write the main advantages and disadvantages of configuration.

3. Give the types of configurations.

4. Explain .NET configuration.

5. Describe windows configuration.

6. What do you understand by caching and its types? Explain.

BCA-E10/213

BCA-E10/214

Bachelor in Computer
Application

BCA-E10
Client Server Technology

BLOCK

4
CLIENT SIDE AND SERVER SIDE LOGIN SERVICES

UNIT-11

HTML and JAVA Script

UNIT-12

ASP.NET Web Services

UNIT-13

AJAX

UNIT-14

Developing a Small Application Using ASP.NET

Uttar Pradesh Rajarshi Tandon
Open University

BCA-E10/215

Course Design Committee
Dr. Ashutosh Gupta, Chairman
Director (In-charge)
School of Computer and Information Science, UPRTOU, Allahabad

Prof. R.S. Yadav Member
Dept. of Computer Science and Engineering, MNNIT, Allahabad

Ms. Marisha Member
Assistant Professor (Computer Science)
School of Science, UPRTOU, Allahabad

Mr. Manoj Kumar Balwant Member
Assistant Professor (Computer Science)
School of Science, UPRTOU, Allahabad

Course Preparation Committee
Dr. Krishan Kumar Author
Assistant Professor,
Department of Comuter Science Faculty of Technology
Gurukula Kangri Vishwavidyalaya, Haridwar (UK)

Dr. V.K. Saraswat Editor
Director (IET, Khandare Campus)
Institute of Engineering and Technology
Dr. B.R. Ambedkar University, Agra-282002

Dr. Ashutosh Gupta,
Director (In-charge)
School of Computer and Information Science, UPRTOU, Allahabad

Mr. Manoj Kumar Balwant Coordinator
Assistant Professor (Computer Science)
School of Science, UPRTOU, Allahabad

©UPRTOU, Prayagraj-2020
ISBN : 978-93-83328-13-0

©All Rights are reserved. No part of this work may be reproduced in any
form, by mimeograph or any other means, without permission in writing
from the Uttar Pradesh Rajarshi Tondon Open University, Prayagraj.
Printed and Published by Dr. Arun Kumar Gupta Registrar, Uttar Pradesh
Rajarshi Tandon Open University, 2020.
Printed By : Chandrakala Universal Pvt. 42/7 Jawahar Lal Neharu Road,
Prayagraj.

BCA-E10/216

BLOCK INTRODUCTION

Block-4 basically contains four units which are related with ASP.NET web
services, HTML and JavaScript, DHTML, AJAX, and a small application.

Unit-11 covers the basics of HTML and JavaScript. It explores HTML’s
role and change in the today’s changing environment of Internet
applications. HTML is basically a markup language used to develop static
client-side programs. It also aims understanding the concept of HTML and
JavaScript. It also gives the understanding of HTML Form Tag and
elements within it. Moreover, this unit describes the themes to Customize
a Site Web based security and ASP.NET authentication service. This unit
gives the information about HTML, JavaScript, CSS, web based security,
authorization services. As HTML has become crucial component for every
web based application. With the increasing demand of client side
validations JavaScript has also played a very important role in all kind of
web application irrespective of the different technologies like Java, Dot
Net, PHP etc.

DHTML or dynamic hypertext markup language is another advance
important feature added recently which provided a new direction and
robustness for the new web sites. CSS, JavaScript, and XML are three key
elements of DHTL which makes HTML a powerful tool.

Unit-12 introduce web services, creating web services, invoking web
services.Today, web services have become the crucial part of any field for
better services. Almost, all organizations offer information on Internet.
Interaction between user and programs is also necessary for all the
function in web services. This unit briefly reviews web services as an
application integration technology. Moreover, it defines the term web
service and describes the web services model. In a normal application you
need to write the Business logic repeatedly for the same requirements so
due to the requirements you can write a single web service for multiple
applications that allow an access method on any platform used.

Unit-13 explains the fundamental of AJAX and its relation with .NET.
Ajax, which stands for Asynchronous JavaScript and XML, is a set of
techniques for creating highly interactive web sites and web applications.
The idea is to make what’s on the Web appear to be local by giving you a
rich user experience, offering you features that usually only appear in
desktop applications. The emphasis in Ajax applications is to update the
web page, using data fetched from the Internet, without refreshing the web
page in the browser. You saw an example of that with Google Suggest,
where a drop-down list appears in the browser without a page refresh.

Unit-14 discusses an application using ASP.NET for a real life example.
project titled “Bluetooth Based Attendance Management System” is a
small project has been developed using ASP.NET as a front-end and MS BCA-E10/217

Access as a back-end. It is an attendance management system which can
be used School, College, University etc. This project aims to train the
basic concepts of ASP.NET for the students so that they cloud be familiar
with the environment of the industry. The project has been developed
using the traditional waterfall model following all the required steps of
software engineering like SRS, feasibility study, design, coding and
implementation, testing, and finally maintenance.

BCA-E10/218

UNIT-11 HTML & JAVASCRIPT

Structure
11.0 Introduction

11.1 Objectives

11.2 Fundamental HTML

11.3 Form Tag

11.4 HTML Lists

11.5 JavaScript

11.6 Working with CSS

11.7 Themes to Customize a Site

11.8 Web Based Security

11.9 ASP.NET Authentication Service

11.10 ASP.NET Login Controls

11.11 Authorizing Users

11.12 Summary

11.13 Terminal questions

11.0 INTRODUCTION

This unit gives the information about HTML, JavaScript, CSS,
web based security, authorization services. As HTML has become crucial
component for every web based application It is also necessary to know
about its basic characteristics, syntax, advantages and its usefulness. With
the increasing demand of client side validations JavaScript has also played
a very important role in all kind of web application irrespective of the
different technologies like Java, Dot Net, PHP etc.

DHTML or dynamic hypertext markup language is another
advance important feature added recently which provided a new direction
and robustness for the new web sites. CSS, JavaScript, and XML are three
key elements of DHTL which makes HTML a powerful tool.

Further theses technologies are important in another sense that
these are common for all. Like XML is being used for data exchange and
JavaScript is used for client-side validations, popup menus, windows etc.

BCA-E10/219

JavaScript has many predefined functions which are used for different
works like printing etc.

HTML is a tag based language and it uses many tags. On the other
hand XML also uses user defined tags. Form tag is also very important to
submit the information from client to server. It has many attributes like to
create different types of buttons. Furthermore, with the popularity of
Internet security has become a crucial issue for the web applications.
Hence web security is another area which must be carefully handled.

Last but not the least Login controls are also necessary to
understand so theses are discussed in this unit. Without the knowledge of
login controls it not possible to develop a good web application. Also the
session handling is done using theses controls.

11.1 OBJECTIVES

At the end of this unit you would come know about the following things:

 Hypertext Markup Language

 The tags of HTML like form, head, body, table etc

 Creation of user defined functions using JavaScript

 Issues in HTML and JavaScript

 Working with CSS

 Themes to Customize a website

 Security in Internet based applications

 Login Controls

 Authorizing Users

11.2 FUNDAMENTAL HTML

Html stands for Hyper Text Markup Language. Html is mainly
used for designing the client side web pages, this is a static page it means
you can only view Html page not give request and not get response from
server. Using Html pages browser get user information through form (This
is an Html element). It also aims to develop static web pages in which it
changes are not possible. Html provides so many elements/tags like <p>,
, <h1>, <form>, <table> etc. to design a web page. On the other
hand hypertext is the text which contains various links to other texts. The
hypertext pages are interconnected by hyperlinks. When mouse is clicked
on these links a new web page appears.

BCA-E10/220

Moreover any tag based language known as markup language, for
example gml, sgml, html, xml etc. All the markup languages have several
tags. But XML (Extensible markup language) has user defined tags also.
Like other language Html also has different versions starting from 1.0, 2.0,
3.0, 4.0, 5.0 etc. The version 5.0 is the present version. As a beginning it
was incorporated in Netscape navigator browser. Tim Berners-Lee is
known as father of Html. Earlier It was known as SGML. The first
publicly available description of HTML was a document called "HTML
Tags", first described, on the Internet by Berners-Lee in late 1991.

11.2.1 FEATURES FOR HTML

The important features of Html are:

 Html is used to develop a static page.

 Html is not a case sensitive language.

 It is an error free language.

 It is interpreted not compiled.

 Html is simple to understand and easy language.

 It provides facilities to add audio, video, image on web pages.

 Html is the platform independent language, it can be run on any
platform like window, linux, Mac.

 Each and every elements of html should be enclosed within the
angular brackets (<>).

 Html programs are executed by the interpreter of the browser
software.

 Html program are saved with .htm or .html extension.

 The current version of Html is Html 5.0

11.2.2 HTML TAG

Tags in any language are the main building blocks. HTML tags
contain three main parts: opening tag, content and closing tag. But some
HTML tags are unclosed tags.

Syntax:

<tag> content </tag>

11.2.3 HTML TAG EXAMPLES

HTML is not case sensitive language so you can write Html tags in
lowercase or uppercase letters. Some Html tags are given below:

 BCA-E10/221

Table 11.1: Paired Tags

Name of tag Meaning

<html> ... </html>
Delimit the beginning and end of the entire
Hypertext Markup Language (HTML)
document.

<body> ... </body> Delimit the beginning and end of the
document body.

<head> Used for title, java script, css code etc

<form> Used to submit data

<h1> Used for heading

<image> Used to insert image

<a >... Create a hyperlink anchor (href attribute) or
fragment identifier (id attribute).

<table> Used to insert table

<abbr> ... </abbr> The enclosed text is an abbreviation.

<caption> ... </caption> Define a caption for a table.

<center> ... </center> Center the enclosed text.

<frame> ... </frame> Define a frame within a frameset.

Table 11.2: Single Tags

Name of
tag

Meaning

<hr> Break the current text flow and insert a horizontal rule.

<p> Used to keep the texts in form of the paragraph

 Break the current text flow, resuming at the beginning of
the next line.

BCA-E10/222

<embed> Embed an application in a document.

<Font Color
=

Used to change the properties of a font

<image> Used to insert image

11.3 FORM TAG

This element is used to create a form on html page. Which is a
logical grouping of controls available on the page. Form contains controls
such as text fields, email field, password fields, checkboxes, button, radio
buttons, submit button, menus etc.

Place a form anywhere inside the body of a document, with its
elements enclosed by the <form> tag and its respective end tag (</form>).
You can, and we recommend you often do, include regular body content
inside a form to specially label user-input fields and to provide directions.

Browsers flow the special form elements into the containing
paragraphs as though they were small images embedded into the text.
There aren't any special layout rules for form elements, so you need to use
other elements, such as tables and stylesheets, to control the placement of
elements within the text flow.

You must define at least two specialform attributes, which provide
the name of the form's processing server and the method by which the
parameters are to be sent to the server. A third, optional attribute lets you
change how the parameters get encoded for secure transmission over the
network.

The HTML <form>tag is used to create an HTML form and it has
following syntax:

Syntax:

<form>

//input controls e.g. textfield, checkbox, button, radiobutton

</form>

11.3.1 FORM ATTRIBUTES

Attribute of form tag are: accept, action, charset, class, dir,
enctype, id, lang, method, name, onClick, onDblClick, onKeyDown,
onKeyPress, onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp, onReset, onSubmit, style, target, title. Apart
from common attributes, following is a list of the most frequently used
form attributes: BCA-E10/223

Table-11.3: Form Attributes

Attribute Description

Name are used for provide a name to the form

action

method

Backend script ready to process your passed data.

Method to be used to upload data. The most frequently
used are GET and POST methods.

target

Specify the target window or frame where the result of
the script will be displayed. It takes values like _blank,
_self, _parent etc.

enctype

You can use the enctype attribute to specify how the
browser encodes the data before it sends it to the
server. Possible values are:

application/x-www-form-urlencoded - This is the
standard method most forms use in simple scenarios.

mutlipart/form-data - This is used when you want to
upload binary data in the form of files like image, word
file etc.

11.3.2 HTML FORM CONTROLS

There are different types of form controls that you can use to
collect data using HTML form:

 Text Input Controls

 Checkboxes Controls

 Radio Box Controls

 Select Box Controls

 File Select boxes

 Hidden Controls

 Clickable Buttons

 Submit and Reset Button

11.3.3 TEXT INPUT CONTROLS

There are three types of text input used on forms:
BCA-E10/224

Single-line text input controls - This control is used for items that require
only one line of user input, such as search boxes or names. They are
created using HTML <input>tag.

Password input controls - This is also a single-line text input but it
masks the character as soon as a user enters it. They are also created using
HTMl <input> tag.

Multi-line text input controls - This is used when the user is required to
give details that may be longer than a single sentence. Multi-line input
controls are created using HTML <textarea>tag.

Check Your Progress

 What do you understand by HTML

 Write the syntax and working of some commonly used
HTML tags.

11.4 HTML LISTS

Two primary lists are available in HTML, ordered and unordered. BCA-E10/225

11.4.1 UNORDERED LISTS

The unordered list is used when the order of item is not significant.
Rather, numbering of the items is usually marked with bullets like shaded
disk, circle or square. Default bullet is shaded disk. The beginning and
ending tags for unordered list are and respectively. Each
item is identified by a list item tag .

Eg:

 pick up mail

 walk the dog

 water the plant

 clean the room

Output:

pick up mail

walk the dog

water the plant

clean the room

11.4.2 ORDERED LISTS

In this category, order of the items does matter. The elements are
prefixed by a symbol that denotes their order in the list. By default Arabic
numbers are automatically made by the browser. The beginning and
ending tags for an ordered lists are and . The beginning tag
for each list item is . By default each list starts counting at 1.

Attributes of the Ordered List

<OL start= integer> Start tells the browser what number to start counting
at.

<OL type= 1|A|a|I|i> Sets the type of numbering to use.

Example:

<OL Start=5 >

 tap gently with a spoon

 lift mold off of gelatin

 turn left at the first light
BCA-E10/226

Output:

5. tap gently with a spoon

6. lift mold off of gelatin

7. turn left at the first light

11.5 JAVASCRIPT

11.5.1 INTRODUCTION

JavaScript is a object-based scripting language and it is light
weighted. It is first implemented by Netscape (with help from Sun
Microsystems). JavaScript was created by Brendan Eich at Netscape in
1995 for the purpose of allowing code in web-pages (performing logical
operation on client side). It is not compiled but translated. JavaScript
Translator is responsible to translate the JavaScript code which is
embedded in browser.

Netscape first introduced a JavaScript interpreter in Navigator 2.
The interpreter was an extra software component in the browser that was
capable of interpreting JavaSript source code inside an HTML document.
This means that the web page developers do not need software other than
a text editor to develop any web page. The basic characteristics are:

 JavaScript is a lightweight, interpreted programming language
 Designed for creating network-centric applications
 Complementary to and integrated with Java
 Complementary to and integrated with HTML
 Open and cross-platform

11.5.2 WHY WE USE JAVASCRIPT?

Using HTML you can only design a web page but you cannot run
any logic on web browser like addition of two numbers, checking any
condition, looping statements (for, while), decision making statement (if-
else) at client side. All these are not possible using HTML. Therefore, to
perform all such tasks at client side you need a scripting language called
JavaScript. JavaScript lets developers to develop client-side as well as
server- side programs. This languge is a very powerful tool to put the
client-side validations. Some features are:

 JavaScript is very easy to implement. All you need to do is put
your code in the HTML document and tell the browser that it is
JavaScript.

 JavaScript works on web users’ computers — even when they are
offline!

BCA-E10/227

 JavaScript allows you to create highly responsive interfaces that
improve the user experience and provide dynamic functionality,
without having to wait for the server to react and show another
page.

 JavaScript can load content into the document if and when the user
needs it, without reloading the entire page — this is commonly
referred to as Ajax.

 JavaScript can test for what is possible in your browser and react
accordingly — this is called Principles of unobtrusive
JavaScript or sometimes defensive scripting.

 JavaScript can help fix browser problems or patch holes in browser
support — for example fixing CSS layout issues in certain
browsers.

11.5.3 WHERE IT IS USED?

It is used to create interactive websites. It is mainly used for:

 Client-side validation
 Dynamic drop-down menus
 Displaying data and time
 Build small but complete client side programs
 Displaying popup windows and dialog boxes (like alert dialog box,

confirm dialog box and prompt dialog box)
 Displaying clocks etc.

11.5.4 JAVASCRIPT SAMPLE PROGRAM

Example: Verify age of any person, if age is greater than 18 show
message adult otherwise show under 18

 BCA-E10/228

http://dev.opera.com/articles/view/41-unobtrusive-javascript/
http://dev.opera.com/articles/view/41-unobtrusive-javascript/

11.5.5 BENEFITS OF JAVASCRIPT

1. Associative arrays.

2. Loosely typed variables.

3. Regular expression.

4. Objects and classes.

5. Highly evolved date, math and string libraries.

6. W3C DOM support in the JavaScript.

11.5.6 DISADVANTAGES OF JAVASCRIPT

1. Developer depends on the browser support for the JavaScript.

2. There is no way to hide the JavaScript code in case of commercial
application.

11.6 WORKING WITH CSS

CSS stands for Cascading Style Sheets. Styles define how to
display the HTML elements. Cascading Style Sheets (CSS) is a rule based
language that applies styling to HTML elements. We write CSS rules in
Html elements (<p>,), and modify properties of those elements
such as color, background color, width, border thickness, font size, etc.
CSS rule, is made up of two parts: Selector & Declaration. These are also
shown in figure11.1.

Figure 11.1: Selector & Declaration BCA-E10/229

Conceptually, the Selector part of CSS Identifies the HTML
elements that the rule will be applied to, identified by the actual element
name, e.g. <body>, <p>, <h1>. And the Declaration part contains property
and value. For example; suppose that we want size of our text 10px then it
would be declared as font-size: 10px. Here font-size is properties and 10px
is its value, and all this declaration is called declaration. The declaration is
also split into two parts, they are separated by a colon " : ".

Syntax

font-size:15px;

In the above code properties (font-size) and value (15px) is separated by
colon ":". All the CSS syntax is combination of these fives things:

 Selector

 property/value

 declaration

 declaration block

 curly braces

11.6.1 SELECTOR

Identifies the HTML elements that the rule will be applied to,
identified by the actual element name, e.g. <body>, <p>, <h1>

Example

H1{

color: red;

font-size:10px;

}

11.6.2 DECLARATION

Declaration part contains property and value. Example: suppose
that we want size of our text 10px then it declare as font-size:10px. Here
font-size is properties and 10px is there value, and all this declaration is
called declaration. Declaration Block is multiple declaration lines
including the curly braces. The declaration is also split into two parts, they
are separated by a colon " : "

11.6.3 PROPERTY & VALUE

The property is the style attribute you want to change and value is
value of attribute. Example: suppose that we want to change size of our
text 10px and color is red then it declared as:

BCA-E10/230

font-size:10px; color: red.

Here font-size is property and 10px is the value and color is also property
and red is there value.

Note : If there is only one property - value pair in the declaration, we do
not need to end it with a semicolon. However, because a declaration can
consist of several property - value pairs, and each property - value pair
within a rule must be separated by a semicolon.

11.6.4 ELEMENTS OF STYLE

At the simplest level, a style is nothing more than a rule the
browser follows to render a particular HTML or XHTML tag's contents.
Each tag has a number of style properties associated with it, whose values
define how that tag is rendered by the browser. A rule defines a specific
value for one or more properties of a tag. For example, most tags can have
a color property, the value of which defines the color in which the modern
GUI browser should display the contents of the tag. Other properties
include fonts, line spacing, margins, borders, sound volume, and voice etc.

There are three ways to attach a style to a tag:

 Inline style

 Document level style

 External style sheet

Inline Style: The style attribute

An inline style may be used to apply a unique style for a single element.
To use inline styles, add the style attribute to the relevant element. The
style attribute can contain any CSS property. The following syntax shows
how to change the colour and the left margin of a <h1> element.

<h1 style="color:blue; margin-left:30px;">This is a heading</h1>

Internal style

An internal style sheet may be used if one single page has a unique style.
Internal styles are defined within the <style> element, inside the <head>
section of an HTML page.

Example:

<head>

<style>

body {

background-color: linen;

}

h1{ BCA-E10/231

color: maroon;

margin-left: 40px;

}

</style>

</head>

External style

With an external style sheet, you can change the look of an entire website
by changing just one file! Each page must include a reference to the
external style sheet file inside the <link> element. The <link> element
goes inside the <head> section.

Example

<head>

<link rel="stylesheet" type="text/css" href="mystyle.css">

</head>

body {

background-color: lightblue;

}

h1 {

color: navy;

margin-left: 20px;

}

11.7 THEMES TO CUSTOMIZE A WEBSITE

Website is one place where people judge by the cover, and are
mostly right. You can customize it further by choosing your own
background image if you want. That is why a good looking business
website has a significant effect on the business. Zoho Sites had already
made it easy for anyone to build such business websites easily. Today, we
are making it even friendlier on the design front. There are many ways to
do it like a visual editor.

Till now, theme-customization could only be done with a bit of
CSS. But not anymore. You can now customize visual properties of a
theme, such as background image, menu, color, size and font face of text
without a HTML/CSS, of course. You can preview the changes as and
when you make them. What’s exciting about this visual editor is, using it,
you can create many different versions of the same theme. The themes in
our gallery are ready-to-use, but you can re-paint them, so that they look BCA-E10/232

just how you want, in every way. The customization of themes, together
with flexible layouts and drag-drop builder, makes Zoho Sites the easiest
way to create a business website, all by you.

Moreover, the new website builder has a selection of themes and
we can edit the HTML of a page, but there does not seem to be a way to
alter the header or footer. How can this be done? Can we create a new
theme? I found following way to alter the style sheet of an existing
template (e.g. the online-shop).

 On the Website go to: Customize -> HTML-Editor

 Choose 'Main layout' from the selection box

 Add your custom style sheet just before the closing </head> tag

Also you can change the footer if you select 'Automatic footer' and 'Footer
Copyright' from the selection box.

Note: Take a look here http://www.slideshare.net/openobject/odoo-create-
themes-for-website. You basically create a new theme in your custom add-
ons folder with the structure explained there and select it later.

Check Your Progress

 What do you understand by JavaScript?

 Write a small script for login and password validation using
JavaScript.

 How the theme of a web site can be changed?

11.8 WEB BASED SECURITY

Web application security is a branch of Information Security that
deals specifically with security of websites, web applications and web
services. At a high level, Web application security draws on the principles
of application security but applies them specifically to Internet and Web
systems. With the inception of Web 2.0, increased information sharing
through social networking and increasing business adoption of the Web as
a means of doing business and delivering service, websites are often
attacked directly. Hackers either seek to compromise the corporate
network or the end-users accessing the website by subjecting them to
drive-by downloading. As a result, industry is paying great attention to the
security of the web applications themselves in addition to the security of
the underlying computer network and operating systems.

Basically, security is fundamentally based on people and
processes; there are a number of technical solutions to consider when
designing, building and testing secure web applications. At a high level,
these solutions include: BCA-E10/233

https://en.wikipedia.org/wiki/Information_Security
https://en.wikipedia.org/wiki/Website
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Web_service
https://en.wikipedia.org/wiki/Web_service
https://en.wikipedia.org/wiki/Application_security
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/Web_2.0
https://en.wikipedia.org/wiki/Social_networking
https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/Hacker_%28computer_security%29
https://en.wikipedia.org/wiki/Drive-by_download

 Black box testing tools such as Web application security
scannersvulnerability scanners and penetration testing software.

 White box testing tools such as static source code analyzers.

 FuzzingTools used for input testing.

 Web application security scanner (vulnerability scanner).

 Web application firewalls (WAF) used to provide firewall-type
protection at the web application layer.

 Password cracking tools for testing password strength and
implementation.

11.9 ASP.NET AUTHENTICATION SERVICE

ASP.NET implements additional authentication schemes using
authentication providers, which are separate from and apply only after the
IIS authentication schemes. ASP.NET supports the following
authentication providers:

 Windows (default)

 Forms

 Passport

 None

To enable an authentication provider for an ASP.NET application, use the
authentication element in either machine.config or Web.config as follows:

<system.web>

<!-- mode=[Windows|Forms|Passport|None] -->

<authentication mode="Windows" />

</system.web>

Each ASP.NET authentication provider supports an
OnAuthenticate event that occurs during the authentication process, which
you can use to implement a custom authorization scheme. The primary
purpose of this event is to attach a custom object that implements
the IPrincipal Interfaceto the context. Which ASP.NET authentication
provider you use typically depends upon which IIS authentication scheme
you choose. If you are using any of the IIS authentication schemes other
than Anonymous, you will likely use the Windows authentication
provider. Otherwise, you will use Forms, Passport, or None.

11.10 ASP.NET LOGIN CONTROLS

ASP.NET provides robust login (authentication) functionality for
ASP.NET Web applications without requiring programming. The default BCA-E10/234

https://en.wikipedia.org/wiki/Application_security#Security_testing_for_applications
https://en.wikipedia.org/wiki/Web_application_security_scanner
https://en.wikipedia.org/wiki/Web_application_security_scanner
https://en.wikipedia.org/wiki/Vulnerability_scanner
https://en.wikipedia.org/wiki/Penetration_testing#Web_application_penetration_testing
https://en.wikipedia.org/wiki/Application_security#Security_testing_for_applications
https://en.wikipedia.org/wiki/Web_application_security_scanner
https://en.wikipedia.org/wiki/Vulnerability_scanner
https://en.wikipedia.org/wiki/Web_application_firewall
https://en.wikipedia.org/wiki/Firewall_%28computing%29
https://en.wikipedia.org/wiki/Password_cracking
https://en.wikipedia.org/wiki/Password_strength
https://msdn.microsoft.com/en-us/library/system.security.principal.iprincipal(v=vs.71).aspx

Visual Studio project templates for Web applications and for Web sites
include prebuilt pages that let users register a new account, log in, and
change their passwords For information about how to use the built-in login
page templates, see Walkthrough: Creating an ASP.NET Web Site with
Basic User Login.

You can also create your own pages that you can add ASP.NET
login controls to in order to add login functionality. To use the login
controls, you create a Web pages and then add the login controls to them
from the Toolbox.

Typically, you restrict access to ASP.NET pages by putting them
into a protected folder. You then configure the folder to deny access to
anonymous users (users who are not logged in) and to grant access to
authenticated (logged-in) users. (The default project template for Web
projects includes a folder named Accounts that is already configured to
allow access only to logged-in users.) Optionally, you can assign users to
roles and then authorize users to access specific Web pages by role.

By default, login controls integrate with ASP.NET membership
and ASP.NET forms authentication to help automate user authentication
for a Web site. For information about how to use ASP.NET membership
with forms authentication, see Introduction to Membership.

By default, the ASP.NET login controls work in plain text over
HTTP. If you are concerned about security, use HTTPS with SSL
encryption. For more information about SSL, see Configuring SSL on a
Web Server or a Web Site in the IIS documentation.

11.11 AUTHORIZING USERS

Authorization determines whether an identity should be granted
access to a specific resource. In ASP.NET, there are two ways to authorize
access to a given resource.

11.11.1 FILE AUTHORIZATION

 It is performed by the FileAuthorizationModule. It checks the
access control list (ACL) of the .aspx or .asmx handler file to determine
whether a user should have access to the file. ACL permissions are
verified for the user's Windows identity (if Windows authentication is
enabled) or for the Windows identity of the ASP.NET process. For more
information, see ASP.NET Impersonation.

11.11.2 URL AUTHORIZATION

It is performed by the UrlAuthorizationModule, which maps users
and roles to URLs in ASP.NET applications. This module can be used to
selectively allow or deny access to arbitrary parts of an application
(typically directories) for specific users or roles. BCA-E10/235

11.11.3 USING URL AUTHORIZATION

With URL authorization, you explicitly allow or deny access to a
particular directory by user name or role. To do so, you create
an authorizationsection in the configuration file for that directory. To
enable URL authorization, you specify a list of users or roles in
the allow or deny elements of the authorization section of a configuration
file. The permissions established for a directory also apply to its
subdirectories, unless configuration files in a subdirectory override them.

The following shows the syntax for the authorization section:

<authorization>

<[allow|deny] users roles verbs />

</authorization>

The allow or deny element is required. You must specify either
the users or the roles attribute. Both can be included, but both are not
required.The verbs attribute is optional. Theallow and deny elements grant
and revoke access, respectively. Each element supports the attributes
shown in the following table:

Table 11.4: Attribute and Their Meaning

Attribute Description

Users Identities the targeted identities (user accounts) for this
element.

Anonymous users are identified using a question mark (?).

All authenticated users are specified using an asterisk (*).

Roles Identities a role (a RolePrincipal object) for the current
request that is allowed or denied access to the resource.

Verbs Defines the HTTP verbs to which the action applies, such
as GET, HEAD, and POST.

The default is “*”, which specifies all verbs.

11.11.4 RULES APPLIED

Rules contained in application-level configuration files take
precedence over inherited rules. The system determines which rule takes
precedence by constructing a merged list of all rules for a URL, with the
most recent rules (those nearest in the hierarchy) at the head of the list.

BCA-E10/236

javascript:void(0)

Given a set of merged rules for an application, ASP.NET starts at
the head of the list and checks rules until the first match is found. The
default configuration for ASP.NET contains an <allow
users="*"> element, which authorizes all users. (By default, this rule is
applied last.) If no other authorization rules match, the request is allowed.
If a match is found and the match is a deny element, the request is returned
with the 401 HTTP status code. If an allow element matches, the module
allows the request to be processed further.

In a configuration file, you can also create a location element to
specify a particular file or directory to which settings in that the location
element should apply.

Check Your Progress
 Define the term web based security.

 Write the significance of Login controls.

11.12 SUMMARY

HTML is a tag based language and it uses many tags. On the other
hand XML also uses user defined tags. Form tag is also very important to
submit the information from client to server. It has many attributes like to
create different types of buttons. Furthermore, with the popularity of
Internet security has become a crucial issue for the web applications.
Hence web security is another area which must be carefully handled.

Using Html pages browser get user information through form (This
is an Html element). It also aims to develop static web pages in which it
changes are not possible. Html provides so many elements/tags like <p>,
, <h1>, <form>, <table> etc. to design a web page.

The form tag i.e. <form> is used to create a form on html page.
Which is a logical grouping of controls available on the page. Form
contains controls such as text fields, email field, password fields,
checkboxes, button, radio buttons, submit button, menus etc. There are
different types of form controls that you can use to collect data using
HTML form: Text Input, Checkboxes, Radio Box, Select Box, File Select
boxes, Hidden, Clickable Buttons, Submit and Reset Button.

Java Script is a object-based scripting language and it is light weighted. It
is first implemented by Netscape (with help from Sun Microsystems).
JavaScript was created by Brendan Eich at Netscape in 1995 for the
purpose of allowing code in web-pages (performing logical operation on
client side). It is not compiled but translated. JavaScript Translator is
responsible to translate the JavaScript code which is embedded in browser.

CSS stands for Cascading Style Sheets. Styles define how to display the
HTML elements. Cascading Style Sheets (CSS) is a rule based language
that applies styling to HTML elements. BCA-E10/237

Authorization determines whether an identity should be granted
access to a specific resource. In ASP.NET, there are two ways to authorize
access to a given resource.

11.13 TERMINALQUESTIONS

1. What is HTML? Why we Use HTML?

2. Explain the difference between radio button and checkbox in
HTML?

3. What is form Tag in HTML? Give example using with form Tag.

4. What is JavaScript? Where JavaScript is used?

5. JavaScript is which type of language? Name those languages in
which JavaScript is used.

6. How do we insert JavaScript code onto a web page?

7. What is CSS? Why we use CSS?

8. Is CSS is case Sensitive? Compare margin and padding.

9. What is web based Security? Name some technologies which are
used in web Security.

10. What is ASP.NET Authentication Service?

11. What are ASP.NET login controls?

12. Write a short note on Authorization.

BCA-E10/238

UNIT-12 ASP.NET WEB SERVICES
Structure

12.0 Introduction

12.1 Objectives

12.2 Definition of Web Services

12.3 The Web services Model

12.4 Roles in Web Services Architecture

12.5 Operations in Web Service Architecture

12.6 Artifacts of a Web Service

12.7 Web Services Development Life Cycle

12.8 Architecture Overview

12.9 A Simple Web Service Flow

12.10 Summary

12.11 Terminal questions

12.0 INTRODUCTION

Today, web services have become the crucial part of any field for
better services. Almost, all organizations offer information on Internet.
Interaction between user and programs is also necessary for all the
function in web services. This unit briefly reviews web services as an
application integration technology. Moreover, it defines the term web
service and describes the web services model. In a normal application you
need to write the Business logic repeatedly for the same requirements so
due to the requirements you can write a single web service for multiple
applications that allow an access method on any platform used.

Usually, web services are ready to move for program to-program
interactions. Web Services allow companies to reduce the cost of doing e-
business, to deploy solutions faster and to open up new opportunities. The
key to reaching this new horizon is a common program-to-program
communications model, built on existing and emerging standards such as
Hypertext Markup language (HTTP), Extensible Markup Language
(XML), Simple Object Access Protocol (SOAP), Web Services
Description Language (WSDL) and Universal Description, Discovery and
Integration (UDDI).

BCA-E10/239

Web Services allow applications to be integrated more rapidly,
easily and less expensively than ever before. Integration occurs at a higher
level in the protocol stack, based on messages centered more on service
semantics and less on network protocol semantics, thus enabling loose
integration of business functions. These characteristics are ideal for
connecting business functions across the web, both between enterprises
and within enterprises. They provide a unifying programming model so
that application integration inside and outside the enterprise can be done
with a common approach, leveraging a common infrastructure. The
integration and application of Web Services can be done in an incremental
manner, using existing languages and platforms and by adopting existing
legacy applications.

Furthermore, Web Services compliment Java-2 platform,
Enterprise Edition (J2EE), Common Object Request Broker Architecture
(CORBA) and other standards for integration with more tightly coupled
distributed and non distributed applications. Web Services are a
technology for deploying and providing access to business functions over
the Web; J2EE, CORBA and other standards are technologies for
implementing Web Services.

Although early use of Web Services is peer-wise and ad hoc, it still
addresses the complete problem of program-to-program communications
including describing, publishing and finding interfaces. And, as the use of
Web Services grows and the industry matures, more dynamic models of
application integration will develop. Eventually, systems integration
through Web Services will happen dynamically at runtime. Just-in-time
integration will herald a new era of business-to-business integration over
the Internet.

12.1 OBJECTIVES

At the end of this unit you would come know about the following:

 Web Services

 Web services Model

 Roles in Web Services Architecture

 Artifacts of a Web Service

 Web Services Development Life Cycle

 Architecture Overview

 Web Service Flow

12.2 DEFINITION OF WEB SERVICES

Basically, a web service is a kind of software which is available
over Internet. This uses extensible markup language i.e. XML. XML is BCA-E10/240

used to encode for every kind of communication in web service. As we
know that XML is used to exchange the data over the Internet hence, for a
web service XML plays a very important role and makes software
programs very friendly and useful for the users. For example, a web
service client makes an XML request and waits for an XML response. For
the request a user sends a XML message. Similarly it waits for an XML
message in response. In other words, a web service is an interface that
describes a collection of operations that are network accessible through
standardized XML messaging system. Web services can convert easily the
existing applications in web applications.

Moreover, same application and platform meanthat one can create
a web service in any language, such as Java or other languages and that
the language web service can be used in a .Net based application and also
a .Net web service or in another application to exchange the information.
The method in web services always start with [webMethod] attributes, it
means that it is a web method that is accessible anywhere, the same as my
web application.

A Web service is described using a standard, formal XML notion,
called its service description. It covers all the details necessary to interact
with the service, including message formats (that detail the operations),
transport protocols and location. The interface hides the implementation
details of the service, allowing it to be used independently of the hardware
or software platform on which it is implemented and also independently of
the programming language in which it is written. This allows and
encourages Web Services-based applications to be loosely coupled,
component-oriented, cross-technology implementations. Web Services
fulfill a specific task or a set of tasks. They can be used alone or with other
Web Services to carry out a complex aggregation or a business
transaction.

12.3 THE WEB SERVICES MODEL

The Web Services architecture is based upon the interactions among three
roles:

 service provider

 service registry

 service requestor

The interactions involve the publishing, finding and binding
operations. Together, these roles and operations act upon the Web
Services artifacts: the Web service software module and its description. In
a typical scenario, a service provider hosts a network-accessible software
module (an implementation of a Web service). The service provider
defines a service description for the Web service and publishes it to a
service requestor or service registry. The service requestor uses a find
operation to retrieve the service description locally or from the service BCA-E10/241

registry and uses the service description to bind with the service provider
and invoke or interact with the Web service implementation. Service
provider and service requestor roles are logical constructs and a service
can exhibit characteristics of both. Figure 12.1 illustrates these operations,
the components providing them and their interactions.

Figure 12.1: Web services roles, operations and artifacts

Check Your Progress

 Define the term web service.

 Write the names of three roles on which the web service
architecture is based.

12.4 ROLES IN WEB SERVICE
ARCHITECTURE

12.4.1 SERVICE PROVIDER

From a business perspective, this is the owner of the service. From
an Architectural perspective, this is the platform that hosts access to the
service.

BCA-E10/242

12.4.2 SERVICE REQUESTOR

From a business perspective, this is the business that requires
certain functions to be satisfied. From an architectural perspective, this is
the application that is looking for and invoking or initiating an interaction
with a service. The service requestor role can be played by a browser
driven by a person or a program without a user interface, for example
another Web service.

12.4.3 SERVICE REGISTRY

This is a searchable registry of service descriptions where service
providers publish their service descriptions. Service requestors find
services and obtain binding information (in the service descriptions) for
services during development for static binding or during execution for
dynamic binding. For statically bound service requestors, the service
registry is an optional role in the architecture, because a service provider
can send the description directly to service requestors. Likewise, service
requestors can obtain a service description from other sources besides a
service registry, such as a local file, FTP site, Web site, Advertisement and
Discovery of Services (ADS) or Discovery of Web Services (DISCO).

12.5 OPERATIONS IN WEB SERVICE
ARCHITECTURE
For an application to take advantage of Web Services, three

behaviors must take place: publication of service descriptions, lookup or
finding of service descriptions, and binding or invoking of services based
on the service description. These behaviors can occur singly or iteratively.
In detail, these operations are:

12.5.1 PUBLISH

To be accessible, a service description needs to be published so
that the service requestor can find it. Where it is published can vary
depending upon the requirements of the application (see “Service
Publication” for more details).

12.5.2 FIND

In the find operation, the service requestor retrieves a service
description directly or queries the service registry for the type of service
required (see “Service Discovery” for more details). The find operation
can be involved in two different lifecycle phases for the service requestor:
at design time to retrieve the services’ interface description for program
development, and at runtime to retrieve the service’s binding and location
description for invocation.

BCA-E10/243

12.5.3 BIND

Eventually, a service needs to be invoked. In the bind operation the
service requestor invokes or initiates an interaction with the service at
runtime using the binding details in the service description to locate,
contact and invoke the service.

12.6 ARTIFACTS OF A WEB SERVICE

Where a Web service is an interface described by a service
description and its implementation. A service is a software module
deployed on network accessible platforms provided by the service
provider. It exists to be invoked by or to interact with a service requestor.
It can also function as a requestor, using other Web Services in its
implementation.

12.6.1 SERVICE DESCRIPTION

The service description contains the details of the interface and
implementation of the service. This includes its data types, operations,
binding information and network location. It could also include
categorization and other metadata to facilitate discovery and utilization by
service requestors. The service description might be published to a service
requestor or to a service registry. The Web Services architecture explains
how to instantiate the elements and implement the operations in an
interoperable manner.

12.6.2 SERVICE DESCRIPTION: FROM XML
MESSAGING TO WEB SERVICES

It is through the service description that the service provider
communicates all the specifications for invoking the Web service to the
service requestor. The service description is key to making the Web
Services architecture loosely coupled and reducing the amount of required
shared understanding and custom programming and integration between
the service provider and the service requestor. For example, neither the
requestor nor the provider must be aware of the other's underlying
platform, programming language, or distributed object model (if any). The
service description combined with the underlying SOAP infrastructure
sufficiently encapsulates this detail away from the service requestor's
application and the service provider’s Web service.

12.6.3 THE BASIC SERVICE DESCRIPTION

The IBM Web Services architecture uses WSDL for base-level
service description. WSDL has been submitted to the W3C for
standardization. WSDL is an XML document for describing web services

BCA-E10/244

as a set of endpoints operating on messages containing either document-
oriented or procedure-oriented (RPC) messages. The operations and
messages are described abstractly, and then bound to a concrete network
protocol and message format to define an endpoint.

Related concrete endpoints are combined into abstract endpoints or
services. WSDL is extensible to allow description of endpoints and their
messages, regardless of what message formats or network protocols are
used to communicate. However, the only currently described bindings are
for SOAP 1.1, HTTP POST, and Multipurpose Internet Mail Extensions
(MIME).

The use of WSDL in the IBM Web Services architecture
conventionally divides the basic service description into two parts: the
service interface and the service implementation. This enables each part to
be defined separately and independently, and reused by other parts.

Figure 12.2 : Basic Service Description

A service interface definition is an abstract or reusable service
definition that can be instantiated and referenced by multiple service
implementation definitions. Think of a service interface definition as an
Interface Definition Language (IDL), Java interface or Web service type.
This allows common industry-standard service types to be defined and
implemented by multiple service implementers. This is analogous to
defining an abstract interface in a programming language and having
multiple concrete implementations. Service interfaces can be defined by
industry standards organizations such as RosettaNet, or HL7 for the health
industry.

The service interface contains WSDL elements that comprise the
reusable portion of the service description: WSDL:binding,
WSDL:portType, WSDL:message and WSDL:type elements as depicted
in Figure 5. In the WSDL:portType element, the operations of the Web
service are defined. The operations define what XML messages can
appear in the input and output data flows. Think of an operation as a
method signature in a programming language. The WSDL:message
element specifies which XML data types constitute various parts of a
message. WSDL:message element is used to define the input and output
parameters of an operation. The use of complex data types within the BCA-E10/245

message is described in the WSDL:types element. The WSDL:binding
element describes the protocol, data format, security and other attributes
for a particular service interface (WSDL:portType).

The service implementation definition is a WSDL document that
describes how a particular service interface is implemented by a given
service provider. A Web service is modeled as a WSDL:service element.
A service element contains a collection (usually one) of WSDL:port
elements. A port associates an endpoint (for example, a network address
location or URL) with a WSDL:binding element from a service interface
definition.

To illustrate the allocation of responsibility, the Open Applications
Group (OAG) might define a service interface definition for the Open
Applications Group Integration Specification (OAGIS) purchase-order
standard. This service interface definition would define WSDL:type,
WSDL:message, WSDL:portType and WSDL:binding.

A service provider can choose to develop a Web service that
implements the OAGIS purchase order service interface. The service
provider would develop a service implementation definition document that
describes the WSDL service, port and address location elements that
describe the network address of the provider’s Web service and other
implementation-specific details. The service interface definition together
with the service implementation definition makes up a complete WSDL
definition of the service. This pair contains sufficient information to
describe to the service requestor how to invoke and interact with the Web
service. The service requestor can require other information about the
service provider’s endpoint.

Check Your Progress

 What is the Basic Service Description?

 Give some idea about artifacts of web service.

12.7 WEB SERVICES DEVELOPMENT LIFE
CYCLE

Where does Web Services come in picture? Well, Web services is
the mechanism that ASP.NET framework provides to make it easy for us
to write code to facilitate connectivity between applications. As ASP.NET
developer, If you need an application that will be used by many other
applications then you can simply decide to write a web service for it and
ASP.NET framework will take care of doing the low level SOAP and
XML work for us. The Web Services development lifecycle includes the
design, deployment, and runtime requirements for each of the roles:
service registry, service provider and service requestor. Each role has

BCA-E10/246

specific requirements for each element of the development lifecycle. The
development lifecycle can have four phases. Theses phases are explained
below.

12.7.1 BUILD

The build phase of the lifecycle includes development and testing
of the Web service implementation, the definition of the service interface
description and the definition of the service implementation description.
Web service implementations can be provided by creating new Web
Services, transforming existing applications into Web Services, and
composing new Web Services from other Web Services and applications.

12.7.2 DEPLOY

The deploy phase includes the publication of the service interface
and service implementation definition to a service requestor or service
registry and deployment of the executables for the Web service into an
execution environment (typically, a Web application server).

12.7.3 RUN

During the run phase, the Web service is available for invocation.
At this point, the Web service is fully deployed, operational and network-
accessible from the service provider. Now the service requestor can
perform the find and bind operations.

12.7.4 MANAGE

The manage phase covers ongoing management and administration
of the Web service application. Security, availability, performance, quality
of service and business processes must all be addressed.

12.8 ARCHITECTURE OVERVIEW

The architecture of the Web Services normally includes six layers.
On the other hand, we can examine the IBM Web Services architecture in
several layers. First, we will look at a conceptual stack for Web Services
and the stack details. Then we will discuss the criteria for choosing the
network protocol. We will also review basic XML-based messaging
distributed computing. We extend basic XML messaging with service
description, which is explained in terms of a service description stack.
Following this, we discuss the role of service description in the Web
Services architecture, illustrating the range of service publication
techniques supporting static and dynamic Web Services applications.
Related to service publication, we discuss the role of service discovery.
Finally, we describe extensions of the basic Web Services architecture
required to make Web Services viable for e-business.

BCA-E10/247

12.8.1 THE WEB SERVICES STACK

To perform the three operations of publish, find and bind in an
interoperable manner, there must be a Web Services stack that embraces
standards at each level. Figure 12.2 shows a conceptual Web Services
stack. The upper layers build upon the capabilities provided by the lower
layers. The vertical towers represent requirements that must be addressed
at every level of the stack. The text on the left represents standard
technologies that apply at that layer of the stack.

Figure 12.3 : Web Services Conceptual Stack

The foundation of the Web Services stack is the network. Web
Services must be network accessible to be invoked by a service requestor.
Web Services that are publicly available on the Internet use commonly
deployed network protocols. Because of its ubiquity, HTTP is the de facto
standard network protocol for Internet-available Web Services. Other
Internet protocols can also be supported, including SMTP and FTP.
Intranet domains can use reliable messaging and call infrastructures like
MQSeries, CORBA, and so on.

The next layer, XML-based messaging, represents the use of XML
as the basis for the messaging protocol. SOAP is the chosen XML
messaging protocol for many reasons:

 It is the standardized enveloping mechanism for communicating
document-centric messages and remote procedure calls using
XML.

 It is simple; it is basically an HTTP POST with an XML envelope
as payload.

 It is preferred over simple HTTP POST of XML because it defines
a standard mechanism to incorporate orthogonal extensions to the

BCA-E10/248

message using SOAP headers and a standard encoding of operation
or function.

 SOAP messages support the publishing, finding and binding
operations in the Web Services architecture. The section “XML
Messaging-Based Distributed Computing” describes this layer in
more detail.

The service description layer is actually a stack of description
documents. First, WSDL is the de facto standard for XML-based service
description. This is the minimum standard service description necessary to
support interoperable Web Services. WSDL defines the interface and
mechanics of service interaction. Additional description is necessary to
specify the business context, qualities of service and service-to-service
relationships. The WSDL document can be complemented by other
service description documents to describe these higher level aspects of the
Web service. For example, business context is described using UDDI data
structures in addition to the WSDL document. Service composition and
flow are described in a Web Services Flow Language (WSFL) document.
The section “Service Description: From XML Messaging to Web
Services” describes this layer in more detail.

Because a Web service is defined as being network-accessible via
SOAP and represented by a service description, the first three layers of
this stack are required to provide or use any Web service. The simplest
stack would consist of HTTP for the network layer, the SOAP protocol for
the XML messaging layer and WSDL for the service description layer.
This is the interoperable base stack that all inter-enterprise, or public, Web
Services should support. Web Services, especially intra-enterprise, or
private, Web Services, can support other network protocols and distributed
computing technologies. Figure 12.3 depicts the interoperable base stack.

Figure 12.4 : Interoperable Base Web Services Stack

The stack depicted in Figure 12.3 provides for interoperability and
enables Web Services to leverage the existing Internet infrastructure. This
creates a low cost of entry to a ubiquitous environment. Flexibility is not
compromised by the interoperability requirement, because additional BCA-E10/249

support can be provided for alternative and value-add technologies. For
example, SOAP over HTTP must be supported, but SOAP over MQ can
be supported as well. While the bottom three layers of the stack identify
technologies for compliance and interoperability, the next two layers-
service publication and service discovery-can be implemented with a
range of solutions.

Any action that makes a WSDL document available to a service
requestor, at any stage of the service requestor’s lifecycle, qualifies as
service publication. The simplest, most static example at this layer is the
service provider sending a WSDL document directly to a service
requestor. This is called direct publication. E-mail is one vehicle for direct
publication. Direct publication is useful for statically bound applications.
Alternatively, the service provider can publish the WSDL document
describing the service to a host local WSDL registry, private UDDI
registry or the UDDI operator node. The variety of service publication
mechanisms is discussed in more detail in the section “Service
Publication.”

Because a Web service cannot be discovered if it has not been
published, service discovery depends upon service publication. The
variety of discovery mechanisms at this layer parallels the set of
publication mechanisms. Any mechanism that allows the service requestor
to gain access to the service description and make it available to the
application at runtime qualifies as service discovery. The simplest, most
static example of discovery is static discovery wherein the service
requestor retrieves a WSDL document from a local file. This is usually the
WSDL document obtained through a direct publish or the results of a
previous find operation. Alternatively, the service can be discovered at
design time or runtime using a local WSDL registry, a private UDDI
registry or the UDDI operator node. The variety of service discovery
mechanisms is discussed in more detail in the section “Service
Discovery.”

Because a Web service’s implementation is a software module, it
is natural to produce Web Services by composing Web Services. A
composition of Web Services could play one of several roles. Intra-
enterprise Web Services might collaborate to present a single Web service
interface to the public, or the Web Services from different enterprises
might collaborate to perform machine-to-machine, business-to-business
transactions. Alternatively, a workflow manager might call each Web
service as it participates in a business process. The topmost layer, service
flow, describes how service-to-service communications, collaborations,
and flows are performed. WSFL is used to describe these interactions. The
topic of Web Services flows is covered in its own section “Business
Processes, Workflows and Web Services.”

For a Web Services application to meet the stringent demands of
today’s e-businesses, enterprise-class infrastructure must be supplied,
including security, management and quality of service. These vertical

BCA-E10/250

towers must be addressed at each layer of the stack. The solutions at each
layer can be independent of each other. More of these vertical towers will
emerge as the Web Services paradigm is adopted and evolved. We discuss
these vertical towers in more detail in the section “Web Services for Real
e-business.”

The bottom layers of this stack, representing the base Web
Services stack, are relatively mature and more standardized than the layers
higher in the stack. The maturation and adoption of Web Services will
drive the development and standardization of the higher levels of the stack
and the vertical towers.

12.8.2 THE NETWORK

At the base of the Web Services stack is the network. This layer
can represent any number of network protocols: HTTP, FTP, SMTP,
Message Queuing (MQ), Remote Method Invocation (RMI) over Internet
Inter ORB Protocol (IIOP), e-mail, and so on. The network protocol used
in any given situation depends on application requirements.

For Web Services accessible from the Internet, the network
technology choices will favor ubiquitously deployed protocols such as
HTTP. For Web Services being provided and consumed within an
Intranet, there is the opportunity to agree upon the use of alternative
network technologies. The network technology can be chosen based on
other requirements, including security, availability, performance and
reliability. This allows Web Services to capitalize on existing higher-
function networking infrastructures and message-oriented middleware,
such as MQSeries. Within an enterprise with multiple types of network
infrastructures, HTTP can be used to bridge between them.

One of the benefits of Web Services is that it provides a unified
programming model for the development and usage of private Intranet and
public Internet services. As a result, the choice of network technology will
be transparent to the developer of the service.

12.8.3 XML MESSAGING-BASED DISTRIBUTED
COMPUTING

The most fundamental underpinnings of the IBM Web Services
architecture is XML messaging. The current industry standard for XML
messaging is SOAP. IBM, Microsoft and others submitted SOAP to the
W3C as the basis of the XML Protocol Working Group. The XML
protocol will replace SOAP as the industry-standard XML messaging
protocol. When the W3C has released a draft standard for the XML
protocol, the IBM Web Services architecture will migrate from SOAP to
the XML protocol.

SOAP is a simple and lightweight XML-based mechanism for
exchanging structured data between network applications. SOAP consists BCA-E10/251

of three parts: an envelope that defines a framework for describing what is
in a message, a set of encoding rules for expressing instances of
application-defined data types, and a convention for representing remote
procedure calls (RPCs) and responses. SOAP can be used in combination
with or re-enveloped by a variety of network protocols such as HTTP,
SMTP, FTP, RMI over IIOP or MQ.

While it is important to understand this foundation, most Web
service developers will not have to deal with this infrastructure directly.
Most Web Services will use optimized programming language-specific
bindings generated from WSDL. This optimization can be especially
valuable when a service provider and requestor are both executing in
similar environments.

Figure 12.4 shows how XML messaging (that is, SOAP) and network
protocols forms the basis of the IBM Web Services architecture.

Figure 12.5 : XML Messaging Using SOAP

The basic requirements for a network node to play the role of
requestor or provider in XML messaging-based distributed computing are
the ability to build, parse a SOAP message, or both, and the ability to
communicate over a network (receive, send messages, or both).

Typically, a SOAP server running in a Web application server
performs these functions. Alternatively, a programming language-specific
runtime library can be used that encapsulates these functions within an
API. Application integration with SOAP can be achieved by using four
basic steps:

1. In Figure 4, at (1) a service requestor’s application creates a SOAP
message. This SOAP message is the request that invokes the Web
service operation provided by the service provider. The XML
document in the body of the message can be a SOAP RPC request
or a document-centric message as indicated in the service

BCA-E10/252

description. The service requestor presents this message together
with the network address of the service provider to the SOAP
infrastructure (for example, a SOAP client runtime). The SOAP
client runtime interacts with an underlying network protocol (for
example HTTP) to send the SOAP message out over the network.

2. At (2) the network infrastructure delivers the message to the
service provider’s SOAP runtime (for example a SOAP server).
The SOAP server routes the request message to the service
provider's Web service. The SOAP runtime is responsible for
converting the XML message into programming language-specific
objects if required by the application. This conversion is governed
by the encoding schemes found within the message.

3. The Web service is responsible for processing the request message
and formulating a response. The response is also a SOAP message.
At (3) the response SOAP message is presented to the SOAP
runtime with the service requestor as the destination. In the case of
synchronous request/response over HTTP, the underlying
request/response nature of the networking protocol is used to
implement the request/response nature of the messaging. The
SOAP runtime sends the SOAP message response to the service
request or over the network.

4. At (4) the response message is received by the networking
infrastructure on the service requestor’s node. The message is
routed through the SOAP infrastructure; potentially converting the
XML message into objects in a target programming language. The
response message is then presented to the application.

This example uses the request/response transmission primitive that
is quite common in most distributed computing environments. The
request/response exchange can be synchronous or asynchronous. Other
transmission primitives such as one-way messaging (no response),
notification (push-style response), publish/subscribe are possible using
SOAP.

12.9 A SIMPLE WEB SERVICES WORKFLOW

Figure 12.6 illustrates a simple workflow involving Web Services.
In Figure 6, a buyer service (which might be a simple client) is ordering
goods from a seller service. The seller service is a Web service whose
interface is defined using WSDL. The buyer service is invoking the order
method on the seller service using SOAP and the WSDL definition for the
seller service. The buyer service knows what to expect in the SOAP reply
message because this is defined in the WSDL definition for the seller
service.

Figure 6 shows in and out boxes for each Web service involved in
a workflow. In general, the in and out boxes are defined using WSDL, as
described previously in this paper. The tool that encapsulates code to BCA-E10/253

create the buyer service derives the format of the outbox or API for the
seller service by analyzing and transforming the WSDL description of the
seller service, and also knows what to expect from the seller service by
analyzing the WSDL description. The in and out boxes in Figure 6 are
symbolic representations of this analysis activity.

Figure 12.6 : Simple workflow

Check Your Progress

 What is the Basic Service Description?

 Define XML Messaging Using SOAP.

12.10 SUMMARY

In this unit you learnt many things like web services, association of
web service with ASP.NET, its architecture etc. You have also learnt
about web service using the scenario when our applications often require
code to determine the number of days, such as how long the customer is
associated with us, also to convert from a date of present days into days or
years and so on. ASP.NET is a very good and popular environment for the
development of web based applications.

Web service is the mechanism that ASP.NET framework provides
to make it easy for us to write code to facilitate connectivity between
applications. As ASP.NET developer, If you need an application that will
be used by many other applications then you can simply decide to write a
web service for it and ASP.NET framework will take care of doing the
low level SOAP and XML work for us. More precisely, "web service is
the communication platform between two different or same platform
applications that allows to use their web method." The method in web
services always start with [webMethod] attributes, it means that it is a web
method that is accessible anywhere, the same as my web application.

BCA-E10/254

Today, most of software engineers and developers are using this
model. Efficient and effective Internet applications can be developed
within the required deadline along with all the flexibility features. Almost,
all organizations offer information on Internet today. Interaction between
user and programs is also necessary for all the function in web services.

Basically, a web service is a kind of software which is available
over Internet. This uses extensible markup language i.e. XML. XML is
used to encode for every kind of communication in web service. As we
know that XML is used to exchange the data over the Internet hence, for a
web service XML plays a very important role and makes software
programs very friendly and useful for the users.

The most fundamental underpinnings of the IBM Web Services
architecture is XML messaging. The current industry standard for XML
messaging is SOAP. SOAP is a simple and lightweight XML-based
mechanism for exchanging structured data between network applications.
SOAP consists of three parts: an envelope that defines a framework for
describing what is in a message, a set of encoding rules for expressing
instances of application-defined data types, and a convention for
representing remote procedure calls (RPCs) and responses. SOAP can be
used in combination with or re-enveloped by a variety of network
protocols such as HTTP, SMTP, FTP, RMI over IIOP or MQ.

A Web service is described using a standard, formal XML notion,
called its service description. It covers all the details necessary to interact
with the service, including message formats (that detail the operations),
transport protocols and location.

The seller service is a Web service whose interface is defined
using WSDL. The buyer service is invoking the order method on the seller
service using SOAP and the WSDL definition for the seller service. The
buyer service knows what to expect in the SOAP reply message because
this is defined in the WSDL definition for the seller service.

12.11 TERMINAL QUESTIONS

1. What is web service?

2. What does different or same application and platform mean?

3. What do you understand by XML Messaging Using SOAP?

4. Explain web services model.

5. Write a short note on roles in web service architecture.

6. What do you understand by artifacts of web service?

7. Discuss web service development life cycle.

8. Explain the web service architecture.

9. Give the meaning of a simple web service workflow.

10. Write a short note on roles in web service architecture. BCA-E10/255

BCA-E10/256

UNIT-13 AJAX
Structure
13.0 Introduction

13.1 Objectives

13.2 Why to Use AJAX

13.3 Where it is used

13.4 Technologies used in AJAX

13.5 Browser Support

13.6 AJAX Request

13.7 AJAX Response

13.8 Advantage and disadvantage of AJAX

13.9 Current Issues of AJAX

13.10 Summary

13.11 Terminal Questions

13.0 INTRODUCTION TO AJAX

Ajax, which stands for Asynchronous JavaScript and XML, is a set
of techniques for creating highly interactive web sites and web
applications. The idea is to make what’s on the Web appear to be local by
giving you a rich user experience, offering you features that usually only
appear in desktop applications. The emphasis in Ajax applications is to
update the web page, using data fetched from the Internet, without
refreshing the web page in the browser. You saw an example of that with
Google Suggest, where a drop-down list appears in the browser without a
page refresh.

Figure 13.1 : Simple Cookies Details of Ajax BCA-E10/257

The term “Ajax” was created by Jesse James Garrett, president of
Adaptive Path, in a February 18, 2005 article collecting the technologies
that already existed, and which make up Ajax, under one umbrella term.
That article, “Ajax: A New Approach to Web Applications,” the most
important one in the annals of Ajax, appears at
www.adaptivepath.com/ideas/essays/archives/000385.php.

Basically AJAX provides client-side scripting that allows
communication between the server and the browser without reloading the
page. AJAX stands for "Asynchronous JavaScript and XML". The word
Asynchronous means that the user need not wait until the server replies.
AJAX allows sending only important information to the server not the
entire page. So, only valuable data from the client side is routed to the
server side. It makes one’s application interactive and faster. Moreover,
AJAX allows sending and receiving data asynchronously without
reloading the web page. So it is very fast.

Speaking of change, Ajax is a bit of a change from the earlier types
of web pages, be they static HTML or Dynamic HTML/DHTML. The
interesting thing is that all types of web pages rely upon essentially the
same ingredients: HTML, JavaScript, CSS, and sometimes XML. In this
Unit, to consider the only two additional factors that can affect the end
result: the browser and the web server.

As, AJAX allows sending only important information to the server
not the entire page, so only valuable data from the client side is routed to
the server side which makes an application interactive and faster. AJAX is
not a programming or scripting language, no new invention and no
separate Web service, module or plug-in. But, It is a group of inter-related
technologies like javascript, dom, xml, html, css etc. It is an algorithm
with 'old' technologies similar to the Dynamic Html or DHTML. It also
allows creating server connections in the background while a user is
interacting with a web-page at front-end. These connections can be created
asynchronously, which means that the user need not wait until the server
replies.

13.1 OBJECTIVES

At end of this Unit you would be able to know about the following

 AJAX Concepts

 How to use JavaScript to make AJAX requests

 How AJAX works and how you can use JavaScript to
communicate with a web server.

 Implementation of AJAX features

 Advantages of AJAX

 Use of get and post method
BCA-E10/258

 Disadvantages of AJAX

 Main issues of AJAX

 Technologies used in AJAX

13.2 WHY TO USE AJAX

As far as the software side is concerned, you need a browser that
can run JavaScript, such as Internet Explorer or Firefox. Ajax revolves
around browsers, so you need to have access to an Internet browser. AJAX
allows you to send only important information to the server not the entire
page. Intuitive and natural user interaction i.e. No clicking required and
Mouse movement is a sufficient event trigger. "Partial screen update"
replaces the "click, wait, and refresh" user interaction model. Only user
interface elements that contain new information are updated
asynchronously (no interruption to user operation). The rest of the user
interface remains displayed without interruption (no loss of operational
context).

So only valuable data from the client side is routed towards the
server side. It makes your application interactive and faster. Now, In
absence of AJAX, imagine the look at a typical desktop application
(Spreadsheet app, etc.). The program responses intuitively and quickly.
The program gives to user meaningful feedbacks instantly. A cell in a
spreadsheet changes colour when you hover your mouse over it. Icons
light up as mouse hovers them. Things happen naturally. No need to click
a button or a link to trigger an event.

13.3 WHERE IT IS USED

There are too many web applications running on the web that are
using ajax technology like gmail, facebook,twitter, google map, youtube
etc. ASP.NET AJAX server controls mainly provide functionality for
having partial page updates, update progress indication, and frequent
updates based on a timer. Also, it takes care of generating all the
JavaScript that is required to perform these functionalities. So with these
controls, the developer doesn't have to write any JavaScript to implement
AJAX.

The controls provided by ASP.NET for having AJAX functionality are:

1. ScriptManager

2. ScriptManagerProxy

3. UpdatePanel

4. UpdateProgress

5. Timer BCA-E10/259

13.2.1 SCRIPTMANAGER

 The ScriptManager control is a non visual component on the page.
This control is required on each page that needs to have AJAX
features implemented on it. The main functionality of a
ScriptManager control is to push Microsoft AJAX framework code
to the client side when the page is being rendered. This control can
be thought of as the agent which would write the JavaScript
required on the client side to facilitate AJAX functionality.

 There should be only one ScriptManager control on the page that
needs AJAX functionality. Let us create a webpage and add a
ScriptManager control to it:

 <asp:ScriptManagerID="ScriptManager1"runat="server"/>

 The ScriptManager control is the most important control and must
be present on the page for other controls to work. It has the basic
syntax:

<asp:ScriptManager ID="ScriptManager1" runat="server">

</asp:ScriptManager>

 If you create an 'Ajax Enabled site' or add an 'AJAX Web Form'
from the 'Add Item' dialog box, the web form automatically
contains the script manager control. The ScriptManager control
takes care of the client-side script for all the server side controls.

13.2.2 SCRIPTMANAGERPROXY

We have seen that the ScriptManager control is required on the
page that needs AJAX functionality. We also know that there should be
only one ScriptManager control on the page. Now consider a situation
where there is a master page and content page and both need AJAX
functionalities. There is one more scenario, let's say we have a
UserControl that needs AJAX and it has to be added on a page where
AJAX is already implemented. Since there could be only one
ScriptManager on the page, adding a ScriptManager control in these
scenarios will result in two ScriptManager controls on the page. So to
handle such conditions, the ScriptManagerProxy control can be used.

ScriptManagerProxy should be used on content pages that have
master pages containing a ScriptManager control. It can also be used
inside UserControls when the page containing the UserControl already has
the ScriptManager control.

13.2.3 UPDATEPANEL

This is a container control that contains other ASP.NET controls.
This control defines a region that is capable of making partial page

BCA-E10/260

updates. We can add various server controls inside an UpdatePanel and
this controls inside the UpdatePanel communicates to the server
irrespective of the page's postback.

Let us add an UpdatePanel on the page and some server controls
inside it. We will try to do some arithmetic operations inside this
UpdatePanel and try to get the results without a postback. Once the
controls are added, the design view of the page will look like:

The UpdatePanel control is a container control and derives from
the Control class. It acts as a container for the child controls within it and
does not have its own interface. When a control inside it triggers a post
back, the UpdatePanel intervenes to initiate the post asynchronously and
update just that portion of the page.

For example, if a button control is inside the update panel and it is
clicked, only the controls within the update panel will be affected, the
controls on the other parts of the page will not be affected. This is called
the partial post back or the asynchronous post back.

Figure 13.2 : UpdatePanel output

Now let us handle the button click event and perform the arithmetic
operations on that:

Example

Hide Copy Code

protectedvoid btnCalculate_Click(object sender, EventArgs e)

{ BCA-E10/261

try

 {

int a = Convert.ToInt32(txtA.Text);

int b = Convert.ToInt32(txtB.Text);

int sum = a + b;

int difference = a - b;

int multiplication = a * b;

 Label1.Text = string.Format("Sum = {0}", sum);

 Label2.Text = string.Format("Difference = {0}", difference);

 Label3.Text= string.Format("Multiplication = {0}", multiplication);

 }

catch (Exception ex)

 {

//pokemon exception handling

 }

}

Now since all the controls are inside the UpdatePanel control,
clicking the button will not result in a postback but it will asynchronously
call the server-side function and give us the results. When we run the page
in the browser:

Figure 13.3 : Arithmetic Operations BCA-E10/262

Notice that clicking on the button does not cause the postback but
gives us the result asynchronously. We can control partial page updates
using the UpdateMode property of the UpdatePanel and setting Trigger.

Table 13.1 : Properties of the UpdatePanel Control

Properties Description

ChildrenAsTriggers
This property indicates whether the post backs
are coming from the child controls, which
cause the update panel to refresh.

ContentTemplate
It is the content template and defines what
appears in the update panel when it is
rendered.

ContentTemplateContainer
Retrieves the dynamically created template
container object and used for adding child
controls programmatically.

IsInPartialRendering Indicates whether the panel is being updated
as part of the partial post back.

RenderMode Shows the render modes. The available modes
are Block and Inline.

UpdateMode Gets or sets the rendering mode by
determining some conditions.

Triggers
Defines the collection trigger objects each
corresponding to an event causing the panel to
refresh automatically.

Table 13.2: Methods of the UpdatePanel Control

Methods Description

CreateContentTemplateContainer
Creates a Control object that acts as a
container for child controls that define
the UpdatePanel control's content.

BCA-E10/263

CreateControlCollection
Returns the collection of all controls
that are contained in the UpdatePanel
control.

Initialize
Initializes the UpdatePanel control
trigger collection if partial-page
rendering is enabled.

Update Causes an update of the content of an
UpdatePanel control.

The behavior of the update panel depends upon the values of the
UpdateMode property and ChildrenAsTriggers property which has been
shown in the following 13.3 table.

Table 13.3 : Methods of the UpdatePanel Control

UpdateMode ChildrenAsTriggers Effect

Always False Illegal parameters.

Always True
UpdatePanel refreshes if whole
page refreshes or a child control
on it posts back.

Conditional False

UpdatePanel refreshes if whole
page refreshes or a triggering
control outside it initiates a
refresh.

Conditional True

UpdatePanel refreshes if whole
page refreshes or a child control
on it posts back or a triggering
control outside it initiates a
refresh.

13.2.4 UPDATEPROGRESS

The scenario we just handled gave us the results instantly, but
imagine a scenario where the server side processing for the asynchronous
event takes some time. If the operation is time consuming then we can
provide the user feedback by using the UpdateProgress control inside the BCA-E10/264

UpdatePanel. Let us have one more UpdatePanel on the page doing the
same task, but this time we will make the server side functionality take
more time than required (by using sleep). We will add a simple
UpdateProgress control to make the user aware of the fact that some
processing is being done by the page right now. Let us look at the Design
view of this UpdatePanel and UpdateProgress control now.

Figure 13.4 : UpdateProgress

Let us handle the server side event for button click but this time let's add a
sleep for some time here.

Example

Hide Copy Code

protectedvoid btnCalculate2_Click(object sender, EventArgs e)

{

try

 {

//Lets pretend that we are doiing something time consuming

System.Threading.Thread.Sleep(3000);

int a = Convert.ToInt32(txtA2.Text);

int b = Convert.ToInt32(txtB2.Text);

int sum = a + b; BCA-E10/265

int difference = a - b;

int multiplication = a * b;

 Label4.Text = string.Format("Sum = {0}", sum);

 Label5.Text = string.Format("Difference = {0}", difference);

 Label6.Text = string.Format("Multiplication = {0}", multiplication);

 }

catch (Exception ex)

 {

//pokemon exception handling

 }

}

Now when we run the page and click the button, the updateProgress
message will be shown.

Figure 13.5 : UpdateProgress with sleep

BCA-E10/266

We can also have images and animated GIFs inside the updateProgress
control to provide more user friendly feedback.

Table 13.4: Methods of the UpdatePanel Control Properties of the
UpdateProgress Control

Properties Description

AssociatedUpdatePanelID Gets and sets the ID of the update panel with
which this control is associated.

Attributes Gets or sets the cascading style sheet (CSS)
attributes of the UpdateProgress control.

DisplayAfter
Gets and sets the time in milliseconds after
which the progress template is displayed. The
default is 500.

DynamicLayout Indicates whether the progress template is
dynamically rendered.

ProgressTemplate
Indicates the template displayed during an
asynchronous post back which takes more time
than the DisplayAfter time.

Table 13.5 : Methods of the UpdateProgress Control

Methods Description

GetScriptDescriptors
Returns a list of components, behaviors, and client
controls that are required for the UpdateProgress
control's client functionality.

GetScriptReferences Returns a list of client script library dependencies
for the UpdateProgress control.

13.2.1 TIMER

There might be some scenarios where we want to update a
particular portion of the page after some time duration irrespective of user BCA-E10/267

action. To achieve this, we can use the Timer control. Let us add a timer
control to our page and display the server time after every 5 seconds. The
design view of the page will look like:

Figure 13.6 : Timer

Let us now handle the timer_tick event. Since the control is inside
the UpdatePanel the time will be updated after every 5 seconds without
causing any postback. Let us look at the server side code for the timer
event and then run the page and see the time changing every 5 seconds.

Example

Hide Copy Code

protectedvoid Timer1_Tick(object sender, EventArgs e)

{

 Label8.Text = DateTime.Now.ToString();

}

Figure 13.6 : Timer tick event

13.4 TECHNOLOGIES USED IN AJAX

Basically Ajax is not a technology but group of inter-related
technologies. Following technologies are used in Ajax: BCA-E10/268

HTML/XHTML and CSS

These technologies are used for displaying content and style. It is mainly
used for presentation.

DOM

It is used for dynamic display and interaction with data.

XML or JSON

For carrying data to and from server. JSON (Javascript Object Notation) is
like XML but short and faster than XML.

ASP or JSP

Server side

XMLHttpRequest

For asynchronous communication between client and server.For more visit
next page.

JavaScript

It is used to bring above technologies together. It used for Client-side
validation and validate user input in an HTML form before sending the
data to a server.

Check Your Progress

 How you can define AJAX and its benefits?

 Write names of technologies used in AJAX.

13.5 BROWSER SUPPORT

Without a web browser, though, web pages are rather useless. The
majority of people wandering around the Internet wouldn’t fully
appreciate them. Yes, there is the indentation, but without a browser, there
is no scripting or pictures. A lot can be said about web browsers; after all,
they color our web browsing experience nearly as much as the pages we
visit. The decision to use a specific web browser probably says a great
deal about who each of us is as an individual. All the available browsers
cannot support AJAX. Here is a list of major browsers that support AJAX.

 Mozilla Firefox 1.0 and above.

 Netscape version 7.1 and above.

 Apple Safari 1.2 and above.

 Microsoft Internet Explorer 5 and above.

 Konqueror. BCA-E10/269

 Opera 7.6 and above.

When you write your next application, do consider the browsers that do
not support AJAX.

NOTE : When we say that a browser does not support AJAX, it simply
means that the browser does not support the creation of Javascript object –
XMLHttpRequest object.

13.5.1 WRITING BROWSER SPECIFIC CODE

The simplest way to make your source code compatible with a browser is
to use try...catchblocks in your JavaScript.

<html>

<body>

<script language="javascript" type="text/javascript">

<!--

//Browser Support Code

function ajaxFunction(){

var ajaxRequest; // The variable that makes Ajax possible!

try

{

// Opera 8.0+, Firefox, Safari

ajaxRequest = new XMLHttpRequest();

}

catch (e){

// Internet Explorer Browsers

try{

ajaxRequest = new ActiveXObject("Msxml2.XMLHTTP");

}

catch (e) {

try

{

ajaxRequest = new ActiveXObject("Microsoft.XMLHTTP");

}catch (e){

BCA-E10/270

// Something went wrong

alert("Your browser broke!");

return false;

}

}

}

}

//-->

</script>

<form name='myForm'>

Name: <input type='text' name='username' />

Time: <input type='text' name='time' />

</form>

</body>

</html>

In the above JavaScript code, we try three times to make our
XMLHttpRequest object. Our first attempt:

ajaxRequest = new XMLHttpRequest();

It is for Opera 8.0+, Firefox, and Safari browsers. If it fails, we try two
more times to make the correct object for an Internet Explorer browser
with:

ajaxRequest = new ActiveXObject("Msxml2.XMLHTTP");

ajaxRequest = new ActiveXObject("Microsoft.XMLHTTP");

If it doesn't work, then we can use a very outdated browser that
doesn't support XMLHttpRequest, which also means it doesn't support
AJAX. Most likely though, our variable ajaxRequest will now be set to
whatever XMLHttpRequest standard the browser uses and we can start
sending data to the server. The step-wise AJAX workflow is explained in
the next chapter.

13.6 AJAX REQUEST

XMLHttpRequest Object, following methods are allow to interact with the
server.

BCA-E10/271

Property Description

open(method, url,
boolean)

Specifies the type of method, URL and Boolean(if true
than handle asynchronous or false than handle
synchronous)

• method: type of request, GET or POST

• url: the location of the file o the server (with
path)

• boolean: true (asynchronous) / false
(synchronous)

• optionally: You wish to login and password
may be added to arguments

send("string") String: use only POST method request.

13.6.1 GET OR POST METHOD

 GET is simpler and faster than POST, so mostly use a GET.

 POST request use when sending a large amount of data to the
server, update contain on the server also POST is secure and robust
method than GET.

 POST request use to send the data to send to the server.

GET Method

Syntax

xmlhttp.open("GET", url,true)// xmlhttp is variable name

xmlhttp.send()

Example

req.open("GET","ajax_demo.txt",true);// req is variable name

req.send(null);

Post Method

Syntax

xmlhttp.open("POST", url,true)// xmlhttp is variable name

xmlhttp.send(String)
BCA-E10/272

Example

req.open("POST","ajax_demo.txt",true);// req is variable name

req.send("hitesh");

13.7 AJAX RESPONSE

To get the response from a server, use the responseText or
responseXML property of the XMLHttpRequest object.

 Property Description

responseText get the response data as a string.

responseXML get the response data as XML data.

13.7.1 THE RESPONSETEXT PROPERTY

If the response from the server is not XML, use the responseText
property. The responseText property returns the response as a string, and
you can use it accordingly:

13.7.2 THE RESPONSEXML PROPERTY

If the response from the server is XML, and you want to parse it as
an XML object, use the responseXML property.

Check Your Progress

 Discuss get and post method of AJAX?

 What is AJAX response?

13.8 ADVANTAGE AND DISADVANTAGE OF
AJAX

13.8.1 ADVANTAGE OF AJAX

 Independent of server technology.

 Apart from obtaining the XMLHTTP object, all processing is same
for all browser types, because Javascript is used. BCA-E10/273

 Using ajax you can develop faster and more interactive web
applications.

 Ajax based application use less server bandwidth, because no need
to reload complete page.

13.8.2 DISADVANTAGE OF AJAX

 Possible network latency problems. People should be given
feedback about the processing.

 Does not run on all browsers.

 Search Engine like Google can't index Ajax pages.

 Security is less in AJAX application. Anyone can view the source
code written for Ajax.

 The back button problem. People think that when they press back
button, they will return to the last change they made, but in AJAX
this doesn't hold.

13.9 CURRENT ISSUES OF AJAX

AJAX is growing very fast and that is the reason that it contains
many issues with it. We hope with the passes of time, they will be
resolved and AJAX will become ideal for web applications. We are listing
down a few issues that AJAX currently suffers from.

13.9.1 COMPLEXITY IS INCREASED

 Server-side developers will need to understand that presentation
logic will be required in the HTML client pages as well as in the
server-side logic.

 Page developers must have JavaScript technology skills.

13.9.2 AJAX-BASED APPLICATIONS CAN BE
DIFFICULT TO DEBUG, TEST, AND MAINTAIN

 JavaScript is hard to test - automatic testing is hard.

 Weak modularity in JavaScript.

 Lack of design patterns or best practice guidelines yet.

13.9.3 TOOLKITS/FRAMEWORKS ARE NOT
MATURE YET

 Most of them are in beta phase.
BCA-E10/274

13.9.4 NO STANDARDIZATION OF THE
XMLHTTPREQUEST YET

 Future version of IE will address this.

13.9.5 NO SUPPORT OF XMLHTTPREQUEST IN OLD
BROWSERS

 Iframe will help.

13.9.6 JAVASCRIPT TECHNOLOGY DEPENDENCY
AND INCOMPATIBILITY

 Must be enabled for applications to function.

 Still some browser incompatibilities exist.

13.9.7 JAVASCRIPT CODE IS VISIBLE TO A HACKER

 Poorly designed JavaScript code can invite security problems.

Check Your Progress

 Is there any disadvantage of AJAX?

 Discuss current issues in AJAX.

13.10 SUMMARY

What we have tried to do in this unit is to understand AJAX that
what is it and how it might be useful for programmers. There are various
ways of implementing AJAX in an ASP.NET application. We have only
touched the very basics of the ASP.NET AJAX server controls in this
article. There are a lot of configuration options and properties associated
with each of these server controls which we have not discussed.
Understanding these controls gives us one way of having AJAX features
in website.

GET is simpler and faster than POST, so mostly use a GET. POST
request use when sending a large amount of data to the server, update
contain on the server also POST is secure and robust method than GET.
POST request use to send the data to send to the server.

Ajax is group of inter-related technologies such as:
HTML/XHTML and CSS, DOM, XML or JSON (Javascript Object
Notation) is like XML but short and faster than XML, ASP or JSP, BCA-E10/275

XMLHttpRequest (used for asynchronous communication between client
and server), JavaScript.

All the available browsers cannot support AJAX. Here is a list of
major browsers that support AJAX: Mozilla Firefox 1.0 and above,
Netscape version 7.1 and above, Apple Safari 1.2 and above, Microsoft
Internet Explorer 5 and above, Konqueror, Opera 7.6 and above.

The main aadvantages of AJAX: 1) Independent of server
technology. 2) Apart from obtaining the XMLHTTP object, all processing
is same for all browser types, because JavaScript is used. 3) Using AJAX
you can develop faster and more interactive web applications. 4) Ajax
based application use less server bandwidth, because no need to reload
complete page.

And the disadvantages of AJAX are: 1) Possible network latency
problems. People should be given feedback about the processing. 2) Does
not run on all browsers. 3) Search Engine like Google can't index Ajax
pages. 4) Security is less in AJAX application. Anyone can view the
source code written for Ajax. 5) The back button problem. People think
that when they press back button, they will return to the last change they
made, but in AJAX this doesn't hold.

13.11 TERMINAL QUESTIONS

1. What do you mean by AJAX?

2. Discuss the requirement of AJAX.

3. Explain the current issues of AJAX.

4. Discuss get and post method of AJAX?

5. What is AJAX request and response?

6. Write a program for arithmetic operations.

7. Discuss the advantages and disadvantages of AJAX.

8. Write a small program using AJAX to display the time.

9. Discuss the browser support.

10. Compare AJAX with other technologies.

BCA-E10/276

UNIT-14 DEVELOPING A SMALL
APPLICATION USING ASP.NET

Structure

14.0 Introduction

14.1 Objectives

14.2 What is Software Engineering

14.3 Fundamental of Project & Problem Definition

14.4 Software Requirement Specification (SRS)

14.5 Feasibility Study

14.6 Requirement Specifications

14.7 System Analysis and Design

14.8 Coding& Output/Interface

14.9 Summary

14.10 Terminal Questions

14.0 INTRODUCTION

The project titled “Bluetooth Based Attandance Management
System” is a small project has been developed using ASP.NET as a front-
end and MS Access as a back-end. It is an attendance management system
which can be used School, College, University etc. This project aims to
train the basic concepts of ASP.NET for the students so that they clould be
familiar with the environment of the indusrey. The project has been
developed using the traditional waterfall model following allthe required
steps of software engineering like SRS, feasibility study, design, coding
and implementation, testing, and finally maintenance. It is tryst which
couldfulfil the primary knowledge of a project and hence explained from a
very basic point of view.

The use of the attendance card is not new rather widely popular for
many years. Today, OTR cards or punch cards have been used for
clocking in working hours. These are paper cards that are inserted in a
machine which will then record the exact time when the employee has
arrived. The paper cards have eventually been replaced by sturdier cards
that are sized just like the bank card or ID. In fact, some ID cards issued
by companies can also be used for time keeping and are inserted into
digital time recorders. An issue with the attendance card is that some
workers will actually ask co-workers to time in for them. Some have BCA-E10/277

attempted to remedy this dilemma through the use of signature logs that
are attached next to the attendance recorder.

It is also very important and necessary to know that what is a software
project or product. A software project is entirely different fromthe other
projects i.e. a software product is different from the other products like,
car, soap, clothes, shoes etc. The software industry entirely depends on the
requirement of clients which changes time-to-time. A client, who asks for
something before staring the project, demands different requirenments
after some time during the running projects. This creates the chaos for the
developers but also shows the skill and expertise of software industry
professionals so that they could filfil the needs at any time.

A software development project is a complex undertaking by two
or more persons within the boundaries of time, budget, and staff resources
that produces new or enhanced computer code that adds significant
business value to a new or existing business process. Although this is a
restrictive definition, it does define the types of software development
projects that are addressed in this book. The criteria for these projects are
that they have the potential of adding significant business value and are
not trivial undertakings. These development projects will have significant
business value, be highly visible, be of moderate to high complexity, and
were needed yesterday.

Moreover, project management software is software used for
project planning, scheduling, resource allocation and change management.
It allows project managers (PMs), stakeholders and users to control costs
and manage budgeting, quality management and documentation and also
may be used as an administration system. Project management software is
also used for collaboration and communication between project
stakeholders. A project is a temporary endeavor, having a defined
beginning and end (usually constrained by date, but can be by funding or
deliverables), undertaken to meet unique goals and objectives, usually to
bring about beneficial change or added value.

However this brings me to another problem: using this definition in
orthodox way would make many ventures, well, non-projects. Consider
Google search as an example - its development isn't constrained by date or
funding or specific deliverables, yet my guess is no one would deny it is a
project. Also, many R&D projects don't suit the definition well. Same with
many startup projects which change rapidly along with their constraints.

14.1 OBJECTIVES

At end of this Unit you would be able to know about the following

 Software engineering

 What is a software project

 Software Requirement Specification
BCA-E10/278

 Feasibility Study

 Coding and Implementation

 DFD and ER Diagram

 Testing

 Maintenance

14.2 WHAT IS SOFTWARE ENGINEERING

When I'm speaking as a project manager, a "project" is a
formalized process with a defined goal and an attendant methodology.
One can argue about how well-defined the goal should be, how formal the
process ought to be, or how rigorous the applied methodology may be, but
you can cut through a lot of fog by saying that any project isn't being
actively managed to complete a finite goal is simply not a project from a
PM perspective. For example, ongoing technical support would not
generally be considered a discrete project. On the other hand, forming a
team tasked with delivering an embiggening feature for your therblig
generator by the third quarter of next year fits the PM-oriented definition
of a project rather well.

The above scenario indicates us to know about the software
engineering. Without understanding the basics of software engineering
concepts one is unable to know about is versatile scope and its
subdomains. Hence, first we would understand that what software
engineering actually has. Let us first understand what software
engineering stands for. The term is made of two words, software and
engineering.

Software is more than just a program code. A program is an executable
code, which serves some computational purpose. Software is considered to
be collection of executable programming code, associated libraries and
documentations. Software, when made for a specific requirement is called
software product. Engineering on the other hand, is all about developing
products, using well-defined, scientific principles and methods.

Software engineering is an engineering branch associated with
development of software product using well-defined scientific principles,
methods and procedures. The outcome of software engineering is an
efficient and reliable software product.

14.2.1 DEFINITIONS

IEEE defines software engineering as:

(1) The application of a systematic,disciplined,quantifiable approach
to the development,operation and maintenance of software; that is,
the application of engineering to software.

BCA-E10/279

(2) The study of approaches as in the above statement. Fritz Bauer, a
German computer scientist, defines software engineering as:
Software engineering is the establishment and use of sound
engineering principles in order to obtain economically software
that is reliable and work efficiently on real machines.

14.2.2 SOFTWARE EVOLUTION

The process of developing a software product using software
engineering principles and methods is referred to as software evolution.
This includes the initial development of software and its maintenance and
updates, till desired software product is developed, which satisfies the
expected requirements.

Figure 14.1 : Software Evolution

Evolution starts from the requirement gathering process. After
which developers create a prototype of the intended software and show it
to the users to get their feedback at the early stage of software product
development. The users suggest changes, on which several consecutive
updates and maintenance keep on changing too. This process changes to
the original software, till the desired software is accomplished.

Even after the user has desired software in hand, the advancing
technology and the changing requirements force the software product to
change accordingly. Re-creating software from scratch and to go one-on-
one with requirement is not feasible. The only feasible and economical
solution is to update the existing software so that it matches the latest
requirements.

14.2.3 SOFTWARE EVOLUTION LAWS

Lehman has given laws for software evolution. He divided the software
into three different categories:

 S-type (static-type) - This is a software, which works strictly
according to defined specifications and solutions. The solution and BCA-E10/280

the method to achieve it, both are immediately understood before
coding. The s-type software is least subjected to changes hence this
is the simplest of all. For example, calculator program for
mathematical computation.

 P-type (practical-type) - This is a software with a collection of
procedures. This is defined by exactly what procedures can do. In
this software, the specifications can be described but the solution is
not obvious instantly. For example, gaming software.

 E-type (embedded-type) - This software works closely as the
requirement of real-world environment. This software has a high
degree of evolution as there are various changes in laws, taxes etc.
in the real world situations. For example, Online trading software.

14.2.4 E-TYPE SOFTWARE EVOLUTION

Lehman has given eight laws for E-Type software evolution -

 Continuing change - An E-type software system must continue to
adapt to the real world changes, else it becomes progressively less
useful.

 Increasing complexity - As an E-type software system evolves, its
complexity tends to increase unless work is done to maintain or
reduce it.

 Conservation of familiarity - The familiarity with the software or
the knowledge about how it was developed, why was it developed
in that particular manner etc. must be retained at any cost, to
implement the changes in the system.

 Continuing growth- In order for an E-type system intended to
resolve some business problem, its size of implementing the
changes grows according to the lifestyle changes of the business.

 Reducing quality - An E-type software system declines in quality
unless rigorously maintained and adapted to a changing operational
environment.

 Feedback systems- The E-type software systems constitute multi-
loop, multi-level feedback systems and must be treated as such to
be successfully modified or improved.

 Self-regulation - E-type system evolution processes are self-
regulating with the distribution of product and process measures
close to normal.

 Organizational stability - The average effective global activity
rate in an evolving E-type system is invariant over the lifetime of
the product.

BCA-E10/281

14.2.5 SOFTWARE PARADIGMS

Software paradigms refer to the methods and steps, which are
taken while designing the software. There are many methods proposed and
are in work today, but we need to see where in the software engineering
these paradigms stand. These can be combined into various categories,
though each of them is contained in one another:

Figure 14.2 : Software Paradigms

Programming paradigm is a subset of Software design paradigm which is
further a subset of Software development paradigm.

Software Development Paradigm

This Paradigm is known as software engineering paradigms where all the
engineering concepts pertaining to the development of software are
applied. It includes various researches and requirement gathering which
helps the software product to build. It consists of: Requirement gathering,
Software design, and Programming.

Software Design Paradigm

This paradigm is a part of Software Development and includes: Design,
Maintenance, and Programming.

Programming Paradigm

This paradigm is related closely to programming aspect of software
development. This includes: Coding, Testing, Integration.

BCA-E10/282

14.2.5 NEED OF SOFTWARE ENGINEERING

The need of software engineering arises because of higher rate of change
in user requirements and environment on which the software is working.

 Large software - It is easier to build a wall than to a house or
building, likewise, as the size of software become large
engineering has to step to give it a scientific process.

 Scalability- If the software process were not based on scientific
and engineering concepts, it would be easier to re-create new
software than to scale an existing one.

 Cost- As hardware industry has shown its skills and huge
manufacturing has lower down he price of computer and electronic
hardware. But the cost of software remains high if proper process
is not adapted.

 Dynamic Nature- The always growing and adapting nature of
software hugely depends upon the environment in which user
works. If the nature of software is always changing, new
enhancements need to be done in the existing one. This is where
software engineering plays a good role.

 Quality Management- Better process of software development
provides better and quality software product.

14.2.5 CHARACTERISTICS OF GOOD SOFTWARE

A software product can be judged by what it offers and how well it
can be used. This software must satisfy on the following grounds:
Operational, Transitional, and Maintenance. Well-engineered and crafted
software is expected to have the following characteristics:

Operational

This tells us how well software works in operations. It can be measured
on: Budget, Usability, Efficiency, Correctness, Functionality,
Dependability, Security, Safety.

Transitional

This aspect is important when the software is moved from one platform to
another: Portability, Interoperability, Reusability, Adaptability.

Maintenance

This aspect briefs about how well software has the capabilities to maintain
itself in the ever-changing environment:

• Modularity

• Maintainability

• Flexibility BCA-E10/283

• Scalability

14.3 FUNDAMENTAL OF PROJECT &
PROBLEM DEFINITION

Nowadays, instructors in universities and colleges take the
attendance manually either by calling out individual's name or by passing
around an attendance sheet for student's signature to confirm his/her
presence. Using these methods is both cumbersome and time-consuming.
Therefore a method of taking attendance using instructor's mobile
telephone has been presented in this paper which is paperless, quick, and
accurate. Application software installed in the instructor's mobile
telephone enables it to query students' mobile telephone via Bluetooth
connection and, through transfer of students' mobile telephones' Media
Access Control (MAC) addresses to the instructor's mobile telephone; and
hence the presence of the student can be confirmed. Moreover, detailed
record of a student's attendance can also be generated for printing and
filing, if needed.

Student Attendance System is based on Bluetooth and RFID reader
application.This project has been developed to take learner attendance
during class or lab. The RFID reader gets the student’s information
through student matrix card. After getting the student information, it will
be send to the computer. Later the in-charge whoever may connect with
PC using Bluetooth to see his/her presence or absence.

Therefore this system could be used to avoid cheating about their
presence or absence. At the same time, this system will also send an e-
mail about the attendance details after class dismiss. Bluetooth based new
wireless applications can add comfort and security by automation of the
tasks which were controlled manually earlier. Advantages of low cost, low
power and robustness of Bluetooth have been exploited to propose and
execute two new consumer systems in the form of an electronic attendance
record system. The reason of the development of biometric system is to
take student attendance more efficiently. This method uses the student’s
matrix card to track student’s attendance and sent information to the
computer and the computer will send data to a mobile phone lecturer. The
listing of students will be automatic, quicker and more security intensive
than current methods of registration.

This project is derived from a topic suggested by Mr. H.R. Gerber
for the development of an automated class attendance recording device.
The device must positively identify students and provide reliable class
attendance logs for the benefit of students and lecturers. Attendance logs
must be stored on a centralized database in order to generate reports and
statistics. Therefore, the device must be able to communicate with a
central database server. Students should be able to access information; and
personalized reports must be generated by the system for effective self-
assessment and keeping up-to-date. Higher authorities should also be able

BCA-E10/284

to view attendance information and be able to make changes time-to-time
in the system.

14.3.1 AIMS & OBJECTIVES

Attendance Management System is the easiest way to keep track of
attendance for community organizations such as school clubs, scouting
units, church groups, athletics, or volunteer groups. Attendance
Management System covers the requirements of the Personnel Department
in terms of Manpower Analysis, day-to-day monitoring of the Attendance,
Maintaining Statutory Registers, Monitoring of Leave Records,
Calculation of Overtime and transfer of relevant information to the Payroll
System.

14.3.2 LARGE-SCALE COMPANIES

If you want something that is more precise and unlikely to be
tampered with by the naughty employee, the fingerprint based attendance
system is the choice for you. These systems make use of fingerprint
readers, or little glass panels attached to the attendance machine.The
employees would simply put their fingerprints on the reader which will
then scan the print and identify the employee. The fingerprint readers will
then automatically login the employee on an electronic database.

There are other variants too to the fingerprint reader, such as the
iris scanner. Like the fingerprint, no two people have the same eyes. A
scanner will scan the eyes and automatically log the employee in.
Remember, however, these high technology systems are much more
expensive than the usual card reader. You would also need to create a
fingerprint or iris database from all of your employees so that the scanners
would be able to make comparisons. The theoretical study and the
experiments show that the Iris recognition mechanism is the most accurate
and reliable recognition system.

14.3.3 E-COMMERCE

Performance based systems. Finally, there is performance based
attendance keeping systems. These are increasingly being utilized to
ensure not only employee attendance, but their productivity and efficiency
as well. an example are the computer companies and online companies
that will log in the employee based on factors such as when the employee
logs in to the company web site or computer, and other activities such as
mouse clicks, and keyboard taps. This is still in the experimental phase,
however, but is widely being studied by many companies. One major
limitation, however, is that these attendance keeping systems will not
work for companies and business that do not require the emplouees to
make high use of the computer.

BCA-E10/285

14.4 SOFTWARE REQUIREMENT
SPECIFICATION (SRS)

A software requirements specification (SRS) is a comprehensive
description of the intended purpose and environment for software under
development. The SRS fully describes what the software will do and how
it will be expected to perform. The Software Requirements Specification
is produced at the culmination of the analysis task. The function and
performance allocated to software are refined by establishing a complete
information description, a detailed functional description, a representation
of system behavior, an indication of performance requirements and design
constraints, appropriate validation criteria, and other information pertinent
to requirements.

Requirements collection is crucial to the development of successful
information systems. To achieve a high level of IS quality, it is essential
that the SRS be developed in a systematic and comprehensive way. If this
is done, the system meet the user's needs, and will lead to user satisfaction.
If it is not done, the software is likely to not meet the user's requirements,
even if the software conforms with the specification and has few defects.

An SRS minimizes the time and effort required by developers to
achieve desired goals and also minimizes the development cost. A good
SRS defines how an application will interact with system hardware, other
programs and human users in a wide variety of real-world situations.
Parameters such as operating speed, response time, availability,
portability, maintainability, footprint, security and speed of recovery from
adverse events are evaluated. Methods of defining an SRS are described
by the IEEE (Institute of Electrical and Electronics Engineers)
specification 830-1998.

14.4.1 SRS FEATURES

SRS should come up with following features:

 User Requirements are expressed in natural language.

 Technical requirements are expressed in structured language,
which is used inside the organization.

 Design description should be written in Pseudo code.

 Format of Forms and GUI screen prints.

 Conditional and mathematical notations for DFDs etc.

14.4.2 SOFTWARE REQUIREMENT VALIDATION

After requirement specifications are developed, the requirements
mentioned in this document are validated. User might ask for illegal,

BCA-E10/286

impractical solution or experts may interpret the requirements incorrectly.
This results in huge increase in cost if not nipped in the bud. Requirements
can be checked against following conditions -

 If they can be practically implemented

 If they are valid and as per functionality and domain of software

 If there are any ambiguities

 If they are complete

 If they can be demonstrated

14.4.3 SOFTWARE REQUIREMENT CHARACTERISTICS

Gathering software requirements is the foundation of the entire
software development project. Hence they must be clear, correct and well-
defined.

A complete Software Requirement Specifications must be:

 Clear

 Correct

 Consistent

 Coherent

 Comprehensible

 Modifiable

 Verifiable

 Prioritized

 Unambiguous

 Traceable

 Credible source

Check Your Progress

 What do you mean by a software project?

 Discuss SRS.

 Give the names of SRS features.

14.5 FEASIBILITY STUDY

Feasibility study is the process of determination of whether or not
a project is worth doing. Feasibility studies are undertaken within tight
time constraints and normally culminate in a written and oral feasibility
report. The contents and recommendations of this feasibility study helped BCA-E10/287

us as a sound basis for deciding how to precede the project. It helped in
taking decisions such as which software to use, hardware combinations,
etc.

The following is the process diagram for feasibility analysis. In the
diagram, the feasibility analysis starts with the user set of requirements.
With this, the existing system is also observed. The next step is to check
for the deficiencies in the existing system. By evaluating the above points
a fresh idea is conceived to define and quantify the required goals. The
user consent is very important for the new plan. Along with, for
implementing the new system, the ability of the organization is also
checked. Besides that, a set of alternatives and their feasibility is also
considered in case of any failure in the proposed system. Thus, feasibility
study is an important part in software development.

In the SDLC (Systems Development Life Cycle) of our project we
maintained a number of feasibility checkpoints between the two phases of
the SDLC. These checkpoints indicate that the management decision to be
made after a phase is complete. The feasibility checkpoints in our project
were as follows:

 Survey phase checkpoint

 Study phase checkpoint

 Selection phase checkpoint

 Acquisition phase checkpoint

 Design phase checkpoint

We conducted three tests for Project feasibility namely, Technical,
Economical, and Operational feasibilities. Which are described below.

14.5.1 TECHNICAL FEASIBILITY

Technical feasibility determines whether the work for the project
can be done with the existing equipment, software technology and
available personnel. Technical feasibility is concerned with specifying
equipment and software that will satisfy the user requirement. This project
is feasible on technical remarks also, as the proposed system is more
beneficiary in terms of having a sound proof system with new technical
components installed on the system. The proposed system can run on any
machines supporting Windows and Internet services and works on the best
software and hardware that had been used while designing the system so it
would be feasible in all technical terms of feasibility. Technical Feasibility
addresses three major issues:

 Is the proposed Technology or Solution Practical?

The technologies used are matured enough so that they can be
applied to our problems. The practicality of the solution we have
developed is proved with the use of the technologies we have

BCA-E10/288

chosen. The technologies such as ASP, IIS, VC# and the
compatible H/Ws are so familiar with the today’s knowledge based
industry that anyone can easily be compatible to the proposed
environment.

 Do we currently posses the necessary technology?

We first make sure that whether the required technologies are
available to us or not. If they are available then we must ask if we
have the capacity. For instance, “Will our current Printer be able to
handle the new reports and forms required of a new system?

 Do we possess the necessary Technical Expertise and is the
schedule reasonable?

This consideration of technical feasibility is often forgotten during
feasibility analysis. We may have the technology, but that doesn’t
mean we have the skills required to properly apply that technology.

14.5.2 ECONOMICAL FEASIBILITY

Economical feasibility determines whether there are sufficient
benefits in sufficient benefits in creating to make the cost acceptable, or is
the cost of the system too high. This signifies cost-benefit analysis and
savings. On behalf of the cost-benefit analysis, the proposed system is
feasible and is economical regarding its pre-assumed cost for making a
system. Economical feasibility has great importance as it can outweigh
other feasibilities because costs affect organization decisions. The concept
of Economic Feasibility deals with the fact that a system can be developed
and will be used on installation must be profitable for the organization.
The cost to conduct a full system investigation, the cost of hardware and
software, the benefits in the form of reduced expenditure are all discussed
during the economic feasibility.

During the economical feasibility test we maintained the balance
between the Operational and Economical feasibilities, as the two were the
conflicting. For example the solution that provides the best operational
impact for the end-users may also be the most expensive and, therefore,
the least economically feasible. We classified the costs of our Social
Networking site according to the phase in which they occur. As we know
that the system development costs are usually one-time costs that will not
recur after the project has been completed. For calculating the
Development costs we evaluated certain cost categories:

 Personal costs

 Computer Usage

 Training

 Supply and equipment costs
BCA-E10/289

 Cost of any computer equipments and software.

In order to test whether the Proposed System is cost-effective or not we
evaluated it through three techniques viz.

 Payback analysis

 Return on Investment:

 Net Present value

14.5.3 OPERATIONAL FEASIBILITY

Operation feasibility is a measure of how people feel about the
system. Operational Feasibility criteria measure the urgency of the
problem or the acceptability of a solution. Operational Feasibility is
dependent upon determining human resources for the project. It refers to
projecting whether the system will operate and be used once it is installed.
If the ultimate users are comfortable with the present system and they see
no problem with its continuance, then resistance to its operation will be
zero. Behaviorally also the proposed system is feasible. A particular
application may be technically and but may fail to produce the forecasted
benefits, because the company is not able to get it to work.

For the system, it is not necessary that the user must be a computer
expert, but any computer operator given a little bit of knowledge and
training can easily operate. Our Project is operationally feasible since
there is no need for special training of staff member and whatever little
instructing on this system is required can be done so quite easily and
quickly as it is essentially This project is being developed keeping in
mind the general people who one have very little knowledge of
computer operation, but can easily access their required database and
other related information. The redundancies can be decreased to a large
extent as the system will be fully automated.

14.6 REQUIREMENT SPECIFICATIONS

14.6.1 HARDWARE REQUIREMENT

Minimum hardware at clinet as well as server side configuration required:

1. RAM:- 512 MB or More

2. CPU:- Pentium 2.0 GHz or higher

3. Hard disk:- 2 GB or more

14.6.2 SOFTWARE REQUIREMENT

Minimum software at front-end as well as back-end configuration
required:

BCA-E10/290

1. Font End : - ASP.Net C# (MICROSOFT VISUAL Studio 2010)

2. Back End : - SQL SERVER 2005

14.6.3 MEMORY REQUIREMENT

1. 2GB RAM for Server

2. 20 GB External memory storage (Hard Disk Drive) for Server

14.6.4 OPERATIONS REQUIREMENT

1. User friendly interface

2. Required knowledge of all processes involved

3. Easy to navigate

4. Login level for security

5. Functionality control

6. Constraint for proper inputs are applied

14.6.5 SITE ADAPTATION REQUIREMENT

1. Seating area for operator to made with ergonomics in view.

2. A place for computer if desired is required

14.6.6 PRODUCT FUNCTION

Product shall perform following functions: -

User Characteristics

User is basic computer savvy but need to be adapted to computerized
environment across the organisation.

Constrains

Time and transition is constraint. At no point of time manual processes
can be stopped, which shall challenge updated data to be transited into
computer based system.

Assumptions

User shall not do much change in structure of manual records that shall
form basis of database structure. Neither user at any level of organisation
is reluctant to go for computer based technology.

Dependencies

There is straight Dependency on user providing information about
processes and structures and reports. BCA-E10/291

14.6.7 EXTERNAL INTERFACES

1. User Friendly.

2. Color scheme as per the color scheme of organisation.

3. Menu Driven

4. Authorization level.

5. Data is viewable in User customized form

14.6.8 FUNCTIONS

1. Login Management.

2. Addition of suppliers, printers, customers, employee, catalogue
(design) records.

14.6.9 PERFORMANCE

1. Should be robust.

2. Should be recoverable.

3. Fast processing of functions.

4. User flexibility

14.6.10 LOGICAL DATABASE

DFDs have to be drawn to understand logical database and
relationship between tables and cascading extents of modification in
database.

14.6.11 SOFTWARE SYSTEM ATTRIBUTES

1. Reliability

2. Availability

3. Security

4. Maintainability

CHECK YOUR PROGRESS
 Discuss feasibility.

 What are software system attributes?

BCA-E10/292

14.7 SYSTEM ANALYSIS AND DESIGN

System Analysis by definition is a process of systematic
investigation for the purpose of gathering data, interpreting the facts,
diagnosing the problem and using this information to either build a
completely new system or to recommend the improvements to the existing
system. A satisfactory system analysis involves the process of examining a
business situation with the intent of improving it through better methods
and procedures. In its core sense, the analysis phase defines the
requirements of the system and the problems which user is trying to solve
irrespective of how the requirements would be accomplished. There are
two methods to perform System Requirement Analysis: Structured
analysis and object oriented analysis.

14.7.1 STRUCTURED ANALYSIS

Structured Analysis is an analysis method that provides a basis for
developing a model of software to be developed. The objective of
structured analysis is to identify the customer requirements and establish a
basis to create a software model

Figure 14.3 : System Analysis

The main components of a Structured Analysis are

 Data Dictionary

 Entity Relationship Diagram

 Data Flow Diagram

 Process Specification

 Control Specification BCA-E10/293

14.7.2 OBJECT ORIENTED ANALYSIS

It refers to a detailed study of the various objects involved in a
system and the relationship of these objects with each other. While
performing an object oriented analysis, the focus of the system analyst is
on the availability of the objects that are relevant to software development.

14.7.3 DATA FLOW DIAGRAM

A data flow diagram (DFD) is a graphical representation of the
"flow" of data through an information system, modeling its process
aspects. Often they are a preliminary step used to create an overview of
the system which can later be elaborated. DFDs can also be used for the
visualization of data processing (structured design).

A DFD shows what kinds of data will be input to and output from
the system, where the data will come from and go to, and where the data
will be stored. It does not show information about the timing of processes,
or information about whether processes will operate in sequence or in
parallel (which is shown on a flowchart).

14.7.4 E-R DIAGRAM

Entity-relationship (E-R) diagram is detailed logical representation
of data for an organization. It is data oriented model of a system whereas
DFD is a process oriented model. The ER diagram represents data at rest
while DFD tracks motions of data. ERD does not provide any information
regarding functionality of data. It has three main components – data
entities, their relationship and their associated attributes.

Entity: It is most elementary thing of an organization about which data is
to be maintained. Every entity has unique identity. It is represented by
rectangular box with the name of entity written inside.

Relationship: Entities are connected to each other by relationships. It
indicates how two entities are associated. A diamond notation with name
of relationship represents as written inside. Entity types that participate in
relationship is called degree of relationship. It can be one to one, one to
many or many to many.

Attributes: Attribute is a property or characteristic of an entity that is of
interest to the organization. It is represented by oval shaped box with
name of attribute written inside it.

14.7.5 MODULAR DESIGN CONCEPTS

Functional Independence

The concept of functional independence is a direct outgrowth of
modularity and the concepts of abstraction and information hiding. The

BCA-E10/294

http://en.wikipedia.org/wiki/Information_system
http://en.wikipedia.org/wiki/Data_visualization
http://en.wikipedia.org/wiki/Data_processing
http://en.wikipedia.org/wiki/Flowchart

principle of information hiding suggests that modules be “characterized by
design decisions that (each) hides from all others”. In other words modules
should be specified and designed so that information (procedure and data)
contained within a module is inaccessible to other modules that have no
need for such information. Hiding implies that effective modularity can be
achieved by defining a set of independent modules that communicate with
one another only that information necessary to achieve software function.
Abstraction helps to define the procedure entities that make up the
software. As data and procedure are hidden from other parts of the
software inadvertent errors introduced during modification are less likely
to propagate to other locations within the software. Functional
independence is achieved by developing modules with “single-minded”
function and an “aversion” to excessive interaction with other modules.

Advantages

Independent modules are easier to maintain (and test) because secondary
effects caused by design or code modification are limited, error
propagation is reduced, and reusable modules are possible. Thus with
taking utmost care of this concept we have maintained functional
independence in our project at some extent that required interaction
among different modules is maintained.

Cohesion

Cohesion of a module represents how tightly bound the internal elements
of the module are to one another. Cohesion of a module gives the designer
an idea about whether the different elements of a module belong together
in the same module.

Coupling

Coupling is a measure of interconnection among modules in a software
structure. Coupling depends on the interface complexity between modules,
the point at which entry or reference is made to a module, and what data
pass across the interface. In software design, we strive for lowest possible
coupling. Simple connectivity among modules results in software that is
easier to understand and less prone to a “ripple effect” when errors occur
at one location and propagate through a system.

 Data coupling:Data coupling means simple argument list (data) is
passed and a one to one correspondence exists. A variation of data
coupling is found when a portion of a data structure rather than
simple arguments is passed via a module interface.

 Control coupling: When a “control flag” (a variable that controls
decisions in a subordinate or super ordinate module) is passed
between modules.

 External coupling: It is a relatively high level of coupling occurs
when modules are tied to an environment external to software.

BCA-E10/295

 Common coupling: When a number of modules reference a global
data area. In Job Portal we have maintained the use of global data
but restricted ourselves against the common consequences of this
coupling.

 Content coupling: The highest degree of coupling, content
coupling occurs when one module makes use of data or control
information maintained within the boundary of another module.
Secondarily, content coupling occurs when branches are made into
the middle of a module. As this type of coupling makes software
complex so in Job Portal we have tried our best to avoid such
coupling.

Note: Cohesion and coupling are clearly related. Usually the greater the
cohesion of each module in a system, the lower the coupling between
modules is. So we have maintained a balance between these two
engineering concepts.

14.7.6 DATABASE DESIGN

Admin Table

Fieldname Datatype Constraints Description

Name Varchar(50) Not null Name of Admin

UID Varchar(100) Primary Key Email Id or User ID of
Admin

PWD Varchar(50) Not null Password of Admin

Faculty Registration_Table

Field Name Data type Constrain Description

Teacher ID Varchar(50) Primary
Key Name of the Faculty

Teacher Name Varchar(20). Not null Name OF The faculty

Address Varchar(100) Not Null
Email id of the faculty will
also used as primary key to
identify the user

Department Varchar(100) Not null Department Of Faculty

BCA-E10/296

Student_Login_Table

Branch Varchar(10) Branch Of The Faculty

Qualification Varchar(25) Degree Name

Subject Varchar(20) Subject To be Teach

Position Varchar(20) University Position

Email ID Varchar(50) Email Id of The faculty

Password Varchar(20) Password in encrypted
Form

Experiance Varchar(50) Experience Of The faculty

Salary Varchar(20) Salary of the Faculty

Fieldname Datatype Constraints Description

BlueTooth ID Varchar(10) Primary Key Bluetooth ID

Student ID Varchar(10) Student ID for the Uniqueness

Student
Name Varchar(25) Name of the student, it can be

same for student to student

Father’s
name Varchar(25) Not null

Name of the student father’s, it
can be same for student to
student

Mother’s
name Varchar(25) Not null

Name of the student mother’s, it
can be same for student to
student

City Varchar(25) City of the student

Address Varchar(200) Address of Employers
Company

BCA-E10/297

14.8 CODING AND OUTPUT/INTERFACE

Coding is basically the computer language used to develop apps,
websites and software. Without it, we’d have none of the major
technology we’ve come to rely on such as Facebook, our smart phones,
the browser we choose to view our favourite blogs or even the blogs
themselves. It all runs on code.

To put it very simply, the code is what tells your computer what to
do. To go a bit deeper, computers don’t understand words. They only
understand the concepts of on and off. The capabilities of a computer are
guided by on and off switches or transistors. Binary code represents these
on and off transistors as the digits 1 and 0. An infinite number of
combinations of these codes make your computer work. In order to make
binary code manageable, computer programming languages were formed.
These languages each serve different purposes, but they all allow
programmers to translate important commands into binary code.

The benefits of learning to code are actually quite vast. No longer
do we live in a time when only tech professionals are using this useful
language. Being able to utilize the commands of code yourself will enable
you to have more control of the technology you depend upon. Being able
to understand basic code would allow you to make tweaks to the design of
your site without having to pay a webmaster to do it for you or to wait for
someone from IT to take care of the ticket you submitted ages ago. A
knowledge of code can take you even further if you decide to pursue it.

14.8.1 MASTER PAGE.ASPX

<%@MasterLanguage="C#"AutoEventWireup="true"CodeFile="MainMa
sterPage.master.cs"Inherits="MainMasterPage"%>

<!DOCTYPEhtml>

<htmlxmlns="http://www.w3.org/1999/xhtml">

<headrunat="server">

<title></title>

<asp:ContentPlaceHolderid="head"runat="server">

</asp:ContentPlaceHolder>

<metahttp-equiv="Content-Type"content="text/html; charset=utf-8"/>

<metaname="keywords"content="pink shop, store template, ecommerce,
online shopping, CSS, HTML"/>

<metaname="description"content="Pink Shop is a free ecommerce
template provided by templatemo.com"/>

<linkhref="templatemo_style.css"rel="stylesheet"type="text/css"/>
BCA-E10/298

<linkrel="stylesheet"type="text/css"href="stylesheet/styles.css"/>

<scriptlanguage="javascript"type="text/javascript">

function clearText(field) {

if (field.defaultValue == field.value) field.value = '';

elseif (field.value == '') field.value = field.defaultValue;

 }

</script>

<scriptlanguage="javascript"type="text/javascript"src="scripts/mootools-
1.2.1-core.js"></script>

<scriptlanguage="javascript"type="text/javascript"src="scripts/mootools-
1.2-more.js"></script>

<scriptlanguage="javascript"type="text/javascript"src="scripts/slideitmoo
-1.1.js"></script>

<scriptlanguage="javascript"type="text/javascript">

window.addEvents({

'domready': function () {

/* thumbnails example , div containers */

new SlideItMoo({

overallContainer: 'SlideItMoo_outer',

elementScrolled: 'SlideItMoo_inner',

thumbsContainer: 'SlideItMoo_items',

itemsVisible: 5,

elemsSlide: 3,

duration: 200,

itemsSelector: '.SlideItMoo_element',

itemWidth: 140,

showControls: 1

 });

 },

 });

</script>

</head>
BCA-E10/299

<body>

<formid="form1"runat="server">

<divid="templatemo_wrapper">

 <divid="templatemo_menu">

<%--

.01Home

<a href="http://www.templatemo.com/page/1"
target="_parent">.02Templates

<a href="http://www.flashmo.com/page/1"
target="_parent">.03Flash

<a href="http://www.koflash.com"
target="_parent">.04Gallery

.05Company

.06Contact

--%>

</div><!-- end of templatemo_menu -->

<divid="templatemo_header_bar">

<divid="header"><divclass="right"></div>

<h1><ahref="http://www.templatemo.com"target="_parent">

<imgsrc="images1/n19.jpg"alt="Gurukula Kangri University"/>

<marquee>Gurukula Kangri University......</marquee>

</h1>

</div>

<divid="search_box">

<formaction="#"method="get">

<inputtype="text"value="Haridwar......."name="q"size="10"id="searchfiel
d"title="searchfield"onfocus="clearText(this)"onblur="clearText(this)"/>

<inputtype="submit"name="Search"value=""alt="Search"id="searchbutto
n"title="Search"/>

</form>

</div>

</div><!-- end of templatemo_header_bar -->

<divclass="cleaner"></div> BCA-E10/300

<divid="sidebar"><divclass="sidebar_top"></div><divclass="sidebar_bot
tom"></div>

<divclass="sidebar_section">

<asp:ContentPlaceHolderID="ContentPlaceHolder1"runat="server"></asp
:ContentPlaceHolder>

 <divclass="cleaner"></div></div>

<divclass="sidebar_section">

 <h2>Courses</h2>

<marqueealign="verticle">

<ulclass="categories_list">

<ahref="#">B.Sc

<ahref="#">B.B.A

<ahref="#">B Pharma

<ahref="#">B.P.Ed

<ahref="#">B.A

<ahref="#">M.B.A

<ahref="#">M.Sc

<ahref="#">M Pharma

<ahref="#">M.C.A

<ahref="#">P.Hd

</marquee>

</div>

<divclass="sidebar_section">

<h2>Gate Of Happiness</h2>

<divclass="image_wrapper"><ahref="http://www.templatemo.com/page/7
"target="_parent"><imgsrc="images1/n12.jpg"alt="product"/></div>

<divclass="discount"> | <ahref="#">Read more</div>

</div>

</div><!-- end of sidebar -->

<divid="templatmeo_content">

 <divid="latest_product_gallery">
BCA-E10/301

 <h2>Gallery Of Gurukula Kangri.....</h2>

 <divid="SlideItMoo_outer">

<divid="SlideItMoo_inner">

<divid="SlideItMoo_items">

<divclass="SlideItMoo_element">

<ahref="#">

<imgsrc="images1/n15.jpg"alt="gurukula"width="500px"/>

</div>

<divclass="SlideItMoo_element">

<ahref="#">

<imgsrc="images1/n17.jpg"alt="gurukula"/>

</div>

<divclass="SlideItMoo_element">

<ahref="#">

<imgsrc="images1/n18.jpg"alt="gurukula"/>

</div>

<divclass="SlideItMoo_element">

<ahref="#">

<imgsrc="images1/n2.jpg"alt="gurukula"/>

</div>

<divclass="SlideItMoo_element">

<ahref="#">

<imgsrc="images1/n25.jpg"alt="gurukula"/>

</div>

<divclass="SlideItMoo_element">

<ahref="#">

<imgsrc="images1/n20.jpg"alt="gurukula"/>

</div>

<divclass="SlideItMoo_element">

<ahref="#">

<imgsrc="images1/n21"alt="gurukula"/>
BCA-E10/302

</div>

<divclass="SlideItMoo_element">

<ahref="#">

<imgsrc="images1/n24.jpg"alt="gurukula"/>

</div>

</div>

</div>

</div>

 </div><!-- end of latest_content_gallery -->

<divclass="content_section">

 <h2>Welcome to Gurukula Kangri University</h2>

<p><ahref="http://www.templatemo.com"target="_parent">Gurukula
Kangri University Is a well stablished Institute that provided a moral
education to our new generation
<ahref="http://www.templatemo.com"target="_parent">for there future
developementand make them enough strong that they can fight in this
cruel world. <ahref="http://validator.w3.org/check?uri=referer">this
institute is established in
1902&<ahref="http://jigsaw.w3.org/css-
validator/check/referer">by Swami Dayanand. to joined the student
from there root <ahref="http://www.photovaco.com"target="_blank">it is
a vast institute situated near the bank of river holy Ganga in this
institute we feel like home and its also provided the facility to the students
that they never think anything else and try to become a good person.</p>

</div>

<divclass="content_section">

 <h2>Our Products</h2>

<divclass="product_box margin_r35">

 <h3>B.Tech Building</h3>

<divclass="image_wrapper"><ahref="http://www.templatemo.com/page/1
"target="_parent"><imgsrc="images1/n25.jpg"alt="gurukula"/></div
>

<pclass="price"></p>

<ahref="#"> | <ahref="#">

</div>

<%-- <div class="product_box margin_r35">
BCA-E10/303

<h3></h3>

<div class="image_wrapper"><img
src="images1/n3.jpg.jpg" alt="gurukula" /></div>

<p class="price"></p>

 |

</div>--%>

<divclass="product_box">

<h3>Ved Mandir Of Gurukula</h3>

<divclass="image_wrapper"><ahref="http://www.templatemo.com/page/3
"target="_parent"><imgsrc="images1/n15.jpg"alt="gurukula"/></div
>

<pclass="price"></p>

<ahref="#"> | <ahref="#">

</div>

<divclass="cleaner"></div>

<divclass="product_box margin_r35">

<h3>Main Campus Of Gurukula</h3>

<divclass="image_wrapper"><ahref="http://www.templatemo.com/page/4
"target="_parent"><imgsrc="images1/n2.jpg"alt="gurukula"/></div>

<pclass="price"></p>

<ahref="#"> | <ahref="#">

</div>

<divclass="product_box margin_r35">

<h3>Gurukula Library</h3>

<divclass="image_wrapper"><ahref="http://www.templatemo.com/page/5
"target="_parent"><imgsrc="images1/n21.jpg"alt="gurukula"/></div
>

<pclass="price"></p>

<ahref="#"> | <ahref="#">

</div>

<%-- <div class="product_box">

<h3> Vivamus at justo</h3>

BCA-E10/304

<div class="image_wrapper"><img
src="images1/24.jpg" alt="gurukula" /></div>

<p class="price"></p>

Detail | Buy Now

</div>--%>

<divclass="cleaner"></div>

<divclass="button_01"><ahref="#">View All</div>

</div>

</div><!-- end of templatmeo_content -->

</div><!-- end of templatemo_wrapper -->

<divid="templatemo_footer_wrapper">

 <divid="templatemo_footer">

 <ulclass="footer_menu">

<ahref="#">Home

<ahref="http://www.gkv.in.com/page/1"target="_parent">CSS
Templates

<ahref="http://www.gurukulakangri.com/page/1"target="_parent">Fl
ash Resources

<ahref="#">Gallery

<ahref="#">Company

<liclass="last_menu"><ahref="#">Contact

 Copyright © 2048 <ahref="#">Your Company Name |

<ahref="http://www.iwebsitetemplate.com"target="_parent">Website
Templates by
<ahref="http://www.templatemo.com"target="_parent">Free CSS
Template</div>

 <!-- end of footer -->

</div><!-- end of footer_wrapper -->

<divalign=center>This Is Gurukula kangri University <ahref='http://all-
free-download.com/free-website-templates/'>Haridwar......</div>

</form>

</body>

</html>

BCA-E10/305

14.8.2 MASTER PAGE2.ASPX

<%@MasterLanguage="C#"AutoEventWireup="true"CodeFile="Principa
lMasterPage.master.cs"Inherits="Principal_PrincipalMasterPage"%>

<!DOCTYPEhtml>

<htmlxmlns="http://www.w3.org/1999/xhtml">

<headrunat="server">

<title></title>

<asp:ContentPlaceHolderid="head"runat="server">

</asp:ContentPlaceHolder>

<styletype="text/css">

.auto-style1 {

width: 100%;

 }

.auto-style2 {

width: 258px;

 }

.auto-style3 {

width: 258px;

height: 29px;

 }

.auto-style5 {

height: 29px;

 }

.auto-style6 {

width: 258px;

 }

.auto-style7 {

 }

</style>

</head>
BCA-E10/306

<body>

<formid="form1"runat="server">

<tableclass="auto-style1">

<tr>

<tdclass="auto-style2">

<asp:ImageID="Image1"runat="server"Height="150px"ImageUrl="~/ima
ges/n1.jpg"Width="258px"/>

</td>

<tdcolspan="10">

<asp:AdRotatorID="AdRotator1"runat="server"AdvertisementFile="~/Ad
vertisements.xml"Height="150px"Width="950px"/>

</td>

</tr>

<tr>

<tdclass="auto-style3"style="font-family: Rockwell; font-size: x-large;
color: #000000">

<asp:MenuID="Menu1"runat="server">

<Items>

<asp:MenuItemText="Home"Value="Home"></asp:MenuItem>

</Items>

</asp:Menu>

</td>

<tdclass="auto-style5"style="font-family: Rockwell; font-size: x-large">

</td>

<tdclass="auto-style5"style="font-family: Rockwell; font-size: x-large">

 </td>

<tdclass="auto-style5"style="font-family: Rockwell; font-size: x-large;">

</td>

<tdclass="auto-style5"style="font-family: Rockwell; font-size: x-large">

</td>

<tdclass="auto-style5"style="font-family: Rockwell; font-size: x-large">

</td>
BCA-E10/307

<tdclass="auto-style5"style="font-family: Rockwell; font-size: x-large">

</td>

<tdclass="auto-style5"style="font-family: Rockwell; font-size: x-large">

 </td>

<tdclass="auto-style5"style="font-family: Rockwell; font-size: x-large">

 </td>

<tdclass="auto-style5"style="font-family: Rockwell; font-size: x-large">

 </td>

<tdclass="auto-style5"style="font-family: Rockwell; font-size: x-large">

<asp:MenuID="Menu7"runat="server"OnMenuItemClick="Menu7_Menu
ItemClick">

<Items>

<asp:MenuItemText="Logout"Value="Logout"></asp:MenuItem>

</Items>

</asp:Menu>

</td>

</tr>

<tr>

<tdclass="auto-style6"style="font-size:
large">

<asp:MenuID="Menu2"runat="server">

<Items>

<asp:MenuItemText="Account"Value="Account">

<asp:MenuItemText="Change Password"Value="Change
Password"></asp:MenuItem>

<asp:MenuItemText="Update Profile"Value="Update
Profile"></asp:MenuItem>

<asp:MenuItemText="View Profile"Value="View
Profile"></asp:MenuItem>

</asp:MenuItem>

</Items>

</asp:Menu>

 BCA-E10/308

<asp:MenuID="Menu3"runat="server">

<Items>

<asp:MenuItemText="Student Information"Value="Student
Information">

<asp:MenuItemText="Add Student"Value="Add
Student"NavigateUrl="CreateStudent.aspx"></asp:MenuItem>

<asp:MenuItemText="Delete Student"Value="Delete
Student"></asp:MenuItem>

<asp:MenuItemText="Update Student"Value="Update
Student"></asp:MenuItem>

<asp:MenuItemText="View All Student"Value="View All
Student"></asp:MenuItem>

</asp:MenuItem>

</Items>

</asp:Menu>

<asp:MenuID="Menu4"runat="server">

<Items>

<asp:MenuItemText="Faculty Information"Value="Faculty Information">

<asp:MenuItemText="Add Faculty"Value="Add Faculty">

</asp:MenuItem>

<asp:MenuItemText="Delete Faculty"Value="Delete
Faculty"></asp:MenuItem>

<asp:MenuItemText="Update Faculty"Value="Update
Faculty"></asp:MenuItem>

</asp:MenuItem>

</Items>

</asp:Menu>

<asp:MenuID="Menu5"runat="server">

<Items> BCA-E10/309

<asp:MenuItemText="Search"Value="Search">

<asp:MenuItemText="Faculty"Value="Faculty"></asp:MenuItem>

<asp:MenuItemText="student"Value="student"></asp:MenuItem>

</asp:MenuItem>

</Items>

</asp:Menu>

<asp:MenuID="Menu6"runat="server">

<Items>

<asp:MenuItemText="Check Attandance"Value="Check Attandance">

<asp:MenuItemText="Student"Value="Student">

<asp:MenuItemText="All Students"Value="All
Students"NavigateUrl="AllStudentAtten.aspx"></asp:MenuItem>

<asp:MenuItemText="Particular Student"Value="Particular
Student"NavigateUrl="ParticularStudentAttendance.aspx"></asp:MenuIte
m>

</asp:MenuItem>

<asp:MenuItemText="Faculty"Value="Faculty">

<asp:MenuItemText="All"Value="All"></asp:MenuItem>

<asp:MenuItemText="Particular"Value="Particular"></asp:MenuItem>

</asp:MenuItem>

</asp:MenuItem>

</Items>

</asp:Menu>

</td>

<tdcolspan="6"class="auto-style7">

</td>

<tdcolspan="4"rowspan="9"><asp:ContentPlaceHolderID="ContentPlace
Holder2"runat="server">

</asp:ContentPlaceHolder></td>

<td></td>

BCA-E10/310

</tr>

<tr>

<tdclass="auto-style6"style="font-size: large"> </td>

<tdcolspan="6"class="auto-style7">

 </td>

<td> </td>

</tr>

<tr>

<tdclass="auto-style6"style="font-size: large"> </td>

<tdcolspan="6"class="auto-style7">

 </td>

<td> </td>

</tr>

<tr>

<tdclass="auto-style6"style="font-size: large"> </td>

<tdcolspan="6"class="auto-style7">

 </td>

<td> </td>

</tr>

<tr>

<tdclass="auto-style6"style="font-size: large"> </td>

<tdcolspan="6"class="auto-style7">

 </td>

<td> </td>

</tr>

<tr>

<tdclass="auto-style6"style="font-size: large"> </td>

<tdcolspan="6"class="auto-style7">

 </td>

<td> </td>

</tr>
BCA-E10/311

<tr>

<tdclass="auto-style6"style="font-size: large"> </td>

<tdcolspan="6"class="auto-style7">

 </td>

<td> </td>

</tr>

<tr>

<tdclass="auto-style6"style="font-size: large"> </td>

<tdcolspan="6"class="auto-style7">

 </td>

<td> </td>

</tr>

<tr>

<tdclass="auto-style6"style="font-size: large"> </td>

<tdcolspan="6"class="auto-style7">

 </td>

<td> </td>

</tr>

</table>

<div>

</div>

</form>

</body>

</html>

14.8.3 MASTER PAGE3.ASPX

<%@MasterLanguage="C#"AutoEventWireup="true"CodeFile="Faculty
MasterPage.master.cs"Inherits="FacultyMember_FacultyMasterPage"%>

<!DOCTYPEhtml>

<htmlxmlns="http://www.w3.org/1999/xhtml">

<headrunat="server"> BCA-E10/312

<title></title>

<asp:ContentPlaceHolderid="head"runat="server">

</asp:ContentPlaceHolder>

<styletype="text/css">

.auto-style1 {

width: 100%;

 }

.auto-style2 {

width: 14px;

 }

.auto-style4 {

width: 100px;

 }

</style>

</head>

<bodystyle="background-image: url('/images/n9.jpg')">

<formid="form1"runat="server">

<div>

</div>

<tableclass="auto-style1">

<tr>

<tdclass="auto-style2">

<asp:ImageID="Image1"runat="server"Height="150px"ImageUrl="~/ima
ges/n2.jpg"Width="250px"/>

</td>

<td>

<asp:AdRotatorID="AdRotator1"runat="server"AdvertisementFile="~/Ad
vertisements.xml"Height="150px"Width="950px"/>

</td>

</tr>

</table>

<tableclass="auto-style1"> BCA-E10/313

<tr>

<td>

<asp:ButtonID="Button1"runat="server"Text="Home"OnClick="Button1
_Click"/>

</td>

<td>

<asp:ButtonID="Button2"runat="server"OnClick="Button2_Click"Text="
Save Attandance"/>

</td>

<td>

<asp:ButtonID="Button3"runat="server"Text="Save Lab Attandance"/>

</td>

<td>

<asp:ButtonID="Button4"runat="server"Text="Search
Student"OnClick="Button4_Click"/>

</td>

<td>

<asp:ButtonID="Button5"runat="server"Text="Check
Attandance"OnClick="Button5_Click"/>

</td>

</tr>

</table>

<tableclass="auto-style1">

<tr>

<tdclass="auto-style4">

<asp:ButtonID="Button6"runat="server"Text="View
profile"OnClick="Button6_Click"/>

</td>

<tdrowspan="3">

<asp:ContentPlaceHolderid="ContentPlaceHolder1"runat="server">

</asp:ContentPlaceHolder>

</td>

</tr> BCA-E10/314

<tr>

<tdclass="auto-style4"> </td>

</tr>

<tr>

<tdclass="auto-style4">

<asp:ButtonID="Button7"runat="server"Text="Update
Profile"Width="99px"/>

</td>

</tr>

<tr>

<tdclass="auto-style4"> </td>

<tdrowspan="3"> </td>

</tr>

<tr>

<tdclass="auto-style4">

<asp:ButtonID="Button8"runat="server"Text="Change
Password"Width="91px"OnClick="Button8_Click"/>

</td>

</tr>

<tr>

<tdclass="auto-style4"> </td>

</tr>

</table>

</form>

</body>

</html>

14.8.4 HOME.ASPX

<%@PageTitle=""Language="C#"MasterPageFile="~/MainMasterPage.m
aster"AutoEventWireup="true"CodeFile="Home.aspx.cs"Inherits="Home
"%>

<asp:ContentID="Content1"ContentPlaceHolderID="head"runat="Server"
>

BCA-E10/315

</asp:Content>

<asp:ContentID="Content2"ContentPlaceHolderID="ContentPlaceHolder
1"runat="Server">

<table>

<tr>

<tdcolspan="2">

<h2>Members</h2>

</td>

</tr>

<tr>

<td>

<label>Username </label>

</td>

<td>

<asp:TextBoxID="TextBox1"runat="server"></asp:TextBox></td>

</tr>

<tr>

<td>

<label>

 Password</label></td>

<td>

<asp:TextBoxID="TextBox2"runat="server"></asp:TextBox></td>

</tr>

<tr>

<td>

<label>User type </label>

</td>

<td>

<asp:RadioButtonID="rd1"runat="server"Text="Student"GroupName="s"
/>

BCA-E10/316

<asp:RadioButtonID="rd2"runat="server"Text="Faculty
Member"GroupName="s"/></td>

</tr>

<tr>

<td></td>

<td>

<asp:ButtonID="Button1"runat="server"Text="Login"OnClientClick="co
nfirm('Are u sure u want to login yes then click ok else
cancel!')"OnClick="Button1_Click"/></td>

</tr>

</table>

</asp:Content>

14.8.5 HOME.ASPX.CS

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Data;

using System.Data.SqlClient;

using System.Configuration;

publicpartialclassHome : System.Web.UI.Page

{

protectedvoid Page_Load(object sender, EventArgs e)

 {

 }

protectedvoid Button1_Click(object sender, EventArgs e)

 {

SqlConnection con =
newSqlConnection(ConfigurationManager.ConnectionStrings[1].Connecti
onString);

BCA-E10/317

http://home.aspx.cs/

if (rd2.Checked)

 {

SqlDataAdapter adp = newSqlDataAdapter("select position from
FacultyInfo where tid='" + TextBox1.Text + "' and pass='" +
TextBox2.Text + "'", con);

DataSet ds = newDataSet();

adp.Fill(ds);

if (ds.Tables[0].Rows.Count > 0)

 {

if (ds.Tables[0].Rows[0][0].ToString() =="hod")

 {

Response.Write("<script>alert('ok')</script>");

Server.Transfer("~/Principal/Home.aspx");

 }

else

 {

Response.Write("<script>alert('........WELCOME.......')</script>");

Session["ltid"] = TextBox1.Text;

// Server.Transfer("~/FacultyMember/Home.aspx");

Response.Redirect("~/FacultyMember/Home.aspx");

 }

 }

else

 {

Response.Write("<script>alert('Sorry ! Invalid User')</script>");

 }

 }

 }

protectedvoid TextBox2_TextChanged(object sender, EventArgs e)

 {

 }

BCA-E10/318

14.8.6 ATTANDANCE.ASPX

<%@PageTitle=""Language="C#"
MasterPageFile="~/FacultyMember/FacultyMasterPage.master"AutoEven
tWireup="true"CodeFile="Attendence.aspx.cs"Inherits="FacultyMember_
Attendence"%>

<asp:ContentID="Content1"ContentPlaceHolderID="head"Runat="Server
">

</asp:Content>

<asp:ContentID="Content2"ContentPlaceHolderID="ContentPlaceHolder
1"Runat="Server">

<center>

<asp:GridViewID="GridView1"runat="server"AutoGenerateColumns="fa
lse"BackColor="White"BorderColor="#336666"BorderStyle="Double"Bo
rderWidth="3px"CellPadding="4"GridLines="Horizontal">

<FooterStyleBackColor="White"ForeColor="#333333"/>

<HeaderStyleBackColor="#336666"Font-
Bold="True"ForeColor="White"/>

<PagerStyleBackColor="#336666"ForeColor="White"HorizontalAlign="
Center"/>

<RowStyleBackColor="White"ForeColor="#333333"/>

<SelectedRowStyleBackColor="#339966"Font-
Bold="True"ForeColor="White"/>

<SortedAscendingCellStyleBackColor="#F7F7F7"/>

<SortedAscendingHeaderStyleBackColor="#487575"/>

<SortedDescendingCellStyleBackColor="#E5E5E5"/>

<SortedDescendingHeaderStyleBackColor="#275353"/>

<Columns>

<asp:BoundFieldDataField="student_id"HeaderText="Student ID"/>

<asp:BoundFieldDataField="student_name"HeaderText="Student
Name"/>

<asp:BoundFieldDataField="father_name"HeaderText="Father Name"/>

<asp:BoundFieldDataField="Course"HeaderText="Class"/> BCA-E10/319

<asp:BoundFieldDataField="sem"HeaderText="Semester"/>

<asp:TemplateFieldHeaderText="Attendence">

<ItemTemplate>

<asp:RadioButtonID="rd1"runat="server"Text="Present"GroupName="a"
></asp:RadioButton>

<asp:RadioButtonID="rd2"runat="server"Text="Absent"GroupName="a"
></asp:RadioButton>

<asp:RadioButtonID="rd3"runat="server"Text="Leave"GroupName="a">
</asp:RadioButton>

</ItemTemplate>

</asp:TemplateField>

</Columns>

</asp:GridView>

<asp:ButtonID="Button1"runat="server"Text="Save"OnClick="Save"></
asp:Button>

<asp:LabelID="Label1"runat="server"Text="Label"></asp:Label>

</center>

</asp:Content>

14.8.7 ATTANDANCE.ASPX.CS

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Data;

using System.Data.SqlClient; BCA-E10/320

using System.Configuration;

publicpartialclassFacultyMember_Attendence : System.Web.UI.Page

{

SqlConnection con;

SqlDataAdapteradp;

DataSet ds;

SqlCommand cmd;

protectedvoid Page_Load(object sender, EventArgs e)

 {

con =
newSqlConnection(ConfigurationManager.ConnectionStrings[1].Connecti
onString);

if (!IsPostBack)

 {

FillGrid();

 }

 }

publicvoid FillGrid()

 {

int sn1 = Convert.ToInt32(Request.QueryString["sn"].ToString());

string sn = sn1.ToString();

adp = newSqlDataAdapter("select
student_id,student_name,father_name,course ,sem from StudentInfo
where Course='M.C.A' and sem='" + sn + "'", con);

ds = newDataSet();

adp.Fill(ds);

 GridView1.DataSource = ds;

GridView1.DataBind();

 }

publicvoid Save(object sender, EventArgs e)

 {

string str=null;

GridViewRow gr; BCA-E10/321

int day = DateTime.Now.Day;

int month = DateTime.Now.Month;

int year = DateTime.Now.Year;

string tid = "1";

string stime = "12:40";

adp = newSqlDataAdapter("select branch,subject from FacultyInfo where
tid='" + tid + "'", con);

ds = newDataSet();

adp.Fill(ds);

string br = ds.Tables[0].Rows[0][0].ToString();

string sub = ds.Tables[0].Rows[0][1].ToString();

string etime = DateTime.Now.ToShortTimeString();

for (int i = 0; i < GridView1.Rows.Count; i++)

 {

gr=GridView1.Rows[i];

RadioButton rb1 = (RadioButton)gr.FindControl("rd1");

RadioButton rb2 = (RadioButton)gr.FindControl("rd2");

RadioButton rb3 = (RadioButton)gr.FindControl("rd3");

if (rb1.Checked==true)

 {

str = "P";

 Label1.Text = rb1.Checked.ToString();

 }

elseif (rb2.Checked==true)

 {

str = "A";

 }

else

 {

str = "L";

 }
BCA-E10/322

string sid = gr.Cells[0].Text;

string sname = gr.Cells[1].Text;

string course = gr.Cells[3].Text;

string sem = gr.Cells[4].Text;

 cmd = newSqlCommand("insert into Attandance
values(@a,@b,@c,@d,@e,@f,@g,@h,@i,@j,@k,@l,@m)", con);

cmd.Parameters.AddWithValue("@a", sid);

cmd.Parameters.AddWithValue("@b", sname);

cmd.Parameters.AddWithValue("@c", course);

cmd.Parameters.AddWithValue("@d", sem);

cmd.Parameters.AddWithValue("@e", br);

cmd.Parameters.AddWithValue("@f", day);

cmd.Parameters.AddWithValue("@g", month);

cmd.Parameters.AddWithValue("@h", year);

cmd.Parameters.AddWithValue("@i", tid);

cmd.Parameters.AddWithValue("@j", stime);

cmd.Parameters.AddWithValue("@k", etime);

cmd.Parameters.AddWithValue("@l", sub);

cmd.Parameters.AddWithValue("@m", str);

con.Open();

cmd.ExecuteNonQuery();

con.Close();

 }

Response.Write("<script>alert('Attendence Saved !')</script>");

 }

}

 BCA-E10/323

Output-1: Sample Layout

Output-2: Login Page

BCA-E10/324

Output-3 : Attendance Page

Output-4: View Profile Page

BCA-E10/325

14.9 SUMMARY

The last unit i.e. fourteen is basically intended with the hand-on-
practice based on ASP.NET environment. We must also be familiar with
the basic concepts of the software development. To develop a software
project whether small, medium or big software professionals must have
basic idea of different phases of software development life cycle.

Softwareis more than just a program code. A program is an
executable code, which serves some computational purpose. Software is
considered to be collection of executable programming code, associated
libraries and documentations. The computer software serves as the basic
for modern scientific investigations and engineering problem solving. The
computer software is in present time is used in all fields. As we move into
21st century, it will become the driver for new advances in every from
elementary education to other latest trends.

Software engineering is a branch of computer science, which uses
well-defined engineering concepts required to produce efficient, durable,
scalable, in-budget and on-time software products.

The process of developing a software product using software
engineering principles and methods is referred to as software evolution.
This includes the initial development of software and its maintenance and
updates, till desired software product is developed, which satisfies the
expected requirements.

Waterfall model is a traditional popular software development
model and other models are more or less similar to the waterfall model.
Every software project contains at least requirement analysis, design,
coding, testing, and maintenance.

Cohesion of a module represents how tightly bound the internal
elements of the module are to one another. Cohesion of a module gives the
designer an idea about whether the different elements of a module belong
together in the same module.

Coupling is a measure of interconnection among modules in a
software structure. Coupling depends on the interface complexity between
modules, the point at which entry or reference is made to a module, and
what data pass across the interface. In software design, we strive for
lowest possible coupling.

System Analysis by definition is a process of systematic
investigation for the purpose of gathering data, interpreting the facts,
diagnosing the problem and using this information to either build a
completely new system or to recommend the improvements to the existing
system. A satisfactory system analysis involves the process of examining a
business situation with the intent of improving it through better methods
and procedures. In its core sense, the analysis phase defines the
requirements of the system and the problems which user is trying to solve

BCA-E10/326

irrespective of how the requirements would be accomplished. There are
two methods to perform System Requirement Analysis: Structured
analysis and object oriented analysis.

Check Your Progress

 What is entity and relationship in ER diagram?

 What is system analysis?

14.10 TERMINAL QUESTIONS

1. What do you understand by a project?

2. Explain the meaning of software.

3. Give the meaning of software engineering.

4. Explain the goals of software engineering.

5. Write short note on feasibility study.

6. Discuss software requirement specification (SRS).

7. Compare ER diagram and Data flow diagram.

8. What is the difference between cohesion and coupling?

BCA-E10/327

ROUGH WORK

BCA-E10/328

	Processing power : A mainframe computer will have several processors that work together, making the machine extremely powerful.
	Memory size : There is usually a vast amount of memory. Some modern mainframes can support more than 32 GB of main memory.
	Backing store devices : These are typically greater than 100 GB hard disk. Tape drives are also used for back-up or batch processing.
	Input /Output devices : Keyboard, Line printers, page printers and monitors.
	1.12.1.1 Database Server
	1.12.1.2 Client Application
	1.12.1.3 Network
	Example: Consider the computational problem of finding a coloring of a given graph G. Different fields might take the following approaches.
	2.3.1.4 Network-attached storage
	Network-attached storage (NAS) is file-level computer data storage connected to a computer network providing data access to a heterogeneous group of clients. NAS devices specifically are distinguished from file servers generally in a NAS being a compu...
	Potential benefits of network-attached storage, compared to non-dedicated file servers, include faster data access, easier administration, and simple configuration. NAS systems are networked appliances containing one or more hard drives, often arrange...
	2.3.1.5 Security
	File servers generally offer some form of system security to limit access to files to specific users or groups. In large organizations, this is a task usually delegated to what is known as directory services such as open LDAP, Novell's e-Directory or ...
	2.3.2.1 Client and Server Role
	2.5.2.1 Introduction
	In the 1970s and 1980s was the era of centralized computing, with IBM mainframe occupied over 70% of the world's computer business. Business transactions, activities and database retrieval, queries and maintenance are all performed by the omnipresent ...
	The goals of Client-Server Computing are to allow every networked workstation (Client) and host (Server) to be accessible, as needed by an application, and to allow all existing software and hardware components from various vendors to work together. W...
	The evolution of Client-Server Computing has been driven by business needs, as well as the increasing costs for host (mainframe and midrange) machines and maintenance, the decreasing costs and increasing power of micro-computers and the increased reli...
	In the past twenty years, there are dramatic improvements in the hardware and software technologies for micro-computers. Micro-computers become affordable for small businesses and organizations. And at the same time their performances are becoming mor...
	The following are the improvements made by micro-computers:
	Hardware: The speed of desktop microprocessors has grown exponentially, from a 8MHz 386-based computers to 100Hz-based Pentium-based microprocessors. These mass-produced microprocessors are cheaper and more powerful than those used in mainframe and mi...
	Software: The development and acceptance of GUIs (Graphical User Interfaces) such as Windows 3.1 and OS/2 has made the PC working environment more user-friendly. And the user are more efficient in learning new application software in a graphical envir...
	Configurations in Client-Server Computing:Client-Server Computing is divided into three components, a Client Process requesting service and a Server Process providing the requested service, with a Middleware in between them for their interaction.
	Client : A Client Machine usually manages the user-interface portion of the application, validate data entered by the user, dispatch requests to server programs. It is the front-end of the application that the user sees and interacts with. Besides, th...
	Server: On the other hand, the Server Machine fulfils the client request by performing the service requested. After the server receives requests from clients, it executes database retrieval, updates and manages data integrity and dispatches responses ...
	The Four Dominant Client/Server Application Models: Having had a deeper look into the terms and architectures of client/server technology, let's consider the dominant application models available. Nowadays, there are four client/server application mod...
	2.6.1 Implementation
	In the Information Technology (IT) industry, implementation refers to post-sales process of guiding a client from purchase to use of the software or hardware that was purchased. This includes requirements analysis, scope analysis, customizations, syst...
	In political science, implementation refers to the carrying out of public policy. Legislatures pass laws that are then carried out by public servants working in bureaucratic agencies. This process consists of rule-making, rule-administration and rule-...

	2.6.1 Scalability
	Scalability is the capability of a system, network, or process to handle a growing amount of work, or its potential to be enlarged in order to accommodate that growth. For example, it can refer to the capability of a system to increase its total outpu...
	An analogous meaning is implied when the word is used in an economic context, where scalability of a company implies that the underlying business model offers the potential for economic growth within the company. Scalability, as a property of systems,...
	The most basic form of the client/server architecture involves two computers: one computer, the server, is responsible for storing some sort of data and handing it to the other computer, the client, for user interaction. The user can modify that data ...
	3.3.1 Presentation Logic
	3.3.2 Business Rule Logic
	3.3.3 Data Manipulation Logic

	3.5 Client-Server communication
	3.6.1 Transmission Control Protocol/Internet Protocol
	3.6.2 TCP/IP's Architecture
	3.6.3 Internet Protocol
	3.6.4 Transport Protocols
	Figure 3.4 : TCP Connection
	3.6.5 Telnet
	3.6.6 File Transfer Protocol (FTP)

	3.6.7 Simple Network Management Protocol (SNMP)
	3.6.8 Network File System (NFS)
	3.6.9 Simple Mail Transfer Protocol (SMTP)
	 Portability: Server can be installed on a variety of machines and operating systems and functions in a variety of networking environments.
	 Transparency: The server might itself be distributed (why?), but should provide a single "logical" service to the user.
	 Performance: Client should be customized for interactive display-intensive tasks and Server should provide CPU-intensive operations.
	 Scalability: Server has spare capacity to handle larger number of clients.
	 Flexibility: Should be usable for a variety of user interfaces.
	 Reliability: System should survive individual node and/or communication link problems.

	3.8 Client-Server Performance Optimization
	When you have implemented your client-server application, you might find areas where you'd like to improve performance. For example, you can fine-tune your application to gain maximum performance by speeding up forms and queries and increasing data th...
	3.8.6 Related Sections

	3.9 Implemention of Client/Server Application
	3.9.4 Related Sections
	The Common Language Specification (CLS) is a fundamental set of language features supported by the Common Language Runtime (CLR) of the .NET Framework. CLS is a part of the specifications of the .NET Framework. CLS was designed to support language con...
	It is a sub set of CTS and it specifies a set of rules that needs to be adhered or satisfied by all language compilers targeting CLR. It helps in cross language inheritance and cross language debugging.
	4.5.1 Common language specification Rules
	It describes the minimal and complete set of features to produce code that can be hosted by CLR. It ensures that products of compilers will work properly in .NET environment. CLS defines the base rules necessary for any language targeting common langu...
	CLS represents the guidelines to the compiler of a language, which targets the .NET Framework. CLS-compliant code is the code exposed and expressed in CLS form. Even though various .NET languages differ in their syntactic rules, their compilers genera...
	4.5.2 Sample Rules
	Now that the database is open, what can you do? Lots. The first thing to try, of course, is to read a set of records from the database and plop them onto your page. Before that, however, you'll need a recordset.

	7.1.1 ASP.NET Page Life Cycle Events
	7.5.1 Properties of the Server Controls
	7.6.1 Advantages of using HTML Server Controls

	7.6.2 EXAMPLE
	7.7.1 BASEVALIDATOR CLASS
	7.7.2 REQUIREDFIELDVALIDATOR CONTROL
	7.7.3 RANGEVALIDATOR CONTROL
	7.7.4 COMPAREVALIDATOR CONTROL
	7.7.5 REGULAREXPRESSIONVALIDATOR
	7.7.6 CUSTOMVALIDATOR
	7.7.7 VALIDATIONSUMMARY
	9.0 INTRODUCTION
	Table 9.1:State Type Comparison in ASP.NET
	9.2.2 Session State
	9.3 ASP.NET - MANAGING STATE
	Hyper Text Transfer Protocol HTTP is a stateless protocol. When the client disconnects from the server, the ASP.NET engine discards the page objects. This way, each web application can scale up to serve numerous requests simultaneously without running...
	ASP.NET manages four types of states: View State, Control State, Session State, and Application State.
	9.3.1 View State
	The view state is the state of the page and all its controls. It is automatically maintained across posts by the ASP.NET framework. When a page is sent back to the client, the changes in the properties of the page and its controls are determined, and ...
	 The entire application by setting the EnableViewState property in the <pages> section of web.config file.
	 A page by setting the EnableViewState attribute of the Page directive, as <%@ Page Language="C#" EnableViewState="false" %>
	 A control by setting the Control.EnableViewState property
	It is implemented using a view state object defined by the StateBag class which defines a collection of view state items. The state bag is a data structure containing attribute value pairs, stored as strings associated with objects.
	Table 9.2: StateBag Class Properties
	Table 9.3 : StateBag Class Methods
	Example: The concept of storing view state.
	Let us keep a counter, which is incremented each time the page is posted back by clicking a button on the page. A label control shows the value in the counter.
	9.3.2 Control State
	Control state cannot be modified, accessed directly, or disabled.
	9.3.2 Session State
	When a user connects to an ASP.NET website, a new session object is created. When session state is turned on, a new session state object is created for each new request. This session state object becomes part of the context and it is available through...
	Table 9.4: Http SessionState class Properties
	Table 9.5 : HttpSessionState Class Methods
	The session state object is a name-value pair to store and retrieve some information from the session state object.
	Example :
	void StoreSessionInfo()
	{
	String fromuser = TextBox1.Text; Session["fromuser"] = fromuser;
	}
	void RetrieveSessionInfo()
	{
	String fromuser = Session["fromuser"]; Label1.Text = fromuser;
	}
	The above code stores only strings in the Session dictionary object, however, it can store all the primitive data types and arrays composed of primitive data types, as well as the DataSet, DataTable, HashTable, and Image objects, as well as any user-d...
	9.3.4 Application State
	The ASP.NET application is the collection of all web pages, code and other files within a single virtual directory on a web server. When information is stored in application state, it is available to all the users. To provide for the use of applicatio...
	Table 9.6 : Properties of Http Application State
	Table 9.7: Methods of HttpApplicationState
	9.4 Application and Session Variables
	9.5 Counting Sessions
	9.6 WHAT IS COOKIE
	A cookie is often used to identify a user. A cookie is a small file that the server embeds on the user's computer. Each time the same computer requests a page with a browser, it will send the cookie too. With ASP, you can both create and retrieve cook...
	9.6.1 How to Create a Cookie?
	9.6.2 How to Retrieve a Cookie Value

	9.6.3 Limitations of cookies
	While simple, cookies have disadvantages too
	 A cookie can only be 4096 bytes in size
	 Most browsers restrict the total number of cookies per site
	 Users can refuse to accept cookies so don’t try to use them to store critical information
	9.7 STORING VARIABLES IN DATABASE
	Following code can been used to store the variables in the database
	9.8 Clearing ASP.NET Session Variables
	9.8 assemblies
	9.8.3 Creating and Using Strong-Named Assemblies
	9.10 SUMMARY
	9.11 TERMINAL QUESTIONS
	 So that a hardware work properly and without errors.
	 To reduce the probability of hardware crash.
	 Efficient and effective use of memory.
	 To reduce the idle time of the CPU.
	 The correct version of the software module that one has to continue its coding.
	 An accurate copy of the last year’s version 4.1 of the TMY software package.
	 The version of the design document matches the software version we are adapting to a new customer.
	 The version of the software system is installed at ABC Industries.
	 The changes which have been introduced in the version installed at the Industries’ site.
	 Changes introduced in the new version of the software.
	 The full list of customers that use version of one’s software.
	 For surety that the version installed at some company must not include undocumented changes.
	 Multiple people have to work on software that is changing
	 More than one version of the software has to be supported:
	 Released systems
	 Custom configured systems (different functionality)
	 System(s) under development
	 Software on different machines & operating systems
	Starting the .NET Framework Configuration Tool
	To run Mscorcfg.msc from the Start menu we can do the following
	To run Mscorcfg.msc from the Microsoft Management Console

	11.2.1 Features for Html
	The important features of Html are:
	11.2.2 Html Tag
	11.2.3 HTML Tag Examples
	Place a form anywhere inside the body of a document, with its elements enclosed by the <form> tag and its respective end tag (</form>). You can, and we recommend you often do, include regular body content inside a form to specially label user-input fi...
	11.3.1 Form Attributes
	11.3.2 HTML Form Controls
	11.3.3 Text Input Controls
	Two primary lists are available in HTML, ordered and unordered.
	11.4.1 Unordered lists
	11.4.2 Ordered lists
	11.5.1 Introduction
	JavaScript is a object-based scripting language and it is light weighted. It is first implemented by Netscape (with help from Sun Microsystems). JavaScript was created by Brendan Eich at Netscape in 1995 for the purpose of allowing code in web-pages (...
	Netscape first introduced a JavaScript interpreter in Navigator 2. The interpreter was an extra software component in the browser that was capable of interpreting JavaSript source code inside an HTML document. This means that the web page developers d...
	11.5.2 Why we Use JavaScript?

	Figure 11.1: Selector & Declaration
	Conceptually, the Selector part of CSS Identifies the HTML elements that the rule will be applied to, identified by the actual element name, e.g. <body>, <p>, <h1>. And the Declaration part contains property and value. For example; suppose that we wan...
	11.6.2 Declaration
	11.6.3 Property & value
	11.6.4 Elements of Style
	At the simplest level, a style is nothing more than a rule the browser follows to render a particular HTML or XHTML tag's contents. Each tag has a number of style properties associated with it, whose values define how that tag is rendered by the brows...
	 External style sheet
	11.11.3 Using URL Authorization
	Java Script is a object-based scripting language and it is light weighted. It is first implemented by Netscape (with help from Sun Microsystems). JavaScript was created by Brendan Eich at Netscape in 1995 for the purpose of allowing code in web-pages ...
	13.2.1 ScriptManager
	13.2.2 ScriptManagerProxy
	Table 13.1 : Properties of the UpdatePanel Control
	Table 13.2: Methods of the UpdatePanel Control
	13.2.4 UpdateProgress

	Table 13.4: Methods of the UpdatePanel Control Properties of the UpdateProgress Control
	Table 13.5 : Methods of the UpdateProgress Control
	13.2.1 Timer

	HTML/XHTML and CSS
	DOM
	XML or JSON
	ASP or JSP
	XMLHttpRequest
	JavaScript

	13.6.1 GET or POST Method
	GET Method
	Syntax
	Example
	Post Method
	Syntax
	Example
	To get the response from a server, use the responseText or responseXML property of the XMLHttpRequest object.
	13.7.1 The responseText Property
	13.7.2 The responseXML Property
	13.8.1 Advantage of ajax
	13.8.2 Disadvantage of AJAX
	The main aadvantages of AJAX: 1) Independent of server technology. 2) Apart from obtaining the XMLHTTP object, all processing is same for all browser types, because JavaScript is used. 3) Using AJAX you can develop faster and more interactive web appl...
	And the disadvantages of AJAX are: 1) Possible network latency problems. People should be given feedback about the processing. 2) Does not run on all browsers. 3) Search Engine like Google can't index Ajax pages. 4) Security is less in AJAX applicatio...

	14.2.1 Definitions
	14.2.2 Software Evolution
	14.2.3 Software Evolution Laws
	14.2.4 E-Type software evolution
	14.2.5 Software Paradigms
	Software Development Paradigm
	Software Design Paradigm
	Programming Paradigm

	14.2.5 Need of Software Engineering
	14.2.5 Characteristics of good software
	Operational
	Transitional
	Maintenance

	Blank Page

