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Blocks & Units Introduction 
 

The present SLM on Numerical Methods and Basic Computer Knowledge consists of 

seventeen units with six blocks. Numerical analysis is a branch of mathematics that deals with 

devising efficient methods for obtaining numerical solutions to difficult Mathematical Problems. 

Most of the Mathematical problems that arise in science and engineering and applied engineering 

mathematics are very hard and sometime impossible to solve exactly. Thus, an approximation to 

a difficult Mathematical problem is very important to make it easier to solve. Due to immense 

development in the computational technology, numerical approximation has become more 

popular and modern tool for the research of all subjects of mathematical sciences. 

The Block - 1 – Solutions of Non- Linear Equations in One Variable, is the first block, 

which is divided into two units; named Unit – 1 – Basic Properties of Equations, and Unit – 2 – 

Solutions of Non-Linear Equations.  

Numerical technique is widely used by scientists and engineers to solve their problems. A 

major advantage for numerical technique is that a numerical answer can be obtained even when a 

problem has no analytical solution. However, result from numerical analysis is an 

approximation, in general, which can be made as accurate as desired. The reliability of the 

numerical result will depend on an error estimate or bound, therefore the analysis of error and the 

sources of error in numerical methods is also a critically important part of the study of numerical 

technique.  

The Block - 2 – Finite Differences is the second block with four units. This block 

consists of four units regarding, finite differences interpolation with equal intervals, interpolation 

with unequal and Lagrange’s Interpolation.  

In Unit – 3 - Finite Differences; various operators used in finite difference calculus are 

discussed. The concept of interpolation with equal intervals is given this unit. 

Unit - 4 – Interpolation with Equal Intervals; in which Newton’s forward and backward 

interpolation formulate are discussed. 

Unit – 5 - Interpolation with Un-Equal Intervals; is devoted to interpolation with 

unequal intervals. Newton’s general interpolation formula, divided differences and their 

properties are discussed in this unit. 

Finally in Unit – 6 – Lagrange’s Interpolation; the last unit of this block, Lagrange’s 

interpolation formula and is applications are given. 

The Block - 3 – Central Differences, is the third block. This block consists of four units 

regarding, central differences, inverse interpolation, numerical differentiation and numerical 

integration. 



Unit - 7 – Central Difference Interpolation Formulae; deals with the concept of central 

difference interpolation. Gauss and Bessels’s formulae are derived and their applications are 

successes.  

In Unit – 8 – Inverse Interpolation; of the block the problem of inverse interpolation is 

discussed and various methods for its solution are suggested. 

In Unit – 9 – Numerical Differentiation; the concept of numerical differentiation has 

been defined. Various formulae to solve the problem of numerical differentiation are discussed. 

Finally, in Unit – 10 - Numerical Integration is taken into consideration. Trapezoidal 

rule, Simpson’s rule and Weddle’s rule are derived. Euler Maclaurin’s summation formula is 

also given in this unit. 

The Block - 4 – Solution of Differential Equations, is the fourth block. This block 

consists of two units titled Unit - 11 – Numerical Solution of ordinary Differential Equations – 

I and Unit – 12 – Numerical Solution of ordinary Differential Equations – II. 

The Block - 5 – Computer, is the fifth block. This block deals with theory of computer 

and consists of three units.  

Unit – 13 – Introduction to Computer; presents a brief introduction to computers 

including their historical bolution, generation and classification. 

Unit – 14 – Hardware; gives a brief account of hardware in CPU, I/O Devices, Blick 

diagram and memory organization. 

Unit – 15 – System Software; deals with system software, MS-Dos, Files names, 

Creating, Editing and printing of files, other file management commands etc. 

The Block - 6 – Basics of Computer Programming, is the sixth block. This block 

includes two units regarding to basics of computer programming and programming languages. 

In Unit – 16 – Algorithm and Flow Charts; described the said topics and various 

example related to these techniques are worked out. 

In Unit – 17 – Programming Language; elements ideas related to various programming 

languages rearranges from machine language to object-oriented programming are discussed. 

At the end of every block/unit the summary, self assessment questions and further 

readings are given.  



 
 

 

 

 

 

 

 

 

 

 

 

Block: 1  Solutions of Non-Linear Equations in  

     One Variable 

 

Unit – 1:  Basic Properties of Equations 

 

Unit – 2 : Solutions of Non-Linear Equations 

 

 

  

SBSSTAT – 04 

Numerical Methods and 

Basic Computer Knowledge 

 
 

U.P.RajarshiTandon Open 

University, Prayagraj 

 



 
 

Course Design Committee 

Dr. Ashutosh Gupta  Chairman  
Director, School of Sciences, U. P. Rajarshi Tandon Open University, Prayagraj 

Prof. Anup Chaturvedi  Member 

Department of Statistics, University of Allahabad, Prayagraj 

Prof. S. Lalitha,  Member 

Department of Statistics, University of Allahabad, Prayagraj 

Prof. Himanshu Pandey  Member 

Department of Statistics, D. D. U. Gorakhpur University, Gorakhpur. 

Dr. Shruti Member-Secretary 

School of Sciences, U.P. Rajarshi Tandon Open University, Prayagraj 

Course Preparation Committee  

  

Block: 1 Solutions of Non-Linear Equations in One Variable 

Dr. Hemant Yadav Writer  

Department of Computer Science, PPG Institute of Engineering, Bareilly 

 

Dr. A. K. Pandey Editor  

Department of Mathematics, Ewing Christian College, Prayagraj  

  

Dr. Shruti    Course / SLM Coordinator 

School of Sciences, U. P. Rajarshi Tandon Open University, Prayagraj 

 

SBSSTAT – 04   Numerical Methods & Basic Computer Knowledge 

First Edition:  March 2008 (Published with the support of the Distance Education Council, 

New Delhi) 

Second Edition:           January 2022 

©UPRTOU 

ISBN : 978-93-94487-52-9 

 

©All Rights are reserved. No part of this work may be reproduced in any form, by 

mimeograph or any other means, without permission in writing from the Uttar Pradesh 

Rajarshi Tondon Open University, Prayagraj. Printed and Published by Dr. P. P. Dubey, 

Registrar, Uttar Pradesh Rajarshi Tandon Open University, 2022. 

 

Printed By: K.C. Printing & Allied Works, Panchwati, Mathura - 281003. 



 
 

Block & Units Introduction 

 

 

The Block - 1 – Solutions of Non-Linear Equations in one Variable, is the first 

block. As we know Numerical technique is widely used by scientists and engineers to solve 

their problems. A majoradvantage for numerical technique is that a numerical answer can be 

obtained even when aproblem has no analytical solution. However, result from numerical 

analysis is an approximation,in general, which can be made as accurate as desired. The 

reliability of the numerical result willdepend on an error estimate or bound, therefore the 

analysis of error and the sources of error innumerical methods is also a critically important 

part of the study of numerical technique. 

Unit – 1 – Basicproperties of equations; theunit deals with the basic concepts of 

calculus, properties of equations and roots of equation how the initial approximation is taken 

and convergence is calculated using various iterative methods. 

Unit – 2– Solutions of Non-Linear Equations; gives a brief account of the order of 

convergence is also calculated which clearly indicates the speed by which approximation of 

the root could be done. 

The end of block/unit the summary, self-assessment questions and further readings are 

given.  

  



 
 

Unit-1:  Solutions of Non-Linear Equations in one Variable 

Structure 

1.1. Introduction 

1.2. Objective 

1.3. Review of Calculus 

1.4. Round off Errorand Truncation Error  

1.5. Some properties of equations 

1.6. Iteration Methods for finding the roots (zero’s) of an equation and  

Convergence Criterion , Initial Approximation to a Root  

1.7. Bisection Method. 

1.8. Summary 

1.9. Exercise 

 

 

1.1 Introduction 

 

Numerical analysis is a branch of Mathematics that deals with devising efficient methods 

for obtainingnumerical solutions to difficult Mathematical problems.Most of the 

Mathematical problems that arise in science and engineering are very hard and 

sometimeimpossible to solve exactly. Thus, an approximation to a difficult Mathematical 

problem is very important to make it easier to solve. Due to the immense development in the 

computational technology,numerical approximation has become more popular and a modern 

tool for scientists and engineers.  

 

1.2 Objective 

In this unit, our objective is to review the basic concepts of calculus, properties of 

equations and roots of equation how the initial approximation is taken and convergence is 

calculated using bisection method. 

 

1.3 Review of Calculus 

 



 
 

MATHEMATICAL PRELIMINARIES 

 

Theorem 1.1 If𝑓(𝑥) is continuous in 𝑎 ≤ 𝑥 ≤ 𝑏 , and if 𝑓 𝑎  and 𝑓 𝑏  are of opposite signs, 

then, 𝑓(𝜉) = 0 for at least one number ξ such that 𝑎 < 𝜉 < 𝑏. 

 

Theorem 1.2(Rolle’s theorem) If 𝑓(𝑥) is continuous in 𝑎 ≤ 𝑥 ≤ 𝑏 , 𝑓′(𝑥)  exists in 𝑎 < 𝑥 <

𝑏 and 𝑓 𝑎 = 𝑓 𝑏 = 0, then, there exists at least one value𝑥, say ξ, such that 

𝑓′(𝜉) = 0 , 𝑎 < 𝜉 < 𝑏. 

 

Theorem 1.3(Generalized Rolle’s theorem) Let 𝑓(𝑥) be a function which is n times 

differentiable on [a, b]. If 𝑓(𝑥) vanishes at the,(𝑛 + 1) distinct points,𝑥0,𝑥1, ………, 𝑥𝑛 , in 

(𝑎, 𝑏) such that 𝑓𝑛(𝜉) = 0 . 

 

Theorem 1.4(Intermediate value theorem)If 𝑓(𝑥) be continuous in [𝑎, 𝑏] and let  𝑘 be any 

number between 𝑓(𝑎) and 𝑓(𝑏). Then there exists a number ξ in (𝑎, 𝑏) such that  

𝑓(𝜉) = 𝑘 

 

 

 

 

 

 

 

 

 

 

                                          Fig 1 Intermediate value theorem 

Theorem 1.5(Mean-value theorem for derivatives)If 𝑓(𝑥) be continuous in [𝑎, 𝑏] and 𝑓′(𝑥) 

exists in (𝑎, 𝑏), then there exists at least at least one value of 𝑥 say 𝜉, between 𝑎 and 𝑏 such 

that(It is also known as Lagrange’s Mean Value Theorem) 

 



 
 

     𝑓′(𝜉) =
𝑓 𝑏 −𝑓(𝑎)

𝑏−𝑎
 ,   𝑎 < 𝜉 < 𝑏 

 

Setting 𝑏 = 𝑎 + 𝑕, this theorem takes the form 

𝑓 𝑎 + 𝑕 = 𝑓 𝑎 + 𝑕𝑓′(𝑎 +  𝜃𝑕) ,            0 < 𝜃 < 1. 

 

Theorem 1.6(Taylor’s series for a function of one variable)If 𝑓(𝑥) is continuous and 

possesses continuous derivatives of order n in an interval that includes = 𝑎 , then in that 

interval  

 

𝑓 𝑥 = 𝑓 𝑎 +  𝑥 − 𝑎 𝑓 ′ 𝑎 + 
(𝑥 − 𝑎)2

2!
𝑓 ′′ 𝑎 + ⋯

 𝑥 − 𝑎 𝑛−1

 𝑛 − 1 !
𝑓 𝑛−1  𝑎 + 𝑅𝑛(𝑥) 

 

Where 𝑅𝑛(𝑥), the remainder term, can be expressed in the form 

 

    𝑅𝑛 𝑥 =
 𝑥−𝑎 𝑛

𝑛 !
𝑓𝑛 𝜉  ,      𝑎 < 𝜉 < 𝑏 

 

Theorem 1.7 (Maclaurin’s expansion) It states that 

If 𝑓(𝑥) is continuous and possesses derivatives of all order and 𝑅𝑛  tends to Zero as n ∞ 

then Maclaurin’s theorem becomes the Maclaurin’s series. 

 

𝑓 𝑥 = 𝑓 0 + 𝑥𝑓 ′ 0 +  
𝑥2

2!
𝑓 ′′ 0 + ⋯

𝑥𝑛

𝑛!
𝑓𝑛 0 + ⋯…… 

 

Theorem 1.8 (Taylor’s series for a function of two variables) It states  

𝑓 𝑥1 + 𝛥𝑥1, 𝑥2 +  𝛥𝑥2 = 𝑓 𝑥1, 𝑥2 +
𝜕𝑓

𝜕𝑥1
𝛥𝑥1 + 

𝜕𝑓

𝜕𝑥2
𝛥𝑥2     

+
1

2
[
𝜕2𝑓

𝜕𝑥2
1
 𝛥𝑥1 

2 +  
𝜕2𝑓

𝜕x1𝜕𝑥2
 𝛥𝑥1 𝛥𝑥2 +

𝜕2𝑓

𝜕𝑥2
2
 𝛥𝑥2 

2] +……. 

This can easily be generalized. 

 

1.4  Round off Error and Truncation Error 

 

Machine Epsilon 



 
 

 The computer has a finite word length so only a fixed number of digits are stored and 

used during computation. Hence even in storing an exact decimal number in its converted 

form in the computer memory, an error is introduced. This error is machine dependent and is 

called machine epsilon. 

   Error = True value – Approximate value 

In any numerical computation, we come across following types of errors: 

1. Inherent errors: Errors which are already present in the statement of a problem before its 

solution are called inherent errors. Such errors arise either due to the given data being 

approximate or due to limitations of mathematical tables, calculators or the digital 

computer. 

 

Inherent errors can be minimized by taking better data or by using high precision 

computing aids. Accuracy refers to the number of significant digits in a value e.g. 53.965 is 

accurate to 5 significant digits. 

 

Precision refers to the number of decimal position or order of magnitude of the last digit in 

the value e.g. in 53.965, precision in 10−3. 

 

Example: Which of the following numbers have greatest precision? 

  4.3201, 4.32, 4.320106. 

 

Solution:    In 4.3201,        precision is 10−4. 

  In 4.32,             precision is 10−2 

In 4.320106,     precision is 10−6 

Hence the number 4.320106 has the greatest precision. 

 

 

2. Rounding errors:They arise from the process of rounding off the numbers during the 

computation. It is also called procedural error or numerical error. Such errors are 

unavoidable in most of the calculations due to limitations of computing aids. 

These errors can be reduced however by 

(i) Changing the calculation procedure so as to avoid subtraction of nearly equal 

numbers or division by a small number 



 
 

(ii) Retaining at least one more significant digit at each step and rounding off at last 

step. 

Rounding off may be executed in two ways: 

(a) Chopping: In it, extra digits are dropped by truncation of number. Suppose we 

are using a computer with a fixed word length of four digits then a number like 

12.92364 will be stored as 12.92. 

(b) Symmetric round off: In it, the last retained significant digit is rounded up by 

unity if the first discarded digit is ≥ 5 otherwise the last retained digit is 

unchanged. 

 

3. Truncation  errors: 

They are caused by using approximate results or on replacing an infinite process by a 

finite one. 

 If we are using a decimal computer having a fixed word length of 4 digits, 

rounding off of 13.658 gives 13.66 whereas truncation gives 13.65. 

 

Note: Truncation error is the difference between a truncated value and the actual value. A 

truncated quantity is represented by a numeral with a fixed number of allowed digits, with 

any excess digits "chopped off" (hence the expression "truncated"). 

As an example of truncation error, consider the speed of light in a vacuum. The 

official value is 299,792,458 meters per second. In scientific (power-of-10) notation, that 

quantity is expressed as 2.99792458 x 10
8
. Truncating it to two decimal places yields 2.99 x 

10
8
. The truncation error is the difference between the actual value and the truncated value, or 

0.00792458 x 10
8
. Expressed properly in scientific notation, it is 7.92458 x 10

5
. 

In computing applications, truncation error is the discrepancy that arises from 

executing a finite number of steps to approximate an infinite process. 

Example:  Find the truncation error for 𝑒𝑥𝑎𝑡𝑥 =  
1

5
 if  

    First three terms are retained in expansion 

 

Solution:      Error = True value – Approximate value 

 

https://whatis.techtarget.com/definition/truncate
https://whatis.techtarget.com/definition/speed-of-light
https://whatis.techtarget.com/definition/scientific-notation-power-of-10-notation


 
 

  = (1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+ ⋯ )  - (1 + 𝑥 +

𝑥2

2!
) 

  = (
𝑥3

3!
+

𝑥4

4!
+

𝑥5

5!
+ ⋯ ) 

Put  𝑥 =  
1

5
 

𝑒𝑟𝑟𝑜𝑟 =
. 008

6
+  

. 0016

24
 +  

. 0032

120
+  …. 

= .0013333 +  .0000666 +  .0000026 + ⋯… . = .𝟎𝟎𝟏𝟒𝟎𝟐𝟓 

 

Check Your Progress 

1. Round off the following numbers to two decimal places 

            48.21416 and 2.3742 

 

1.5  Some Properties of Equations 

 

Algebraic and Transcendental Equation 

Introduction 

We have seen that expression of the form 

𝑓 𝑥 = 𝑎0𝑥
𝑛 + 𝑎1𝑥

𝑛−1 + ⋯…+ 𝑎𝑛−1𝑥 + 𝑎𝑛  

where 𝑎𝑖 ′𝑠 are constant (𝑎0 ≠ 0) and n is a positive integer, is called a polynomial in x of 

degree n, and the equation f (x) = 0 is called an algebraic equation of degree n. If f (x) 

contains some other functions like exponential, trigonometric, logarithmic etc., then f (x) = 0 

is called a transcendental equation.  

For example, 

𝑥3 − 3𝑥 + 6 = 0 , 𝑥5 − 7𝑥4 + 3𝑥2 + 36𝑥 − 7 = 0 

are algebraic equations of third and fifth degree, whereas 

𝑥2 − 3𝑐𝑜𝑠𝑥 + 1 = 0 ,  𝑥𝑒𝑥 − 2 = 0 ,  𝑥 log10 𝑥 = 1.2etc  are transcendental equations. In 

both the cases, if the coefficients are pure numbers, they are called numerical equations.  

Here we shall describe some numerical methods for the solution of f(x) = 0 where f(x) is 

algebraic or transcendental or both. 

 

Check Your Progress 

 1. Give two examples each of algebraic and transcendental equation. What is the difference       

between the two explain with suitable example. 



 
 

1.6         Iteration Methods for Finding the Roots (Zero’s) of an Equation 

 

Methods for Finding the Root of an Equation 

Method for finding the root of an equation can be classified into following two parts: 

1. Direct methods 

2. Iterative methods 

 

1. Direct methods 

In some cases, roots can be found by using direct analytical methods. For example, for a 

quadratic equation   𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0the roots of the equation, obtained by 

 

𝑥1 =
−𝑏± 𝑏2−4𝑎𝑐

2𝑎
     and    𝑥2 =

−𝑏± 𝑏2−4𝑎𝑐

2𝑎
 

 

These are called closed form solution. Similar formulae are also available for cubic and 

biquadratic polynomial equations but we rarely remember them. For higher order polynomial 

equations and non-polynomial equations, it is difficult and in many cases impossible, to get 

closed form solutions. Besides this, when numbers are substituted in available closed form 

solutions, rounding errors reduce their accuracy. 

 

2. Iterative Methods 

These methods, also known as trialand error  methods, are based on the idea of successive 

approximations, i.e., starting with one or more initial approximations to the value of the root, 

we obtain the sequence of approximations by repeating a fixed sequence of steps over and 

over again till we get the solution with reasonable accuracy. These methods generally give 

only one root at a time. 

 

For the human problem solver, these methods are very cumbersome and time consuming, but 

on other hand, more natural for use on computers, due to the following reasons: 

1. These methods can be concisely expressed as computational algorithms. 

2. It is possible to formulate algorithms which can handle class of similar problems. For 

example, algorithms to solve polynomial equations of degree n may be written. 

3.  Rounding errors are negligible as compared to methods based on closed form solutions. 

 



 
 

 

Order (Or Rate) Of Convergence Of Iterative Methods 

Convergence of an iterative method is judged by the order at which the error between 

successive approximations to the root decreases. 

The order of convergence of an iterative method is said to be kth order convergent if k is the 

largest positive real number such that 

lim
𝑖→∞

 
𝑒𝑖+1

𝑒𝑖
𝑘  ≤ 𝐴 

Where A, is a non-zero finite number called asymptotic error constant and it depends on 

derivative of f(x) at an approximate root x. 𝑒𝑖  and 𝑒𝑖+1  are the errors in successive 

approximation. 

In other words, the error in any step is proportional to the kth power of the error in the 

previous step. Physically, the kth order of convergence means that in each iteration, the 

number of significant digits in each approximation increases k times. 

 

Check Your Progress 

 1. What does iteration mean and how iterative methods converge after every step. 

 

1.7  Bisection Method 

 

Bisection (Or Bolzano) Method 

This is one of the simplest iterative methods and is strongly based on the property of 

intervals. To find a root using this method, let the function f(x) be continuous between a and 

b.  For definiteness, let f(a) be negative and f(b) be positive.  

Then there is a root of f(x) = 0, lying between a and b. 

 Let the first approximation be  

   𝑥1 =
1

2
 (𝑎 + 𝑏) (i.e., average of the ends of the range). 

Now of 𝑓 𝑥1 = 0 then 𝑥1 is a root of f(x) = 0. Otherwise, the root will lie between a 

and 𝑥1or 𝑥1 and b depending upon whether 𝑓 𝑥1 is positive or negative. 

 



 
 

 

 

 

 

 

 

 

 

 

 

Then, we bisect the interval and continue the process till the root is found to be desired 

accuracy. In the above figure,  𝑓 𝑥1  is positive; therefore, the root lies in between a and 𝑥1.  

The second approximation to the root now is  𝑥2 =
1

2
 (𝑎 + 𝑥1). 

If 𝑓 𝑥2 is negative as shown in the figure then the root lies in between 𝑥2and 𝑥1, and the 

third approximation to the root is 𝑥3 =
1

2
 (𝑥2 + 𝑥1)and so on. 

 This method is simple but slowly convergent. It is also called as Bolzano 

method or Interval halving method. 

 

Procedure for the Bisection Method to Find the Root of The Equation 𝒇 𝒙 = 𝟎 

Step 1 : Choose two initial guess values (approximation) a and b (where (a >b))  

               such that  𝑓 𝑎 .𝑓 𝑏 < 0 

Step 2 :  Evaluate the mid point 𝑥1 of a and b given by 𝑥1 =
1

2
 (𝑎 + 𝑏) and also  

              evaluate 𝑓 𝑥1 . 



 
 

Step 3 : If 𝑓 𝑎 .𝑓 𝑥1 < 0 , then set b = 𝑥1 else set 𝑎 = 𝑥1 . Then apply the  

               formula of step 2. 

Step 4 :  Stop evaluation when the difference of two successive values of 𝑥1 

               obtained from step 2, is numerically less than the prescribed accuracy. 

Order of Convergence of Bisection Method 

 In Bisection Method, the original interval is divided into half interval in each 

iteration. If we take mid points of successive intervals to be the approximations of the root, 

one half of the current interval is the upper bound to the error. Now 𝑓 𝑥𝑖 = 0, then 𝑥1 is the 

root of 𝑓(𝑥) 

In Bisection Method, 𝑒𝑖+1 = 0.5 𝑒𝑖    or   
𝑒𝑖+1

𝑒𝑖
𝑘 = 0.5 

Here 𝑒𝑖  and 𝑒𝑖+1  are the errors 𝑖𝑡𝑕  and (𝑖 + 1 )𝑡𝑕   iterations respectively. Comparing the 

above equation with  

lim
𝑖→∞

 
𝑒𝑖+1

𝑒𝑖
𝑘  ≤ 𝐴 

 We get 𝑘 = 1 and A = 0.5. Thus the Bisection Method is first order convergent 

or linearly convergent. 

Example 1: Find the root of the equation 𝑥3 − 𝑥 − 1 = 0   lying between 1 and 2 by 

bisection method. 

Solution   Let  𝑓 𝑥 = 𝑥3 − 𝑥 − 1 = 0 

Since  𝑓 1 = 13 − 1 − 1 = −1  , which is negative 

A nd𝑓 2 = 23 − 2 − 1 = 5  , which is positive 

 Therefore, 𝑓 1  is negative and 𝑓 2  is positive, so at least one real root will lie 

between 1 and 2. 

First Iteration: Now using Bisection Method, we can take first approximation 

𝑥1 =
1 + 2

2
=  

3

2
= 1.5 



 
 

Then ,𝑓 1.5 = (1.5)3 − 1.5 − 1 

         = 3.375 − 1.5 − 1 = 0.875 

𝑓 1.5 > 0 that is, positive 

So root will now lie between 1 and 1.5. 

Second Iteration: The Second approximation is given by 

𝑥2 =
1 + 1.5

2
=  

2.5

2
= 1.25 

Then,                     𝑓 1.25 = (1.25)3 − 1.25 − 1 

         = 1.953 − 2.25   = - 0.875 < 0 

𝑓 1.25 < 0 that is, negative 

Therefore, 𝑓 1.5  is positive and 𝑓 1.25  is negative, so that root will lie between 1.25 and 

1.5. 

Third Iteration: The third approximation is given by 

𝑥3 =
1.25 + 1.5

2
=  1.375 

    𝑥3 =  1.375 

Then,                     𝑓 1.375 = (1.375)3 − 1.375 − 1 

𝑓 1.375 = 0.2246 

𝑓 1.375 > 0 is, positive 

 The required root lies between 1.25 and 1.375 

Fourth Iteration: The fourth approximation is given by 

𝑥4 =
1.25 + 1.375

2
=  1.313 

Then,                     𝑓 1.313 = (1.313)3 − 1.313 − 1 



 
 

𝑓 1.313 = − 0.0494 

Therefore    𝑓 1.313  is, negative and 𝑓 1.375  is positive. The root lies between 1.313 and 

1.375. 

Fifth Iteration: The fifth approximation is given by 

𝑥5 =
1.313 + 1.375

2
=  1.344 

Then,                     𝑓 1.344 = (1.344)3 − 1.344 − 1 

𝑓 1.344 = 0.0837 

Therefore    𝑓 1.313  is, negative and 𝑓 1.344  is positive. The root lies between 1.313 and 

1.344. 

Sixth Iteration: The sixth approximation is given by 

𝑥6 =
1.313 + 1.344

2
=  1.329 

Then,                     𝑓 1.329 = (1.329)3 − 1.329 − 1 

𝑓 1.329 = 0.0183 

Therefore    𝑓 1.313  is, negative and 𝑓 1.329  is positive. The root lies between 1.313 and 

1.329. 

Seventh Iteration: The seventh approximation is given by 

𝑥7 =
1.313 + 1.329

2
=  1.321 

Then,                     𝑓 1.321 = (1.321)3 − 1.321 − 1 

𝑓 1.321 = −0.0158 

Therefore    𝑓 1.321  is, negative and 𝑓 1.329  is positive. The root lies between 1.321and 

1.329. 

From the above iterations, the root of    𝑓 𝑥 = 𝑥3 − 𝑥 − 1 = 0   up to three places of 

decimals is 1.325, which is desired accuracy. 



 
 

 

Example 2: Find the root of the equation 𝑥3 − 𝑥 − 4 = 0   lying between 1 and 2 by 

bisection method. 

Solution   Given 𝑓 𝑥 = 𝑥3 − 𝑥 − 4 

We want to find the root lie between 1 and 2 

At 𝑎 = 1𝑓 𝑎 = (1)3 − 1 − 4   = - 4 negative 

At 𝑏 = 2𝑓 𝑏 = (2)3 − 2 − 4   = 2 positive 

This implies that root lies between 1 and 2 

 

First Iteration:   Here, 𝑎 = 1 and𝑏 = 2 , 𝑥1 =
1+2

2
=  

3

2
= 1.5 

Now,  𝑓 𝑎 = −4 ,𝑓 𝑏 = 2. Then, 𝑓 𝑥1 = (1.5)3 − 1.5 − 4 = - 2.125 

Since 𝑓 1.5  is negative and 𝑓 2  is positive. 

So root will now lie between 1.5 and 2. 

 

Second Iteration:   Here, 𝑥1 = 1.5 and𝑏 = 2 , 𝑥2 =
1.5+2

2
=  1.75 

Now,   𝑓 𝑥1 = −2.125,  𝑓 𝑏 = 2.  

Then, 𝑓 𝑥2 = (1.75)3 − 1.75 − 4 = - 0.39062 

Since 𝑓 1.75  is negative and 𝑓 2  is positive therefore the root lies between 1.75 and 2. 

Third Iteration:   Here, 𝑥2 = 1.75 and = 2 , 𝑥3 =
1.75+2

2
=  1.875 

Now,   𝑓 𝑥2 = −0.39062,  𝑓 𝑏 = 2.  

Then, 𝑓 𝑥3 = (1.875)3 − 1.875 − 4 = 0.7169 

Since 𝑓 1.75  is negative and 𝑓 1.875  is positive therefore the root lies between 1.75 and 

1.875. 



 
 

Fourth Iteration:   Here, 𝑥2 = 1.75 and 𝑥3 = 1.875 , 𝑥4 =
1.75+1.875

2
=  1.8125 

Now,   𝑓 𝑥2 = −0.39062,  𝑓 𝑥3 = 0.71679 

Then, 𝑓 𝑥4 = (1.8125)3 − 1.8125 − 4 = 0.14184 

Since 𝑓 1.75  is negative and 𝑓 1.8125  is positive therefore the root lies between 1.75 and 

1.8125. 

Fifth Iteration:   Here, 𝑥2 = 1.75 and 𝑥4 = 1.8125 , 𝑥5 =
1.75+1.8125

2
=  1.78125 

Now,   𝑓 𝑥2 = −0.39062,  𝑓 𝑥4 = 0.14184 

Then, 𝑓 𝑥5 = (1.78125)3 − 1.78125 − 4 = - 0.12960  

Since 𝑓 1.78125  is negative and 𝑓 1.8125  is positive therefore the root lies between 1.75 

and 1.8125. 

Repeating the process, the successive approximations are 

𝑥6 = 1.79687, 𝑥7 = 1.78906, 𝑥8 = 1.79296, 𝑥9 = 1.79491,  

𝑥10 = 1.79589, 𝑥11 = 1.79638,  𝑥12 = 1.79613. 

From the above discussion, the value of the root to three decimal places is 1.796. 

Example 3: Using the Bisection Method, find the real root of the equation  

𝑓 𝑥 =  3𝑥 −  1 +  sin 𝑥 = 0 

Solution:  The given equation 

𝑓 𝑥 =  3𝑥 −  1 +  sin 𝑥 = 0 is a transcendental equation. 

           Given 𝑓 𝑥 =  3𝑥 −  1 +  sin 𝑥 = 0                            --- (1) 

Then               𝑓 0 =  0 −  1 +  sin 0 = -1 

And                𝑓 1 =  3 −  1 + sin 1 =  3 −  1.8414 

   = 3 – 1.3570 = 1.643 > 0 

Thus 𝑓 0  is negative and 𝑓 1  is positive, therefore, a root lies between 0 and 1. 



 
 

First Approximation:   The first approximation of the root is given by 

   𝑥1 =
0+1

2
=  0.5 

Now,                  𝑓 0.5 = 3(0.5) − 1 + sin(0.5) 

    = 1.5 −  1.4794  = 1.5 – 1.2163 = 0.2837 > 0 

Thus, 𝑓 0.5  is positive, while 𝑓 0  is negative, therefore, a root lies between 0 and 0.5. 

Second Approximation:   The second approximation of the root is given by 

   𝑥2 =
0+0.5

2
=  0.25 

Again,                  𝑓 0.25 = 3(0.25) − 1 +  sin(0.25) 

    = 0.75 −  1.2474  = 0.75 – 1.1169 = - 0.3669 < 0 

Thus, 𝑓 0.25  is negative, while 𝑓 0.5  is positive, therefore, a root lies between 0.25 and 

0.5. 

Third Approximation:   The third approximation of the root is given by 

   𝑥3 =
0.25+0.5

2
=  0.375 

Again,                  𝑓 0.375 = 3(0.375) − 1 +  sin(0.375) 

    = 1.125 −  1.3663  = 1.125 – 1.1689 = - 0.0439 < 0 

Thus, 𝑓 0.375  is negative, while 𝑓 0.5  is positive, therefore, a root lies between 0.375and 

0.5. 

Fourth Approximation:   The fourth approximation of the root is given by 

   𝑥4 =
0.375+0.5

2
=  0.4375 

Again,                  𝑓 0.4375 = 3(0.4375) − 1 +  sin(0.4375) 

    = 1.3125 −  1.4237  = 1.3125 – 1.1932 = 0.1193 > 0 



 
 

Thus, 𝑓 0.4375  is positive, while 𝑓 0.375  is negative, therefore, a root lies between 

0.375and 0.4375. 

Fifth Approximation:   The fifth approximation of the root is given by 

   𝑥5 =
0.375+0.4375

2
=  0.4063 

Again,                  𝑓 0.4063 = 3(0.4063) − 1 +  sin(0.4063) 

    = 1.2189 −  1.3952  = 1.2189 – 1.1812 = 0.0377> 0 

Thus, 𝑓 0.4063  is positive, while 𝑓 0.375  is negative, therefore, a root lies between 

0.375and 0.4063. 

Sixth Approximation:   The sixth approximation of the root is given by 

   𝑥6 =
0.375+0.4063

2
=  0.3907 

Again,                  𝑓 0.3907 = 3(0.3907) − 1 +  sin(0.3907) 

    = 1.1721 −  1.3808  = 1.1721 – 1.1751= - 0.003< 0 

Thus, 𝑓 0.3907  is negative, while 𝑓 0.4063  is positive, therefore, a root lies between 

0.3907 and 0.4063. 

Seventh approximation:   The seventh approximation of the root is given by 

   𝑥7 =
0.3907+0.4063

2
=  0.3985 

From the last two observations, i.e. 𝑥6 =  0.3907 and  𝑥7 =  0.3985 the approximate value 

of the root up to two places of decimal is given by 0.39. Hence the root is 0.39 approximate 

Check Your Progress 

1.Find the smallest root of 𝑥3 − 9𝑥 + 1 = 0using Bisection Method correct to three decimal 

places.                                                                          [Ans 0.111] 

 

1.8       Summary 

 



 
 

In fact, there is no need of a deeper knowledge of numerical methods and their analysis in 

most of thecases in order to use some standard softwares as an end user. However, there are 

at least three reasonsto gain a basic understanding of the theoretical background of numerical 

methods. 

1. Learning different numerical methods and their analysis will make a person more familiar 

with thetechnique of developing new numerical methods. This is important when the 

available methods arenot enough or not efficient for a specific problem to be solved. 

2. In many circumstances, one has more methods for a given problem. Hence, choosing an 

appropriatemethod is important for producing an accurate result in lesser time. 

3. With a sound background, one can use methods properly (especially when a method has its 

ownlimitations and/or disadvantages in some specific cases) and, most importantly, one can 

understandwhat is going wrong when results are not as expected. 

 

1.9        Exercise 

 

Q. 1. If X= 2.536, find the absolute error and relative error when 

(i) X is rounded off 

(ii) X is truncated to two decimal digits 

Q. 2. What do you mean by truncation error? Explain with examples. 

Q. 3. Find the real root of 𝑒𝑥 = 3𝑥 by Bisection Method.        [Ans 1.5121375] 

Q. 4. Find a root of 𝑥3 − 𝑥 − 11 = 0  Bisection Method correct to three decimal places 

which lies between 2 and 3.   [Ans 2.374] 

Q. 5. Compute the root of log x = cos x correct to 2 decimal places using Bisection Method 

       [Ans 1.5121375] 

  



 
 

Unit-2:   Solutions of Non-Linear Equations 
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2.4 Chord Methods for Finding Roots- Regula Falsi Method 

2.5 Newton Raphson Method. Order of Convergence. 

2.6 Summary 

2.7 Exercise 

 

2.1 Introduction 

 

Majority of the Mathematical problems that arise in science and engineering are very 

hard and sometimes impossible to solve exactly manually. Thus, by making an initial 

approximation and using the iterative methods likefixed point iterative method, Regula –Falsi 

method and Newton Raphson Method one can calculate the root exactly to the accurate 

number of places required using the computational tools and techniques. 

 

2.2      Objective 

 

In this unit, our objective is to review the basic concepts of basic iterative methods 

like fixed point iterative method, Regula –Falsi method and Newton Raphson Method and 

how their order of convergence is calculated. 

 

2.3 Fixed Point Iteration Method 

 

Iteration Method (Method of Successive Approximation) 

This method is also known as the direct substitution method or method of fixed 

iterations. 

To find the root of the equation f(x) = 0 by successive approximations, we rewrite the 

give equation in the form  



 
 

𝑥 =  𝑔 𝑥     --- (1) 

Now, first we assume the approximate value of root (let 𝑥0) , then substitute it in g(x) to have 

a first approximation 𝑥1 given by 

   𝑥1 = 𝑔(𝑥0)   --- (2) 

Similarly, the second approximation 𝑥2 is given by 

   𝑥2 = 𝑔(𝑥1)   --- (3) 

In general,𝑥𝑖+1 = 𝑔(𝑥𝑖)   --- (4) 

 

Procedure for Iteration Method to Find the Root of the Equation 𝒇 𝒙 = 𝟎 

Step 1 : Take an initial approximation as 𝑥0. 

Step 2:  Find the next (first) approximation 𝑥1by usin𝑥1 = 𝑔(𝑥0)  

Step 3: Follow the above procedure to find the successive approximations , 

𝑥𝑖+1 by using   𝑥𝑖+1 = 𝑔 𝑥𝑖   , 𝑖 = 0,1, 2, 3…. 

Step 4 :  Stop the evaluation where relative error ≤  𝜀, where 𝜀 is the prescribed accuracy. 

Note 1: The iteration method𝑥 =  𝑔 𝑥  is convergent if  𝑔1(𝑥) < 1 

Rate of convergence of Iteration Method 

Let  f(x) = 0 be the equation which is being expressed as 𝑥 =  𝑔 𝑥 . The iterative 

formula for solving the equation is  

𝑥𝑖+1 = 𝑔 𝑥𝑖  

If a is the root of the equation 𝑥 =  𝑔 𝑥  lying in the interval   𝑎, 𝑏  ,  𝛼 = 𝑔(𝛼). 

The iterative formula may also be written as  

𝑥𝑖+1 = 𝑔( 𝑥 + 𝑥𝑖 − 𝛼) 

Then by mean value theorem 

𝑥𝑖+1 = 𝑔 𝛼 + (𝑥𝑖 − 𝛼)𝑔′(ci) where 𝛼 < ci< b 

But                      𝑔 𝛼 = 𝛼 

𝑥𝑖+1 = 𝛼 +  (𝑥𝑖 − 𝛼)𝑔′(ci) 

𝑥𝑖+1 − 𝛼 = + (𝑥𝑖 − 𝛼)𝑔′(ci)               -----(1) 

Now, if  𝑒𝑖+1 , 𝑒𝑖  are the error for the approximation 𝑥𝑖+1 and 𝑥𝑖  

Therefore,   𝑒𝑖+1 = 𝑥𝑖+1 − 𝛼 ,   𝑒𝑖 = 𝑥𝑖 − 𝛼 



 
 

Using this in (1), we get  

𝑒𝑖+1 =  𝑒𝑖𝑔
′(ci) 

Here 𝑔 𝑥  is a continuous function, therefore, it is bounded 

 𝑔′(𝑐𝑖) < 𝑘, where       𝑘 ∈  𝑎, 𝑏   is a constant 

 

𝑒𝑖+1 ≤ 𝑒𝑖𝑘 

Or                       
𝑒𝑖+1

𝑒𝑖
≤ 𝑘 

Hence, by definition, the rate of convergence of iteration method is 1. In other words, 

iteration method converges linearly. 

 

Example 1: Find the root of the equation x = 0.21 sin( 0.5 + 𝑥) by iteration method starting 

with x =0.12. 

Solution:                           Here   x = 0.21 sin( 0.5 + 𝑥) 

                                               f (𝑥) = 0.21 sin( 0.5 + 𝑥)                  --- (1) 

 

Here we observe that     𝑓(𝑥) < 1 

 

 Method of Iteration can be applied. 

Now, first approximation of x is given by 

   𝑥(1) =  0.21 sin  0.5 + 0.12 =  0.21 sin( 0.62) 

=  0.21 ( 0.58104) = 0.1220 

The Second approximation of  𝑥 is given by  

𝑥(2) =  0.21 sin  0.5 + 0.122 =  0.21 sin( 0.622) 

=  0.21 ( 0.58299) = 0.12243 

The third approximation of  𝑥 is given by  

𝑥(3) =  0.21 sin  0.5 + 0.1224 =  0.21 sin( 0.6224) 

=  0.21 ( 0.58299) = 0.12243 

 

The fourth approximation of  𝑥 is given by  

𝑥(4) =  0.21 sin  0.5 + 0.12243 =  0.21 sin( 0.62243) 

=  0.21 ( 0.58301) = 0.12243 

Here we observe that 𝑥(3) = 𝑥(4) 



 
 

Hence, the required root is given by 𝒙 = 𝟎.𝟏𝟐𝟐𝟒𝟑 

 

Example 2: Find the root of the equation 𝑓 𝑥 = 𝑥3 +  𝑥2 − 1 = 0   by using iteration 

method. 

Solution: ∵      𝑥3 +  𝑥2 − 1 = 0 

𝑥2 1 + 𝑥 = 1𝑥2 =
1

1+𝑥
 

𝑥 =
1

 1+𝑥
=  ∅(𝑥) 

Here, 𝑓 0 = −1 and 𝑓 1 = 1 so a root lies between 0 and 1.  

Now, 𝑥 =
1

 1+𝑥
 so that, 

∅(𝑥) =
1

 1 + 𝑥
 

∅′(𝑥) =
1

2(1+𝑥)3/2 

We have , ∅′(𝑥) < 1  for  𝑥 < 1 

Hence iterative method can be applied  

Take,    𝑥0 = 0.5 , we get 

𝑥1 = ∅(𝑥0) =
1

 1.5 
= 0.81649 

𝑥2 = ∅(𝑥1) =
1

 1.81649 
= 0.74196 

                                          - 

                                          - 

                                          - 

                                          - 

𝒙𝟖 = 𝟎.𝟕𝟓𝟒𝟖𝟕 

 

Example 3:  Find the cube root of 15 correct to four significant figures by iterative method. 

Solution:  Let                         𝑥 = (15)1/3 therefore  𝑥3 − 15 = 0 

                                    ∵      23 < 15 < 33 

Real root of the equation lies in (2,3). The equation may be written as 

𝑥= 
15+20 𝑥−𝑥3

20
= ∅(𝑥) 

Now,   ∅′(𝑥)=1-  
3𝑥3

20
  therefore,        ∅′(𝑥) < 1 

 



 
 

Iterative formula is  𝑥𝑖+1= 
15+20 𝑥𝑖−𝑥𝑖

3

20
                                    -------------(1) 

 

Put                                   𝑖 = 0, 𝑥0 = 2.5 , we get 𝑥1 = 2.47 

 

Put                                   𝑖 = 1, 𝑖𝑛 (1) , we get 𝑥2 = 2.466  (where 𝑥1 = 2.47) 

 

Similarly,                                𝑥3 = 2.4661 

 

Therefore  20
3

 correct to 3 decimal places is 2.466. 

 

Check Your Progress 

2. Solve by iteration method 𝑥3 +  𝑥2 + 1 = 0[Ans –0.682327803] 

 

2.4       Chord Methods for Finding Roots- Regula Falsi Method 

 

REGULA FALSI METHOD (CHORD METHODS FOR FINDING ROOTS) 

This method is essentially same as the bisection method except that instead of 

bisecting the interval.  

In this method, we choose two points 𝑥0 and 𝑥1  such that 𝑓(𝑥0) and 𝑓(𝑥1) are of 

opposite signs. Since the graph of 𝑦 = 𝑓(𝑥) crosses the X-axis between these two points, a 

root must lie in between these points. 

Consequently, 𝑓(𝑥0)𝑓(𝑥1)< 0. Equation of the chord joining points             {𝑥0 , (𝑥0) 

} and {𝑥1 , 𝑓(𝑥1) } is 

𝑦 − 𝑓 𝑥0 =
𝑓 𝑥1 − 𝑓(𝑥0)

𝑥1 − 𝑥0
 (𝑥 − 𝑥0) 

 

 

 

 

 

 

 



 
 

 

 

 

 

The method consists in replacing the curve AB by means of the chord and taking the point of 

intersection of the chord with X-axis as an approximation to the root. 

So the abscissa of the point where chord cuts y = 0 is given by 

𝑥2 = 𝑥0 −
𝑥1 − 𝑥0

𝑓 𝑥1 − 𝑓(𝑥0) 
𝑓(𝑥0)  

 

The value of 𝑥2 can also be put in the following form: 

𝑥2 =
𝑥0𝑓 𝑥1 − 𝑥1𝑓 𝑥0 

𝑓 𝑥1 − 𝑓(𝑥0) 
 

In general, the  𝑖 + 1 𝑡𝑕 approximation to the root is given by 

𝑥𝑖+1 =
𝑥𝑖−1𝑓 𝑥𝑖 − 𝑥𝑖𝑓 𝑥𝑖−1 

𝑓 𝑥𝑖 − 𝑓(𝑥𝑖−1) 
 

 

Procedure for the False Position Method to Find the Root of the Equation 𝑓(𝑥) = 0 

Step 1:  Choose two initial guess values (approximation) 𝑥0and 𝑥1(where 𝑥1>𝑥0 )      such 

that  𝑓 𝑥0 .𝑓 𝑥1 < 0 

Step 2:  Find the next approximation 𝑥2 using the formula 

𝑥2 =
𝑥0𝑓 𝑥1 − 𝑥1𝑓 𝑥0 

𝑓 𝑥1 − 𝑓(𝑥0) 
 

 and also evaluate 𝑓 𝑥2 . 

Step 3:  If    𝑓 𝑥2 .𝑓 𝑥1 < 0 , then go to the next step. If not, rename 𝑥0 and 𝑥1 

  and then go to next step. 

Step 4:  Evaluate successive approximations using the formula 

𝑥𝑖+1 =
𝑥𝑖−1𝑓 𝑥𝑖 −𝑥𝑖𝑓 𝑥𝑖−1 

𝑓 𝑥𝑖 −𝑓(𝑥𝑖−1) 
 , where i =2, 3, 4, …….. 

But before applying the formula for 𝑥𝑖+1, ensure whether If𝑓 𝑥𝑖−1 .𝑓 𝑥𝑖 < 0 if not, 

rename 𝑥𝑖−2 and 𝑥𝑖−1 and proceed. 

Step 5:  Stop the evaluation when  𝑥𝑖 − 𝑥𝑖−1 < 𝜖, where 𝜖 is the prescribed accuracy. 

 

 



 
 

Order (or Rate) of Convergence of  Regula Falsi Method 

The general iterative formula for False Position Method is given by 

𝑥𝑖+1 =
𝑥𝑖−1𝑓 𝑥𝑖 −𝑥𝑖𝑓 𝑥𝑖−1 

𝑓 𝑥𝑖 −𝑓(𝑥𝑖−1) 
    -------------- (1) 

where  𝑥𝑖−1 , 𝑥𝑖  and 𝑥𝑖+1  are successive approximations to be required root of  

𝑓 𝑥 = 0 

The formula given in (1), can also be written as : 

𝑥𝑖+1 = 𝑥𝑖 −
(𝑥𝑖−𝑥𝑖−1)

𝑓 𝑥𝑖 −𝑓(𝑥𝑖−1) 
𝑓(𝑥𝑖)           -------------- (2) 

Let 𝛼 be the actual (true) root of  𝑓 𝑥 = 0, i.e.𝑓 𝛼 = 0 . If 𝑒𝑖−1, 𝑒0 and 𝑒𝑖+1 are the 

successive errors in  𝑖 − 1 𝑡𝑕, 𝑖𝑡𝑕 and  𝑖 + 1 𝑡𝑕 iterations respectively, then 

𝑒𝑖−1 = 𝑥𝑖−1 − 𝛼 , 𝑒𝑖 = 𝑥𝑖 − 𝛼 , 𝑒𝑖+1 = 𝑥𝑖+1 − 𝛼 

Or     𝑥𝑖−1 =  𝛼 +  𝑒𝑖−1,  𝑥𝑖 =  𝛼 +  𝑒𝑖 , 𝑥𝑖+1 =  𝛼 + 𝑒𝑖+1, 

 

Using these in (2), we obtain  

𝛼 +  𝑒𝑖+1 = 𝛼 +  𝑒𝑖 −
(𝑒𝑖−𝑒𝑖−1)

𝑓 𝛼+ 𝑒𝑖 −𝑓(𝛼+ 𝑒𝑖−1) 
𝑓(𝛼 +  𝑒𝑖)         ------- (3) 

 

Expanding     𝑓(𝛼 +  𝑒𝑖)   and 𝑓(𝛼 +  𝑒𝑖−1)  in Taylor’s series around   𝛼 , we have 

𝑒𝑖+1 =𝑒𝑖 −
 𝑒𝑖−𝑒𝑖−1 [𝑓 𝛼 +𝑒𝑖𝑓

′ 𝛼 + 
𝑒𝑖

2

2
𝑓 ′′ 𝛼 +⋯   ] 

[𝑓 𝛼 +𝑒𝑖𝑓
′ 𝛼 + 

𝑒𝑖
2

2
𝑓 ′′ 𝛼 +⋯   ] −[𝑓 𝛼 +𝑒𝑖−1𝑓

′ 𝛼 + 
𝑒𝑖−1

2

2
𝑓 ′′ 𝛼 +⋯   ]  

 

 

i.e.         𝑒𝑖+1 =𝑒𝑖 −
 𝑒𝑖−𝑒𝑖−1 [𝑓 𝛼 +𝑒𝑖𝑓

′ 𝛼 + 
𝑒𝑖

2

2
𝑓 ′′ 𝛼  ] 

[ 𝑒𝑖−𝑒𝑖−1 𝑓
′ 𝛼 +(

𝑒𝑖
2−𝑒𝑖−1

2

2
)𝑓 ′′ 𝛼  ]  

, [ on ignoring the higher order terms] 

.         𝑒𝑖+1 =𝑒𝑖 −
[𝑓 𝛼 +𝑒𝑖𝑓

′ 𝛼 + 
𝑒𝑖

2

2
𝑓 ′′ 𝛼  ] 

[𝑓 ′ 𝛼 +(
𝑒𝑖+ 𝑒𝑖−1

2
)𝑓 ′′ 𝛼  ]  

                 [ since  𝑓 𝛼 = 0] 

 

 

 .  i.e.       𝑒𝑖+1 =𝑒𝑖 −
[𝑒𝑖  + 

𝑒𝑖
2

2

𝑓 ′′ 𝛼 

𝑓 ′ 𝛼 
 ] 

[1+ 
𝑒𝑖+ 𝑒𝑖−1

2
 
𝑓 ′′ 𝛼 

𝑓 ′ 𝛼 
]  

 

 [ on dividing the numerator and denominator by  𝑓 ′ 𝛼   ] 

 

i.e. 𝑒𝑖+1 =𝑒𝑖 − [𝑒𝑖  +  
𝑒𝑖

2

2

𝑓 ′′ 𝛼 

𝑓 ′ 𝛼 
 ][1 +  

𝑒𝑖+ 𝑒𝑖−1

2
 
𝑓 ′′ 𝛼 

𝑓 ′ 𝛼 
] −1 

 



 
 

i.e. 𝑒𝑖+1 =𝑒𝑖 − [𝑒𝑖  +  
𝑒𝑖

2

2

𝑓 ′′ 𝛼 

𝑓 ′ 𝛼 
 ][1 −  

𝑒𝑖+ 𝑒𝑖−1

2
 
𝑓 ′′ 𝛼 

𝑓 ′ 𝛼 
] 

 

i.e. 𝑒𝑖+1 =𝑒𝑖 − [
𝑒𝑖 𝑒𝑖+ 𝑒𝑖−1 

2

𝑓 ′′ 𝛼 

𝑓 ′ 𝛼 
+

𝑒𝑖
2

2

𝑓 ′′ 𝛼 

𝑓 ′ 𝛼 
 - 

𝑒𝑖
2(𝑒𝑖+ 𝑒𝑖−1)

4
{
𝑓 ′′ 𝛼 

𝑓 ′ 𝛼 
}2 ] 

 

If 𝑒𝑖−1 and 𝑒𝑖  are very small, then ignoring higher terms we get 

𝑒𝑖+1 =  𝑒𝑖𝑒𝑖−1 
𝑓 ′′ 𝛼 

2𝑓 ′ 𝛼 
       ------- (4) 

Which can be written as  

𝑒𝑖+1 =  𝑒𝑖𝑒𝑖−1 𝑀 , where M=  
𝑓 ′′ 𝛼 

2𝑓 ′ 𝛼 
 and would be a constant      ---(5) 

In order to find the order of convergence, it is necessary to find a formula of the type 

 𝑒𝑖+1 =  𝐴𝑒𝑖
𝑘𝑤𝑖𝑡𝑕𝑎𝑎𝑝𝑝𝑟𝑜𝑝𝑟𝑖𝑎𝑡𝑒𝑣𝑎𝑙𝑢𝑒𝑜𝑓𝑘.                  ----- (6) 

With the help of  (6), we can write 

𝑒𝑖+1 =  𝐴𝑒𝑖
𝑘  or  𝑒𝑖−1 =  (

𝑒𝑖

𝐴
)1/𝑘  

Now substituting the value of 𝑒𝑖+1 and 𝑒𝑖−1 in (5), we get 

𝐴𝑒𝑖
𝑘 = 𝑒𝑖(

𝑒𝑖

𝐴
)1/𝑘M 

Or                                 𝑒𝑖
𝑘= M 𝐴− 1+

1

𝑘
 . 𝑒𝑖

 1+
1

𝑘
 
               ----- (7) 

Comparing the powers of 𝑒𝑖  on both sides of  (7), we get 

𝑘 = 1 + 1/𝑘 

Or                               𝑘2 − 𝑘 − 1 = 0                          ------- (8) 

From (8), taking only the positive root, we get 𝑘 = 1.618 

By putting the value of 𝑘in  (6), we have 

𝑒𝑖+1 =  𝐴𝑒𝑖
1.618    or    

𝑒𝑖+1

𝑒𝑖
1.618 =  𝐴 

Comparing this with lim𝑖→∞(
𝑒𝑖+1

𝑒𝑖
𝑘 ) ≤ A , we see that order (or rate) of convergence of false 

position method is 1.618. 

 

Example 1 Find the real root of the equation 𝑓 𝑥 = 𝑥3 − 2𝑥 − 5 = 0  by the method of 

false position up to three places of decimal. 

Solution:  Given that     𝑓 𝑥 = 𝑥3 − 2𝑥 − 5 = 0 

So that                            𝑓 2 = (2)3 − 2 2 − 5 = −1 

and                                𝑓 3 = (3)3 − 2 3 − 5 = 16 

Therefore, a root lies between 2 and 3. 



 
 

First approximation:   Therefore taking, 𝑥0 = 2, 𝑥1 = 3, 𝑓 𝑥0  = -1, 𝑓 𝑥1  = 16, then by 

Regula- Falsi method, we get 

𝑥2 = 𝑥0 −
𝑥1 − 𝑥0

𝑓 𝑥1 − 𝑓(𝑥0) 
𝑓(𝑥0)  

= 2 −
3−2

16+1 
 −1 = 2 +  

1

17 
 = 2.0588 

Now,                                           𝑓 𝑥2  = 𝑓 2.0588  

                 = (2.0588)3 − 2 2.0588 − 5 = −0.3911 

 

Therefore, root lies between 2.0588 and 3. 

Second approximation:   Therefore taking, 𝑥0 = 2.0588, 𝑥1 = 3,   𝑓 𝑥0  = −0.3911, 

 𝑓 𝑥1  = 16, then by Regula- Falsi method, we get 

𝑥3 = 𝑥0 −
𝑥1 − 𝑥0

𝑓 𝑥1 − 𝑓(𝑥0) 
𝑓(𝑥0)  

= 2.0588 −
3 − 2.0588

16 + 0.3911
 −0.3911  

= 2.0588 + 0.0225 =2.0813                               

                               Now, 𝑓 𝑥3  = 𝑓 2.0813  

                = (2.0813)3 − 2 2.0813 − 5 = −0.1468 

 

Therefore, root lies between 2.0813 and 3. 

Third approximation:   Therefore taking, 𝑥0 = 2.0813, 𝑥1 = 3, 

𝑓 𝑥0  = −0.1468, 𝑓 𝑥1  = 16, then by Regula- Falsi method, we get 

𝑥4 = 𝑥0 −
𝑥1 − 𝑥0

𝑓 𝑥1 − 𝑓(𝑥0) 
𝑓(𝑥0)  

= 2.0813 −
3 − 2.0813

16 + 0.1468
 −0.1468  

= 2.0813 + 0.0084 =2.0897                              

                               Now, 𝑓 𝑥4  = 𝑓 2.0897  

                = (2.0897)3 − 2 2.0897 − 5 = −0.054 

Therefore, root lies between 2.0897 and 3. 

 

Fourth approximation:   Therefore taking, 𝑥0 = 2.0897, 𝑥1 = 3, 

𝑓 𝑥0  = −0.054, 𝑓 𝑥1  = 16, then by Regula- Falsi method, we get 

𝑥5 = 𝑥0 −
𝑥1 − 𝑥0

𝑓 𝑥1 − 𝑓(𝑥0) 
𝑓(𝑥0)  



 
 

= 2.0897 −
3 − 2.0897

16 + 0.054
 −0.054  

= 2.0588 + 0.0031 =2.0928                               

                               Now, 𝑓 𝑥5  = 𝑓 2.0928  

                = (2.0928)3 − 2 2.0928 − 5 = −0.0195 

Therefore, root lies between 2.0928 and 3. 

Fifth approximation:   Therefore taking, 𝑥0 = 2.0928, 𝑥1 = 3, 

𝑓 𝑥0  = −0.0195, 𝑓 𝑥1  = 16, then by Regula- Falsi method, we get 

𝑥6 = 𝑥0 −
𝑥1 − 𝑥0

𝑓 𝑥1 − 𝑓(𝑥0) 
𝑓(𝑥0)  

= 2.0928 −
3 − 2.0928 

16 + 0.0195
 −0.0195  

= 2.0928 + 0.0011 =2.0939                               

                               Now, 𝑓 𝑥6  = 𝑓 2.0939  

                = (2.0939)3 − 2 2.0939 − 5 = −0.0074 

Therefore, root lies between 2.0939 and 3. 

Sixth approximation:   Therefore taking, 𝑥0 = 2.0939, 𝑥1 = 3, 

𝑓 𝑥0  = −0.0074, 𝑓 𝑥1  = 16, then by Regula- Falsi method, we get 

𝑥7 = 𝑥0 −
𝑥1 − 𝑥0

𝑓 𝑥1 − 𝑓(𝑥0) 
𝑓(𝑥0)  

= 2.0939  −
3 − 2.0939  

16 + 0.0074
 −0.0074  

= 2.0939 + 0.00042 =2.0943                               

                               Now, 𝑓 𝑥7  = 𝑓 2.0943  

                = (2.0943)3 − 2 2.0943 − 5 = −0.0028 

Therefore, root lies between 2.0943 and 3. 

Seventh approximation:   Taking, 𝑥0 = 2.0943, 𝑥1 = 3, 

𝑓 𝑥0  = −0.0028, 𝑓 𝑥1  = 16, then by Regula- Falsi method, we get 

𝑥8 = 𝑥0 −
𝑥1 − 𝑥0

𝑓 𝑥1 − 𝑓(𝑥0) 
𝑓(𝑥0)  

= 2.0943  −
3 − 2.0943    

16 + 0.0028
 −0.0028  

= 2.0943 + 0.00016=2.0945 

 

Therefore, the root is 𝟐.𝟎𝟗𝟒 correct to three decimal places. 

 



 
 

Example 2: Using the method of False Position, find the root of equation      𝑓 𝑥 = 𝑥6 −

𝑥4 − 𝑥3 − 1 = 0  up to four decimal places. 

Solution: Let                         𝑓 𝑥 = 𝑥6 − 𝑥4 − 𝑥3 − 1 

𝑓 1.4 = (1.4)6 − (1.4)4 − (1.4)3 − 1 =  −0.056 

𝑓 1.41 = (1.41)6 − (1.41)4 − (1.41)3 − 1 =  0.102 

Hence the root lies between 1.4 and 1.41. 

Using the method of False Position, 

𝑥2 = 𝑥0 −
𝑥1 − 𝑥0

𝑓 𝑥1 − 𝑓(𝑥0) 
𝑓(𝑥0)  

= 1.4 −
1.41 − 1.4

0.102 + 0.056
 −0.056  

= 1.4 +  
0.01

0.158
 0.056  =1.4035                             

 Now,         𝑓 1.4035 = (1.4035)6 − (1.4035)4 − (1.4035)3 − 1 

𝑓 𝑥2 =  −0.0016(−𝑣𝑒) 

Hence the root lies between 1.4035 and 1.41. 

 

 

Using the method of False Position, 

𝑥3 = 𝑥2 −
𝑥1 − 𝑥2

𝑓 𝑥1 − 𝑓(𝑥2) 
𝑓(𝑥2)  

= 1.4035 −
1.41 − 1.4035   

0.102 + 0.016
 −0.0016  

= 1.4035  +  
0.0065

0.1036
 0.0016  =1.4036                             

 Now,         𝑓 1.4036 = (1.4036)6 − (1.4036)4 − (1.4036)3 − 1 

𝑓 𝑥3 =  −0.00003(−𝑣𝑒) 

Hence the root lies between 1.4036 and 1.41. 

Using the method of False Position, 

𝑥4 = 𝑥3 −
𝑥1 − 𝑥3

𝑓 𝑥1 − 𝑓(𝑥3) 
𝑓(𝑥3)  

= 1.4036 −
1.41 − 1.4036   

0.102 + 0.00003
 −0.00003  

= 1.4036  +  
0.0064

0.10203
 0.00003  =1.4036                             

Since, 𝑥3 and 𝑥4 are approximately the same upto four places of decimal, hence the required 

root of the given equation is 1.4036. 



 
 

 

 

Check Your Progress 

1. Find the real root of the equation𝑥3 − 2𝑥 − 5 = 0by the method of False Position correct 

to three decimal places.                                                                              [Ans 2.094] 

 

2.5           Newton Raphson Method, Order of Convergence. 

 

NEWTON-RAPHSON METHOD (or NEWTON’S METHOD) 

This method can be derived from Taylor’s series as follows:  

Let  𝑓 𝑥 = 0 be the equation for which we are assuming 𝑥0 be the initial approximation and 

𝑕 be a small corrections to 𝑥0, so that 

𝑓 𝑥0 + 𝑕 = 0 

Expanding it by Taylor’s series, we get  

𝑓 𝑥0 + 𝑕 = 𝑓 𝑥0 + 𝑕𝑓 ′ 𝑥0 +
𝑕2

2!
𝑓 ′′ 𝑥0 +  … . . =  0 

Since 𝑕 is small, we can neglect second and higher degree terms in  𝑕 and therefore, we get  

𝑓 𝑥0 + 𝑕𝑓 ′ 𝑥0 =  0 

From which we have,    

𝑕 = −
𝑓 𝑥0 

𝑓′ 𝑥0 
 

Hence, if 𝑥0 be the initial approximation, then next (or first) approximation 𝑥1 is given by 

𝑥1 =  𝑥0  + 𝑕 = 𝑥0 −
𝑓 𝑥0 

𝑓′ 𝑥0 
 

The next and second approximation 𝑥2 is given by 

𝑥2 = 𝑥1 −
𝑓 𝑥1 

𝑓′ 𝑥1 
 

 

In general,   𝑥𝑛+1 = 𝑥𝑛 −
𝑓 𝑥𝑛  

𝑓′ 𝑥𝑛  
 ,                      𝑛 = 0, 1, 2, 3,……. 

 

This formula is well known as Newton-Raphson formula. 

The iterative procedure terminates when the relative error for two successive approximations 

becomes less than or equal to the prescribed tolerance 

 



 
 

Procedure for Newton Raphson Method to Find the Root of the Equation 𝒇 𝒙 = 𝟎 

Step 1 : Take the trail solution ( initial approximation) as 𝑥0. Find 𝑓(𝑥0) and             

𝑓′(𝑥0). 

Step 2 : Find next (first) approximation 𝑥1 by using the formula 𝑥1 =  𝑥0 −
𝑓 𝑥0 

𝑓′ 𝑥0 
 

Step 3 :Follow the above procedure to find the successive approximations 𝑥𝑛+1 

             using the formula 𝑥𝑛+1 = 𝑥𝑛 −
𝑓 𝑥𝑛  

𝑓′ 𝑥𝑛  
, where n =1, 2, 3, ……. 

Step 4 : Stop the process when  𝑥𝑛+1 − 𝑥𝑛  < 𝜀,𝑤𝑕𝑒𝑟𝑒𝜖 is prescribed accuracy. 

Order (or Rate) of Convergence of Newton-Raphson Method 

Let 𝛼 be the actual root of equation 𝑓 𝑥 = 0 i.e. 𝑓 𝛼 = 0. Let 𝑥𝑛  and 𝑥𝑛+1 be two 

successive approximations to the actual root 𝛼. If  𝑒𝑛  and 𝑒𝑛+1 are the corresponding errors 

we have, 𝑥𝑛 = 𝛼 + 𝑒𝑛   and 𝑥𝑛+1 = 𝛼 + 𝑒𝑛+1. By Newton-Raphson formula, 

𝑒𝑛+1 = 𝑒𝑛 −
𝑓 𝛼 + 𝑒𝑛 

𝑓′ 𝛼 + 𝑒𝑛+1 
 

𝑒𝑛+1 = 𝑒𝑛 −
𝑓 𝛼 +𝑒𝑛𝑓

′ 𝛼 + 
𝑒𝑛

2

2
𝑓 ′′ 𝛼 +⋯

𝑓′ 𝛼 +𝑒𝑛𝑓 ′′ 𝛼 + 
𝑒𝑛

2

2
𝑓 ′′′ 𝛼 +⋯

  (By Taylor’s Series) 

 

𝑒𝑛+1 = 𝑒𝑛 −
𝑒𝑛𝑓

′ 𝛼 + 
𝑒𝑛

2

2
𝑓 ′′ 𝛼 +⋯

𝑓′ 𝛼 +𝑒𝑛𝑓 ′′ 𝛼 + 
𝑒𝑛

2

2
𝑓 ′′′ 𝛼 +⋯

  (since .𝑓 𝛼 = 0 ) 

 

𝑒𝑛+1 =
𝑒𝑛

2𝑓 ′′ 𝛼 

2[𝑓 ′ 𝛼 +𝑒𝑛𝑓 ′′ 𝛼 ] 
  (On neglecting high powers of  𝑒𝑛 ) 

 

                                  = 
𝑒𝑛

2

2

𝑓 ′′ 𝛼 

𝑓 ′ 𝛼 {1+𝑒𝑛
𝑓 ′′ 𝛼 

𝑓 ′ 𝛼 
} 
 

                                  = 
𝑒𝑛

2

2

𝑓 ′′ 𝛼 

𝑓 ′ 𝛼 
{1 + 𝑒𝑛

𝑓 ′′ 𝛼 

𝑓 ′ 𝛼 
}−1 

                                  = 
𝑒𝑛

2

2

𝑓 ′′ 𝛼 

𝑓 ′ 𝛼 {1 − 𝑒𝑛
𝑓 ′′ 𝛼 

𝑓 ′ 𝛼 
+ ⋯ . }  

𝒆𝒏+𝟏

𝒆𝒏𝟐
≈

𝒇′′ 𝜶 

𝟐𝒇′ 𝜶 
   (Neglecting terms containing powers of 𝑒𝑛 ) 



 
 

Hence by definition, the order of convergence of Newton-Raphson method is 2 i.e., Newton-

Raphson method is quadratic convergent. 

This also shows that subsequent error at each step is proportional to the square of the 

previous error and as such the convergence is quadratic. 

Example 1: Find the real root of the equation 𝑥2 − 5𝑥 + 2 = 0  between 4 and 5 by Newton-

Raphson method. 

Solution:                Let that     𝑓 𝑥 = 𝑥2 − 5𝑥 + 2………….. (1) 

                Now,                       𝑓 4 = 42 − 5 × 4 + 2 = −2 

               and                           𝑓 5 = 52 − 5 × 5 + 2 = 2 

                      Therefore, the root lies between 4 and 5 

              From (1), we get               𝑓′(𝑥) = 2𝑥 − 5                 ………….. (2) 

Now, Newton-Raphson’s method becomes 

𝑥𝑛+1 = 𝑥𝑛 −
𝑓 𝑥𝑛 

𝑓′ 𝑥𝑛 
 

        = 𝑥𝑛 −
𝑥𝑛

2 − 5𝑥𝑛 + 2

2𝑥𝑛 − 5
 

𝑥𝑛+1 =
𝑥𝑛

2 − 2

2𝑥𝑛 − 5
𝑛 = 0,1,2,………. 

Let us take 𝑥0=4 to obtain the approximation to the root by putting                       𝑛 =

0,1,2,………. into (3), we get 

First approximation: 

𝑥1 =
𝑥0

2 − 2

2𝑥0 − 5
=  

42 − 2

2(4) − 5
=  

14

3
= 4.667 

Second approximation: 

The root is given by 

𝑥2 =
𝑥1

2 − 2

2𝑥1 − 5
=  

(4.667)2 − 2

2(4.667) − 5
=  

19.7781

4.3334
= 4.5641 

Third approximation: 

The root is given by 

𝑥2 =
𝑥1

2 − 2

2𝑥1 − 5
=  

(4.667)2 − 2

2(4.667) − 5
=  

19.7781

4.3334
= 4.5641 

Fourth approximation: 

The root is given by 



 
 

𝑥4 =
𝑥3

2 − 2

2𝑥3 − 5
=  

(4.5641)2 − 2

2(4.5641) − 5
=  

18.8082

4.1232
= 4.5616 

Since𝑥3= 𝑥4, hence the root of the equation is 𝟒.𝟓𝟔𝟏𝟔 correct to four decimal places. 

 

Example 2: Find the real root of the equation 3𝑥 = cos 𝑥 + 1  by Newton-Raphson method. 

Solution:                Let that     𝑓 𝑥 = 3𝑥 − cos 𝑥 − 1 =0             ………….. (1) 

  So                        𝑓 𝑥 = −2 

𝑓 1 = 3 − 𝑐𝑜𝑠1 − 1 = 1.4597 

So the root lies between 0 and 1 

Let us take                                  𝑥0 = 0.6 

From (1)                                  𝑓 ′(𝑥) = 3 + sin𝑥                            ………….. (2) 

Therefore the Newton’s method gives 

𝑥𝑛+1 = 𝑥𝑛 −
𝑓 𝑥𝑛 

𝑓′ 𝑥𝑛 
 

 

           Or                                        𝑥𝑛+1 =
𝑥𝑛𝑆𝑖𝑛𝑥𝑛+ 𝑐𝑜𝑠𝑥𝑛+ 1

3+𝑆𝑖𝑛𝑥𝑛
      ……………(3) 

 

First approximation: 

Putting 𝑛 = 0, in (3) we get first approximation 

𝑥1 =
𝑥0𝑆𝑖𝑛𝑥0 +  𝑐𝑜𝑠𝑥0 +  1

3 + 𝑆𝑖𝑛𝑥0
 

=
(0.6)𝑆𝑖𝑛(0.6) +  𝑐𝑜𝑠 (0.6) +  1

3 + 𝑆𝑖𝑛(0.6)
 

=
(0.6)𝑆𝑖𝑛(0.6) +  𝑐𝑜𝑠 (0.6) +  1

3 + 𝑆𝑖𝑛(0.6)
 

 

=
 0.6  0.5646 + (0.8253) +  1

3 + (0.5646)
 

=
2.16406

3.5646
 

Or  

𝑥1 = 0.6071 

 

Second approximation: 



 
 

Putting 𝑛 = 1, in (3) we get second approximation 

𝑥2 =
𝑥1𝑆𝑖𝑛𝑥1 +  𝑐𝑜𝑠𝑥1 +  1

3 + 𝑆𝑖𝑛𝑥1
 

=
(0.6071)𝑆𝑖𝑛(0.6071) +  𝑐𝑜𝑠 (0.6071) +  1

3 + 𝑆𝑖𝑛(0.6071)
 

 

=
 0.6071  0.5705 + (0.8213) +  1

3 + (0.5705)
 

=
2.1677

3.5705
 

Or  

𝑥2 = 0.6071 

Since 𝑥1 = 𝑥2Therefore the root as 0.6071 correct to four decimal places. 

 

Check Your Progress 

1. Find the cube root of 10                                                                                   [Ans 2.15466] 

 

2.6       Summary 

 

Numerical analysis includes three parts. The first part of the subject is about the 

development of a method to a problem. The second part deals with the analysis of the 

method, which includes the error analysis and the efficiency analysis. Error analysis gives us 

the understanding of how accurate the result will be if we use the method and the efficiency 

analysis tells us how fast we can compute the result. The third part of the subject is the 

development of an efficient algorithm to implement the method as a computer code. A 

complete knowledge of the subject includes familiarity in all these three parts. Here in this 

unit we have learnt those mathematical iterative methods which can be used to find the root 

of transcendental equation upto desired no of accuracy.  

 

2.7         Exercise 

 

Q. 1. Find by iterative method, the real root of the equation 3𝑥 − log10 𝑥 = 6 correct to 

four significant figures.      [Ans 0.5671477] 

Q. 2. Find by iteration method  30     [Ans 5.477225575] 



 
 

Q. 3. Find the postive root of 𝑥𝑒𝑥 = 2 by method of False Postion.        [Ans 0.852605] 

Q. 4. Find the real root of the equation  𝑥 = tan 𝑥 using False Position method 

[Ans 4.4934] 

Q. 5. Find the real root of the equation  𝑥 = 𝑒−𝑥using the Newton-Raphson method. 

      [Ans 0.5671] 

Q. 6. Use Newton-Raphson method to obtain a root, correct to three decimal places of 

following equation  𝑆𝑖𝑛𝑥 =
𝑥

2
                                                            [ Ans 1.896] 
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Block & Units Introduction 

 

The Block - 2 – Finite Differences is the second block with four units. This block 

consists of four units regarding, finite differences interpolation with equal intervals, interpolation 

with unequal and Lagrange’s Interpolation.  

In Unit – 3 - Finite Differences; various operators used in finite difference calculus are 

discussed. The concept of interpolation with equal intervals is given this unit. 

Unit - 4 – Interpolation with Equal Intervals; in which Newton’s forward and backward 

interpolation formulate are discussed. 

Unit – 5 - Interpolation with Un-Equal Intervals; is devoted to interpolation with 

unequal intervals. Newton’s general interpolation formula, divided differences and their 

properties are discussed in this unit. 

Finally in Unit – 6 – Lagrange’s Interpolation; the last unit of this block, Lagrange’s 

interpolation formula and is applications are given. 

At the end of block/unit the summary, self assessment questions and further readings are 

given.  

  



 

Unit-3 Finite Differences 

Structure 

3.1    Introduction 

3.2    Objectives 

3.3    Forward Difference Operator 

3.3.1 Difference Table 

3.3.2 Alternative Notations 

3.3.3 Properties of the Operator ∆ 

3.4   The Operator E 

3.4.1 Relation between the Operator E and ∆ 

3.5   The Operator E 

3.6   Backward Differences 

3.7   Factorial Polynomial 

3.7.1  To express a given Polynomial in Factorial notation 

3.8    Central Differences 

3.9    Mean Operator 

3.10   Summary 

3.11   Exercise 

3.12   Further Readings 

3.1  Introduction 

Numerical analysis is a branch of mathematics, which leads to approximate solution be 

repeated application of four basic operations of Algebra i.e. summation, subtraction, 

multiplication and division. The knowledge of finite differences is essential for the study of 

Numerical Analysis and plays an important role in numerical techniques, where tabulated values 

of the functions are available. The knowledge about various finite difference operators and their 

symbolic relations are very much needed to establish various important formulae. In this section 

we introduce few basic operators.  

3.2  Objectives 



After the study of this unit you will be in a position to know about 

 Various types of difference operators 

 Relation between different operators 

 Factorial polynomials and 

 How to express a given polynomial in factorial notation 

3.3  Forward Difference Operator 

Let y = f(x) be any function taking the values yo, y1, y2,…..yn, which it takes for the 

equidistant values x0, x1, x2,….xn of the independent variable x, then y1- y0, y2-y1,……yn-yn-1 are 

called the first differences of the function y. They are denoted respectively by ∆𝑦0, ∆𝑦1, … . .,  etc.  

∆𝑦0 = 𝑦1 − 𝑦0 

∆𝑦1 = 𝑦2 − 𝑦1 

− − − − − − − 

∆𝑦𝑛 = 𝑦𝑛 − 𝑦𝑛−1 

The symbol  ∆ is called difference operator. The differences of the first differences denoted by 

∆2𝑦0, ∆2𝑦1, . . . . . . . ∆2𝑦𝑛     are called second differences, where  

∆2𝑦0 = ∆[∆𝑦0] 

= ∆[𝑦1 − 𝑦0] 

=  ∆𝑦1 − ∆𝑦0  

= 𝑦2 − 2𝑦1 + 𝑦0 

and 

∆2𝑦1 = ∆ ∆𝑦1  

= 𝑦3 − 2𝑦2 + 𝑦1 

− − − − 

Where ∆2 is called the second difference operator.  

Similarly, 

∆3𝑦0 = ∆2𝑦1 − ∆2𝑦0 

= 𝑦3 − 3𝑦2 + 3𝑦1 − 𝑦1 



− − − − 

In general 

∆𝑟𝑦𝑛 = ∆𝑟−1𝑦𝑛+1 − ∆𝑟−1𝑦𝑛  

= 𝑦𝑛+𝑟 −
𝑟

1!
𝑦𝑛+𝑟−1 +

𝑟(𝑛 − 1)

2!
𝑦𝑛+𝑟−1 + ⋯… +  −1 𝑟𝑦𝑛𝑟  

3.3.1  Difference Table 

It is a convenient method for displaying the successive differences of a function. The 

following table is an example to show how the differences formed. 

x  y  ∆𝑦 ∆2𝑦 ∆3𝑦 ∆4𝑦 ∆5𝑦 

𝑥0 𝑦0      

  ∆𝑦0     

𝑥1 𝑦1  ∆2𝑦0    

  ∆𝑦1  ∆3𝑦0   

𝑥2 𝑦2  ∆2𝑦1  ∆4𝑦0  

  ∆𝑦2  ∆3𝑦1  ∆5𝑦0 

𝑥3 𝑦3  ∆2𝑦3  ∆4𝑦1  

  ∆𝑦3  ∆3𝑦2   

𝑥4 𝑦4  ∆2𝑦4    

  ∆𝑦4     

𝑥5 𝑦5      

 

The above table is called a diagonal difference table. The first term in the table is y0. It is 

called the leading term.  

The differences ∆𝑦0, ∆2𝑦0, ∆3𝑦0, … .,  are called the leading differences. The differences 

∆𝑛𝑦𝑛  with a fixed subscript are called forward differences. In forming such  a difference table 

care must be taken to maintain correct sign. 

A convenient check may be obtained by noting the sum of the entries in any column 

equals the differences between the first and the last entries in preceding column. 

Another type of difference table called horizontal difference table, which is more 

compact and convenient, is not discussed here as it is beyond the scope of this book. 

3.3.2       Alternative Notation 

Let the functions y=f(x) be given at equal spaces of the independent variable x, say at x= 

a, a+h, a+2h, ….., etc. and the corresponding values of f(a), f(a+h), f(a+2h), ….., etc. 



The independent variable x is often called the argument and the corresponding value of 

the dependent variable is of the function of f(x) at x= a and is denoted by ∆𝑓 𝑎 .   

Thus, we have 

∆𝑓 𝑎 = 𝑓 𝑎 + 𝑕 − 𝑓 𝑎  

Using the above definition we can write 

∆𝑓 𝑎 + 𝑕 = 𝑓 𝑎 + 𝑕 + 𝑕 − 𝑓 𝑎 + 𝑕 = 𝑓 𝑎 + 2𝑕 − 𝑓(𝑎 + 𝑕) 

Similarly, 

∆2𝑓 𝑎 = ∆ ∆𝑓 𝑎   

               = ∆ 𝑓 𝑎 + 𝑕 − 𝑓 𝑎   

                = ∆𝑓 𝑎 + 𝑕 − ∆𝑓 𝑎  

                 = 𝑓 𝑎 + 2𝑕 − 𝑓 𝑎 + 𝑕 −  𝑓 𝑎 + 𝑕 − 𝑓 𝑎   

                  = 𝑓 𝑎 + 2𝑕 − 2𝑓 𝑎 + 𝑕 + 𝑓(𝑎) 

Where ∆2 is called the second difference of f(x) at x=a. 

Note: The operator ∆ is called forward difference operator and in general it is defined as 

∆𝑓 𝑥 = 𝑓 𝑥 + 𝑕 − 𝑓 𝑥 , 

Where, h is called the interval of differencing. Using the above definition we can write 

∆2𝑓 𝑥 = ∆ ∆𝑓 𝑥   

               = ∆ 𝑓 𝑥 + 𝑕 − 𝑓 𝑥   

                = ∆𝑓 𝑥 + 𝑕 − ∆𝑓 𝑥  

                 = 𝑓 𝑥 + 2𝑕 − 𝑓 𝑥 + 𝑕 −  𝑓 𝑥 + 𝑕 − 𝑓 𝑥   

                  = 𝑓 𝑥 + 2𝑕 − 2𝑓 𝑥 + 𝑕 + 𝑓(𝑥) 

Similarly we can write the other higher order differences as ∆3, ∆4 … . .,  etc. and 

∆, ∆2, ∆3, …… . , ∆𝑛 , … . .,   are called the forward differences.  

The difference table called the forward difference table in the new notation is given 

below. 

x f(x) ∆𝑓 𝑥  ∆2𝑓 𝑥  ∆3𝑓 𝑥  



𝑥0 𝑓 𝑥0     

  ∆𝑓 𝑥0    

𝑥0 + 𝑕 𝑓 𝑥0 + 𝑕   ∆2𝑓 𝑥0   

  ∆𝑓 𝑥0 + 𝑕   ∆3𝑓 𝑥0  

𝑥0 + 2𝑕 𝑓 𝑥0 + 2𝑕   ∆2𝑓 𝑥0 + 𝑕   

  ∆𝑓 𝑥0 + 2𝑕    

𝑥0 + 3𝑕 𝑓 𝑥0 + 3𝑕     

 

3.3.3      Properties of the Operator ∆ 

1)       If c is a constant then ∆c =0. 

Proof.  Let 

𝑓 𝑥 = 𝑐 

∴ 𝑓 𝑥 + 𝑕 = 𝑐  𝑤𝑕𝑒𝑟𝑒 𝑕 𝑖𝑠 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑜𝑓 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑖𝑛𝑔  

∴  ∆𝑓 𝑥 = 𝑓 𝑥 + 𝑕 − 𝑓 𝑥 = 𝑐 − 𝑐 = 0 

⇰∆𝑐 = 0 

2)       ∆  is distributive. i.e., ∆ 𝑓 𝑥 ±  𝑔 𝑥  = ∆𝑓 𝑥 ±  ∆𝑔(𝑥) 

Proof.  We have 

∆ 𝑓 𝑥 ±  𝑔 𝑥  =  𝑓 𝑥 + 𝑕 +  𝑔 𝑥 + 𝑕  −  𝑓 𝑥 + 𝑔 𝑥   

= 𝑓 𝑥 + 𝑕 − 𝑓 𝑥 + 𝑔 𝑥 + 𝑕 − 𝑔 𝑥  

= 𝑓 𝑥 + 𝑕 − 𝑓 𝑥 + 𝑔 𝑥 + 𝑕 − 𝑔 𝑥  

= ∆𝑓 𝑥 + ∆𝑔 𝑥  

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦 , 𝑤𝑒 𝑐𝑎𝑛 𝑠𝑕𝑜𝑤 𝑡𝑕𝑎𝑡 

∆ 𝑓 𝑥 − 𝑔 𝑥  = ∆𝑓 𝑥 − ∆𝑔 𝑥  

3)           If c is a constant then ∆[𝑐𝑓 𝑥 ] = 𝑐∆𝑓 𝑥  

Proof: We have 

∆ 𝑐𝑓 𝑥  = 𝑐𝑓 𝑥 + 𝑕 − 𝑐𝑓 𝑥  

= 𝑐 𝑓 𝑥 + 𝑕 − 𝑓 𝑥   

= 𝑐∆𝑓 𝑥  



∴ ∆ 𝑐𝑓 𝑥  = 𝑐∆𝑓 𝑥 . 

4)            If m and n are positive integers then ∆𝑚∆𝑛𝑓 𝑥 = ∆𝑚+𝑛𝑓 𝑥 . 

Proof: We have 

∆𝑚∆𝑛𝑓 𝑥 =  ∆ × ∆ × ∆… . 𝑚 𝑡𝑖𝑚𝑒𝑠  ∆ × ∆ × ∆… . 𝑛 𝑡𝑖𝑚𝑒𝑠  𝑓(𝑥) 

=  𝑥∆ × ∆ × ∆ 𝑚 + 𝑛 𝑡𝑖𝑚𝑒𝑠 𝑓 𝑥   

= ∆𝑚+𝑛𝑓 𝑥  

Similarly, we can prove the following 

5)                ∆ 𝑓1 𝑥 + 𝑓2 𝑥 + ⋯ . 𝑓𝑛 𝑥  = ∆𝑓1 𝑥 + ∆𝑓2 𝑥 + ∆𝑓𝑛 𝑥  

6)                  ∆ 𝑓 𝑥 + 𝑔 𝑥  = 𝑓 𝑥 + 𝐴𝑔 𝑥 + 𝑔 𝑥 ∆𝑓 𝑥 . 

7)                  ∆  
𝑓(𝑥)

𝑔(𝑥)
 =

𝑔 𝑥 ∆𝑓 𝑥 −𝑓 𝑥 ∆𝑔(𝑥)

𝑔 𝑥 𝑔(𝑥+𝑕)
 

Note: 

1. From the properties (2) and (3) it is clear that ∆ is a linear operator. 

2. If n is a positive integer ∆𝑛  .  ∆−𝑛𝑓(𝑥) = 𝑓(𝑥) and in particular when n =1 we 

∆ ∆−1𝑓(𝑥) = 𝑓 𝑥  get  

Example 3.1   Find  𝑎  ∆𝑒𝑎𝑥    𝑏  ∆2𝑒𝑥      𝑐   ∆2𝑆𝑖𝑛 𝑥      𝑑  ∆ log 𝑥     𝑒 ∆  𝑡𝑎𝑛−1𝑥 

Solution 

(a) ∆𝑒𝑎𝑥 = 𝑒𝑎 𝑥+𝑕 − 𝑒𝑎𝑥  

               = 𝑒𝑎𝑥  𝑒𝑎𝑕 − 1  

             ∆𝑒𝑎𝑥 = 𝑒𝑎𝑥  𝑒𝑎𝑕 − 1  

 𝑏   ∆2𝑒𝑥 = ∆ ∆𝑒𝑥  

= ∆ 𝑒𝑥+𝑕 − 𝑒𝑥  

= ∆ 𝑒𝑥 𝑒𝑕 − 1   

=  𝑒𝑕 − 1 ∆𝑒𝑥  

=  𝑒𝑕 − 1 2𝑒𝑥  

∴  ∆2𝑒𝑥 =  𝑒𝑕 − 1 2𝑒2 



 𝑐   ∆2𝑆𝑖𝑛 𝑥 = sin 𝑥 + 𝑕 − sin 𝑥    

                           = 2 𝐶𝑜𝑠  
𝑥 + 𝑕 + 𝑥

2
 𝑠𝑖𝑛  

𝑥 + 𝑕 − 𝑥

2
  

                               = 2 𝐶𝑜𝑠  𝑥 +
𝑕

2
 𝑠𝑖𝑛

𝑕

2
 

                           ∴  ∆ sin 𝑥 = 2𝐶𝑜𝑠  𝑥 +
𝑕

2
 𝑆𝑖𝑛 

𝑕

2
  

 𝑑  ∆ log 𝑥   = log 𝑥 + 𝑕 −  𝑙𝑜𝑔𝑥 

= log
 𝑥 + 𝑕 

𝑥
 

= log  1 +
 𝑥 + 𝑕 

𝑥
  

∴  ∆ log 𝑥 = log  1 +
 𝑥 + 𝑕 

𝑥
  

 𝑒 ∆  𝑡𝑎𝑛−1𝑥 = 𝑡𝑎𝑛−1 𝑥 + 𝑕 − 𝑡𝑎𝑛−1𝑥 

                           = 𝑡𝑎𝑛−1  
𝑥 + 𝑕 − 𝑥

1 + (𝑥 + 𝑕)𝑥
  

                            = 𝑡𝑎𝑛−1  
𝑕

1 + 𝑥𝑕 + 𝑥2
  

Example 3.2    Construct a forward difference table for the following data 

X 0 10 20 30 

Y 0 0.174 0.347 0.518 

Solution: 

X Y ∆𝑦 ∆2𝑦 ∆3𝑦 

0 0    

  0.174   

10 0.174  -0.001  

  0.173  -0.001 

20 0.347  -0.002  

  0.171   

30 0.518    

  

Example 3.3    Construct a difference table for y = f(x) = x
3 
+ 2x + 1 for x = 1, 2, 3, 4, 5. 



Solution: 

X y = f(x) ∆𝑦 ∆2𝑦 ∆3𝑦 

1 4    

  9   

2 13  12  

  21  6 

3 34  18  

  39  6 

4 39  24  

  63   

5 136    

 

3.4  The Operator E 

  Let y = f(x) be function of x and x, x+h, x+2h, x+3h, …., etc., be the consecutive values 

of x, then the operator e is defined as 

E f(x) = f (x+h) 

E is called shift operator, it is also called displacement operator. 

Note: E is only a symbol not an algebraic sum. 

E
2
 f(x) means the operator E is applied twice on f(x), i.e.  

E
2
 f(x) = f (x+nh) 

= E f(x+h) 

= f(x+2h) 

Similarly, 

 E
n
 f(x)  = f (x+nh) and 

 E
-n

 f(x) = f(x-nh) 

The operator E has the following properties: 

1) 𝐸 𝑓1 𝑥 + 𝑓2 𝑥 +. . +𝑓𝑛 𝑥  = 𝐸𝑓1 𝑥 + 𝐸𝑓2(𝑥)+…+E𝑓𝑛 𝑥  

2) E (cf (x)) = cEf (x) Where c is constant 

3) 𝐸𝑚 𝐸𝑛𝑓 𝑥  = 𝐸𝑛 𝐸𝑚𝑓 𝑥  = 𝐸𝑚+𝑛𝑓 𝑥  



4) If n is positive integer 𝐸𝑛  𝐸−𝑛𝑓(𝑥) = 𝑓 𝑥 . 

Alternative notation: if y0, y1, y2, ….yn,….., etc. are consecutive values of the function y= 

f(x) corresponding to equally spaced values x0, x1, x2,……, xn etc. of x in alternative notation.  

E y0= y1 

Ey1= y2 

E
2
y0= y2 

……….. 

 And in general  

E
n
 y0 = yn.  

3.4.1  Relation between the Operator E and ∆ 

From a definition of ∆, we know that 

∆f x = f x + h − f x , 

Where h is the interval of differencing. Using the operator E we can write 

∆f x = f x + h − f x  

= Ef  x − f(x) 

∆f x =  E − 1 f x  

The above relation can be expressed as an identity. 

∆= 𝐸 − 1 

𝑖. 𝑒.  𝐸 = 1 + ∆ 

Example 3.4  Prove that 𝐸∆= ∆𝐸 

Proof: 𝐸∆ 𝑓 𝑥 = 𝐸 𝑓 𝑥 + 𝑕 − 𝑓 𝑥   

= 𝐸𝑓  𝑥 + 𝑕 −  𝐸𝐹  𝑥  

  = 𝑓 𝑥 + 2𝑕 − 𝑓 𝑥 + 𝑕  

= ∆𝑓  𝑥 + 𝑕  



= ∆𝐸𝑓 𝑥  

∴     𝐸∆  = ∆𝐸. 

Example 3.5   Prove that ∆ log 𝑓 𝑥 = 𝑙𝑜𝑔  1 +
∆𝑓(𝑥)

𝑓(𝑥)
  

Solution:  

 𝑓 𝑥 + 𝑕 = 𝐸𝑓 𝑥  

=  ∆ + 1 𝑓 𝑥  

= ∆𝑓 𝑥 + 𝑓 𝑥  

=
𝑓(𝑥 + 𝑕)

𝑓(𝑥)
=

∆𝑓(𝑥)

𝑓(𝑥)
+ 1, 

Applying logarithms on both sides we get 

𝑙𝑜𝑔  
𝑓 𝑥 + 𝑕 

𝑓 𝑥 
 = 𝑙𝑜𝑔  1 +

∆𝑓 𝑥 

𝑓 𝑥 
  

= log 𝑓 𝑥 + 𝑕 − log 𝑓 𝑥 = 𝑙𝑜𝑔  1 +
∆𝑓 𝑥 

𝑓 𝑥 
  

∆𝑙𝑜𝑔𝑓(𝑥) = 𝑙𝑜𝑔  1 +
∆𝑓 𝑥 

𝑓 𝑥 
  

Example 3.6   Prove that 𝑒𝑥 =
∆2

𝐸
𝑒𝑥 𝐸𝑒𝑥

∆2𝑒𝑥  the interval of differencing being h.  

Solution: We know that 

𝐸 𝑓 𝑥 = 𝑓 𝑥 + 𝑕  

𝐸𝑒𝑥 = 𝑒𝑥+𝑕   

 𝑎𝑛𝑑 ∆𝑒𝑥 = 𝑒𝑥+𝑕 − 𝑒𝑥 = 𝑒𝑥 𝑒𝑕 − 1   

𝑎𝑙𝑠𝑜  ∆2𝑒𝑥 = 𝑒𝑥 .  𝑒𝑕 − 1 2  

𝑁𝑜𝑤   
∆2

𝐸
 𝑒𝑥 =  ∆2𝐸−1 𝑒𝑥 = ∆2𝑒𝑥−𝑕  

𝑒−𝑕 ∆2𝑒𝑥 = 𝑒−𝑕𝑒𝑥 𝑒𝑕 − 1 2 



∴    𝑅𝐻𝑆  =  𝑒−𝑕𝑒𝑥 𝑒𝑕 − 1 
𝑒𝑥+𝑕

𝑒𝑥 𝑒𝑕 − 1 2
= 𝑒𝑥 . 

Example 3.7:  Given 𝑢0 = 1, 𝑢1 = 11, 𝑢2 = 21, 𝑢3 = 29, 𝑓𝑖𝑛𝑑 ∆2𝑢0 

Solution:   

∆2𝑢0 =  𝐸 − 1 4𝑢0 

=(E
4
-  

4
C1E

3  
+  

4
C2E

2  
- 

4
C3E+1)U0 

= 𝐸4𝑦0 − 4𝐸3𝑢0 + 6𝐸2𝑢0 − 4𝐸𝑢0 + 𝑢0 

= 𝑢4 − 4𝑢3 + 6𝑢2 − 4𝑢1 + 𝑢0 

= 29 − 112 + 126 − 44 + 1 

= 0 

3.5  The Operator D 

By denotes the differential coefficient of y with respect to x where 𝐷 =
𝑑

𝑑𝑥
 we have 𝐷𝑦 =

𝑑𝑦

𝑑𝑥
. The n

th
 derivative of y with respect to x is denoted by 𝐷𝑛𝑦 =

𝑑"𝑦

𝑑𝑥 " .  

Relation between the operators ∆,   D and E:  we know that 

𝐷𝑓 𝑥 =
𝑑

𝑑𝑥
𝑓 𝑥 = 𝑓 ′ 𝑥  

𝐷2𝑓 𝑥 =  
𝑑2

𝑑𝑥2
𝑓 𝑥 = 𝑓"(𝑥)  𝑒𝑡𝑐. 

3.6  Backward Differences 

Let y = f(x) be a function given by the values y0+y1+,…….yn which it takes for the 

equally spaced values x0, x1, x2, …..xn of  the independent variable x. Then y1-y0, y2- y1, ……. 

yn-yn-1 are called the first backward  differences of  y = f(x). They are denoted by respectively. 

Thus we have 

𝑦1 − 𝑦0 = ∇𝑦1 

𝑦2 − 𝑦1 = ∇𝑦2 

𝑦𝑛 − 𝑦𝑛+1 = ∇𝑦𝑛′  

 

Table 3.1:  Backward Difference Table 

 



x y  ∇y ∇2y ∇3y ∇4y 

𝑥0 𝑦0     

  ∇𝑦1    

𝑥1 𝑦1  ∇2𝑦2   

  ∇𝑦2  ∇3𝑦3  

𝑥2 𝑦2  ∇2𝑦3  ∇4𝑦4 
  ∇𝑦3  ∇3𝑦4  

𝑥3 𝑦3  ∇2𝑦4   

  ∇𝑦4    

𝑥4 𝑦4     

 

Note: In the above table the differences ∇2y  with a fixed subscript i, lie along the diagonal 

upward sloping.  

Alternative notation:  Let the function y = f(x) be given at equal spaces of the independent 

variable x at x = a, a+h, a+2h….. then we define  

∇ 𝑓 𝑎 = 𝑓 𝑎 − 𝑓 𝑎 − 𝑕  

Where ∇  is called the backward difference operator, h is called the interval of 

differencing. 

In general we can define. 

∇f x = f x − f x − h . 

We observe that 

∇f x + h = f x + h − f x = ∇f(x) 

∇f x + 2h = f x + 2h − f x + h = ∇f(x + h) 

……………………. 

∇f x + nh = f x + nh − f x +  n − 1 h  

= ∇f(x +  n − 1 h) 

Similarly we get, 

∇2f x + 2h = ∇[ f x + 2h   

= ∇ ∆f x + h   

= ∆ ∆f x   

= ∆2f x  



= ∇n f x + nh = ∆n f(x) 

Relation between E and 𝛁 

 ∇𝑓 𝑥 = 𝑓 𝑥 − 𝑓 𝑥 − 𝑕 = 𝑓 𝑥 − 𝐸−1𝑓 𝑥  

  ∇= 1 − 𝐸−1 

∇≡
𝐸 − 1

𝐸
 

Example 3.7:  Prove the following 

 𝑎   1 + ∆  1 − ∇ = 1                      𝑏  ∆∇= ∆ − ∇                         𝑐   ∇= 𝐸−1∆. 

Solution: 

 𝒂                    1 + ∆  1 − ∇  𝑓 𝑥 = 𝐸𝐸−1𝑓 𝑥  

  = 𝐸𝑓 𝑥 − 𝑕  

  = 𝑓 𝑥 = 1𝑓 𝑥  

 ∴  1 + ∆  1 − ∇  ≡ 1 

 

 𝒃                     ∆∇𝑓 𝑥 =  𝐸 − 1  1 − 𝐸−1 𝑓 𝑥  

=  𝐸 − 1  𝑓 𝑥 − 𝑓 𝑥 − 𝑕   

= 𝐸𝑓 𝑥 − 𝑓 𝑥 − 𝐸𝑓 𝑥 − 𝑕 + 𝑓 𝑥 − 𝑕  

= 𝑓 𝑥 + 𝑕 − 𝑓 𝑥 − 𝑓 𝑥 + 𝑓 𝑥 − 𝑕  

=  𝐸𝑓 𝑥 − 𝑓 𝑥 + 𝑓 𝑥 𝑓 𝑥 − 𝑕   

=  𝐸 − 1 𝑓 𝑥 −  1 − 𝐸−1 𝑓 𝑥  

=   𝐸 − 1 −  1 − 𝐸−1  𝑓 𝑥  

=  ∆ − ∇ 𝑓 𝑥  

Thus,   ∆∇𝑓 𝑥 =  ∆ − ∇ 𝑓 𝑥    

𝑇𝑕𝑎𝑡 𝑖𝑠,       ∆∇= ∆ − ∇ 

 



 𝒄    ∇𝑓 𝑥 =  1 − 𝐸−1 𝑓 𝑥  

 = 𝑓 𝑥 − 𝑓 𝑥 − 𝑕  

𝑎𝑛𝑑  𝐸−1∆𝑓 𝑥 =   𝐸−1 𝑓 𝑥 + 𝑕 − 𝑓 𝑥   

= 𝑓( 𝑥 − 𝑓 𝑥 − 𝑕 = ∇   

∴       ∇= 𝐸−1 ∆. 

3.7  Factorial Polynomial 

A factorial polynomial denoted by 𝑥(𝑟) is the product of r consecutive factors of which 

the first factor is x and successive factors  

𝑥 𝑟 = 𝑥 𝑥 − 𝑕  𝑥 − 2𝑕 … . .  𝑥 −  𝑟 − 1 𝑕   

𝑤𝑕𝑒𝑛 𝑕 = 1 

𝑥 𝑟 = x x − 1  x − 2 … . .  x − r + 1  

and in particular 

𝑥 0 = 1 

𝑥 1 = 𝑥 

∆𝑥 𝑟 =   x + h  r − 𝑥 𝑟  

=  x + h  x − h … .  x + h −  x − 1 −  x − 1 …  x x − 1 h  

= 𝑟𝑕𝑥 𝑟−1  

∆2𝑥 𝑟 = ∆ ∆𝑥 𝑟    

= r (r − 1)h2𝑥(𝑟−2)    

In general we can write  

∆𝑟𝑥 𝑟 = 𝑟 𝑟 − 1 … .1 × 𝑕𝑟  

= 𝑕𝑟𝑟! 

Note: 

1. ∆𝑟𝑥 𝑟 = 0 



2. 𝐼𝑓 the interval of differencing is unity then the successive differences of 𝑥 𝑟  ,can be 

obtained by ordinary successive differential of 𝑥 𝑟 . 

3. 𝐼𝑓 r is a positive integer then 

𝑥 −𝑟 =
1

 𝑥 + 𝑕  𝑥 + 2𝑕 … . (𝑥 + 𝑟)
 

𝑎𝑛𝑑 𝑖𝑓 𝑟 = 1 

𝑥 −𝑟 =
1

 𝑥 + 1  𝑥 + 2 … . (𝑥 + 𝑟)
 

 

3.7.1  To express a given Polynomial in Factorial Notation 

A polynomial of degree r can be expressed as a fractional polynomial of the same degree. 

Let f(x) be a polynomial of degree which is to be expressed in factorial notation and let 

F(x) = 𝑎0 + 𝑎1𝑥
1 + 𝑎2𝑥

2 + ⋯ . . 𝑎𝑟𝑥
𝑟                         ………………………. (3.1) 

Where 𝑎0, 𝑎𝑟     are constants and 𝑎0 ≠ 0 then 

∆𝑓 𝑥 = ∆ 𝑎0 + 𝑎1𝑥
1 + ⋯ . . +𝑎𝑟𝑥

𝑟   

⇰∆𝑓 𝑥 = ∆ 𝑎1 + 2𝑎1𝑥
1 … . . +𝑟𝑎𝑟𝑥

 𝑟−1   

∴ ∆2𝑓 𝑥 = ∆ 𝑎1 + 2𝑎1𝑥
1 … . . +𝑟𝑎𝑟𝑥

 𝑟−1   

⇰∆2𝑓 𝑥 = 2𝑎2 + 2 × 3𝑎3𝑥1 + ⋯ . +𝑟(𝑟 − 1)𝑥(𝑟−2) 

…………………………………………………………………………….. 

∆𝑟𝑓 𝑥 = 𝑎𝑟𝑟 𝑟 − 1 … … 2 × 1𝑥 0  

= 𝑎𝑟𝑟! 

Substituting x=0 in the above we get 

𝑓 0 = 𝑎0,
∆𝑓(0)

1!
= 𝑎1,

∆2𝑓(0)

2!
𝑥2 + ⋯… +

∆𝑟𝑓(0)

𝑟!
𝑥𝑟  

Putting the values of 𝑎0, 𝑎1, 𝑎2, … . 𝑎𝑟  in (1.1) we get  

𝑓 𝑥 = 𝑓 0 +  
∆𝑓(0)

1!
= 𝑥1 ,

∆2𝑓(0)

2!
𝑥2 + ⋯… +

∆𝑟𝑓(0)

𝑟!
𝑥𝑟  

 



Example 3.7:  If m is a positive integer and interval of difference is 1 prove that 

(a) ∆2𝑥𝑚 = 𝑚 𝑚 − 1 𝑥 𝑚 − 2                            𝑏  ∆2𝑥(−𝑚) = 𝑚 𝑚 + 1 𝑥 𝑚 − 2   

Solution: 

 𝑎   𝑥 𝑚 = 𝑥 𝑥 − 1 … …  𝑥 −  𝑚 − 1   

∆𝑥 𝑚 = [ 𝑥 + 1 𝑥 𝑥 + 2 … .  𝑥 + 1 −  𝑚 − 1  − 𝑥 𝑥 − 1 … .  𝑥 −  𝑚 − 1   

= 𝑚𝑥 𝑚−1  

∆2𝑥 𝑚 = ∆ ∆𝑥 𝑚   

= 𝑚∆𝑥 𝑚−1  

= 𝑚(𝑚 − 1)𝑥𝑚−2 

𝑥(−𝑚) =
1

 𝑥 + 1  𝑥 + 2 … . (𝑥 + 𝑚)
 

 

∆ 𝑥 −𝑚  =
1

 𝑥 + 2  𝑥 + 1 … .  𝑥 + 𝑚 + 1 
−

1

 𝑥 + 1 … . .  𝑥 + 𝑚 
 

=
1

 𝑥 + 1  𝑥 + 𝑚 
 

1

 𝑥 + 𝑚 + 1 
−

1

 𝑥 + 1 …  𝑥 + 𝑚 
  

= 𝑚
1

 𝑥 + 1  𝑥 + 2 … .  𝑥 + 𝑚 + 1 
 

=  −𝑚 𝑥 −𝑚−1  

∆2 𝑥 −𝑚  =  −𝑚  −𝑚 − 1 𝑥 −𝑚−2  

= 𝑚(𝑚 + 1)𝑥(−𝑚−2) 

 

3.8  Central Differences 

The operator   𝜹 :  We now introduce another operator known as the central difference operator 

to represent the successive differences of a functional in a more convenient way. 

The central difference operator denoted by the symbol 𝛿 is defined by  

𝑦1 − 𝑦0 = 𝛿𝑦1/2 



𝑦2 − 𝑦1 = 𝛿𝑦3/2 

… … …… … … … 

𝑛 − 𝑦𝑛−1 = 𝛿𝑦𝑛−1/2 

For higher order differences 

𝛿𝑦3/2 − 𝛿𝑦1/2 = 𝛿2𝑦1 

𝛿𝑦2 − 𝛿𝑦1 = 𝛿2𝑦3/2 

… … … … … …. 

𝛿𝑛−1𝑦𝑟+1/2 − 𝛿𝑛−1𝑦𝑟−1/2 = 𝛿𝑛𝑦𝑟 =  𝐸1/2 − 𝐸−1/2 
𝑛
𝑦𝑟  

In this alternative notation 

𝛿𝑓 𝑥 = 𝑓  𝑥 +
1

2
𝑕 − 𝑓  𝑥 −

1

2
𝑕  

Where h is the interval of differencing. The central difference table can be formed as follows. 

x  y  𝛿 𝛿2 𝛿3 𝛿4 𝛿5 𝛿6 

𝑥0 𝑦0       

  𝛿𝑦1/2      

𝑥1 𝑦1  𝛿2𝑦1     

  𝛿𝑦3/2  𝛿3𝑦3/2    

𝑥2 𝑦2  𝛿2𝑦2  𝛿4𝑦2   

  𝛿𝑦5/2  𝛿3𝑦5/2  𝛿5𝑦5/2  

𝑥3 𝑦3  𝛿2𝑦3  𝛿4𝑦3  𝛿6𝑦3 
  𝛿𝑦7/2  𝛿3𝑦7/2  𝛿5𝑦7/2  

𝑥4 𝑦4  𝛿2𝑦4  𝛿4𝑦4   

  𝛿𝑦9/2  𝛿3𝑦9/2    

𝑥5 𝑦5  𝛿2𝑦5     

  𝛿𝑦11/2      

𝑥6 𝑦6       

 

3.9  Mean Operator 

In addition to the  ∆, ∇, 𝐸 𝑎𝑛𝑑 𝛿 we define the mean operator (averaging operator) 𝜇 as   

𝜇𝑓 𝑥 =
1

2
  𝑥 +

1

2
𝑕 𝑓  𝑥 −

1

2
𝑕   



Alternative notation If y = f(x) is a functional notation between the variable x and y then it can 

also denoted by y = f, or by y = yx.  

Let 𝑦𝑥 , 𝑦𝑥+𝑕 , 𝑦𝑥+2𝑕 , …, etc. denote the values of the dependent variable y = corresponding 

to the values x, x+h, x+2h,……,etc. of the independent variable then the operators ∆, ∇, 𝐸 𝑎𝑛𝑑 𝛿  

are defined as 

∆𝑦𝑥 = 𝑦𝑥+𝑕 − 𝑦𝑥  

∆𝑦𝑥 = 𝑦𝑥 − 𝑦𝑥+𝑕  

𝛿𝑦𝑥 = 𝑦𝑥+1/2𝑕 − 𝑦𝑥−1/2𝑕  

𝜇 =
1

2
 𝑦

𝑥+
1
2
𝑕

− 𝑦
𝑥−

1
2
𝑕
  

Where h is the interval of differencing. 

Relation between the operators:  From the definition we know that 

𝛿𝑓 𝑥 = 𝑓  𝑥 +
1

2
𝑕 − 𝑓  𝑥 −

1

2
𝑕  

 𝒊                            𝛿𝑓 𝑥 = 𝑓  𝑥 +
1

2
𝑕 − 𝑓  𝑥 −

1

2
𝑕  

= 𝐸
1
2𝑓 𝑥 − 𝐸−

1
2𝑓 𝑥  

=  𝐸
1
2 − 𝐸−

1
2 𝑓 𝑥  

∴   𝛿 ≡  𝐸
1
2 − 𝐸−

1
2    

Further, 

𝛿𝑓 𝑥 = 𝐸−
1
2 𝐸 − 1 𝑓 𝑥  

= 𝐸−
1
2  ∆𝑓 𝑥  

∴  𝛿 =  𝐸−
1
2∆. 

Note from the above result we get 

𝐸−
1
2𝛿 = ∆ 



 

  𝒊𝒊                  𝜇𝑓 𝑥 =
1

2
  𝑥 +

1

2
𝑕 𝑓  𝑥 −

1

2
𝑕   

=
1

2
 𝐸

1
2 + 𝐸−

1
2 𝑓 𝑥  

∴ 𝜇 =
1

2
 𝐸

1
2 + 𝐸−

1
2 . 

 𝒊𝒊𝒊              𝐸∇𝑓 𝑥 = 𝐸 𝑓 𝑥 − 𝑓 𝑥 − 𝑕   

= 𝐸𝑓 𝑥 − 𝐸𝑓 𝑥 − 𝑕  

= 𝑓 𝑥 + 𝑕 − 𝑓 𝑥 = ∆𝑓 𝑥  

∴       𝐸∇  ≡ ∆ 

and 

∇𝐸𝑓 𝑥 = ∇𝑓 𝑥 + 𝑕  

= 𝑓(𝑥 + 𝑕) − 𝑓 𝑥  

= ∆𝑓 𝑥  

⇰∆ 𝐸 = ∆ 

∴ 𝐸∇= ∆𝐸 

Note: From the above it is clear that operator E and ∆ commute and ∆, ∇, 𝛿 𝑎𝑛𝑑 𝐸 𝑎𝑛𝑑 𝜇 also 

commute.   

3.10  Summary 

We define the forward difference operator ∆ 𝑎𝑠  ∆ f(x) = f(x+h)-f(x) and backward 

difference operator as ∇f(x) = f(x)-f(x-h), where h is the interval of differencing. The operator E 

is called the sifting operator and is defined as E f(x) = f (x+h). Method to express any function in 

the form of factorial polynomial is given and is shown that for any polynomial in this form the 

operation of ∆is equivalent to obtaining its first derivative. Central Deference operator 𝛿 and 𝜇 

are also defined which are used in central difference formulae.  

3.11  Exercise 

 3.1  Show that if 𝑢𝑥 = 2𝑥  𝑡𝑕𝑒𝑛 ∆𝑢𝑥 = 𝑢. 



3.2  Given any function𝑢𝑥 = 𝑥 𝑥 − 1  𝑥 − 2  𝑝𝑟𝑜𝑣𝑒 𝑡𝑕𝑎𝑡 ∆𝑢𝑥 = 3𝑢(𝑥 − 1) 

3.3  Prove that ∆𝑥(𝑛) = 𝑛𝑥(𝑛−1) for all integers n. 

3.4  Find the function whose first difference is 9𝑥2 + 11𝑥 + 5. 

3.5  Express 3𝑥2 + 3𝑥 + 1 in factorials. Hence or otherwise find its third difference. 

3.6  Evaluate 

 𝑖  ∆𝑎𝑏𝑐𝑥         𝑖𝑖 ∆  
2𝑥

 𝑥 + 1 !
          𝑖𝑖𝑖  ∆2𝑥3 

3.7  Show that ∆𝑛 sin 𝑎 + 𝑏𝑥 =  2 sin
𝑏

2
 

𝑛

 𝑠𝑖𝑛  𝑎 + 𝑏𝑥 +
𝑛

2
(𝜋 + 𝑏)  

3.8  Evaluate 

 𝒊                     ∆3  1 − 𝑥  1 − 2𝑥  1 − 3𝑥                𝒊𝒊                     
∆2𝑥3

𝐸2𝑥3
        

 𝒊𝒊𝒊                          
∆2

𝐸
sin 𝑥 + 𝑕 +

∆3 sin(𝑥 + 𝑕)

𝐸 sin(𝑥 + 𝑕)
 

Ans. (3.8)  (i) -36   (ii)   
6𝑥𝑕2

 𝑥+2𝑕 2    (iii)  2 (Cosh-1) [ sin(x+h)+1] 

3.12  Further Readings 

1.  Finite Difference & Numerical Analysis, S. Chand & Company, New Delhi: H.C. 

Saxena 

2. Numerical Mathematical Analysis, John Hopkins Press, Baltimore New York; James B. 

Scarborough 

3. Introductory Method of Numerical Analysis, Prentice Hall of India Pvt. Ltd.: S.S. Sastry 

4. Introduction to Numerical Analysis, Tata McGraw Hill Publishing Company, New Delhi: 

S.T. Hildebrand 

5. Numerical Analysis, McMillan Publishing Company, New York: M.J. Marom 

6. Numerical Method for Scientific & Engineering Computation, New Age International 

Publishers, New Delhi: M.K. Jain, S.R.K. Iyengar & R.K. Jain 

 

 



Unit - 4:  Interpolation with Equal Intervals 
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4.4    Newton’-Gregory Forward Interpolation Formula 

4.5    Newton’-Gregory Backward Interpolation Formula 

4.6    Summary  

4.7    Further Readings 

4.8    Exercise 

4.1  Introduction 

Meaning of interpolation and extrapolation:  In statistical investigation, many a time 

such situations arise under which it becomes necessary to obtain data for some values, periods or 

class intervals in addition to data already available. This problem is solved by the technique of 

interpolation and extrapolation. Interpolation is a statistical process by which the value of any 

item period is estimated within the limits of items or period given in the series, while in 

extrapolation the value is estimated for any item or period beyond the limits or periods given in 

the series. The meaning of interpolation and extrapolation can be explained, suppose, the census 

figure of India are given for the years 1961, 1971, 1981, 1991 and 2001. Now if we have to 

estimate the population for any year lying between 1961 and 2001, say fro 1965, 1973 or 1980 

the technique for such estimation will be called interpolation. However, if the estimate is 

required for any year before 1961 or after 2001 the technique of such estimation will be called 

extrapolation. Thus interpolation consists in evaluation a value, which lies between two extreme 

points and extrapolation means finding a value that lies outside the two extreme points. 

Importance or interpolation and extrapolation:  The statistical technique of 

interpolation and extrapolation are of great practical use in science, engineering economics and 

business fields. Sometimes it is impossible to collect information for each and every time period 

due to financial or other practical difficulties or some data may be destroyed due to natural 

causes like flood, earthquake, fire or due to improper handling the techniques of interpolation 

and extrapolation are very useful and given an estimate or idea about the phenomenon for any 

intervening periods. Now let us consider the computation of trajectory of a rocket flight, where 

we solve the Euler’s dynamical equations of motion to compute its position and velocity vectors 

at specified times during the flight. Under the same conditions, suppose, we require the position 



and velocity vector at some other intermediate times; we need not compute the trajectory again 

by solving the dynamical equations. Instead, we can use the best known interpolation technique 

to get the desired values. The techniques of interpolation are also use in determination of various 

statistical extrapolation is useful for making future forecast on the basis of past record of events 

under extrapolation is very important statistical tools but it is should keep in mind that they give 

only the most likely and that too under the certain assumptions. The accuracy of interpolation 

depends upon the knowledge of possible fluctions of the phenomenon and phenomenon itself.  

The word interpolation denotes the method of computing the value of the function y= f(x) 

for any given value of the independent variable x when a set of values of  y= f(x) for certain 

values of x are given. 

Let y = f(x) which takes the values y0, y1, …….. yn corresponding to the x0, x1, 

x2………xn of the independent variable x. If the form of the function is known, we can find any 

value of y corresponding to any value of x. But in most of the practical problems, the exact from 

of the function is not known. In such cases the function f(x) is replaced by a simpler function say 

∅(𝑥) which has the same value as f(x) for x0, x1, x2………xn. The function ∅ 𝑥   is called an 

interpolation function.  

4.2  Objectives 

After going through this unit you will learn about 

 The meaning of interpolation and extrapolation. 

 Newton - Gregory Forward Interpolation Formula and its applications. 

 Newton - Gregory Backward Interpolation Formula and its applications. 

4.3  Missing Values 

Let a function y = f(x) be given equally spaced values x0, x1, x2………xn of the argument 

and y0, y1, y2…..…..yn denote the corresponding values of the function. If one or more values of 

y = f(x) are missing we can find the missing values of using the relation between the operators E 

and ∆. 

4.4   Newton - Gregory Forward Interpolation Formula 

Let y = f(x) be a function which takes the y0, y1, y2…..…..yn corresponding to the (n+1) 

values x0, x1, x2………xn of the independent variable x. Let the values x be equally spaced, i.e.,  

𝑥𝑟 = 𝑥0 + 𝑟𝑕                                   𝑟 = 0,1,2, … . . , 𝑕 



Where h is the interval of differencing let be a polynomial of the nth degree in x taking 

the same values as y corresponding to x0, x1, x2………xn i.e., ∅ 𝑥  represents the continuo 

function y = f(x) such that 𝑓 𝑥𝑡 , = ∅ 𝑥𝑟 ,   r = 0, 1, 2, …., n and n  and at all other point f(x) = 

∅ 𝑥 + R(x) where R(x) is called the error term (Remainder term) of the interpolation formula. 

Ignoring the error term let us assume.  

𝑓 𝑥 ≈ ∅ 𝑥 ≈ 𝑎0 + 𝑎1 𝑥 − 𝑥0 + 𝑎2 𝑥 − 𝑥0  𝑥 − 𝑥1 + ⋯… … .. 

+𝑎𝑛 𝑥 − 𝑥0  𝑥 − 𝑥1 …… . .  𝑥 − 𝑥𝑛−1                … … … … … …… … … …   (4.1) 

The constants 0, 𝑎1, 𝑎2, … … . 𝑎𝑛can be determined as follows:  

Putting x = x0 in (4.1) we get 

𝑓 𝑥0 ≈ ∅ 𝑥0 = 𝑎0 

  ⇒              𝑦0 = 𝑎0 

Putting x = x1 in (4.1) we get 

𝑓 𝑥1 ≈ ∅ 𝑥1 = 𝑎0 + 𝑎1 𝑥1 − 𝑥0 = 𝑦0 + 𝑎1𝑕  

∴              𝑦1 = 𝑦0 + 𝑎1𝑕  

 ⇒                   𝑎1 =
𝑦1 − 𝑦0

𝑕
=

∆𝑦0

𝑕
 

Putting x = x2 in (4.1) we get 

𝑓 𝑥2 ≈ ∅ 𝑥2 = 𝑎0 + 𝑎1 𝑥2 − 𝑥0 + 𝑎2 𝑥 − 𝑥0  𝑥 − 𝑥1  

∴              𝑦2 = 𝑦0 +
∆𝑦0

𝑕
 2𝑕 + 𝑎2 2𝑕  𝑕  

𝑦2 = 𝑦02 𝑦1 − 𝑦0 + 𝑎2 2𝑕2 . 

 ⇒                   𝑎2 =
𝑦2 − 2𝑦1 + 𝑦0

𝑕
=

∆2𝑦0

2! 𝑕2
 

Similarly by putting x = x3, x = x4,  ……. xn in (4.1) we get 

   𝑎3 =
∆3𝑦0

3! 𝑕2
,                     𝑎4 =

∆4𝑦0

4! 𝑕2
,                 … …    𝑎𝑛 =

∆𝑛𝑦0

𝑛! 𝑕𝑛
 

Putting the values of 𝑎1, 𝑎2, … … . 𝑎𝑛  in (4.1), we get 

𝑓 𝑥 ≈ ∅ 𝑥 = 𝑦0 +
∆2𝑦0

2! 𝑕2
 𝑥 − 𝑥0  𝑥 − 𝑥1 +

∆3𝑦0

3! 𝑕2
 𝑥 − 𝑥0  𝑥 − 𝑥1  𝑥 − 𝑥2  



+ ⋯ . . +
∆𝑛𝑦0

𝑛! 𝑕𝑛
 𝑥 − 𝑥0  𝑥 − 𝑥1  𝑥 − 𝑥𝑛−1                    (4.2)  

Writing 

𝑢 =
𝑥 − 𝑥0

𝑕
, 𝑤𝑒 𝑔𝑒𝑡  

𝑥 − 𝑥0 = 𝑢𝑕    

 𝑥 − 𝑥1 = 𝑥 − 𝑥0 + 𝑥0 − 𝑥1 

=  𝑥 − 𝑥0 −  𝑥1 − 𝑥0  

= 𝑢𝑕 − 𝑕 =  𝑢 − 1 𝑕 

Equating (4.2) can be written as 

𝑓 𝑥0 + 𝑢𝑕 = 𝑦0 + ∆𝑦0 +
𝑢(𝑢 − 1)

2!
∆2𝑦0 +

𝑢 𝑢 − 1 (𝑢 − 2)

3!
∆3𝑦0                 

+ ⋯ . . +
𝑢 𝑢 − 1  𝑢 − 2 … … (𝑢 … 𝑛 + 1)

𝑛!
∆𝑛𝑦0 

The above formula is called Newton’s forward interpolation formula 

Note: 

1. Newton forward interpolation formula is used interpolate the values of y near the 

beginning of a set of tabular values. 

2. y0 may be taken as any point of the table, but the formula contains only those of y which 

come after the value chosen as y0. 

Example 4.1   Evaluate y = e
2x

 for x = 0.05 using the following table 

x 0.00 0.10 0.20 0.30 0.40 

y = e
2x

 1.000 1.2214 1.4918 1.8221 2.255 

 

Solution:  The difference table is 

x y = e
2x

 ∆𝑦 ∆2𝑦 ∆3𝑦 ∆4𝑦 

0.000 1.0000     

  0.2214    



0.10 1.2214  0.0490   

  0.2704  0.0109  

0.20 1.4918  0.0599  0.0023                                                                        

  0.3303  0.0132  

0.30 1.8221  0.0731   

  0.4034    

0.40 2.2255     

 

We have, 

𝑥0 = 0.00,     𝑥 = 0.05,   𝑕 = 0.1,      𝑢 =
𝑥 − 𝑥0

𝑕
=  

0.05 − 0.00

0.1
= 0.5 

Using Newton’s forward formula 

𝑓 𝑥0 = 𝑦0 + 𝑢∆𝑦0 +
𝑢(𝑢 − 1)

2!
∆2𝑦0 +

𝑢 𝑢 − 1 (𝑢 − 2)

3!
∆3𝑦0

+
𝑢 𝑢 − 1  𝑢 − 2 … … (𝑢 … 𝑛 + 1)

4!
∆4𝑦0 + ⋯. 

𝑓 0.05 = 1.0000 + 0.5 × 0.2214 +
0.5 0.5 − 1 

2
 0.0490 +

0.5 0.5 − 2  0.5 − 3 

6
 0.0109  

 = 1.000 + 0.110 − 0.006125 + 0.000681 − 0.000090 

= 1.105166   

∴    𝑓 0.05 = 1.052 

Example 4.2  The values of sin x are given below for difference values of x. Find the values of 

sin 32
0
. 

x 300 350 400 450 500 

y = sin x 0.5000 0.5736 0.6428 0.7071 0.7660 

 

 Solution:  x = 32
0
 is very near to the starting value x0 = 30

0
, by using Newton’s forward 

interpolation formula difference table is 

x y = sin x ∆𝑦 ∆2𝑦 ∆3𝑦 ∆4𝑦 

300 0.5000     



  0.0736    

350 0.5736  -0.0044   

  0.0692  -0.005  

400 0.6428  -0.0049  0 

  0.0643  -0.005  

450 0.7071  -0.0054   

  0.0589    

500 0.7660     

  

 𝑢 =
𝑥−𝑥0

𝑕
=  

320−300

5
= 0.4 

We have  𝑦0 = 0.5000,     ∆𝑦0 = 0.0736,     ∆2𝑦0 =  −0.0044,     ∆3𝑦0 =  −0.005 putting these 

values in Newton’s forward interpolation formula we get  

 𝑓 𝑥 = 𝑦0 + 𝑢∆𝑦0 +
𝑢(𝑢−1)

2!
∆2𝑦0 +

𝑢 𝑢−1 (𝑢−2)

3!
∆3𝑦0 + ⋯. 

𝑓 320 = 0.5000 + 0.4 × 0.0736 +
0.4 0.4 − 1 

2
 −0.0044 

+
0.4 0.4 − 1  0.4 − 2 

4
 −0.0005  

= 𝑓 320 = 0.5000 + 002944 + 0.00528 − 0.00032 = 0.529648   

Example 4.3:  In an examination the number of candidates who obtained marks between certain 

limits were as follows:  

Marks 30-40 40-50 50-60 60-70 70-80 

No. of Students 31 42 51 35 31 

 

Find the number of candidates whose scores lie between 45 and 50. 

Solution:  First of all we construct a cumulative frequency table for the given data. 

Upper limits of the intervals 40 50 60 70 80 

Cumulative frequency 31 73 124 159 190 

 



The difference table is  

x 

Marks 

y 

Cumulative Frequencies 

∆𝑦 ∆2𝑦 ∆3𝑦 ∆4𝑦 

40 31     

  42    

50 73  9   

  51  -25  

60 124  -16  37 

  35  12  

70 159  4   

  31    

80 190     

 

𝑢 =
𝑥 − 𝑥0

𝑕
=  

45 − 40

10
= 0.5 

We have  𝑥0 = 40,       𝑥 = 45,     𝑕 = 10,   ∆𝑦0 = 42,     ∆2𝑦0 = 9,     ∆3𝑦0 =  −25,      ∆4𝑦 = 37.  

From Newton’s forward interpolation formula 

𝑓 𝑥 = 𝑦0 + 𝑢∆𝑦0 +
𝑢(𝑢 − 1)

2!
∆2𝑦0 +

𝑢 𝑢 − 1 (𝑢 − 2)

3!
∆3𝑦0

+
𝑢 𝑢 − 1  𝑢 − 2 … … (𝑢 … 𝑛 + 1)

4!
∆4𝑦0 + ⋯. 

𝑓 45 = 31 + 0.5 × 42 +
0.5 −0.5 

2
× 9 +

0.5 0.5 − 1  0.5 − 2 

6
 −25 

+
0.5 0.5 − 1  0.5 − 2 (0.5 − 3)

24
 37  

= 31 + 21 − 1.125 − 1.5625 − 1.4452 = 47.8673 = 48  𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑙𝑦  

∴  The number of students who obtained mark less than 45-48, and the number of students who 

scored between 45 and 50 = 73 – 48 = 25. 

4.4  Newton- Gregory Backward Interpolation Formula 



Newton’s forward interpolation cannot be used for interpolation a value of y near the end 

of a table of values. For this purpose, we use another formula known as Newton- Gregory 

backward interpolation formula. It can be derived as follows:  

Let y = f(x) be a function which takes the values y0, y1,y2…..…..yn corresponding to the 

values x0, x1, x2………xn of the independent variable x. Let the values x be equally spaced with 

h as the interval of differencing, Let,  

𝑥𝑟 = 𝑥0 + 𝑟𝑕                                   𝑟 = 0, 1, 2, … . . , 𝑛. 

Let ∅ 𝑥  be a polynomial of the nth degree in x taking the same values as y 

corresponding to x0, x1, x2………xn i.e., ∅ 𝑥  represents y = f(x) such that 𝑓 𝑥 = ∅ 𝑥𝑟 ,  r = 0, 

1, 2, …. n we may write ∅ 𝑥 as 

𝑓 𝑥 ≈ ∅ 𝑥 ≈ 𝑎0 + 𝑎1 𝑥 − 𝑥𝑛 + 𝑎2 𝑥 − 𝑥𝑛  𝑥 − 𝑥𝑛−1 + ⋯ … … .. 

+𝑎𝑛 𝑥 − 𝑥0  𝑥 − 𝑥𝑛−1 … … . .  𝑥 − 𝑥1                 …… … . . (4.3) 

Putting x = xn in (4.3) we get 

𝑓 𝑥𝑛 ≈ ∅ 𝑥𝑛 = 𝑎0 

  ⇒              𝑦𝑛 = 𝑎0 

Putting x = xn-1 in (4.3) we get 

𝑓 𝑥𝑛−1 ≈ ∅ 𝑥𝑛−1 = 𝑎0 + 𝑎1 𝑥𝑛−1 − 𝑥𝑛   

⇒  𝑦𝑛−1 = 𝑦𝑛 + 𝑎1 −𝑕   

⇒  𝑎1𝑕 = 𝑦𝑛 + 𝑦𝑛−1 = ∆𝑦𝑛  

⇒  𝑎1 =
∆𝑦𝑛

1! 𝑕
 

Putting x = xn-2, we get 

𝑓 𝑥𝑛−2 ≈ ∅ 𝑥𝑛−2 = 𝑎0 + 𝑎1 𝑥𝑛−2 − 𝑥𝑛 + 𝑎2 𝑥𝑛−2 − 𝑥𝑛  𝑥𝑛−2 − 𝑥𝑛−1  

⇒  𝑦𝑛−1 = 𝑦𝑛 +  
𝑦𝑛 − 𝑦𝑛−1

𝑕
  −2𝑕 + 𝑎2 −2𝑕 (−𝑕)  

⇒  𝑦𝑛−1 = 𝑦𝑛 − 2𝑦𝑛 + 2𝑦𝑛−2 +  2𝑕2 𝑎2 

⇒  𝑎2 =
𝑦𝑛 − 2𝑦𝑛−2 + 𝑦𝑛−2

2𝑕2
=

∇2𝑦𝑛

2! 𝑕2
 

Similarly by putting x = xn-3, x = xn-4, …….x = xn-5 in (4.1) we get 



                   𝑎3 =
∆3𝑦𝑛

3! 𝑕3
,        𝑎4 =

∆4𝑦0

4! 𝑕3
, … …    𝑎𝑛 =

∆𝑛𝑦𝑛

𝑛! 𝑕𝑛
 

Substituting these values in (4.3) , we get 

𝑓 𝑥 ≈ ∅ 𝑥 = 𝑦𝑛

=
∇𝑦𝑛

𝑕
 𝑥 − 𝑥𝑛 +

∇2𝑦𝑛

2! 𝑕2
 𝑥 − 𝑥𝑛  𝑥 − 𝑥𝑛−1 

+
∆3𝑦𝑛

3! 𝑕3
 𝑥 − 𝑥𝑛  𝑥 − 𝑥𝑛−1  𝑥 − 𝑥𝑛−2  

+ ⋯ . . +
∇𝑛𝑦𝑛

𝑛! 𝑕𝑛
 𝑥 − 𝑥𝑛  𝑥 − 𝑥𝑛−1  𝑥 − 𝑥1                   … . . (4.4)  

Writing 

𝑢 =
𝑥 − 𝑥𝑛

𝑕
, 𝑤𝑒 𝑔𝑒𝑡  

𝑥 − 𝑥𝑛 = 𝑢𝑕    

 𝑥 − 𝑥𝑛−1 = 𝑥 − 𝑥𝑛 + 𝑥0 − 𝑥𝑛−1 

=  𝑢𝑕 + 𝑕 =  𝑢 + 1 𝑕 

Similarly, 

𝑥 − 𝑥𝑛−2 =  𝑢 + 2 𝑕, … . .  𝑥 − 𝑥1 =  𝑢 + 𝑛 − 1 𝑕 

Substituting the above values, we get from (4.4), 

𝑓 𝑥𝑛 + 𝑢𝑕 = 𝑦𝑛 + 𝑢∇𝑦0 +
𝑢(𝑢 + 1)

2!
∇2𝑦𝑛 +

𝑢 𝑢 + 1 (𝑢 + 1)

3!
∇3𝑦𝑛

+ ⋯ . . +
𝑢 𝑢 + 1  𝑢 + 2 … … (𝑢 + 𝑛 − 1)

𝑛!
∇𝑛𝑦𝑛             … … …… … . .    (4.5) 

The above formula is known as Newton’s backward interpolation formula 

Example 4.4  The following data gives the melting point of an alloy of lead and zinc, where t is 

the temperature in degrees c and P is the percentage of lead in the alloy. 

P 40 50 60 70 80 90 

t 180 204 226 250 276 304 

Find the melting point of the alloy containing 84 percent lead. 



Solution:  The value of 84 is near the end of the table, therefore we use the Newton’s backward 

interpolation formula. The difference table is 

P t ∇ ∇2 ∇3 ∇4 ∇5 

40 184      

  20     

50 204  2    

  22  0   

60 226  2  0  

  24  0  0 

70 250  2  0  

  26  0   

80 276  2    

  28     

90 304      

We have 

𝑥𝑛 = 90, 𝑥 = 84, 𝑕 = 10, 𝑡𝑛 = 𝑦𝑛 = 304, ∇𝑡𝑛 = ∇𝑦𝑛 = 28, ∇2𝑦𝑛 = 2, 

And ∇3𝑦𝑛 = ∇4𝑦𝑛 = ∇5𝑦𝑛 = 0, 

𝑢 =
𝑥 − 𝑥𝑛

𝑕
=

84 − 90

10
= −60 

From Newton’s backward formula 

𝑓 84 = 𝑡𝑛 + 𝑢∇𝑡𝑛 +
𝑢(𝑢 + 1)

2
∇2𝑡𝑛 + ⋯ .. 

𝑓 84 = 304 − 0.6 × 28 +
 −0.6  −0.6 + 1 

2
2 

= 304 − 16.8 − 0.24 

= 286.96 

Example 4.5:  Calculate the value of (7.5) for the table. 

x 1 2 3 4 5 6 7 8 

f(x) 1 8 27 64 125 216 343 512 



Solution:  7.5 is near to the end of the table, we use numbers backward formula to find f(7.5).  

x y ∇y ∇2𝑦 ∇3𝑦 ∇4y ∇5𝑦 

1 1      

  7     

2 8  12    

  19  6   

3 27  18  0  

  37  6   

4 64  24  0  

  61  6  0 

5 125  30  0  

  91  6   

6 216  36  0  

  127  6   

7 343  42    

  169     

8 512      

 

We have 

𝑥𝑛 = 8, 𝑥 = 7.5, 𝑕 = 1, 𝑦𝑛 = 512, ∇𝑦𝑛 = 169, ∇2𝑦𝑛 = 42, 

And ∇3𝑦𝑛 = 6, ∇4𝑦𝑛 = ∇5𝑦𝑛 = 0, 

𝑢 =
𝑥 − 𝑥𝑛

𝑕
=

7.5 − 8

1
= −0.5 

We get 

𝑓 𝑥 = 𝑦𝑛 + 𝑢∇𝑦𝑛 +
𝑢(𝑢 + 1)

2!
∇2𝑦𝑛 +

𝑢 𝑢 + 1 (𝑢 + 1)

3!
∇3𝑦𝑛 + ⋯ .. 

𝑓 7.5 = 512 +  00.5 (165) +
−0.5 −0.5 + 1 

2
(42) +

−0.5 −0.5 + 1 (−0.5 + 2)

6
 6  

= 512 − 82.5 − 0.375 



= 423.87 

4.6  Summary 

Newton Gregory forward and backward differences interpolation formula are used to find 

out the value of the entry corresponding to any arrangement for which it is not known. Both of 

these formulae are for the situation when the values in table are at equal interval. If we intended 

to find the values of the function corresponding to any argument in the end of tabular values, we 

use backward difference formula.  

4.7  Exercise 

4.1   Find the missing term in the following table: 

x: 16 18 20 22 24 26 

y: 39 85 - 151 264 388 

4.2  Given the following table, construct difference table and form it estimate y when x = 0.7 

X = 0 0.1  0.2  0.3  0.4 

Y = 1 1.095  1.179  1.251  1.310 

4.3  Apply Gregory Newton backward formula to the following data for finding sun’s 

declination on feb. 12. 

Date       1         3        5 

Declination -17
0
0’19.0”  -16

0
25’22.9” -13

0
49’18.8” 

Date  7   9   11   13 

Declination -15
0
12’9.8 -14

0
33’39.1’’ 13

0
54’49.8”   -13

0
14’45.0” 

Answer:  

4.1:     96.4 

4.2 :    1.399 

4.3:     13
0
34’40.7” 

4.8  Further Readings 
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2. Numerical Mathematical Analysis, John Hopkins Press, Baltimore New York; James B. 

Scarborough 

3. Introductory Method of Numerical Analysis, Prentice Hall of India Pvt. Ltd.: S.S. Sastry 

4. Introduction to Numerical Analysis, Tata McGraw Hill Publishing Company, New Delhi: 

S.T. Hildebrand 

5. Numerical Analysis, McMillan Publishing Company, New York: M.J. Marom 

6. Numerical Method for Scientific & Engineering Computation, New Age International 

Publishers, New Delhi: M.K. Jain, S.R.K. Iyengar & R.K. Jain 

 

  



Unit-5:  Interpolation with Unequal Intervals 

Structure 

5.1    Introduction 

5.2    Objectives 

5.3    Missing Values 

5.3.1     Properties of Divided Differences 

5.4    Newton’s Divided Difference Interpolating Polynomial 

5.5    The Error of the Interpolation Polynomial 

5.6    Divided Differences and Derivatives 

5.7    Summary  

5.8    Further Readings 

5.9    Exercise 

5.1  Introduction 

The Operators E, ∆, ∇  and Newton’s Gregory Forward and Backward Interpolation 

formulae can  be entries f(x0), f(x1), f(x2), ………f(xn) are given corresponding to the equidistant 

arguments x0, x1, x2, ………xn. It is not always possible that the arguments x0< x1< x2< 

………xn lying in the interval [a, b] are equidistant. In this case we cannot use the operators E, , 

∆  and, ∇  . Here the divided difference operator ∆  is defined and used to obtain Newton’s 

divided difference interpolating polynomial. This polynomial is used for interpolation unequal 

interpolation. 

5.2  Objectives 

After going through this unit you should be able to: 

 Obtain a divided difference in terms of function values. 

 Construct a divided difference table 

 Show that the divided difference is independent of the order of its arguments 

 Obtain the Newton’s divided difference interpolating polynomial for a given data. 

 Compute an estimate of f(x) for a given data 

 Relate the k
th

 derivative of f(x) with the k
th

 order divided difference from the expression 

for the error term.  



5.3  Divided Differences 

Let the function y = f(x) be given at the (n+1) points x0, x1, x2………xn which need not 

be equally spaced that is 𝑥1 − 𝑥0, 𝑥2 − 𝑥1, 𝑥3 − 𝑥2, … … . . 𝑥𝑛 − 𝑥𝑛−1,are not necessary equal. Let 

f(x0), f(x1), f(x2), ………f(xn) be the given values (entries) corresponding to arguments x0, x1, 

x2………xn. In some places we have written 𝑦𝑟 = 𝑓 𝑥1  for  r = 0,1,2,3,…….n.  

If the arguments were equidistant then the successive differences between values of the 

entry, without taking into account the corresponding changes in the values of the independent 

variable, i.e., the arguments are called the forward differences. But if the values of the arguments 

are given at unequal intervals, then the various differences in entry will be affected by the change 

in the values of the arguments. The differences in entries defined by taking into account the 

differences in arguments are called divided differences. 

The first order divided difference of f(x) for the arguments x0, x1 is defined as  

𝑓 𝑥0, 𝑥1 =
𝑓 𝑥1 − 𝑓 𝑥2 

𝑥1 − 𝑥0
     … … … … …… … … … … . (5.1) 

Here, the ordinary difference of entries f(x1) - f(x0) is divided by the difference (x1-x0) of 

the arguments. Hence we call it a divided difference. In fact, it is the ratio of change in f(x) to 

change in x from x0 to x1.   

Similarly, 

𝑓 𝑥1, 𝑥2 =
𝑓 𝑥2 − 𝑓 𝑥1 

𝑥2 − 𝑥1
     … … … … …… … … … … . (5.2) 

𝑓 𝑥2, 𝑥3 =
𝑓 𝑥3 − 𝑓 𝑥2 

𝑥3 − 𝑥2
     … … … … … …… … … … . (5.3) 

The second order divided differences for the arguments x0, x1, x2……… is defined as  

𝑓 𝑥0, 𝑥1, 𝑥2 =
𝑓 𝑥1, 𝑥2 − 𝑓 𝑥0 , 𝑥1 

𝑥2 − 𝑥0
     … …… … … … … … … … . (5.4) 

𝑓 𝑥1, 𝑥2 , 𝑥3 =
𝑓 𝑥2 , 𝑥3 − 𝑓 𝑥1 , 𝑥2 

𝑥3 − 𝑥1
     … … …… … … … … … … . (5.5) 

…………………. 

………………….. 

The third order divided differences can be defined as  



𝑓 𝑥0 , 𝑥1, 𝑥2 , 𝑥3 =
𝑓 𝑥1, 𝑥2, 𝑥3 − 𝑓 𝑥0, 𝑥1, 𝑥2 

𝑥3 − 𝑥0
     …… … … … … … … …… . (5.6) 

and so on, nth order divided differences for the arguments x0, x1, x2………xn-1 is  

𝑓 𝑥0 , 𝑥1, 𝑥2 … … 𝑥𝑛  =
𝑓 𝑥1, 𝑥2 … 𝑥𝑛  − 𝑓 𝑥0, 𝑥1, 𝑥2 … . 𝑥𝑛−1 

𝑥𝑛 − 𝑥0
     …… … … . (5.7) 

It may be observed that the order of a divided difference is one less than the number of 

arguments required for its definition.  

Another notation for divided differences uses the divided differences operator ∆.  

The divided differences as follows; 

Divided Difference of first order 
𝑓 𝑥0, 𝑥1 =

∆

𝑥1
𝑓(𝑥0) 

 
𝑓 𝑥1, 𝑥2 =

∆

𝑥2
𝑓(𝑥1) 

 

Divided Difference of Second  order 
𝑓 𝑥0 , 𝑥1, 𝑥2 =

∆2

𝑥1 − 𝑥2
𝑓(𝑥0) 

 
𝑓 𝑥1, 𝑥2, 𝑥3 =

∆2

𝑥1 − 𝑥2
𝑓(𝑥1) 

 

Divided Difference of third order 𝑓 𝑥0, 𝑥1, 𝑥2, 𝑥3 = ∆3𝑓 𝑥2  

 -------------- 

 

 

Divided Difference of order n 
𝑓 𝑥0 , 𝑥1, 𝑥2, 𝑥3 =

∆𝑛

𝑥1, 𝑥2, … . 𝑥𝑛
 𝑓 𝑥0  

 ……….(5.8) 

 

5.3.1  Properties of Divided Differences 

Theorem 5.1:  The differences are symmetrical functions of their arguments. 

Or 



The divided differences are independent of the order of the arguments.  

Proof:  The zero
th

 order divided difference of f(x) at x0 is 

𝑓 𝑥0        =         𝑓 𝑥0     

The first order divided difference of f(x) for arguments 𝑥0,  𝑥1 is 

𝑓 𝑥0 , 𝑥1 =
𝑓 𝑥1 − 𝑓 𝑥0 

𝑥1 − 𝑥0
=

𝑓 𝑥0 − 𝑓 𝑥1 

𝑥0 − 𝑥1
= 𝑓 𝑥1, 𝑥0  

=
𝑓 𝑥0 

𝑥0 − 𝑥1
+

𝑓 𝑥1 

𝑥1 − 𝑥0
                              (5.9𝑖) 

The second order divided difference of f(x) for arguments 𝑥0, 𝑥1, 𝑥2 is 

𝑓 𝑥0, 𝑥1, 𝑥2 =
𝑓 𝑥1 , 𝑥2 − 𝑓 𝑥0 , 𝑥1 

𝑥2 − 𝑥0
=

1

𝑥2 − 𝑥0
  

𝑓 𝑥1 

𝑥1 − 𝑥2
+

𝑓 𝑥2 

𝑥1 − 𝑥2
 −  

𝑓 𝑥0 

𝑥0 − 𝑥1
+

𝑓 𝑥1 

𝑥1 − 𝑥0
   

=
𝑓 𝑥0 

 𝑥0 − 𝑥1  𝑥0 − 𝑥2 
+

𝑓 𝑥1 

 𝑥1 − 𝑥0  𝑥1 − 𝑥2 
+

𝑓 𝑥2 

 𝑥2 − 𝑥0  𝑥2 − 𝑥1 
       (5.9𝑖𝑖) 

By symmetry of the results in (5.9ii), it is obvious that 

𝑓 𝑥0, 𝑥1, 𝑥2 = 𝑓 𝑥0 , 𝑥2, 𝑥1 = 𝑓 𝑥1, 𝑥0, 𝑥2 = 𝑓 𝑥1, 𝑥2 , 𝑥0 = 𝑓 𝑥2 , 𝑥0, 𝑥1 = 𝑓 𝑥2, 𝑥1 , 𝑥0  

By mathematical induction it can be shown that 

𝑓 𝑥0, 𝑥1 , 𝑥2 … . . 𝑥𝑛  

=
𝑓 𝑥0 

 𝑥0 − 𝑥1  𝑥0 − 𝑥2 … .  𝑥0 − 𝑥𝑛 
+

𝑓 𝑥1 

 𝑥1 − 𝑥0  𝑥1 − 𝑥2 … .  𝑥1 − 𝑥𝑛 

+ ⋯ . +
𝑓 𝑥𝑛 

 𝑥𝑛 − 𝑥0  𝑥𝑛 − 𝑥1 … .  𝑥𝑛 − 𝑥𝑛−1 
       (5.9𝑖𝑖𝑖) 

Thus, from (5.9i), (5.9ii) and (5.9iii) it follows that the order of placing the arguments is 

immaterial in the definition of the divided difference. Thus, f(x0, x1, x2………xn) is a 

symmetrical function of x0, x1, x2………xn for all n.  

Hence Proved 

Divided Difference Table is the table representing the arguments corresponding entries and the 

divided differences of all possible orders.  

Table 5.1: Divided difference table 

Argument Entry ∆𝑓(𝑥) ∆2𝑓(𝑥) ∆3𝑓(𝑥) 



x f(x) 

𝑥1 𝑓 𝑥0  𝑓 𝑥0, 𝑥1 

=
𝑓 𝑥1 − 𝑓 𝑥0 

𝑥1 − 𝑥0
 

  

   𝑓 𝑥0 , 𝑥1, 𝑥2 

=
𝑓 𝑥1, 𝑥2 − 𝑓 𝑥0, 𝑥1 

𝑥2 − 𝑥0
 

 

𝑥1 𝑓 𝑥1     

  𝑓 𝑥1, 𝑥2 

=
𝑓 𝑥2 − 𝑓 𝑥1 

𝑥2 − 𝑥1
 

 𝑓 𝑥0, 𝑥1, 𝑥2 … . . 𝑥𝑛 

=
𝑓 𝑥1, 𝑥2, 𝑥3 − 𝑓 𝑥0, 𝑥1, 𝑥2 

𝑥3 − 𝑥1
 

𝑥2 𝑓 𝑥2   𝑓 𝑥1, 𝑥2 , 𝑥3 

=
𝑓 𝑥2, 𝑥3 − 𝑓 𝑥1, 𝑥2 

𝑥3 − 𝑥1
 

 

  𝑓 𝑥2 , 𝑥3 

=
𝑓 𝑥3 − 𝑓 𝑥2 

𝑥3 − 𝑥2
 

  

𝑥3 𝑓 𝑥3     

 

Here, f(x0) is called term. 𝑓 𝑥0, 𝑥1, 𝑥2,. 𝑥3  are called leading divided differences of order 

first, second and third respectively and they lie along the diagonal at f(x0). 

Theorem 5.2:  The nth order divided of divided differences of the a polynomial of degree n in x 

are constant. 

Proof:  Let f(x)= ax
n
 be a polynomial of degree n, where n is a positive integer. Then 

𝑓 𝑥0 , 𝑥1 =
𝑓 𝑥0 − 𝑓 𝑥1 

𝑥0 − 𝑥1
=

𝑎 𝑥0
𝑛 − 𝑥1

𝑛 

𝑥0 − 𝑥1
= 𝑎 𝑥0

𝑛−1 + 𝑥1𝑥0
𝑛−2 + ⋯ + 𝑥1

𝑛−1  

Thus, 𝑓 𝑥0, 𝑥1  is a polynomial of degree (n-1) symmetrical in 𝑥0, 𝑥1 with leading coefficient a.  



Now, 

𝑓 𝑥0, 𝑥1, 𝑥2 =
𝑓 𝑥0, 𝑥1 − 𝑓 𝑥1, 𝑥2 

𝑥0 − 𝑥2
=

𝑎 𝑥0
𝑛−1 + 𝑥1𝑥0

𝑛−2 + ⋯ + 𝑥1
𝑛−1 

𝑥0 − 𝑥2
 

=
𝑎

𝑥0 − 𝑥2

  𝑥0
𝑛−1 − 𝑥0

𝑛−1 𝑥1 𝑥0
𝑛−2 − 𝑥2

𝑛−2 + ⋯ + 𝑥1
𝑛−1 𝑥0 − 𝑥1   

= 𝑎[ 𝑥0
𝑛−2 + 𝑥2𝑥0

𝑛−3 + ⋯ + 𝑥2
𝑛−2 + 𝑥1 𝑥0

𝑛−3 + 𝑥2𝑥0
𝑛−4 + ⋯ + 𝑥2

𝑛−3 + ⋯ . … + 𝑥1
𝑛−1] 

Thus, we observe that second order divided difference 𝑓 𝑥0 , 𝑥2, 𝑥1  is a polynomial 

symmetrical in 𝑥1, 𝑥2 , 𝑥3 … . . 𝑥𝑛with leading coefficient a. The degree of this polynomial is (n-2), 

so that it is reduced by 2. 

Similarly it can be shown that the nth order divided difference 𝑓 𝑥0, 𝑥1, 𝑥2 … . . 𝑥𝑛  is a 

polynomial of degree = n-n=0, which is a constant “a”, where a  ≠ 0. 

If f(x) is a polynomial of degree n, say, 

g x = a0xn + a1xn−1 + a2xn−2 + ⋯ . +an−2x2 + an−1x + 𝑎𝑛    𝑤𝑕𝑒𝑟𝑒 𝑎0 ≠ 0. 

Then 

𝑔 𝑥0 = 𝑎 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑜𝑓 𝑑𝑒𝑔𝑟𝑒𝑒 𝑛 𝑖𝑛 𝑥0 . 

𝑔 𝑥0 , 𝑥1 = 𝑎 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑜𝑓 𝑑𝑒𝑔𝑟𝑒𝑒  𝑛 − 1 𝑖𝑛 (𝑥0, 𝑥1) 

𝑔 𝑥0, 𝑥1, 𝑥2 = 𝑎 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑜𝑓 𝑑𝑒𝑔𝑟𝑒𝑒  𝑛 − 2 𝑖𝑛 (𝑥0, 𝑥1, 𝑥2) … … .. 

𝑔 𝑥0 , 𝑥1, 𝑥2 … . 𝑥𝑘  = 𝑎 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑜𝑓 𝑑𝑒𝑔𝑟𝑒𝑒  𝑛 − 𝑛 = 0 𝑖𝑛 (𝑥0, 𝑥1, 𝑥2 …𝑥𝑛) 

But the nth divided difference of g(x) is 

𝑔 𝑥0, 𝑥1 , 𝑥2 … . 𝑥𝑛 

= 𝑧0 𝑛𝑡𝑕 𝑑𝑖𝑣. 𝑑𝑖𝑓𝑓. 𝑜𝑓 𝑥𝑛  + 𝑎1 𝑛𝑡𝑕 𝑑𝑖𝑣. 𝑑𝑖𝑓𝑓. 𝑜𝑓 𝑥𝑛−1 

+ 𝑎2 𝑛𝑡𝑕 𝑑𝑖𝑣. 𝑑𝑖𝑓𝑓. 𝑜𝑓 𝑥𝑛−2 + ⋯ . 𝑎𝑛 𝑛𝑡𝑕 𝑑𝑖𝑣. 𝑑𝑖𝑓𝑓. 𝑜𝑓 𝑥0  

= 𝑎0. 1 + 𝑎1. 0 + 𝑎2. 0 + ⋯… . +𝑎𝑛 . 0 

= 𝑎0 𝑤𝑕𝑖𝑐𝑕 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑛𝑎𝑡                     … … … … …… … … … … . (5.10) 

Hence the result. 

Corollary: 

Thus, we conclude that divided difference of g(x) of order r ≥ (n+1)will be zero. 

Now, we shall apply above result to some problems. 



Example 5.1:  Obtain the third divided difference 𝑓 𝑥0 , 𝑥1, 𝑥2 , 𝑥3  of the function f(x)= 1/x. 

Solution:  Here x=𝑥0, 𝑥1, 𝑥2, 𝑥3 and f(x) = 1/x. 

Therefore, first order divided difference f [𝑥0, 𝑥1] is 

𝑓 𝑥0, 𝑥1 =
𝑓 𝑥0 − 𝑓 𝑥1 

𝑥0 − 𝑥1
=

 1/𝑥0 −  1/𝑥1 

𝑥0 − 𝑥1
= − 1/𝑥0, 𝑥1  

The second order divided difference f [𝑥0, 𝑥1 , 𝑥2] is 

𝑓 𝑥0, 𝑥1 , 𝑥2 =
𝑓 𝑥0, 𝑥1 − 𝑓 𝑥1, 𝑥2 

𝑥0 − 𝑥2
=

 − 1/𝑥0, 𝑥1  −   1/𝑥1, 𝑥2  

𝑥0 − 𝑥2
=  −1 2 1/𝑥0, 𝑥1, 𝑥2  

The third order divided difference 𝑓 𝑥0 , 𝑥1, 𝑥2 , 𝑥3  is  

𝑓 𝑥0, 𝑥1 , 𝑥2, 𝑥3 =
𝑓 𝑥0, 𝑥1 , 𝑥2 − 𝑓 𝑥1, 𝑥2, 𝑥3 

𝑥0 − 𝑥3
=

  −1 2 1/𝑥0, 𝑥1, 𝑥2  −   −1 2 1/𝑥1, 𝑥2 , 𝑥3  

𝑥0 − 𝑥3

=  −1 3 1/𝑥0, 𝑥1, 𝑥2 , 𝑥3 = −  
1

𝑥0, 𝑥1, 𝑥2
, 𝑥3                   𝐴𝑛𝑠. 

Example 5.2: Prepare the divided difference table for the following data. 

x 0 1 2 4 6 

f(x) 1 14 15 5 19 

 

Solution:  Here  

𝑥0 = 0, 𝑥1 = 1, 𝑥2 = 2, 𝑥3 = 4, 𝑥4 = 6. 

F(0)=1, f[0,1]=13, f[0,1,2]=3, f[0,1,2,4]=1 and f[0,1,2,4,6]=0 are called leading term and leading 

di 

vided differences of first, second, third and fourth order respectively. They lie along the diagonal 

at f(x0)=1 as shown by bold italics in the following divided difference table. 

Table 5.2: Divided difference table 

Argument 

x 

Entry 

f(x) 

∆𝑓(𝑥) ∆2𝑓(𝑥) ∆3𝑓(𝑥) ∆4𝑓(𝑥) 

0 1 (14 − 1)

(1 − 0)
= 13 

   



1 14  (1 − 13)

(2 − 0)
= −6 

  

  (15 − 14)

(2 − 1)
= 1 

 (−2 −  −5 )

(4 − 0)
= 1 

 

2 15  (−5 − 1)

(4 − 1)
= −2 

 (1 − 1)

(6 − 0)
= 0 

  (5 − 15)

(4 − 2)
= −5 

 (3 −  −2 )

(6 − 1)
= 1 

 

4 5  (7 −5 )

(6 − 2)
= 3 

  

  (19 − 5)

(6 − 4)
= 7 

   

6 19     

 

You may attempt the following problems: 

P-5.1:  If f(x) = x3, obtain the leading term and the leading divided differences taking arguments 

x = a, b, c, & d. 

P-5.2:  Construct the divided difference table for the following data: 

x 5 7 11 13 21 

f(x) 150 392 1452 2366 9702 

 

P-5.3  Construct the divided difference table for the following data:  

x 1 3 4 6 10 

f(x) 0 18 57 177 765 

 

P-5.4:  Obtain third divided difference of the function ᴪ 𝑥 = 𝑥2 − 2𝑥 with arguments x = 2, 4, 

9, 10. 

5.4  Newton’s Divided Difference Interpolation Formula 



Let 𝑓 𝑥0 , 𝑓 𝑥1 , 𝑓 𝑥2 , … … . , 𝑓 𝑥𝑛  be (n+1) values (entries) corresponding to the 

arguments 𝑥0, 𝑥1, 𝑥2 … . . , 𝑥𝑛  which are not necessarily equispaced. With these (n+1) values we 

can fit a polynomial of degree n.  

Since the nth divided difference f(𝑥0, 𝑥1 , 𝑥2, … . 𝑥𝑛 )would be a constant, therefore, (n+1)
th

 

divided difference. 

 𝑓 𝑥, 𝑥0 , 𝑥1, 𝑥2 , … … . 𝑥𝑛 = 0 𝑓𝑜𝑟 𝑥 𝑒 𝑥0, 𝑥𝑛                          … … … … … … …… … … (5.11) 

Obviously 𝑓 𝑥, 𝑥0, 𝑥1, 𝑥2, … … . 𝑥𝑛   is a polynomial of degree (n+1) in x. 

Derivation:  From the definition of divided difference 

𝑓 𝑥, 𝑥0 =
𝑓 𝑥 − 𝑓 𝑥0 

𝑥 − 𝑥0
 

It implies that 

𝑓 𝑥 = 𝑓 𝑥0 +  𝑥 − 𝑥0 𝑓 𝑥, 𝑥0                       … … … …… … … (5.12) 

This is linear Newton’s divided difference interpolating polynomial. From the second 

divided difference 

𝑓 𝑥, 𝑥0, 𝑥1 =
𝑓 𝑥, 𝑥0 − 𝑓 𝑥0, 𝑥1 

𝑥 − 𝑥1
 

We get 

𝑓 𝑥, 𝑥0 = 𝑓 𝑥0, 𝑥1 + (𝑥 − 𝑥1)𝑓 𝑥, 𝑥0 , 𝑥1  

Substituting in Eqn. (3.12), we get 

𝑓 𝑥 = 𝑓 𝑥0 +  𝑥 − 𝑥0  𝑓 𝑥0, 𝑥1 +  𝑥 − 𝑥1 𝑓 𝑥, 𝑥0 , 𝑥1   

= 𝑓 𝑥0 +  𝑥 − 𝑥0 𝑓 𝑥0 , 𝑥1 +  𝑥 − 𝑥1 𝑓 𝑥, 𝑥0 , 𝑥1                       … … … … . (5.13) 

Continuing in this way, we get, 

𝑓 𝑥 = 𝑓 𝑥0 +  𝑥 − 𝑥0 𝑓 𝑥0, 𝑥1 +  𝑥 − 𝑥1 𝑓 𝑥, 𝑥0, 𝑥1 

+  𝑥 − 𝑥0  𝑥 − 𝑥1  𝑥 − 𝑥2 𝑓 𝑥0 , 𝑥1, 𝑥2, 𝑥3 

+   𝑥 − 𝑥0  𝑥 − 𝑥1  𝑥 − 𝑥2 … . .  𝑥 − 𝑥𝑛−1 𝑓 𝑥0, 𝑥1, 𝑥2 , … 𝑥𝑛−1, 𝑥𝑛  

+  𝑥 − 𝑥0  𝑥 − 𝑥1  𝑥 − 𝑥2 … . .  𝑥 − 𝑥𝑛 𝑓 𝑥, 𝑥0 , 𝑥1, 𝑥2 , … 𝑥𝑛−1, 𝑥𝑛   

………………(5.14) 

Hence, Eqns. (3.11) and (3.14) together yield 



𝑓 𝑥 = 𝑃 𝑥 = 𝑓 𝑥0 +  𝑥 − 𝑥0 𝑓 𝑥0, 𝑥1 +  𝑥 − 𝑥0  𝑥 − 𝑥1 𝑓 𝑥0, 𝑥1 , 𝑥2 

+  𝑥 − 𝑥0  𝑥 − 𝑥1  𝑥 − 𝑥2 𝑓 𝑥0 , 𝑥1, 𝑥2, 𝑥3 … …

+  𝑥 − 𝑥0  𝑥 − 𝑥1  𝑥 − 𝑥2 … . .  𝑥 − 𝑥𝑛−1 𝑓 𝑥0, 𝑥1, 𝑥2 , … 𝑥𝑛−1, 𝑥𝑛   

………..(5.15) 

Equation (3.15) is known as Newton’s divided difference interpolation polynomial 

It may also be written as 

𝑓 𝑥 = 𝑃 𝑥 =  𝑓 𝑥0, 𝑥1, 𝑥2 … . . 𝑥𝑘   𝑥 − 𝑥𝑚                   … … . . (5.16)

𝑘−1

𝑚=0

𝑛

𝑘=0

 

Example 5.3:  Obtain the Newton’s divided difference interpolating polynomial of degree less or 

equal to 4 and use it to evaluate f(6), given. 

x 5 7 11 13 21 

f(x) 150 392 1452 2366 9702 

 

Solution:  Given 𝑥0 = 5, 𝑥1 = 7, 𝑥2 = 11, 𝑥3 = 13, 𝑥4 = 21 . From the divided difference table, 

 we have  

𝑓 𝑥0 = 150, 𝑓 𝑥0, 𝑥1 = 121, 𝑓 𝑥, 𝑥0 , 𝑥1 = 24, 𝑓 𝑥0, 𝑥1, 𝑥2, 𝑥3 = 1 𝑎𝑛𝑑 𝑓 𝑥0, 𝑥1, 𝑥2, 𝑥3 , 𝑥4 

= 0.  

Argument 

x 

Entry 

f(x) 

∆𝑓(𝑥) ∆2𝑓(𝑥) ∆3𝑓(𝑥) ∆4𝑓(𝑥) 

5 150     

  121    

7 392  24   

  265  1  

11 1452  32  0 

  457  1  

13 2366  46   



  917    

21 9702     

 

Therefore, on substituting the values of xi’s and values of leading divided difference in Eqn. 

(5.15),  we obtain 

𝑓 𝑥 = 𝑃3 𝑥 = 150  𝑥 − 5 . 121 +  𝑥 − 5  𝑥 − 7 . 24 +  𝑥 − 5  𝑥 − 7  𝑥 − 11 . 1

+  𝑥 − 5  𝑥 − 7  𝑥 − 11  𝑥 − 13 . 0

= 150 + 121𝑥 − 605 + 24𝑥2 − 288𝑥 + 840 + 𝑥3 − 23𝑥2 + 167 𝑥 − 385 + 0 

= 𝑥3 + 𝑥2 

Which is Newton’s polynomial of degree 3. At  x=6. 

𝑓 6 = 63 + 62 = 216 + 36 = 252 

Remarks: if the form of the polynomial is not required then we can directly interpolate the value 

from Eqn. (5.15). For example, in the present case, 

𝑓 6 = 𝑃3 6𝑥 = 150  6 − 5 . 121 +  6 − 5  6 − 7 . 24 +  6 − 5  6 − 7  6 − 11 . 1 + 0 

= 150 + 121 − 24 + 5 + 0 

= 252 

5.5  Errors in Interpolating Polynomial 

If 𝑃𝑛 𝑥  be the Newton’s form of interpolating polynomial of degree less than or equal to 

n which interpolates f(x) at 𝑥0, 𝑥1, 𝑥2 … . . 𝑥𝑛 , then the interpolating error 𝐸𝑛 𝑥  of 𝑃𝑛 𝑥  is given 

by  

𝐸𝑛 𝑥 = 𝑓 𝑥 − 𝑃𝑛 𝑥            … … … … … …… … . (5.17) 

We know that the interpolating polynomial from 𝑃𝑛 𝑥  coincides with f(x) at 

𝑥0, 𝑥1, 𝑥2 … . . 𝑥𝑛  and deviates at all the other points in the interval (𝑥0, 𝑥𝑛 )  

Let 𝑥∗𝜀  𝑥0, 𝑥𝑛 be any point different from 𝑥0 , 𝑥1, 𝑥2 … . . 𝑥𝑛 .If 𝑃𝑛−1 𝑥  is the Newton 

form of interpolating which interpolates f(x) at 𝑥0, 𝑥1, 𝑥2 … . . 𝑥𝑛  and 𝑥∗, then 

𝑃𝑛−1 𝑥
∗ = 𝑓 𝑥∗ … … … … … …… … . (5.18) 

From eqn. (5.16) 



𝑓 𝑥𝑛+1 = 𝑃𝑛 𝑥 + 𝑓 𝑥0 , 𝑥1, 𝑥2 … . . 𝑥𝑛 , 𝑥∗   𝑥 − 𝑥𝑗  

𝑛

𝑗 =0

 

Putting x= x* in the above expression, we get from Eqn. (5.18). 

𝑓 𝑥∗ = 𝑃𝑛+1 𝑥
∗ = 𝑃𝑛 𝑥∗ + 𝑓 𝑥0, 𝑥1, 𝑥2 … . . 𝑥𝑛 , 𝑥∗   𝑥 − 𝑥𝑗  

𝑛

𝑗 =0

 

So that the interpolating error at x = x* is : 

𝐸𝑛 𝑥∗ = 𝑓 𝑥∗ −= 𝑃𝑛 𝑥∗  

= 𝑓 𝑥0 , 𝑥1, 𝑥2 … . . 𝑥𝑛 , 𝑥∗   𝑥 − 𝑥𝑗  

𝑛

𝑗 =0

… … … … …… . (5.19) 

Which is the next term in the Newton’s formula. 

5.6  Divided Difference and Derivatives  

We sate the theorem-3 without proof. It is useful in establishing a relationship between 

divided difference and the derivative of a function. It also helps us in estimating a useful bound 

on error. 

Theorem 5.3:  Let 𝑥0 , 𝑥1, 𝑥2 … . . 𝑥𝑛  be distinct numbers in the interval  𝛼, 𝛽  and f has 

continuous derivatives upto order (n+1) in the open interval (𝛼, 𝛽). If 𝑃𝑛 𝑥  is the interpolating 

polynomial of degree less than or equal to n, which interpolates f(x) at the point 𝑥0, 𝑥1, 𝑥2 … . . 𝑥𝑛  

then for each  𝑥𝜀 𝛼, 𝛽  there exists a number 𝜀(𝑥) in (𝛼, 𝛽) such that  

𝐸𝑛 𝑥 = 𝑓 𝑥 − 𝑃𝑛 𝑥 =
𝑓𝑛+1 𝜉 

  𝑛 + 1 ! 
 𝑥∗ − 𝑥0  𝑥

∗ − 𝑥1 … . .  𝑥∗ − 𝑥𝑛 …… … (5.20) 

At  x=x*, Eqns. (3.19) & (3.20) yield, 

𝐸𝑛 𝑥∗ = 𝑓 𝑥∗ − 𝑃𝑛 𝑥∗ =
𝑓𝑛+1 𝜉 𝑥∗  

  𝑛 + 1 ! 
 𝑥∗ − 𝑥0  𝑥∗ − 𝑥1 … . .  𝑥∗ − 𝑥𝑛 … … … 5.20𝑎  

= 𝑓 𝑥0 , 𝑥1, 𝑥2 … . . 𝑥𝑛 , 𝑥∗   𝑥∗ − 𝑥𝑗  

𝑛

𝑗 =0

 

Refer Eqn (5.19)…..(5.20b) 

Let 𝑥∗ − 𝑥𝑛+1   then on equating (5.20a) & (5.20), we get 



𝑓 𝑥0, 𝑥1, 𝑥2 … . . 𝑥𝑛+1 =
𝑓𝑛 𝜉 

  𝑛 + 1  
= ∆𝑛+1𝑓 𝑥0                          (5.21) 

Further, it can be shown that 

𝜉𝜀(min 𝑥𝑖 , max 𝑥𝑖) 

The Eqn. (5.21) establishes a relationship between divided difference and the derivatives of the 

function. This result is stated without proof in Theorem 5.4. 

Theorem 5.4:  Let f(x) be real valuated function defined on  𝛼, 𝛽   and n times differentiable 

in 𝛼, 𝛽  . If 𝑥0 , 𝑥1, 𝑥2 … . . 𝑥𝑛  are (n+1) distinct points in then there exist 𝜉𝜀(𝛼, 𝛽)such that  

𝑓 𝑥0, 𝑥1, 𝑥2 … . . 𝑥𝑛 =
𝑓𝑛 𝜀 

  𝑛!  
= ∆𝑛𝑓 𝑥0 … … … …… … . . (5.22) 

Corollary 5.1: if f(x) = x
n
, then 

∆𝑛 𝑥0 = 𝑓 𝑥0, 𝑥1, 𝑥2 … . . 𝑥𝑛 =
 𝑛! 

 𝑛! 
= 1 … …… … … . (5.23) 

Corollary 5.2 :  For k,n and f(x) = x
k
, then 

𝑓 𝑥0, 𝑥1, 𝑥2 … . . 𝑥𝑛 = 0                     … … … … …… . . (5.24) 

Since 

𝑑𝑛 𝑥𝑘 

𝑑 𝑥𝑛 
= 0 

Example 5.4:  Consider the first divided differences 

𝑓 𝑥, 𝑥0 =
𝑓 𝑥 − 𝑓 𝑥0 

𝑥 − 𝑥0
                …… … … … . . (5.25𝑎) 

By mean value theorem 

𝑓 𝑥1 = 𝑓 𝑥0 +  𝑥1 − 𝑥0 𝑓
′ 𝜉  𝑤𝑕𝑒𝑟𝑒 𝑥0 < 𝜉 < 𝑥1 … … … . (5.25𝑏) 

Eliminating f(x1) between Eqns. (5.25a) & (5.25b) we obtain 

𝑓 𝑥, 𝑥0 = 𝑓 ′ 𝜉 𝑤𝑕𝑒𝑟𝑒𝑥0 < 𝜉 < 𝑥1 … … … . (5.26) 

Corollary 5.3:  Let f(x) be a polynomial in given by 

𝑓 𝑥 = 𝑎0 + 𝑎1 + 𝑎2𝑥
2 + ⋯… . +𝑎𝑛𝑥𝑛(𝑤𝑕𝑒𝑟𝑒 𝑎𝑛 ≠ 0) 

Then, using cor. (5.1) & cor. (5.2), we obtain 



∆2𝑓 𝑥 = 𝑓 𝑥0, 𝑥1, 𝑥2 … . . 𝑥𝑛  = 0 + 𝑎𝑛

 𝑛! 

 𝑛! 
= 𝑎𝑛 … … … …… … . (5.27) 

All illustration is given below: 

Example 5.5:  Let f(x) = 3x
4
+5x

3
-8x

3
+7x+14. Obtain the value of  

f[-1, 2, 3, -2]=f[5,8,10,9,4]=f[j,k,l,m,n] 

Solution:  Here f(x) is a polynomial of degree 4, therefore fourth order divided difference of f(x) 

with any set of arguments are constant and equal to 3, where 3 is the coefficient of x
4
 in f(x).  

Thus, 

f[-1, 2, 3, -2]=f[5,8,10,9,4]=f[j,k,l,m,n]=3     Ans. 

You may now try the following exercises: 

E-5.5:  obtain the polynomial of the lowest possible degree which assumes the values 15, 12, 3, -

21, when x has values 1,2,3,-1 respectively. 

E-5.6:  The observed values of a function being 72, 168, 120, and 63, respectively at the four 

positions 9,3,7 and 10 of the independent variable. Obtain the estimate of the value of the 

function at x= 4 using Newton’s interpolation formula. 

E-5.7:  Obtain the Newton’s divided difference polynomial satisfied by (0,2) (1,3) (3,17), 

(6,158). 

E- 5.8:  From the following table of values, obtain the Newton’s form of interpolating f(n). 

n -1 0 3 6 7 

f(n) 3 -6 39 822 1611 

Also find the approximation of f(x) at n= 2 and n=4. 

E- 5.9:  Using Newton’s divided difference interpolation formula, obtain f(2), f(8) and f(18) 

from the following table. 

x 4 5 7 9 11 14 

f(x) 48 100 294 648 1210 2548 

 

E- 5.10:  Use the following data to find Newton’s divided difference polynomial which 

approximates f(x). Hence obtain the value of f(5). 

x 0 2 3 4 7 9 

f(x) 4 26 58 112 466 922 

 



5.7  Summary 

  In this unit we have derived Newton’s general form of interpolating polynomial. It is 

used when given abscissa are not necessarily at equal intervals. This form is useful in deriving 

some other interpolating polynomials (discussed in Unit 6). Concepts of divided differences have 

been introduced and some of its important properties have been discussed before deriving 

Newton’s general form. The error term has also been derived. The main formulae are listed 

below.  

1. 𝑓 𝑥0, 𝑥1 , 𝑥2 … … 𝑥𝑛 =
𝑓 𝑥1 ,𝑥2…𝑥𝑛  −𝑓 𝑥0 ,𝑥1 ,𝑥2….𝑥𝑛−1 

𝑥𝑛 −𝑥0
 

2. 𝑓 𝑥 = 𝑓 𝑥0 +  𝑥 − 𝑥0 𝑓 𝑥0, 𝑥1 +  𝑥 − 𝑥1 𝑓 𝑥, 𝑥0 , 𝑥1 +  𝑥 − 𝑥0  𝑥 − 𝑥1  𝑥 −

𝑥2 𝑓 𝑥0, 𝑥1, 𝑥2, 𝑥3 +

  𝑥 − 𝑥0  𝑥 − 𝑥1  𝑥 − 𝑥2 … . .  𝑥 − 𝑥𝑛−1 𝑓 𝑥0 , 𝑥1, 𝑥2 , … 𝑥𝑛−1, 𝑥𝑛  +  𝑥 − 𝑥0  𝑥 −

𝑥1  𝑥 − 𝑥2 … . .  𝑥 − 𝑥𝑛 𝑓 𝑥, 𝑥0, 𝑥1, 𝑥2, … 𝑥𝑛−1, 𝑥𝑛   

3. 𝐸𝑛(𝑥) = 𝑓 𝑥, 𝑥0 , 𝑥1, 𝑥2 … . . 𝑥𝑛    𝑥 − 𝑥𝑗  
𝑛
𝑗 =0  

4. 𝑓 𝑥0, 𝑥1 , 𝑥2 … . . 𝑥𝑛  =
𝑓𝑛  𝑛 ! 

 𝑛 ! 
= ∆𝑛𝑓 𝑥0  𝑤𝑕𝑒𝑟𝑒 𝜉𝜀(min 𝑥𝑖 , max 𝑥𝑖) 

 

5.8         Solutions and Answers 

E-5.1  Given f(x) = x
3
 and x = a, b, c, d, 

∴ 𝐿𝑒𝑎𝑑𝑖𝑛𝑔 𝑡𝑒𝑟𝑚 𝑓 𝑎 =  𝑎3 

𝐿𝑒𝑎𝑑𝑖𝑛𝑔 𝑓𝑖𝑟𝑠𝑡 𝑑𝑖𝑣. 𝑑𝑖𝑓𝑓. : 𝑓 𝑎, 𝑏 =  
𝑓 𝑏 − 𝑓(𝑎)

𝑏 − 𝑎
=

𝑏3 − 𝑎3

𝑏 − 𝑎
= 𝑏2 + 𝑎𝑏 + 𝑎2 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦  𝑓 𝑏, 𝑐 =  
𝑓 𝑐 − 𝑓(𝑏)

𝑐 − 𝑎
= 𝑐2 + 𝑏𝑐 + 𝑏2 

𝐿𝑒𝑎𝑑𝑖𝑛𝑔 𝑠𝑒𝑐𝑜𝑛𝑑 𝑑𝑖𝑣. 𝑑𝑖𝑓𝑓. : 
𝑓 𝑏, 𝑐 − 𝑓(𝑎, 𝑏)

𝑐 − 𝑎
= 𝑑 + 𝑐 + 𝑏 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦  𝑓 𝑏, 𝑐, 𝑑 =  
𝑓 𝑐, 𝑑 − 𝑓(𝑏, 𝑐)

𝑑 − 𝑏
= 𝑑 + 𝑐 + 𝑏 

𝐿𝑒𝑎𝑑𝑖𝑛𝑔 𝑡𝑕𝑖𝑟𝑑 𝑑𝑖𝑣. 𝑑𝑖𝑓𝑓. : 𝑓 𝑎, 𝑏, 𝑐, 𝑑 =  
𝑓 𝑏, 𝑐, 𝑑 − 𝑓(𝑎, 𝑏, 𝑐)

𝑑 − 𝑎
= 1 

𝐴𝑛𝑠. 𝑎3;  𝑏2 + 𝑎𝑏 + 𝑎2; 𝑎; 1 



P 5.2 Divided difference table 

x f(x) ∆𝑓(𝑥) ∆2𝑓(𝑥) ∆3𝑓(𝑥) ∆4𝑓(𝑥) 

5 150     

  121    

7 392  24   

  265  1  

11 1452  32  0 

  457  1  

13 2366  46   

  917    

21 9702     

 

Figures within brackets show leading term and leading divided differences. 

P-5.3  Divided difference table. 

x f(x) ∆𝑓(𝑥) ∆2𝑓(𝑥) ∆3𝑓(𝑥) ∆4𝑓(𝑥) 

1 0     

  9    

3 18  10   

  39  -0.6  

4 57  7  0.1857 

  60  1.0714  

6 177  14.5   

  147    

10 765     

 

P-5.4  ᴪ(x) is a polynomial in x and of order 2. Therefore, the second divided differences are 

constant. Thus the third and higher divided differences with any set of arguments become zero. 

Hence,    f[2,4,9,10] = 0 

P-5.5  We obtain f(1)=15, f(1,2] = -3, f[1,2,3]=-3 and f[1,2,3,-1]=1 



 Newton’s divided difference interpolating polynomial is  

P3(x)= x
3
-9x

2
+17x+6..  

P-5.6  We obtain f(9)=72, f[9,3]=-16, f[9,3,7]=2 and f[9,3,7,10]=1 

 Newton’s divided difference interpolating polynomial is 

 P3(x)=72+ (x-9)(-16)+(x-9)(x-3)(02)+(x-9)(x-3)(x-7).1 and P3(4)=177. 

P-5.7 We obtain 

 f(-1)=3, f[-1,0]=-9, f[-1,0,3]=6, f[-1,0,3,6]=5 and f[-1,0,3,6,7]=1 

 Newton’s form of polynomial is  

 f(n)= P4(n)=3+(-9)(n+1)+6(n+1)n+5(n+1)n(n+3)+(n+1)n(n-3)(n-6) 

 which yields f(2) = 6 and f(4)=138 

P5.9 P3(x)=x
3
-x

2
 

 F(2)= P3(2)=4; f(8)= P3(8)=448 and f(15)= P3(15)=3150 

P-5.10 Here, f(0)=4, f[0,2]=11, f[0,2,3]=7 and f[0,2,3,4]=1 and all fourth order divided 

difference are unity. 

Newton’s divided difference interpolating polynomial is 

 P3(x) =x
3
+2x

2
+3x+4  

which gives f(5)= P3(5)=194 

5.9   Further Readings 

1. Finite Difference & Numerical Analysis, S. Chand & Company, New Delhi: H.C. Saxena 

2. Numerical Mathematical Analysis, John Hopkins Press, Baltimore New York; James B. 

Scarborough 

3. Introductory Method of Numerical Analysis, Prentice Hall of India Pvt. Ltd.: S.S. Sastry 

4. Introduction to Numerical Analysis, Tata McGraw Hill Publishing Company, New Delhi: 

S.T. Hildebrand 

5. Numerical Analysis, McMillan Publishing Company, New York: M.J. Marom 

6. Numerical Method for Scientific & Engineering Computation, New Age International 

Publishers, New Delhi: M.K. Jain, S.R.K. Iyengar & R.K. Jain 



Unit-6   Lagrange’s Interpolation  

Structure 

6.1    Introduction 

6.2    Objectives 

6.3    Lagrange’s  Interpolation Polynomial 

6.4    General Error term or remainder term 

6.5    Linear Interpolation 

6.5.1  Error in Linear Interpolation 

6.6    Summary  

6.7    Solutions/Answers 

6.8    Further Readings 

6.1  Introduction 

Let f(x) be a real values function of x defined on the interval [a,b]. Suppose that we are 

given (n+1) values of f(x) as f(x0), f(x1), f(x2), …….f(xn) at points x0, x1, x2………xn. 

respectively which are not necessarily equally spaced.  

In this unit we shall show that there exists a polynomial P(x) of degree less than equal to 

n agrees with the values of f(x) at the given (n+1) distinct points (abscissa). If P(x) is 

interpolating polynomial, then P(x) must pass through the given (n+1) points (xi), f(xi) for i= 

01,2,…..,n, so that.  

In section 4.2 we shall derive the Lagrange’s from of interpolating polynomial having the 

above property. In section 4.3 we shall derive the general error term in approximating the 

function f(x) by this interpolating polynomial Pn(x) at a point say x=x*. We shall explore the 

possibility of calculating a bound error over an interval.  

6.2  Objectives 

After going through this unit you should be able to  

 Find the Lagrange’s form of interpolating polynomial which agrees with f(x) at (n+1) 

distinct abscissa. 

 Compute the approximate value of f(x) at a non-tabular point x=x*. 

 Computer the error committed in interpolation. 



 Find an upper bound of the magnitude of the error. 

6.3  Lagrange’s Interpolating Polynomial 

Suppose we are given (n+1) values f(x0), f(x1), f(x2), …….f(xn) of the function f(x) for x 

= x0, x1, x2………xn.  Let P(x) be a the required interpolating polynomial that agrees with the 

given (n+1) values of the function f(x) at the given points x= x0, x1, x2………xn.   

One of the possible polynomial can be as under 

𝑃 𝑥 = 𝐴0 𝑥 − 𝑥1  𝑥 − 𝑥2  𝑥 − 𝑥3 … . .  𝑥 − 𝑥𝑛 + 𝐴1 𝑥 − 𝑥0  𝑥 − 𝑥2  𝑥 − 𝑥3 … . .  𝑥 − 𝑥𝑛 

+ ⋯… . + + 𝐴𝑛 𝑥 − 𝑥0  𝑥 − 𝑥2  𝑥 − 𝑥3 … . .  𝑥 − 𝑥𝑛−1 … … . .  6.1  

 

This a polynomial of degree n, since each term of Equation (4.1) is a product of n factors 

in x. The constants A0, A1, A2,….An are unknown and are to be so chosen that f(x) with P(x) at 

(n+1) points x0, x1, x2………xn.   

At   x= x0 

 f(x0)     =      P(x0)  

therefore, from Equation (4.1), we get 

𝐴0 =
𝑓 𝑥0 

 𝑥0 − 𝑥1  𝑥0 − 𝑥2  𝑥0 − 𝑥3 … . .  𝑥0 − 𝑥𝑛 
 

At   x= x1 

 f(x1)     =      P(x1)  

therefore, from Equation (4.1), we get 

𝐴1 =
𝑓 𝑥1 

 𝑥1 − 𝑥0  𝑥1 − 𝑥2  𝑥1 − 𝑥3 … . .  𝑥1 − 𝑥𝑛 
 

Similarly, 

𝐴2 =
𝑓 𝑥2 

 𝑥2 − 𝑥0  𝑥2 − 𝑥2  𝑥2 − 𝑥3 … . .  𝑥2 − 𝑥𝑛 
 

And finally, 

𝐴𝑛 =
𝑓 𝑥𝑛 

 𝑥𝑛 − 𝑥0  𝑥𝑛 − 𝑥2  𝑥𝑛 − 𝑥3 … . .  𝑥𝑛 − 𝑥𝑛−1 
 



Putting all these values of A0, A1, A2,….An in Eqn. (4.1) we get the Lagrange’s interpolating 

polynomial as  

𝑓 𝑥 =
 𝑥 − 𝑥1  𝑥 − 𝑥2  𝑥 − 𝑥3 … . .  𝑥 − 𝑥𝑛 

 𝑥0 − 𝑥1  𝑥0 − 𝑥2  𝑥0 − 𝑥3 … . .  𝑥0 − 𝑥𝑛 
+ 𝑓 𝑥0  

+
 𝑥 − 𝑥0  𝑥 − 𝑥2  𝑥 − 𝑥3 … . .  𝑥 − 𝑥𝑛 

 𝑥1 − 𝑥0  𝑥1 − 𝑥2  𝑥1 − 𝑥3 … . .  𝑥1 − 𝑥𝑛 
𝑓 𝑥1 + ⋯ . + 

 𝑥 − 𝑥0  𝑥 − 𝑥2  𝑥 − 𝑥3 … . .  𝑥 − 𝑥𝑛−1 

 𝑥𝑛 − 𝑥0  𝑥𝑛 − 𝑥2  𝑥𝑛 − 𝑥3 … . .  𝑥𝑛 − 𝑥𝑛−1 
𝑓 𝑥𝑛 …… … . (6.2) 

Lagrange’s polynomial may alternatively be written as: 

𝑓 𝑥 

 𝑥 − 𝑥0  𝑥 − 𝑥1  𝑥 − 𝑥2 … . .  𝑥 − 𝑥𝑛 

=
𝑓 𝑥0 

 𝑥 − 𝑥0  𝑥0 − 𝑥1  𝑥0 − 𝑥2 … . .  𝑥0 − 𝑥𝑛 

+
𝑓 𝑥1 

 𝑥 − 𝑥1  𝑥1 − 𝑥0  𝑥1 − 𝑥2 … . .  𝑥1 − 𝑥𝑛 
+ ⋯… … … … …… … … … … … …… 

+
𝑓 𝑥𝑛 

 𝑥 − 𝑥𝑛  𝑥𝑛 − 𝑥0  𝑥𝑛 − 𝑥1 … . .  𝑥𝑛 − 𝑥𝑛−1 
… … …… … … … (6.3) 

Third form of the Lagrange’s polynomial is as follows: 

𝑓 𝑥 = 𝐿0 𝑥 𝑓 𝑥0 + 𝐿1 𝑥 𝑓 𝑥1 + ⋯𝐿𝑛 𝑥 𝑓 𝑥𝑛  

=  𝐿𝑘 𝑥 𝑓 𝑥𝑘 …… … … … … … … …… … … . (6.4)

𝑛

𝑘=0

 

Where𝐿𝑘 𝑥 =
 𝑥−𝑥0  𝑥−𝑥1  𝑥−𝑥2 ….. 𝑥−𝑥𝑘−1  𝑥−𝑥𝑘+1 ……. 𝑥−𝑥𝑛  

 𝑥𝑘−𝑥0  𝑥𝑘−𝑥𝑘−1  𝑥𝑘−𝑥𝑘+1 ……….. 𝑥𝑘−𝑥𝑛  
… … … … (6.5) 

for k= 0,1,2,……n. 

The polynomial Lk(x), which are of degree less than equal to n, are called Lagrange’s 

interpolation coefficients. It is trivial to show that Lagrange’s interpolating polynomial are 

unique.  

Some major advantages of this polynomial are as follows: 

- Lagrange’s polynomial is simple and by symmetry easy to remember. 

- There is no need to construct the divided difference table for its construction and 

application. We can directly interpolate the unknown value f(x*) for any x=x*. 



- There is no need to construct the divided difference table for its construction and 

application. We can directly interpolate the unknown value f(x*) for any x= x*. 

- The coefficients Lk (x)’s are easily determined.  

- It can be used for both equal and unequal intervals and the abscissa x0, x1, x2………xn 

need not be in order.  

Its major disadvantages is that there is always a chance of committing some computational 

mistake due to a number of positive and negative sings in the numerator and denominator of each 

term. Secondly, if n is large then evaluation involves a lot of computational work. 

The lagrange’s form (4.2) shows existence of an interpolating polynomial through the given 

set of points. 

Theorem 6.1:  If f(x) is a continuous function defined in the interval [a,b] and the values at f(x0), 

f(x1), f(x2)……..f(xn) are given for (n+1) points x= x0, x1, x2………xn then exists an interpolating 

polynomial Pn(x) of degree less than equal to n which in unique.  

Proof: We have already seen that if (n+1) values of f(x) are given at x= x0, x1, x2………xn 

distinct points, then there exist a interpolating polynomial; Lagrange’s form is one such 

polynomial. 

𝑃𝑛 𝑥 =
 𝑥 − 𝑥1  𝑥 − 𝑥2  𝑥 − 𝑥3 … . .  𝑥 − 𝑥𝑛 

 𝑥0 − 𝑥1  𝑥0 − 𝑥2  𝑥0 − 𝑥3 … . .  𝑥0 − 𝑥𝑛 
+ 𝑓 𝑥0  

+
 𝑥 − 𝑥0  𝑥 − 𝑥2  𝑥 − 𝑥3 … . . + 𝑥 − 𝑥𝑛 

 𝑥1 − 𝑥0  𝑥1 − 𝑥2  𝑥1 − 𝑥3 … . .  𝑥1 − 𝑥𝑛 
𝑓 𝑥1 + ⋯ . + 

 𝑥 − 𝑥0  𝑥 − 𝑥1  𝑥 − 𝑥2 … . .  𝑥 − 𝑥𝑛−1 

 𝑥𝑛 − 𝑥0  𝑥𝑛 − 𝑥2  𝑥𝑛 − 𝑥3 … . .  𝑥𝑛 − 𝑥𝑛−1 
𝑓 𝑥𝑛 …… … . (6.6) 

It agrees at x= x0, x1, x2………xn since 

          P(x1)  = f(x1)                                           for i= 0,1,2,……xn. 

Now let 𝑃𝑛 𝑥  𝑎𝑛𝑑 𝑄𝑛 𝑥  be two distinct interpolating polynomials of degree less than equal to 

n, which interpolates f(x) at (n+1) distinct points x= x0, x1, x2………xn. 

Let us define 

𝑕 𝑥        =       𝑃𝑛 𝑥 = 𝑄𝑛 𝑥                            (6.8) 

h(x) being the difference of two polynomial of degrees than equal to n, is also a polynomial of 

degree than equal to n. 

From (6.7) and (6.8) 



𝑕 𝑥𝑖 = 𝑃 𝑥𝑖 − 𝑄 𝑥𝑖 = 𝑓 𝑥𝑖 − 𝑓 𝑥𝑖 = 0 𝑓𝑜𝑟 𝑖 = 0,1,2, … . . , 𝑛. 

Thus, h(x) has (n+1) distinct zeros. 

Lemma: If Pm(x) and Qm(x) are two polynomials of degrees than equal tom, which agree at 

(m+1) distinct points x = x0, x1, x2………xn then Pm(x) = Qm(x) identically.  

It may be conclude that 

h(x)   = 0 (identically) 

or,   Pn(x)= Qn(x)   = 0 

or,  Pn(x)= Qn(x)                                            ……………….(6.9)   

Hence proved 

This fact leads us to conclude that although the forms of Lagrange’s polynomial and 

Newton’s polynomial are different, but they give the identical results.  

Let us consider an example. It explain how to construct Lagrange’s form of interpolating 

polynomial and compare it with Newton’s form. 

Example 6.1:  Use the following data to obtain the interpolating polynomial of  

(i) Lagrange’s form, 

(ii) Newton’s form 

And show that they are identical. Also find out f(3). 

x -1 0 2 5 

f(x) 9 5 3 15 

 

Solution: 

Part (i)   Here 

𝑥0 = −1 𝑥2 = 0 𝑥3 = 2 𝑥4 = 5 

f(𝑥0)=9 f(𝑥1)=5 f(𝑥2)=3 f(𝑥3)=15 

 

Therefore, from Eqn. (4.2) the Lagrange’s interpolating polynomial is  

𝑃3 𝑥 =
 𝑥 − 0  𝑥 − 2  𝑥 − 5 

 −1 − 0  −1 − 2  −1 − 5 
+ (9) +

  𝑥 − (−1   𝑥 − 2  𝑥 − 5 

[0 − (−1) 0 − 2  0 − 5 
(5) + 



  𝑥 − (−0   𝑥 − 0  𝑥 − 5 

[2 − (1) 2 − 0  2 − 5 
 3 +       

  𝑥 − (−1   𝑥 − 0  𝑥 − 2 

[5 − (−1) 5 − 0  5 − 2 
 15  

=
𝑥 𝑥 − 2  𝑥 − 5 

 −1  −3  −6 
+  9 +             

  𝑥 + 1   𝑥 − 2  𝑥 − 5 

(1) −2  −5 
(5) + 

 𝑥 + 1  𝑥 − 5 

(3) 2  −3 
 3       +        

 𝑥 + 1 𝑥 𝑥 − 2 

(6) 5  3 
 15  

=  −
1

2
  𝑥3 − 7𝑥2 + 10𝑥 +  

1

2
  𝑥3 − 6𝑥2 + 3𝑥 + 10  

−  
1

6
  𝑥3 − 4𝑥2 + 5𝑥 +  

1

6
  𝑥3 − 𝑥2 + 2𝑥  

𝑓 𝑥 = 𝑃3 𝑥 = 𝑥2 − 3𝑥 + 5 

…………….(6.10) 

Which gives 

𝑓 3 = 𝑃3 3 = 32 −  3  3 + 5 = 5 

Part (ii) For Newton’s interpolating polynomial we construct the divided difference table. 

x f(x) ∆𝑓(𝑥) ∆2𝑓(𝑥) ∆3𝑓(𝑥) 

-1 9 (5 − 9)

 0 − (−1) 
= −4 

  

0 5  { −1 −  −4 }

{2 −  −1 }
= 1 

 

  (3 − 5)

(2 − 0)
= −1 

 0 

2 3  {4 −  −1 }

(5 − 0)
= 1 

 

  (15 − 3)

(5 − 2)
= 4 

  

5 15    



 

Fingers in bold italics in the above table are the leading term and leading divided differences. 

Therefore, Newton’s interpolating polynomial is given by 

𝑓 𝑥 = 𝑃3 𝑥 = 9 +  𝑥— 1  −4 +  𝑥— 1  𝑥 − 0  1 +  𝑥— 1  𝑥 − 0  𝑥 − 2  0   

= 9 − 4 𝑥 + 1 + 𝑥 𝑥 + 1 + 0 

= 9 − 4𝑥 − 4 + 𝑥2 + 𝑥 

= 𝑥2 − 3𝑥 + 5                                   … … … …… … . (6.11) 

From Eqns. (6.11) & (6.12) we observe that the polynomials 𝑃3 𝑥  and 𝑃3 𝑥  are identical. 

Although we are given 4 points but eh interpolating polynomials are of degrees 2 in each case, 

since the second divided differences are constant.  

𝑓 3 = 𝑃3 𝑥 = 32 −  3  3 + 5 = 5 

Example 6.2:  The mode of a certain frequency curve y= f(x) is expected to be very near to x= 7. 

Let the frequency function y= f(x) for x= 6.9, 7.0 and 7.5 be equal to 0.36 , 0.40 and 0.30 

respectively. Compute the approximate value of the mode and the maximum of f(x).  

Solution:  Given f(6.9)= 0.36, f(7.0)=0.40 and f(7.5)= 0.30. 

𝑓 𝑥 =
 𝑥 − 7.0  𝑥 − 7.5 

 6.9 − 7.0  6.9 − 7.5 
+ (0.36) +

 𝑥 − 6.9  𝑥 − 7.5 

 7.0 − 6.9  7.0 − 7.5 
+ 

 𝑥 − 6.9  𝑥 − 7.0 

 7.5 − 6.9  7.5 − 7.0 
 0.30       

=  𝑥 − 7.0  𝑥 − 7.5  6 +  𝑥 − 6.9  𝑥 − 7.5  −8 +  𝑥 − 6.9  𝑥 − 7.0  1  

= 6𝑥2 − 87𝑥 + 315 − 8𝑥2 +  115.2 𝑥 − 414 + 𝑥2 −  13.9 𝑥 + 48.3 

= −𝑥2 +  14.3 𝑥 − (50.7) 

…………….(6.12) 

As the frequency density function. 

Now, at the mode of the distribution, f(x) is maximum so that 

f' (x)   = 0, 

and  f”  (x)  <  0. 



From Equation (6.12), 

f'(x) = -2+14.3=0   gives  x= 7.15 

but 

[f”’  (x)]x=7.15       =   -2 < 0. 

Hence the mode of the density is at x = 7.15 

Further on putting x= 7.15 in (6.12), we get  

 fmax (x)    =    -(7.15)2+ (4.13) (7.15)-50.7 

   =   (51.1225)+(102.245)-(50.7) 

   =    (0.4225) 

You may try the following exercises: 

P-6.1  If f(1)  = (-3), f(3)=  9,   f(4)  = 30 and f(6)   = 132, obtain the Lagrange’s interpolating 

polynomial of f(x) and compute f(2) and f(5). 

P – 6.2  Use Lagrange’s interpolation formula to find the values of y corresponding to x=8 and 

x= 10 from the following table: 

x 5 6 9 11 

y=f(x) 12 13 14 16 

 

P-6.3 The mode of a certain frequency curve y= f(x) is expected around x= 9.1 and the values of 

frequency function f(x) equal to 0.30, 0.35 and 0.25 for x= 8.9. 9.0 and 9.3 respectively. 

Calculate the mode and maximum of f(x). 

P – 6.4:  Given f(0)=3, f(1)=6,  f(2)= 11,  f(3)= 18, f(4)=27. Use Lagrange’s formula to get the 

form of f(x). 

P-6.5  Obtain the form of the function y = f(x), using Lagrange’s interpolating formula given that 

x 0 2 3 6 

y=f(x) 648 704 729 792 

 

Also find estimates of f(1) and f(5). 



P-6.6  Find the unique polynomial of degree 2 or less such that f(1) = 1 ,f (3)= 37 and f(4) = 

61,using the Lagrange’s interpolating and the Newton’s divided difference interpolation. Also 

evaluate P(1.5). 

6.4  General Error Term of Remainder Term 

In deriving the expression for truncation error or remainder term, if the Lagrange’s 

interpolating polynomial Pn(x) be used to interpolate or approximate f(x) then following Rolle’s 

theorem, whose statement (without proof) is given below is helpful 

Theorem 6.2:  Let g(x) be a function of degree n defined in the closed interval [a,b], which is 

continuous in the closed interval [a,b] and differentiable in the open interval (a,b) such that g(a) 

=  g(b), then g’(x) vanishes at (n-1) points in (a,b), g” (x) vanishes at (n-2) points in (a,b), ….g
(n-

1)
 (x) vanishes at least at one point in (a,b). 

Let f(x) be any function which is approximated by means of some polynomial Pn(x) of 

degree n in x. Suppose that f(x) satisfies all the conditions of Rolle’s theorerm. Let f(𝑥0 ), 

f(1),….., f(𝑥𝑛 ) be the given values of the function at x= x0, x1, x2………xn .  

Pn(x) is the interpolating polynomial for f(x), therefore,  

𝑃𝑛 𝑥1 = 𝑓 𝑥𝑗                               𝑓𝑜𝑟 𝑖 = 0,1,2, … 𝑛.    

𝐿𝑒𝑡    𝑓 𝑥   = 𝑃𝑛 𝑥 + ᴪ 𝑥  

                    = 𝑃𝑛 𝑥 + 𝑔 𝑥   𝑥 − 𝑥0  𝑥 − 𝑥1 … … .  𝑥 − 𝑥𝑛               … …… … … … . (6.13)  

𝑊𝑕𝑒𝑟𝑒      ᴪ 𝑥 = 𝑔(𝑥) 𝑥 − 𝑥0  𝑥 − 𝑥1 … … .  𝑥 − 𝑥𝑛  

𝐻𝑒𝑟𝑒      ᴪ 𝑥  𝑕𝑎𝑠  𝑛 + 1 𝑟𝑜𝑜𝑡𝑠 𝑎𝑡 x =  𝑥0 , 𝑥1, 𝑥2 … … … 𝑥𝑛    

In order to determine g(x), we define 

𝑄 𝑡 = 𝑓 𝑡 = 𝑃𝑛 𝑡 − 𝑔 𝑡  𝑡 − 𝑥0  𝑡 − 𝑥1 … … … 𝑡 − 𝑥𝑛 … …… … . (6.14) 

Now 𝑄 𝑡  vanishes at (n+1) values of t, viz t=𝑥0 , 𝑥1, 𝑥2 … … … 𝑥𝑛   

In addition, 𝑄 𝑡 = 0 𝑓𝑜𝑟 𝑡 = 𝑥, using Equation (6.13). 

Thus 𝑄 𝑡 [p possesses (n+2) real roots 𝑥, 𝑥0 , 𝑥1, 𝑥2 … … … 𝑥𝑛 . 𝑄(𝑥) is continuous function of t 

and possesses continuous derivatives of all order within the closed interval [𝑥0 , 𝑥𝑛 ]. 

Hence, by Rolles theorem, 

𝑄′   𝑡  𝑕𝑎𝑠 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡  𝑛 + 1  𝑟𝑜𝑜𝑡𝑠 𝑙𝑦𝑖𝑛𝑔 𝑏𝑒𝑡𝑤𝑒𝑒𝑛(𝑥0, 𝑥𝑛).  



𝑄′′  𝑡  𝑕𝑎𝑠 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡  𝑛  𝑟𝑜𝑜𝑡𝑠 𝑙𝑦𝑖𝑛𝑔 𝑏𝑒𝑡𝑤𝑒𝑒𝑛(𝑥0, 𝑥𝑛).  

…………………………………………………….. 

𝑄(𝑛+1) 𝑡  𝑕𝑎𝑠 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑟𝑜𝑜𝑡, say t = ξ in the interval (𝑥0, 𝑥𝑛) 

Now from (4.14) and the fact that 𝑃𝑛
(𝑛+1) 𝑡  = 0, we obtain  

𝑄(𝑛+1) 𝑡 =  𝑓 𝑛+1  𝑡 − 𝑔 𝑡   𝑛 + 1 !               … … … … . . (6.15) 

Since, 

𝑄(𝑛+1) 𝑡 𝑣𝑎𝑛𝑖𝑠𝑕𝑒𝑠 𝑎𝑡 𝑡𝑕𝑒 𝑝𝑜𝑖𝑛𝑡 𝑡 = 𝜉 𝑤𝑕𝑒𝑟𝑒𝑥0 < 𝜉 < 𝑥𝑛  

Therefore, 

𝑓(𝑛+1) 𝜉 = 𝑔 𝑡   𝑛 + 1 !     𝑓𝑜𝑟 𝑥0 < 𝜉 < 𝑥𝑛    

This implies for all t, 

𝑔 𝑡 =
𝑓(𝑛+1) 𝜉 

  𝑛 + 1 ! 
     𝑓𝑜𝑟 𝑥0 < 𝜉 < 𝑥𝑛    … … … … . . (6.16)  

The same result holds for x, if x𝜀  𝑥0, 𝑥𝑛 . 

Putting this value of g(x) from Eqn. (6.16) in Eqn (6.13) we find that  

𝑓 𝑥 = 𝑃𝑛 𝑥 +
𝑓(𝑛+1) 𝜉 

  𝑛 + 1 ! 
 𝑥 − 𝑥0  𝑥 − 𝑥1 … … … … . .  𝑥 − 𝑥𝑛 𝑓𝑜𝑟 𝑥0 < 𝜉

< 𝑥𝑛                                                                                                                    (6.17)  

Hence, the required truncation error or remainder term is 

𝑅𝑛 𝑥 = 𝑓 𝑥 − 𝑃𝑛 𝑥 =
 𝑥 − 𝑥0  𝑥 − 𝑥1 … … … … . .  𝑥 − 𝑥𝑛 

  𝑛 + 1 ! 
𝑓(𝑛+1) 𝜉   𝑓𝑜𝑟 𝑥0 < 𝜉

< 𝑥𝑛                                                                       … … …… … … … … … …… .     (6.18) 

This is the error term in using Lagrange’s Interpolating polynomial. The Eqn. (6.18) may 

be written as: 

𝐸𝑛 𝑥 = 𝑅𝑛 𝑥 =
𝑓(𝑛+1) 𝜉 

  𝑛 + 1 ! 
  𝑥 − 𝑥1                                       (6.19)

𝑛

𝑖=0

 

ξ Depends on the point x* at which error is needed 𝑓(𝑛+1) 𝜉 . is not known, therefore 

this formula has limited use, we can obtain a bound to the error due to the use of this 

interpolating polynomial.  



If  𝑓 𝑛+1  𝜉  ≤ 𝑀. 𝑡𝑕𝑒𝑛,  

 𝐸𝑛 𝑥  ≤
𝑀

  𝑛 + 1 ! 
  𝑥 − 𝑥1                                       (6.20)

𝑛

𝑖=0

 

Remarks:  The error formula given by Equations (6.18) or (6.19) has a theoretical importance 

because Lagrange’s interpolation polynomial is used in deriving some importance formulae for 

numerical differentiations quadratures. 

Example 6.3:  The following table gives the values of f(x) = e*. If we fit Lagrange’s 

interpolating polynomial to the data, obtain the magnitude of maximum possible error in the 

computed value of e* when x= 0.62. 

x 0.61 0.63 0.64 0.67 

f(x)=𝑒𝑥  1.840431 1.877610 1.896481 1.954237 

 

Solution:  From Eqn. (6.18), the magnitude of the error associated with the third degree 

polynomial, is given by  

 𝐸𝑛 𝑥  =   𝑥 − 𝑥0  𝑥 − 𝑥1  𝑥 − 𝑥2  𝑥 − 𝑥3 
𝑓 4  𝜉 

 4 !
  𝑓𝑜𝑟 0.61 < 𝜉 < 0.67 

=   𝑥 − 0.61  𝑥 − 0.63  𝑥 − 0.64 (𝑥 − 0.67)
𝑓 4  𝜉 

 4 !
 … … …… … . (6.21) 

Since, 

f(x) = e
x
 

Therefore, 

𝑓 4  4 = 𝑒𝑥                 𝑤𝑕𝑒𝑟𝑒 

0.61≤  x ≤ 0.67    and 

Max| 𝑓 4  𝜉 = 𝑒0.67   =   1.954237                       … . . (6.22)                 

Substituting Eqn. (6.22) in Eqn. (6.19) and putting x= 0.62, we get the upper bound on the 

magnitude of the error at x= 0.62 as 

 𝐸 0.62  =  
 0.62 − 0.61  0.62 − 0.63  0.62 − 0.64  0.62 − 0.67  1.954237 

24
  



=
 0.01  −0.01  −0.02  0.05  1.954237 

24
 

=  10−7  0.0814264  

= 0.00000000814. 

The actual value of f(0.62)= 1.858928. 

You may now try the following exercises: 

P-6.7  The following table gives the values of f(x) =𝑒𝑥  . Obtain the upper bound of the maximum 

error at x= 1.25, if Lagrange’s interpolating polynomial is used to approximate f(x). 

x 1.2 1.3 1.4 1.6 

f(x) 3.3201 3.6692 4.0552 4.9530 

 

 P-6.8  The values of x and log10 x are (400, 2.6021), (404, 2.6064), (405, 2.6075), (409, 

2.6117),. Compute log10 401 using Lagrange’s interpolating polynomial. 

P-6.9  Using the following table evaluate (155)
1/2

 by Lagrange’s interpolation formula.  

x 150 152 154 156 

(𝑥)1/2 12.247 12.329 12.410 12.490 

 

P-6.10 From the following data estimate the value of f(5) using the Lagrange’s interpolating 

polynomial.  

X 0 1 3 4 7 

𝑓 𝑥  4 1 43 112 655 

 

P-6.11 In the following table h is the height in above the sea level and p is the barometric 

pressure. Calculate p when h = 5280.  

H 0 4767 6924 10564 

𝑝 27 25 23 20 

 

P-6.12: The observed values of a function are respectively 168, 120, 72, and 63 at the four 

positions 3,7,9, and 10 of the independent variable. Use 

(i) Newtons divided difference technique and 

(ii) Lagrange’s interpolation technique 



To obtain the best estimate of the function at the position 6 of the independent variable. 

P-6.13  A function takes the values as given in the following table: 

x 0 1 3 4 

𝑓 𝑥  5 14 41 98 

Obtain the value of f(x) when x = 2.5 

P- 6.14  obtain an estimate of x (correct to one decimal place) corresponding to f(x) = 13.8. 

x 30 35 40 45 50 

𝑓 𝑥  15.9 14.9 14.2 13.4 12.5 

 

P-6.15 if 𝑦0 , 𝑦1,𝑦2,……… 𝑦6be consecutive terms of a series. Show that 

 𝑦3 = 0.05  𝑦0 + 𝑦0 − 0.3  𝑦1 + 𝑦5 + 0.75  𝑦2 + 𝑦4 . 

Use this  relation to obtain 𝑦3, if 

𝑦0 = 72795, 𝑦1 = 71561, 𝑦2 = 70854, 𝑦4 = 67909, 𝑦5 = 66666, 𝑦6 = 65000. 

P-6.16  For the data of example 3,  use Lagrange’s interpolation formula to show that the 

estimate of (0.62) is 1.858927. 

6.5  Linear Interpolation 

Linear interpolation is used for interpolating the value of a function f(x) and x = x*, 

where 𝑥0 < 𝑥∗ < 𝑥1 by using only two points  𝑥0, 𝑓 𝑥0   𝑎𝑛𝑑  𝑥1, 𝑓 𝑥1   from the table which 

tabulates f(x) for various values of x. We apply this in tables of logarithm, exponential, 

𝑛2, 𝑛3 ,  𝑛 !, 𝑛1/2, trigonometrical functions, such as sin x, cos x , tan x, sin h x, tan h x; Normal 

probability tables and other statistical tables. For example suppose we want log10 (64.6). We 

consult logarithmic table. We compute log10 (64.6) by using log10 x against x=64 and x=64 since 

(64, 65) includes 64.6. We may use either Lagrange’s Linear Interpolation polynomial PL(x). 

𝑃𝐿 𝑥 =
 𝑥 − 𝑥0 

 𝑥0 − 𝑥1 
𝑓 𝑥0 +

 𝑥 − 𝑥1 

 𝑥1 − 𝑥0 
𝑓 𝑥1 … … … … … … . (6.24) 

Use Linear Newtons divided difference interpolating polynomial 𝑃𝑁 𝑥 . 

𝑃𝑁 𝑥 = 𝑓 𝑥1 
𝑓 𝑥1 − 𝑓 𝑥0 

𝑥1 − 𝑥0
𝑥 − 𝑥0 

= 𝑓 𝑥0 + 𝑓 𝑥0, 𝑥1  𝑥 − 𝑥0 … … … …… … . (6.25) 



6.5.1   Error in Linear Interpolation 

From Eqn (6.17) for n = 1 we obtain 

𝑓 𝑥 = 𝑃 𝑥 +  
1

2
  𝑥 − 𝑥0  𝑥 − 𝑥1 𝑓"(𝜉) 𝑤𝑕𝑒𝑟𝑒 min 𝑥0, 𝑥1, 𝑥 < 𝜉

< 𝑚𝑎𝑥⁡  𝑥0, 𝑥1, 𝑥 …… … … … … … …… … … … … . . (6.26)⁡  

Which gives the truncation error in linear interpolation. 

𝐸1 = 𝑓 𝑥 = 𝑃 𝑥 =  
1

2
  𝑥 − 𝑥0  𝑥 − 𝑥1 𝑓"(𝜉) … … … … … … . . (6.27)⁡  

If we can determine a bound for f’ (x) in  𝑥0, 𝑥1 . i.e.  

 𝑓′(𝜉)  ≤ 𝑀                 , 𝑥  𝑥0, 𝑥1  

Then 

 𝐸1 = 𝑓 𝑥 − 𝑃 𝑥 =   
1

2
   𝑥 − 𝑥0  𝑥 − 𝑥1 𝑓

′ 𝜉  ≤  
1

2
 max

𝑥0<𝑥<𝑥1

  𝑥 − 𝑥0  𝑥 − 𝑥1 𝑓
′ 𝜉   

≤  
1

2
 max

𝑥0<𝑥<𝑥1

 (𝑥 − 𝑥0)(𝑥 − 𝑥1) 𝑀 … …… … … … … (6.28)  

Since the maximum of  (𝑥 − 𝑥0)(𝑥 − 𝑥1) occurs at 𝑥 =
𝑥0+𝑥1

2
  

Therefore, the upper bound of the error E1 is 

 𝐸1 =  𝑓 𝑥 − 𝑃 𝑥  ≤  
1

8
  𝑥1 − 𝑥0 2𝑀 … … … … … . . (6.29) 

In case upper bound of f’(x) in  𝑥0, 𝑥1 is not know we can estimate at follows: 

By definition, 

∆2𝑓 𝑥0 = ∆𝑓 𝑥0 + 𝑕 − ∆𝑓 𝑥0   𝑤𝑕𝑒𝑟𝑒 𝑥1 = 𝑥0 + 𝑕 

=  𝑓 𝑥0 + 2𝑕 − 𝑓 𝑥0 + 𝑕  −  𝑓 𝑥0 + 𝑕 − 𝑓 𝑥0   

= 𝑕𝑓 ′ 𝜉1 −  𝑕𝑓 ′ 𝜉2        𝑓𝑜𝑟  𝑥0 + 𝑕 < 𝜉1 <  𝑥0 + 2𝑕    

                            𝑎𝑛𝑑𝑥0 <  𝜉2 <  𝑥0 + 𝑕  

= 𝑕 𝑓 ′ 𝜉1 − 𝑓′ 𝜉2   

= 𝑕2𝑓"(𝜉)                𝑓𝑜𝑟 𝑥0 ≤ 𝜉 ≤ 𝑥0 + 𝑕. 



Therefore, 

𝑓"(𝜉) =
∆2𝑓 𝑥0 

𝑕2
                𝑓𝑜𝑟 𝑥0 ≤ 𝜉 ≤ 𝑥0 + 𝑕. 

Or 

𝑀 =
∆2𝑓 𝑥0 

𝑕2
                𝑓𝑜𝑟 𝑥0 ≤ 𝜉 ≤ 𝑥0 + 𝑕 …… … … . . (6.30) 

Hence on putting M form Eqn. (4.28) in Eqn. (4.29), We get for h =𝑥1 − 𝑥0 . 

𝐸1(max ) =  
1

8
 ∆2𝑓 𝑥0 … … … …… … … . . (6.31) 

Example 6.4:  Given sin (0.1)= 0.09983 and sin (0.2)=0.19867. obtain approximate value of sin 

(0.16) by Lagrange’s interpolation. Further estimate a bound on the truncation error. 

Solution:  Here, 

𝑃1 0.16 =
 0.16 − 0.2 

 0.1 − 0.2 
 0.09983 +

 0.16 − 0.1 

 0.2 − 0.1 
 0.19867  

=  0.4  0.09983 + (0.6)(0.19867) 

=0.039932+0.119202 

= 0.159134 

The truncation error is 

𝐸1 =  
1

2
  𝑥 − 0.1  𝑥 − 0.2  − sin ξ   𝑤𝑕𝑒𝑟𝑒 0.1 < 𝜉 < 0.2 

Since 

𝑑2

𝑑𝑥
 sin(𝑥) =

𝑒

𝑑𝑥
 cos 𝑥 =  − sin 𝑥  

Further, 

𝑀𝑎𝑥 − sin ξ =  − sin(0.2) = sin 0.2 = 0.19867 𝑓𝑜𝑟 0.1 < 𝜉 < 0.2 

Thus 

 𝐸1 =  
 0.16 − 0.1  0.16 − 0.2 

2
  0.19867  



=  0.0012  0.19867  

=  0.000238404  

= (0.00024) 

Example 6.5:  Determine the step size h to be used in the tabulation of  f”(x) = (-cos x,) in the 

interval [0,3] so that the linear interpolation will be correct to four decimal places. 

Solution: 

F(x) = Cos x f’(x) = (-sin x) and f” (x) = (-cos x) 

and 

max
𝑥0<𝑥<𝑥1

 − cos 𝑥 = 1 = 𝑀 

Hence, we get from Eqn. (26). 

 1  
𝑕2

8
 ≤  5  10 −5 

Which gives 

h ≤ 0.02 

You may now try the following exercises: 

P-6.17:  The error function f(x) is defined by the integral  

𝑓 𝑥 =
2

 𝜋
 𝑒𝑥𝑝 −𝑡2 𝑑𝑡

𝑥

0

 

Approximate f(0.08) by linear interpolation in the given table of corrected rounded values. 

Estimate the total error. 

x 0.05 0.10 0.15 0.20 

𝑓 𝑥  0.05637 0.11246 0.16800 0.22270 

 

P-6.18: The function f(x)= 1/x is tabulation at unit interval from 1 to 12500. Obtain the possible 

error in the linear interpolation of this function when x = 752. 

P-6.19:  The function y=e* is tabulated at an intervals of which 0.01 in the interval (0,1). Show 

that the maximum error on linear interpolation is 0.000034. 



P-6.20:  Given sin 40
0
= 0.6428, sin 50

0
= 0.7660, sin 55

0
= 0.8192 and sin 60

0
= 0.8660, estimate 

the error in calculating sin 54
0
 by using 

(a) Lagrange’s formula 

(b) Newton’s formula 

6.6  Summary 

  In this unit the Lagrange’s form of interpolating polynomial is derived. It is whether the 

arguments 𝑥0, 𝑥1, 𝑥2 , … … … . … …𝑥𝑛  are equidistant or of unequal width. It is shown that the 

interpolating polynomial is unique. We have also derived an expression for the general error 

which can be used to determine the accuracy of our calculation. Lastly the linear interpolating is 

discussed. The results are noted below.  

(1) Lagrange’s Polynomial 

𝑃𝑛 𝑥 =  𝑓 𝑥𝑘 𝐿𝑘(𝑥)

𝑛

𝑘=0

 

𝑊𝑕𝑒𝑟𝑒  

𝐿𝑘 𝑥 =
 𝑥 − 𝑥0  𝑥 − 𝑥1 … … .  𝑥 − 𝑥𝑘−1  𝑥 − 𝑥𝑘+1 …  𝑥 − 𝑥𝑛 

 𝑥𝑘 − 𝑥0  𝑥𝑘 − 𝑥𝑘 … .  𝑥𝑘 − 𝑥𝑘−1  𝑥𝑘 − 𝑥𝑘+1 … … .  𝑥𝑘 − 𝑥𝑛 
 

𝑓𝑜𝑟 𝑘 = 0,1,2, … . . 𝑛 

(2) Interpolation Error 

𝐸𝑛 𝑥 = 𝑓 𝑥 − 𝑃𝑛 𝑥 =
𝑓(𝑛+1) 𝜉 

  𝑛 + 1 ! 
  𝑥 − 𝑥1 

𝑛

𝑖=0

   𝑤𝑕𝑒𝑟𝑒 𝑥0 < 𝜉 < 𝑥𝑛  

If 𝑓(𝑛+1) 𝑥  is not known but the upper bound  𝑓(𝑛+1) 𝑥  < 𝑀 is given then the upper bound of 

the error is  

 𝐸𝑛(𝑥) ≤
𝑀 𝑥 − 𝑥0  𝑥 − 𝑥1 … … .  𝑥 − 𝑥𝑛 

  𝑛 + 1 ! 
 

6.7  Solution/ Answers 

P-6.1:  it is given that x0= 1, x1= 3, x2= 4 and x3= 6 and f(x0)= -3, f(x1)=9, f(x2)=30 and f(x3)= 

132. The Lagrange’s interpolating polynomial is: 

𝑃3 𝑥 = 𝑥3 − 3𝑥2 − 6 

𝐴𝑡 𝑥 = 2,         𝑓 𝑥 = 𝑃3 2 = 0 

𝐴𝑡 𝑥 = 5,         𝑓 𝑥 = 𝑃3 5 = 69 

P-6.2:  f(8) = P3(8)= 13.9 and f(10)= P3(10)= 14.6667 



P-6.3:  p.d.f: 𝑓 𝑥 =  
1

2
  −25𝑥2 − 453.5𝑥 − 2052.3  

𝑀𝑜𝑑𝑒:   𝐴𝑡 𝑥 = 9.07  

 𝑆𝑖𝑛𝑐𝑒  
𝑑2𝑓

𝑑𝑥2
= −

25

6
< 0  

𝐹𝑚𝑎𝑥  𝑥 = 𝑓 𝑥 |𝑥=9.07 = 0.3602 

P-6.4: Using second form of Lgrange’s formula we have 

𝑓 𝑥 

𝑥 𝑥 − 1  𝑥 − 2  𝑥 − 3  𝑥 − 4 
=

1

8𝑥
−

1

𝑥 − 1
+

11

4 𝑥 − 2 
−

3

𝑥 − 3
+

9

8 𝑥 − 4 
 

=
𝑥2 + 2𝑥 + 3

𝑥 𝑥 − 1  𝑥 − 2  𝑥 − 3  𝑥 − 4 
 

So that     f(x)  = 𝑥2 + 2𝑥 + 3 

P-6.5:  𝑃2 𝑥 = −𝑥2 + 30𝑥 + 648; 

            𝑓 1 = 𝑃2 1 = 667 𝑎𝑛𝑑  𝑓 5 = 𝑃2 5 = 773  

P-6.6:  The eqn. (4.21) gives the magnitude of the associated error for the third degree 

polynomial as 

 𝐸(𝑥) =
 𝑥 − 1.2  𝑥 − 1.3  𝑥 − 1.4  𝑥 − 1.6 (4) 𝜉 

4!
 

Here,     f(x)     = e
x
, 

Therefore,  f
(4)

 (x)=  e
x
  when xξ [1,2,1.6] 

And   max | f
(4)

 (x)|= e
1.6

 

Hence ,  at   x= 1.25 

 𝐸(1.25) ≤ |
 0.05  −0.05  −0.15  −0.35 (4.9530)

24
 

P-6.8:  log10 40| = P3 (401)= 2.60314 

P-6.9:  12.450125 

P-6.10:  P3 (x)= 2𝑥3 − 5𝑥 + 4 and f(5)= P3 (5)= 229. 

P-6.11: Largange’s interpolating polynomial yields P3 (5280)= 24.5478 



P-6.12:  Given 𝑥0 = 3, 𝑥1 = 7, 𝑥2 = 9, 4 = 10  𝑎𝑛𝑑 𝑓 𝑥0 = 168, 𝑓 𝑥1 = 120, 𝑓 𝑥2 =

72, 𝑓 𝑥3 = 63 we get 𝑓 𝑥0, 𝑥1 , 𝑥2 = −2, 𝑓 𝑥0, 𝑥1 , 𝑥2, 𝑥3 = 1. 

Newton’s divided difference interpolating polynomial is given by 

𝑃3 𝑥 = 𝑥3 − 21𝑥2 + 119𝑥 − 27  𝑎𝑛𝑑 

𝑓 6 = 𝑃3 6 − 21 62 +  119  6 − 27 = 147 

P-6.13 : f(2.5)= 57.2656 

P-6.14: Let x= g(y), then using Lagrange’s inverse interpolation formula. 

  𝑃4 𝑦 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦: 

𝑔 13.8 = 𝑃4 13.8 

=
 13.8 − 14.9  13.8 − 14.2  13.8 − 13.4  13.8 − 12.5 

 15.9 − 14.9  15.9 − 14.2  15.9 − 13.4  15.9 − 12.5 
× 30 + ⋯ … …… … …

+ ⋯… … …… . +
 13.9 − 15.9  13.8 − 14.9  13.8 − 14.2  13.8 − 13.4 

 12.5 − 15.9  12.5 − 14.9  12.5 − 14.2  12.5 − 13.4 
× 50 

= 42.636732. 

P-6.15  Given x= 0,1,2,34,5,6 and y= 𝑦0, 𝑦1, 𝑦2, 𝑦5, 𝑦6, 𝑦3  is required for n=3 Lagrange’s 

interpolating polynomial second form yields, 

−𝑦3

3.2.1.1.2.3
=

− 𝑦1 − 𝑦6 

3.1.2.4.5.6
+

− 𝑦1 − 𝑦5 

2.1.1.3.4.5
+

− 𝑦2 − 𝑦4 

1.2.1.2.3.4
 

Or 

𝑦3 =
 𝑦1 + 𝑦6 

20
−

3 𝑦1 + 𝑦5 

10
+

3 𝑦2 + 𝑦4 

4
 

Hence for given data 

𝑦3 = 0.05 72795 + 65000 − 0.3 71561 + 66666 + 0.75 70854 + 67909  

= 69493.9 ≈ 69494 

P-6.16:  To show that f (0.62)= 1.858927 

P-6.17:  Using Newton’s linear interpolation formula 



𝑓 𝑥 = 𝑓 𝑥0 +
𝑓(𝑥1)𝑓 𝑥0 

 𝑥1 − 𝑥0 
 𝑥 − 𝑥0  

We have, for x= 0.08, 

𝑓 0.08 = 𝑓 0.05637 +
 0.11246 − 0.05637 

 0.10 − 0.05 
 0.08 − 0.05  

= 0.09002 

The error is  

 𝐸𝑛(𝑥) ≈  ∆𝑛+1𝑓 𝑥0   𝑥 − 𝑥0  𝑥 − 𝑥1 … …  𝑥 − 𝑥𝑛  

For n= 1, we have 

E (0.08) = (0.08-0.05) (0.08-0.10) (-0.110) = 7.0 ×10
-5

 

P-6.18: Here f(X) = (1/x); h= 1; f’(x)=-(1/x
2
); f” (x) = -(2/x

3
) 

 Therefore, f” (752) = 2/ (752)
3
= M 

 𝐸1 𝑚𝑎𝑥 =  
1

8
 × 12 ×  

2

 752 3
 =  0.00000000059 

P- 6.19:  Here , h= 0.01; f(𝑥0)= e
x
 so that, f(x) = e

x
 and f” (x) = e

x
 for 0≤ x ≤11, 

𝐹𝑚𝑎𝑥  "(𝑛) = 𝑒1.0 = 2.7183 =   ∆2𝑓 𝑥0  /𝑕2 

∆2𝑓 𝑥0 = (0.01)2, 2.7183 = 0.00027183 

Hence 

 𝐸1 𝑚𝑎𝑥 =
 ∆2𝑓 𝑥0  

8
=

0.00027183

8
= 0.000034 

P-6.20:  Here, 𝑥0 = 40, 𝑥1 = 50, 𝑥2 = 55, 𝑥3 = 60, 𝑥 = 54, 𝑎𝑛𝑑 

 𝑓 40 = 0.6428 𝑓 40,50 = 0.01232, 𝑓 40,50,55 = − 0000112 , 𝑓 40,50,55,60 

= − 0.0000008 . 

Hence, n+1=3        n=2 

Thus, 𝐸3 54 = 8.0 × 10−7  
  54−40  54−50  54−50  54−60  

6
 = 0.0000478. 

P-6.21:  x= 53 

P-6.22:  Let y= f(x), given 𝑦0, 𝑦1 = 12, 𝑦2 = 19, 𝑥0 = 1, 𝑥1 = 3, 𝑥2 = 4 𝑓𝑜𝑟 𝑦 = 𝑓 𝑥 = 7 



𝑥 =
 7 − 12  7 − 19 

 4 − 12  4 − 19 
 1 +

 7 − 4  7 − 19 

 12 − 4  12 − 19 
 3 +

 7 − 4  7 − 12 

 19 − 4  9 − 12 
 4  

= 1.8571. 

6.8   Further Readings 

1. Finite Difference & Numerical Analysis, S. Chand & Company, New Delhi: H.C. Saxena 

2. Numerical Mathematical Analysis, John Hopkins Press, Baltimore New York; James B. 

Scarborough 

3. Introductory Method of Numerical Analysis, Prentice Hall of India Pvt. Ltd.: S.S. Sastry 

4. Introduction to Numerical Analysis, Tata McGraw Hill Publishing Company, New Delhi: 

S.T. Hildebrand 

5. Numerical Analysis, McMillan Publishing Company, New York: M.J. Marom 

6. Numerical Method for Scientific & Engineering Computation, New Age International 

Publishers, New Delhi: M.K. Jain, S.R.K. Iyengar & R.K. Jain 
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Block & Units Introduction 

 

The Block - 3 – Central Differences, is the third block. This block consists of four units 

regarding, central differences, inverse interpolation, numerical differentiation and numerical 

integration. 

Unit - 7 – Central Difference Interpolation Formulae; deals with the concept of central 

difference interpolation. Gauss and Bessels’s formulae are derived and their applications are 

successes.  

In Unit – 8 – Inverse Interpolation; of the block the problem of inverse interpolation is 

discussed and various methods for its solution are suggested. 

In Unit – 9 – Numerical Differentiation; the concept of numerical differentiation has 

been defined. Various formulae to solve the problem of numerical differentiation are discussed. 

Finally, in Unit – 10 - Numerical Integration is taken into consideration. Trapezoidal 

rule, Simpson’s rule and Weddle’s rule are derived. Euler Maclaurin’s summation formula is 

also given in this unit. 

At the end of block/unit the summary, self assessment questions and further readings are 

given.  

  



Unit-7:  Central Difference Interpolation Formulae 

Structure 

7.1 Introduction 

7.2 Objectives 

7.3 Central Difference Formulae 

7.3.1 Gauss Forward Formulae 

7.3.2 Gauss Backward Formulae 

7.3.3 Stirling’s Formulae 

7.3.4 Bessels’s Formula 

7.3.5 Bessels’ Formula for halves 

7.3.6 Choice amongst formulae 

7.4 𝛿 and 𝜇 operators 

7.5 Summary  

7.6 Solutions/ Answer 

7.7 Further Readings 

7.1  Introduction 

We have obtained Newton’s polynomials and Larange’s polynomial for approximating 

the function f(x) if the arguments are equally or unequally spaced. If the number of given set of 

arguments and entries or the intervals of differencing are quite large then the computational work 

in Lagrange’s polynomial becomes cumbersome and large. The Newton’s polynomials are 

fundamental and the use leading term and leading differences irrespective of the fact whether the 

unknown value of entry lies in the neighborhood of the leadings terms of is at a distance apart. 

The leading differences always lie on the diagonal and sloping upward or downward from the 

leading term but the coefficients of such higher order difference diminish very slowly with the 

increase in the order of differences. Therefore these fundamental formulae do not converge more 

rapidly. In fact, we refer a formula which converges more rapidly with increase of the order of 

the differences. The rate of convergence should be high if the formula uses the differences in the 

neighborhood of the unknown entry. It is therefore, desired to shift the origin to a point where 



the entries above and below, the unknown entry may have a greater influence on the convergence 

(that is on the performance of the formula) Generally in case of equally spaced arguments the 

difference table is constructed with arguments in the  ascending order of magnitude. If f(x*) is to 

be estimated for x= x*, then the Newtons’s forward interpolating performs better if x* is at the 

beginning of the table while the Newton’s backward interpolation formula is preferred if x* is 

nearer to the end of the table. But, none of these formulae satisfy the highly rapid convergence 

criteria if x* is nearer to central value of x’s. This lead us to search the central difference 

formulae for interpolation near the middle of the tabulated sets, when the arguments are equally 

spaced. 

7.2  Objectives 

After the study of this unit you shall be able to: 

 Construct a central difference table, 

 Expand a central difference in terms of function values or entries. 

 Obtain a proper interpolating polynomial P(x) of f(x) for a given data, 

 Estimate the value of f(x), when x lies near the middle of the table 

7.3  Central Difference formulae 

Let the function y = yx= f(x) be given for (2n+1) equi-distant values of the arguments x0 ±h, 

x0±2h, …… nh. Let y = y0 denote the central ordinate corresponding to x = x0. For convenience, 

we are representing x = x0 + rh, by xr and corresponding y = 𝑦𝑥0+𝑛𝑕  by yr for r = 0, ±1,  ±2,  ±3,  

….…  ± n. The difference table used in the computational work of the central difference 

formulae is given on the next page. It is the ordinary difference table with x0 in the middle of the 

arguments column. For the central difference formulae, the origin x0 is taken near x*, the point 

about which f(x) is to be estimated. 

x f(x)=y ∆𝑦 ∆2y ∆3y ∆4y ∆5y ∆6y 

𝑥−4 𝑦−4       

  ∆𝑦−4      

𝑥−3 𝑦−3  ∆2𝑦−4     



  ∆𝑦−3  ∆3𝑦−4    

𝑥−2 𝑦−2  ∆2𝑦−3  ∆4𝑦−4   

  ∆𝑦−2  ∆3𝑦−3  ∆5𝑦−4  

𝑥−1 𝑦−1  ∆2𝑦−2  ∆4𝑦−3  ∆6𝑦−4 

  ∆𝑦−1  ∆3𝑦−2  ∆5𝑦−3  

𝑥0 𝑦0  ∆2𝑦−1  ∆4𝑦−2  ∆6𝑦−3 

  ∆2𝑦0  ∆3𝑦−1  ∆5𝑦−2  

𝑥1 𝑦1  ∆2𝑦0  ∆4𝑦−1  ∆6𝑦−2 

  ∆𝑦1  ∆3𝑦0  ∆5𝑦−1  

𝑥2 𝑦2  ∆2𝑦1  ∆4𝑦0   

  ∆𝑦2  ∆3𝑦1    

𝑥3 𝑦3  ∆2𝑦2     

  ∆𝑦3      

𝑥4 𝑦4       

 

7.3.1  Gauss Forward Formula 

For (2n+1) equi-distant arguments 

The general Newton’s formula is  

f(x) = f(x0) +  𝑥 − 𝑥0  𝑓 𝑥0, 𝑥1 +  𝑥 − 𝑥0  𝑥 − 𝑥1   𝑓 𝑥0, 𝑥1 , 𝑥2 + 

 𝑥 − 𝑥0  𝑥 − 𝑥1  𝑥 − 𝑥2  𝑥 − 𝑥3  𝑓 𝑥0, 𝑥1 , 𝑥2, 𝑥3 + 

 𝑥 − 𝑥0  𝑥 − 𝑥1  𝑥 − 𝑥2  𝑥 − 𝑥3  𝑥 − 𝑥4   𝑓 𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 + 

 𝑥 − 𝑥0  𝑥 − 𝑥1  𝑥 − 𝑥2  𝑥 − 𝑥3  𝑥 − 𝑥4  𝑥 − 𝑥5 𝑓 𝑥0 , 𝑥1, 𝑥2 , 𝑥3, 𝑥4 , 𝑥5, 𝑥6 

+ ⋯                                                                                                    . . (7.1) 

Let us define 

𝑥0 = 𝑥0,               𝑥1 = 𝑥0 + 𝑕,               𝑥2 = 𝑥0 − 𝑕,           𝑥3 = 𝑥0 + 2𝑕,              𝑥4 = 𝑥0 −

2𝑕,                           𝑥5 = 𝑥0 + 3𝑕,                       𝑥6 =  𝑥0 − 3𝑕, …… … .. 



𝑎𝑛𝑑 𝑢 =
𝑥−𝑥0

𝑕
  

Y = f(𝑥0)  + 𝑕𝑢 𝑓  𝑥0𝑥0 + 𝑕 + 𝑕𝑢  𝑕𝑢 − 𝑕  𝑓  𝑥0 − 𝑕, 𝑥0, 𝑥0 + 𝑕 + 

𝑕𝑢  𝑕𝑢 − 𝑕   𝑕𝑢 + 𝑕  𝑓  𝑥0 − 𝑕, 𝑥0, 𝑥0 + 𝑕, 𝑥0 + 2𝑕 + 

𝑕𝑢  𝑕𝑢 − 𝑕   𝑕𝑢 + 𝑕  𝑕𝑢 − 2𝑕   𝑓  𝑥0 − 2𝑕, 𝑥0 − 𝑕, 𝑥0, 𝑥0 + 𝑕, 𝑥0 + 2𝑕 + 

𝑕𝑢  𝑕𝑢 − 𝑕   𝑕𝑢 + 𝑕  𝑕𝑢 − 2𝑕  𝑕𝑢 + 2𝑕   𝑓  𝑥0 − 2𝑕, 𝑥0 − 𝑕, 𝑥0 , 𝑥0 + 𝑕, 𝑥0 + 2𝑕, 𝑥0 + 3𝑕 + 

𝑕𝑢  𝑕𝑢 + 𝑕   𝑕𝑢 − 𝑕  𝑕𝑢 + 2𝑕  𝑕𝑢 − 2𝑕  𝑕𝑢 − 3𝑕   𝑓  𝑥0 − 3𝑕, 𝑥0 − 2𝑕, 𝑥0 − 𝑕, 𝑥0, 𝑥0

+ 𝑕, 𝑥0 + 2𝑕, 𝑥0 + 3𝑕 + ⋯… … 

Using the relations, 

𝑓 𝑥0, 𝑥0 =
∆𝑦0

𝑕
,            𝑓 𝑥0 − 𝑕, 𝑥0 + 𝑥0 + 𝑕 =

∆2𝑦−1

2𝑕2
 

𝑓 𝑥0 − 𝑕, 𝑥0, 𝑥0 + 𝑕, 𝑥0 + 2𝑕 =
∆3𝑦−1

 3! 𝑕3
,            

𝑓  𝑥0 − 2𝑕, 𝑥0 − 𝑕, 𝑥0 , 𝑥0 + 𝑕, 𝑥0 + 2𝑕 =
∆4𝑦−2

(4!)𝑕4
   

𝑓  𝑥0 − 2𝑕, 𝑥0 − 𝑕, 𝑥0, 𝑥0 + 𝑕, 𝑥0 + 2𝑕, 𝑥0 + 3𝑕 =
∆5𝑦−2

(5!)𝑕6
         … … . . … (7.2) 

Then the above equation reduces to  

𝑦𝑢 = 𝑦0 + 𝜇∆𝑦0 +
𝑢 𝑢 − 1 

2!
∆2𝑦−1 +

 𝑢 + 1 𝑢 𝑢 − 1 

3!
∆3𝑦−1 

+
 𝑢 + 1 𝑢 𝑢 − 1  𝑢 − 2 

4!
∆4𝑦−2 +

 𝑢 + 2  𝑢 + 1 𝑢 𝑢 − 1  𝑢 − 2 

5!
∆5𝑦−2 

+
 𝑢 + 2  𝑢 + 1 𝑢 𝑢 − 1  𝑢 − 2  𝑢 − 3 

6!
∆6𝑦−3 + − − −                … … . (7.3) 

= 𝑦0 + 𝐶
𝜇

1∆𝑦0 + 𝐶
𝜇

2∆
2𝑦−1 + 𝐶

𝜇+1
3∆

3𝑦−1 + 𝐶
𝜇+1

4∆
4𝑦−2 + 𝐶

𝜇+2
5∆

5𝑦−2 



+ 𝐶
𝜇+2

6∆
6𝑦−3 ± − − − ∓ 𝐶

𝜇+𝑛−1
2𝑛−1∆

2𝑛−1𝑦−𝑛+1 + 𝐶
𝜇+𝑛−1

2𝑛∆2𝑛𝑦−𝑛  

                          … … . (7.4) 

Equations (7.3) and (7.4) are different forms of Gauss Forward formula. This formula uses the 

odd order differences falling just below and the even order differences on the horizontal line at y 

= y0 in the difference table.  

7.3.2  Gauss backward formula 

For (2n+1) equi-distant arguments 

Let us define 

𝑥0=𝑥0, 𝑥1 = 𝑥0 + 𝑕, 𝑥2 = 𝑥0 + 𝑕, 𝑥3 = 𝑥0 − 2𝑕, 𝑥4 = 𝑥0 + 2𝑕, … … . 𝑒𝑡𝑐. 

In the Newton’s divided difference formula Equ. (7.1), we get 

Y = f(𝑥0) + (x-𝑥0) 𝑓 𝑥0, 𝑥0 − 𝑕 +  𝑥 − 𝑥0  𝑥 − 𝑥0 + 𝑕 𝑓 𝑥0, 𝑥0 − 𝑕, 𝑥0 + 𝑕 + 

 𝑥 − 𝑥0  𝑥 − 𝑥0 + 𝑕  𝑥 − 𝑥0 − 𝑕 𝑓 𝑥0, 𝑥0 − 𝑕, 𝑥0 + 𝑕, 𝑥0 − 2𝑕  

+ 𝑥 − 𝑥0  𝑥 − 𝑥0 + 𝑕  𝑥 − 𝑥0 − 𝑕  𝑥 − 𝑥0 + 2𝑕 𝑓 𝑥0 , 𝑥0 − 𝑕, 𝑥0 + 𝑕, 𝑥0 − 2𝑕, 𝑥0 +

2𝑕 +  𝑥 − 𝑥0  𝑥 − 𝑥0 + 𝑕  𝑥 − 𝑥0 − 𝑕  𝑥 − 𝑥0 + 2𝑕  𝑥 − 𝑥0 − 2𝑕 𝑓 𝑥0, 𝑥0 − 𝑕, 𝑥0 + 𝑕, 𝑥0 −

2𝑕, 𝑥0 + 2𝑕, 𝑥0 − 3𝑕 +  𝑥 − 𝑥0  𝑥 − 𝑥0 + 𝑕  𝑥 − 𝑥0 − 𝑕  𝑥 − 𝑥0 + 2𝑕  𝑥 − 𝑥0 −

2𝑕  𝑥 − 𝑥0 + 3𝑕 𝑓 𝑥0 , 𝑥0 − 𝑕, 𝑥0 + 𝑕, 𝑥0 − 2𝑕, 𝑥0 + 2𝑕, 𝑥0 − 3𝑕, 𝑥0 + 3𝑕 + ⋯ … …. 

𝐿𝑒𝑡𝑡𝑖𝑛𝑔    𝑢 =
𝑥−𝑥0

𝑕
  𝑎𝑛𝑑 𝑢𝑠𝑖𝑛𝑔 𝑡𝑕𝑒 𝑓𝑎𝑐𝑡  

𝑓 𝑥0 − 𝑕, 𝑥0 =
∆𝑦−1

𝑕
 

𝑓 𝑥0 − 𝑕, 𝑥0, 𝑥0 + 𝑕 =
∆2𝑦−1

 2! 𝑕2
 

𝑓 𝑥0 − 2𝑕, 𝑥0 − 𝑕, 𝑥0, 𝑥0 + 𝑕 =
∆3𝑦−2

 3! 𝑕3
 



𝑓 𝑥0 − 2𝑕, 𝑥0 − 𝑕, 𝑥0, 𝑥0 + 𝑕, 𝑥0 + 2𝑕 =
∆4𝑦−2

 4! 𝑕4
 

𝑓 𝑦0 − 3𝑕, 𝑦0 − 2𝑕, 𝑦0 − 𝑕, 𝑦0, 𝑦0 + 𝑕, 𝑦0 + 2𝑕 =
∆5𝑦−3

 5! 𝑕5
 

𝑓 𝑦0 − 3𝑕, 𝑦0 − 2𝑕, 𝑦0 − 𝑕, 𝑦0, 𝑦0 + 𝑕, 𝑦0 + 2𝑕, 𝑦0 + 3𝑕 =
∆6𝑦−3

 6! 𝑕6
 

          … … .  7.5  

and so on. 

We get, 

𝑦𝑢 = 𝑦0 + 𝑢∆𝑦−1 +
 𝑢 + 1 𝑢

2!
∆2𝑦−1 +

 𝑢 + 1 𝑢 𝑢 − 1 

3!
∆3𝑦−2 

+
 𝑢 + 2 𝑢 𝑢 + 1 𝑢 𝑢 − 1 

4!
∆4𝑦−2 +

 𝑢 + 2  𝑢 + 1 𝑢 𝑢 − 1  𝑢 − 2 

5!
∆5𝑦−3 

+
 𝑢 + 3  𝑢 + 2 𝑢 𝑢 + 1  𝑢 − 1  𝑢 − 2 

6!
∆6𝑦−3 + − − − ⋯                   … . (7.6) 

= 𝑦0 + 𝐶
𝜇

1∆𝑦−1 + 𝐶
𝜇+1

2∆
2𝑦−1 + 𝐶

𝜇+1
3∆

3𝑦−2 + 𝐶
𝜇+2

4∆
4𝑦−2 + 𝐶

𝜇+2
5∆5𝑦−3 

+ 𝐶
𝜇+3

6∆
6𝑦−3 ± − − −  + 𝐶

𝜇+𝑛−1
2𝑛−1∆

2𝑛−1𝑦−𝑛 + 𝐶
𝜇+𝑛

2𝑛∆2𝑛𝑦−𝑛  

                                                                                                                 … . (7.7) 

Equations (7.6) and (7.7) are different forms of Gauss’s backward formula. It is odd order 

differences falling just above and the even order differences on the central line through x = x0.  

Thus the path of Gauss’s forward and backward formula are shown by star (***) and dotted lines 

(…….) in the difference table.  

Short Different Table 

x y ∆𝑦 ∆2y ∆3y ∆4y ∆5y ∆6y 

𝑥−1 𝑦−1       



  ∆𝑦−1  ∆3𝑦−2  ∆5𝑦−3  

𝑥0 𝑦0      ∆6𝑦−3 

  ∆𝑦0 ∆3𝑦−2  ∆4𝑦−4 ∆5𝑦−2  

𝑥1 𝑦1   ∆3𝑦−1    

 

7.2.3   Stirling Formula 

For (2n+1) equi-distant arguments 

The mean of Gauss’s forward and Gauss’s backward formula given by Eqns (7.3) and (7.6) 

respectively, we get 

𝑦𝑢 = 𝑦0 + 𝑢
∆𝑦0 + ∆𝑦−1

2
+

𝑢2

2
∆2𝑦−1 +

𝑢 𝑢2 − 12 

3!

 ∆3𝑦−1 + ∆3𝑦−2 

2
+ 

+
𝑢2 𝑢2 − 12 

4!
∆4𝑦−2 +

𝑢2 𝑢2 − 12  𝑢2 − 22 

5!

 ∆5𝑦−3 + ∆5𝑦−3 

2
 

+
𝑢2 𝑢2 − 12  𝑢2 − 22 

6!
∆6𝑦−3 + − − − − − − − 

𝑢 𝑢2 − 12  𝑢2 − 22 … … . .  𝑢2 −  𝑛 − 1 2 .

(2𝑛 − 1)!

 ∆2𝑛−1𝑦−𝑛+1 + ∆2𝑛−1𝑦−𝑛 

2
+ 

𝑢2 𝑢2 − 12  𝑢2 − 22 … … . .  𝑢2 −  𝑛 − 1 2  ∆2𝑛𝑦−𝑛 

(2𝑛)!
……                           … . (7.8) 

This is Stirling’s formula. 

These quantities that occur in Striring’s formula are shown in the following difference table. 

x y ∆𝑦 ∆2y ∆3y ∆4y ∆5y ∆6y 

𝑥−1 𝑦−1       

  ∆𝑦−1  ∆3𝑦−2  ∆5𝑦−3  

𝑥0 𝑦0  ∆2𝑦−1  ∆4𝑦−1  ∆6𝑦−2 

  ∆𝑦0  ∆3𝑦−1  ∆5𝑦−2  



𝑥1 𝑦1       

 

7.3.4   Bessel’s  formula 

For (2n+2) equidistant arguments 

Let us change the original in Gauss’s backward formula from x0 to x1 then u will be replaced by 

u-1 in the formula; this gives us 

𝑦𝑢 = 𝑦1 +  𝑢 − 1 . ∆𝑦0 +
𝑢 𝑢 − 1 

2!
∆2𝑦0 +

𝑢 𝑢 − 1  𝑢 − 2 

3!
∆3𝑦−1 

+
 𝑢 + 1 𝑢 𝑢 − 1 (𝑢 − 2)

4!
∆4𝑦−1 +

 𝑢 + 1 𝑢 𝑢 − 1  𝑢 − 2 (𝑢 − 3)

5!
∆5𝑦−1 

+
 𝑢 + 2  𝑢 + 1 𝑢 𝑢 − 1  𝑢 − 2 (𝑢 − 3)

6!
∆6𝑦−1 + − − − − −   − −(7.9) 

Averaging the above formula of Eqn. (7.9) and the Gauss’s forward interpolation formula given 

by Eqn. (7.3), we obtain. 

𝑦𝑢 =
 𝑦1 + 𝑦2 

2
+  𝑢 −

1

2
 ∆𝑦0 +

𝑢 𝑢 − 1 

2!
.
 ∆2𝑦0 + ∆2𝑦−1 

2
 

+
 𝑢 −

1
2 𝑢 𝑢 − 1 

3!
∆2𝑦−1 +

 𝑢 + 1 𝑢 𝑢 − 1  𝑢 − 2 

4!
+

 ∆4𝑦−1 + ∆4𝑦−2 

2
 

+
(𝑢 − 1/2) 𝑢 + 1 𝑢 𝑢 − 1  𝑢 − 2 

5!
∆5𝑦−2 

+
 𝑢 + 2  𝑢 + 1 𝑢 𝑢 − 1  𝑢 − 2 (𝑢 − 3)

6!

 ∆6𝑦−2 + ∆6𝑦−3 

2
+ − −   − − (7.10) 

This is Bessel’s formula. 

Alternative forms of Bessel’s Formula 

II Form   The Eqn. (7.10) may be written as 



𝑦𝑢 =
 𝑦0 + 𝑦1 

2
+

( 𝐶
𝜇

1 + 𝐶
𝜇−1

1)

2
∆𝑦0 + 𝐶

𝜇
2

 ∆2𝑦0 + ∆2𝑦−1 

2
+

 𝐶
𝜇+1

3 + 𝐶
𝜇

3 

2
∆3𝑦−1

+ 𝐶
𝜇+1

4

 ∆4𝑦−1 + ∆4𝑦−2 

2
+

 𝐶
𝜇+2

5 + 𝐶
𝜇+1

5 

2
∆5𝑦−2   + 𝐶

𝜇+2
6

 ∆6𝑦−2 + ∆6𝑦−3 

2

+ −   −   

                                                                                    … … … …… … … … . . (7.11) 

In this formula, we observe that various terms are either alternative means of the coefficients of 

Eqn. (7.4) and (7.7) or the mean of the differences lying on the horizontal line between yo and y1.  

II Form   Let 

𝑢 =
𝑥 − 𝑥0

𝑕
                                                                          … … … … … . . (7.12) 

Now we define v = u - (1/2)  ⇒  u = v + (1/2) 

Then Bessel’s formula becomes 

𝑦𝑢 = 𝑦
𝑣+

1
2

=
 𝑦1 + 𝑦0 

2
+ 𝑣∆𝑦0 +

𝑣2  
1
2 

2

2!

 𝑣2𝑦0 + 𝑣2𝑦−1 

2
 

+
𝑣 +   𝑣2 −  1/2 2  

3!
∆3𝑦−1 +

 𝑣2  
1
2 

2

   𝑣2 −  
1
2 

2

  

4!

 𝑣4𝑦−1 + 𝑣4𝑦−2 

2
 

+

𝑣 +   𝑣2 −  
1
2 

2

   𝑣2  
3
2 

2

 

5!
∆5𝑦−2 + − − − − − − 

          … … . . (7.13) 

This is the most convenient from of Bessel’s formula for practical use provided  

u >1/2. It employs alternatively the means of the coefficients and the mean of differences lying 

on the horizontal line between y0 and y1. 

The following table depicts the differences which occur in the Bessel’s formula.  



x y ∆𝑦 ∆2y ∆3y ∆4y ∆5y ∆6y 

𝑥0 𝑦0  ∆2𝑦−1  ∆4𝑦−2  ∆6𝑦−3 

 

 
 ∆𝑦0  ∆3𝑦−2  ∆5𝑦−2  

 

𝑥1 𝑦1  ∆2𝑦−1  ∆4𝑦−1  ∆6𝑦−2 

 

𝑥2 𝑦2       

 

7.3.5   Bessel’s formula for haves 

On putting u = ½  in Eqn. (7.10) we get cases of Bessel’s formula called Bessel’s formula for 

haves. It is uses to estimate the values of the function mid way between two given values, that is 

for u = ½ = 0.5 

𝑦1
2

=
 𝑦1 + 𝑦0 

2
−

1

8

 𝑣2𝑦0 + 𝑣2𝑦−1 

2
+

3

128

 𝑣2𝑦−1 + 𝑣2𝑦−2 

2
 

−
5

1024

 𝑣6𝑦−2 + 𝑣6𝑦−3 

2
+  − − − − − 

+ −1 𝑛
 1.35 − − − − 2𝑛 − 1  2

22𝑛 2𝑛 !

 𝑣2𝑛𝑦−1 + 𝑣2𝑛𝑦−2 

2
                       … …… … … (7.14) 

7.6  Choice of Formula 

Gauss’s forward is employed to interpolate the value of the function if u is in the interval (0,1) 

(i.e., 0<u<1). 

Gauss’s backward is employed to interpolate the value of the function if u is in the interval (-1, 

0) (i.e., -1<u<0). 

Stirling’s formula is used if -0.25<u<0.25 while Bessel’s formula gives better results if 0.25 ≤

𝑢 ≤ 00.75 ⇒ −0.25 ≤ 𝑣 ≤ 0.25. 



Our x0 should be so chosen that u satisfies the above inequality. Further, the choice depends on 

the order of the highest difference that could be neglected considering its insignificant 

contributions. The expected contribution due to neglected highest order difference and the 

subsequent higher order differences should be less than half a unit in the last decimal place of the 

observations. In general, if the neglected difference is order then Stirling’s formula is used, 

while, the Bessel’s formula is used if it is of even order. 

Let us consider some examples: 

Example 7.1:  The following table gives the values of y = f(x) =  𝑥. 

x 2.50 2.55 2.60 2.65 2.70 

f(x) 1.5811 1.5969 1.6125 1.6279 1.6432 

  

Obtain an estimate of f (2.62) using 

(a) Gauss forward interpolation formula 

(b) Stirling formula 

(c) Bessel’s formula 

Solution: 

Central Difference Table 

x  u=(x-2.60)/0.5 f(x)=y ∆𝑦 ∆2y 

2.50 -2 𝑦−2=1.5811   

   ∆𝑦−2=0.0158  

2.55 -1 𝑦−1=1.5969  ∆2𝑦−2=-0.0002 

   ∆𝑦−1=0.0156  

2.60 0 𝑦−0=1.6125  ∆2𝑦−1=-0.0002 

   ∆𝑦0=0.0154  

2.65 1 𝑦−1=1.6279  ∆2𝑦0=-0.0001 

   ∆𝑦1=0.0153  

2.70 2 𝑦2=1.6432   



For x= 2.62, u= (2.62-2.60)/0.05= 0.4 

Here the second difference almost, constant, therefore we stop at this stage and do not compute 

higher order differences. 

Part (a)  Gauss Forward interpolation formula. 

y(0.4) = 1.1625+ 
04

C1 (0.0154)+  
0.4

C2 (-0.0002) 

= 1.6125 +  0.4  0.0154 +   0.4  −06  −0.0002  
1

2
  

= 1.6125 + 0.0061 + 0.000024 

= 1.61868 

Part (b)  Stirling Formula yields 

𝑦 0.4 = 1.6125 +  0.4 
 0.0154 + 0.0156 

2
+

 0.4 2

2!
 −0.0002  

= 1.6125 + 0.00620 − 0.000016 

= 1.61868 

Part (C)  Bessel’s Formula yields 

𝑦 0.4 =
1

2
 1.6279 + 1.6125 +  0.4 − 0.5  0.0154  

+
1

2
  0.4  0.4 − 1   

1

2
 −0.0001 − 0.0002   

= 1.6202 − 0.00154 + 0.000018 

= 1.61868 

In the above cases the interpolated value of  (2.62) is 1.61868 regardless of which formula is 

used.  



Example 7.2:  Apply (a) Stirling’s formula and (b) Bessel’s formula to obtain the value of 

Ф(1.2) from the following table which gives the value of  

Ф 𝑥 =   1/ 2𝜋 exp −𝑧2 𝑑𝑧   𝑓𝑜𝑟 𝑥 = 0.0 𝑡𝑜 2.0

𝑥

0

 

x 0 0.5 1.0 1.5 2.0 

Ф(𝑥) 0.0000 0.1915 0.3413 0.4332 0.4772 

 

Solution: For h= 0.5 and x0 = 1.0 and x= 1.2, we have u= (1.2-1.0)/ (0.5)= 0.4 

x u  Ф(𝑥) ∆𝑦 ∆2𝑦 ∆3𝑦 ∆4𝑦 

0 2 𝑦−2=0.000     

   ∆𝑦−2=0.1915    

0.5 -1 𝑦−1=0.1915  ∆2𝑦−2=-0.0417   

   ∆𝑦−1=0.1498  ∆3𝑦−2=-0.0162  

1.0 0 𝑦0=0.3413  ∆2𝑦−1=-0.0579  ∆4𝑦−2=-0.0262 

   ∆𝑦0=0.0919  ∆3𝑦−1=-0.0100  

1.5 1 𝑦−1=0.4332  ∆2𝑦0=-0.0479   

   ∆𝑦1=0.0440    

2.0 2 𝑦2=0.4772     

 

Part (a): Stirling formula gives 

𝑦 0.4 = 1.3413 +  0.4 
 0.0919 + 0.1498 

2
+

 0.4 2

2!
 −0.0579  

+
0.4  0.4 2 −  1 2 

3!

 0.0100 + 0.0162 

2
+

 0.4 2  0.4 2 −  1 2 

4!
(0.0262) 

= 0.3413 + 0.04834 − 0.004632 − 0.0007336 − 0.00014678 

= 0.38413 = 0.3841 (𝑎𝑝𝑝𝑟𝑜𝑥) 



Here, there are 5 observations, 5 is odd number, therefore the fourth order difference  ∆4𝑦−2 = 

0.0262 will be dropped. 

Part (b): Bessel’s Formula Gives  

𝑦 0.4 =
1

2
 0.4332 + 0.3413 +  0.4 −

1

2
  0.0919  

+
1

2
  0.4  0.4 − 1   

1

2
 −0.0479 − 0.0579   

+  
1

6
   0.4 −

1

2
  0.4  0.4 − 1 0.0100  

=0.38725-0.00919+0.005976+0.00004 

=0.38408=0.3841 (approx) 

Example 7.3: Use (a) Gauss’s backward (b) Strirling (c) Bessels formula to find the sales of the 

year 1968, given that 

Year (x) 1941 1951 1961 1971 1981 1991 2001 

Sales (in Lac)(y) 9 15 20 27 39 59 90 

 

Solution: Here h=10. Let us take 1971 (nearer to year 1968) as the origin x0 and 

𝑢 =
𝑥 − 𝑥0

𝑕
 =

𝑥 − 1971

10
 𝑆𝑜 𝑡𝑕𝑎𝑡 𝑎𝑡 𝑥 = 1968, 𝑢 =

1968 − 1971

10
= 0.3 

The difference table is computed below: 

x y f (x)=y ∆𝑦 ∆2𝑦 ∆3𝑦 

1941 -2 9    

   6   

1951 -2 15  -1  

   5  3 

1961 -1 20    



    2  

   7  3 

1971 0 27  5  

   12  3 

1981 1 39    

   20 8  

1991 2 59    

   31 11  

2001 3 90    

  

Here difference of third order are constant, therefore we stop at  

∆3𝑦  column. We infer that the polynomial is degree 3. 

Part (a)  Gauss Backward formula is 

𝑦(0.4) = 27 +  −0.3  7 +
 −0.3 + 1  −0.3 

2!
 5 +

 −0.3 + 1  −0.3  −0.3 − 1 

3!
(3) 

= 27 − 2.1 − 0.525 + 0.1365 

= 24.5115 = 24.5 (𝑎𝑝𝑝𝑟𝑜𝑥. ) 

Part (b) Stirling formula is 

𝑦(−0.3) = 27 +  −0.3 +
 12 + 7 

2
+

 −0.3 2

2!
 5 +

 −0.3   −0.3 2 −  1 2 (3 + 3)

3!

3 + 3

2
 

= 27 − 2.85 + 0.225 + 0.1365 

= 24.5115 = 24.5 (𝑎𝑝𝑝𝑟𝑜𝑥. ) 

The use of Stirling formula is justified when u falls in the interval -0.25≤u≤0.25. In this case, u= 

0.3 is close to -0.25 

Part (c):  Bessel’s Formula performs good if  

0.25≤u≤0.25 (equivalently -0.25≤u≤0.25). 



u= -0.3 does not lie in the interval, therefore we have to change the origin from x= 1971. 

Let us take the new origin at x= 1961, then u=
𝑥−1961

10
 and x= 1968, u= (1968-1961)/10= 0.7 and 

v=u-1.2= 0.2 

Using Bessel’s formula given by Eqn. (1.13) and 

𝑦0 = 20, 𝑦1 = 27, ∆𝑦0 = 7, ∆2𝑦0 = 5, ∆2𝑦−1 = 2, ∆2𝑦−1 = 3 𝑎𝑛𝑑 𝑣 = 0.2    

We get  

𝑦 0.4 =
1

2
 27 + 20 +  0.2 +  7 +   0.2 2 −  

1

2
 

2

  
 5 + 2 

2
  

=   0.2 [ 0.2 2 −  
1

2
 

2

  3  
1

6
  

= 23.5 + 1.4 −  0.105  3.5 +  0.1  0.21  

= 23.5 + 1.4 − 0.3675 − 0.021 

= 24.5115 = 24.5 (𝑎𝑝𝑝𝑟𝑜𝑥) 

Example 7.4:  For a locality, the expectations of life 𝑒𝑥
𝑜  (in years) are as follows. Obtain the 

expectation of life (at the age of 22.5 years). 

Age (in year) x 10 15 20 25 30 35 

Expectation of life 

(in year) 𝑒𝑥
𝑜  

55.4 52.2 49.1 46.1 43.2 40.5 

 

Solution: x = 22.5 is the mid point of x=20 and x=25. If we shift the origin to x0 =20 and take 

width of the interval h= 5 years, then 

𝑢 =
𝑥 − 𝑥0

𝑕
 =

𝑥 − 20

10
 𝑆𝑜 𝑡𝑕𝑎𝑡 𝑎𝑡 𝑥 = 22.5, 𝑢 = 0.5 = 1/2. 

The difference table is shown below: 



x u y ∆𝑦 ∆2𝑦 ∆3𝑦 

10 -2 55.4    

   -3.2   

15 -1 52.2  0.1  

   -3.1  0 

20 0 49.1  0.1  

   -3  0 

25 1 46.1  0.1  

   -2.9  0 

30 2 43.2  0.1  

   -2.8   

35 3 40.5    

  

Bessel’s formula for halves given by Eqn. (1.14) yields 

𝑦1
2

=  
1

2
  𝑦1 + 𝑦0 −  

1

8
  ∆2𝑦0 + ∆2𝑦−1  

=  
1

2
  26.1 + 29.1 −  

1

8
  0.1 + 0.1  

= 27.6 . 2 0.125 

= 27.5875 = 27.6 (𝑎𝑝𝑝𝑟𝑜𝑥) 

You may try the following problems: 

P-1.1 Apply a central difference formula to obtain y34 given that y25= 0.27.7, y30= 

0.3027, y40= 0.3794 

P-1.2 Given the following table of values 

x 1.1 1.2 1.3 1.4 1.5 

f (x) 1.3357 1.5095 1.6984 1.9043 1.2193 

 Obtain an estimate of f(1.34) using Stirling’s formula. 



P-1.3 The following table gives the number of deaths in four successive 10 year age 

groups. Estimate the number of deaths between age groups 45-50 and 50-55 years 

Age group (in years) 25-35 35-45 45-55 55-65 

Deaths 13229 18139 24225 31496 

P-1.4 Apply 

(a) Gauss’s forward formula 

(b) Stirling’s formula 

To find a polynomial of degree four or less that takes the value of the function 

f(x) 

x 1 2 3 4 5 

f (x) 1 -1 1 -1 1 

P-1.5 Apply Bessel’s formula to obtain a polynomial of degree three or less which takes 

the values of the function f(y). 

x 4 6 8 10 

f (x) 1 3 8 20 

P-1.6 Apply Gauss’s formula to find the value of  u9 if u0= 14, u4= 25, u8= 32, u12= 35, 

u16= 40  

P-1.7 Use 

(a) Gauss’s forward formula 

(b) Stirling’s formula 

To get an estimate of u12.2 from the following table where u=10
5 𝑙𝑜𝑔10

26  

x 10 11 12 13 14 

u 23967 28060 31788 35290 38368 

P-1.8 Use 

(a) Gauss’s forward formula 

(b) Stirling’s formula 

To obtain the value of 25
0
40’30” 



x 25
0
40’0” 25

0
40’20” 25

0
40’40” 25

0
41’0” 25

0
41’20” 

Sin 𝜃 0.4331347 0.43322218 0.4330956 0.43339695 0.443348433 

 

P-1.9 Given 

𝜃 0
0
 5

0
 1

0
 15

0
 20

0
 25

0
 30

0
 

𝑇𝑎𝑛 𝜃 0.00 0.0875 0.1763 0.2679 0.3640 0.4663 0.5774 

 Use Stirling formula to show that tan 16
0
= 0.28676. 

P-1.10 Use Gauss’s Interpolation formula to obtain u44 with the help of the following 

data. U30= 3678, u35= 2995, u40= 2400, u45= 1876, u50= 1416.  

P-1.11 Use Stirling formula to evaluate the value of y for x= 30 from the formula table. 

x 21 25 29 33 37 

y=f(x) 18.4708 17.8140 17.1070 16.3432 15.5134 

 

7.4  𝜹 and 𝝁 operators 

7.4.1   The operator 𝜹 is called the central difference operator.  

δ ≡ E
1
2 − E

1
2 … … … … … … 7.15  

⇒ 𝛿 ≡  𝐸−
1
2 𝐸 − 1  

⇒ 𝛿 ≡ 𝐸−1/2 ∆                     𝑤𝑕𝑒𝑟𝑒 𝐸 = 1 + ∆                          … … … (7.16) 

Eqn. (7.16) establishes a relation between 𝛿 𝑎𝑛𝑑∇. 

Again ∇        ≡       𝐸−
1

2(1 − 𝐸−1) 

⇒ 𝛿             ≡  𝐸1/2 ∇                                      … … … …… … . . (7.17) 

Eqn. (7.17) establishes a relation between 𝛿 𝑎𝑛𝑑∇.  



Further the first order central difference 𝛿 fr or fr for f(x) at x = xr 

𝛿𝑓𝑟 = 𝑓  𝑥𝑟 +
𝑕

2
 − 𝑓  𝑥𝑟 −

𝑕

2
 = 𝑓

𝑟+(
1

2
)
− 𝑓

(𝑟− 
1

2
 )

… … … . (7.18)  

If we operate Eqn. (1.18) with 𝛿 we get second order difference as 𝛿2𝑓𝑟   

𝛿2𝑓𝑟 = 𝛿 𝛿𝑓𝑟  

= 𝛿 𝑓 𝑥𝑟 + 𝑕/2 − 𝑓 𝑥𝑟 + 𝑕/2   

= 𝛿𝑓 𝑓  𝑥𝑟 +
𝑕

2
 − 𝛿𝑓  𝑥𝑟 +

𝑕

2
  

=  𝑓 𝑥𝑟 + 𝑕 𝑓 𝑥𝑟  −  𝑓 𝑥𝑟 − 𝑓 𝑥𝑟 − 𝑕   

= 𝑓 𝑥𝑟 + 𝑕 − 2𝑓 𝑥𝑟 + 𝑓 𝑥𝑟 + 𝑕  

𝑓𝑟+1 − 2𝑓𝑟 + 𝑓𝑟−1                                       … … … …… … … … … … … …… … . . (7.19) 

Similarly 

𝛿3𝑓𝑟 = 𝑓𝑟+3/2 − 3𝑓𝑟+(1/2) + 3𝑓
𝑟−(

1
2

)
− 𝑓

𝑟−(
3
2

)
                          … … …… … (7.20) 

𝛿4𝑓𝑟 = 𝑓𝑟+2 − 4𝑓𝑟+1 + 6𝑓𝑟 − 4𝑓𝑟−1 + 𝑓𝑟−2                            … …… … … … (7.21) 

In fact 

𝛿𝑛−1𝑓
𝑟+

1
2

− 𝛿𝑛−1𝑓
𝑟−

1
2

= 𝛿𝑛𝑓𝑟 =  E
1
2 − E−

1
2 

𝑛

𝑓𝑟  𝑓𝑜𝑟 𝑟 = 1, 2, 3 − − − − 

It shows that the even order differences 𝛿2𝑚  𝑓𝑟 at a tabular value xr are expressed in terms of 

tabular values of function f(x), while the odd order differences 𝛿2𝑛+1 𝑓𝑟  at tabular value xr are in 

terms of non-tabular values of f(x). The coefficients of are the same as those of the binomial 

expansion of (1-x)
t
, t= 1,2,3,………... 

7.3.2   The mean or average operator 𝝁 is defined as  

μ =  
1

2
    E

1
2 − E

1
2                           … … …… … . . … …  7.22  



The first order mean operator μfr  of the function f(x) at the argument x= xr is given as.  

μfr ≡
1

2
 E

1
2 − E

1
2 f xr  

=
1

2
 𝑓  𝑥𝑟 +

𝑕

2
 + 𝑓  𝑥𝑟 −

𝑕

2
   

=
1

2
 𝑓𝑟+1/2 + 𝑓𝑟−1/2                                         … … … … . . (7.23) 

μ2fr = μ μfr  

= μ  
1

2
 f

r+
1
2

+ f
r−

1
2
   

=
1

2
f  μf

r+
1
2
 +

1

2
 μf

r−
1
2
  

=
1

2
 
1

2
 ff+1 + fr  +

1

2
 
1

2
 fr−1 + fr   

=
1

4
 fr+1 + 2fr + fr−1                            … … … …… … (7.24) 

and so on. 

From Equations (7.15) and (7.22). 

E
1
2 ≡ μ +

1

2
 δ                        …… … … … … . . (7.25) 

and  

E−
1
2 ≡ μ −

1

2
 δ                          … … … … …… . . (7.26) 

The Stirling’s central formula in terms of μ and δ operators may be written as 

𝑦𝑢 = 𝑦0 + 𝑢  

𝛿𝑦1
2

+ 𝛿𝑦
−

1
2

2
 +

𝑢2

2
𝛿2𝑦0 +

𝑢 𝑢2 − 12 

3!

 𝛿3𝑦1
2

+ 𝛿3𝑦
−

1
2
 

2
 



+
𝑢2 𝑢2 − 12 

4!
𝛿4𝑦0 +

𝑢 𝑢2 − 12  𝑢2 − 22 

5!

 𝛿5𝑦1
2

+ 𝛿5𝑦
−

1
2
 

2
 

+
𝑢2 𝑢2 − 12 

6!
𝛿6𝑦0 + − − − − − − − − − − − − 

𝑢 𝑢2 − 12  𝑢2 − 22 … .  𝑢2 −  𝑛 − 1 2 

 2𝑛 − 1 !

 𝛿2𝑛−1𝑦1
2

+ 𝛿2𝑛−1𝑦
−

1
2
 

2
 

+
𝑢 𝑢2 − 12  𝑢2 − 22 … .  𝑢2 −  𝑛 − 1 2 

 2𝑛! 
 𝛿2𝑛𝑦0    − − − − −                       …… … … (7.27) 

OR 

𝑦𝑢 = 𝑦0 + 𝑢 𝜇𝛿𝑦0 +
𝑢2

2!
 𝛿2𝑦0 +

𝑢 𝑢2 − 12 

3!
 𝑢𝛿3𝑦0  

+
𝑢2 𝑢2 − 12 

4!
 𝛿4𝑦0 +

𝑢 𝑢2 − 12  𝑢2 − 22 

5!
 𝑢𝛿5𝑦0  

+
𝑢2 𝑢2 − 12 

6!
 𝛿6𝑦0 + − − − − − − − − − − − − 

𝑢 𝑢2 − 12  𝑢2 − 22 … .  𝑢2 −  𝑛 − 1 2 

 2𝑛 − 1 !
 𝑢𝛿2𝑛−1𝑦0  

+
𝑢 𝑢2 − 12  𝑢2 − 22 … .  𝑢2 −  𝑛 − 1 2 

 2𝑛! 
 𝛿2𝑛𝑦0 − − − − −                      … … … … . . (7.28) 

7.4  Summary 

In this unit interpolation formulae, to interpolate the value of the function near the middle 

of the set of equi-distant arguments, have been derived. 

The interpolation formulae derived in this unit with, u = (x - x0)/h, are mentioned below:  

(1) Gauss’s forward interpolation formula with (2n + 1) equi-distant arguments: 

Two line left 



(2) Gauss’s backward interpolation formula with (2n+1) equi-distant arguments: 

Two line left 

(3) Stirling’s Central difference formula with (2n+1) equi-distant arguments: 

𝑦𝑢 = 𝑦0 + 𝑢
∆𝑦0 + ∆𝑦−1

2
+

𝑢2

2
∆2𝑦−1 +

𝑢 𝑢2 − 12 

3!

 ∆3𝑦−1 + ∆3𝑦−2 

2
+ 

+
𝑢2 𝑢2 − 12 

4!
∆4𝑦−2 +

𝑢2 𝑢2 − 12  𝑢2 − 22 

5!

 ∆5𝑦−3 + ∆5𝑦−3 

2
 

+
𝑢2 𝑢2 − 12  𝑢2 − 22 

6!
∆6𝑦−3 + − − − − − − − 

𝑢 𝑢2 − 12  𝑢2 − 22 … … . .  𝑢2 −  𝑛 − 1 2 .

(2𝑛 − 1)!

 ∆2𝑛−1𝑦−𝑛+1 + ∆2𝑛−1𝑦−𝑛 

2
+ 

𝑢2 𝑢2 − 12  𝑢2 − 22 … … . .  𝑢2 −  𝑛 − 1 2 

(2𝑛)!
 ∆2𝑛𝑦−𝑛  

(4) Bessel’s central difference formula for (2n+2) arguments 

 

𝑦𝑢 =
 𝑦1 + 𝑦2 

2
+  𝑢 −

1

2
 ∆𝑦0 +

𝑢 𝑢 − 1 

2!
.
 ∆2𝑦0 + ∆2𝑦−1 

2
 

+
 𝑢 −

1
2 𝑢 𝑢 − 1 

3!
∆2𝑦−1 +

 𝑢 + 1 𝑢 𝑢 − 1  𝑢 − 2 

4!
+

 ∆4𝑦−1 + ∆4𝑦−2 

2
 

+
(𝑢 − 1/2) 𝑢 + 1 𝑢 𝑢 − 1  𝑢 − 2 

5!
∆5𝑦−2 

+
 𝑢 + 2  𝑢 + 1 𝑢 𝑢 − 1  𝑢 − 2 (𝑢 − 3)

6!

 ∆6𝑦−2 + ∆6𝑦−3 

2
 

Which by taking v=u-1/2, becomes 

𝑦𝑢 = 𝑦
𝑣+

1
2

=
 𝑦1 + 𝑦0 

2
+ 𝑣∆𝑦0 



+
𝑣2 1/2 2

2!

 𝑣2𝑦0 + 𝑣2𝑦−1 

2
+

𝑣 +   𝑣2 −  1/2 2  

3!
∆3𝑦−1 

+

 𝑣2  
1
2 

2

   𝑣2 −  
1
2 

2

  

4!

 𝑣4𝑦−1 + 𝑣4𝑦−2 

2
 

+
𝑣 +   𝑣2 −  1/2 2   𝑣2 3/2 2 

5!
∆5𝑦−2 + − − − − − − − 

 

(5) Bessel’s formula for haves for u=1/2 = 0.5 

𝑦1
2

=
 𝑦1 + 𝑦0 

2
−

1

8

 𝑣2𝑦0 + 𝑣2𝑦−1 

2
+

3

128

 𝑣2𝑦−1 + 𝑣2𝑦−2 

2
 

−
5

1024

 𝑣6𝑦−2 + 𝑣6𝑦−3 

2
+  − − − − − 

+ −1 𝑛
 1.35 − − − − 2𝑛 − 1  2

22𝑛 2𝑛 !

 𝑣2𝑛𝑦−1 + 𝑣2𝑛𝑦−2 

2
 

The criteria regarding the choice between Stirling’s and Bessel’s formulae are as follows 

(1) If -0.25 ≤ u ≤0.25 then Bessel’s formula is to be preferred and for 0.25 ≤ u ≤ 0.75 

Stirling’s formulas is suggested. The choice of x0 should be so made that is satisfies the 

above condition. 

(2) If the given set of observations are an odd number say 2n+1, then Stirling’s formula is 

recompleted, whereas for Bessel’s formula, the number of observations should be an even 

number, say (2n+2). 

(6) The central difference operator and 𝛿 mean operator 𝜇 are defined as below:  

δ ≡ E
1

2 − E
1

2            and           μ =  
1

2
    E

1

2 − E
1

2  

The above formula may be written in terms of these operators to use central differences table. 

7.5  Solutions/Answers 



P-1.1   Taking x0= 35, h=5, u= (34-35)/5=-0.2 we have. 

Y(34)= y-0.2= 0.331844 = 0.3318(approx.) 

P-1.2       Choose  x0= 1.3 so that u= (x-xo)/h (1.34-1.30)/(0.10)=-0.4 . 

Central Difference Table 

x  u  f  𝛿𝑓 𝛿2𝑓 𝛿3𝑓 𝛿4𝑓 

1.1 -2 1.3357     

   0.1738    

1.2 -1 1.5095  0.0151   

   0.1889  0.0019  

1.3 0 1.6984  0.0170  0.0002 

   0.2059  0.0021  

1.4 1 1.9043  0.0191   

   0.2250    

1.5 2 1.293     

 Now, f0= 1.6984, 𝛿2𝑓0 = 0.0170, 𝛿2𝑓0 = 0.0002. 

𝑢𝛿2𝑓0 =
1

2
   𝛿2𝑓

 
1
2
 
− 𝛿2𝑓(−1/2) =

1

2
 0.2059 + 0.1889 = 0.1974 

𝑢𝛿3𝑓0 =
1

2
   𝛿3𝑓

 
1
2
 
− 𝛿3𝑓(−1/2) =

1

2
 0.002 + 0.0019 = 0.0020 

Using Stirling formula given by Eqn. (1.25) we get 

f(1.34) = y0.4 = 1.6984+(0.4)(0.1974)+[(0.16)/2(0.170)] 

+[(0.4)(-0.84)/6](0.0020)+[(0.16)-(-0.84)/24](0.0002) 

= 17786 (approx) 

P-1.3  First prepare a cumulative frequency table and then take xo=45, h=10, x=50, u= (x-xo)/h = 

(50-45)/10 = 0.5, use Bessel’s formula for haves hereafter. 

Number of deaths between 45 and 50 = 42646 – 31368 = 11278 



And the number of deaths between 50 and 55 = 24225-11278 = 12947 

P-1.4   ux = (1/8) (2x
4
-8x

2
+3) 

P-1.5  For u= (x-6)/2, the polynomial is  

 P(u)= y(u)= (1/6)[+30(u-1/2)+5u(u-1)+(2/3)(u-1/2)u(u-1)] 

 Which is terms of x is 

 P(x) = (1/6) (33+15(x-7)+(15/4)(x-6) (x-8)+(1/2) (x-6) (x-7)(x-8) 

P-1.6  U9= 33. 

P-1.7  U12.2= 0.30495 

P- 1.8  (a) 0.43322218 

 (b) 0.43326587 

P-1.9 U44= 1975 

P-1.10 f(30) = 16.9217. 

7.6  Further Readings 

1. Finite Difference & Numerical Analysis, S. Chand & Company, New Delhi: H.C. Saxena 

2. Numerical Mathematical Analysis, John Hopkins Press, Baltimore New York; James B. 

Scarborough 

3. Introductory Method of Numerical Analysis, Prentice Hall of India Pvt. Ltd.: S.S. Sastry 

4. Introduction to Numerical Analysis, Tata McGraw Hill Publishing Company, New Delhi: 

S.T. Hildebrand 

5. Numerical Analysis, McMillan Publishing Company, New York: M.J. Marom 

6. Numerical Method for Scientific & Engineering Computation, New Age International 

Publishers, New Delhi: M.K. Jain, S.R.K. Iyengar & R.K. Jain 

  



Unit-8:   Inverse Interpolation  

Structure 

8.1   Introduction 

8.2   Objectives 

8.3   Inverse Interpolation by Lagrange’s Method 

8.4   Method of Successive Approximation 

8.5   Method of Reversion of Series 

8.6   Summary  

8.7   Solutions / Answer 

8.8   Further Readings 

8.1  Introduction 

We considered the problem of direct interpolation or simply interpolation so far in which 

we intend to find the value of y=f(x) for a particular value of x lying between any two tabulated 

values of argument. But we may also face the problem of evaluating the unknown value of x for 

a known value of y, this technique is termed as inverse interpolation. That is “the process of 

determining the unknown value of the argument corresponding to given value of entry, with 

the help of a set of observations is known as inverse interpolation”. 

2.2  Objectives 

After going through this unit you will learn 

 What is inverse interpolation 

 Problem solving by using different methods 

2.3  Inverse Interpolation by Lagrange’s Interpolation Formula 

Given the (n+1) values of arguments x0, x1, x2,……x3 with their respective entries y0, y1, 

y2,……y3 the Lagrange’s interpolation formula for direct interpolation is 



𝑦 =
 𝑥 − 𝑥1  𝑥 − 𝑥2 … .  𝑥 − 𝑥𝑛 

 𝑥0 − 𝑥1  𝑥0 − 𝑥2 … .  𝑥0 − 𝑥𝑛 
 𝑦0 +

 𝑥 − 𝑥1  𝑥 − 𝑥2 … .  𝑥 − 𝑥𝑛 

 𝑥1 − 𝑥0  𝑥1 − 𝑥2 … .  𝑥𝑛 − 𝑥𝑛−1 
 𝑦1  

+ ⋯ . +
 𝑥 − 𝑥0  𝑥 − 𝑥1 … .  𝑥 − 𝑥𝑛−1 

 𝑥𝑛 − 𝑥1  𝑥𝑛 − 𝑥2 … .  𝑥𝑛 − 𝑥𝑛−1 
 𝑦𝑛 . 

As in the problem of in the problem of inverse interpolation, we have to find out the value of x 

for given y, the above formula can be rewritten as follows: 

𝑥 =
 𝑦 − 𝑦1  𝑦 − 𝑦2 … .  𝑦 − 𝑦𝑛 

 𝑦0 − 𝑦1  𝑦0 − 𝑦2 … .  𝑦0 − 𝑦𝑛 
 𝑥0 +

 𝑦 − 𝑦1  𝑦 − 𝑦2 … .  𝑦 − 𝑦𝑛 

 𝑦1 − 𝑦0  𝑦1 − 𝑦2 … .  𝑦𝑛 − 𝑦𝑛−1 
 𝑥1  

+ ⋯ . +
 𝑦 − 𝑦0  𝑦 − 𝑦1 … .  𝑦 − 𝑦𝑛−1 

 𝑦𝑛 − 𝑦1  𝑦𝑛 − 𝑦2 … .  𝑦𝑛 − 𝑦𝑛−1 
 𝑥𝑛 .                       … …… … .  (8.1) 

We illustrate the use of this formula in the following example. 

Example 8.1:  Using the following data find the value of x corresponding to y =  

     f(x) = 3.0. 

x 1.0  1.2  1.5  1.8  2.0 

y 4.00  3.408  2.625  2.110  2.0 

Solution:  Using (8.1), we have 

𝑥 =
 𝑦 − 3.408  𝑦 − 2.625  𝑦 − 2.112   𝑦 − 2.0 

 4.0 − 3.408  4.0 − 2.625  4.0 − 2.112  4.0 − 2.0 
 1.0  

+ 
 𝑦 − 4.0  𝑦 − 2.625  𝑦 − 2.112   𝑦 − 2.0 

 3.408 − 4.0  3.408 − 2.625  3.408 − 2.112  3.408 − 2.0 
 1.2  

+
 𝑦 − 4.0  𝑦 − 3.408  𝑦 − 2.112   𝑦 − 2.0 

 2.625 − 4.0  2.625 − 3.408  2.625 − 2.112  2.625 − 2.0 
 1.5  

+
 𝑦 − 4.0  𝑦 − 3.408  𝑦 − 2.625   𝑦 − 2.0 

 2.112 − 4.0  2.112 − 3.408  2.112 − 2.625  2.112 − 2.0 
 1.8  

+
 𝑦 − 4.0  𝑦 − 3.408  𝑦 − 2.112   𝑦 − 2.0 

 2.0 − 4.0  2.0 − 3.408  2.0 − 2.625  2.0 − 2.112 
 2.0  



Taking y=3, we get x= 1.4221. 

8.4  Method of Successive Approximation 

Assuming the function y=f(x) a polynomial of the degree n, we may use any of the interpolation 

formulae consider so far to find the value of x corresponding to the given value of y. 

Consider the Newton’s forward formula when (n+1) equidistant values of arguments x0, x1, 

x2,……xn with their respective entries y0, y1, y2,……yn are given . 

Where u= (x-x0)/h and h is the interval of differencing. Since y is given, we have to solve the 

equation (which will be terms if u) for a real root. Thus we rearrange the equation by transposing 

its terms as follows 

𝑢∆y0 = y − y0 −
u(u − 1)

2!
∆2y0 −

u u − 1 (u − 2)

3!
∆3y0 −

u u − 1  u − 2 (u − 3)

4!
∆4y0

− ⋯… .. 

Dividing throughout by ∆y0  we get 

𝑢 =
𝑦 − 𝑦0

∆𝑦0
−

u(u − 1)

2!

∆2y0

∆𝑦0
−

u u − 1 (u − 2)

3!

∆3y0

∆𝑦0
−

u u − 1  u − 2 (u − 3)

4!

∆4y0

∆𝑦0

+ ⋯…                                                                                  … … … . . (8.2) 

For the first approximation for u we neglect all difference higher than the first degree and take 

𝑢(1) =
𝑦 − 𝑦0

∆𝑦0
 

Where the symbol 𝑢(1)denotes the first approximate value of u. The second approximation, say 

𝑢(2), can be obtained by putting u=𝑢(1)  in the right hand side of (8.2). we then have  

𝑢(2) =
𝑦 − 𝑦0

∆𝑦0
−

u(1)(u(1) − 1)

2!

∆2y0

∆𝑦0
−

u(1) u(1) − 1 (u(1) − 2)

3!

∆3y0

∆𝑦0

−
u(1) u(1) − 1  u(1) − 2 (u(1) − 3)

4!

∆4y0

∆𝑦0
+ ⋯… … … … .. 



Similarly, putting u=𝑢(2) ,  𝑢(3) ……in (8.2) the process can be continued till two successive 

approximated values are nearly equal. Finally the value of x will be obtained from u using the 

relation x = xn + uh. We illustrate the process in the following example.  

Example 8.2: The following values of y=3050 by successive approximation method. 

x  10  15  20 

y 1804  2698  3614 

Solution:  We first prepare the difference table in usual manner. 

x y  ∆𝑦 ∆𝑦0 

10 1804   

  894  

15 2698  22 

  916  

20 3614   

 

We observe from the difference table that second order differences are constant. Form we have 

(8.2), 

𝑢 =
𝑦 − 𝑦0

∆𝑦0
−

u(u − 1)

2!

∆2y0

∆𝑦0
 

Thus, we have the first approximation to u as follows 

𝑢(1) =
𝑦 − 𝑦0

∆𝑦0
=

3050 − 1804

854
= 1.45902 

Putting u = 1.39 in (8.3) we get the second approximate value. Here, 

𝑢(2) =
𝑦 − 𝑦0

∆𝑦0
−

u(1)(u(1) − 1)

2!

∆2y0

∆𝑦0
 

That is, 



𝑢(2) = 1.4502 −
1.4502(1.4502 − 1)

2
×

22

894
= 1.44078 

Now the required value is 

X = 𝑥0 + 𝑢𝑕 

= 10+5×1.44078 (since we have taken origin at 1.0 and h=5)  = 17.2539. 

Example 8.3:  For the given values in table find the value of x corresponding to y = 2.285, using 

Bessel’s formula: 

Solution: 

u x y ∆𝑦∗ ∆2𝑦∗ ∆3𝑦∗ ∆4𝑦∗ ∆5𝑦∗ 

-2 0.736 2.2832974      

   8049     

-1 0.737 2.2841023  13    

   8062  -1   

0 0.738 2.2849085  12  3  

   8074  2  -6 

1 0.739 2.2857179  14  -3  

   8088  -1   

2 0.740 2.2865247  13    

   8101     

3 0.741 2.2873348      

 

* All the values of these columns are to be multiplied by 10
-7

. Moreover the values in last two 

columns are too small can be ignored in calculation. 

Here the Bessel’s formula is 

𝑦 =
𝑦0 + 𝑦1

2
+ 𝑢∆𝑦0 +

 𝑢−1/4
2  ∆2𝑦−1 + ∆2𝑦0

2
+

𝑢 𝑢2 − 1/4 

3!
∆3𝑦−1 

After substituting the value of y and its difference and inverting the terms, we get 



u=-0.386732-(𝑢2 − 0.25) (0.000805053)u(𝑢2-0.25)(0.000041285)        (8.4) 

Here the first approximation is  

𝑢(1) = −0.386732 

For the second approximation we put the value of first approximation in (2.4) and get 

𝑢(2) = −0.386647993 

Similarly  

𝑢(3) = −0.386654283 

𝑢(4) = −0.386652697 

Hence the value of x is 

x=0.738+0.001 (-0.386652697+0.5) 

= 0.7388867 

Example 8.4:  Obtain a real root of the equation x
3 

- 6x – 11 = 0 by the inverse interpolation 

method which lies between 3.0 and 4.0. 

Solution: We first prepare the following table:  

x y ∆𝑦 ∆2𝑦 ∆3𝑦 ∆4𝑦 

3.0 -2.0     

  4.568    

3.2 2.568  0.768   

  5.336  0.48  

3.4 7.904  0.816  0 

  6.152  0.48  

3.6 14.056  0864  0 

  7.016  .048  

3.8 21.072  0.912   



  7.928    

4.0 29.0     

 

We have inverse interpolation formula (derived from Newton’s forward formula) for as follows: 

𝑢 =
𝑦 − 𝑦0

∆𝑦0
−

u(u − 1)

2!

∆2y0

∆𝑦0
−

u(u − 1)(u − 2)

3!

∆3y0

∆𝑦0
…… … … … . (8.5) 

Taking y = 0 (as there will be a root corresponding to y = 0), the first approximation is 

𝑢(1) =
𝑦 − 𝑦0

∆𝑦0
= 0.4378 

Now we substitute the value of 𝑢(1) in (8.5) get  

𝑢(3) = −0.4418 

𝑢(4) = 0.4418 

Hence the root of the equation is 

U = 3.0+.02(0.4418) = 3.008836. 

8.5  Method of Reversion of Series 

The most suitable method of solving the problem of inverse interpolation is by reversion of 

series. Since most of the interpolation formulae developed so far can be interpreted easily in 

form of power series, the process is simple and fast. Moreover, these series are convergent and 

hence can be reverted to get the value of variable/ argument. Here we consider the power series.  

𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3 + ⋯… … . . 𝑎𝑛𝑥𝑛                         (8.6) 

Then as a first approximation we consider the series up to first degree only i.e. let 

𝑦 = 𝑎0 + 𝑎1𝑥 Then we have x = (y-a0)/ar 

Now suppose that the inverse function y = f(x) can be expressed as a power series in (y-a0)/a1 in 

the form.  



𝑥 = 𝑐1  
𝑦 − 𝑎0

𝑎1
 + 𝑐2  

𝑦 − 𝑎0

𝑎1
 

2

+ ⋯… + 𝑐𝑛  
𝑦 − 𝑎0

𝑎1
 

𝑛

                           (8.7) 

Again from (8.6), we have 

 
𝑦 − 𝑎0

𝑎1
 = 𝑥 +

𝑎2

𝑎1
𝑥2 +

𝑎3

𝑎1
𝑥3 +

𝑎4

𝑎1
𝑥3 + ⋯ …… .. 

Putting this value of from 
𝑦−𝑎0

𝑎1
 (8.8) and (8.7), we get 

𝑥 = 𝑐1  𝑥 +
𝑎2

𝑎1
𝑥2 +

𝑎3

𝑎1
𝑥3 +

𝑎4

𝑎1
𝑥3 + 𝑐2  𝑥 +

𝑎2

𝑎1
𝑥2 +

𝑎3

𝑎1
𝑥3 +

𝑎4

𝑎1
𝑥3 

2

 

+𝑐3  𝑥 +
𝑎2

𝑎1
𝑥2 +

𝑎3

𝑎1
𝑥3 +

𝑎4

𝑎1
𝑥3 

3

+ 𝑐4  𝑥 +
𝑎2

𝑎1
𝑥2 +

𝑎3

𝑎1
𝑥3 +

𝑎4

𝑎1
𝑥3 

4

+ ⋯ 

= 𝑐1𝑥 +  
𝑐1𝑎2

𝑎1
+ 𝑐2 𝑥2 +  

𝑎3

𝑎1
𝑐1 + 2𝑐2

𝑎2

𝑎1
+ 𝑐3 𝑥3 + ⋯ …. 

Equating coefficients of like powers of x on both sides we get  

𝑐1 = 1,
𝑐1𝑎2

𝑎1
+ 𝑐2 = 0 ⇒ 𝑐2 = −

𝑎2

𝑎1
,        𝑒𝑡𝑐.  

Thus we get  

𝑐1 = 1 

𝑐2 = −
𝑎2

𝑎1
 

𝑐3 = −
𝑎3

𝑎1
+ 2  

𝑎2

𝑎1
 

2

 

𝑐4 = −
𝑎4

𝑎1
+ 5  

𝑎2𝑎3

𝑎1
2  − 5  

𝑎2

𝑎1
 

3

,   𝑒𝑡𝑐                (8.9) 

and the value of x can be obtained by substituting the value of x in (8.8). 

Thus in this method the values 𝑎0, 𝑎1, 𝑎2 … . . … ..of will be obtain from interpolation 

formula by writing the formula in terms of power series then the values of 𝑐1, 𝑐2 … ..will be 



obtained with the help of the values of a’s using relation (8.9). As an illustration we shall now 

write Newton’s and Stirling’s formulae in the form of power series and then obtain the values of 

𝑎0, 𝑎1, 𝑎2 … . . … ..for the same.  

(i) Newton’s formula: 

𝑦 = 𝑦0 + 𝜇∆𝑦0 +
𝑢 𝑢 − 1 

2!
∆2𝑦0 +

𝑢 𝑢 − 1  𝑢 − 2 

3!
∆3𝑦0 

+
𝑢 𝑢 − 1  𝑢 − 2  𝑢 − 3 

4!
∆4𝑦0 

= 𝑦0 +  ∆𝑦0 −
∆2𝑦0

2
+

∆3𝑦0

3
−

∆4𝑦0

4
 𝑢 +  

∆2𝑦0

2
−

∆3𝑦0

3
+

11∆4𝑦0

4
 𝑢2 +  

∆3𝑦0

6
+

∆4𝑦0

4
 𝑢3 +

∆4𝑦0

4
𝑢4 

𝑎0 = 𝑦0 

𝑎1 = ∆𝑦0 −
∆2𝑦0

2
+

∆3𝑦0

3
−

∆4𝑦0

4
 

𝑎2 =
∆2𝑦0

2
−

∆3𝑦0

3
+

11∆4𝑦0

4
 

𝑎3 =
∆3𝑦0

6
+

∆4𝑦0

4
 

𝑎4 =
∆4𝑦0

4
                                (8.10) 

(ii) Stirling’s Formula: 

𝑦𝑢 = 𝑦0 + 𝑢
∆𝑦−1 − ∆𝑦0

2!
+

𝑢2

2!
∆2𝑦−1 +

𝑢 𝑢2 − 1 

3!

∆3𝑦−2 + ∆3𝑦−1

2
+

𝑢 𝑢2 − 1 

4!
∆4𝑦−2 + ⋯ 

= 𝑦0 +  
∆𝑦−1 − ∆𝑦0

2!
−

∆3𝑦−2 + ∆3𝑦−1

2
 𝑢 +  

∆2𝑦−1

2
−

∆4𝑦−2

24
 𝑢2 +  

∆3𝑦−2 + ∆3𝑦−1

12
 𝑢3

+
∆4𝑦−2

24
𝑢4 + ⋯…. 

Here, 



 

 

𝑎1 = 𝑦0 

𝑎1 =
∆𝑦−1 − ∆𝑦0

2!
−

∆3𝑦−2 + ∆3𝑦−1

12
 

𝑎2 =
∆2𝑦−1

2
−

∆4𝑦−2

24
 

𝑎3 =
∆3𝑦−2 + ∆3𝑦−1

12
 

𝑎4 =
∆4𝑦−2

24
                            (8.11) 

Example 8.5:  Find the value x corresponding to y= 15.0 in the following table, using the 

method of reversion of series. 

x y ∆𝑦 ∆2𝑦 ∆3𝑦 ∆4𝑦 

30 15.9     

  -1.0    

35 14.9  0.2   

  -0.8  -0.4  

40 14.1  -0.2  1.0 

  -1.2  0.6  

45 13.3  0.4   

  -0.8    

50 12.5     

 

To apply the method we use Newton’s forward formula for which the value of a’s are given in 

(8.10) which, using the above difference table, provide 

𝑎1 = 𝑦0 = 15.9 



  𝑎1 = ∆𝑦0 −
∆2𝑦0

2
+

∆3𝑦0

3
−

∆4𝑦0

4
=  −1 −

0.2

2
−

0.4

3
−

1

24
= −1.48333 

𝑎2 =
∆2𝑦0

2
−

∆3𝑦0

3
+

11∆4𝑦0

4
=

0.2

2
+

0.4

3
+

11

4
= 0.75833 

𝑎3 =
∆3𝑦0

6
+

∆4𝑦0

4
=

−0.4

6
−

1

4
= −0.31667 

𝑎4 =
∆4𝑦0

4
=

1

24
= 0.04167 

Using these values of a’s we get the values of c’s as follows 

𝑐1 = 1 

𝑐2 = −
𝑎2

𝑎1
=  

−0.75833

−1.48333
= 0.51123 

Similarly,  

𝑐3 = 0.309236157 𝑎𝑛𝑑  𝑐4 = −0.15855 

Since 

𝑥 = 𝑐1𝑤 + 𝑐2𝑤
2 + 𝑐3𝑤

3 + 𝑐4𝑤
4, 

𝑤𝑕𝑒𝑟𝑒 

𝑤 = (𝑦 − 𝑎0)/𝑎1 = 0.60674 

We have,  

𝑥 = 1 × 0.60674 + 0.51123 × (0.60674)2 + 0.309236157 ×  0.60674 3 − 0.15855

× (0.60674)4 

⇒ 𝑥 = 0.866301959 

𝑇𝑕𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑥 𝑖𝑠  

X = 30 + 5(0.842523) = 34.212615. 

 

8.6        Summary 

 There are several problems arise in mathematics in which we intend to find the value of x 

corresponding to a given value of f(x) when the functional from of f(x) is not known and we are 

only given the set of tabulated values of x and f(x). Secondly, if the explicit form of f(x) is given 

which is in form of complicated equation and we have to solve this equation. All the problems of 

this kind can be solved by the technique of inverse interpolation. Any of the methods described 

so far can be chosen according to the given situation. 



8.7  Exercise 

P - 1:  Apply Lagrange’s formula to find the value of age for which annuity value f(x) is 13.6. 

x 30  35  40  45  50 

f(x) 15.9  14.9  14.1  13.3  12.5 

P - 2: Find the value of x corresponding to y = 14.0 for the values given in the following table: 

x 0  5  10  15 

y  16.35  14.88  13.5  12.46 

P - 3: Find the root of the equation x
3 

- 2x – 5 = 0, which lies between 2 and 3, correct to three 

decimal places by any suitable method of inverse interpolation. 

P - 4: Find the root of the equation x
3 
+ 15 x + 4 = 0 near to 0.3 using inverse interpolation with 

Bessel’s formula. 

Answer: P - 1:  40.1,    P - 2:  8.34,   P - 3:  2.0945,       P - 4:  0.26795 

8.8  Further Readings 
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3. Introductory Method of Numerical Analysis, Prentice Hall of India Pvt. Ltd.: S.S. Sastry 

4. Introduction to Numerical Analysis, Tata McGraw Hill Publishing Company, New Delhi: 

S.T. Hildebrand 

5. Numerical Analysis, McMillan Publishing Company, New York: M.J. Marom 

6. Numerical Method for Scientific & Engineering Computation, New Age International 

Publishers, New Delhi: M.K. Jain, S.R.K. Iyengar & R.K. Jain 

  



Unit-9:  Numerical Differentiation   

Structure 

9.1   Introduction 

9.2   Objectives 

9.3   Numerical Differential for Equal Intervals 

9.4   Numerical Differential for Unequal Intervals 

9.5   Approximate Formulate for the Derivative of a Function 

9.6   Summary  

9.7   Solutions/ Answer 

9.8   Further Readings 

9.1  Introduction 

In the previous part of this course we considered the process of interpolation in which we 

either establish an approximate function for the given tabular values or find out the value of the 

function at any given argument. A similar kind of problem is to find the numerical value of the 

derivative at any particular value of argument for a given set of observations which can be solved 

using the process of numerical differentiation. 

Thus “Numerical differentiation is a process of evaluating the derivative of a function at 

some particular value of the argument when the values of the function corresponding to the 

given value of argument are known”. The problem of numerical differentiation is solved by first 

fitting up a polynomial to the given set of values of the function and then differentiating it as 

many times as desired. The fitting of polynomial can be done by using any of the interpolation 

formula. 

9.2  Objectives 

After the study of this unit you shall be able to: 

 Evaluate the derivative of a function at any value of independent variable for a given set 

of tabular values when the explicit for of the function is not known. 



 Derive approximate expressions for the derivatives of functions based on the given 

tabular values. 

9.3  Numerical Differential for Equal Intervals 

As formulae for the derivatives in numerical differentiation can be derived using interpolation 

formula, we illustrate here the process for Newton’s forward formula and the Stirling formula.  

(i) Newton’s forward formula 

Suppose we are given (n+1) values of variables x0, x1, x2,……xn with their respective entries y0, 

y1, y2,……yn the Newton’s forward interpolation formula is . 

Where u= (x-x0)/h and h is the interval of differencing. Since y is given, we have to solve the 

equation (which will be terms if u) for a real root. Thus we rearrange the equation by transposing 

its terms as follows 

yu = y0 + u∆y0 +
u(u−1)

2!
∆2y0 +

u u−1 (u−2)

3!
∆3y0 +

u u−1  u−2 (u−3)

4!
∆4y0 + ⋯ ..                     

……(9.1) 

Where u =  (x - x0) / h. 

Now we get the first derivative of y in (9.1) with respect to x. Since 
𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑢

𝑑𝑢

𝑑𝑥
 

We have from (9.1). 

𝑑𝑦

𝑑𝑥
=

1

𝑕
 ∆y0 +

 2u − 1 

2!
∆2y0 +

3u2 − 6u + 2

3!
∆3y0 +

4u3 − 18u2 + 22u − 6

4!
∆4y0 … .   

         …………..(9.2) 

This formula will get be used to get the first derivative. Now differentiating (9.2) again, we get 

the formula for the second derivative as follows 

𝑑2𝑦

𝑑𝑥2
=

1

𝑕2
 ∆y0 +  u − 1 ∆y0 +

12u2 − 36u + 22

24
∆4y0 + ⋯… .               (9.3) 



The differences of higher order can also be found similarly. 

(ii) Stirling formula: 

𝑦𝑢 = 𝑦0 + 𝑢
∆𝑦0 + ∆𝑦−1

2
+

𝑢2

2
∆2𝑦−1 +

𝑢 𝑢2 − 12 

3!

 ∆3𝑦−1 + ∆3𝑦−2 

2
+ 

+
𝑢2 𝑢2 − 12 

4!
∆4𝑦−2 +

𝑢2 𝑢2 − 12  𝑢2 − 22 

5!

 ∆5𝑦−3 + ∆5𝑦−3 

2
 

+
𝑢2 𝑢2 − 12  𝑢2 − 22 

6!
∆6𝑦−3 + − − − − − − − 

𝑑𝑦

𝑑𝑥
=

1

𝑕
 
∆𝑦−1 + ∆𝑦0

2!
+ 𝑢∆2𝑦−1 +

3𝑢2 − 1

3!

∆3𝑦−2 + ∆3𝑦−1

2
+

4𝑢3 − 2𝑢

4!
∆4𝑦−2

+
5𝑢4 − 15𝑢2 + 4

5!

∆5𝑦−3 + ∆5𝑦−2

2
+

6𝑢5 − 20𝑢3 + 8𝑢

6!
∆6𝑦−3  

                                                                                                                                  … … . (9.4) 

𝑑2𝑦

𝑑𝑥2
=

1

𝑕2
 ∆2𝑦−1 + 𝑢

∆3𝑦−2 + ∆3𝑦−1

2
+

12𝑢2 − 2

4!
∆4𝑦−2 +

20𝑢3 − 30𝑢 + 4

5!

∆5𝑦−3 + ∆5𝑦−2

2

+
30𝑢4 − 60𝑢2 + 8

6!
∆6𝑦−3. .   

                                                                                                                  …………. … (9.5) 

The derivatives for another formula can be obtained similarly. 

Example 9.1:  Find the first and second derivatives of the function y = f(x), tabulated below at x 

= 1.1 & 1.8. 

X = 1.0  1.2  1.4  1.6  1.8  2.0 

f(x) 2.00  3.128  4.544  6.296  8.432  11.000 

Solution:  Here first all we prepare a difference table 

x y ∆𝑦 ∆2𝑦 ∆3𝑦 ∆4𝑦 

1.0 2.0000     

  1.128    



1.2 3.128  0.288   

  1.416  0.048  

1.4 4.544  0.366  0 

  1.752  0.048  

1.6 6.296  0.384  0 

  2.136  0.048  

1.8 8.432  0.432   

  2.568    

2.0 11.0000     

 

After observing the difference table we use formula (3.2) up to third order term thus 

𝑑𝑦

𝑑𝑥
=

1

𝑕
 ∆𝑦0 +

 2𝑢 − 1 

2!
∆2𝑦0 +

3𝑢2 − 6𝑢 + 2

3!
∆3𝑦0  

Here u = (x - x0) / h = (1.1-1.0)/0.2 = 1/2, thus 

 𝑑𝑦

𝑑𝑥
 
𝑥=1.1

=
1

2
 1.1280 +

2.
1
2 − 2

2
 0.2880 +

3.
1
2 − 6.

1
2 + 2

6
 0.0480   

=
1

0.2
 1.1280 + 0 −

1

24
(0.0480) = 5.65 

Similarly, 

𝑑2𝑦

𝑑𝑥2
=

1

𝑕2
 ∆2𝑦0 +  𝑢 − 1 ∆3𝑦0  

=
1

0.4
  0.2880 +  0.5 − 1  0.0480  = 7.8 

To find the derivative at x=1.8, we have the Newton’s backward formula 

yu = y0 + u∇yn +
u u + 1 

2!
∇2yn +

u u + 1  u + 2 

3!
∇3yn ,   

𝑤𝑕𝑒𝑟𝑒 𝑢 =
 𝑥 − 𝑥𝑛 

𝑕
 

Thus, 



𝑑𝑦

𝑑𝑥
=

1

𝑕
 ∇𝑦𝑛 +

 2𝑢 + 1 

2!
∇2𝑦𝑛 +

3𝑢2 − 6𝑢 + 2

3!
∇3𝑦𝑛  𝑎𝑛𝑑  

𝑑2𝑦

𝑑𝑥2
=

1

𝑕2
 ∇2𝑦0 +  𝑢 − 1 ∇3𝑦0  

Here u=(1.8-2.0)/0.2= -1, thus 

 𝑑𝑦

𝑑𝑥
 
𝑥=1.8

=
1

0.2
 2.568 +

(−2 + 1)

2
 0.432 +

3 − 6 + 2

6
 0.0480  = 11.34 

and 

 𝑑
2𝑦

𝑑𝑥2
 
𝑥=1.8

=
0.432

0.04
= 10.8 

Example 9.2:  Find the first and second derivatives of the function tabulated below at the point x 

= 0.61 

X: 0.4 0.5 0.6 0.7 0.8 

Y: 2.583649 2.797442 3.044237 3.327505 3.651081 

 

x y ∆𝑦 ∆2𝑦 ∆3𝑦 ∆4𝑦 

0.4 2.583649     

  0.21380    

0.5 2.797442  0.03299   

  0.24679  0.00349  

0.6 2.797442  0.3648  0.00034 

  0.28327  0.00383  

0.7 3.327505  0.4031   

  0.32358    

0.8 3.651081     

 

We use Stirling formula for this problem. Ignoring the differences fifth and higher order we have 

from (9.4), 

𝑑𝑦

𝑑𝑥
=

1

𝑕
 
∆𝑦−1 + ∆𝑦0

2!
+ 𝑢∆2𝑦−1 +

3𝑢2 − 1

3!

∆3𝑦−2 + ∆3𝑦−1

2
+

4𝑢3 − 2𝑢

4!
∆4𝑦−2  



Here x = 0.61, u = 0.1, h = 0.1. Substituting these values in the above formula for the first and 

second derivatives we get 

𝑑𝑦

𝑑𝑥
=

1

0.1
 
∆𝑦−1 + ∆𝑦0

2!
+  0.1 ∆2𝑦−1 +

3𝑢2 − 1

3!

∆3𝑦−2 + ∆3𝑦−1

2
+

4𝑢3 − 2𝑢

4!
∆4𝑦−2  

=
1

0.1
 
0.24679 + 0.28327

2
+ 0.1 0.03648 +

0.03 − 1

12
 0.00732 +

0.004 − 2

24
 0.0034   

= 2.642227 

Similarly, 

𝑑2𝑥

𝑑𝑦2
= 4.06983 

Remark:  The function tabulated above is  

𝑦 = 2𝑒𝑥 − 𝑥 

Hence 

𝑑𝑦

𝑑𝑥
= 2𝑒𝑥 − 1   𝑎𝑛𝑑 

𝑑2𝑥

𝑑𝑦2
= 2𝑒𝑥     

Putting x=0.6 in these, we get 

𝑑𝑦

𝑑𝑥
= 2.644238   𝑎𝑛𝑑    

𝑑2𝑥

𝑑𝑦2
= 3.644238   

as the correct values for the first and second derivatives. The values obtained by numerical 

differentiation are therefore approximately near to the values obtained by the numerical 

differentiation. 

9.4  Numerical Differential for Unequal Intervals 

We consider this case with the help of following example:  

Example 9.3:  Find first, second and third derivative at x = 3.2 in the following table: 



x: 3.0 3.3 3.5 3.8 4.0 

f(x): 35.0 90.466 135.813 218.258 284.000 

  

Solution: Here the values are not at equal interval. We use divided difference table. Here ∆f(x) 

stands for the first divided difference of f(x). 

x f(x) ∆f(x) ∆2f(x) ∆3f(x) ∆4f(x) 

3.0 35.0     

  184.887    

3.3 90.466  83.695   

  226.734  15.595  

3.5 135.81  96.171  0.989 

  274.82  16.584  

3.8 218.258  107.78   

  328.71    

4.0 284.000     

 

The Newton’s divided difference formula is 

𝑓 𝑥 = 𝑓 𝑥0 +  𝑥 − 𝑥0 𝑓 𝑥0, 𝑥1 +  𝑥 − 𝑥0  𝑥 − 𝑥1 𝑓 𝑥0,𝑥1, 𝑥2 

+  𝑥 − 𝑥0  𝑥 − 𝑥1  𝑥 − 𝑥2 𝑓 𝑥0,𝑥1, 𝑥2, 𝑥3  

Differentiating w.r.t. x, we get 

𝑓 ′ 𝑥 = 𝑓 𝑥0, 𝑥1 +  2𝑥 −  𝑥 + 𝑥1  𝑓 𝑥0,𝑥1, 𝑥2  

+ 3𝑥2 − 2𝑥 𝑥0 + 𝑥1 + 𝑥2 +  𝑥0𝑥1 + 𝑥1𝑥2 + 𝑥2𝑥3  𝑓 𝑥0,𝑥1, 𝑥2 , 𝑥3 . 

Similarly the second and third derivatives are obtained as follows 

𝑓 ′′  𝑥 = +2𝑓 𝑥0, 𝑥1, 𝑥2 +  6𝑥 − 2(𝑥0 + 𝑥1+, 𝑥2 𝑓 𝑥0,𝑥1, 𝑥2  

𝑓 ′′′  𝑥 = 6𝑓 𝑥0,𝑥1, 𝑥2, 𝑥3  

Substituting the values in (9.5), we get 

 𝑓 ′ 𝑥  𝑥=3.2 = 184.887 +  6.4 − 6.3  83.695 +  3 10.24 − 6.4 9.8 + 3195  15.595  

+ 4 32.768 − 3 10.24  13.6 + 6.4 69.19 − 156.06  0.9892  



= 191.978193 

Similarly  

𝑓 ′′  𝑥 = 161.152 

𝑓 ′′′  𝑥 = 93.570 

9.5  Approximate Expressions for the Derivatives of a Function 

We have 

𝛿𝑦𝑥 = 𝑦
𝑥+

1
2

− 𝑦
𝑥−

1
2
 

𝑢𝑦𝑥 =
1

2
 𝑦

𝑥+
1
2

− 𝑦
𝑥−

1
2
  

Thus, 

𝑢𝛿𝑦𝑥 = 𝑢  𝑦
𝑥+

1
2

− 𝑦
𝑥−

1
2
  

=
1

2
 𝑦𝑥+1 + 𝑦𝑥 − 𝑦𝑥 − 𝑦𝑥−1  

=
1

2
 𝑦𝑥+1 − 𝑦𝑥−1  

=
1

2
 𝑒𝑕𝐷 − 𝑒−𝑕𝐷 𝑦𝑥                𝑆𝑖𝑛𝑐𝑒   𝑦𝑥+1 = 𝐸𝑦𝑥 = 𝑒𝑕𝐷𝑦𝑥  

= sinh    𝑕𝐷  

= 𝑕𝐷 +
1

3!
 𝑕𝐷 2 +  … … 

= 𝑕𝐷  𝑛𝑒𝑔𝑙𝑒𝑐𝑡𝑖𝑛𝑔 𝑕𝑖𝑔𝑕𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠                     (9.7) 

Thus from (9.6) and (9.7), we obtain 

𝑕𝐷𝑦𝑥 =
1

2
 𝑦𝑥+1 − 𝑦𝑥−1  



𝐷𝑦𝑥 =
1

2𝑕
 𝑦𝑥+1 − 𝑦𝑥−1                                 (9.8) 

Now, 

𝛿2𝑦𝑥 = 𝛿𝛿𝑦𝑥  

= 𝛿  𝑦
𝑥+

1
2

− 𝑦
𝑥−

1
2
  

=  𝑦𝑥+1 + 𝑦𝑥 − 𝑦𝑥 − 𝑦𝑥−1  

= 𝑦𝑥+1 + 2𝑦𝑥 − 𝑦𝑥−1 

=  𝐸 − 2 + 𝐸−1 𝑦𝑥  

=  𝑒𝑕𝐷 + 𝑒−𝑕𝐷 − 2 𝑦𝑥                       𝑦𝑥+1 = 𝐸𝑦𝑥 = 𝑒𝑕𝐷𝑦𝑥  

=   1 + 𝑕𝐷 +
1

2!
 𝑕𝐷 2 + ⋯  +  1 − 𝑕𝐷 + 1 + 𝑕𝐷 +

1

2!
 𝑕𝐷 2 + ⋯  − 2  

= 2  
1

2
 𝑕𝐷 2 + ⋯  𝑦𝑥  

= 𝑕2𝐷2𝑦𝑥  (𝑛𝑒𝑔𝑙𝑒𝑐𝑡𝑖𝑛𝑔 𝑕𝑖𝑔𝑕𝑒𝑟 𝑜𝑟𝑒𝑑𝑟 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠) 

Thus 

𝑕2𝐷2𝑦𝑥 =
1

2
 𝑦𝑥+1 − 2𝑦𝑥 + 𝑦𝑥−1  

Or 

𝐷2𝑦𝑥 =
1

𝑕2
 𝑦𝑥+1 − 2𝑦𝑥 + 𝑦𝑥−1  

Again, 

𝑕3𝐷3𝑦𝑥 = 𝑕𝐷 𝑕2𝐷2 𝑦𝑥  

= 𝑕𝐷𝛿2𝑦𝑥                                                         𝑓𝑟𝑜𝑚  9.9   



= 𝑢𝛿 𝑦𝑥+1 − 2𝑦𝑥 + 𝑦𝑥−1                            𝑓𝑟𝑜𝑚  9.7   

=
1

2
 ∆ + ∇  𝑦𝑥+1 − 2𝑦𝑥 + 𝑦𝑥−1  

=   𝑦𝑥+2 − 2𝑦𝑥 + 𝑦𝑥 −  𝑦𝑥+1 − 2𝑦𝑥 + 𝑦𝑥−1 +  𝑦𝑥+1 − 2𝑦𝑥 + 𝑦𝑥−1 −  𝑦𝑥 − 2𝑦𝑥−1 + 𝑦𝑥−2   

=
1

2
 𝑦𝑥+2 − 2𝑦𝑥−1 + 2𝑦𝑥−1 − 𝑦𝑥−2  

Thus 

𝐷3𝑦𝑥 =
1

2𝑕3
 𝑦𝑥+2 − 2𝑦𝑥−1 + 2𝑦𝑥−1 − 𝑦𝑥−2  

Now, 

𝑕4𝐷4𝑦𝑥 =  𝑕2𝐷2  𝑕2𝐷2 𝑦𝑥  

= 𝛿2𝛿2𝑦𝑥                                                        

= 𝛿2 𝑦𝑥+1 − 2𝑦𝑥 + 𝑦𝑥−1  

=  𝛿2𝑦𝑥+1 − 2𝛿2𝑦𝑥 + 𝛿2𝑦𝑥−1   

=   𝑦𝑥+2 − 2𝑦𝑥+1 + 𝑦 − 2 𝑦𝑥+1 − 2𝑦𝑥 + 𝑦𝑥−1 +  𝑦𝑥 − 2𝑦𝑥−1 + 𝑦𝑥−2   

= 𝑦𝑥+2 − 4𝑦𝑥+1 + 6𝑦𝑥 − 4𝑦𝑥+1 + 𝑦𝑥−2 

Thus 

𝐷4𝑦𝑥 =
1

𝑕4
 𝑦𝑥+2 − 4𝑦𝑥+1 + 6𝑦𝑥 − 4𝑦𝑥+1 + 𝑦𝑥−2  

Thus we get the approximate expressions for the first four derivatives as follows: 

𝑦𝑥
𝑖 =

1

2𝑕
(𝑦𝑥+1 − 𝑦𝑥−1) 

𝑦𝑥
𝑖𝑖 =

1

𝑕2
 𝑦𝑥+1 − 2𝑦𝑥 + 𝑦𝑥−1                                                  … … (9.10) 



𝑦𝑥
𝑖𝑖𝑖 =

1

2𝑕3
(𝑦𝑥+2 − 2𝑦𝑥+1 + 2𝑦𝑥−1 − 𝑦𝑥−2) 

𝑦𝑥
𝑖𝑣 =

1

𝑕4
(𝑦𝑥+2 − 4𝑦𝑥+1 + 6𝑦𝑥−1 − 4𝑦𝑥−1 + 𝑦𝑥−2) 

Example 9.4:  Assuming Bessel’s interpolation formula obtain the following result 

𝑑

𝑑𝑥
𝑦𝑥 = ∆𝑦

𝑥−
1
2

−
1

24
∆3𝑦

𝑥−
3
2

+ ⋯ .. 

Solution: The Bessel’s formula is 

𝑦𝑥 =
𝑦0 + 𝑦1

2
+  𝑥 −

1

2
 ∆𝑦0 +

𝑥 𝑥 − 1 

2!

∆2𝑦−1 + ∆2𝑦0

2
+

 𝑥 −
1
2 𝑥 𝑥 − 1 

3!
∆3𝑦−1 + ⋯ 

𝑦
𝑥+

1
2

=
𝑦0 + 𝑦1

2
+ 𝑥∆𝑦0 +

 𝑥 +
1
2 +  𝑥 −

1
2 

2!

∆2𝑦−1 + ∆2𝑦0

2
+

𝑥  𝑥 +
1
2 +  𝑥 −

1
2 

3!
∆3𝑦−1

+ ⋯… 

𝑑

𝑑𝑥
𝑦1

2
= ∆𝑦0 + 𝑥

∆2𝑦−1 + ∆2𝑦0

2
+  

𝑥2

2
−

1

24
 ∆3𝑦−1 + ⋯ .                     (9.11) 

Taking x = 0 in (9.11), we obtain 

𝑑

𝑑𝑥
𝑦1

2
= ∆𝑦0 −

1

24
∆3𝑦−1 +  … .. 

Shifting origin to x-1/2, we get 

𝑑

𝑑𝑥
𝑦𝑥 = ∆𝑦

𝑥−
1
2

−
1

24
∆3𝑦−1 +  … .. 

Example 9.5: Prove that 

𝑦′ =
1

𝑕
 𝛿𝑦 −

1

24
𝛿3𝑦 +

3

640
𝛿5𝑦 − ⋯    

𝑎𝑛𝑑 



𝑦′′ =
1

𝑕2
 𝛿2𝑦 −

1

12
𝛿4𝑦 +

3

90
𝛿6𝑦 − ⋯   

Solution:  We have 

𝛿 = 𝐸
1
2 − 𝐸−

1
2 

= 𝑒
𝑕𝐷
2 − 𝑒−

𝑕𝐷
2    

= 2𝑆𝑖𝑛𝑕(𝑕𝐷/2) 

Thus 

𝑕𝐷

2
= 𝑆𝑖𝑛𝑕−1 𝛿/2                                           (9.12) 

By Taylor’s series expansion, we have 

𝑆𝑖𝑛𝑕−1𝑥 = 𝑥 −
𝑥3

6
+

3

40
𝑥5 −  … … .. 

Using expansion in (9.12), we get 

𝑕𝐷

2
=

𝛿

2
−

𝛿3

6.8
+

3

640
𝛿5 −  … … 

Or,  

𝐷 =
1

𝑕
 𝛿 −

1

24
𝛿3 +

3

64
𝛿5 −  ……                                        (9.13) 

Or, 

Squaring (9.13), we get 

𝐷2 =
1

𝑕2
 𝛿2 −

1

12
𝛿4 +

1

90
𝛿6 −  … …   

Or, 



𝑦′′ = 𝐷2𝑦 =
1

𝑕2
 𝛿2𝑦 −

1

12
𝛿4 +

1

90
𝛿6𝑦 −  … …   

Example 9.6:  Prove that 

𝑦𝑥
′ =

1

𝑕
 𝑦𝑥+𝑕 − 𝑦𝑥−𝑕 −

1

2𝑕
 𝑦𝑥+2𝑕 − 𝑦𝑥−2𝑕 +

1

3𝑕
 𝑦𝑥+3𝑕 − 𝑦𝑥−3𝑕 − ⋯ .. 

Solution: 

𝑅𝐻𝑆 =
1

𝑕
 𝑦𝑥+𝑕 − 𝑦𝑥−𝑕 −

1

2𝑕
 𝑦𝑥+2𝑕 − 𝑦𝑥−2𝑕 +

1

3𝑕
 𝑦𝑥+3𝑕 − 𝑦𝑥−3𝑕 − ⋯. 

=
1

𝑕
 𝐸 − 𝐸−1 𝑦𝑥 −

1

2𝑕
 𝐸2 − 𝐸−2 𝑦𝑥 +

1

3𝑕
 𝐸3 − 𝐸−3 𝑦𝑥  

=
1

𝑕
  𝐸 −

1

2
𝐸2 +

1

3
𝐸3 + −  𝐸−1 −

1

2
𝐸−2 +

1

3
𝐸−3 − ⋯   𝑦𝑥  

=
1

𝑕
 log 1 + 𝐸 − log 1 − 𝐸−1  𝑦𝑥  

=
1

𝑕
𝑙𝑜𝑔  

1 + 𝐸

1 + 𝐸−1
 𝑦𝑥  

=
1

𝑕
 𝑙𝑜𝑔 𝐸 𝑦𝑥  

=
1

𝑕
 𝑙𝑜𝑔𝑒𝑕𝐷 𝑦𝑥  

=
1

𝑕
 𝑕𝐷 𝑦𝑥  

= 𝐷𝑦𝑥 = 𝑦𝑥
′ = 𝐿𝐻𝑆 

9.6  Summary 

The derivative of a function by numerical differentiation can be found using any of the 

interpolation suitable to the problem. For the selection of appropriate formula, we follow the 

various cases of interpolation problem. That is, to choose any of the Newton’s Sterling’s or 

Bessel’s formula for the derivative values. Moreover, if we intend to find the values of derivative 



of function at a point near the beginning or end of given set of values, we use Newton’s forward 

or backward formula accordingly. If the derivative is to be found at a middle point any of the 

central difference formula can be used. Newton’s divided difference and Lagrange’s formulae 

are appropriate for the cases of unequal intervals. 

9.7  Exercise 

P - 1:  Find 
𝑑𝑦

𝑑𝑥
𝑎𝑛𝑑 

𝑑2𝑦

𝑑𝑥 2  
  and at x= 1 from the following table by using appropriate interpolation 

formula.  

X 1 2 3 4 5 6 

Y 198669 295520 389418 479425 564642 644217 

   P - 2:  Find 
𝑑𝑦

𝑑𝑥
𝑎𝑛𝑑 

𝑑2𝑦

𝑑𝑥 2  
  and at x= 9 from the following table by using appropriate 

interpolation formula.  

X 1 2 4 8 10 

Y 0 1 5 21 27 

    

P  - 3:  Calculate f(7.50) from the values using Bessel’s formula.  

X 7.47 7.48 7.49 7.50 7.51 7.52 7.53 

Y 0.193 0.195 0.198 0.201 0.203 0.206 0.208 

    

P  - 4:  From the following table, find first and second derivative of f(x) at x=10.  

X 3 5 11 27 34 

Y -13 23 899 17315 35606 

[Hint: use Newton’s divided difference formula] 

Answers: P  - 1: 98008, - 1986;       P - 2: 6.0, 0.6667;   P - 3: 17.60;  P  - 4: 233, 54.0 

9.8  Further Readings 



1. Finite Difference & Numerical Analysis, S. Chand & Company, New Delhi: H.C. Saxena 

2. Numerical Mathematical Analysis, John Hopkins Press, Baltimore New York; James B. 

Scarborough 

3. Introductory Method of Numerical Analysis, Prentice Hall of India Pvt. Ltd.: S.S. Sastry 

4. Introduction to Numerical Analysis, Tata McGraw Hill Publishing Company, New Delhi: 

S.T. Hildebrand 

5. Numerical Method for Scientific & Engineering Computation, New Age International 

Publishers, New Delhi: M.K. Jain, S.R.K. Iyengar & R.K. Jain 

  



Unit-10:  Numerical Integration (Quadrature) 

Structure 
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10.2       Objectives 
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10.4       Simpson’s one-third rule 

10.5       Simpson’s three-eight rule 

10.6       Waddle’s rule 

10.7       Eular- Maculerian formula 

10.8       Examples and Exercises 

10.9       Summary  

10.10       Further Readings 

10.1  Introduction 

Numerical integration is the process of computing the value of a definite integral from a 

set of known numerical values of the integrands. When applied to the integration of a function of 

a single variable, the process is called numerical quadrature. 

10.2  Objectives 

After going through this limit, you will learn: 

 The concept of numerical integratic. 

 How to solve problems of numerical integration. 

 How to sum a series using Eular-Macularian formula. 

The problem of numerical integration is solved by replacing the integrand by an interpolating 

and then integrating this polynomial between the desired limits. Suppose some numerical 

values 𝑓 𝑎0 , 𝑓 𝑎1 , … . 𝑓 𝑎𝑛  𝑜𝑓 𝑓 𝑥 𝑓𝑜𝑟 𝑥 = 𝑎0, 𝑎𝑙 , … . 𝑎𝑙𝑙  respectively are given and we 

are required to find the integral.  



𝐼 =  𝑓 𝑥 𝑑𝑥

𝑎𝑛

𝑎0

 

Here we shall consider some simple approximate methods of finding the value of a definite 

integral from a given set of numerical values of the integrand. This process is also known as 

numerical quaderature when the integrand is a function of a single variable.  

Here the integrand is replace by a suitable interpolation formula, usually one involving 

differences, and then by term between the desired limits. We can get different quaderature 

formulae as they are called by terms up to different orders of difference. We shall obtain below 

some quaderature formulae by integrating Newton’s forward formula.  

In Newton’s formula, u = (x-a0)/h and dx = hdu; and if the limits of integration for x are a0 and 

an the limits in terms of u will be 0 and n. Hence 

 𝑓 𝑥 𝑑𝑥

𝑎𝑛

𝑎0

= 𝑕   𝑓 𝑎0 + 𝑢∆𝑓 𝑎0 +  
𝑢

2
 ∆2𝑓 𝑎0 +  

𝑢

3
 ∆3𝑓 𝑎0 + ⋯ .  𝑑𝑢

𝑛

0

 

= 𝑕  𝑛𝑓 𝑎0 +
𝑛2

2
∆𝑓 𝑎0 +  

𝑛3

3
−

𝑛2

2
 

∆2𝑓 𝑎0 

2!
+  

𝑛4

4
− 𝑛3 + 𝑛2 

∆3𝑓 𝑎0 

2!
+. .   

………….(10.1) 

This formula is called general quaderature formula.  

10.3  Trapezoidal Rule 

Here was assume that integrand is such that it can be well represented by straight line in 

any interval of width h. That means f(x) can be represented by first-degree polynomial or, 

equivalently, can be regarded as a constant. Accordingly, putting in (10.1) n= 1 and neglecting 

difference of all orders higher than the first we get 

 𝑓 𝑥 𝑑𝑥

𝑎1

𝑎0

= 𝑕  𝑓 𝑎0 +
∆𝑓 𝑎0 

2
 =

𝑕

2
 𝑓 𝑎0 + 𝑓 𝑎1  . 



Similarly, we have for the other intervals, 

 𝑓 𝑥 𝑑𝑥

𝑎2

𝑎1

=
𝑕

2
 𝑓 𝑎1 + 𝑓 𝑎2  , …… … … … … … . 𝑒𝑡𝑐. 

Adding all these expressions, we get 

 𝑓 𝑥 𝑑𝑥

𝑎𝑛

𝑎0

=  𝑓 𝑥 𝑑𝑥

𝑎1

𝑎0

+  𝑓 𝑥 𝑑𝑥 + ⋯ . +  𝑓 𝑥 𝑑𝑥

𝑎𝑛

𝑎𝑛−1

𝑎2

𝑎1

 

=
𝑕

2
 𝑓 𝑎0 + 𝑓 𝑎1  +

𝑕

2
 𝑓 𝑎1 + 𝑓 𝑎2  … .

𝑕

2
 𝑓 𝑎𝑛−1 + 𝑓 𝑎𝑛   

=
𝑕

2
 𝑓 𝑎0 + 2𝑓 𝑎1 + 2𝑓 𝑎2 + ⋯ . +2𝑓 𝑎𝑛−1 + 𝑓 𝑎𝑛  . 

=
𝑕

2
  𝑓 𝑎0 + 𝑓 𝑎𝑛  + 2 𝑓 𝑎1 + 𝑓 𝑎2 + ⋯ . +𝑓 𝑎𝑛−1                           (10.2) 

This is known as a Trapezoidal rule. It is useful where h is small, as for any small segment, a 

straight line can approximate a smooth curve. 

10.4  Simpson’s One –Third Rule 

Taking n = 2 in the general quadrate formula (10.1) and neglecting the difference of third 

and higher order we get for the interval [a0, a2], 

 𝑦𝑑𝑥

𝑎2

𝑎0

=
𝑕

3
 𝑓 𝑎0 + 4𝑓 𝑎1 + 𝑓 𝑎2  . 

For the next interval [a2, a4] we have 

 𝑦𝑑𝑥

𝑎4

𝑎2

=
𝑕

3
 𝑓 𝑎2 + 4𝑓 𝑎3 + 𝑓 𝑎4  . 

Similarly, for the third interval [a4, a6] 



 𝑦𝑑𝑥

𝑎6

𝑎4

=
𝑕

3
 𝑓 𝑎4 + 4𝑓 𝑎5 + 𝑓 𝑎6   𝑎𝑛𝑑 𝑠𝑜 𝑜𝑛 ……. 

Finally, we have 

 𝑦𝑑𝑥

𝑎𝑛

𝑎𝑛−2

=
𝑕

3
 𝑓 𝑎𝑛−2 + 4𝑓 𝑎𝑛−1 + 𝑓 𝑎𝑛   , (𝑤𝑕𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛) 

Adding all such expression, we obtain 

 𝑦𝑑𝑥

𝑎𝑛

𝑎0

=
𝑕

3
 𝑓 𝑎0 + 4𝑓 𝑎1 + 𝑓 𝑎2 + 𝑓 𝑎2 + 4𝑓 𝑎3 + 𝑓 𝑎4 + 𝑓 𝑎4 + 4𝑓 𝑎5 + 𝑓 𝑎6 

+ ⋯ . . +𝑓 𝑎𝑛−2 + 4𝑓 𝑎𝑛−1 + 𝑓 𝑎𝑛   

=
𝑕

3
 𝑓 𝑎0 + 𝑓 𝑎𝑛 + 4[𝑓 𝑎1 + 𝑓 𝑎3 + ⋯ + 𝑓 𝑎𝑛−1  

+ 2  𝑓 𝑎2 + 𝑓 𝑎4 + ⋯ + 𝑓 𝑎𝑛−2                                      (10.3) 

This is Simpson’s 1/3 rule. It is simple, accurate and very useful. Here, we have assumed that 

interval is divided into an even number of intervals and geometrically it means that we have 

replaced the graph of the given function by n/2 acres of second degree polynomial. 

10.5  Simpson’s 3/8 Rule 

Put n = 3 a in (10.1) and ignore all difference above third, we get  

 𝑓 𝑥 𝑑𝑥

𝑎3

𝑎0

= 𝑕  3𝑓 𝑎0 +
9

4
 𝑓 𝑎1 − 𝑓 𝑎0  +

5

4
 𝑓 𝑎2 − 2𝑓 𝑎1 + 𝑓 𝑎0  

+
3

8
 𝑓 𝑎3 − 3𝑓 𝑎2 + 3𝑓 𝑎1 − 𝑓 𝑎0    

=
3𝑕

2
 𝑓 𝑎0 + 3𝑓 𝑎1 + 3𝑓 𝑎2 − 𝑓 𝑎3   

Similarly, 



 𝑓 𝑥 𝑑𝑥

𝑎3

𝑎0

=
3𝑕

2
 𝑓 𝑎3 + 3𝑓 𝑎4 + 3𝑓 𝑎5 − 𝑓 𝑎6    𝑎𝑛𝑑 𝑠𝑜 𝑜𝑛 … .. 

 𝑓 𝑥 𝑑𝑥

𝑎0

𝑎6

=
3𝑕

2
 𝑓 𝑎3 + 3𝑓 𝑎4 + 3𝑓 𝑎5 + 𝑓 𝑎6     

Adding all these integrals, we have 

 𝑓 𝑥 𝑑𝑥

𝑎0

𝑎6

=
3𝑕

2
  𝑓 𝑎0 − 𝑓 𝑎𝑛  + 3 𝑓 𝑎1 + 𝑓 𝑎2 − 𝑓 𝑎4 + ⋯ . +𝑓 𝑎𝑛−1  

+ 2 𝑓 𝑎3 + 𝑓 𝑎6 + ⋯ . +𝑓 𝑎𝑛−1                  … … … … … … (10.4) 

10.6  Weddle’s Rule 

Here we replace the integrand by a sixth degree polynomial. Accordingly we put n = 6 in (10.1). 

After simplification we get 

 𝑓 𝑥 𝑑𝑥 = 𝑕  6𝑓 𝑎0 + 18∆𝑓 𝑎0 + 27∆2𝑓 𝑎0 24∆3𝑓 𝑎0 +
123

10
∆4𝑓 𝑎0 +

33

10
∆5𝑓 𝑎0 

𝑎6

𝑎0

+
41

140
∆6𝑓(𝑎0)  

Where replace the coefficient of ∆6𝑓 𝑎0  which is 41/140 by 3/10 since the error due to this 

change is negligible. Thus we have after solving 

For the next interval, we have 

 𝑓 𝑥 𝑑𝑥 =
3𝑕

10
 𝑓 𝑎0 + 5𝑓 𝑎1 + 𝑓 𝑎2 6𝑓 𝑎3 + 𝑓 𝑎4 + 5𝑓 𝑎5 𝑓(𝑎6) 

𝑎6

𝑎0

 

For the next interval, we have 

 𝑓 𝑥 𝑑𝑥 =
3𝑕

10
 𝑓 𝑎7 + 5𝑓 𝑎7 + 𝑓 𝑎8 6𝑓 𝑎9 + 𝑓 𝑎10 + 5𝑓 𝑎11 𝑓(𝑎12) 

𝑎12

𝑎0

 



and so on……. 

adding all these integrals we have 

 𝑓 𝑥 𝑑𝑥 =  𝑓 𝑥 𝑑𝑥 +  𝑓 𝑥 𝑑𝑥 + ⋯… +  𝑓 𝑥 𝑑𝑥

𝑎𝑛

𝑎𝑛−6

𝑎12

𝑎6

𝑎6

𝑎6

𝑎𝑛

𝑎6

 

=
3𝑕

10
 𝑓 𝑎0 + 5𝑓 𝑎1 + 𝑓 𝑎2 6𝑓 𝑎3 + 𝑓 𝑎4 + 5𝑓 𝑎5 𝑓(𝑎6)                    (10.5) 

This is Weddle’s rule. This rule is very accurate. In usefulness it is second only to Simpson’s 1/3 

rule. Similarly, by replacing f(x) other higher degree polynomials. 

10.7  Euler- Maclaurin Formula 

This formula is based on the expansion of operators.  

Suppose 

∆𝑓 𝑥 = 𝑓 𝑥   

𝑇𝑕𝑎𝑡 𝑖𝑠 𝐹 𝑎1 − 𝐹 𝑎0 = 𝑓 𝑎0   

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦 𝐹 𝑎2 − 𝐹 𝑎1 = 𝑓 𝑎1  

 𝑎𝑛𝑑 𝑠𝑜 𝑜𝑛 … ..  

𝐹 𝑎𝑛 − 𝐹 𝑎𝑛−1 = 𝑓 𝑎𝑛−1  

Adding all the above expression we get  

Now, 

 𝑓 𝑎 + 𝑟𝑕 =

𝑛−1

𝑟=0

𝐹 𝑎𝑛 − 𝐹 𝑎0 = 𝐹 𝑎 + 𝑛𝑕 − 𝐹 𝑎 .   

𝑊𝑕𝑒𝑛 𝑎𝑛 = 𝑎 + 𝑛𝑕 

Now, 



𝐹 𝑥 = ∆−1𝑓 𝑥 =  𝑒𝑕𝐷 − 1 −1𝑓 𝑥 , 

=  𝑕𝐷 +
𝑕2𝐷2

2
+

𝑕3𝐷3

6
+

𝑕4𝐷4

24
+  … …  

−1

𝑓 𝑥  

=  𝑕𝐷 −1  1 +  
𝑕𝐷

2
+

𝑕2𝐷2

6
+

𝑕3𝐷3

24
+ ⋯…   

−1

𝑓(𝑥) 

=  𝑕𝐷 −1  1 −  
𝑕𝐷

2
+

𝑕2𝐷2

12
−

𝑕3𝐷3

720
+ ⋯…   

−1

𝑓 𝑥  

[𝑢𝑠𝑖𝑛𝑔 𝑡𝑕𝑒 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 𝑜𝑓  1 + 𝑥 −1] 

=
1

𝑕
 𝐷−1𝑓 𝑥 −

𝑕2

2
𝑓 ′ 𝑥 −

𝑕3

720
𝑓 ′′′  𝑥 …   

𝑎𝑠    𝐷𝑓 𝑥 = 𝑓 𝑥 . 𝑠𝑜𝐷−1𝑓 𝑥 =  𝑓 𝑥 𝑑𝑥. 

Thus, 

 𝑓 𝑎 = 𝑟𝑕 = 𝐹 𝑎 + 𝑛𝑕 − 𝐹 𝑎 

𝑛−1

𝑟=0

 

=
1

𝑕
 𝑓 𝑥 𝑑𝑥 −

1

2
 𝑓 𝑎 + 𝑛𝑕 − 𝑓(𝑎) +

𝑕

12
 𝑓 ′ 𝑎 + 𝑛𝑕 − 𝑓 ′(𝑎) 

𝑎+𝑛𝑕

𝑎

−
𝑕3

720
 𝑓 ′′′  𝑎 + 𝑛𝑕 − 𝑓 ′′′ (𝑎) + ⋯… 

1

𝑕
 𝑓 𝑥 𝑑𝑥 =  

1

2
𝑓 𝑎 + 𝑓 𝑎 + 𝑕 + ⋯ + 𝑓 𝑎 + 𝑛 − 1𝑕 +

1

2
𝑓 𝑎 + 𝑛𝑕  

𝑎+𝑛𝑕

𝑎

 

−
𝑕

12
 𝑓 ′ 𝑎 + 𝑛𝑕 − 𝑓 ′ (𝑎) +

𝑕3

720
 𝑓 ′′′  𝑎 + 𝑛𝑕 − 𝑓 ′′′ (𝑎) … …… … … … . . . (10.6) 

This is known as Euler-Maclaurin formula. In the form (10.6) it is useful in finding the sum of a 

series. Using the Bernoullian numbers.  



𝐵1 =
1

6
,   𝐵2 =

1

30
, … … … … … . .  4.6 𝑐𝑎𝑛 𝑏𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑎𝑠 

1

𝑕
 𝑓 𝑥 𝑑𝑥 =  

1

2
𝑓 𝑎 + 𝑓 𝑎 + 𝑕 + ⋯ + 𝑓 𝑎 + 𝑛 − 1𝑕 +

1

2
𝑓 𝑎 + 𝑛𝑕  

𝑎+𝑛𝑕

𝑎

 

−
𝐵1𝑕

2!
 𝑓 ′ 𝑎 + 𝑛𝑕 − 𝑓 ′(𝑎) +

𝐵2𝑕
3

4!
 𝑓 ′′′  𝑎 + 𝑛𝑕 − 𝑓 ′′′ (𝑎) − ⋯                      … … . . . (10.7) 

10.8  Examples and Exercises 

Example  1  Evaluate the integral  
1

1+𝑥2 𝑑𝑥 
1

0
 by using Simpson’s 1/3 rule. Hence obtain the 

approximate value of  .  

Solution:  We have 

𝑕 =
1 − 0

6
=

1

6
 

x  0 1/6 2/6 3/6 4/6 5/6 1 

y =f(x)  1 .97297 .9 .8 .69230 .59016 .5 

 
1

1 + 𝑥2
𝑑𝑥 

1

0

=
𝑕

3
  𝑦0 + 𝑦𝑛 + 4 𝑦1 + 𝑦2 + 𝑦5 + ⋯ . +𝑦𝑛−1 + 2 𝑦2 + 𝑦4 + ⋯ . +𝑦𝑛−2   

=
1

6 × 3
  1 + 5 + 4 . 97297 + .8 + .59016 + 2 . 9 + .69230   

=
14.13712

18
= .78539. 

Exact value of  

 
1

1 + 𝑥2
𝑑𝑥 

1

0

=  𝑡𝑎𝑛−1𝑥 0
1 =

𝜋

4
= 0.785142     

𝐻𝑒𝑛𝑐𝑒, 𝜋 = 4 × 0.7857142 = 3.14156 



Example 2  Evaluate the integral  
1

1+𝑥2
𝑑𝑥 

1

0
 by using Simpson’s 3/8 rule and obtain the 

approximate value of 𝜋 .  

Solution:  We have 

𝑕 =
1 − 0

6
=

1

6
 

x  0 1/6 2/6 3/6 4/6 5/6 1 

y = f(x)  1 .97297 .9 .8 .69230 .59016 .5 

 
1

1 + 𝑥2
𝑑𝑥 

1

0

=
3𝑕

8
  𝑦0 + 𝑦𝑛 + 3 𝑦1 + 𝑦2 + 𝑦4 + 𝑦5 + ⋯ . +𝑦𝑛−2 + 𝑦𝑛−1 

+ 2 𝑦3 + 𝑦6 + ⋯ . +𝑦𝑛−3   

=
3

8
.
1

6
  1 + 5 + 3 . 97297 + .9 + .69230 + .59016 + 2 . 8   

=
12.56575

16
= .785411 

Exact value of  

2  
1

1 + 𝑥2
𝑑𝑥 

1

0

=  𝑡𝑎𝑛−1𝑥 0
1 =

𝜋

4
     

𝐻𝑒𝑛𝑐𝑒, 𝜋 = 4 × 0.785411 = 3.141644. 

Example  3 Compute the value  
𝑥3

𝑒𝑥−1
𝑑𝑥 

1.5

0
 by taking seven ordinates and using Simpson’s 1/3 

rule.  

Solution:  For seven ordinates we have to divide the range [0, 1.5] in to six equal sub interval 

each length, 

𝑕 =
1.5 − 0

6
= 0.25.  𝑇𝑕𝑢𝑠 

x  0 0.25 0.50 0.75 1.00 1.25 1.50 



y =
𝑥3

𝑒𝑥−1
  0 0.0550 0.1926 0.3736 0.5819 0.7842 0.9693 

According to Simpson’s 1/3 rule. 

 𝑦 𝑑𝑥 

1.5

0

=
1

3
𝑕  𝑦0 + 4𝑦1 + 𝑦2 +  𝑦2 + 4𝑦3 + 2𝑦4 +  𝑦4 + 4𝑦5 + 𝑦6   

 𝑦 𝑑𝑥 

1.5

0

=
1

3
𝑕  𝑦0 + 𝑦6 + 2 𝑦2 + 𝑦4 + 4 𝑦1 + 𝑦5   

=
0.25

3
  0 + 0.9693 + 2 0.1926 + 05819 + 4 0.0550 + 0.3776 + 0.7842   

=
0.25

3
=  0.9693 + 2 × 0.7745 + 4 × 1.2168  

=
0.25

3
 0.9693 + 1.5490 + 4.8672  

=
0.25

3
 7.3855 =

1

12
 7.3855 = 0.6155 

Example  4 Evaluate by Simpson’s 3/8 rule dividing the range of integration into the six equal 

parts. Also find the error of approximation. 

Solution: Dividing the range [4, 5.2] into six equal parts, we have 

𝑕 =
5.2 − 4

6
= 0.2.  𝑎𝑛𝑑 

x  4 4.2 4.4 4.6 4.8 50. 5.2 

f(x) = x
2
 16 17.64 19.36 21.16 23.4 25.0 27.4 

 𝑓 𝑥0  𝑓 𝑥1  𝑓 𝑥2  𝑓 𝑥3  𝑓 𝑥4  𝑓 𝑥5  𝑓 𝑥6  

 

Applying Simpson’s 3/8 rule, we have 

 𝑓(𝑥) 𝑑𝑥 

𝑥6

𝑥0

=
3

8
𝑕 𝑓 𝑥0 + 3 𝑓 𝑥1 + 𝑓 𝑥2  + 𝑓 𝑥3 + 𝑓 𝑥3 + 3 𝑓 𝑥4 + 𝑓 𝑥5 + 𝑓 𝑥6    



=
3

8
𝑕 𝑓 𝑥0 + 𝑓 𝑥6 + 3 𝑓 𝑥1 + 𝑓 𝑥2 + 𝑓 𝑥4 + 𝑓 𝑥6  + 2 𝑥3   

⇒ 𝑥2𝑑𝑥 =
3×0.2

8
  16 + 27.04 + 3 17.64 + 19.36 + 23.4 + 25.00 2 × 21.16 

5.2

4
 

=
0.3

4
 43.04 + 3 × 85.04 + 42.32  

=
0.3

4
 43.04 + 255.12 + 42.32  

=
0.3

4
 340.48 =

102.144

4
= 25.536  

𝐴𝑐𝑡𝑢𝑙 𝑣𝑎𝑙𝑢𝑒,     𝑥2𝑑𝑥 =  
𝑥3

3
 

4

5.25.2

4

  

=
1

3
  5.2 3 − 43 =

1

3
 140.608 − 64  

=
1

3
 76.608 = 25.536 

Example 5  Evaluate   𝑐𝑜𝑠𝜃𝑑𝜃
𝜋/2

0
 by dividing the interval into 6 points.  

Solution:  We use Simpson’s 1/3 rule to evaluate the integral. 

𝑕 =

𝜋
2 − 0

6
=

𝜋

12
   

𝜃 0 𝜋

12
 

𝜋

6
 

𝜋

4
 

𝜋

3
 

5𝜋

12
 

𝜋

2
 

 𝑐𝑜𝑠𝜃𝑑𝜃 1 .98281 .93060 .84089 .70710 .50874 0 

  𝑐𝑜𝑠𝜃𝑑𝜃

𝜋/2

0

=
1

3
.
𝜋

12
[ 1 + 0 + 4 . 98281 + .84089 + .50874 + 2(.93060 + .70710)] 

=
𝜋

36
× 13.60516 = 1.1873. 



Example 6  Calculate the value of the define integral 

 
𝑑𝑥

𝑥

2

1

 

Correct to fine places of decimals, using the trapezoidal, Simpson’s one-third, Simpon’s three-

eights and Weddle’s rules, and also obtain the errors of approximation. 

The divided the interval (1, 2) into six equal parts each of width h = 1/5. The value of the 

function y = 1/x are next tabulated for each of the seven boundaries: 

x 1 7

6
 

8

6
 

9

6
 

10

6
 

11

6
 

2 

1

𝑥
 

1.000000 0.857143 0.750000 0.666667 0.600000 0.545455 0.500000 

(a) By trapezoidal rule, the integral is evaluated as  

𝐼𝑇 =
1

12
 1.500000 + 2 × 3.419265  

= 0.69488, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑡𝑜 𝑓𝑖𝑣𝑒 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑝𝑙𝑎𝑐𝑒𝑠 

 

 𝑏                𝑆𝑖𝑚𝑝𝑠𝑜𝑛′𝑠  𝑜𝑛𝑒 − 𝑡𝑕𝑖𝑟𝑑 𝑟𝑢𝑙𝑒 𝑔𝑖𝑣𝑒𝑠 

𝐼1/3 =
1

18
 1.500000 + 4 × 2.069265 + 2 × 1.350000  

= 0.69317, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑡𝑜 𝑓𝑖𝑣𝑒 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑝𝑙𝑎𝑐𝑒𝑠 

 𝑐               𝑆𝑖𝑚𝑝𝑠𝑜𝑛′𝑠  𝑜𝑛𝑒 − 𝑒𝑖𝑔𝑕𝑡 𝑟𝑢𝑙𝑒 𝑔𝑖𝑣𝑒𝑠 

𝐼3/8 =
1

16
 1.500000 + 3 × 2.752598 + 2 × 666667  

= 0.69320, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑡𝑜 𝑓𝑖𝑣𝑒 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑝𝑙𝑎𝑐𝑒𝑠 

 𝑑             𝐵𝑦 𝑊𝑒𝑑𝑑𝑙𝑒 ′𝑠 𝑟𝑢𝑙𝑒 𝑤𝑒 𝑕𝑎𝑣𝑒 𝑓𝑜𝑟 𝑡𝑕𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑡𝑕𝑒 𝑣𝑎𝑙𝑢𝑒 

𝐼𝑤 =
1

20
 2.85 + 4 × 1.402598 + 6 × 666667  

= 0.69315, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑡𝑜 𝑓𝑖𝑣𝑒 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑝𝑙𝑎𝑐𝑒𝑠 

𝑇𝑕𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡𝑕𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑖𝑠 



𝐼 =  
𝑑𝑥

𝑥

2

1

= 0.69315. 

Hence the absolute errors are 

𝐸𝑇 =  𝐼 − 𝐼𝑇 = 0.00173, 

𝐸1
3

=  𝐼 − 𝐼1
3
 = 0.00002, 

𝐸3
8

=  𝐼 − 𝐼3
8
 = 0.00005,  

𝑎𝑛𝑑 𝐸𝑤 =  𝐼 − 𝐼𝑤  = 0.00000, 

Example  7  Find the sum 1
3
+2

3
+……n

3
. 

We use the Euler- Maclaurin formula in the form (10.6). In the present case we take f(x) = x
3
, a = 

1 and h = 1 and n = n. Thus 

13 + 23 + ⋯ . 𝑛3 =  𝑥3𝑑𝑥 −
1

2
  𝑛 + 1 3 − 1 +

3

12
  𝑛 + 1 2 − 1 

1+𝑛

1

 

=
  𝑛 + 1 4 − 1 

4
−

  𝑛 + 1 3 − 1 

2
+

  𝑛 + 1 2 − 1 

4
=  

𝑛 𝑛 + 1 

2
 

2

 

Example 8 Evaluating   
𝑑𝑥

1+𝑥2

2

1
 six points of decimal by using Weddle’s rule 

Solution:  Let us take 

x  0 1 2 3 4 5 6 

𝑓 𝑥 =
1

1 + 𝑥2
 

1/1+0 1/1+1 1/1+4 1/1+9 1/1+16 1/1+25 1/1+36 

  

That is f(x): 1.000000  0.500000  0.200000  0.200000  0.058824   0.038462  0.027027 

By Weddle’s rule, we have 



 
1

1 + 𝑥2
𝑑𝑥 =

3𝑕

10
[ 𝑓 0 + 𝑓 6  + 5 𝑓 1 + 𝑓 5  + {𝑓 2 + 𝑓 4 + 6𝑓(3)]

6

0

 

=
3 × 1

10
  1.000000 + 0.27027 + 5 0.500000 + 0.038462 +  0.200000 + 0.058824 + (6

× 0.100000)  

=
3

10
 1.027027 + 2.692310 + 0.258824 + 0.600000  

=
3

10
 4.578161 =

1

10
 13734483  

= 1.3734483 

Example 9   Find by Weddle’s rule the value of the expression   𝑙𝑜𝑔𝑒  𝑥𝑑𝑥
5.2

4.0
 

Solution:  Range = 5.2-4=1.2 

Divide their range into six equal parts each of length  

𝑕 =
5.2−4

6
= 0.2    Let 

x  4.0 4.2 4.4 4.6 4.8 5.0 5.2 

𝑙𝑜𝑔𝑒  𝑥: 1.3863 1.4351 1.4816 1.5260 1.5686 1.6094 1.6486 

 

By Weddle’s rule, we have 

 𝑙𝑜𝑔𝑒  𝑥𝑑𝑥

5.2

4.0

=
3𝑕

10
[ 𝑓 0 + 𝑓 6  + 5 𝑓 1 + 𝑓 5  + {𝑓 2 + 𝑓 4 + 6𝑓(3)] 

=
3 × 0.2

10
  1.3863 + 1.6486 + 5 1.4351 + 1.6094 +  1.4846 + 1.5686 + 6 × 1.5260  

=
0.6

10
 3.0349 + 5 × 3.0445 + 3.0502 + 9.1560  

= 0.06 4.0349 + 15.2225 + 3.0502 + 9.1560  



= 0.06 30.4636 = 1.827816 

Example 10:  Compute the value of    
𝑥3

𝑒𝑥−1
𝑑𝑥

15

0
 by Weddle’s rule. 

Solution: Divide the range [0,1.5] into 6 equal parts each of length  

𝑕 =
1.5

6
= 0.25    𝐿𝑒𝑡 

x  0 0.25 0.50 0.75 1.0 1.25 1.50 

𝑓(𝑥)
𝑥3

𝑒𝑥 − 1
 

0 0.0550 0.1923 0.3776 0.5819 0.7842 0.9693 

 

By Weddle’s Rule 

 
𝑥3

𝑒𝑥 − 1
𝑑𝑥 =

3𝑕

10
 𝑦0 + 5𝑦1 + 𝑦2 + 6𝑦3 + 𝑦4 + 5𝑦5 + 𝑦6 

1.5

0

 

=
3𝑕

10
 𝑦0 + 𝑦2 + 𝑦4 + 𝑦6 + 5(𝑦1 + 𝑦5) + 6𝑦3  

=
3 × 0.25

10
 0 + 0.1926 + 0.5819 + 0.9693 + 5 0.0550 + 0.7842 + 6 × 0.3774  

= 0.075 1.7438 + 5 × 0.8392 + 2.2656  

= 0.075 1.7438 + 4.1960 + 2.2656  

= 0.075 8.2054  

= 0.6154050 = 0.6154. 

Exercises 

P-1  Use Trapezoidal rule to find an approximate value of  𝑥4𝑑𝑥
3

−3
 by taking 7 equidistant 

ordinates. 



P-2 Evaluate  
1

1+𝑥1
𝑑𝑥

1

0
 by Simpson’s 1/3 rule by dividing the range into 8 equal parts and 

obtain the value. 

P-3 Evaluate the following using Simpson’s 1/3 rule with h= ¼  

 
𝑥2

1 + 𝑥3
𝑑𝑥

1

0

 

hence obtain the value of loge2. 

P-4 By Simpson’s one third rule show that 1.62 is an approximate value of  

 
1

𝑥
𝑑𝑥

5

1
  when interval of differencing, h=1. 

P-5 Evaluate  
𝑑𝑥

1+𝑥2

6

0
 by using (i) Simpon’s 1/3 rule and (ii) Simpons’s 3/8 rule and find the error 

in all cases. 

P-6  Evaluate  
1

𝑥
𝑑𝑥

1

0
 by Simpon’s one third rule and prove that loge 7= 1.959 approximately. 

P-7 Calculate an approximate value of  sin 𝑥 𝑑𝑥
𝜋/2

1
 by sing 11 ordinates  using 

(i) The trapezoidal rule 

(ii) Simpson’s third rule. 

P-8 Evaluate  
𝑑𝑥

1+𝑥2

6

0
 by using Weddle’s rule. 

P-9  Compute the value of    1 − 0.162𝑆𝑖𝑛2𝜃 𝑑𝜃  
𝜋/2

1
by taking 

𝜃 = 00 , 150 , 300 , 450 , 600 , 750 , 900 . 

P-10:  Compute the value of the definite integral  (sin 𝑥 + 𝑙𝑜𝑔𝑒𝑥 + 𝑒𝑥)𝑑𝜃  
1.4

0.2
 by Weddle’s rule.   

P-11 Fill in the blanks: 

1. Numerical integration is the process of computing the value of ………………….integral 

from a set of numerical values of the integrand. 



2. When the process of numerical integration is applied to the integration of a function of 

single value, the process is called numerical…………………. 

3. To apply Simpson’s 1/3 ruel, we need at least ……………functional values of f(x) 

corresponding to …………………values of x. 

P-12  Choose the correct alternative: 

1. Suppose only two functional values of f(x) are given for two values of the argument x0 

and x1+h. then trapezoidal rule is- 

 𝑎  𝑓 𝑥 𝑑𝑥 =
1

2
𝑕[𝑓 𝑥0 + 𝑓 𝑥1 ]

𝑥1

𝑥0

 

 𝑏  𝑓 𝑥 𝑑𝑥 = 𝑕[𝑓 𝑥0 + 𝑓 𝑥1 ]

𝑥1

𝑥0

 

 𝑐  𝑓 𝑥 𝑑𝑥 = 2𝑕[𝑓 𝑥0 − 𝑓 𝑥1 ]

𝑥1

𝑥0

 

 𝑑  𝑓 𝑥 𝑑𝑥 =
1

2
𝑕[𝑓 𝑥0 − 𝑓 𝑥1 ]

𝑥1

𝑥0

 

P-13  For the equidistant values of the argument 𝑥0, 𝑥1 , 𝑥2, 𝑥3 , 𝑥4 we cannot apply-  

(a) Trapezoidal Rule 

(b) Simpson’s 1/3 rule 

(c) Simpson’s 3/8 rule 

(d) Bothe a and b 

P-14   𝑦𝑑𝑥 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜
𝑥4

𝑥0
 

 𝑎  
𝑕

3
 𝑦0 + 𝑦4 + 4 𝑦1 + 𝑦3 + 2𝑦2  

 𝑏  
𝑕

3
 𝑦0 + 𝑕 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4   



 𝑐  
𝑕

3
 𝑦0 + 2 𝑦1 + 𝑦2) + 2𝑦2(𝑦3 + 𝑦4   

 𝑑  
𝑕

3
 𝑦0 + 𝑦4 + 2 𝑦1 + 𝑦3) + 4𝑦2   

Answers: 

P-1          115        P-2       0.315         P-3     0.2310843 

P-5 (i) 1.3661734   error: 0.39474279  (ii) 1.3670808, error: 0.038566849 

P-6    1.9587    P-7  (a) 0.9979   (b)  1.0001     P-8    1.3734474 

P-9 1.444142   P-10   4.05098 

P-12  (a)     P-13   (c)      P-14  (a) 

10.9  Summary 

Numerical integration is a powerful tool to evaluate any integral numerically. In this process we 

approximate first the integrand by means of any interpolation formula and then integrate it over a 

given range. We have seen that trapezoidal, Simpson one third, Simpson three eight and Weddle 

rule are special cases of general quadrature formula. Euler Maclauring formula can also be used 

as summation formula as well as integral formula. 

10.10 Further Readings 

1. Finite Difference & Numerical Analysis, S. Chand & Company, New Delhi: H.C. Saxena 

2. Numerical Mathematical Analysis, John Hopkins Press, Baltimore New York; James B. 

Scarborough 

3. Introductory Method of Numerical Analysis, Prentice Hall of India Pvt. Ltd.: S.S. Sastry 

4. Introduction to Numerical Analysis, Tata McGraw Hill Publishing Company, New Delhi: 

S.T. Hildebrand 

5. Numerical Method for Scientific & Engineering Computation, New Age International 

Publishers, New Delhi: M.K. Jain, S.R.K. Iyengar & R.K. Jain 
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Block & Units Introduction 

 

The Block - 4 – Solution of Differential Equations, is the fourth block. There are 

number of differential equations which do not possess closed form of finite solutions. Even if 

they possess closed form solutions, we do not know the method of getting it. In such 

situations, depending upon the need of the hour, we go in for numerical solutions of 

differential equations. In researches, especially after the advent of computer, the numerical 

solutions of the differential equations have become easy for manipulations. These methods 

yield solutions either as power series in x form which the values of y can be found by direct 

substitution, or as a set of values of x and y. The methods discussed in this block Picards and 

Taylor series belong to the former class of solutions whereas those of Euler, Rung-Kutta 

belong to the latter class. However Rung-Kutta forth order method is iterative and gives 

solution to desired accuracy.  

Unit – 11 – Numerical Solution of Ordinary Differential Equations - I; this unit 

deals with the first order Picard’s Iteration Method, Euler’s Method and Runga-Kutta 

Methods. The methods of solution so far presented are applicable to a limited class of 

differential equations. Frequently differential equations appearing in physical problems do 

not belong to any of these familiar types and one is obliged to resort to numerical methods. 

These methods are of even greater importance when we realize that computing machines are 

now available which reduce numerical work considerably. 

Unit –12– Numerical Solution of Ordinary Differential Equations - II; this unit 

deals with the second order Picard’s Iteration Method, Euler’s Method and Runga-Kutta 

Methods as well as simultaneous methods. 

. 

The end of block/unit the summary, self-assessment questions and further readings are 

given.  
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Unit-11:  Numerical Solution of Differential Equations - I 

Structure 

11.1 Introduction 

11.2 Objective 

11.3 Picard’s Method 

11.4 Euler’s Method 

11.5 Runge-Kutta  Method’s 

11.6 Summary 

11.7 Exercise 

 

11.1 Introduction 

 

 This unit deals with the first order Picard’s Iteration Method, Euler’s Method 

and Runga-Kutta Methods. The methods of solution so far presented are applicable to a 

limited class of differential equations. Frequently differential equations appearing in physical 

problems do not belong to any of these familiar types and one is obliged to resort to 

numerical methods. These methods are of even greater importance when we realize that 

computing machines are now available which reduce numerical work considerably. 

 

11.2        Objective 

 

A number of numerical methods are available for the solution of first order differential 

equations of the form: 

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥,𝑦), given   𝑦(𝑥0) =  𝑦0 

 These methods yield solutions either as power series in 𝑥 from which the values of 𝑦 

can be found by direct substitution, or as a set of values of 𝑥  and  𝑦 . The methods of Picards 

and Taylor series belong to the former class of solutions whereas those of Euler, Runge-

Kutta, Milne, Adams-Bashforth etc. belong to the latter class. 

 

11.3       Picard’s Method of Successive Approximations 
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Consider first order differential equation 

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥,𝑦)                                       ………. (1) 

with the  initial condition  

𝑦 =  𝑦0at𝑥 = 𝑥0 

Integrating (1) with respect to 𝑥 between 𝑥0  and 𝑥, we have 

 

 𝑑𝑦

𝑦

𝑦0

=  𝑓 𝑥, 𝑦 

𝑥

𝑥0

𝑑𝑥 

 

             or                                       𝑦 =  𝑦0 +  𝑓 𝑥,𝑦 
𝑥

𝑥0
𝑑𝑥                                ……… (2) 

 

           Now, we solve (2) by the method of successive approximation to find out the solution       

of (1). The first approximate solution (approximation)  𝑦1 of 𝑦 is given by 

 

 𝑦1 =  𝑦0 +   𝑓 𝑥,  𝑦0 

𝑥

𝑥0

𝑑𝑥 

 

 Similarly, the second approximation  𝑦2  is given by 

 𝑦2 =  𝑦0 +   𝑓 𝑥,  𝑦1 

𝑥

𝑥0

𝑑𝑥 

 

 

Similarly, the nth  approximation 𝑦𝑛   is given by 

 𝑦𝑛 =  𝑦0 +   𝑓 𝑥,  𝑦𝑛−1 
𝑥

𝑥0
𝑑𝑥            ……….(3) 

 

             With   𝑦(𝑥0) =  𝑦0 . 

 

Hence, this method gives a sequence of approximation 𝑦1,  𝑦2,……… . .  𝑦𝑛  and 

it can be proved 𝑓(𝑥,𝑦) is bounded in some regions containing the point  𝑥0,  𝑦0  and 

if   𝑓(𝑥,𝑦) satisfies the Lipchitz condition, namely 
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 𝑓 𝑥,𝑦 −  𝑓(𝑥, 𝑦   )  ≤  𝑘 |𝑦 − 𝑦  | 

Where k is a constant and  𝑦1,  𝑦2,………. converges to the solution (2). 

 

Example 1:   Use Picard’s method to obtain 𝑦 for 𝑥 = 0.2. Given 

𝑑𝑦

𝑑𝑥
= 𝑥 − 𝑦 

                                       with the  initial condition   𝑦 = 1  at 𝑥 = 0 

 

Solution:   Here,   𝑓(𝑥,𝑦) = 𝑥 − 𝑦 ,  𝑥0 = 0,     𝑦0 = 1 

We have first approximation 

 𝑦1 =  𝑦0 +   𝑓 𝑥,  𝑦0 

𝑥

0

𝑑𝑥 

= 1 +   (𝑥 − 1)

𝑥

0

𝑑𝑥 

= 1 − 𝑥 +
𝑥2

2
 

Second approximation, 

 𝑦2 =  𝑦0 +   𝑓 𝑥,  𝑦1 

𝑥

0

𝑑𝑥 

= 1 +   (𝑥 −  𝑦1)

𝑥

0

𝑑𝑥 

= 1 +   (𝑥 − 1 + 𝑥 −
𝑥2

2
)

𝑥

0

𝑑𝑥 

= 1 − 𝑥 + 𝑥2 −
𝑥3

6
 

 

Third approximation, 

 𝑦3 =  𝑦0 +   𝑓 𝑥,  𝑦2 

𝑥

0

𝑑𝑥 

= 1 +   (𝑥 −  𝑦2)

𝑥

0

𝑑𝑥 
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= 1 +  (𝑥 − 1 + 𝑥 − 𝑥2 +
𝑥3

6
)

𝑥

0

𝑑𝑥 

= 1 − 𝑥 + 𝑥2 −
𝑥3

6
+

𝑥4

24
 

Fourth approximation, 

 𝑦4 =  𝑦0 +   𝑓 𝑥,  𝑦3 

𝑥

0

𝑑𝑥 

= 1 +   (𝑥 −  𝑦3)

𝑥

0

𝑑𝑥 

= 1 +   (𝑥 − 1 − 𝑥 − 𝑥2 +
𝑥3

6
−

𝑥4

24
)

𝑥

0

𝑑𝑥 

= 1 − 𝑥 + 𝑥2 −
𝑥3

3
+

𝑥4

12
−

𝑥5

120
 

Fifth approximation, 

 𝑦5 =  𝑦0 +   𝑓 𝑥,  𝑦4 

𝑥

0

𝑑𝑥 

= 1 +   (𝑥 −  𝑦4)

𝑥

0

𝑑𝑥 

= 1 +   (𝑥 − 1 + 𝑥 − 𝑥2 +
𝑥3

3
−

𝑥4

12
+

𝑥5

120
)

𝑥

0

𝑑𝑥 

= 1 − 𝑥 + 𝑥2 −
𝑥3

3
+

𝑥4

12
−

𝑥5

60
+

𝑥6

720
 

        When                             𝑥 = 0.2, we get 

 

 𝑦1 = .82,  𝑦2 = .83867,  𝑦3 = .83740, 

 

 𝑦4 = .83746,  𝑦5 = .83746 

 

Thus   𝒚 = 𝟎.𝟖𝟑𝟕   when  𝒙 = 𝟎.𝟐         Ans 

 

Example 2:    Find the solution of 
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𝑑𝑦

𝑑𝑥
= 1 + 𝑥𝑦 ,   𝑦(0) = 1 

 Which passes through (0,1) in the interval (0,0.5) such that the value of 𝑦 is correct to three 

decimal places (use the whole interval as one interval only) Take ℎ = 0.1. 

 

Solution:  The given initial value problem is 

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥,𝑦) = 1 + 𝑥𝑦 ;    𝑦(0) = 1 

 

              i.e.                         𝑦 = 𝑦0 = 1  at              𝑥 = 𝑥0 = 0,      

 

        Here,  

 𝑦1 = 1 + 𝑥 +
𝑥2

2
 

 

 𝑦2 = 1 + 𝑥 +
𝑥2

2
+
𝑥3

3
+
𝑥4

8
 

 

 𝑦3 = 1 + 𝑥 +
𝑥2

2
+
𝑥3

3
+
𝑥4

8
+

𝑥5

15
+

𝑥6

48
 

 

 𝑦4 =  𝑦3 +
𝑥7

105
+

𝑥8

384
 

 

                                  When    𝑥 = 0,    𝑦 = 1.000  at               

𝑥 = 0.1,   𝑦1 = 1.105,𝑦2 = 1.223 = 𝑦3   (correct up to 3 decimals) 

 

𝑦 = 1.223 

𝑥 = 0.3,   𝑦 = 1.355,𝑦2 = 1.355 = 𝑦3   (correct up to 3 decimals) 

𝑥 = 0.4,    𝑦 = 1.505 

𝑥 = 0.5,   𝑦 = 1.677,𝑦4 = 𝑦3 = 1.677 

Thus, 

𝑥 0 0.1 0.2 0.3 0.4 0.5 

𝑦 1.000 1.105 1.223 1.355 1.505 1.677 

 
We have numerically solved the given differential equation for 
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𝑥 = 0.1, 0.2 ,0.3, 0.4,   𝑎𝑛𝑑 0.5. 

 

 

Example 3:     Use Picard’s method to obtain 𝑦 for 𝑥 = 0.1. Given 

𝑑𝑦

𝑑𝑥
= 3𝑥 + 𝑦2 

                                       with the  initial condition   𝑦 = 1  at 𝑥 = 0 

Solution 

Here ,𝑓(𝑥,𝑦) = 3𝑥 + 𝑦2 ,  𝑥0 = 0,     𝑦0 = 1 

We have First approximation 

 𝑦1 =  𝑦0 +   𝑓 𝑥,  𝑦0 

𝑥

0

𝑑𝑥 

= 1 +  (3𝑥 + 1)

𝑥

0

𝑑𝑥 

= 1 + 𝑥 +
3

2
𝑥2 

 

   Second approximation 

 𝑦2 = 1 + 𝑥 +
5

2
𝑥2 +

4

2
𝑥3 +

3

4
𝑥4 +

9

20
𝑥5 

 

 

 

Third approximation 

 𝑦3 = 1 + 𝑥 +
5

2
𝑥2 + 2𝑥3 +

23

12
𝑥4 +

25

12
𝑥5 +

68

45
𝑥6 +

1157

1260
𝑥7 

+
17

32
𝑥8 +

47

240
𝑥9 +

27

400
𝑥10 +

81

4400
𝑥11  

When               𝑥 = 0.1, we have 

 

 𝑦1 = 1.115,  𝑦2 = 1.1264,  𝑦3 = 1.12721 

 

Thus   𝒚 = 𝟏.𝟏𝟐𝟕   when  𝒙 = 𝟎.𝟏         Ans 
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11.4                Euler’s Method  

 

The oldest and simplest method was derived by Euler. In this method, we determine the 

change  

 ∆𝑦 in 𝑦 corresponding to small increment in the argument  . Consider the differential 

equation. 

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥,𝑦)                                       ………. (1) 

with the  initial condition  

𝑦(𝑥0) = 𝑦0 

Integrating (1) with respect to 𝑥 between 𝑥0  and 𝑥1, we have 

 

 𝑑𝑦

𝑦1

𝑦0

=  𝑓 𝑥, 𝑦 

𝑥1

𝑥0

𝑑𝑥 

𝑦1 = 𝑦0 +  𝑓 𝑥,𝑦 
𝑥1

𝑥0
𝑑𝑥                 ------(2) 

Now, replacing 𝑓 𝑥,𝑦  by the approximation  𝑥0,  𝑦0  , we get 

𝑦1 = 𝑦0 +  𝑓 𝑥0,  𝑦0 

𝑥1

𝑥0

𝑑𝑥 

= 𝑦0 + 𝑓 𝑥0,  𝑦0 (𝑥1 − 𝑥0) 

𝑦1 = 𝑦0 + ℎ𝑓 𝑥0,  𝑦0 (∵ 𝑥1 − 𝑥0 =  ∆𝑥 = ℎ) 

This is the formula for first approximation 𝑦1 is given by 

𝑦2 = 𝑦1 + ℎ𝑓 𝑥1,  𝑦1  

In general,                            

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓 𝑥𝑛 ,  𝑦𝑛  

 

Check Your Progress 

1. Obtain 𝑦 when 𝑥 = 0.1, 𝑥 = 0.2 

Given that      
𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦 ,   𝑦(0) = 1, check the result with exact value. 
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Euler’s Modified Method  

Instead of approximating 𝑓 𝑥,𝑦  by 𝑓 𝑥0,  𝑦0  in equation (2). Let the integral is appointed 

by Trapezoidal rule to obtain. 

𝑦1 = 𝑦0 +
ℎ

2
[𝑓 𝑥0,  𝑦0 + 𝑓 𝑥1,  𝑦1 ] 

We obtain the iteration formula 

𝑦1
𝑛+1 = 𝑦0 +

ℎ

2
[𝑓 𝑥0,  𝑦0 + 𝑓 𝑥1,𝑦1

𝑛 ]𝑛 = 0,1,2…… 

 

Where, 𝑦1
𝑛  is the nth approximation to 𝑦1 . 

The above iteration formula can be started by 𝑦1
(1) from Euler’s method. 

𝑦1
(0) = 𝑦0 + ℎ 𝑥0,  𝑦0  

 

Example 1:    Use Euler’s method, compute y(0.5) for differential equation 

𝑑𝑦

𝑑𝑥
= 𝑦2 − 𝑥2 

                                       with the  initial condition   𝑦 = 1  when  𝑥 = 0 

Solution:                     Let               ℎ =
0.5

5
= 0.1 

𝑥0 = 0,     𝑦0 = 1 ,  𝑓(𝑥, 𝑦) = 𝑦2 − 𝑥2 

 

Using Euler’s method we have  

𝑦𝑛+1 = 𝑦𝑛 + ℎ 𝑥𝑛 ,  𝑦𝑛  

 

But considering 𝑛 = 0,1,2,………   in succession, we get  

𝑦1 = 𝑦0 + ℎ𝑓 𝑥0,  𝑦0  

= 1 + 0.1 12 − 0 = 1.10000 

 

𝑦2 = 𝑦1 + ℎ𝑓 𝑥1,  𝑦1  

= 1.10000 + 0.1[ 1.10000 2 −  0.1 2] = 1.22000 

𝑦3 = 𝑦2 + ℎ𝑓 𝑥2,  𝑦2  

= 1.22000 + 0.1[ 1.22 2 −  0.2 2] = 1.36484 

𝑦4 = 𝑦3 + ℎ𝑓 𝑥3,  𝑦3  
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= 1.36484 + 0.1[ 1.36484 2 −  0.3 2] = 1.54212 

𝑦5 = 𝑦4 + ℎ𝑓 𝑥4,  𝑦4  

= 1.54212 + 0.1[ 1.54212 2 −  0.4 2] = 1.76393 

 

                                  Hence, the value of  𝒚 at  𝒙 = 𝟎.𝟓 is 1.76393.        Ans 

 

Example 2:    Find the solution of  differential equation 

𝑑𝑦

𝑑𝑥
= 𝑥𝑦        with 𝑦(1) = 5 

                   in the interval [1, 1.5] using   ℎ = 0.1. 

 

Solution:                     As per given we have             

𝑥1 = 1,     𝑦0 = 5 ,  𝑓(𝑥,𝑦) = 𝑥𝑦 

 

Using Euler’s method we have  

𝑦𝑛+1 = 𝑦𝑛 + ℎ 𝑥𝑛 ,  𝑦𝑛  

 

But considering 𝑛 = 0,1,2,………   in succession, we get  

            For     𝑛 = 0𝑦1 = 𝑦0 + 0.1𝑓 𝑥0,  𝑦0  

= 5 + 0.1 1 × 5 = 5.5 

 

           For     𝑛 = 1𝑦2 = 𝑦1 + 0.1𝑓 𝑥1,  𝑦1  

= 5.5 + 0.1 1.1 × 5.5 = 6.105 

           For     𝑛 = 2𝑦3 = 𝑦2 + 0.1𝑓 𝑥2,  𝑦2  

= 6.105 + 0.1 1.2 × 6.105 = 6.838 

           For     𝑛 = 3𝑦4 = 𝑦3 + 0.1𝑓 𝑥3,  𝑦3  

= 6.838 + 0.1 1.3 × 6.838 = 7.727 

 

 

            For     𝑛 = 4𝑦5 = 𝑦4 + 0.1𝑓 𝑥4,  𝑦4  

= 7.727 + 0.1 1.4 × 7.727 = 8.809 

 

              Hence, the value of  𝒚(𝟏.𝟓)at  is8.809.        Ans 
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Example 3:      Given 

𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦  with initial condition 𝑦(0) = 1. 

                  Find 𝑦(0.05) and 𝑦(0.1) correct to 6 decimal places. 

 

Solution: 

                     Using Euler’s method, we have  

𝑦1
(0) = 𝑦1 = 𝑦0 + ℎ 𝑥0,  𝑦0  

= 1 + 0.05 0 + 1 = 1.05 

We improve 𝑦1 by using Euler’s modified method 

𝑦1
(1) = 𝑦0 +

ℎ

2
[𝑓 𝑥0,  𝑦0 + 𝑓 𝑥1,𝑦1

0 ] 

= 1 +
0.05

2
[ 0 + 1 +  0.05 + 1.05 ] 

= 1.0525 

𝑦1
(2) = 1 +

0.05

2
[ 0 + 1 +  0.05 + 1.0525 ] 

= 1.0525625 

𝑦1
(3) = 1 +

0.05

2
[ 0 + 1 +  0.05 + 1.0525625 ] 

= 1.052564 

𝑦1
(4) = 1 +

0.05

2
[ 0 + 1 +  0.05 + 1.0525625 ] 

= 1.0525641 

Since, 𝑦1
(3) = 𝑦1

(4) = 1.0525641 correct to 6 decimal places. Hence we take   𝑦1 =

1.052564 

i.e., we have 𝑦 0.05 = 1.052564 

 Again, using Euler’s method, we obtain 

𝑦2
(0) = 𝑦2 = 𝑦1 + ℎ[𝑓 𝑥1,  𝑦1 ] 

= 1.052564 + 0.05 1.052564 + 0.05  

= 1.1076922 

 

 We improve 𝑦2 by using Euler’s modified method 

𝑦2
(1) = 1.052564 +

0.05

2
[ 1.052564 + 0.05 +  1.1076922 + 0.1 ] 

= 1.1120511 
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𝑦2
(2) = 1.052564 +

0.05

2
[ 1.052564 + 0.05 +  1.1120511 + 0.1 ] 

= 1.1104294 

 

𝑦2
(3) = 1.052564 +

0.05

2
[ 1.052564 + 0.05 +  1.1104294 + 0.1 ] 

= 1.1103888 

 

𝑦2
(4) = 1.052564 +

0.05

2
[ 1.052564 + 0.05 +  1.1103888 + 0.1 ] 

= 1.1103878 

 

𝑦2
(5) = 1.052564 +

0.05

2
[ 1.052564 + 0.05 +  1.1103878 + 0.1 ] 

= 1.1103878 

Since, 𝑦2
(4) = 𝑦2

(5) = 1.1103878 correct to 7 decimal places. Hence we take   𝑦2 =

1.1103878 

Therefore, we have  𝒚 𝟎.𝟏 = 𝟏.𝟏𝟏𝟎𝟑𝟖𝟕𝟖 , correct to 6 decimal places.   Ans 

 

Example 4:  Find𝑦(2.2) using Euler’s method for 

𝑑𝑦

𝑑𝑥
= −𝑥𝑦2,  where         𝑦(2) = 1.     ( Take   ℎ = 0.1 ) 

Solution:  

 

                   By Euler’s method, we have  

𝑦1
(0) = 𝑦1 = 𝑦0 + ℎ 𝑥0,  𝑦0  

= 1 + 0.1 −2 (−1)2 = 0.08 

The value of 𝑦1 by using Euler’s modified method 

𝑦1
(1) = 𝑦0 +

ℎ

2
[𝑓 𝑥0,  𝑦0 + 𝑓 𝑥1,𝑦1

0 ] 

= 1 +
0.1

2
[ −2  1 2 +  −2.1 (0.8)2] 

= 0.8328 

Similarly                      
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𝑦1
(2) = 1 +

0.1

2
[ −2  1 2 +  −2.1 (0.8328)2] 

= 0.8272 

𝑦1
(3) = 1 +

0.1

2
[ −2  1 2 +  −2.1 (0.8272)2] 

= 0.8281 

𝑦1
(4) = 1 +

0.1

2
[ −2  1 2 +  −2.1 (0.8281)2] 

= 0.8280 

 

𝑦1
(5) = 1 +

0.1

2
[ −2  1 2 +  −2.1 (0.8280)2] 

= 0.8280 

Since 𝑦1
(4) = 𝑦1

(5) = 0.8280 . Hence, we take 𝑦1 = 0.828 at 𝑥1 = 2.1 

             Now, if 𝑦2 is the value of 𝑦 at 𝑥 = 2.2. Then, we apply Euler’s method to compute 

𝑦 2.2 , i.e., we obtain  

𝑦2
(0) = 𝑦2 = 𝑦1 + ℎ 𝑥1,  𝑦1  

= 0.828 + 0.1 −2.1 (0.828)2 = 0.68402 

 

Now, using Euler’s modified formula, we obtain 

𝑦2
(1) = 0.828 +

0.1

2
[ −2.1  0.828 2 +  −2.2 (0.68402)2] 

= 0.70454 

𝑦2
(2) = 0.828 +

0.1

2
[ −2.1  0.828 2 +  −2.2 (0.70454)2] 

= 0.70141 

𝑦2
(3) = 0.828 +

0.1

2
[ −2.1  0.828 2 +  −2.2 (0.70141)2] 

= 0.70189 

𝑦2
(4) = 0.828 +

0.1

2
[ −2.1  0.828 2 +  −2.2 (0.70189)2] 

= 0.70182 

𝑦2
(5) = 0.828 +

0.1

2
[ −2.1  0.828 2 +  −2.2 (0.70182)2] 

= 0.70183 
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                         Since 𝑦2
(4) = 𝑦2

(5) = 0.7018 , correct to 4 decimal places. 

                         Hence, we take 𝑦 2.2 = 0.7018     Ans. 

 

 

 

 

11.5        Runge-Kutta Method 

 

The method is very simple. It is named after two German mathematicians Carl Runge 

(1856-1927) and Wilhelm Kutta (1867-1944). These methods are well-known as Runge-

Kutta Method. They aredistinguished by their orders in the sense that they agree with 

Taylor’s series solution upto term of ℎ𝑟  where 𝑟 is a positive integer is the order of the 

method. 

It was developed to avoid the computation of higher order derivations which the 

Taylors’method may involve. In the place of these derivatives extra values of the given 

function 𝑓 𝑥,𝑦 are used. 

 

(i) First order Runge-Kutta method 

Consider the differential equation 

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥,𝑦);   𝑦(𝑥0) = 𝑦0                    -------- (1) 

                 By Euler’s method, we know that 

𝑦1 = 𝑦0 + ℎ𝑓 𝑥0,  𝑦0 = 𝑦0 + ℎ𝑦′0                  --------- (2) 

               Expanding by Taylor’s series, we get 

𝑦1 = 𝑦 𝑥0 + ℎ = 𝑦0 +
ℎ

1!
𝑦′0 +

ℎ2

2!
𝑦′′0 +          ---------(3) 

 It follows that Euler’s method agrees with Taylor’s series solution upto the terms in ℎ. 

HenceEuler’s method is the first order Runge-Kutta method. 

 

(ii) Second order Runge-Kutta method 

Consider the differential equation 

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥,𝑦) ;       𝑦(𝑥0) = 𝑦0 

Let ℎ be the interval between equidistant values of 𝑥. Then the second order Runge-Kutta 

Check Your Progress 

1. Given that   
𝑑𝑦

𝑑𝑥
=

𝑦−𝑥

𝑦+𝑥
 ,   with 𝑦0 = 1 find 𝑦 for 𝑥 = 0.1 

in four steps by Euler’s method.                                          [Ans 𝑦(0.1) = 1.0932] 
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method, the first increment in 𝑦 is computed from the formulae 

     𝑘1 = ℎ𝑓 𝑥0,  𝑦0  

     𝑘2 = ℎ𝑓 𝑥0 + ℎ,  𝑦0 + 𝑘1  

∆𝑦 =
1

2
(𝑘1 + 𝑘2) 

Then,    𝑥1 = 𝑥0 + ℎ 

𝑦1 = 𝑦0 + ∆𝑦 = 𝑦0 +
1

2
(𝑘1 + 𝑘2) 

 

Similarly, the increment in 𝑦 for the second interval is computed by the formulae, 

𝑘1 = ℎ𝑓 𝑥1,  𝑦1  

     𝑘2 = ℎ𝑓 𝑥1 + ℎ,  𝑦1 + 𝑘1  

∆𝑦 =
1

2
(𝑘1 + 𝑘2) 

and similarly for other intervals. 

. 

(iii) Third order Runge-Kutta Method 

The method agrees with Taylor’s series upto the term ℎ3. The formula is as 

follows: 

 

𝑦1 = 𝑦0 +  
1

6
(𝑘1 + 4𝑘2 + 𝑘3); 

𝑥1 = 𝑥0 + ℎ 

Where,   𝑘1 = ℎ𝑓 𝑥0,  𝑦0  

     𝑘2 = ℎ𝑓  𝑥0 +
ℎ

2
,𝑦0 +

𝑘1

2
  

𝑘3 = ℎ𝑓 𝑥0 + ℎ,  𝑦0 + 2𝑘2 − 𝑘1  

Similarly for other intervals. 

 

(iv) Fourth order Runge-Kutta method 

This method coincides with the Taylor’s series solution upto terms of ℎ4 . 

Consider the differential equation 

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥,𝑦)  with initial condition   𝑦(𝑥0) = 𝑦0. 

Letℎ be the interval between equidistant vales of 𝑥. Then the first increment in 𝑦 

is computed from the formulae. 
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𝑦1 = 𝑦0 +  
1

6
(𝑘1 + 4𝑘2 + 𝑘3); 

𝑥1 = 𝑥0 + ℎ 

Where,   𝑘1 = ℎ𝑓 𝑥0,  𝑦0  

     𝑘2 = ℎ𝑓  𝑥0 +
ℎ

2
,𝑦0 +

𝑘1

2
  

𝑘3 = ℎ𝑓 𝑥0 + ℎ,  𝑦0 + 2𝑘2 − 𝑘1  

Similarly for other intervals. 

𝑘1 = ℎ𝑓 𝑥0,  𝑦0  

     𝑘2 = ℎ𝑓  𝑥0 +
ℎ

2
,𝑦0 +

𝑘1

2
  

𝑘3 = ℎ𝑓  𝑥0 +
ℎ

2
,𝑦0 +

𝑘2

2
  

𝑘4 = ℎ𝑓 𝑥0 + ℎ ,𝑦0 + 𝑘3  

Then                                  

𝑦1 = 𝑦0 +  
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

 

and 𝑥1 = 𝑥0 + ℎ 

 Similarly, the increment in 𝑦 for the second interval is computed by 

𝑘1 = ℎ𝑓 𝑥1,  𝑦1  

     𝑘2 = ℎ𝑓  𝑥1 +
ℎ

2
, 𝑦1 +

𝑘1

2
  

𝑘3 = ℎ𝑓  𝑥1 +
ℎ

2
,𝑦1 +

𝑘2

2
  

𝑘4 = ℎ𝑓 𝑥1 + ℎ ,𝑦1 + 𝑘3  

 

Then,   𝑦2 = 𝑦1 +  
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

and                                          𝑥2 = 𝑥1 + ℎ 

and similarly for the next intervals. 

 

Example 1:     Apply Runge-Kutta Method to solve 

𝑑𝑦

𝑑𝑥
= 𝑥𝑦1/3 ,  𝑦(1) = 1 to obtain 𝑦(1.1). 

Solution :    Here, 𝑥0 = 1,     𝑦0 = 1 and ℎ = 0.1. Then, we can find 
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𝑘1 = ℎ𝑓 𝑥0,  𝑦0  

= 0.1 1  1 
1

3 = 0.1 

     𝑘2 = ℎ𝑓  𝑥0 +
ℎ

2
,𝑦0 +

𝑘1

2
  

= 0.1  1 +
0.1

2
  1 +

0.1

2
 

1

3

= 0.10672 

 

𝑘3 = ℎ𝑓  𝑥0 +
ℎ

2
,𝑦0 +

𝑘2

2
  

= 0.1  1 +
0.1

2
  1 +

0.10672

2
 

1

3

= 0.10684 

 

𝑘4 = ℎ𝑓 𝑥0 + ℎ ,𝑦0 + 𝑘3  

Then                                                       = 0.1 1 + 0.1  1 + 0.10684 
1

3 

= 0.11378 = 0.11378 

𝑦1 = 𝑦0 +  
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

= 1 +  
1

6
(0.1 + 2 × 0.10672 + 2 × 0.10684 + 0.11378) 

= 1 + 0.10682 = 1.10682        Ans 

 

Example 2:     Solve the equation 𝑦′ = (𝑥 + 𝑦) with 𝑦0 = 1 by Runge-Kutta rule from 

𝑥 = 0 to                           𝑥 = 0.4 with   ℎ = 0.1. 

Solution :    Here, 𝑓 𝑥,𝑦 = 𝑥 + 𝑦  , ℎ = 0.1, given 𝑦0 = 1 when  𝑥0 = 0 

                    We have, 

𝑘1 = ℎ𝑓 𝑥0,  𝑦0  

= 0.1 0 + 1 = 0.1 

     𝑘2 = ℎ𝑓  𝑥0 +
ℎ

2
,𝑦0 +

𝑘1

2
  

= 0.1 0.05 + 1.05 = 0.11 

 

𝑘3 = ℎ𝑓  𝑥0 +
ℎ

2
,𝑦0 +

𝑘2

2
  

= 0.1 0.05 + 1.055 = 0.1105 
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𝑘4 = ℎ𝑓 𝑥0 + ℎ ,𝑦0 + 𝑘3  

Then                                                       = 0.1 0.1 + 1.1105  

= 0.12105 

𝑦1 = 𝑦0 +  
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

= 1 +  
1

6
(0.1 + 0.22 + 0.2210 + 0.12105) 

= 1.11034 

 

Similarly for finding   𝑦2 = 𝑦(𝑥 = 0.2), we get 

𝑘1 = ℎ𝑓 𝑥1,  𝑦1  

= (0.1)[  0.1  + 1.11034]  

= 0.121034     

𝑘2 = ℎ𝑓  𝑥1 +
ℎ

2
,𝑦1 +

𝑘1

2
  

= (0.1)[0.15 + 1.11034 + 0.660517]  

= 0.13208 

𝑘3 = ℎ𝑓  𝑥1 +
ℎ

2
,𝑦1 +

𝑘2

2
  

= (0.1)[0.15 + 1.11034 + 0.06604]  

= 0.13208 

𝑘4 = ℎ𝑓 𝑥1 + ℎ ,𝑦1 + 𝑘3  

= (0.1)[0.20 + 1.11034 + 0.13263]  

= 0.14263 

𝑦2 = 𝑦(𝑥 = 0.2) = 𝑦1 +  
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

= 1.11034 + 
1

6
[0.121034 + 2(0.13208 + 0.13263 + 0.14429)] 

= 1.2428 

 

Similarly for finding 𝑦3 = 𝑦(𝑥 = 0.3), we get 

𝑘1 = ℎ𝑓 𝑥2,  𝑦2  

= (0.1)[  0.2  + 1.2428]  

= 0.14428     

𝑘2 = ℎ𝑓  𝑥2 +
ℎ

2
,𝑦2 +

𝑘1

2
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= (0.1)[0.25 + 1.2428 + 0.07214]  

= 0.15649 

𝑘3 = ℎ𝑓  𝑥2 +
ℎ

2
,𝑦2 +

𝑘2

2
  

= (0.1)[0.25 + 1.2428 + 0.07824]  

= 0.15710 

𝑘4 = ℎ𝑓 𝑥2 + ℎ ,𝑦2 + 𝑘3  

= (0.1)[0.30 + 1.2428 + 0.15710]  

= 0.16999 

𝑦3 = 𝑦(𝑥 = 0.3) = 𝑦2 + 
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

= 1.3997 

Similarly for finding 𝑦4 = 𝑦(𝑥 = 0.4), we  

𝑘1 = (0.1)[  0.3  + 1.3997]  

= 0.16997     

𝑘2 = (0.1)[0.35 + 1.3997 + 0.08949] 

= 0.18347 

𝑘3 = (0.1)[0.35 + 1.3997 + 0.9170] 

= 0.18414 

𝑘4 = (0.1)[0.4 + 1.3997 + 0.18414] 

= 0.19838 

𝑦4 = 1.3997 +  
1

6
[0.16997 + 2 0.18347 + 0.18414 + 0.19838 ] 

𝑦4 = 1.5836Ans 

 

Example 3:  Given
𝑑𝑦

𝑑𝑥
= 𝑦 − 𝑥  with  𝑦(0) = 2,  find  𝑦(0.1) and 𝑦(0.2) correct to 4 decimal   

                    places. 

Solution:   We have 𝑥0 = 0,   𝑦0 = 2,     ℎ = 0.1 

Then, we get 

𝑘1 = ℎ𝑓 𝑥0,  𝑦0  

= 0.1 2 − 0 = 0.2 

     𝑘2 = ℎ𝑓  𝑥0 +
ℎ

2
,𝑦0 +

𝑘1

2
  

= 0.1[2 +
0.2

2
− (0 +

0.1

2
)] = 0.205 
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𝑘3 = ℎ𝑓  𝑥0 +
ℎ

2
,𝑦0 +

𝑘2

2
  

= 0.1[2 +
0.205

2
− (0 +

0.1

2
)] = 0.20525 

𝑘4 = ℎ𝑓 𝑥0 + ℎ ,𝑦0 + 𝑘3  

Then                                                       = 0.1[2 + 0.20525 −  0 + 0.1 ] 

= 0.210525 

𝑦1 = 𝑦0 +  
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

= 2 +  0.2051708 = 2.2051708 

     𝑦(0.1) = 2.2052               Correct to 4 decimal places 

For  𝑦(0.2), we have 𝑥0 = 0.1,  𝑦0 = 2.2052, we get 

𝑘1 = ℎ𝑓 𝑥0,  𝑦0  

= 0.1 2.2052 − 0.1 = 0.21052 

     𝑘2 = ℎ𝑓  𝑥0 +
ℎ

2
,𝑦0 +

𝑘1

2
  

= 0.1[2.2052 +
0.21052

2
− (0 +

0.1

2
)] = 0.216046 

𝑘3 = ℎ𝑓  𝑥0 +
ℎ

2
,𝑦0 +

𝑘2

2
  

= 0.1[2.2052 +
0.216046

2
− (0.1 +

0.1

2
)] = 0.2163223 

𝑘4 = ℎ𝑓 𝑥0 + ℎ ,𝑦0 + 𝑘3  

Then                                                       = 0.1[2.2052 + 0.2163223 −  0.1 + 0.1 ] 

= 0.22215223 

𝑦(0.2) = 2.2052 +  
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

= 2.2052 +  0.2162348 

    𝑦 0.2 = 2.4214               Ans  

 

Example 4:  Given
𝑑𝑦

𝑑𝑥
= −2𝑥𝑦2  with  𝑦(0) = 1, and ℎ = 0.1 on the interval [0.1]  using 

Runge-Kutta fourth order method. 

Solution:       As per given, we have 𝑥0 = 0,   𝑦0 = 1,     ℎ = 0.2 

𝑘1 = ℎ𝑓 𝑥0,  𝑦0  

= −2 0.2 (0) 1 2 = 0 

   𝑘2 = ℎ𝑓  𝑥0 +
ℎ

2
,𝑦0 +

𝑘1

2
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= −2 0.2  
0.2

2
  1 2 = −0.4 

𝑘3 = ℎ𝑓  𝑥0 +
ℎ

2
,𝑦0 +

𝑘2

2
  

= −2 0.2  
0.2

2
  0.98 2 = −0.38416 

𝑘4 = ℎ𝑓 𝑥0 + ℎ ,𝑦0 + 𝑘3  

= −2 0.2 (0.2) 0.961584 2 = −0.0739715 

    Hence                                    𝑦1 = 𝑦0 +  
1

6
[𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4] 

= 1 +  
1

6
[0 − 0.0 − 0.076832 − 0.0739715] 

= 0.9615328 

 

                    Now,we have   𝑥1 = 0.2,   𝑦1 = 0.9615328,      ℎ = 0.2, we get 

𝑘1 = ℎ𝑓 𝑥1,  𝑦1  

= −2 0.2 (0.2) 0.9615328 2 = −0.0739636 

   𝑘2 = ℎ𝑓  𝑥1 +
ℎ

2
, 𝑦1 +

𝑘1

2
  

= −2 0.2 (0.3) 0.924551 2 = 0.1025754 

𝑘3 = ℎ𝑓  𝑥1 +
ℎ

2
,𝑦1 +

𝑘2

2
  

= −2 0.2 (0.3) 0.9102451 2 = 0.0994255 

𝑘4 = ℎ𝑓 𝑥1 + ℎ ,𝑦1 + 𝑘3  

= −2 0.2 (0.4) 0.8621073 2 = −0.1189166 

    Hence    𝑦(0.4) = 𝑦1 + 
1

6
[𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4] 

= 0.9615328 +  
1

6
[−0.0739636 − 0.2051508 − 0.1988510 − 0.1189166] 

= 0.8620525 

Similarly, we can obtain 

𝑦(0.6) = 0.7352784 

𝑦(0.8) = 0.6097519 

𝑦(1.0) = 0.500073     Ans 

 

 

Check Your Progress 

1. Apply Runge-Kutta method to find the solution of the differential equation 

𝑑𝑦

𝑑𝑥
= 3𝑥 +

1

2
𝑦  with  𝑦(0) = 1  and  𝑥 = 0.1 . 

           

 [𝐀𝐧𝐬.   1.066652421875] 
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11.6        Summary 

 

Many problems in science and engineering can be reduce to the problem of solving 

differential equations satisfying certain given conditions. These methods are of even greater 

importance when we realize that computing machines are now available which reduce 

numerical work considerably.A number of numerical methods are available for the solution 

of first order differential equations.  These methods yield solutions either as power series in 𝑥 

from which the values of 𝑦 can be found by direct substitution, or as a set of values of 𝑥  and  

𝑦 . The methods of Picards and Taylor series belong to the former class of solutions whereas 

those of Euler, Runge-Kutta belong to the latter class. However Runge-Kutta forth order 

method is iterative and gives solution to accuracy. 

 

11.7          Exercise 

 

1. Apply Picard’s method to find the third approximation of the solution 

𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦2   with the condition 𝑦(0) = 1. 

[Ans  = 1 + 𝑥 +
3

2
𝑥2 +  

4

3
𝑥3 +  …… ] 

2. Using Picard’smethod , obtain the solution 

𝑑𝑦

𝑑𝑥
= 𝑥(1 + 𝑥3𝑦);   𝑦(0) = 3 

Compute the value of 𝑦(0.1) and 𝑦(0.2). 

[Ans.    3.005,   3.020] 

3. Solve the following initial value problem by Picard method 

𝑑𝑦

𝑑𝑥
= 𝑥𝑒𝑦      𝑦(0) = 0, compute 𝑦(0.1) 

[Ans.    0.0050125] 

4. Use  Picard method to approximate 𝑦 when 𝑥 = 0.2, given that  

𝑑𝑦

𝑑𝑥
= 𝑥 − 𝑦  with  𝑦(0) = 1.                                                                                                                                                       

[Ans.    0.0837] 

5. Given   
𝑑𝑦

𝑑𝑥
= 1 + 𝑦2  where  𝑦 = 0,  when 𝑥 = 0, find 𝑦 0.2 ,𝑦 0.4 and 𝑦 0.6  

using Runge-Kutta formula of order four. 
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[𝐀𝐧𝐬   𝑦 0.2 = 0.2027, 𝑦 0.4 = 0.4228  and 𝑦 0.6 = 0.6841] 

6. Use classical Runge-Kutta method of fourth order to find the numerical solution at 

𝑥 = 1.4    for 
𝑑𝑦

𝑑𝑥
= 𝑦2 + 𝑥2, 𝑦 1 = 0 . Assume step size ℎ = 0.2 

[𝐀𝐧𝐬   𝑦 1.2 = 0.246326  and 𝑦 1.4 = 0.622751489] 

 

7. Solve the differential equation  
𝑑𝑦

𝑑𝑥
=

2𝑥−1

𝑥2 𝑦 + 1, where 𝑥0= 1 ,𝑦0= 2  ℎ = 0.2. 

Obtain 𝑦 1.2  and 𝑦 1.4  using Runge-Kutta method. 

[𝐀𝐧𝐬   2.658913  and  3.432851] 

  



26 
 

Unit – 12: Numerical Solution of Ordinary Differential Equation - II 

 

Structure 

12.1  Introduction 

12.2  Objectives 

12.3  Picard’s Method 

12.4  Taylor’s Series Method 

12.5  Euler’s Method 

12.6  Modified Euler’s Method 

12.7  Runge’s Method 

12.8  Runge’s Kutta Method 

12.9  Predictor-Corrector Methods 

12.10  Summary 

12.11     Exercise 

 

12.1   Introduction 

 

 In this unit we shall discuss the methods for finding the numerical solution of 

Ordinary Differential Equations having numerical coefficients with given initial conditions to 

any desired degree of accuracy. The solution is obtained step by step through a series of equal 

intervals in the independent variable. In the previous two units, you have seen how a 

complicated or tabulated function call be replaced by an approximating polynomial so that 

the fundamental operations of calculus, differentiation and integration can be performed more 

easily. We shall solve a differential equation, that is, we shall find function which satisfies a 

culmination of the independent variable, dependent variable and its derivatives. In physics, 

engineering, chemistry other disciplines it has become necessary to build mathematical model 

to represent complicated processes. Differential equations are one of the most important 

mathematical tools used modelling problem in the engineering and physical sciences. As it is 

always possible to obtain the analytical solution of differential equations recourse must 

necessarily be to numerical methods for solving differential equations. In this unit, we shall 

Picard’s, Euler's method and the Runge’s Kutta Fourth Order Method. Taylor series method 

to obtain numerical solution of ordinary differential equations (ODEs).  

 

12.2   Objectives 
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After studying this unit, you should be able to 

• Obtain and find the Picard’s Method of differential equations. 

• Obtain and find the Euler’s Method of solution of ordinary differential equations. 

• Obtainand find the Runge’s Kutta Fourth Order Method. 

• Obtain and find the predictor-Corrector Method. 

12.3  Picard’s Method: 

  

Consider the first order differential equation i.e. 

  ( , )
dy

f x y
dx

        … (i) 

 It is required to find that particular solution of (i) which assumes the value 0y  when 

0.x x Integrating (i) between limits, we get 

  
0 0

( , )
y x

y x
dy f x y dx   

 or, 
0

0

[ ] ( , )
x

y

y
x

y f x y dx      

   
0

0 ( , )
x

x
y y f x y dx         … (ii) 

  This is an integral equation equivalent to (i), for it contains the unknown y under 

the integral sign. 

  As a first approximation y, to the solution, we put 0y y  in ( , )f x y  and 

integrate (ii) giving  

  
0

1 0 0( , )
x

x
y y f x y dx    

 For a second approximation 2 ,y  we put 1y y  in ( , )f x y  and integrate (ii), giving 

  
0

2 0 1( , )
x

x
y y f x y dx    

 Similarly, a third approximation is 

  
0

3 0 2( , )
x

x
y y f x y dx    

 Continuing the process, we obtain 4 5, , , ny y y where 
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0

0 1( , )
x

n n
x

y y f x y dx    

 

 NOTE :- 

   Picard’s method is of considerable theoretical value, but can be applied only 

to a limited class of equations in which the successive integrations can be performed easily, 

The method can be extended to simultaneous equations and equations of higher order. 

 

Example.1:  Employ Picard’s method to obtain, correct to four places of decimal, 

solution of the differential equation. 

  2 2dy
x y

dx
   for 0.4,x  given that 

 0y   when 0.x   

Ans. 2 3
y y    

Solution: We have 

  
2 2

0
0 ( )

x

y x y dx    

 First Approximation: Put 0y   in 
2 2,x y  giving 

  

3 3
2

1
0

0
3 3

x
x x x

y x dx
 

   
 

  

 at 10.4, 0.02133x y   

 Second Approximation: Put 

3

3

x
y   in 

2 2x y  giving 

  

6 3 7 3 7
2

2
0

0
9 3 63 3 63

x
x x x x x x

y x dx
   

        
   

  

 at 20.4, 0.02136x y   

 Third Approximation: Put 

3 7

3 63

x x
y    in 

2 2x y  giving  

  
6 14 10

2

3
0

2

9 3969 189

x x x x
y x dx

 
    

 
  

  

3 7 15 112

3 63 59535 2079

x x x x
     
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 at 30.4, 0.02136x y   

 Thus the solution of the differential equation at 0.4x   is 0.0214y   

Example.2:  Obtain Picard’s second approximate solution of the initial value problem 

  
2

2
' , (0) 0

1

x
y y

y
 


 

Solution: We have 

  

2

20
0

1

x x
y dx

y
 

  

 First Approximation: We put 0y   in 
2 2( 1)x y   giving 

  

3 3
2

1
0

0

0
3 3

x
x x x

y x dx
 

    
 

  

 Second Approximation: We put 

3

3

x
y   in 

2

2( 1)

x

y 
 giving 

  

2 2

2 6 60 0
0 9

9
1

9

x xx x
y dx dx

x x
  




   

     Let 3x u 
23x dx du   

  

3
3

1

2 2 20
0

9 1
3 tan

3 3 3 3

x
x du u

y
u

 
      
  

  
3

1 1tan tan 0
3

x  
  

 
 

  
3

1tan
3

x  
  

 
 

  

3 5
3 3 31 1

3 3 3 5 3

x x x   
      

   
 

  

3 9 15

3 81 1215

x x x
     

Example.3:   Using Picard’s process to approximate y when 0.1 and 0.2x   

  ,
dy

y x
dx

  given that 1y   when 0.x   

 Check your answer by finding the exact particular solution. 

Solution: We have 
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0

1 ( )
x

y y x dx    

 First Approximation: We put 1y   in ,y x  giving  

 Solution: 

2

1
0

1 (1 ) 1
2

x x
y x dx x       

 Second Approximation: We put 

2

1
2

x
y x    in ,y x  giving  

  
2 2 3

2
0

1 1 1
2 2 6

x x x x
y x x dx x

 
         

 
  

 Third Approximation: We put 

3
21

6

x
y x x     in ,y x  giving  

  
3 3 4

2 2

3
0

1 1 1
6 3 24

x x x x
y x x x dx x x

 
           

 
  

 Fourth Approximation: We put 

3 4
21

3 24

x x
y x x      in ,y x  

  
3 4 3 4 5

2 2

4
0

1 1 1
3 24 3 12 120

x x x x x x
y x x x dx x x

 
             

 
  

 Fifth Approximation: We put 

3 4 5
21

3 12 120

x x x
y x x       in ,y x  giving  

  
3 4 5

2

5
0

1 1
3 12 120

x x x x
y x x x dx

 
        

 
  

  

3 4 5 6
21

3 12 120 720

x x x x
x x           … (i) 

 

 Now, given equation is 

    
dy

y x
dx

   so that . .
dx xI F e e

    

 Its solution is 

  x xy e xe x C    
x x xye xe e C        

   1 xy x Ce     

 Since 1y   when 0x   

  1 1C    2C    

  2 1xy e x    
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2 3 4 5 6

2 1 1
2! 3! 4! 5! 6!

x x x x x
x x

 
          

 
  

  

3 4 5 6
21

3 12 60 360

x x x x
x x            … (ii) 

 From (i) and (ii), it is clear that, exact particular solution is upto the term i 5.x  

  

3 4 5
21

3 12 60

x x x
y x x       is the required solution. 

Example.4:   Find the value of y for 0.1x   by Picard’s method, given that 

, (0) 1
dy y x

y
dx y x


 


 

 

Solution: We have 

  
0

1
x y x

y dx
y x


 

  

 First Approximation:  We put 1y   in 
y x

y x




 giving  

  
0 0

1 2
1 1 1

1 1

x xx
y dx dx

x x

  
      

  
   

   
0

1 2log(1 ) 1 2log(1 )
x

x x x x          

 Second Approximation:  Put 1 2log(1 )y x x     in ,
y x

y x




 giving 

  
2

0

1 2log(1 )
1

1 2log(1 )

x x x x
y dx

x x x

    
   

    
  

  
0

2
1 1

1 2log(1 )

x x
dx

x

 
   

  
  which is very difficult to integrate. 

 Hence we use the first approximation and taking 0.1,x   we obtain 

  1 (0.1) 2log(1 0.1)y      

  0.9 2log1 1    

  0.9828  

Example.5:   Find an approximate value of y when 0.1,x  if 2dy
x y

dx
   and 1y   at 

0,x  using Picard’s method. 

Solution: We have 
2

0
1 ( )

x

y x y dx    



32 
 

 First Approximation: Put 1y   in 
2,x y  giving  

  

2

1
0

1 ( 1) 1
2

x x
y x dx x       

 at 10.1; 0.905x y   

 Second Approximation: Put 

2

1
2

x
y x    in 

2,x y  giving  

  
4

2 2 3

2
0

1 1
4

x x
y x x x x x dx

 
        

 
  

  
4

2 3

0
1 1 2 2

4

x x
x x x dx

 
       

 
  

  

3 4 5
21 2

3 4 5

x x x
x x       

 at 20.1; 0.9094x y 
 

 

12.4 Taylor’s Series Method  

 Consider the first order equation ( , )
dy

f x y
dx

    … (i) 

 Differentiating (i), we have with the initial condition 

  

2

2

d y f f f

dx x y x

  
  
  

 

  i.e. " 'x yy f f f        … (ii) 

 Differentiating this successively, we can get ,III IVy y  etc. Putting 0x x  and 0,y y the 

values of can be obtained, hence the Taylor’s series 

  

2 3

0 0
0 0 0 0 0

( ) ( )
( )( ') ( ") ( ''')

2! 3!

x x x x
y y x x y y y

 
       … (iii) 

 gives the values of y for every value of x for which (3) converges. 

 On finding the value 1y  for 1x x  from (3), ', "y y  etc. can be evaluated at 1x x  

by means of (1), (2) etc. Then y can be expanded about 1.x x  In this way, the solution can 

be extended beyond the range of convergence of series (3). 

 

Example.1:  Find the Taylor’s series method, the values of y at 0.1x   and 0.2x   to   
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five places of decimals from 2 1, (0) 1.
dy

x y y
dx

    

Solution: We have, 0( ) 1y   

 and 
2' 1y x y 

                 i.e  0( ') 1y    

  Differentiating successively and substituting, we get 

   
2 ' 2IIy x y xy  i.e 0( ") 0y   

   
2 " 2 ' 2 ' 2IIIy x y xy xy y   

        i.e   0 0( ''') 2( ) 2y y   

   
2 ''' 2 " 4 " 4 ' 2 'IVy x y xy xy y y    

       i.e      0 0( ''') 6( ') 6y y    

 and so on 

 Putting these values in the Taylor’s series, we have 

  

2 3 4

0 0 0 0 0( ) ( ) ( ) ( ) ( )
2! 3! 4!

I II III IVx x x
y y x y y y y       

  

2 3 4

1 ( 1) (0) (2) ( 6)
2! 3! 4!

x x x
x         

  

3 4

1
3 4

x x
x     

  (0.1) 0.90031y   and (0.2) 0.80264y   

Example.2:  Using Taylor’s series method, compute (0.2)y  to three places of decimal 

from 1 2
dy

xy
dx

   given that (0) 0.y   

Solution: Here 0( ) 0y   

 We have  

   1 2Iy xy 
  i.e 0( ) 1Iy     0[ ( ) 0]y   

  2 2II Iy xy y  
    i.e 0 0( ) 2( ) 0IIy y    

  2 2 2III II I Iy xy y y   
  i.e  0 0( ) 4( ) 4III Iy y     

   2 2 4IV III II IIy xy y y   
 i.e   0 0( ) 6( ) 0IV IIy y    

 Subs. these values in Taylor’s series, we get 

  

2 3

0 0( ) ( ) (0) (0)
2! 3!

II II IIIx x
y y x y y y      
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2 3

0 (1) (0) ( 4) 0
2! 3!

x x
x        

  3 52 32

3 5!
x x x    

  (0.2) 0.195y   

 

Example.3:   Evaluate (0.1)y  correct to six places of decimals by Taylor’s series method 

if ( )y x  satisfies ' 1, (0) 1y xy y    

Solution: Here 0( ) 1y   means 0 0x   and 0 1y   

 We have 

   1Iy xy 
     i.e     0( ) 1Iy   

  
II Iy xy y 

     i.e    0 0( ) ( ) 1IIy y   

  
III II I Iy xy y y  

       i.e     0 0( ) 2( ) 2(1) 2III Iy y    

  2IV III II IIy xy y y  
     i.e      0 0( ) 3( ) 3(1) 3IV IIy y    

  Subs. these values in Taylor’s series i.e 

   

2 3

0 0
0 0 0 0 0

( ) ( )
( )( ) ( ) ( )

2! 3!

I II IIIx x x x
y y x x y y y

 
       

   

2 3

0 0 0 0( ) ( ) ( )
2! 3!

I II IIIx x
y x y y y       0[ 0]x   

   

2 3 4

1 (1) (1) (2) (3)
2! 3! 4!

x x x
x      

   

2 3 4

1
2 3 8

x x x
x       

  (0.1) 1.105345y   

 

Example.4:  Solve 
2 , (0) 1Iy y x y    using Taylor’s series method and compute 

(0.1) 1y   and (0.2).y  

  

Solution: Here 0( ) 1y   

 We have 

  
2Iy y x  i.e

2

0 0( ) ( ) 0 1Iy y    
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  2 1II Iy yy 
  i.e  0 0 0( ) 2( ) ( ) 1 3II Iy y y    

  
22 2( )III II Iy yy y 
    i.e    

2

0 0 0 0( ) 2( ) ( ) 2( ) 2(1)(3) 2III II Iy y y y    8  

  2 2 4IV III I II I IIy yy y y y y    

  0 0 0 0 0( ) 2( ) ( ) 6( ) ( )IV III I IIy y y y y   

   2(1)(8) 6(1)(3)   

   34  

 Subs. These values in Taylor’s series, we have 

  

2 3

0 0 0 0( ) ( ) ( ) ( )
2! 3!

I II IIx x
y y x y y y     

  

2 3 4

01 (1) (3) (8) (34)
2! 3! 4!

x x x
x      

  

2
3 43 4 17

1
2 3 12

x
x x x      

  (0.1) 1.11647y   

  (0.2) 1.27293y   

Example.5:   Find an approximate value of y when 0.1,x  if 2dy
x y

dx
   and 1y   at 

0,x  using Taylor’s series upto 4 decimal places. 

 

Solution: Here 0( ) 1y   and we have 

  
2Iy x y  i.e

2

0 0( ) ( ) 1Iy y     

  1 2II Iy yy  i.e 0 0 0( ) 1 2( ) ( ) 1 2(1)( 1) 3II Iy y y       

  
22 2( )III II Iy yy y   i.e

2

0 0 0 0( ) 2( ) ( ) 2( )III II Iy y y y    

  
22(1)(3) 2( 1) 6 2 8          

 and so on. 

 Subs. these values in Taylor’s series, we get 

  

2 3

0 0 0 0( ) ( ) ( ) ( )
2! 3!

I II IIIx x
y y x y y y      

  

2 3

1 ( 1) (3) ( 8)
2! 3!

x x
x        
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  2 33 4
1

2 3
x x x      

  (0.1) 0.91367y   or 0.9137 

 

12.5      Euler’s Method: 

  

 Consider the ordinary differential equation 

  ( , )
dy

f x y
dx

        … (i) 

 With the initial condition 0y y  at 0.x x  

  Suppose, we have to find the value my  of y corresponding to the value mx  of 

x, For this we divide the interval 0mx x  into ' 'm  equal parts each of width h so that 

0 .mx x mh   Let 1 2 1, , , mx x x   be the intermediate points and corresponding values of y be 

denoted by 1 2 1, , , .my y y   

  In this method we assume the property that in small interval a curve is 

approximately a straight line. Therefore, at the point 0 0( , ),x y the curve is approximated by 

the tangent at the point 0 0( , ).x y  We know, that the equation of tangent line at the point 

0 0( , )x y  is given by 

  

0 0

0 0

( , )

( )
x y

dy
y y x x

dx

 
    

 
 

   0 0 0 0( , ) ( )y y f x y x x     [using (i)] 

   0 0 0 0( ) ( , )y y x x f x y        … (ii) 

  The value 1y  of y at 1,x x from (ii) 

   1 0 1 0 0 0( ) ( , )y y x x f x y    

    1 0 0 0( , )y y h f x y        … (iii)

 1 0[ ]x x h   

 With the same arguments, the approximate value 2y  of y at 2x x  is given by 

   2 1 1 1( , )y y h f x y   

 In general, i.e., the approximate value my of y at 0mx x x mh    is given by 



37 
 

   1 1 1( , )m m m my y h f x y   
 

 

Example.1:  Use Euler’s method to find (0.4)y from the differential equation. 

, (0) 1.
dy

xy y
dx

   Take for each step 0.1.h   

Solution: Given 
dy

xy
dx

  ( , )f x y xy   

 Here, 

  0 00, 1x y   and 0.1h   

  0.1,h  Therefore, interval 0 to 0.4 is broken into four steps. 

 First approximation of y at 1 0.1x  : 

  1 0 0 0( , ) 1 0.1 (0,1) 1y y hf x y f      

 Second approximation : of y at 2 0.2x  : 

  2 1 1 1( , ) 1 0.1 (0.1,1)y y hf x y f      1 0[ ]x x h   

  1 0.1(0.1) 1.01    

 Third approximation of y at 3 0.3x  : 

  3 2 2 2( , ) 1.01 0.1 (0.2,1.01)y y hf x y f     2 0[ 2 ]x x h   

  1.01 0.1(0.202) 1.0302    

 Fourth approximation of y at 4 0.4x  : 

  4 3 3 3( , )y y hf x y    

  1.0302 0.1 (0.3,1.0302)f     3 0[ 3 ]x x h   

  1.0302 0.030906   

  1.061106  

Example.2:   Solve by Euler’s method the following differential equation for 0.1x   

correct to four decimal places in five steps  

  
dy y x

dx y x





 

 with the initial condition (0) 1.y   

Solution: Given, 
dy y x

dx y x





 ( , )

y x
f x y

y x





 and 0 00, 1.x y   

 The range 0 to 0.1 is divided into five steps. 
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  
0.1 0

0.02
5

h


      0x x
h

h

 
 

 
  

 First approximation: 

  1 0 0 0( , ) 1 0.02 (0,1)y y h f x y f     

  
1 0

1 0.02 1.02
1 0

 
    

 

 Second approximation: 

  2 1 1 1( , ) 1.02 0.02 (0.02,1.02)y y h f x y f     

  
1.02 0.02 1

1.02 0.02 1.02 0.02
1.02 0.02 1.04

   
         

 

  1.02 0.0192 1.0392      1 0[ ]x x h   

 Third approximation: 

  3 2 2 2( , ) 1.0392 0.02 (0.04,1.0392)y y h f x y f     

  
1.0392 0.04 0.9992

1.0392 0.02 1.0392 0.02
1.0392 0.04 1.0792

   
         

 

  1.0392 0.0185 1.0577      2 0[ 2 ]x x h   

 Fourth approximation: 

  4 3 3 3( , ) 1.0577 0.02 (0.06,1.0577)y y h f x y f     

  
1.0577 0.06 0.9977

1.0577 0.02 1.0577 0.02
1.0577 0.06 1.1177

   
         

 

  1.0577 0.0178 1.0755      

 Fifth approximation: 

  5 4 4 4( , ) 1.0755 0.02 (0.08,1.0755)y y h f x y f     

  
1.0755 0.08 0.9955

1.0755 0.02 1.0755 0.02
1.0755 0.08 1.1555

   
         

 

  1.0755 0.0172 1.0927     

 Hence, 

  1.0927y   at 0.1x   

Example.3:   Apply Euler’s method solve for y at 0.6x   from 1 2 , (0) 0
dy

xy y
dx

    

take 0.2.h   

Solution: Here, 
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  0( , ) 1 2 , 0f x y xy x    and 0 0, 0.2y h   

 We know that 

  0 0.6 0
3

0.2

x x
m

h

 
    

  interval 0 to 0.6 is broken into 3 steps. 

 First approximation: 

  1 0 0 0( , ) 0 0.2 (0,0)y y h f x y f     

   0.2 1 2(0)(0) 0.2     

 Second approximation: 

  2 0 1 1( , ) 0.2 0.2 (0.2,0.2)y y h f x y f     

   0.2 0.2 1 2(0.2)(0.2)    

   0.2 0.2 1 0.08 0.2 0.2(0.92)      

  0.384  

 Third approximation: 

  0 2 2 2( , )y y h f x y   

  0.384 0.2 (0.4,0.384)f   

   0.384 0.2 1 2(0.4)(0.384)    

   0.384 0.2 1 0.3072    

  0.384 0.13856   

  0.52256  

 Thus, (0.6) 0.52256y   

 

12.6       Modified Euler’s Method: 

  

Consider the differential equation 

  ( , )
dy

f x y
dx

  

 with the initial condition 0y y  at 0.x x  

 Now we introduce a new notation 
(1)

1y  defined by  

  
(1)

1 0 0 0( , ).y y h f x y   
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 Here, 
(1)

1y  is nothing but the value 1y  of y for 1x x  obtained by Euler’s method. 

 In other words
(1)

1y  is the first approximation of y at 1.x x  

 Then by Modified Euler’s method, we have 

  (1)

1 0 0 0 1 1( , ) ( , )
2

m

h
y y f x y f x y

    
 

Example.1:  Use modified Euler’s method to compute y for 0.05,x  Given that 

dy
x y

dx
   with initial conditions 0 00, 1x y   result correct upto three decimal 

places. 

Solution: Here ( , ),
dy

f x y
dx

  where ( , )f x y x y   with initial conditions 0 00, 1.x y   

Take 0.05 0 0.05h     

 Let 1y  be the value of y at 1 0 0 0.5 0.05x x x h       and let 
(1)

1y  be the first 

approximation of 1.y  

 From Euler’s method, we have 

  
(1)

1 0 0 0( , ) 1 0.05 (0,1) 1 0.05(1)y y h f x y f       

  1.05  

 Now, we shall improve this value by Modified Euler’s method 

  1

1 0 0 1 1( , ) ( , )
2

m m m m

h
y y f x y f x y  

    
    … (i) 

 For the second approximation of 1,y  we put 1 00,m x x h   i.e 1 0 0.05 0.05x     in 

(i) we get 

  (2) (1)

1 0 0 0 1 1( , ) ( , )
2

h
y y f x y f x y    

 

   
0.05

1 (0,1) (0.05,1.05)
2

f f     

   1 0.025 0 1 0.05 1.05 1.0525       

 Third approximation to 1 :y  

   (3)

1 0 (0,1) (0.05,1.0525) 1.0526
2

h
y y f f     

 Fourth approximation to 1 :y  

  (4) (3)

1 0 0 0 1 1( , ) ( , )
2

h
y y f x y f x y    

 

   
0.05

1 (0,1) (0.05,1.0526) 1.0526
2

f f     
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 Clearly, 
(3) (4)

1 1 ,y y  Thus 1.052y   at 0.05.x   

Example.2:   Using modified Euler’s method, obtain a solution of the equation 

1 ( , )
dy

y f x y
dx

   with (0) 0y  in the range 0 0.3x   by taking 0.1.h   

Solution: Here 1
dy

y
dx

   ( , ) 1f x y y   with (0) 0y  i.e 0 00; 0, 0.1x y h    

 Let 1y  be the value of y at 1 0 0 0.1 0.1x x x h       

 Let 
(1)

1y  be the first approximation of 1.y  

 From Euler’s method, we have  

  
(1)

1 0 0 0( , ) 0 0.1(1 0) 0.1y y h f x y       

 By Euler’s modified method: 

  (1)

1 1 1( , ) ( , )
2

m m m m m m

h
y y f x y f x y  

    
 

 For 2
nd

 approximate of 1,y  we put 1 00; 0 0.1 0.1m x x h       

  (2) (1)

1 0 0 0 1 1

0.1
( , ) ( , )

2
y y f x y f x y    

 

  (1)

0 10 0.05 1 1y y        

  0.05[2 0 0.1] 0.095     

 Third approximation to 1y  : 

  (3) (2)

1 0 0 0 1 1( , ) ( , )
2

h
y y f x y f x y    

 

   0 (0,0) (0.1,0.095)
2

h
y f f    

   
0.1

0 1 0 1 0.095 0.09525
2

       

 Fourth approximation to 1y  : 

  (4) (3)

1 0 0 0 1 1( , ) ( , )
2

h
y y f x y f x y    

 

   
0.1

0 (0,0) (0.1,0.09525)
2

f f    

   0.05 1 0 1 0.09525 0.09523      

 Clearly, 
(3) (4)

1 1 ,y y  Thus 0.0952y   at 0.1x   

 Now we shall compute the value 2y  of y at 0.2.x   
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 First approximation to 2y  : 

  
(1)

2 1 1 1( , ) 0.0952 0.1 (0.1,0.0952)y y h f x y f     

  0.0952 0.1[1 0.0952] 0.18568     

 Second approximation to 2y  : 

  (2) (1)

2 1 1 1 2 2( , ) ( , )
2

h
y y f x y f x y    

 

   
0.1

0.0952 (0.1,0.0952) (0.2,0.18568)
2

f f    

   0.0952 0.05 1 0.0952 1 0.18568 0.18116       

 Third approximation to 2y  : 

  (3) (2)

2 1 1 1 2 2( , ) ( , )
2

h
y y f x y f x y    

 

   0.0952 0.05 (0.1,0.0952) (0.2,0.18116)f f    

   0.0952 0.05 1 0.0952 1 0.18116 0.18138       

 Fourth approximation to 2y  : 

  (4) (3)

2 1 1 1 2 2( , ) ( , )
2

h
y y f x y f x y    

 

   0.0952 0.05 (0.1,0.0952) (0.2,0.18138)f f    

   0.0952 0.05 1 0.0952 1 0.18138 0.18137       

 Clearly, 
(3) (4)

2 2 ,y y  Thus 0.1813y   at 0.2x   

 Now we shall compute the value 3y  of y at 0.3.x   

 From Euler’s method, we have 

  
(1)

3 2 2 2( , ) 0.1813 0.1 (0.2,0.1813)y y h f x y f     

  0.1813 0.1(1 0.1813) 0.26317     

 Now by Modified Euler’s method, we have 

  (1)

1 1 1( , ) ( , )
2

m m m m m m

h
y y f x y f x y  

    
 

 For 1m   

  (2) (1)

3 2 2 2 3 3

0.1
( , ) ( , )

2
y y f x y f x y    

 

   0.1813 0.05 (0.2,0.1813) (0.3,0.26317)f f    
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  0.1813 0.05[1 0.1813 1 0.26317] 0.25908       

 Third approximation to 3 :y  

   (3)

3 0.1813 0.05 2 0.1813 0.25908 0.25928y       

 Fourth approximation to 3 :y  

   (4)

3 0.1813 0.05 2 0.1813 0.25928 0.25927y       

 Clearly, 
(3) (4)

3 3 ,y y  Thus 0.25927y   at 0.3x   

Example.3:  Using modified Euler’s method solve for y at 0.1x   an 0.2 from 

2 2, (0) 1.
dy

x y y
dx

    

Solution: Here 2 2dy
x y

dx
  

2 2( , )f x y x y   with 0 00, 1.x y   

 Let 1 0.1x   and 2 0.2,x  Let 1y  and 2y  be the values of y at 1x x  and 2x x  

respectively. 

  
(1)

1 0 0 0[ ( , )]y y h f x y    [Here 0.1 0h     0.1] 

  0 0.1 (0,1)y f   

  
2

0 0.1[0 1 ] 1.1y     

 Now by modified Euler’s method, the second approximation to 1y  is given by  

  (2) (1)

1 0 0 0 1 1( , ) ( , )
2

h
y y f x y f x y    

  

   
0.1

1 (0,1) (0.1,1.1)
2

f f    

  2 21 0.05 1 (0.1) (1.1) 1.111        

 3
rd

Approximation : 

  (3) (2)

1 0 0 0 1 1( , ) ( , )
2

h
y y f x y f x y    

  

   1 0.05 (0,1) (0.1,1.111)f f    

  2 21 0.05 1 (0.1) (1.111) 1.1122        

 4
th

Approximation : 

  (4) (3)

1 0 0 0 1 1( , ) ( , )
2

h
y y f x y f x y    

  

   1 0.05 (0,1) (0.1,1.1122)f f    
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  2 21 0.05 1 (0.1) (1.1122) 1.1123        

 5
th 

Approximation : 

  (5) (4)

1 0 0 0 1 1( , ) ( , )
2

h
y y f x y f x y    

  

   1 0.05 (0,1) (0.1,1.1123)f f    

  2 21 0.05 1 (0.1) (1.1123)       

  1.1123  

 Since 
(4) (5)

1 1y y  and so the value of y at 0.1x   is 1.1123 

 To compute 2 :y  We have 1 1 20.1, 1.1123, 0.2x y x    

 I Approximation: 

  
(1)

2 1 1 1( , ) 1.1123 0.1 (0.1,1.1123)y y h f x y f     

  2 21.1123 0.1 (0.1) (1.1123) 1.2370       

 By modified Euler’s method, the second approximation to 2y  is given by 

  (2) (1)

2 1 1 1 2 2( , ) ( , )
2

h
y y f x y f x y    

 

   
0.1

1.1123 (0.1,1.1123) (0.2,1.2370)
2

f f    

  2 2 2 21.1123 0.05 (0.1) (1.1123) (0.2) (1.2370) 1.2532         

  (3) (2)

2 1 1 1 2 2( , ) ( , )
2

h
y y x y f x y    

 

  2 2 2 21.1123 0.05 (0.1) (1.1123) (0.2) (1.2552) 1.2552         

  (4) 2 2 2 2

2 1.1123 0.05 (0.1) (1.1123) (0.2) (1.2552) 1.2554y          

 Since 
(3) (4)

2 2 ,y y we can say that the value of y at 0.2x  is 1.255 

 

12.7  Runge’s Method: 

  

 Consider the differential equation 

  
0 0( , ), ( )

dy
f x y y x y

dx
        … (i) 

 Working Rule to solve equation (i) by Runge’s method: 

 Calculate successively  
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  1 0 0( , )k h f x y  

  1
2 0 0,

2 2

h k
k h f x y

 
   

 
 

  0 0 1' [ , ]k h f x h y k    and  

  3 0 0[ , ']k h f x h y k    

 Finally compute, 

  
1 2 3

1
( 4 )

6
k k k k    

 Which gives a sufficiently accurate value of k and also of 

  0y y k   

Example.1:  Apply Runge’s method to find an approximate value of y when 0.2x   

given that 

 
dy

x y
dx

   and 1y   when 0.x   

Solution: Here ( , )f x y x y   

 and 0 00, 1, 0.2x y h    

  0 0( , ) (0,1) 0 1 1f x y f     

  1 0 0( , ) 0.2(1) 0.2k h f x y    

  
1

2 0 0

0.2 0.2
, 0.2 0 ,1

2 2 2 2

h k
k h f x y f

   
        

   
 

  0.2 (0.1,1.1) 0.2[0.1 1.1] 0.2(1.2) 0.24f      

  0 0 1' ( , ) 0.2 [0 0.2,1 0.2] 0.2 (0.2,1.2)k h f x h y k f f        

  0.2[0.2 1.2] 0.2(1.4) 0.28     

  3 0 0( , ') 0.2 [0 0.2,1 0.28]k h f x h y k f       

  0.2 (0.2,1.28) 0.2[0.2 1.28] 0.2(1.48)f     

  0.296  

  
1 2 3

1 1
( 4 ) [0.2 4(0.24) 6.296]

6 6
k k k k         

  0.2426  

 Hence the required approximate value of  

  0y y k   
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  1 0.2426   

  1.2426  

Example.2:  Use Runge’s method to approximate y when 1.1,x   given that 1.2y   

when 1x   and 23 .
dy

x y
dx

   

Solution: Here we have 0 01, 1.2, 0.1x y h    

  
2

0 0( , ) (1,1.2) 3(1) (1.2) 4.44f x y f     

  1 0 0( , ) 0.1 4.44 0.444k h f x y     

  
1

2 0 0

0.1 0.444
, 0.1 1 ,1.2

2 2 2 2

h k
k h f x y f

   
        

   
 

  0.1 (1.05,1.422) 0.5172f   

  0 0 1' ( , ) (1 0.1,1.2 0.444)k h f x h y k h f       

  0.1 (1.1,1.644) 0.6003f   

  3 0 0( , ') 0.1 (1 0.1,1.2 0.6003)k h f x h y k f       

  0.1 (1.1,1.8003) 0.6541f   

   1 2 3

1 1
( 4 ) 0.444 4(0.5172) 0.6541

6 6
k k k k       

  0.5278  

  0 1.2 0.5278y y k     

  1.7278  

12.8  Runge-Kutta Method  

 

Fourth Order R-K Method:  

 This method is most commonly used and is often referred to as Runge-Kutta 

method only. 

 Working Rule:  For finding the increment k of y corresponding to an increment 

h of x by Runge-Kutta Method from 

  
0 0( , ); ( )

dy
f x y y x y

dx
   

 is as follows: 

Calculate successively 

  1 0 0( , )k h f x y  
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  1
2 0 0,

2 2

h k
k h f x y

 
   

 
 

  
2

3 0 0,
2 2

h k
k h f x y

 
   

 
 

  4 0 0 3( , )k h f x h y k    

 Finally compute: - 

  
1 2 3 4

1
( 2 2 )

6
k k k k k     

 Which gives the required approximate value as  

  0y y k   

 Note: -k is the weighted mean of 1 2 3, ,k k k  and 4.k  

Obs: - One of the advantages of these methods is that the operation is identical whether the 

differential equation is linear or non-linear. 

 

Example.1:  Apply Runge-Kutta fourth order method to find an approximate value of y 

when 0.2x  given that 
dy

x y
dx

   and 1y   when 0.x   

Solution: Here ( , )f x y x y   and 0 00, 1, 0.2.x y h    

  1 0 0( , ) 0.2 (0,1) 0.2k h f x y f    

  
1

2 0 0

0.2 0.2
, 0.2 0 ,1

2 2 2 2

h k
k h f x y f

   
        

   
 

  0.2 (0.1,1.1) 0.2400f   

  
2

3 0 0

0.2 0.24
, 0.2 0 ,1

2 2 2 2

h k
k h f x y f

   
        

   
 

  0.2 (0.1,1.12) 0.244f   

  4 0 0 3( , ) 0.2 (0 0.2,1 0.244)k h f x h y k f       

  0.2 (0.2,1.244) 0.2888f   

     1 1 2 3 4

1 1
2 2 0.2 0.48 0.488 0.2888

6 6
k k k k k         

  
1

(1.4568) 0.2428
6

   

 Hence the required approximate value of y is  

  0 1 0.2428y y k     
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  1.2428  

Example.2:  Using Runge-Kutta method of fourth order, solve 
2 2

2 2

dy y x

dx y x





 with 

(0) 1y   and 0.2,0.4.x   

Solution: Here 
2 2

0 02 2
( , ) , 0, 1, 0.2

y x
f x y x y h

y x


   


 

  1 0 0( , ) 0.2 (0,1) 0.2k h f x y f    

  
1

2 0 0

0.2 0.2
, 0.2 0 ,1

2 2 2 2

h k
k h f x y f

   
        

   
 

  0.2 (0.1,1.1) 0.19672f   

  
2

3 0 0

0.2 0.19672
, 0.2 0 ,1

2 2 2 2

h k
k h f x y f

   
        

   
 

  0.2 (0.1,1.09836) 0.1967f   

  4 0 0 3( , ) 0.2 (0 0.2,1 0.1967)k h f x h y k f       

  0.2 (0.2,1.1967) 0.1891f   

   1 2 3 4

1
2 2

6
k k k k k     

   
1

0.2 2(0.19672) 2(0.1967) 0.1891
6

     

  0.19599  

  0(0.2) 1 0.19599y y k     

   1.196  

 To find 1 0(0.4) 0 0.2y x x h      

 Here, 1 10.2, 1.196, 0.2x y h    

  1 1 1( , ) 0.2 (0.2,1.196) 0.1891k h f x y f    

  
1

2 1 1

0.2 0.1891
, 0.2 0.2 ,1.196

2 2 2 2

h k
k h f x y f

   
        

   
 

  0.2 (0.3,1.2906) 0.1795f   

  
2

3 1 1

0.2 0.1795
, 0.2 0.2 ,1.196

2 2 2 2

h k
k h f x y f

   
        

   
 

  0.2 (0.3,1.2858) 0.1793f   

  4 1 1 3( , ) 0.2 (0.2 0.2,1.196 0.1793)k h f x h y k f       
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  0.2 (0.4,1.3753) 0.1688f   

   1 2 3 4

1
2 2

6
k k k k k     

   
1

0.1891 2(0.1795) 2(0.1793) 0.1688 0.1792
6

      

 Hence,  

  1(0.4)y y k   

   1.196 0.1792   

   1.3752  

Example.3:  Apply Runge-Kutta method to find approximate value of y for 0.2x   in 

steps of 0.1, if 0.1,
dy

dx
 if 2,

dy
x y

dx
  given that 1y   where 0.x   

Solution: Given 
2( , )f x y x y   

 Here, 0 00.1, 0, 1h x y    

  1 0 0( , ) 0.1 (0,1) 0.1k h f x y f    

  
1

2 0 0

0.1 0.1
, ,1 0.1 (0.05,1.05)

2 2 2 2

h k
k h f x y h f f

   
        

   
 

  0.1152  

  
2

3 0 0

0.1 0.1 0.1 0.1152
, ,1 0 ,1

2 2 2 2 2 2

h k
k h f x y h f h f

     
            

     
 

  0.1 (0.05 1.0576) 0.1168f    

  4 0 0 3

0.1 0.1
( , ) ,1 0.1 (0 0.1,1 0.1168)

2 2
k h f x h y k h f f

 
        

 
 

  0.1 (0.1 1.1168) 0.1347f    

   1 2 3 4

1
2 2

6
k k k k k     

   
1

0.1 0.2304 0.2336 0.1347 0.1165
6

      

 giving, 0(0.1) 1 0.1165 1.1165y y k      

 To find (0.2)y : 

 We know that  

  1 0 0 0.1 0.1x x h      

  1 11.65, 0.1y h   
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  1 1 1( , ) 0.1 (0.1,1.1165) 0.1347k h f x y f    

  1
2 1 1

0.1 0.1347
, 0.1 0.1 ,1.1165

2 2 2 2

h k
k h f x k f

   
        

   
 

  0.1 (0.15,1.1838) 0.1551f   

  2
3 1 1

0.1 0.1551
, 0.1 0.1 ,1.1165

2 2 2 2

h k
k h f x y f

   
        

   
 

  0.1 (0.15,1.194) 0.1576f   

  4 1 1 3( , ) 0.1 (0.1 0.1,1.1165 0.1576)k h f x h y k f       

  0.1 (0.2,1.1576) 0.1823f   

     1 2 3 4

1 1
2 2 0.1347 0.3102 0.3152 0.1823

6 6
k k k k k         

  0.1571  

 Hence 1(0.2) 1.1165 0.1571 1.2736y y k      

Example.4:  Using Runge-Kutta method of order 4, compute (0.2)y  and (0.4)y  from 

2 210 , (0) 1
dy

x y y
dx

    taking 0.1.h   

Solution: We have, 

2 2

10

dy x y

dx


  so 

2 2

( , )
10

x y
f x y


  

 Here, 0 00, 1x y   and 0.1h   

  1 0 0( , ) 0.1 (0,1) 0.01k h f x y f    

  
1

2 0 0

0.1 0.01
, 0.1 ,1 0.1 (0.05,1.005)

2 2 2 2

h k
k h f x y f f

   
        

   
 

  0.0101  

  
2

3 0 0

0.1 0.0101
, 0.1 0 ,1

2 2 2 2

h k
k h f x y f

   
        

   
 

  0.01 (0.05,1.005) 0.0101f   

  4 0 0 3( , ) (0 0.1,1 0.0101)k h f x h y k h f       

  0.01 (0.1,1.0101) 0.0103f   

   1 2 3 4

1
2 2

6
k k k k k     

   
1

0.01 0.0202 0.0202 0.0103 0.0101
6

      

  0(0.1) 1 0.0101 1.0101y y k      
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 Now, 1 0 10 0.1 0.1, 1.0101, 0.1x x h y h        

  1 1 1( , ) 0.1 (0.1,1.0101) 0.203k h f x y f    

  1
2 1 1

0.1 0.203
, 0.1 0.1 ,1.0101

2 2 2 2

h k
k h f x y f

   
        

   
 

  0.1 (0.15,1.1116) 0.1256f   

  
2

3 1 1

0.1 0.1256
, 0.1 0.1 ,1.0101

2 2 2 2

h k
k h f x y f

   
        

   
 

  0.1 (0.15,1.0729) 0.0117f   

  4 1 1 3( , ) 0.1 (0.1 0.1,1.0101 0.0117)k h f x h y k f       

  0.1 (0.2,1.0218) 0.0108f   

   1 2 3 4

1
2 2

6
k k k k k     

   
1

0.203 2(0.1236) 2(0.0117) 0.0108 0.0814
6

      

  1(0.2) 1.0101 0.814 1.0915y y k      

 Now, 2 1 0.2 0.1 0.3x x h      

 

12.9  Predictor-Corrector Methods 

  

 In the predictor-corrector methods, however, four prior values are required for finding 

the value of y at 1.ix   A predictor formula is used to predict the value of y at 1ix   and then a 

corrector formula is applied to improve this value. We now discuss two methods, namely 

Milne’s method and Adams-Bashforth method. 

 

Method I :   Milne’s Method 

 Consider the differential equation of first order ( , )
dy

f x y
dx

  … (i) 

With the initial condition 0y y  when 0.x x  

 In order to solve the differential equation (i) by Milne’s method, we first obtain the 

approximate value of 1ny   by predictor formula and then we improve this value by corrector 

formula. These formulas are as follows : 

  ' ' '

1 3 2 1

4
2 2

3
n n n n n

h
y y y y y        
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 is Milne’s predictor formula and 

  (1) ' ' '

1 1 1 12
3

n n n n n

h
y y y y y        

 is Milne’s corrector formula  

If we put 3n   the Milne’s predictor formula becomes 

  ' ' '

4 0 1 2 3

4
2 2

3

h
y y y y y     and 

Milne’s corrector formula becomes 

  ' ' '

4 2 2 3 44
2

h
y y y y y     

Where h is the interval of differencing. 

Example.1:  Use Milne’s predictor corrector method and find (4.4)y  given that 

25 ' 2 0xy y    and (4) 1, (4.1) 1.0049, (4.2) 1.0097, (4.3) 1.0143.y y y y     

Solution: Here, 

22
' ( , )

5

y
y f x y

x


   and 0 04, 1 and 0.1x y h    so that 1 0x x h   

   1 2 0 3 04.1, 2 4.2, 3 4.3x x x h x x h        and 4 0 4x x h   or 3 4.4x h    

 Given that, 0 0( ) (4) 1y y x y    

   1 1( ) (4.1) 1.0049y y x y    

   2 2( ) (4.2) 1.0097y y x y    

   3 3( ) (4.3) 1.0143y y x y    

   4 4( ) (4.4) ?y y x y    

 Hence,  

  
2 2

' 1
1 1 1

1

2 2 (1.0049)
( , ) 0.0483

5 5(4.1)

y
y f x y

x

 
     

  
2 2

' 2
2 2 2

2

2 2 (1.0097)
( , ) 0.0466

5 5(4.2)

y
y f x y

x

 
     

  
2 2

' 3
3 3 3

3

2 2 (1.0143)
( , ) 0.0451

5 5(4.3)

y
y f x y

x

 
     

 Now using Milne predictor formula, we get 

   ' ' '

4 0 1 2 3

4
2 2

3

h
y y y y y     

   
4(0.1)

1 2(0.0483) (0.0466) 2(0.0451)
3

     
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  1.0186  

 Hence, 
2 2

' 4
4 4 4

4

2 2 (1.0186)
( , ) 0.0437

5 5(4.4)

y
y f x y

x

 
     

 Using Milne’s corrector formula, we get 

   ' ' '

4 2 2 3 44
3

h
y y y y y     

   
0.1

1.0097 0.0466 4(0.0451) 0.0437
3

     

  1.0187  

 Hence 4 4( ) (.4) 1.0187y y x y    

Example.2:  Given 2 22 (1 )
dy

x y
dx

  and (0) 1, (0.1) 1.06, (0.2) 1.12, (0.3) 1.21,y y y y     

evaluate (0.4)y  by Milne’s predictor-corrector method. 

Solution: Here, 2 22 (1 )
dy

x y
dx

   2 21
' (1 ) ( , )

2
y x y f x y     

  0 00, 1x y   and 0.1h   so that 1 0 0.1x x h    

  2 0 3 0 4 02 0.2, 3 0.3, 4 0.4.x x h x x h x x h          

 Given that  

  0 0 1 1( ) (0) 1; ( ) (0.1) 1.06y y x y y y x y       

  2 2 3 3( ) (0.2) 1.12; ( ) (0.3) 1.21y y x y y y x y       

  ' 2 2 2 2

1 1 1

1 1
(1 ) [1 (0.1) ](1) 0.56742

2 2
y x y      

  ' 2 2 2 2

2 2 2

1 1
(1 ) [1 (0.2) ](1.12) 0.65229

2 2
y x y      

  ' 2 2 2 2

3 3 3

1 1
(1 ) [1 (0.3) ](1.21) 0.79793

2 2
y x y      

 Now using Milne’s predictor formula, we get 

   ' ' '

4 0 1 2 3

4
2 2

3

h
y y y y y     

   
4(0.1)

1 2(0.56742) (0.65229) 2(0.79793)
3

     

  1.27712  

 Hence, ' 2 2

4 4 4 4 4

1
( , ) (1 )

2
y f x y x y    

   2 21
1 (0.4) (1.27712) 0.946

2
    
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 Using Milne’s corrector formula, we get 

   ' ' '

4 2 2 3 4
3

h
y y y y y     

   
0.1

1.12 0.65229 4(0.79793) 0.946
3

     

  1.2797  

 Hence, 4 4( ) (0.4) 1.2797y y x y    

Example.3:  Given that  

2(1 ), (1) 1, (1.1) 1.233, (1.2) 1.548, (1.3) 1.979.
dy

x y y y y y
dx

      Evaluate (1.4)y  by 

Milne’s predictor-corrector method. 

Solution: Here, 
2' (1 ) ( , )y x y f x y    and 0 1,x  0 1y  and 0.1h   so that 

1 0 1.1;x x h   2 0 2 1.2;x x h   3 0 3 1.3;x x h   4 0 4 1.4;x x h    

 Given that : 0( ) (1) 1y y x y    

  1 1( ) (1.1) 1.233y y x y    

  2 2( ) (1.2) 1.548y y x y    

  3 3( ) (1.3) 1.979y y x y    

 Hence, 
' 2 2

1 1 1(1 ) (1.1) (1 1.233) 2.70193y x y      

  
' 2 2

2 2 2 2 2( , ) (1 ) (1.2) (1 1.548) 3.66912y f x y x y       

  
' 2 2

3 3 3 3 3( , ) (1 ) (1.3) (1 1.979) 5.03451y f x y x y       

 Now using Milne’s predictor formula, we get 

   ' ' '

4 0 1 2 3

4
2 2

3

h
y y y y y     

   4

4(0.1)
1 2(2.70193) 3.66912 2(5.03451)

3
y      

  2.57383  

 Hence, 
' 2 2

4 4 4 4 4( , ) (1 ) (1.4) (1 2.57383)y f x y x y      

   7.0047  

 Using Milne’s corrector formula, we get 

   ' ' '

4 2 2 3 44
3

h
y y y y y     

   
0.1

1.548 3.66912 4(5.03451) 7.0047
3

     
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  2.575  

 Hence, 4 4( ) (1.4) 2.575y y x y    

Example.4:  Use Milne’s predictor-corrector method to obtain the solution of the 

equation : 

 2dy
x y

dx
   at 0.8x   given that (0) 0, (0.2) 0.0200,y y 

(0.4) 0.0795, (0.6) 0.1762.y y   

Solution: Here 
2' ( , )y x y f x y    and 0 00, 0x y  and 0.2h   so that 1 0 0.2,x x h  

2 0 2 0.4,x x h   3 0 3 0.6,x x h   4 0 4 0.8.x x h    

 Given that 0 0( ) (0) 0y y x y    

   1 1( ) (0.2) 0.0200y y x y    

   2 2( ) (0.4) 0.0795y y x y    

   3 3( ) (0.6) 0.1762.y y x y    Hence 

  
' 2 2

1 1 1 1 1( , ) 0.2 (0.02) 0.1996y f x y x y       

  
' 2 2

2 2 2 2 2( , ) 0.4 (0.0795) 0.3937y f x y x y       

  
' 2 2

3 3 3 3 3( , ) 0.6 (0.1762) 0.5689y f x y x y       

 Now using Milne’s predictor formula, we get 

   ' ' '

4 0 1 2 3

4
2 2

3

h
y y y y y     

   
4(0.2)

0 2(0.1996) 0.3937 2(0.5689)
3

     

  0.30488  

 Hence 
' 2 2

4 4 4 4 4( , ) 0.8 (0.30488)y f x y x y      

  0.70705  

 Using Milne’s corrector formula, we get 

   ' ' '

4 2 2 3 44
3

h
y y y y y     

   
0.2

0.0795 0.3937 4(0.5689) 0.70705
3

     

  0.30459 0.3046   

 Hence, 4 4( ) (0.8) 0.3046y y x y    
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Method II : Adams-Bashforth Method 

Consider the differential equation 

 ( , )
dy

f x y
dx

         … (i) 

With the initial condition 0y y  when 0.x x  

  1 0 0 1 2 355 59 37 9
24

h
y y f f f f        

is known as Adams-Bashforth predictor formula. 

  1 0 1 0 1 29 19 5
24

h
y y f f f f       

is known as Adams-Bashforth corrector formula. 

Example.1:  Given 2dy
x y

dx
   and (0) 0, (0.2) 0.02,y y 

(0.4) 0.0795, (0.6) 0.1762;y y  evaluate (0.8)y  by Adams-Bashforth method. 

Solution: Given 2 ( , )
dy

x y f x y
dx

    ‘say’ consecutive starting values for Adams-

Bashforth method with 0.2h   are given by 
2

3 3 3 3 30, 0, 0 0 0x y f x y            

  
2 2

2 2 2 2 20.2, 0.02, 0.2 (0.02) 0.1996x y f x y            

  
2 2

1 1 1 1 10.4, 0.0795, 0.4 (0.0795) 0.39368x y f x y            

  
2 2

0 0 0 0 00.6, 0.1762, 0.6 (0.1762) 0.56895x y f x y        

 By Adams-Bashforth predictor formula 

   1 0 0 1 2 355 59 37 9
24

h
y y f f f f        

 The value of 1y  at 0.8x   is given by 

   1

0.2
0.1762 55(0.56895 59(0.39368) 37(0.1996) 9(0)

24
y       

  0.30495  

  
2 2

1 1 1 0.8 (0.30495) 0.707f x y      

 By Adams-Bashforth corrector formula, we have  

   1 0 1 0 1 29 19 5
24

h
y y f f f f       

   
0.2

0.1762 9(0.707) 19(0.56895) 5(0.39368) 0.1996
24

      

  0.30457  

  (0.8) 0.30457y   
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Example.2:  Given 2 , (0) 1
dy

x y y
dx

    and the starting values 

(0.1) 0.90516, (0.2) 0.82127,y y  (0.3) 0.74918;y  evaluate (0.4)y  using Adams 

Bashforth method. 

Solution: Here 2 ( , )
dy

x y f x y
dx

    ‘say’.  

 Consecutive starting values for the Adams-Bashforth method for 0.1h  are : 

x y 2( , )f x y x y   

0x   
3 1y   3 1.0000f    

0.1x   
2 0.90516y   2 0.89516f    

0.2x   
1 0.82127y   1 0.78127f    

0.3x   
0 0.74918y   0 0.65918f    

 

 Using Adams Bashforth predictor formula 

   1 0 0 1 2 355 59 37 9
24

h
y y f f f f        

   
0.1

0.74918 55( 0.65918) 59( 0.78127) 37( 0.89516) 9( 1)
24

          

  0.68968  

  
2

1 (0.4) 0.68968 0.52968f      

 Using Adams Bashforth corrector formula 

   1 0 1 0 1 29 19 5
24

h
y y f f f f       

   
0.1

0.74918 9( 0.52968) 19( 0.65918) 5( 0.78127) ( 0.89516)
24

          

  0.68968  

 Hence, (0.4) 0.68968y   

Example.3:  Use Adams Bashforth method to find (0.4)y  given that 
1

2

dy
xy

dx
  and 

(0) 1,y  (0.1) 1.01, (0.2) 1.022, (0.3) 1.023.y y y    

Solution: Given 
1

( , )
2

dy
xy f x y

dx
   ‘say’. 

 Consecutive starting values for the Adams Bashforth method for 0.1h  are : 

x y 1
( , )

2
f x y xy  
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0x   
3 1y   3 0f   

0.1x   
2 1.01y   2 0.0505f    

0.2x   
1 1.022y   1 0.1022f    

0.3x   
0 1.023y   0 0.15345f    

 

 Using Adams Bashforth predictor formula 

 

   1 0 0 1 2 355 59 37 9
24

h
y y f f f f        

   
0.1

1.023 55( 0.15345) 59( 0.1022) 37( 0.0505) 9(0)
24

         

  1.0408  

  
1 1 1

1 1
(0.4)(1.0408) 0.20816

2 2
f x y    

 Now, using Adams Bashforth corrector formula  

   1

1 0 1 0 29 19 5
24

h
y y f f f f

      

   
0.1

1.023 9(0.20816 19( 0.15345) 5( 0.1022) ( 0.0505
24

         

1.041  

 Hence, (0.4) 1.041y   

  

12.10   Summary 

 

In this unit, we have covered the following we shall work with three different 

methods of solving differential equations by numerical approximation. In choosing among 

them there is a trade-off between simplicity and efficiency. Picard’s and Euler’s method is 

relatively simple to understand and to program, for example, but almost hopelessly 

inefficient. The third and final method we shall use, the order fourth method of Runge-Kutta, 

is very efficient, but rather difficult to understand and even to program. The improved Euler’s 

method lies somewhere in between these two on both grounds. In each method one step goes 

from xn to xn+1 = xn + h. The methods differ in how the step from yn to yn+1 is performed. More 

efficient single steps come about at the cost of higher complexity for one step. But for a given 

desired accuracy, the overall savings in time is good. 
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12.11  Exercise 

 

1. Use Picard’s Iteration method for second order differential equation 
𝑑2𝑥

𝑑𝑥2 =

𝑓 𝑥,𝑦  𝑤𝑒ℎ𝑒𝑟𝑒 𝑦 = 𝑦0,
𝑑𝑦

𝑑𝑥
= 𝑧0,𝑤ℎ𝑒𝑛 𝑥 = 𝑥0. 

2. Apply Picard’s method to solve 
𝑑𝑦

𝑑𝑥
= 3𝑒𝑥 + 2𝑦 upto third approximation, given that 

𝑦 = 0,𝑤ℎ𝑒𝑛 𝑥 = 0. 

3. Apply Picard’s method to solve 
𝑑𝑦

𝑑𝑥
= 2 −

𝑦

𝑥
 up to third approximation, given that 

𝑦 = 2,𝑤ℎ𝑒𝑛 𝑥 = 1. 

4. Use Milne’s method to solve 
𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦  with the initial conditions 𝑥0 = 0,𝑦0 =

1 𝑓𝑟𝑜𝑚 𝑥 = 0.20 𝑡𝑜 𝑥 = 0.30. 

5. Use Euler’s method with ℎ = 0.1  to find the solution of the differential equation 
𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦  with the initial condition 𝑥0 = 0,𝑦0 = 1. 

6. Obtain by Euler’s modified method to five consecutive starting values for the 

numerical solution of 
𝑑𝑦

𝑑𝑥
= log10  

𝑥

𝑦
 𝑤𝑖𝑡ℎ 𝑥0 = 20 𝑎𝑛𝑑 𝑦0 = 5 

7. Use Euler’s method with ℎ = 0.1  to find the solution of the differential equation 
𝑑𝑦

𝑑𝑥
= 𝑥2 + 𝑦2 with the initial condition 𝑥0 = 0,𝑦0 = 1. 

8. Use Euler’s modified method to determine𝑦(0.02)  in two steps from 𝑦′ = 𝑥2 +

𝑦,𝑦 0 = 1. 

9. Obtain 𝑦 𝑓𝑜𝑟 𝑥 = 0.1  from differential equation
𝑑𝑦

𝑑𝑥
= 𝑥2 + 𝑦,  given 𝑦 =

−1 𝑤ℎ𝑒𝑛 𝑥 = 0 by Using the fourth order Runge-Kutta method. 

10. Using the fourth order Runge-Kutta method; solve 
𝑑𝑦

𝑑𝑥
+

𝑦

𝑥
=

1

𝑥2
,𝑦(1) = 1.0, to find 

𝑦 𝑎𝑡 𝑥 = 1.1. 
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Block & Units Introduction 
 

 

The Block - 5 – Computer, is the fifth block. This block deals with theory of computer 

and consists of three units.  

Unit – 13 – Introduction to Computer; presents a brief introduction to computers 

including their historical bolution, generation and classification. 

Unit – 14 – Hardware; gives a brief account of hardware in CPU, I/O Devices, Blick 

diagram and memory organization. 

Unit – 15 – System Software; deals with system software, MS-Dos, Files names, 

Creating, Editing and printing of files, other file management commands etc. 

At the end of block/unit the summary, self assessment questions and further readings are 

given.  



Unit-13:   Introduction to Computers 

Structure 

13.1 Introduction 

13.2 Objectives 

13.3 What is a Computer? 

13.4 Characteristics of Computer 

13.5 Historical Evaluation of Computer 

13.6 Computer Generations 

13.7 Classification of Computers 

13.8 Summary  

13.9 Exercises 

13.10 Further Readings 

13.1   Introduction 

We all are familiar with calculations in our day to day life. We apply mathematical 

operations like addition, subtraction, multiplication, etc. and many other formulae for 

calculations. Simpler calculations take less time but complex calculations take much longer time. 

Moreover, sometimes we are not able to do all the calculations manually. Another factor that 

arises in these tedious calculations is the accuracy of the results. As the necessity is the mother of 

invention, man in ancient time intended to develop a machine which can perform this type of 

arithmetic calculations faster and with full accuracy. This gave birth to a device or machine 

called „computer‟. 

Although the original objective for inventing the computer was to develop a fast 

calculating machine the computer we see today is quite different from the one made in the 

beginning. The number of applications of computer has increased; the speed and accuracy of 

calculation have also increased. Most of the work done by computer today is non- numerical 

nature. For example, reservation of tickets in airlines and railways, payment of telephone and 

electricity bills business data processing medical diagnosis, weather forecasting etc. are various 

areas of applications of computers. More accurately a computer may be defined as a device that 



operates upon the information or data. The data thus comes in various shapes and sizes 

depending upon the type of application. So due to this capability of data processing people have 

started calling it a „Data processor‟. 

13.2   Objectives 

After the study of this unit you will be in a position to 

 Define a computer and identify its characteristics 

 Know the origin and evolution of computer 

 Identify capability of computer in terms of speed and accuracy 

 Appreciate the evolution of computer through five generations 

 Know the classification of computers based on their performance. 

13.3    What is a Computer? 

Computer is an electronic device. As mentioned in the introduction it can do arithmetic 

calculation faster and with good accuracy. But it does much more than that. It can be compared 

to magic box, which serves different purpose to different people. In general, computer is a 

machine capable of solving problems and manipulating data. It accepts data, processes the data 

by doing some mathematical and logical operations and gives us the desired output. 

Therefore we may define computer as a device that transforms data. Data can be anything 

like marks obtained by a student in various subjects, income, saving, investments, etc., of a state. 

Thus a computer 

i) Accept data, 

ii) Store data, 

iii) Process data as desired, 

iv) Retrieve the stored data as and when required, and 

v) Print the result in a desired format. 

13.4   Characteristics of Computer 

The major characteristics of computer are as follows: 



Speed:  In comparison to man, computer works very fast. It takes only a few seconds for 

calculations that we take hours to complete. It can perform millions of instructions and even 

more per second. For example, the weather forecasting that we see every day on TV is the result 

of compilation and analysis of huge amount of data on temperature, humidity, pressure, etc. of 

various places through computers.  

Accuracy:  If we try to do calculations very fast the chances of error increase. Another important 

aspect is to maintain the accuracy of the results. The degree of accuracy of computer is very high 

and every calculation is performed with the same accuracy. For example if we want to have an 

accuracy of 12 decimal places in our result, it will be difficult manually but for a computer it will 

be a simple task. The accuracy level is determined on the basis of design of computer. The errors 

in computer are due to human and inaccurate data.  

Diligence:  It is really interesting that computer is free from tiredness, lack of concentration, 

fatigue, etc. It can work for hours or days without creating any error. If billions of calculations 

are to be performed a computer will perform every calculation with the same accuracy.  

Versatility: It means the capacity to perform completely different types of work. As we already 

discussed in introduction we may use our computer for various kinds of task. 

Storage:  The computer has an in-built memory where it can store a large amount of data. We 

can also store data in secondary storage devices such as floppies which can be kept outside the 

computer and can be carried to other computer. Computer has the power of storing any amount 

of information or data. Any information can be stored and recalled as long as we require it, for 

any number of days or years. 

No IQ:  Computer is just a machine and it works according to given instructions. It cannot do 

any work without instruction from the user. it performs the instructions at tremendous speed and 

with good accuracy. Thus, the user has to decide what he wants to do and in what good accuracy. 

In other words, computer cannot take its own decision as we can. 

13.5   Historical Evaluation of Computer 



History of computer could be traced back to the effort of man in search of a device to do 

fast calculations with good accuracy. We will briefly discuss some of  the path breaking 

inventions in the field of computing devices. 

Calculating Machines: It took over generations for early man to build mechanical devices for 

counting large numbers. The first calculating device called ABACUS was developed by the 

Egyptian and Chinese people. The word ABACUS means calculating board. It has a number of 

horizontal bars each having ten beads. Horizontal bars represent units, tens, hundreds, etc. 

Nepier’s Bones: This is a mechanical device built by English mathematical John Napier for the 

purpose of multiplication in 1617 AD. 

Slide Rule:  An English mathematician Edmund Gunter developed the slide rule.l This machine 

could perform operations like addition, subtraction, multiplication, and division. It was widely 

used in Europe in 16
th

 century. 

Pascal’s Adding and Subtracting Machine:  Basic Pascal developed a machine that could add 

and subtract. The machine consisted of wheels gears and cylinders. 

Leibniz’s Multiplication and Division Machine:  The German mathematician Gottfried 

Leibniz built a mechanical device around 1673 that could do multiplication and division. 

Babbage’s Analytical Engine: Charles Babbage is called the father of the computer. In 1823 he 

built a mechanical machine to do complex mathematical calculations. It was called difference 

engine. After that he developed a general purpose calculating machine called analytical engine.  

Mechanical and Electrical Calculator:  In the beginning of 19
th

 century, the mechanical 

calculator was developed to perform all sorts of mathematical calculation and it was widely used 

up to 1960s. Later the rotating part of it was replaced by electric motor. After that it was called 

the electrical calculator. 

Modern Electronic Calculator:  The electronic calculator used in 1960s was run with electron 

tubes which was quite bulky. Later it was replaced with transistors and as a result the size of 

calculators became too small. 



The modern electronic calculator can compute all kinds‟ of mathematical computations 

and mathematical functions. It can also be used to store data permanently. Some calculators also 

have in built programs to perform some complicated calculations. 

13.6   Computer Generations 

We discussed in previous section that the evolution of computer started from 16
th

 century 

and resulted in the form that we see today. The present day computer however has also 

undergone rapid change during the last five decades. This period during which the evolution of 

computer took place can be divided into five different phase known as Generations of 

Computers. Each generations of computer is characterized by major technological development 

that fundamentally changed the way computers operate, resulting in increasingly smaller, 

cheaper and more powerful and efficient and reliable devices. Here we give a review of different 

generation and the developments that led to the current devices. 

First Generation Computers [1940-1956] 

The first computers used vacuum tubes for circuitry and magnetic drums for memory. 

These computers were large in size and writing programs on them was difficult. They were very 

expensive to operate and in addition to using a great deal of electricity, generated a lot of heat, 

which was often the cause of malfunctions. First generation computers relied on machine 

language to perform operations, and they could only solve one problem at a time. Input was 

based on punched cards and paper tape, and output was display on printouts. Some of the 

computers of this generation were:   

ENIAC (Electronic Numerical Integrator and Calculator): It was the first electronic 

computer built in 1946 at the University of Pennsylvania, USA, by John Eckert and John 

Mauchly. The ENIC was 30 x 50 feet long, weighed 30 tons, contained 18,000 vacuum tubes, 

70,000 registers, 10,000 capacitors and required 150,000 watts of electricity. The ENIC‟s field of 

application included weather prediction, atomic-energy calculations, cosmic-ray studies, thermal 

ignition, random-number studied, wind-tunnel design, and other scientific uses. 



EDV AC: (Electronic Discrete Variable Automatic Computer):  It was developed in 1950. 

The concept of storing data and instructions inside the computer was introduced here. This 

allowed much faster operations due to the rapid access to both data and instructions. 

EDSAC (Electronic Delay Storage Automatic Computer):  It was developed by M.V. Wilkes 

at Cambridge University in 1949. 

UNIVAC-I: Eckert and Mauchly produced it in 1951 by Universal Accounting Computer setup. 

Following were the major drawbacks of First generation computers. 

1. The operating speed was quite low. 

2. Power consumption was very high. 

3. It required large space for installation and Air conditioning room. 

4. The programming capability was quite low and 

5. It was non portable. 

Second Generation Computers [1956-1963] 

Around 1955, a device called Transistor replaces the bulky vacuum tubes in the first 

generation computers. The transistor was far superior to the vacuum tube, allowing computers to 

become smaller, faster, cheaper, more energy-efficient and more reliable than the first generation 

computers. Thus the size of the computer reduced considerably. 

Second Generation computers moved from binary machine language to symbolic or 

assembly languages, which allowed programmers to specify instructions in words. High level 

programming languages were also being developed at this time, such as early versions of 

COBOL and FORTRAN. These were also the first computers that stored their instructions in 

their memory, which change from a magnetic drum to a magnetic core technology. It is in the 

second generation that the concept of Central Processing Unit (CPU), memory, programming 

language and input and output units were developed. Some of the computers of the Second 

Generation were 

1. IBM 1620: Its size was smaller as compared to First Generation computers and mostly 

used for scientific purposes.  



2. IBM 1401: Its size was small or medium and used for business applications. 

3. CDC 3600: It was used for scientific purposes. 

The major advantages of the computer of this generation were: 

1. Smaller in size than the first generation computers 

2. Less heat generated. 

3. Faster than the first generation computers 

4. Less prone to hardware failures, etc. 

Drawbacks: 

1. Air conditioned rooms were required. 

2. Frequent maintenance required 

3. Commercial production was difficult and costly. 

Third Generation [1964-1971] 

The development of the integrated circuits (ICs) was the hallmark of the third generation of 

computers. These ICs are popularly known as Chips. A single IC has many transistors, registers 

and capacitors built on a thin slice of silicon. Thus the size of the computer reduced 

considerably. Instead of punched cards and printouts, users interacted with third generation 

computers through keyboards and monitors and interfaced with an operating system, which 

allowed. The device to run many different applications at one time a central program that 

monitored the memory. 

Some of the computers developed during this period were IBM-360, ICL-1900, IBM-370 and 

V AX-750. Higher level language such as BASIC (Basic All purpose Symbolic Instruction 

Code) was developed during this period. 

Computers of this generation were small in size, low in cost, large enough with memory 

space and processing speed was also very high. The major advantages of the computers of this 

generation were: 

1. Smaller in size than the computers of previous generations. 

2. Computational timings were further reduced in comparison generation computers. 



3. Easily portable 

4. Commercial production was also easier and cheaper 

There were no major drawbacks of the computers of these generations except that 

sophisticated technology was required for the manufacturing of IC chips. 

Fourth Generation [1971-Present] 

The microprocessor brought the fourth generation of computers, as thousands of 

integrated circuits were built onto a single silicon chip. Due to the development of 

microprocessor it is possible to place computer‟s central processing unit (CPU) on a single chip 

of silicon. These computers are called microcomputers. Thus the computer which was occupying 

a very large room in earlier days can now be placed on a table. The personal computer (PC) that 

you see today is a Fourth Generation Computer. 

In 1981, IBM introduced its first computer for the home users, and in 1984, Apple 

introduced the Macintosh. Microprocessors also moved out of the realm of desktop computers 

and into many areas of life as more and more everyday products began to use microprocessors. 

As these small computers became more powerful they could be linked together to form 

networks, which eventually led to the development of the Internet. 

The major advantages of the computers of this generation were: 

1. Very reliable 

2. Heat generation is negligible 

3. Faster than the computers of the previous generations. 

4. Easily portable 

5. Cheapest among all generations. 

Fifth Generation [Present and Beyond] 

Fifth generation computing devices, based on artificial intelligence, which means to 

allow the computers to take their own decisions are still under the development phase, though 

there are some applications, such as voice recognition, that are being used today. The speed is 

expected to be extremely high in fifth generation computers. Apart this it can perform parallel 



processing. The use of parallel processing and superconductors is helping to make artificial 

intelligence a reality. Quantum computation and molecular and nanotechnology will radically 

change the face of computers in: years to come. The goal of fifth generation computing is to 

develop gives that respond to natural language input and are capable of learning and self 

organization. 

13.7   Classification of Computers 

The varieties of computers that we see today can be divided into different categories 

depending upon the size, efficiency, memory and number of users. Broadly they can be divided it 

to the following categories. 

1. Microcomputer:  This computer is at the lowest end of the computer range in terms of 

speed and storage capacity. Its CPU is a microprocessor. 

The most common application of personal computers (PC) is in this category. The first 

microcomputers were built of 8-bit microprocessor chips. An improvement of 8-bit chip 

is 16-bit and 32-bit chips. Examples of microcomputer are IBM PC,-AT, etc. 

2. Mini Computer:  This computer is superior to the microcomputer. It is used in multi-

user system in which several users can work at the same time. It has large storage 

capacity and operates at a higher speed. This type of computer is generally used for 

processing large amount of data in various organizations including science and 

technology laboratories. They are also used as server in Local Area Networks (LAN). 

3. Mainframe: The computers of this type operate at tremendous speed, have very large 

storage capacity and can handle the work load of many users at a time. These are 

generally 32-bit microprocessors and generally used in centralized databases. They are 

also used as controlling nodes in Wide Area Networks (WAN). Example of mainframes 

are DEC, ICL and IBM 3000 series. 

4. Supercomputer: These are the fastest and the most expensive machines used to fulfill 

the need of any organization which has a very heavy load of data processing. They have 

high processing speed compared to other computers. They have also multiprocessing 

technique. The areas of applications of these computers are whether forecasting, 



biomedical research, remote sensing, aircraft design. Examples of supercomputers are 

CRA Y YMP, CRA Y2, NEC SX-3, CRA Y XMP and PARAM from India. 

13.8   Summary 

In this lesson we have discussed about the major characteristics of computer. The speed, 

accuracy, memory and versatility are some of the features associated with a computer. But the 

computer that we see today has not developed over night. It has taken centuries of human effort 

to see the computer in its present form. There are five generations of computers. Over these 

generations the physical size of computer has decreased, but on the other hand the processing 

speed of computer has improved tremendously. We also discussed about the varieties of 

computers available today.   

13.9   Exercises 

1. What is a computer? Why is it known as data processor? Write the important 

characteristics of a computer. 

2. Distinguish between Microcomputer and Mainframe computer. 

3. Explain various types of computers. 

4. Explain in brief the various generation in computer technology. 

5. Write a short note on Fifth Generations of computer. What makes it different from Fourth 

Generation computer? 

6. What is the first mathematical device built and when was it built ? 

7. Who is called the father of Computer Technology? 

8. In how many generations the evolution of computer is divided? 

9. Why did the size of computer get reduce in third generation computer? 

10. Write short note on the following 

(a) Versatility   (b) Storage  (c) Slide Rule  (d) Babbage‟s Analytical Engine 

13.10   Further Readings 

1. Rajaraman, V.; Fundamentals of Computers 5
th

 ed., Prentic-Hall of India, New Delhi, 

(2007). 



2. Hennessy, J.L. and Patterson, D. A.; Computer Oranization and Design: The 

Hardware/Software Interfaces, Morgan Kauffman Publishers, San Mateo, CA, (1994) . 

3. Chauhan Sunil, Saxena Akash and Gupta Kratika; Fundamentals of Computer, Laxmi 

Publication, (2006).  
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14.1  Introduction 

COMPUTER: A computer is an electronic data processing device which can read and write 

compute and compare, store and process large volume of data with high speed, accuracy and 

reliability. It stores the instructions given to it and then executes them at a terrific speed 

automatically without manual inte4rvention. It works on stored program concept. Once the data 

and the instruction set are fed into its memory, it reads the instructions and executes them to 

produce results. A computer thus consists of a machine called „Hardware‟ which works with the 

help of a set of instructions used software.  

HARDWARE: Hardware refers to the physical components of a data processing system. Input, 

storage, processing and control devices are hardware. Hardware professionals deal with the 

manufacturing and maintenance of computers. 

SOFTWARE:  Software refers to a set of computer programs and procedures for the effective 

operation of a data processing system. Without software, hardware is of no use and cannot 

produce any result. 

The main components of a computer are: 

 Central Processing Unit 



 Input Devices 

 Output Devices 

14.2  Objectives 

After going through this unit you will be able to understand: 

 Main components of computer 

 Functions of different components of computers 

14.3  Central Processing Unit (CPU) 

  It is the brain of the computer. Its basic functions are to perform calculation and various 

logical functions. This unit will process the data, which is delivered by the input unit. The CPU 

has three components: 

(i) The Control Unit 

(ii) The Arithmetic and Logic Unit 

(iii) The Memory Unit 

(i) Control Unit: It consists of electronic circuits. It controls the overall operation of 

the computer system. It is considered as the heart of the computer system. It controls all the other 

units, directs them to operate in a proper way and coordinates various operations perform 

structure the input device to transfer the data and instructions to the main memory and then to the 

Arithmetic and Logical Unit (ALU). Then, it sends the processed results from ALU to the 

memory unit for storage and transfers it to the visual display. The control unit co-ordinates the 

various parts of the computer system – the Arithmetic and Logic Unit, the memory unit and the 

peripheral units. Besides, it controls the flow of data into, from and within the main storage as 

per the program instructions to perform its control operations effectively and quickly. The 

control unit has four basic components. These are:  

(a) Instruction Register 

(b) Decoder 

(c) Address Register 

(d) Instruction Counter 



The instruction register receives one by one the instructions to be executed in the required 

sequence. Then the operation code of the instructions is transferred to decoder Arithmetic and 

Logic Unit to perform the operation. The address register enables the data in the location 

specified in the instruction to be transferred to a specified accumulator for the arithmetic and 

logic unit. 

(ii) Arithmetic and Logic Unit 

It consists of electronic circuits. It works at tremendous speed and executes millions of 

instructions per second (MIPS). This unit performs two kinds of operations, the arithmetic 

processing and logical processing. In arithmetic processing it performs all mathematical 

operations such as addition, subtraction, multiplication and division. In logical processing, it 

performs the relation and logical operation operations such as comparing larger or smaller 

values, true or false statements, etc. 

The Arithmetic and Logic Unit of the CPU includes several types of sub-units and special 

purpose circuitry such as registers, counters, adders etc. 

(a) Register: Registers are areas of high speed storage circuitry used as “work area” for the 

temporary storage of instructions and data during the operation of the control and 

Arithmetic and Logic Unit. The number, function and capacity of the registers and other 

submits in a CPU depend on the internal architecture of each particular computer. 

Besides, general purpose registers, there may be other registers named according to their 

functions. 

(i) Storage Register: It temporarily holds data or instructions taken from or being sent to 

primary storage.   

(ii) Address Register:  It may hold the address of the storage location of data, or the address 

of an input/output device or a control function. 

(iii) Instruction Register: It contains the instructions being executed by the  

(iv) Accumulator:  It is a register which accumulates the result of arithmetic or logic 

operations.  

(v) The multiplier-quotient register: It holds either a multiplier or a quotient. 



(vi) Floating point register: It is used for floating point arithmetic operations. 

(b) Counter: The counter is closely related to the register. It is a device whose contents can 

be increased or decreased by a specific amount. The instruction counter is also called the 

instruction address register and contains the storage location address of the computer 

instruction being executed. The index register is a counter specifically set aside for 

modifying the portion of an instruction that indicates the address of data to be 

manipulated. This result in an operation known as “indexing” in whom the CPU 

automatically repeats the performance of the same instructions until of the data covered 

by instruction is processed. 

(c) Adders: Adders are sub-units that perform the arithmetic operations of the arithmetic and 

logic unit receive data from two or more sources, perform the specific arithmetic 

operation desired and then convey the result to a receiving register such as the 

accumulator. 

(iii) Memory Unit 

It is also called as main memory or primary memory. It consists of very fast memories 

like magnetic memory or semiconductor memory. In this unit, the data and instructions are 

stored in the form of words, bytes and bits and are transferred to ALU during processing. 

Similarly, the processed results are stored again for further calculations or sent the output 

unit. The main storage consists of several static and dynamic memory cell. The computer 

need not remember all the data all the time. Some of the data or instructions can be kept 

elsewhere for retrieval at a later stage. Only the data is being processed and the instructions 

to process it are stored internally whereas the data and instruction that are required later are 

stored externally. 

The internal storage is commonly called as the primary storage or the main memory. This 

is usually limited. The external storage or the secondary storage or auxiliary storage is the 

unlimited storage. 

The memory stores binary instructions and data for the micro “Processor” and provides 

them to the microprocessor on request. Sometimes results are also stored on the memory. 

 



14.4  Memory Organization 

Primary Storage/ Internal Storage 

The main memory, also called random access memory (RAM) is the work area of the 

computer. It stores program instructions or part of data for immediate needs. 

(a) Magnetic Core Memory 

In the past magnetic core memory was used as internal memory. It was a non volatile 

memory i.e., its contents were not lost if the power supply was interrupted. However, the 

necessity to store after reading was technological disadvantage of core storage. 

(b) Semiconductor Memory 

These days, internal memory consists of extremely small bit storage circuits (flip-flops) 

etched on a silicon chip. All the electronic elements to store a bit are placed in such a 

small area of the chip that a single chip can store millions of bits. The individual chips are 

arranged in groups to form a memory module. 

Types of Semi-conductor Memory 

(i) Random Access Memory (RAM):  Any information can be read from and written 

into a RAM. It is a read/write memory. It is a volatile memory i.e. its contents are lost 

if the power supply is interrupted or turned off. The main memory of the computer is 

RAM.  

(ii) Read Only Memory (ROM): Rom is permanently programmed with information 

during manufacture, by implementing the appropriate pattern of two state values. It 

cannot be changed subsequently by a normal write operation. It is thus completely 

non-volatile. It is mainly used to hold those programs which are required 

permanently. 

(iii) Programmable Read only Memory (PROM):  This can be programmed to record 

information using a special electronic equipments known as a PROM programmer. 

However, it cannot be changed subsequently. 



(iv) Erasable Programmable Read Only Memory (EPROM): EPROM is a PROM 

which can be reversed by exposing it to an ultraviolet light source. The device can be 

re-erased and re-programmed again and again. 

(v) Cache Memory: It is a small capacity high speed memory used to make processing 

faster. The main memory can process information very fast, but it takes much longer 

to transfer data to and from the input/output devices. The cache memory compensates 

for this mismatch in operating speeds. It holds those parts of data and the active 

program which are most frequently used. Thus the performance rate of the CPU 

improves. However, cache memory is very expensive as compared to the main 

memory, so its size is normally much smaller than the size of the main memory. 

13.5   Input-Output Devices 

Data is entered into the computer system by means of an input device. The keyboard is 

one of the most common input devices. The data is recorded on a material called the media. 

Similarly, the computer system needs an input device to communicate the processed information 

to the user. Common types of output devices are monitor, printer, etc. But there are certain 

devices which can serve as input as well as output devices like tape drive, floppy drive, disk 

drive etc. 

Keyboard 

Computer keyboard is an electromechanical component designed to create special 

standardized electronic codes when a key is pressed. The codes are transmitted along the cable 

that connects the keyboard to the computer system unit or terminal, where the incoming code is 

analyzed and converted into the appropriate computer usable code. 

Keyboards come in a variety of sizes and shapes having a number of features in common: 

1. Standard Type Writer keys  

2. Function keys 

3. Special Purpose keys 

4. Cursor Movement keys 

5. Numeric keys 



Mouse 

The mouse is an input device that is much in use nowadays in graphics as well as 

working with a GUI (Graphic User Interface). About the size of an audio cassette, it slides on 

rubber ball and has two or more buttons on the top. When a mouse is slid across a flat surface, 

the screen cursor also moves in the direction of the movement of the mouse. With a click of the 

button, the system can be notified of the selected position. 

MICR 

 Magnetic ink character recognition devices were developed to assist the banking 

industry. It is used in the processing of cheques. The most commonly used character set by 

MICR devices is known as E13B font that consist of numerals 0-9 and 4 special characters. 

These help are in sorting of cheques/drafts based on the code printed on the cheque using the 

E13B font. Processing is speeded up using MICR but the main limitation is that only 10 digits 

and 4 characters are used. 

Scanners 

These are basically input devices that are capable of recognizing marks or characters. 

They are used for direct entry of data into the computer. Scanners eliminate the duplication of 

human effort required to get data into the computer. Reduction in human intervention improves 

data accuracy. Since scanners are direct data entry devices so they demand high quality 

documents. 

TYPES: 

1. OCR 

These are scanner devices that are capable of detecting alphabetic and numeric 

character by comparing the shapes with internally stored patterns. These are expensive 

and are used only for large volume processing applications e.g. by credit card companies. 

2. OMR 

These scanners are capable of recognizing a pre-specified type of mark made by a 

pencil. These are normally used for validation of input documents, evaluating answer-

sheets in objective-type tests e.g. GRE, GMAT. 



3. Bar Code Reader 

Data coded in the form of light and dark lines or bars are known as bar codes. Bar 

codes are used particularly by the retail trade for labeling goods. Bar code reader is a 

device used for reading bar coded data. Bar code reading is performed by a laser-bean 

scanner which is linked to a computer. 

4. Desk Scanning 

During the scanning process, the scanner applies a light source to your image. The 

light is reflected back from the image into the scanner optics where the varying levels of 

lights are interpreted. Your image is then reconstructed digitally and displayed on your 

screen. Unlike a camera image, scanning software lets you alter the information from the 

image stored in the computer and used in any application. 

Magnetic Tape 

Tape is a very popular sequential access storage device, used widely all over the world. 

Data is stored as tiny spots on the magnetizable material that coats one side of a plastic tape. The 

coated side of the tape is divided into vertical columns (frames) and horizontal rows (tracks). 

   An 8-bit code is used with a 9-track tape. The ninth track is used for recording the parity 

bit. A parity bit or check bit is used to detect errors that may occur due to loss of a bit from a 

string of 8-bits during data input or output operations. If the basic code for a character requires 

an odd number of one bit, an additional one bit is added to the check bit location so that there 

will always be an even number of one bit.  This is an example of even parity. Similarly in odd 

parity the check bit is used to always produce an odd number of one bit. That is check bit will be 

1 if the total number of one bits for representing a particular character is even and it will be 0 

otherwise.  

Since a magnetic tape is a continuous-length medium, records stored on the tape may be 

separated by blank spaces called Inter-Record Gaps (IRGs). IRGs are normally 0.5 inches in 

length. Tape records can be of varying lengths. If a tape contains a large number of very short 

records and if each record is separate by an IRG, then a lot of tape is wasted. To avoid this 

inefficient situation, several records can be combined into a tape block. Each block contains a 

fixed number of records & blocking factor control number of record in data blocks. An IBG 



(inter block gap) separate two blocks. The inter block gap allows the tape drive to detect the end 

of the block & also to accelerate to the speed required for reading & to deaccelarate after reading 

if a number of files are stored on one tape then the tape is called a multifile reel and if file is 

stored on more than one tape reel the file is called multireel file.  

The tape density is the number of frames per inch of tape. It is measured in BPI (bytes 

per inch). Common densities are 1600 BPI, 6250 BPI. 

Every file on a tape starts with a header label and ends with a trailer label. 

Header label: A header label is a block of data containing the identifying information about the 

files such as file name, date of creation, retention period etc. 

Trailor label:  A trailer label is a block of data written as the last record of a file. It contains the 

same information as the header label but in addition in contains a block count specifying the 

number of data blocks in the file. 

Cartridge Tape 

It is a plastic ribbon coated on one side an iron-oxide material that can be magnetized. It 

is  1/4" wide and varies from 140 to 450 feet in length. It is encased in a 3 W‟/5 1;4” pocket size 

dust protected jacket. Used in minicomputers and personal computers. Used to take backup of 

hard disks. It takes approximately 5-20 minutes to copy the contents of a hard disk. Tape 

cartridges have a capacity ranging from 60 MB to 32 GB.  

Floppy Diskette 

 The floppy diskette is a direct access storage device although its capacity is much less 

than a hard disk. The diskette is made out of a flexible plastic material. This base is coated with 

an iron-oxide recording material. Data is recorded as tiny magnetic spots. The surface is divided 

into tracks and sectors, same as in a hard disk. The number of tracks on a diskette depends on the 

recording density. The size of each sector is fixed (512 bytes). Data is stored on both sides of the 

diskette. There is one head per surface in the floppy drive for reading/writing data on the 

diskette. The circular plastic disk is enclosed within a smoothly lined protective square jacket to 

protect it from dust and scratches. 



The standard sizes available nowadays are: 5.25 inch, 3.5 inch. There capacities are as 

follows:  

1. 5.25 inch 

(a) DSDD 48TPI  360KB 

(b) DSHD 96TPI  1.2MB 

2. 3.5 inch 

(a) 120 TPI  1,44MB 

(b) 240 TPI  2.88MB 

Salient Points 

1. The index hole marks the beginning of the first sector. 

2. The outermost track is labeled 0 

3. The write protect notch can be covered to disable writing. 

Advantages 

1. Low cost. 

2. Convenient to transport. 

3. Compatible between computers. 

Disadvantages 

1. Floppy diskettes are prone to frequent errors due to mishandling. 

Magnetic Disk 

Magnetic disks are the most popular INPUT/OUTPUT device for Direct Access Storage. 

These are metal plates coated on both sides with a thin film of magnetic material. A set of such 

magnetic material plates are fixed to a spindle one below the other to make up a disk pack. The 

disk pack is mounted on a disk drive (which consists of a motor to rotate the disk pack about its 

axis). The disk drive has a set of magnetic heads mounted on arms which move radically in and 

out. There is a very small gap between the head and the plate surface because if the head comes 

in contact with the surface it can destroy the data as well, it would lead to wearing out of the 



head. Data is stored on both surfaces in a number of invisible concentric circle which are called 

tracks, each track is further divided into sector which can store a fixed number of bytes. 

The capacity of diskette in wide use today ranges 360KB to 1.44 MB. Microcomputer‟s 

hard disk capacity ranges from 10MB to 1GB. 

Hard disks have the following characteristics. 

1. They are rigid metal platters connected to a central spindle. 

2. The entire disk unit (disks and read/write heads) is placed in a permanently sealed 

container. 

3. Air that flow through the container is filtered to prevent contamination. 

4. The disks are rotated at very high speed (usually around 3,600 RPM: floppy disks rotate 

at about 300 RPM). These disk drives can have four or more disk platters in a sealed unit. 

In most of these disk units (which are often called Winchester disk drives). The 

read/write heads never touch the surface of the disks. Instead, they are designed to float 

from 0.5 to 1.25 millionths of an inch from the disk surface.  

Removable Disk Packs 

In large computer systems, hard disks are sometimes contained in packs that are 

removable. Meaning that they can be removed from the computer and replace at will. Disk packs 

typically hold 6 to 12 platters that are usually 14 inch in diameter. In disk packs, all tracks with 

the same track number are lined up, one above the other. All tracks with heads so that both sides 

of the disk can be read. The read/write heads move together and so are always on the same 

cylinder at the same time. Data that needs more space than one track is continued on to the same 

track on other disk, so the read/write heads do not need to move. (Only one read/write head‟s 

active at one time, but they are very fast). When all the tracks in cylinder full the read/write 

heads move to another cylinder, the cylinder numbers are used by the computer operating system 

to determine data addresses.  

The capacity of removable disk packs varies by manufacturer and ranges from 150 to 250 

MB. The total storage capacity could be dramatically increased by having a dozen or so extra 

packs to be interchanged with the packs in the disk drive. These are obsolete now days. 



Fixed Disks 

The capacity of fixed units has been increased upto 16GB. The typical capacity of fixed 

disk drives for desktop is 4 GB where as typical server will have more than one disk drive of 8 

GB each. The average access time of such drives is of the order of few milliseconds, and data 

transfer rate of typically few million bits per second. 

Access Time 

This is defined as the time taken to locate and then transfer data from the disk into internal 

storage. It includes there elements namely. 

1. Seek Time:  This is the amount of time needed to move a read write head to the desired 

track from its current position. 

2. Latency Time:  Also known as Rotational Delay time. This is the time require for the 

portion of the track to be read or written to come beneath the read-write head. 

3. Transfer Time:  The time taken to transfer data from disk to internal storage. 

Optical Disk 

Optical technology can overcome some of the limitations faced by users while using 

magnetic storage technology. 

In optical disks, a laser beam is used to read/write data on to the disk. The data is stored 

in the form of microscopic dots. There are about 54000 spiral tracks on a disk. The track density 

is about 16000 TPI. Optical disks can store video, text, music and graphics. 

An optical disk is protected from rough handling by a plastic layer. Data is written on the 

disk by blasting microscopic pits on the surface using a laser beam. These pits are darker than the 

background of the shiny disk. The data is read by passing a lesser powerful beam over the 

surface and the changes in reflectivity indicate a 1 or 0 bit.  

Advantages 

1. Not as fragile as floppy disks. 

2. Longer lasting. 



3. More storage. 

4. No heads required for reading/writing. 

The main limitation of optical storage is that data once written can‟t be erased. 

NOTE: New technologies are being develop for erasable, rewritable optical media. CD-ROM 

Compact disk, read-only memory optical disks have a very large storage density and the access 

time is relatively low, made mostly of aluminum and plastic. Only 1.2 mm thick, a CDROM is 

tough. Not only is a CD-ROM more resistant to damage, there is no chance that you will ever 

accidentally overwrite any information or infect it with a virus. A standard 12 cm diameter CD-

ROM supports up to 680 MB data capacity. By value of its immense storage capacity CDROM 

currently provides an affordable medium through which reasonably sophisticated multimedia can 

be distributed. CD-ROM addressing is carried out using measurement of time and data blocks 

read. Minutes, Seconds and blocks provide information to locate an item of information. 

A track beginning mid way through the CD-ROM for instance is addressed 29:29:37 

(minutes: seconds: blocks) 

A CD-ROM player reads information optically using laser light. 

WORM 

Write-once, read many system, are based writable optical storage devices. A laser 

recording device writes 1 bit by deforming a thin sensitive layer of material on the disk surface. 

Unmodified areas represent 0 bits. The deformed WORM disk can‟t be restored to its original 

condition, so writing is indelible. 

Reading of stored data occurs when a lower power laser beam passes over the disk and 

detects differences in the reflections coming from 0 and I-bits. 

Digital Versatile Disc 

Digital versatile disk is in genre of optical disk with same overall dimension of CD but 

much higher capacity. These can store at least 7 times more data than D ROM. These drives 

support MPEG-2 standard for the compression of data. High compression of DV D films 



necessitates either a fast Pentium II processer or an MPEG Card for decoding. Dual layer DVD 

disks have 8.5GB capacity on single side, using both sides capacity comes up to17 GB. Large 

storage capacities on the DVD broaden its multimedia possibilities. 

These discs have backward compatibility and can read CD-ROM, CD-RW and CD-audio 

storage media. One of the important factors is that you don‟t need any special interface for a 

DVD drive.  

Visual Display Terminal 

This is the most popular I-a device used nowadays for interactive processing. A keyboard 

is used to enter data into a processor and a video display unit called monitor- is used to display 

the key data and to receive processed information and message from the computer. VDTs are 

classified as. 

Dumb terminals:  These are simple devices that immediately transmit each keyed data character 

to the processor. 

Intelligent Tenninals:  These combine VDT hardware with built in microprocessor, They can 

process small jobs without the need to interact with the main computer. 

Cathode Ray Tube 

The cathode-ray tube probably the most popular softcopy output device is used with 

terminals connected to large computer systems and as a monitor for microcomputer systems. 

This type of video display screen is used to allow the operator to view data entry and computer 

output. Monitors that display only letter, and special characters such as $, * and ? are called 

alphanumeric monitors (or alphanumeric terminals). They look like television screens and 

display 80 characters per line, with 24 lines visible at one time. Screens that can display both 

alphanumeric data and graphics are called graphic monitors (or graphic terminals). 

The CRT‟s screen display is made up of small picture elements, called pixels for short. 

The smaller pixels (the more points that can be illuminated on the screen) have better than image 

clarity, or resolution. 



The terms resolution refers to the crispness of the image displayed on screen. Three 

factors used to measure resolution: lines of resolution (vertical & horizontal), raster scan rate & 

band width. 

The term raster scan rate refers to how many times per second the image on the screen 

can be refreshed that is lit up again. Because the phosphors hit by the electron beam do not glow 

very long, the electron beam must continuously sweep across the screen will seem to flicker, 

which can be very hard on the eyes. The higher the raster scan rate, the better the image quality 

and, the less eyestrain. 

Bandwidth, this terms refers to the rate at which data can be sent to the electron gun to 

control its movement, positioning and firing. The higher the bandwidth, the faster the electron 

gun can be directed to do its job. 

Monochrome and Color Monitors: A monochrome monitor (a monitor capable of displaying 

only a single-color image) and an ROB color monitor (ROB stands for red, green, blue) differ in 

two principal ways, First they have different numbers of electron guns. A monochrome monitor 

has only one electron gun. 

Printers 

Printers are the primary output devices used to prepare permanent documents for human use. 

Printers are classified as 

1. Impact Printers 

These operate like typewriter, pressing a typeface against paper and linked ribbon E.G. 

daisy wheel printer, dot-matrix printer. 

(i) Letter Quality Printer: Letter quality printers also  called character printers or serial 

printers because they print one character at a time, produce a very high quality print 

image (one that is very clear and precise) because the entire character is formed with 

a single impact. 

(a)  DMP (Dot Matrix Printer):  These are serial printers, i.e., they print one a character at a 

time. Each character is printed as a pattern of dots. The print head comprises of a matrix of 

tiny needles typically a 9 row * 7 columns matrix, which hammers out characters in the 



form of patterns of tiny dots. These printers are faster than daisy wheel printers although 

their letter quality is a bit inferior. The additional advantage of DMPs is the they don‟t 

have a fixed character font set (as in line printers), so they can print different shapes, e.g., 

charts, graphs, diagrams etc. 

(b) Daisy Wheel Printer: The Daisy wheel printers has a print “wheel” with a set of print 

character of the outside tips of the flat spokes. To print  a specific character, the wheel is 

spun until the appropriate spoke, or petal, is lined up  with the print hammer. The print 

hammer is then fired, and the print character is forced against the ribbon and paper with 

sufficient force to make a clear, crisp impression. 

(ii) Line Printers 

These are the high speed printers which cater to huge volumes of output requirements of 

large computer organizations. These are known as Line printers because they use impact 

methods to produce one line at a time printed output, e.g., chain printers, band printer, drum 

printer. 

From 300 to 3000 lines per minute can be printed depending on the printer used. 

These printers have several copies of each printable character on a drum, a bell, or a print 

chain, with a separate print hammer for each position across the width of the paper guide. As 

the drum, bell or print chain revolves; the hammers are activated as the appropriate character 

pass in front of them. The speed achieved by this type of printer ranges from 200 to 3,000 lines 

per minute (LPM). 

Speed is the obvious advantage of this type of printer. The main disadvantages are noise 

and poor image quality.  

2. Non-Impact Printers 

These are thermal, electrostatic chemical and inkjet technologies. 

(i) Thermal Printers: They use heat to produce an image on special paper. The print 

mechanism, rather like a dot-matrix print head, is designed to heat the surface of 

chemically treated paper so that a dot is produced based on the reaction of the 

chemically treated paper so that a dot is produced based on the reaction of the 

chemical to heat. No ribbon or ink is involved. For users who want the highest quality 

desktop color printing available, thermal printers are the answer. However, they are 

also expensive and they require special expensive paper. 



(ii) Ink Jet Printer:  The ink jet printer ejects a steady stream of ink drop towards the 

printed page. The drops are selectively discarded by electrostatic attraction to leave 

only those that are needed to form the desired symbol. Those that are not needed are 

captured in tiny gutter & filtered to remove impurities. They are then recalculated 

through the drop generating mechanism. 

(iii) Laser Printer Technology:  This is much less mechanical than impact printing (that 

is, no print heads move, no print hammers hit) resulting in much higher speeds and 

quieter operation. The process resembles the operation of a photocopy machine. A 

laser beam is directed across the surface of a light sensitive drum and fared as needed 

to record an image in the form of a pattern of tiny dots. The image is than transferred 

to the paper, a pager at a time, in the same fashion as a copy machine using a special 

toner. 

The main advantages of laser printer are: 

1. Very high speed. 

2. Low noise level. 

3. Low maintenance requirements. 

4. Very high image quality. 

5. Excellent graphics capabilities. 

6. A variety of type sizes and styles. 

7. On large high speed laser printers, form can be printed at the same time data is 

recorded in them.  

PLOTTERS 

These are line-drawing devices which move a pen under computer control in such a way 

that continuous lines and curves can be drawn. These are used for drawing maps, engineering 

drawing etc. 

COM (Computer Output Microfilm) 

COM Technology is used to record computer output information as microscopic filmed 

images. Thus, COM is basically an output device that records information on a roll of microfilm. 



COM recording technology consists of a microfilm recorder that receives information. 

The recorder in turn projects the characters of output on to a CRT screen. A high speed camera, 

inbuilt into the system takes pictures of the displayed information. The COM recording process 

produces characters that are about 50 times smaller than those producted by conventional 

printers. A special device known as MICROFILM READER is used to view the information 

recorded. A COM system is ideal for use in applications where there is a large amount of 

information to be retained. 

14.6       Exercises 

Q.1. Fill in the blanks: 

1. CPU consists of --------------, ----------------- and -----------------------------. 

2. The three components of a computer are -----------, ----------- and---------. 

3. --------- is the component of the CPU which performs arithmetic and logical operations 

on data. 

4. Semiconductor memory is  ----------------- than core memory is speed.  

5. The main memory of a computer may be made of ----------- or ------------. 

Q.2. State True/False: 

1. The data processing capabilities of a computer can be increased by increasing the 

memory Size. 

2. Memory consisting of magnetic core is non-volatile memory. 

3. Core memory is cheaper than semi-conductor memory. 

4. Whenever power is interrupted, data stored in semi conductor memory cannot be 

regained. 

Q.3. Expand the following: 

a) RAM  b) PROM   c) ROM  d) ALU   e) EPROM 

Q.4. Answer the following questions: 

1. What is a computer? 



2. State the essential components of a compute and give function of each of them in 

brief. 

3. Outside CPU, which unit supplements the main memory of a computer/ 

4. What is Auxiliary or Secondary Memory and why is it required? 

5. What is different media and related storage devices? 

6. What is the purpose of having several mass storage devices with a computer? 

7. What is difference between intelligent and dumb terminals? 

8. Differentiate among Line Printer, Dot Matrix printer, Serial printer, Laser Printer and 

Plotter? 

9. List the advantage of Magnetic disk over Magnetic tape? 

10. Explain all the type of Non-Impact types of printers. 

11. Explain the following for recording of data on a tape reel: 

a) Header Record 

b) Trailer Record 

c) Inter Record Gap 

d) Data Block 

e) Blocking Factor 

Q.5. Fill in the blanks: 

1. A beam ---------------- light is used to remove and retrieve data on optical disks. 

2. The number of records in a data block on tape is controlled by the …………….. 

3. ……………….is one form of optical storage. 

4. The surface of magnetic disk is divided into a number of …………….. Each …………. 

Is further divided into a number of……………………… 

5. Data can be stored on ………………….. sides of a magnetic disk. 

6. …………….is a device that prints a whole line of  characters at one time one time under 

computer control. 

7. Average time needed to retrieve a data item from the storage unit is called is 

……………………. 

8. The period of time elapsed between input of a query and receipt of a response at the 

terminal is called …………………….of CRT. 



9. ……………refers to the crispness of the image displayed on screen. 

10. …………….refers to how many times per second the image on the screen can be 

refreshed. 

Q.6. State True/False: 

1. Magnetic tape is a random access device. 

2. The VDU is both an input and output device. 

3. The floppy disk can be used only as an input media. 

4. The Line Printer is both an input and output device. 

5. The magnetic disk is both an input and output media. 

6. A dot Matrix Printer is an input device. 

7. A PC can have one or more hard disks. 

8. Magnetic Disk can be used as random and sequential access storage media. 

9. Mouse is an input and output device. 

10. Ink Jet Printer is an impact type of printer. 

11. A deformed WORM can be restored to its original condition. 

12. Magnetic tape is a secondary storage media. 

14.7  Summary 

This unit covers description of various components of a computer. The various parts of 

computers categorized as central processing unit input and output devices. The central 

processing unit is most important part of computer where the mathematical and logical 

operations are done in addition to processing of the data received from input-unit. The CPU can 

further be categorized into (i) Control unit (ii) Arithmetic Logic Unit and (iii) Memory unit. The 

control unit consists of instruction register, decoder, address, register and instruction counter. 

The arithmetic and logic unit performs various operations as per instructions received by the 

computer. 
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15.1  Introduction 

In the previous unit you have learnt that a computer works with the help of hardware and 

software both. There are some software which contain general program design to control the 

operations of computer. These programs are called system software. 

15.2  Objectives 

After studying this unit you should be able to understand. 

 System software 

 File, editing and disk command 

 Number theory 

15.3  System Software 

If consists of sets of general programs designed to control the operation of a computer 

system. Without system software, application packages cannot be executed. Examples are 

control programs, processing programs etc. 



1. Control Programs 

They take care of all the system activities and handle all the input, output, scheduling, 

interrupts etc. These consist of programs like operating systems, Job control programs, I/O 

management programs etc.  

Operating System (O.S.) 

Operating System is a set of programs written specially to manage all the resources and 

operations of a computer. Operating system manages automatically all the application programs, 

special programs needed in between the application programs by calling the whenever needed. It 

also takes care of hardware functioning. On the basis of functioning and facilities provided by 

them, Operating system can be classified as follows: 

(i) Single User Operating System 

These Operating Systems allow only one user to work on a computer at a time. 

Example: MS-DOS, CP/M. 

(ii) Multi User Operating System 

This Operating System allows more than user to work on the computer at the same 

time. These Operating Systems allocate memory in such a way that different users 

can work simultaneously without disturbing each other. It also allocates the 

processing time in such a way that every user gets a very quick response from the 

machine. These are also known as Time Sharing Operating Systems. 

Example: UNIX, XENIX, VMS, Windows NT. 

Various function of Operating System:   

- Memory Management 

- Processor Management 

- Device Management 

- File Management 

(i) Memory Management Functions 

Operating system manages the primary memory of the system. It allocates the 

memory on the request of a process, which is being run at that time. It also keeps a 



check at a particular time, how many bytes of memory are in used and which process 

is using it. It also keeps track of what part of it is free. In case of a multi-user system, 

it decides on the priority basis, that which user will have access to memory and when. 

How much of it is used depends on the requirements.  

(ii) Processor Management Functions 

Operating system also takes care of the processor. It allocates the processor to the 

user. In case of multi-user system, it allocates the processor time to different users as 

and when needed and in such a way that every user has minimum waiting time. 

(iii) Device Management Functions 

It keeps track of all the devices i.e. peripherals attached to the computer such as I/O 

devices etc. When needed, it allocates the devices in such a way that each can be 

efficiently used. It initiates the I/O operations and allocates them along with other 

devices to the user. 

(iv) File Management Functions 

Writing and retrieving the information on/from the secondary storage device is the 

function of an Operating System. It follows a complete methodology for maintaining, 

the files, so that different sets of information do not get mixed up and exactly the 

same set of information is supplied, which is required by the user.  

2. Processing: Programs 

Processing programs are the programs which take care of application programs 

running on the computer. These programs work under the supervision of control 

programs. They help the application program to do the actual data processing: These are 

basically of two types:  

- Language Translators are system program that translate program written by the user in 

high level language to machine language. Examples are compliers and assemblers. 

- Service Programs or Utility Programs are a set of programs which execute tasks 

frequently required in data processing. Those tasks are of a routine nature that all 

computer users require their machine to perform from time to time (storing, copying etc.). 

Examples are sort/merge programs to arrange unsequenced data into specified sequence, 

debugging tools to help the user to locate and correct logical errors in the program etc.  



Some Processing Programmes 

Linker 

A program that links the separately translated modules to form an absolute load module 

to be run as a unit. 

Loader 

A program that loads the absolute load module into main memory. 

Interpreter 

A program that translates each instruction of high level language and also executes 

instructions before passing on to the next instruction. 

15.4   File Commands 

i)  HELP 

PURPOSE:  This command displays information about the DOS commands. One can 

seek information in two ways. 

FORMATE: a) HELP [command] 

 A screenful of descriptive information is displayed about the named 

command. 

 b) Command 

ii)  DATE 

PURPOSE:  To set the system date. The change date shall now be used for the date 

stamping of files. Format of date can be changed. 

FORMATE: DATE [dd-mm-yy] 

iii)  TIME 

PURPOSE:  To set the system time. The changed time shall now be used for the time 

stamping of files. 



FORMATE: TIME [HH: MM: SS: cc] 

iv)  DIR 

PURPOSE:  To list all or specified files of the connected area on the specified device. 

FORMATE: DIR [drive:] [pathname] [/P] [lW] [lA:x] [/B] [/L] [/O:z] [IS] 

/P To see the page-wise listing of directory. In this case if the output of the 

command is more than one page, it shall pause after each screen full. On 

pressing any key, generally the space bar, next screen is shown. 

/W To see the width-wise listing of directory. It displays only file name an 

extension. Each line contains five file names. The directory names are 

enclosed in square Brackets. 

/A:a Displays files having certain file attributes, where attribute(a) is one of the 

following:  

h hidden files   -d files only (no directory names)  

-h non-hidden files  a files that have been archived 

s system files   -a files that are not archived 

-s non-system files  r read only files 

d directory names only          -r files that are not read only 

v)         SET DIRCMD 

PURPOSE:  The DIR command parameters can be preset using this command. It can 

be entered directly from the DOS prompt. 

FORMATE: you can use any valid combination of DIR parameters and switches with 

the SET DIRCMD command, including the location and name of a file. 

 



vi) ATTRIB 

PURPOSE:  To set or show file attributes. 

FORMATE: ATTRIB [+R] [-R] [+A] [+S] [-S] [drive:] [path] <filename> [IS] 

+ Sets an attribute 

- Clear an attribute 

R Read only file attribute 

A Archive file attribute 

S System file attribute 

H Hidden file attribute 

/S Process files in all subdirectories in the specified path. 

vii) DOSKEY 

PURPOSE:  This command stores all DOS commands typed from the DOS prompt into 

a memory buffer. Commands can then be recalled using the up and down 

arrow keys. By default only a single command is stored in the buffer. It is 

kept in the buffer as long as another command is not executed. With the 

DOSKEY command we can store more than one command in the buffer, 

which can subsequently be recalled. 

FORMATE: DOSKEY [/REINSTALL] [BUFSIZE=n] [/HISTORY] [/INSERT] 

[LOVER TRIKE] 

/INSERT Puts DOSKEY in the insert mode. This lets you insert text within a display 

command. To temporarily activate the overstrike mode the Ins key can be 

pressed.  

/OVERSTRIKE Puts DOSKEY in the insert mode. This lets you insert text within a display 

command. To temporarily activate the insert mode, Ins key can be pressed. 



/RINSTALL:  Clears the buffer. 

/HISTORY Displays all commands presently in the DOSKEY buffer. 

viii)  CLS 

PURPOSE:  Clears the display screen and DOS prompt appears on the top left comer 

of the screen. 

FORMATE: CLS 

ix) TYPE 

PURPOSE:  Display the contents of specified file. 

FORMATE: TYPE [drive:] [path] <filename> 

x) COPY 

PURPOSE:  Copies one or more files to specified or files on specified disk. 

FORMATE: Copy <source-file-spec> <target-file>[Iv] 

/V Causes DOS to verify that the sectors written on the target diskette are 

recorded properly. 

xi) MOVE 

PURPOSE:  Move one or more files to the location you specify. The MOVE command 

can also used to rename directories. 

FORMATE: MOVE [/Y I I-Y] [drive:] [path] [filename] [drive] [path] filename […] 

destination 

/Y Indicates that you want MOVE to replace exiting files(s) without 

prompting you for confirmation. By default, if you specify an existing file. 

MOVE will ask you if you want to overwrite the existing file.  



/-Y Indicates that you want MOVE to prompt you for confirmation when 

replacing an existing file 

xii) REPLACE 

PURPOSE:  Used to selectively replace files on the target disk with files having the 

same name on the source disk. 

FORMATE: REPLACE [DRIVE 1:] [PATH 1] FILENAME [DRIVE 2:] [PATH 2] 

[/A] [IP] [/R] [/W] 

REPLACE [DRIVE 1:] [PATH 1] FILENAME [DRIVE 2:] [PATH 2] 

[IP] [/R] [IS] [IU] [1W] 

/A Copies specified files that are not present on the target disk. Cannot use 

with /S or /U switches  

/P   Prompts you as each file is encountered on the target drive. 

/R   Also replaces read-only files on the target drive. 

/U Searches all directories on the target drive for filenames that match those 

on the source drive. 

/W   Waits for you to insert a diskette before beginning.  

xiii)  RENAME  

PURPOSE:  Changing the name of a file. 

FORMATE:  RENAME [drive:] [path] <old name> <new name> 

xiv)  PRINT 

PURPOSE:  Prints a queue(list) of data on the printer. 

FORMATE: PRINT [/D:device] [IQ:n] [IT] [drive: [path] [filename[….]][/C][IP] 



/D:device Specifies a print device. The valid values for parallel ports are LPT1, 

LPT2 and LPT3. Valid values for serial parts are COM1, COM2, COM3 

and COM4. The values LPT1 and PRN refer to the same parallel port 

which is also the default. 

/Q:n By default 10 files are allowed in the print queue, otherwise the range is 4-

32 /Q:n switch is used to specify the maximum number of files you want 

in the print queue. This should be used before giving any print command. 

/T Terminates print queue i.e. removes all files from print queue. 

/C Cancels printing of the preceding filename and subsequent filenames. 

/P Adds the preceding filename and subsequent filenames to the print queue. 

xv)  PRINT 

PURPOSE:  To delete specified files from specified diskette. 

FORMATE:  [drive:] [path] filename [IP] 

/P Prompts you before the deletion actually occurs. 

xvi) MEN 

PURPOSE:  Displays the amount of used and free memory. 

FORMATE: MEN 

15.5  Editing Commands 

1. How to Start Edit 

To invoke full screen editor the following command is used. 

EDIT 

PURPOSE:  Edit is the full screen editor program available with DOS which allows us 

to create, change and display program and text files. It can be used to: 



 Create new files and save them on disk. 

 Update existing files and save both the updated and original files. 

 Delete, edit, insert and display lines in files. 

 Search, delete or replace txt within one or more lines in a file. 

FORMATE: EDIT [drive:] [path] filename] 

The EDIT program, which is a convenient full screen editor was introduced as a standard 

feature with the release of DOS 5.0. EDIT does not operate without the presence of vertically 

and horizontally. 

2. USING PULL DOWN MENUS 

Once full screen editor is involved you press FI key to display help about the current 

operation. 

The Edit program has four pull down menus which are assessed by pressing the AL T key. 

Once the AL T key is pressed, one can use the left or right arrow key to pull down file, Edit, 

Search and Options. To pull down the menu, either first highlight the required option by use of 

left right arrow keys and press the return key or just type the first letter of the menu name viz. F, 

E, S, or O. Use escape to come out of the menu operations. 

i) FILE:  This menu perform all operations required to open and save files or to exit the 

EDIT program. The various options are: 

NEW  To create a new document, clear the current documents. If any changes have been 

made after the last save, it shall prompt you for saving before clearing it. 

OPEN Open a documents; it prompts for a file name and display a list of file names with 

extension TXT in the current directory. One may type a file name and press return 

or press tab to point into the filename by moving the highlight to it using an arrow 

key, and press return to open the file. Wild cards may be used to list specific 

filenames. One may even use tab key to choose a different directory or drive.  

SAVE Save the current file using the existing file name. 



SAVE AS Save the current file with a new file name. 

PRINT Print either the complete document or a selected part of text. The part is selected 

by highlighting it using shift and arrow keys. 

EXIT Exit the editing session. If the open file has been modified then a chance is given 

to save it before quitting. 

ii) EDIT: This menu performs all operations like cut, copy, paste or delete, selected 

text. Text is selected using the shift and arrow keys.  

CUT Removes selected text from the screen and puts it on clipboard. The shift-Del key 

combination. 

COPY Places the selected text on the clipboard without cutting it from the screen. The 

short-cut is to press Ctrl-Ins key combination. 

PASTE Insert text from the clipboard to the present cursor location. The shortcut is to 

press Shift-Ins key combination. 

CLEAR Delete select text without putting in on the clipboard. The shortcut is to press Del 

key when the cursor is in the selection. 

iii) SEARCH:  This menu perform all operations like locating a specified text string within 

the current document, replacing it with another text string. 

FIND  Finds a specified string. 

REPEAT Finds the next match in the current document. 

LASTFIND The shortcut is to press Ctrl-L or F3 key. 

CHANGE Finds a specified string and replaces it with another. One can verify the change 

before replacement and advance to the next occurrence of the search string.  

iv) OPTIONS: It can be used to change. Display attributes. This menu performs 

all functions like setting up display colors, turning the scroll bar on or off, changing 

the tab stop setting the file path for the EDIT help file. 



DISPLAY Picks foreground and background color from a list, turn the scroll bars on or off, 

and set tab stops.  

HELP PATH Picks the file path in which the EDIT. HELP file is located. 

v) HELP:  It can be used to get help on usage of EDIT. 

15.6  Disk Management Commands 

1. External Commands 

The command files are required every time an external command is to be used. To 

execute any external command, the corresponding file (with COM or EXE extension) is read, 

and the action is carried out on the target diskette/disk. The action may be as per the external 

storage media(s) used. 

2. Commands 

i) Format 

PURPOSE: Initializes the disk on the designated drive to a recording format acceptable to 

DOS. 

All new diskettes and fixed must be formatted before they can be used by DOS.  

Formatting destroys any previously existing data. 

FORMAT FORMAT [drive:] [/S] [/B] [/V][:label] [/1] [/4] [/U] [/Q] [F:size] 

  COMMANDCOM. After formatting the target diskette/disk. 

/B  Reserves area for system files which can be copied later. 

/V[:label] Assigns label to the floppy. Label means assigning name to floppy for further 

reference. Label can be maximum of 11 characters. If not specified now, system 

asks for the label after formatting. 

/1  Formats a diskette for single sided use. 

/4 Formats a 5.25 inch 360 KB floppy disk in a high density (1.2MB) drive 



/U Specifies unconditional format, which destroys all data on the target disk to 

prevent subsequent unformatting with the command. 

/Q Quick format takes less time, this command removes the file allocation table and 

root directory. The disk is not scanned for bad areas.  

/F:Size Sepcifies the size of floppy disk to format such as 160, 180, 320,360, 720, 1.2, 

1.44, 2.88. The unit measurement of disk space is KB, but it is not to be 

mentioned in the command syntax 

ii) UNDELETE 

PURPOSE: Restore files that were previously deleted by using the 7 command. 

FORMAT UNDELETE [drive: Hpath] [filenameHIDTIIDSI/DOS] UNDELETE [ILISTIII 

ALL I/PURGE [drive] I/ST A TUSI/LOAD I/UNLOAD JIS [drive] I/Tdrive[-

entries]] 

/LIST List the delete files that are available to be recovered, but does not recover any 

file. 

/ALL Recovers deleted files without prompting for confirmation on each file. 

/DOS Recovers only those file that are internally listed as deleted by MS-DOS, 

prompting for confirmation on each file. 

/DT Recovers only those files listed in the deletion tracking file, prompting for 

confirmation on each file. 

/DS Recovers only those files listed in the SENTRY directory, prompting for 

confirmation on each file. 

/LOAD Loads the Undelete memory resident program into memory using information 

defined in the UNDELETE.INI file. 

/LOAD Unloads the memory resident portion of the undelete program from memory, 

turning off capability to restore deleted files. 



/PURGE [drive] Deletes the contents of the SENTRY directory. If no drive is specified, 

UNDELETE searches the current drive for the directory. 

/STATUS Display the type of delete protection in effect for each drive. 

/S[drive] Enables the Delete Sentry Level of protection and loads the memory resident 

portion of the UNDELETE program. 

IT drive [-entries] Enables the Delete Tracker level of protection and loads the memory resident 

portion of the UNDELETE program. 

Delete Sentry: 

 Delete Sentry provides the highest level of protection to ensure that you can recover 

deleted files. This level of protection creates a hidden directory named SENTRY. When you 

delete a file, undelete moves the file from its current location to the SENTRY directory without 

changing the record of the file‟s location in the file allocation table ( F AT). If you undelete the 

file, MS-DOS moves the file back to its original location. 

Delete Tracker: 

 Delete Tracker provides an intermediate level of protection. It uses a hidden file named 

PCTRACKER.DEL to record the location of delete file. When you delete a file, MS-DOS 

changes the F AT to indicate that the location of the file is now available for another file. 

Standard: 

The Standard level of protection is automatically available when you switch on your 

computer. Of the three levels of guarding against accidental file deletion, it provides the lowest 

level of protection. It also has the advantage of requiring neither memory nor disk space. 

iii) RECOVER 

PURPOSE If a file or directory cannot be read there may be one or more damaged 

sectors on the disk. To recover the parts of the file or directory that are not 

damaged, the recover command may be used.  

FORMAT RECOVER [drive:][path] filename 



 You cannot retrieve the part of a file that is stored in a defective sector, but 

you can recover the rest of it by using the Recover command. MS-DOS 

reads the file one sector at a time. If any of the sectors are damaged, MS-

DOS removes them from the file. Ms-DOS marks the bad sectors so that 

information cannot be stored there in the future. When the operation is 

complete, the recovered file is stored in the root directory of the disk it 

came from. It is name sequentially beginning with FILEOOOO.REC. 

iv) UNDELETE 

PURPOSE: This command restore the directories and files on a disk after it has been 

formatted or in other words, the UNFORMAT command is used to recover an 

unintentionally formatted disk. It can also restore the disk restructured by 

RECOVER command.  

FORMAT UNFORMAT drive: [/J] 

 UNFORMAT drive: [IU][/L][/TEST] [/P] 

UNFORMAT IPARTN [/L] 

/P  Sends listed information to the connected printer. 

/TEST  Shows how UNFORMAT would recreate the information but does not   

  actually unformat the disk. 

/L Lists all files and sub-directories. It shall not use the file create by MIRROR 

program. 

v) DISKCOPY 

PURPOSE a) Copies track by track, contents of one diskette on to another diskette. 

 b) Previous contents of target diskette get erased.  

FORMAT DISKCOPY [drive 1[drive 2:][/1] 

  Copies only the first side of the disk. 



iv) DISKCOMP 

PURPOSE: Compares the contents of two diskettes track by track and issues a message if 

tracks are not equal. However the source or target cannot be a hard disk.   

FORMAT DISKCOPY [drive 1[drive 2:][/l][N] 

/I  Compares only the first side of the disk. 

/V  Verifies that the information is copied correctly. 

vii) CHKDSK 

PURPOSE: This command scans the disk in the specified drive and checks it for errors. 

  

FORMAT CHKDSK [drive:[[pathname] filename][/F][N] 

/V Displays the name of each directory along with the full path specification as it 

checks the disk. 

/F  Fixed errors on the disk. 

viii) SCANDISK (E) 

PURPOSE: It starts Microsoft Scandisk, a disk analysis and repair tool that checks a drive for 

errors and corrects any problems that it finds.   

FORMAT SCANDISK [drive:[drive:…..] I/ALL][CHECKONLY I/AUTOFIX] [/NOSAVE] 

[NO SUMMARY] 

/ALL Checks and repairs all local drives. 

/AUTOFIX Fixes damages without prompting you first. 

/CHEKONLY    Checks a drive for errors, but does not repair any damage. You cannot use this 

switch with /AUTOFIX. 

/NO SAVE Directors Scan Disk to delete any lost cluster it finds. 



/NO SUMMARY Prevents Scan Disk from displaying a full screen summary after checking 

each drive. 

ix) DEFRAG 

PURPOSE: Reorganizes the files on a disk to optimize disk performance.   

FORMAT DEFRAG [drive:][/F][/S [:]order] [IB[/H] 

  DEFRAGE [drive:] [IV] [IB] [H] 

/F Defragments files and ensures that the disk contains no empty spaces between 

files. 

/U Defragments files and leaves empty spaces, if any between files. 

/S Controls how the files are sorted in the directories. The possible orders are 

N In alphabetic order by name 

-N In alphabetic order by extension 

E In alphabetic order by extension 

-E In reverse alphabetic order by extension 

D By date and time, earlier first 

-D By date and time, latest first 

S By size smallest first 

-S By size largest first 

/B Restarts the computer after files have been reorganized. 

/H Moves hidden files 

x) BACKUP 



PURPOSE Back up one more files from one disk to another. This command can backup files 

on disks of different media (hard-disks and floppy-disks). 

FORMAT BACKUP [drive 1:[path] [file name H drive 2:] [IS] [1M] [IA] [:size]] 

 [D:date[/T:time]][:drive;][path] logfile]] 

 Drive 1 is the disk drive you want to backup. 

 Drive 2 is the target drive to which the files are backed up. 

/S Backs up contents of sub-directories as well 

/M Backs up only those files that have changed since the last backup. 

/A Adds the files to be backed up to those already on the backup disk. It does not 

erase old files on the backup disk. This switch will not be accepted if files exist 

that were backup using backup from version 3.20 or earlier. 

/F:[size] Specifies the size of the disk to be formatted. 

/D: date Backs up only those files that were last modified on or after the specified date. 

/T: time Backs up only those files that were last modified on or after the specified time. 

/L[:drive:HpathHlogfile]] Makes a backup log entry in the specified file. If you do not 

specify <filename>, backup places a file called BACKUP.LOG in root directory of the disk that 

contains the files being backed up. 

xi) RESTORE 

PURPOSE Restores files that were backed up using the BACKUP command 

FORMAT RESTORE drive 1: drive 2: [path [filename]] [IS] [/P] [/B:date] [/A:date] 

[/E:time] [/L:time] [1M] [IN] [/D] 

 Drive 1 specifies the drive on which the backup files are stored. 

 Drive 2 is the target drive on which files are to be restored. 



 Path and filename identifies the file(s) you want to restore. 

/S Restore sub-directories also. 

/P Prompts for permission to restore any file matching the file specification that are 

read only or that have changed since the last backup (if appropriate attributes are 

set) 

/B:date Restores only those files last modified on or before date. 

/A:date Restores only those files last modified on or after date. 

/E: time Restores only those files last modified at or earlier than time. 

/L:time Restores only those files last modified at or later than time. 

/M Restores only those files last modified since that last backup. 

/N Restores only those files that no longer exist on the target disk. 

/D Displays files on the backup disk that match specification. 

xii) XCOPY 

PURPOSE Copies files and directories, including lower level directories if they exist. 

FORMAT XCOPY source [destination] [/YII-Y] [ID:date] [/P] [IS] [IE] [N] [/W] 

 DEFRAG [drive:] [IV] [IB] [/H] 

/D: date Copies source files that were modified on or after the specified date. 

/S Copies directories and lower level directories unless they are empty. 

/E Copies any sub-directories even if they are empty. You must use the IS switch 

with this switch. 

/V Verifies each file while writing. 

/P Prompts before creating each destination file.  



/Y Replace existing file(s) without prompting for confirmation. This switch was not 

available before version 6. 

/-Y Prompts for confirmation before replacing an existing file. 

/W Displays the following message and waits for you response before starting to copy 

files: 

 Press any key to begin copying file(s) 

15.7  Number System 

Any system for representing numeric values or quantities utilizes a number of digits, e.g. 

the decimal system utilizes ten digits 0 to 9. These digits may be arranged in groups, the 

contribution of each digit being made according to the value of the digit and the significance of 

its position in the group. 

Decimal Notation:  The system of writing numbers in which successive digit positions are 

represented by successive powers of 10. 

Examples: 6235 means 

1000s(10
3
) 100s(10

2
) 10s(10

1
) 1s(10

0
) 

6 2 3 5 

=1000×6 +100×2 +10×3 +1×5 

=6000 +200 +30 +5 =6235 

Binary Notation:  A positional notation system for representing numbers in which the radix or 

base in 2. In this system, numbers are represented by two digits, 0 and 1, and each digit position 

represents a power of 2. 

Examples: 10102 is 10 in decimal system as shown below: 

8s(2
3
) 4s(2

2
) 2s(2

1
) 1s(2

0
) 

1 0 1 0 

=8×1 +4×0 +2×1 0+1×0 

=8 +0 +2 +0 =10 



Octal Notation:  The number system using 8 as base or radix. This system uses the digits from 0 

to 7 and each digit position represents a power of 8. 

Example: 2328 is 154 in decimal system as shown below: 

8s(8
2
) 8s(8

1
) 1s(8

0
) 

2 3 2 

+64×2 +8×3 +1×2 

=128 +24 +2 =154 

Hexadecimal Notation:  A notation of numbers with 16 as base or radix. Ten decimal digits 

from 0 to 9 are used and in addition six more character a, b, c, d, e and f are used to represent ten, 

twelve, thirteen, fourteen and fifteen as single characters. Each digit position represents a power 

of 16. 

Example: 21316 means: 

256s(16
2
) 16s(16

1
) 1s(16

0
) 

2 1 3 

+256×2 +16×3 +1×3 

+512 +16 +3 =53110 

Converting from one Number System to Another 

Any number value in one number system can be represented in any other number system. 

There are many methods that can be used to convert numbers from one base to another. 

1. Converting to Decimal from another Base 

Following steps are used to convert to a base 10 value from any other number system: 

Step 1: Determine the positional value of each digit. (This depends on the position 

of the digit and the base of the number system) 

Step 2: Multiply the obtained column Values (in step 1) by the digits in the 

corresponding position. 

Step 3 Sum the products calculated in Step 2. The total obtained is equivalent 

value in decimal. 

i) Binary to Decimal 



This conversion can be done by assigning the values to each position and then 

adding these values together. 

Example: (1101)2 is to be converted to its decimal equivalent 

 According to the steps given above: 

Step 1 & 2:  

Column Number Column Value Digit Column Value 

(from right to left) (step 1) (step 2) 

1 2
0
=1 1×1=1 

2 2
1
=2 0×2=0 

3 2
2
=4 1×4=4 

4 2
3
=8 1×8=8 

=13 

Step 3: Sum of the products 

So, (1101)2 = (13)10 

(1101)2 = (13)10  can also be represented as:  

2
3
 2

2
 2

1
 2

0
 

1 1 0 1 

8×1 +4×1 +2×0 1×1=1 

   =1310 

ii) Hexadecimal to Decimal 

Example:  (IAC)16 is to be converted to its decimal equivalent. 

Step 1 & 2:  

Column Number Column Value Digit Column Value 

(from right to left) (step 1) (step 2) 

1 16
0
=1C×1 12×1=12 

2 16
1
=16 1×16=10×16=160 



3 16
2
=256 1×256=256 

                                                                                      =428 

Step 3: Sum of the products 

So, (IAC)16 = (428)10 

Similarly, (F5)16 = (245)10 can be represented as  

16
1
 ×15+16

0
 ×5 

=16×15+1×5 

=240+5 

=(245)10 

iii) Octal to Decimal 

Example:  (4706)8 is to be converted to its decimal equivalent. 

Step 1 & 2:  

Column Number Column Value Digit Column Value 

(from right to left) (step 1) (step 2) 

1 8
0
=1 6×1=1 

2 8
1
=8 0×8=0 

3 8
2
=64 7×64=448 

4 8
3
=512 4×512=2048 

Step 3: Sum of the products = 2502 

So, (4706)8 = (2502)10 

Similarly, (356)8 = (238)10 can be represented as  

8
2
 ×3+8

1
 ×5+8

0
 ×6 

=64×3+8×5+1×6 

=192+40+6 



=(238)10 

1. Converting from Base 10 to a New Base 

Following steps are used to convert a number from base 10 to a new base: 

Step 1: Divide the decimal number to converted by the value of the new base. 

Step 2: Record the remainder from step 1 as the rightmost of the new base number. 

Step 3: Divide the quotient of the previous division by the of the new base. 

Step 4: Record the remainder from step 3 as the next digit (to the left) of the new base no. 

Repeat step 3 and 4, recording remainders from right to left, until the quotient become zero in 

step. The last remainder obtained will be the leftmost digit of the base number. 

i) Decimal to Binary 

Example:  (62)10 = (111110)2 can be represented as: 

Divisor Quotient Remainder 

2 62  

2 31 0 

2 15 1 

2 7 1 

2 3 1 

2 1 1 

 0 1 

 

ii) Decimal to Octal 

Example:  (428)10 can be converted to its Octal number as follows: 

Divisor Quotient Remainder 

8 952  



8 119 0 

8 14 7 

8 1 6 

8 0 1 

Hence (428)10= (1670)8 

iii) Decimal to Hexadecimal 

Example:  (428)10 can be converted to its equivalent hexadecimal number. 

Divisor Quotient Remainder in 

hexadecimal 

16 428  

16 26 12=C 

16 1 10=A 

 0 1 

 

15.8   Exercises 

Q.1. Answer the following questions: 

1. What are different types of software? 

2. What is an operating system? Discuss briefly differently O.S. 

3. What are the functions of an operating system? 

4. What are the different kinds of operating system? 

5. Explain the following terms: 

a) Linker 

b) Loader 

c) Interpreter 

Q.2. Fill in the blanks: 

1. MS-DOS is a ------(single/multi) user operating system. 



2. WINDOWS-NT is a (single/multi) user operating system. 

3……………. are the programs which take care of application programs running on computer.  

16. --------------- are a set of programs which execute tasks frequencly required in data 

processing.  

Q.3. Fill in the blanks: 

1. An operating system is an application software. 

2. System software and Soft ware package is one and the same thing. 

3. UNIX is a single operating system. 

4. MS-DOS operating system can be used with all IBM compatible personal computer. 

Q. 4.  Convert the following decimal numbers into binary numbers, octal numbers and 

hexadecimal numbers: 

a) 54   

b)123   

c) 259 

d) 101 

e) 78 

Q. 5.  Convert the following hexadecimal numbers into octal and decimal numbers. 

a) ABCD   

b)F23   

c) 49 Al 

d) 1230 

e) 7000 



Q. 6.  Convert the following binary numbers, into decimal numbers: 

a) 101110111   

b)110110101  

15.9  Summary 

This unit covers a detailed discussion about system software along with various 

commands which is to be given to perform a specific function. A brief description of various 

number systems is also provided you may be able to convert a number in a given number to 

another number system after reading this unit.  

15.10   Further Readings 

1. Rajaraman, V.; Fundamentals of Computers 5
th

 ed., Prentic-Hall of India, New Delhi, 

(2007). 

2. Rajaraman, V. and Radhakrishnan T.; Digital Logic and Computer Organisatin, 1
st
 

ed., Prentic-Hall of India, New Delhi, (2006). 

3. Hennessy, J.L. and Patterson, D. A.; Computer Oranization and Design: The 

Hardware/Software Interfaces, Morgan Kauffman Publishers, San Mateo, CA, 

(1994). 
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Block & Units Introduction 

 

The Block - 6 – Basics of Computer Programming, is the sixth block. This block 

includes two units regarding to basics of computer programming and programming languages. 

In Unit – 16 – Algorithm and Flow Charts; described the said topics and various 

example related to these techniques are worked out. 

In Unit – 17 – Programming Language; elements ideas related to various programming 

languages rearranges from machine language to object oriented programming are discussed. 

At the end of block/unit the summary, self assessment questions and further readings are 

given.  



Unit-16: Algorithm and Flow Chart 

Structure 

16.1 Introduction 

16.2 Objectives 

16.3 Algorithm 

16.4 Flow Chart 

16.5 Exercises 

16.6 Summary 

16.7 Further Readings 

16.1  Introduction 

A Computer is a machine which responds to a specific set of instructions in a well-

defined manner. Unfortunately, computers do what we tell them to do and not necessarily what 

we want them to do. There must be no ambiguity in the instructions that we give to a program no 

possibility of alternative interpretations. The computers will always take some course of action 

so that the results we get are those we anticipated. 

Most interesting problems appear to be complex from programming point of view. For 

some problems this complexity must be inherent in the problem itself. In many cases, however in 

can be due to other factor that may be within our control; for example, incomplete or unclear 

specification of the problem. In the development of the computer programs, complexity need not 

always be a problem if it is properly handled and controlled. 

Computer programming can be a difficult task. It is difficult largely because it itself is a 

complex activity, combining many mental processes at a time. We can do a great deal however 

to make it easy. For instance, the task of programming can be made much more manageable by 

systematically breaking it up into a number of less complex subtasks. This may be referred to as 

the divide and conquer approach. The approach of subdividing a task has made considerable 

success in practice. 



Given a task, we separate it into two important phases, namely the problem-solving phase 

and the implementation phase. In the problem-solving phase, weconcentrate on subdividing a 

task into a number of comparatively simpler subtasks. This is equivalent to say that we 

concentrate on designing an algorithm to solve the stated problem (see figure 1.1 below). Only 

after we are satisfied that we have formulated a suitable algorithm, we turn to the details of the 

implementation of this algorithm in some programming language. Thus, given an algorithm that 

is sufficiently precise the translation to a computer program becomes quite straightforward. 

16.2  Objectives 

After the study of this unit, you will be able to: 

 Define a algorithm 

 Set various steps in a program using algorithm 

 Define a flowchart 

 Draw flow chart of various problem 

 

Figure 1.1: Problem solving and Implementation phases 



16.3   Algorithm 

An algorithm can be defined as an unambiguous, ordered sequences of steps that leads to 

the solution of a given problem. Any algorithm will have a start point and a termination point. 

Algorithms can be expressed in any language, from natural languages like English or French to 

programming languages. 

Algorithm the term itself may be new the concept of an algorithm should be familiar. 

Directions given to a particular street constitute an algorithm for finding the street. A recipe is a 

very familiar form of algorithm. A blue print serves the same purpose in a construction project.  

At Christmas time many parents spend exasperating hours following algorithms for assembling 

children‟s new toys. 

We shall require that our algorithm have several important properties. First the steps in an 

algorithm must be simple and unambiguous and must be followed in a carefully prescribed order. 

Second, we shall always insist that our algorithm be effective; that is they must always solve the 

problem in a finite number of steps. We could ill afford to pay the costs computing if this was 

not the case. 

Examples of algorithm are omnipresent even in our everyday life. An interesting example 

is given below: 

Example 1.  Sorting mail: 

A detailed algorithm for sorting mail is as follows. 

Step 1: Get all mail from mailbox 

Step 2: Put mails on table 

 While more mails to sort 

Step 3: Get piece of mail from the table 

Step 4: If piece is personal 

 Read it 



Step 5: If piece is magazine 

 Put in the magazine rack 

Step 6: Else if piece is bill 

 Pay it 

Step 7: Stop 

Typically, when an algorithm is associated with processing information, data are read 

from an input source or device, written to an output sink or device and/ or stored for further 

processing. Stored data are regarded as part of the internal state of the entity performing the 

algorithm. In practice the state is stored in a data structure, but an algorithm requires the internal 

data only for specific operation sets. 

For any computational process, the algorithm must be rigorously defined and specified in 

the way it applies to all possible circumstances that could arise. That is any conditional steps 

must be systematically dealt with case-by-case; the criteria for each case must be clear and 

computable. 

Because an algorithm is a precise list of steps the order of computation will almost 

always be critical to the functioning of the algorithm. Instructions are usually assumed to be 

listed explicitly, and are described as starting „from the top‟ and going „down to the bottom‟, an 

idea that is described more formally by flow of control. 

Algorithms can be expressed in many kinds of notation including natural languages, 

pseudocode, flow charts, and programming languages. Natural language expressions of 

algorithms tend to be verbose and ambiguous, and are rarely used for complex or technical 

problems. Pseudocode and flowcharts are structured ways to express algorithms that avoid many 

of the ambiguities common in natural language statements, while remaining independent of a 

particular implementation language. Programming languages are primarily intended for 

expressing algorithms in a form that can be executed by a computer, but are often used as a way 

to define or document algorithms. Sometimes it is helpful in the description of an algorithm to 

supplement small flow charts with natural language and/ or arithmetic expressions written inside 



block diagrams to summarize what the flow charts are accomplishing. We shall provide below a 

few standard examples to help clarify the designing of an algorithm. The proposed algorithms 

are meant for illustration only, there is always a possibility of alternative designing.  

Example 2: Algorithm for finding out the frequency of a definite integer in a sequence of 

integers: 

Step 1: Let the total number of integers =0 

Step 2: Let the frequency of desired integers =0 

Step 3: Repeat steps 4,5,6 and 7 until the end of the sequence is reached. 

Step 4: Read one integer from the sequence 

Step 5: Add 1 to the total number of integers 

Step 6: If the integer read is the desired integer, add 1 to the frequency of desired integer. 

Step 7: Move to the next integer in the sequence. If no more integer is left in the sequence to go 

step 8 otherwise go back to step 4 

Step 8: Write the frequency of desired integers. 

Step 9: Stop. 

Example 3: Algorithm to pick the largest of three numbers: 

Step 1: Input the numbers X, Y and Z 

Step 2: If X >Y, go to step 3 

 Otherwise go to step 5 

Step 3: If X > Z, Write X as the largest number 

 Otherwise Write Z as the largest number 

Step 4: Stop  



Step 5: If Y > Z Write Y as the largest number 

 Otherwise Write Z as the largest number 

Step 6: Stop 

Example 4: Algorithm to find the largest number in an unsorted list of numbers: 

 The solution necessarily requires looking at every number in the list, but only once at 

each. From this follows a simple algorithm, which can be stated in a high-level description, say 

English prose, as: 

Step 1: Assume that the first item is largest. 

Step 2: Look at each of the remaining items in the list and if it is largest than the largest item so 

far, make a note of it. 

Step 3: The last noted items is the largest in the list when the process is complete. 

Step 4: Stop the process. 

Written in prose but much closed to the high-level-language of a computer programme, the 

following is a more formal coding of the algorithm in pseudocode.  

Step 1: Input the non-empty list of number L. 

Step 2: Largest @ L0 

Step 3: for each item in the list L ≥1, do 

 If the item > largest, then 

 Largest @ the item 

Step 4: Write largest  

Step 5: Stop.  

Example 5: Algorithm to count the number of non-zero observations in a list of n 

observations where n is any positive integer. 



The strategy is to read a particular observation from the list. Check if it is non zero and 

increment a counter. The same procedure is repeated unless all the n observations are 

entertained. The complete algorithm is given below. 

Step 1: initialize non zero observation counter „nzo‟ to „zero‟ 

Step 2: Repeat for the values of I from 1 to n. 

Step 3: Input an observation, say O. 

Step 4:  if Oi = zero go to step 5 

 Otherwise nzo= nzo+1 

Step 5: Go to Step 2 for next i unless i ≤ n. 

Step 6: Write the counter nzo. 

Step 7: Stop. 

Example6: Algorithm to find the roots of a quadratic equation ax
2
+bx+c=0 when 

discriminant is non negative. The roots are to be stored in R1 and R2: 

Step 1: Input a, b, c 

Step 2: Evaluate the discriminant D = b
2
-4ac 

Step 3: Check; if D < zero, go to step 4 

Otherwise evaluate R1 =   −𝑏 −  𝐷 /2𝑎 , 𝑅2 =   −𝑏 −  𝐷 /2𝑎  and go to step 6 

Step 4: Writ4e a message “discriminant is negative” 

Step 5: Go to Step 7 

Step 6: Write R1 and R2 

Step 7: Stop.  



Different algorithm may complete the same task with a different set of instructions in less 

or more time, space or effort than others. For example, given two different recipes for making 

potato salad, one may have peeled the potato before boil thepotato while the other presents the 

steps I the reverse order, yet they both call for these steps to be repeated of all potatoes and end 

when the potato is ready to be eaten.  

The analysis and study of algorithm is a discipline of computer science and is often 

practiced abstractly without the use of a specific programming language or implementation. In 

this sense, algorithm analysis resembles other mathematical disciplines in that if focuses on the 

underlying properties of the algorithm and not on the specifics of any particular implementation. 

Usually, pseudocode is used for analysis as it is the simplest and most general representation.  

16.4  Flow Chart 

Before writing a programme of any significant complexity, it is necessary to first specify 

it clearly. In the earliest days when programs were to be written it was not clear how they should 

be specified. As there was no sense at the time of software engineering as a proper discipline it 

was thought that specifying the execution sequence of a program was all that was required and 

flow charts were born.  

Flow chart is a pictorial representation of an algorithm which is primarly drawn to 

formulate and understand the technicalities of the programme. A standard convention, consisting 

of various shapes is used to draw a flow chart. Each shape denotes a particular instruction. The 

step-by-step process is shown with lines, arrows, and boxes of different shapes demonstrating the 

flow of the process. 

Flow charts are very useful in program development and provide excellent 

documentation with a good visual impact. The main advantage of drawing a flow chart is that is 

that one is not concerned with the nuances of programming language and the major 

concentration remains on the logic of the task to be executed. Moreover, a flow chart, being in 

pictorial form, helps to detect errors in logical sequence if any.  

The commonly used symbols in a flow chart are given below. 



1. Terminator:  An elongated oval flow (rectangle with rounded ends) chart shape 

indicating the start or end of the process. It is the first and the last symbol that is used in 

the program logic and usually contains the word “Start” and “End”. 

 

 

 

 

2. Input/ Output:  A box in the shape of aparallelogram denotes either an input (such as a 

Read), or an output (such as a Write). 

 

 

 

3. Processing:  The symbol used for processing is a rectangle and is used in a flowchart to 

represent arithmetic and data movement instructions. 

 

 

4. Decision:The symbol used for this purpose is a rhombus (a diamond shaped box), the 

point at which decision has to made and that allows branching. The condition for making 

the decision should be clearly mentioned in the dialogue box. A diamond usually has one 

arrow leading in, and two or more leading out, denoting different ways the control can 

proceed from that point. A diamond is used in cases of decisions statements like, “ If A is 

less than 10, proceed to add B to C; else multiply C and D,”. 

 

 

 



5. Flow lines:  Flow lines, represented with arrows are used to indicate the flow of 

operation. Thus, the application of flow lines is to represent the exact sequence in which 

the instructions are to be executed. 

 

6. Connector:Whenever the number and direction of flow lines become messy, it is useful 

utilize the connector symbol as a substitute for the flow lines. A connector is represented 

by a circleand sometimes a letter or a digit is placed within the circle to indicate the link. 

 

 

 

A basic flowchart identifies the starting and ending points of a process, the sequence of actions 

in the process and the decision or branching points along the way, A basic flow chart looks like. 
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The benefits of flowchart are as follows: 

1. Communication: Flow charts are better way of communicating the logic of a system to 

all concerned. 

2. Effective analysis:  With the help of flow chart a problem can be analysed in more 

effective way. 

3. Proper documentation: Program flow chart serve as a good program documentation, 

which is needed for various purposes. 

4. Efficient coding:  The flow charts act as a guide or blueprint during program 

development phase. 

5. Proper debugging: The flow chart helps in debugging process.  

6. Efficient program maintenance: The maintenance of operating program becomes easy 

with the help of flow chart. It helps the programmer to put efforts more efficiently on that 

part. 

7. There are certain limitations of flow charts as well, we have listed below some of the 

important limitations of flow charting. Also, since flow chart is merely a pictorial 

representation of an algorithm most of the benefits and limitations are applicable to 

algorithm as well except those which are specific to diagrams only. 

1. Complex logic: Sometimes the program logic is quite complicated. In that case, flow 

chart becomes complex and clumsy. 

2. Alternations and modifications: If alterations are required the flow chart may require re 

drawing completely. 

3. Reproduction: As the flow chart symbols cannot be typed reproduction of flow chart 

becomes a problem. 

4. The essentials of what is done can easily be lost in the technical details of how it is done. 

Some examples on flow- chart are given below 

Example 6: Flow chart to pick the largest of three numbers: 

Algorithm to pick the largest of three numbers was attempted in example 3. The following 

figure shows the flow chart of the same example. 



 

Figure 1.2: A flow chart to pick the largest of three numbers X, Y and Z. 

Example 7: Flow chart to count number of non zero observation in a list of n 

observations: 

The solution to this example in the form of algorithm was provided in example 5. We 

shall draw below a flow chart based on the various steps of the algorithm. In the illustration, 

we have used a new pictorial representation, a hexagon, in which the number of repetitions 

and the last of repetition are shown.  



 

Figure 1.3: A flow chart to count number of non-zero observation in a list of n observations. 

Example 8: Flow Chart to obtain factorial of positive integer n: 

 The factorial of n can be defined as the product of first n natural numbers. In order to draw a 

flow chart, we first require to input the number of observations, and then initialize and set 

two variables to unity. The first of these two variables will simply act as a counter whereas 

the second will be updated at each step and finally result in the required factorial. The 

following figure shows the flow chart for obtaining the factorial of a given number n. The 

algorithm of the problem has not been shown but it is presumed that it can be done routinely 

once the flow chart is understood. 



 

Figure 1.4: A flow chart to obtain factorial of a positive integer n. 

Some Guidelines on Flow charting 

a. While drawing a flow chart all necessary requirements should be listed out in logical 

order. 

b. The flow chart should be clear, neat and easy to follow. There should not be any room for 

ambiguity in understanding the flow chart. 

c. The usual direction of the flow of a procedure must be from left to right or from top to 

bottom. 

d. Only one flow line should come out from a process symbol. 



e. Only one flow line should enter a decision symbol but two or three flow lines, one for 

each possible answer, may leave the decision symbol. 

f. Only one flow line is used in conjunction with a terminal symbol.  

g. A brief description should be written within a standard symbol. If necessary, we can use 

the annotation symbol to describe data or computational steps more clearly. 

h. If theflow chart becomes complex, it is better to use connectors to reduce the number of 

flow lines. We should always avoid the intersection of flow lines if we require it to be 

more effective and better means of communication. 

i. We should always ensure that a flow chart has a logical start and finish. 

j. It is useful to test the validity of the chart by passing through it with a simple test data. 

16.5   Exercises 

E-1. Write an algorithm and draw a flow chart to obtain the average height of boys and girls 

separately in a class of n students. The data for each student is available on separate record in the 

form of roll number, sex identification code, and height. 

E-2. Write an algorithm and draw a flow chart to pick the largest of four real numbers. 

E-3. Write an algorithm and draw a flow chart to convert Centigrade temperature to Fahrenheit. 

E-4. Write an algorithm and draw a flow chart to evaluate S1 =  𝑋𝑖
𝑛
𝑖=1  and S2 =  𝑋1

2 −𝑛
𝑖=1

 𝑠1/𝑛 2 

E-5. A Fibonacci sequence is defined as 0,1,1,2,3,5,8,13,21,34,55, 89………  The first and 

second terms in the sequence are 0 and 1, respectively and the third and subsequent terms are 

found by adding the preceding two terms. Draw a flow chart to obtain all the numbers in 

Fibonacci sequence that are less than 200. 

E-6. Draw a flowchart to arrange a given set of data in an ascending order. 

E-7 For given a, b, c and d draw a flow chart to evaluate the function 

𝑓 𝑥 =  
𝑎𝑥3 + 𝑏𝑥 + 𝑐. 𝑒𝑥𝑝 𝑎𝑏𝑥 , 𝑖𝑓   𝑥 < 𝑑

𝑎𝑥3 + 𝑏𝑥 + 𝑐, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
  



16.6   Summary 

Algorithm is a set of steps for solving a particular problem. To be an algorithm, a set of 

rules must be unambiguous and have a clear stopping point. Algorithm can be expressed in any 

language, from natural languages like English or French to programming languages like 

FORTRAN or C. 

We use algorithms every day, for example, a recipe for baking a cake is an algorithm. 

Most programs with the exception of some artificial intelligence applications, consist of 

algorithms. Inventing elegant algorithms- algorithm that are simple and require the fewest steps 

possible – is one of the principal challenges in programming. 

Flow chart is a visual explanation of an activity or process by means of pictorial 

representations. Each action is represented by a shape which leads on to the next action or 

actions, each shape attached to the next by a line to denote the flow of the activity. 
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17.1   Introduction 

A Computer consists of two basic parts Hardware and Software. The process of software 

development is called programming. A computer can neither think nor make judgments on its 

own. It needs a program to tell it what to do. Programming, which is critical step in data 

processing, is a challenging and detailed process which begins with formulating the algorithms. 

Once an algorithm is obtained the next step for a solution using a computer would be to program 

the algorithm using mathematical and data processing techniques.  

A programming language is an artificial language that can be used to control the 

behavior of a machine, particularly a computer. Programming languages like natural languages 

are defined by syntactic and semantic rules which describe their structure and meaning 

respectively. Many programming languages have some form of written specification of their 

syntax and semantics; some are defined only by an official implementation.  

Programming languages are used to facilitate communication about the task of organizing 

and manipulating information, and to express algorithms precisely. Some authors restrict the 



term “programming languages” to those languages that can express all possible algorithms; 

sometimes the term “computer language” is used for more limited artificial languages. 

Prominent purpose of programming languages is to provide instructions to a computer. 

As such programming languages differ from most other forms of human expression in that they 

require a greater degree of precision and completeness. When using a natural language to 

communicate, speakers can be ambiguous and make small errors, and still expect their intent to 

be understood. However, as mentioned earlier, computers do exactly what they are told to do, an 

cannot understand the code the programmer “intended” to write. The combination of the 

language definition and the program‟s inputs must fully specify the external behavior that occurs 

when the program is executed. 

Many languages have been designed from scratch, altered to meet new needs, combined 

with other languages and eventually fallen into disuse. Although there have been attempts to 

design one “universal” computer language that serves all purposes, all of them have failed to be 

accepted in this role. The needs for diverse computer languages arises from the diversity of 

contexts in which languages are used. 

One can of courses use any language for writing a computer program according to the 

need. The language that any computer can actually understand and execute is its own native 

binary machine code (in the form of sequences of 1s and 0s). Programs written in any other 

language must be translated to the binary representation of the instructions before they can be 

executed by the computer. Computer programs can be broadly classified as follows. 

17.2   Objectives 

A computer consists of two basic parts Hardware and Software. 

 What is programming language 

 The difference between machine language, assembly language and high-level language. 

 The concept of object-oriented programming 

 About various programming language generations. 

17.3   Machine Language 



The machine language can be defined as a sequence of instructions written in the form of 

binary numbers consisting of 1s and 0s. Thus, in machine language the instructions are patterns 

of bits with different patterns corresponding to different commands to the machine. Since a 

machine language consists only of 1s and 0s, a computer can respond directly to it. The machine 

language is lowest possible level of language in which it is possible to write a computer 

programme. All other languages are said to be high level according to how closely they can be 

said to resemble machine code. Initially the machine language was referred to as a code but now-

a-days the word code has a broader meaning and it refers to any program text. 

Every Central Processing Unit (CPU) model has its own machine code, or instruction set. 

Successor or derivative processor designs may completely include all the instructions of a 

predecessor and may add additional instruction. Some nearly completely compatible processor 

designs may have slightly different effects after similar instructions. Occasionally a successor 

processor design will discontinue or alter the meaning of a predecessor‟s instruction code, 

making migration of machine code between the two processors more difficult. Even if the same 

model of processor is used two different systems may not run the same example of machine code 

if they differ in memory arrangement operating system or peripheral devices; the machine code 

has now embedded information about the configuration of the system. 

A machine code instruction set may have all instructions of the same length, or may have 

variable-length instructions. How the patterns or organized depends largely on the specification 

of the machine code. Common to most is the division of one field (often known as the „opcode‟) 

which specifies the exact operation (for example “add”). Other fields may give the type of 

the„operands‟, their location, or their value directly(operands contained in an instruction are 

called immediate). Some exotic instruction sets do not have an opcode field (such as Transport 

Triggered Architectures or the Forth virtual machine) and have operands(s) only. Other 

instruction sets lack any operand fields. 

The main advantage of a machine language is that a program written in a low-level 

language can be extremely efficient, making optimum use of both computer memory and 

processing time since the computer directly starts executing it. However, writing as well as 

understanding a machine language is a tedious task since writing a low-level program takes a 

substantial amount of time as well as a clear understanding of the inner workings of the 



processor itself. This is the cause that a low-level programming language is typically used only 

for very small programs, or for segments of code that are highly critical and must run as 

efficiently as possible.  

17.4      Assembly Language and Assembler 

An assembly language is a low-level language for programming computers. It 

implements a symbolic representation of the numeric machine codes and other constants needed 

to program a particular CPU architecture. This representation is usually defined by the hardware 

manufacturer, and is based on abbreviations (called mnemonics) that help the programmer 

remember individual instructions, registers, etc. An assembly language is thus specific to a 

certain physical or virtual computer architecture (as opposed to most high level languages, which 

are portable).  

A program written in assembly language consists of a series of instructions mnemonics 

that correspond to a stream of executable instructions that can be loaded into memory and 

executed. For example, an x86/IA-32 processor can execute the following binary instruction as 

expressed in machine language: 

 Binary: 10110000 01100001 (Hexadecimal: 0xb061) 

The equivalent assembly language representation is easier to remember (more mnemonic): 

 Moval, #061h 

This instruction means: 

 Move the hexadecimal value 61 (97 decimal) into the processor register named 

“al”. 

The mnemonic “mov” is an operation code or opcode, and was chosen by the instruction 

set designer to abbreviate “move”. A comma- separated list of arguments or parameters follows 

the opcode; this is a typical assembly language statement. (Actually, 10110000 is the actual 

opcode; “mov” is its corresponding assembly language opcode mnemonic.  However, in practice 

many programmers drop the word mnemonic and technically incorrectly, call “mov”an opcode. 



When they do this, they are referring to the underlying binary code which it represents. To put it 

another way, a mnemonic such as “mov” is not an opcode, but as it symbolizes an opcode, one 

might refer to “the opcode mov” for example, when one intends to refer to the binary opcode it 

symbolizes rather than to the symbol the mnemonic- itself.  

Instructions in assembly language are generally very simple and typically consists of an 

operation or opcodeplus zero or more operands. Most instructions refer to a single value, or pair 

of values. Generally, an opcode is a symbolic name for a single executable machine language 

instruction. Operands can be either immediate or the addresses of data elsewhere in storage. 

Assembly languages were first developed in the 1950s, when they were referred to as 

second generation programming languages. They eliminated much of the error prone and time 

consuming first generating programming needed with the earliest computers, freeing the 

programmer from tedium such as remembering numeric codes and calculating addresses. They 

were once widely used for all sorts of programming. However, by the 1980s (1990s on small 

computers), their use had largely been supplanted by high level languages in the search for 

improved programming productively. Today assembly languages in the search for improved 

programming productivity. Today assembly language is used primarily for direct hardware 

manipulation or to address critical performance issues. Typical uses are device drivers, low-level 

embedded systems, and real time systems.  

We illustrate assembly language by giving an example of adding two numbers and then 

storing the result in some memory location. The codes defined here are used for illustration only 

and they are not matched with actual mnemonics. 

LDX, 10   : Load register X with 10 

LDY, 23  : Load register Y with 23 

ADD X, Y   : X ← X+Y 

LD (100), X  :  Save the result in the location 100 

HALT  : Halt process 



Assembly language is a low-level language because the structure of the language reflects 

the instruction set (and architecture) of the CPU and is considered to be a second-generation 

language. LD, ADD, HALT, etc. used in the above program are called mnemonic codes. The use 

of mnemonics no doubt increases the readability of the program as compared to machine 

language. However, this readability is only for the benefits of the programmer and not for the 

computer. A computer cannot directly execute an assembly language since it is not in the form of 

binary codes. The assembly language program must be translated into machine code so that the 

computer can execute it. The program used for this purpose is called an assembler.  

The assembler program recognizes the character strings that make up the symbolic names 

of the various machine operations and substitutes the required machine code for each instruction. 

At the same time, it also calculates the required address in memory for each symbolic name of a 

memory location, and substitutes those addresses for the names. The final result is a machine 

language program that can be directly executed by a computer at any time. Once the assembler 

has converted the assembly language into binary form or in machine language form, the 

assembler and the assembly language program are no longer needed. To help distinguish 

between the “before” and “after” versions of the program the original assembly language 

program is known as the source code, while the final machine language program is designated 

the object code. Fig 2.1 explains the above process explicitly.  

 

 

Fig. 2.1 Functioning of an assembler 

Most assemblers also support pseudo-operation, which aredirectives obeyed by the 

assembler at assembly time instead of the CPU at run time. For example, pseudo-ops would be 

used to reserve storage areas and optionally set their initial contents. Often the names of pseudo-

ops start with a dot to distinguish them from machine instructions. Some Assemblers also 

support pseudo- instructions, which generate two or more machine instructions.  

An important task of assembler is to check for possible errors in the symbolic program. 

This is called error diagnostics. One such error may be an invalid machine code symbol if it is 

Assembly Language 

Program 
Object code in 

Machine language 

Assembler 



detected in the program. An assembler cannot translate a symbol if it is not taken from the list of 

available codes and, as such, it does not know its binary equivalent. In such a case, the assembler 

prints an error message to inform the programmer that his symbolic program has an error at a 

specific line of code. Another possible error may occur if the program has a faulty symbolic 

address. Other errors may also occur if the program has a faulty should detect all such error may 

also occur and practical assembler should detect all such errors and convey messages 

accordingly.  

One of the greatest demerits of assembly language is that it is specific to particular 

machine architecture. Assembly language programs written for one processor will not work on a 

different processor if it is architecturally different. In other words, we can say that assembly 

language programs are not portable. Programmers still use assembly language when speed is an 

essential component or when they need to perform an operation that is not possible using a high-

level language. 

17.5        High-Level Language 

 The main disadvantages of machine and assembly languages were that the time and cost 

of creating these languages were quite high. This was the prime motivation for the development 

of high-level languages. A high-level programming language is more abstract to use and portable 

in comparison to low level languages.  

The terms “high level language” does not imply that the language is always superior to 

low level programming languages. Rather high-level languages refer to the higher level of 

abstraction from machine language. Rather than dealing with registers, memory addresses and 

call stacks, high level languages deal with variables, arrays and complex arithmetic or Boolean 

expressions. In other words, we can say that thigh level languages make complex programming 

simpler, while low level languages tend to produce more efficient code. Portability is also a 

feature of high-level languages. Programs written in high level language will run on a variety of 

different systems and will produce the same results regardless of the platform. Besides high-level 

languages are more expressive and secure. Fortran 90, FORTRAN 77, ADA, Pascal C, JAVA 

etc. are examples of high-level languages. The following figure gives the hierarchy of 

programming languages.  



 

Figure 2.2: Hierarchy of programming languages 

 

A high-level source program must be translated into the form the machine can 

understand. This is achieved by compiling (translating) a high-level language program with a 

special piece of software called a complier. A complier takes the source code as input and 

produces as output the machine language code of the machine on which it is to be executed. 

During the process of translation, compiler reads the source program statement wise and checks 

the syntax errors. If there is any error the computer generates the print out of the errors. This 

action is known as debugging.Typically, the complied machine code is less efficient than the 

code produced when using assembly language. This means that it runs a bit more slowly and 

uses a bit more memory than the equivalent assembled program. To offset this drawback 

however we also program, so it can be ready to go sooner than the assembly language program. 

Interpreter is another type of translator which does the translation from high level 

language to low level language to low machine language. Interpreters are easy to write and they 

do not require large memory and spaces in the computers. Such a program resides in memory 

and directly executes the high-level program by taking one statement at a time and translating it 

into the machine instruction. This process directly executes the use‟s program has both 

advantages and disadvantages.  

The primary advantage is that you can run the program to test its operation make a few 

changes, and run it again directly. There is no need to recompile because no new machine code is 



ever produced. This can enormously speed up the development and testing process. On the down 

side, this arrangement requires that both the interpreter and the user‟s program reside in memory 

at the same time. In addition, because the interpreter has to scan the user‟s program one line at a 

time and execute internal portions of itself in response; execution of an interpreted program is 

much slower than for a complied program. 

Higher level programming languages are, therefore divided for convenience into 

complied languages and interpreted languages. However, there is rarely anything about a 

language that requires it to be exclusively complied or exclusively interpreted. The 

categorization usually reflects the most popular or widespread implementations of a language – 

for instance, BASIC is thought of as interpreted language, and C a complied one, despite the 

existence of BASIC compilers and C interpreters.  

17.6             Object Oriented Programming 

The leaps and bound growth of the computer sophistication in modern times as incited in 

users to demand for software that harness the capabilities of sophisticated hardware such as the 

Macintosh-II and the PS/2 family of computers. In addition to these users are no more satisfied 

with the applications that are not user friendly or that have numerous bugs that have to be 

worked around. A recent approach in this direction is object-oriented programming language 

(OOPL). The genesis of this technology dates back to the early 1960s with the work of Nygaard 

and Dahl in the development of the first object-oriented language called Simula67. Research 

progressed through the 1970s with the development of Smalltalk at Xerox.   

Object oriented programming (OOP) is a programming paradigm that uses “object” and 

their interactions to design applications and computer programs. Here, objects are the modular 

units that are made by combining the groups of operations and data. Every object has both state 

(data) and behavior (operations on data). In that they are not much different from ordinary 

physical objects. This resemblance to real things has given objects much of the power and 

appeal. They can not only model components of real systems, but equally as well fulfill assigned 

roles as components in software systems. OOPL lets us to combine objects into structured 

networks to form a complete program. One of the principal advantages of object-oriented 

programming techniques over procedural programming techniques is that they enable 



programmers to create modules that do not need to be changed when a new type of object is 

added. A programmer can simply create a new object-oriented program easier to modify. In an 

OOPL objects and object interactions are the basic elements of design. In addition to this it is 

based on several other techniques viz., Inheritance Modularity, Polymorphism and 

Encapsulation.  

Critical to understanding of OOPL is the concept of inheritance. Objects are defined and 

then used to build a hierarchy of descendant objects. Each of the descendant objects has the 

inheritance to access to methods used by ancestor objects. 

Modularity is the property that measures the extent to which the programs have been 

composed out of separate parts called modules. A modular approach to programming is gaining 

popularity in fields of artificial intelligence system integration, where a large-scale general 

system is composed of modules that each serve a specific purpose and communicate with each 

other to produce the system‟s overall behavior. 

Polymorphism in object-oriented programming is the ability of objects belonging to 

different data types to respond to method calls of method of the same name, each one according 

to an appropriate type specific behavior. One method or an operator such as +, -, or *, can be 

abstractly applied in many different situations. Polymorphism is the use of one operator such as 

“+”, to operator, for example may be used to perform integer addition, float addition, list 

concatenation or string concatenation. 

Encapsulation conceals the functional details of a class from objects that send messages 

to it. Encapsulation is achieved by specifying which classes may use the members of an object. 

The result is that each object exposes to any class a certain interface – those members accessible 

to that class. The reason for encapsulation is to prevent clients of an interface from depending on 

those parts of the implementation that are likely to change in future thereby allowing those 

changes to be made more easily, that is without changes to clients. 

Object oriented (OO) applications can be written in either conventional languages or 

OOPLs, but they are much easier to write in languages especially designed for OO programming. 

OO language experts divide OOPLs into two categories, hybrid languages and pure OO 

languages. Hybrid languages are based on some non-OO model that has been enhance with OO 



concepts. C++ (a superset of C), Ada95, and CLOS (an object-enhanced version of LISP) are 

hybrid languages. Pure OO languages are based entirely on OO principles; Smalltalk, Eiffel, Java 

and Simula are pure OO languages.  

17.7             Programming Language Generations 

 In this section, we have categorized the languages according to various generations. 

Languages in some of the categories have not been one or other category of the previous 

descriptions. 

1GL or first- generation language was (and still is) machine language or the level of instructions 

and data that the processor is actually given to work on (which in conventional computers is a 

string of 0s and 1s). 

2GL or second-generation language is assembly language. A typical 2GL instruction looks like 

this: 

ADD 12, 8 

As assembler converts the assembly language statements into the machine language. 

3GL or third generation language is a programming language designed to be easier for a human 

to understand, including things like named variables. A fragment might be 

b= c+2*d 

Fortran, ALGOL and COBOL are early examples of this sort of language. Most 

“modern” language such BASIC, C, C++, Java and including COBOL, Fortran, ALGOL and 

third generation languages. Most 3GLs support structured programming. A complier converts the 

statements of a specific programming language into machine language. A 3GL requires a 

considerable amount of programming knowledge. 

4GL or fourth generation language is designed to be closer to natural language than a 3GL. 

Languages for accessing databases are often described as 4GLs. A 4GL statement might look 

like this: 



EXTRACT ALL CUSTOMER WHERE “PREVIOUS PURCHASES” TOTAL MORE 

THAN Rs. 5000 

5GL or fifth generation language is programming that uses a visual or graphical development 

interface to create source language that is usually complied with a 3GL or 4GL complier. 

Microsoft, Borland, IBM, and other companies make 5GL visual programming products for 

developing applications in Java, for example. Visual programming allows you to easily envision 

object-oriented programming class hierarchies and drag icons to assemble program components. 

17.8     Exercises 

1. What do you mean by programming language? Mention its uses. 

2. Distinguish between Machine Language and programming language? 

3. How does assembly language differ from programming language and machine language? 

4. Describe high level language. 

5. Explain the meaning of object-oriented programming? 

17.9        Summary 

A programming language is an artificial language that can be used to control the 

behavior of a machine, especially a computer. 

In machine language the Instructions are patterns of bits with different patterns 

corresponding to different commands to the machine. It is specific to a particular processor and 

therefore, writing a machine language program requires detailed knowledge of the internal 

structure.  

Assembly Language is a symbolic representation of the numeric machine codes and 

other constants needed to program a particular CPU architecture. This representation is usually 

defined by the hardware manufacture, and is based on abbreviations, called mnemonics. This is 

also machine dependent. The assembly language program is translated into machine code before 

it is executed by the computer. The program used for this purpose is called an assembler. 

High level language refers to the higher level of abstraction from machine language. 

Rather than dealing with registers, memory addresses and call stacks, high level languages deal 



with variables, arrays and complex arithmetic or Boolean expressions. Theses languages are 

machine independent and procedure oriented. A program written in high level language is 

translated to the equivalent machine code by a translator program. 

The translator program can be either Interpreter or Complier. The former translates the 

program one statement at a time whereas the latter translates the entire program to machine code 

before the execution. 

Object- oriented programming (OOP) is a paradigm that uses “object” and their 

interactions to design applications and computer programs. Here objects are the modular units 

that are made by combining the groups of operations and data. OOP language lets us to combine 

objects into structured networks to form a complete program. 
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