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ANALYTICAL GEOMETRY

This is & short course < two and three-dimensional coordinate geomelry in whlch
we shall only deal with conics &nd conlcoids.

A.s you know from your earlier study of mathematics, anaiytical geometry uses the
ideas of a coordinate system. Such a system was invented by René Descartes, and
published by him in 1637 in 'L Geometrie’. This was the first major step in the
development of anralytical geometry. His procedure in this work was to begin with
a geometric problem, convert'it into the language of algebraic equations, simplify
the equations, and then solve the equations gcbmclricnlly. Thus, he was the first
person to formally present 2 one-to-ane correspondence betweén algebra and
geometry. Of course, long before this the Arab mathematician al-Khwarizmi
(approximaiely 825 AD) used geometric figures as aids for solving problems in
algebra. The ancient Indian mathematicians like Bhaskara (approx. 1150 AD) also
did the same.

In 'La Geometrie' Descartes also did a detailed examination of the gencral
equation of a conic passing through the origin. He was not (he first to do so.
Many centuries before him, the ancient Greek mathematician Apollonius (e. 225
BC) had written his treatise, ‘Conics’. In this book he defined a copic, or conic
section, to be any curve that is obtained when a plane cuts a cone. Befare him
Menaechmus had studied the properties of these curves in derail. But the Greeks
used geometric methods to study conics. What was so refreshingly different about
Descartes’ approach was that he studied conics from an algebraic point of view.
He indicated conditions on the coefficients under which the coni¢ would be an
ellipse, 2 parabola or a hyperbola. But his presentation wasn't easy to follow.

It was only in the late 18th century that mathematicians like Hachette, Biot
and Monge made analylical geometry accessible to students of mathematics. In
Block | of this course we will expose you to their elementary approach to the
study of cari from an analytical point of view.

We start with conics in standard form, which you may be familiar with. We obrain
their equations and elaborate on some of their properties. Then we generalise this
study and show you that any second degree eguation in x and y represents a conic
section. We also define a tangent and normal to a conic and obtain their
equations.

Some properties of conics have very useful applications in astronomy, geology.
architecture, physics, electronics, engineering, military science, and other areas. We
will also discuss these properties and their uses.

In Block 2 we start our discussion of three-dimensional analytical geometry. We
-_specifically deal with spheres, cones and cylinders. In it you will study that a circle
cdn be obtained by taking a planar section of a sphere. You will also sce how
Apollonius's definition and the modern definition of conics lead'us to the same
curves, .

In Block 3 of this course wexfocus on conicoids, which are surfaces that are
represented by a second degree caquation |n 3 variahles. We will intraduce vou to
their standard forms, and discass their elementary properiies. You will see that a
planar section of a comcord is 2 conic, and the type of conic depends on the

- conicoid Lhat you start with.

We have prepared this course with two assumptions in mind, Firstly, we assume
that you have already studicd the material coversd in our course Blementary
Algebra (MTE-04). The second assumption is that you are familiar with some

. elementary two-dimensionai analytical geometry. This includes equations of lines
and properties of a circle in R2. Since we will be referring to these equations and-
related properties throughout Block 1, we have briefly cuvered what we need in
Umt 1.




Now, a word about the way we have presenied this course. In each of the three
blaocks we have first introduced vou to_the block. Then we have presented the units
of the block. In cach unit voy will find plenty of exercises interspersed with the
texi. Please try them as and when you come to them. They are meant to help vou
cheek whether vou’ve underciond the material that is being discussed. We have
alsa given our solutions 10 the excreises in a section at the end of the unir.

Al the end of each block’ WL have given a ser of miscellaneous exerélses covering !
the contents of the block. "Doing them will give you a better grasp of the concepis
given in the course, though it is noi riccessary for you 1o do them.

While vou go through the course, you will notice that each unit is divided into
sections. These sections are often further divided into sub-sections. The
sections/sub-sections of a unit arc numbered sequentially, as are the ‘exercises,
thearems and important equations in it. Since the material in the different units is
heavily interlinked, we do a o1 of cross-referencing For this purpose we usc the
noratien Sec. x. ¥ o mean Section y of Unit x,

Another. compulsory cornponent of this course is an assignment, which you should
altempl after studying all the blocks of the course. Your counsellor will evaluate it
and return it to you with detailed comments. Thus, fhe assignment is a teaching as
well as an assessment aid.

The course material that we have senl you is self-sufficient, If you have a problem
in understanding any portion of it, please ask your counsellor for help. Also, if
you feel like studying any topic in greater depth, you may consult :

1) A Textbook of Coordinate Geometry'' by Ramesh Kumar, Konark Publishers,
1991,

3} “*Analytical Solid Geometry™ by Shanti Narayan, S. Chand.
3 “"Mathematics. A Tcx!hnlok for Class X1, Part I'', NCERT.

These books will be available a1 your Study Centre. i

We hope you will enjoy this course!




BLOCK 1' CONICS

F
With this block we start our discussion on analytical geometry. In the three units
of this block we will restrict ourselves 1o two dimensions. We starl with a
preliminary unit, in which we help you recall the various equations of a line. In it
we also intreduce you to rigid body motions, the concept of symmelry about a line
or a point, and polar coordinates. You must he familiar weth most of this material -

But it will be used often in the ather twn units, and lherefmc we thouzht it necessary

to include in the course.

In the next unit we introduce you to conics, and obtain their standard cquations.
We also discuss their geomeirical properties and irace them,

In the final unit of this block, we prove that any second degree cquation represents
a.conic. We discuss the conditions under which the equation represents an ellipse,
a hyperbola, a parabola or a pair of lines, We alsu show you how to trace any
conic and obtain its tangents. We end with a discussion on the curves ablained by

.intersecting two conics.

We end the block w:th a set of exercises that cover the contcmq of the whole®
block. . .

In the next block we shall go to thrée-dimensional space. But we shall often use
what is covered in this block. So, before going to the next bleck, pleasc ensure
that you have achieved the objectives of the units in this block.







UNIT 1 PRELIMINARIES IN PLANE
a GEOMETRY -

" Structure
1.1 ‘Introduction
v Objectives |
. 1.2 Equations of a Line
1.3 Symmetry

1.4 Change of Axes
Translating the Axes
Rotating the Axes

1.5 Polar. Cbordinatcs
1.6 Summary
. 1.7 Solutions/Answers

il

1.1 INTRODUCTION

In this short unit, our aim is to re-acquaint you whh- some two-dimensional

* geometry. We will briefly touch upon the distance formula and various ways of
representing a line algebraically. Then we shall look at the polar represcntation of
a point in the plane. Next, we will talk about what symmetry with respeet to the

*  origin or a coordinate axis is. Finally, we shall consider some ways in which a

coordinate system can be transfo:m_ed.

This collection of topics may seen random to you. But we have picked thetn
-according to our need. We will be using whatever we cover here, in the rest of the
block. So, in later units we will often refer to a section, an equation or a formula
~ from this unit.

You are probably familiar with the material covered in this unit. But please go
through the following list of ohjectives and the exercises covered in the unit to
make sure. Otherwise you may have some trouble in later units,

Objectives

Alfter studying this unit, you should be able to

® find the distance between any two points, or a point and a line, in two- .
dimensional space; .

@ obtain the equation of a line in slope-intercept form, point-siope form, two-
point form, intercept form or normal form;

&. check if a curve is symmetric with respect to either coordinate axis or the
grigin; )

@ effect a change of coordinates with a shift ir origin, or with a rotation of the
- AxEs;

& relate the polar ¢coordinates and Cartesian coordinate: of a point;

@ obtain the polar form of an equation.
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1.2 FQUATIONS OF A LINE

In this seclion we aim 10 refresh your merrory abiout the ways of representing
poims and lines algebraically in two-dimen  snal space. Since we expect vou to be
familiar with the matter, we -hail cover the ground quickly.

Firstly. ax you know, two-dimensional space can he represented by the Cartesian :
coordii- sestem. This is because theee s a 1-1 correspondence between tie 1= ints
in a plane and ardered pairs of <eal numbers. IF a roint P is represented ke iy, v}
under the correspondense, ther, v - adl <) the ahselssa (or x-coordinate} of I -
y is catled 1the ordinate for v-coordime.. : ol

H Plxy, v aned Qs o5 ste twny popes i dhe plane, then the distance hetween
them is .

PQ -t - "2}! 4 (¥ -y A1)
Trers e 1, and by applying the Pythetznan 1:eoren:, you can see how we get (1).
L - . -
Y

0“.‘\ v}

RTINS

g

Fig. 1: Disiance heiween two palai
(i} is called the distance formula.

Anotber formula that you must be familiar with is the following:

if ihc point R(x, y) divides the line ségmcnt joining Pixy, ¥\) and Q(<.. vy} m the
ratio m: n (see Fig. 2), then

nx; + mx n + my-
x = TG dy = SN MY .X2)

m+n m+n

(2) is catled the section formula.

-

To repain practice in using (1) and {2), you can (ry the following exercises.

El) What are the coordinates of the midpoint of the line segment « izh endpeints
a) A(5, -4)and B(-3, 2) ? .
b) A(a,, Elz] and B(b]. bz} ?

[22) Check il the triangle POR. wherc P, Q and R are renrescnied by ([, 0}
(-2. 3 and (1, 3, is an cqmlitcral triamgle.

L
.

Lel us now write down the various ways of representing a qlraight line

algcbraically. We starl with lines parallel to cither of the axes. A line paral[el o

the x-axis is given by the equation

y=a : 3

where 2 is some constant, This is because any nomt on the line will hate the same
ordinaic (sec Fig. 3).




What do you expect the equation of 'a'Iin_e parallel to the y-axis ro be? It will be
’ ()

Preliminories in Plane Geomelry

X=b,
for some constant b. o
Now let us obtain four forms of the equetion of a line which is not parallel to Y
either of the axes. Firstly, suppose we know that the line makes an angle & with

the positive direction of the x-axis, and cuts the y-axis in {0, ¢). Then its equation

will be
y=mx + ¢ ) {5}
where m = tan «. m is called its slope and c is ig.s'lnlercepl on the y-axis. From
Fig. 4 you should be able to derive (5), which is called the slope-intercept form of  —- 1- —/

the equation of a line. \
[
Now, suppose we know the slope m of a line and that the point (x,, y() lies on the ! 0
line. Then, can we obtain the line's equation? We can use (5} to get the point-slope X
form, )
-y = - . (6)
y=n m(?: Xk . Fig, 4: T. s given hy
of the equation of the line.
. ¥ = X lano + ¢

We can also find the equation of a line that is not parallel ta either axis if we
know two distinct points lying on it. If P(x;, y,} and Q(x;. ¥;) are the points on v
the line (see Fig. 5), then its equation in the two-point form will be

- X=X
YN _ 1 D
Y2- ¥ Xz =X
Note that both the terms in the equation are well-deflined since the denominators
are not zero.

Can you find the slope of the line given in (7)7 If you rewrite it as

_ o ) :
y = (Yz ¥ ) X+ [)’l - x] (Y: Yl_)zl X
X3 = X X2 - X

. e . ..
you can see that its slope is -——2--—}'-!—. and its intercept an the y-axis is the constam ¥lg. 5: The slope of PQ Is
term. K2 - X fan e

Why don’t you try some exercises now?

E3) What are the equations of the coordinate axes?

E4) Find the cquation of the line that cuts off an intercepl of 1 from (he negative
direction of the y-axis, and is inclined at 120° to the x-axis.

E5) What is the squation of & line passing through the origin and making an
* angle 8 with the x-axis?

E6) a) Suppose we know thal the intercept of a linc on the x-axis is 2 and on

the y-axis is =3. Then show that its equation is er
X
E_X g
2 3 \
. ) thi,b)
(Rint: See if you can use (7).)
b) More xunerally, if a linc L culs ofl ap intercepl a {2 ®) on 1l x-axis and
b(¢0) on the y-axis (see Fig, &), then show thar ity equartion is \
X 4] RS
LU S (R @ X
a ]

(8) is called.the intercept form of the equation of 1.. )
Fig. 6: L. is given ny
X ¥

. ® h

We can obtain-the equation of a line in yet another form. Suppose we know the
length p of the perpendicular {or the nermal) from the arigin 1o a line 1, and the
angle « that the perpendicular makes with the x-axis (sec Fig, 7).




Conicy

The distance of & fine from »
pant is the lengrh of the
reependiculac fram the point
to the line.

\\'.lP

Fiz. 8: PD is the distance from P
{o the line 1.

t0

Flg. . x cos i 4 3 sin ¢ = p is the normal farm of AB.

Then, using (8) we can obtain the equation of 1. in the normal form

X¢Cosa + ysina = p A9
For example, the line which is at a distance of 4 units frem (0, 0), and for which
) X ; .
a = 135°, has equation - =t —): =4, thatis, x - v + &2 = 0,
e L

Here's a small remark about the form ().

Remark 1 : In (Y} p s positive and the cocflicients of x and v are ‘‘normalised"’. that
is. the sum of their squares is 1. Using these facts we can easily find the distance

.of any line rom the arigin,

For example, 'cv us find the distance of the origin from the line you got in E4, We

. . . - e
rewrtte 1ts cquation as - v3x-y = |. Then we divide throughout by J(\ -+ 1o
-7 1 ] - . s
S S A LTras is in the form ax + by « ¢, wherc a~+b- - | ang

. . oo
v = {1, Thux, the required distgnee ts ¢, which is "
Neww, hive von noteed @ characteristic thar 1o commaon to the equations (3) - {87
Thes are ! lineitr in 1wo variables, that s, of the form ax + by + ¢ = 0, where
i by e Boand ar leas ane of o and b is non-sero. This is not a coincidence, as
e Tellowang theorem el us.

Theorem [ A linear cqualion in two variables represents a straight line in two-
dimensionitl space. Comversely. the equation of a straight line in the plane is a
lincar cquathion in wo varigbles

So, lor esample, 2y« 3y -1 - 0 represents a line. Whalt is its siope? We rewrite

~

. 1 . . . 2 .
onoas sy - v Lt Tind that ity slope ds - . Do vou agree that its
1 1

. | .
mtereepts on the v and v axes are and ‘ . respectivelv? and what s 1is
T

distance from the arrein? To Ting s, we "nnrlllnahsc_" the cocificients of x and v,

thai s, we divide the equanton throughout by 27 = 37 - V130 We gai
3 1 . . .
—= X+ = % - _ . which s in the farm (93, Thus, the required distance
11 v 13 VI3
I
I —-.
v13 ;

In general the dist, ol a point Prx,, v fromalineax + by + ¢ = 0 '
(see Fig. B) is giver v i
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You may like to try some exerciscs now.

!
i 1M

|
E7) Find the distance of (I, 1) from the line which nay siope -1 and intercep

on the y-axis.
E8) What is the distance of
a) y = mx + ¢ from (0, 0)?
b)Y x = 5 from (1, 1)? .
€ Xcoso + ysina = p from (cos «, sin «)?
d) {0.0) from 2x + 3y = O}

E9) Prove the equation (9).

/

Let us now see what the angle between two lines |< Supposc th slope-intereept Fig. 9: 8 the angle hetwern il
forms of the lines arcy = myx + ¢ and v = mix + ¢ (see Fig, 9. lines 1, and Ly,

Then the angle & between them is given by

M- My (N

]_+ m >

Tan & can be positive or negative. If it is positive, # is acute. If tan 8 < 0, then 8

is the obtuse angle between the lines (which would be = - @ in Fig. 9),

tan .=

Naote that the constant terms in thie equations ol the lines play no role in finding
the'angle belween them.

Now, from ([1} tan you say when two lines are parallel or perpendicular? The

. . . . L
conditions follow jmmediately if you remember-what tan 0 and tan - are. Thus,,
thelines y = mx + ¢jand y = myx+¢, 2 ‘
i} are parallel if m; = m;, and LT
1i) are perpendicular if mm, = - {. 4

For example, y = 2x + 3 and x + 2y = 5 arc perpendicular ro cach other, and
Yy=2x + 3isparallef toy = 2x + c¥c € R.

Why net try an exercisc now?

El0) a2} Find the equation of the line parallel to v + x + 1 = 0 and passing
through (0, 0).
b) What is the equation of the line perpendicular (o the line ot in il
and passing through (2,1)?
¢)  What is the angle betwecn the tine obtained in (h) and 2x - 7

Let us now stop our discussion on lines, and move on 1o more general cquations.
We shall discuss a concept that will help us to trace the conics in the next unit.

1.3 SYMMETRY
While studying this block you wiil come across several equations in » and v. Their
gdomelric represeni@&ions are called curves. For example, a line is represcited by
the equation ax + by + ¢ = 0, and a circle with radius a and centre (0, O is
represented by the equation x* + y? - a? = .

Note that these equ;'nions are of the form F(x, ¥} = M where Fis, v} denotes therr "
"™ hand sides,
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]

Q

Fig. 10: The curve C h
qmuclrlc akoul the r-axis.

Fig. 1l: The ine y = x is
~ symmetric about the origin,

12

Now suppose the curve C, represented by an cquation F(x, v} = (, is such tha:
when (x, y) lies on it, then so does (x, -y). '
Then Fix, v} = 0 = F(x, ~y) = 0.

(For example, x? + y* = a? = x? + (-y)? = a?)

In this situation we say that C is symmelric about the x-axis. Similarly, C will be
symmetric abont the y-axis il F(x, y) = 0 = F(-x, y) = 0.

We say that C is symmetric about the origin (0, 0) if
Fix,y) = 0 = Fl-x, -y} = 0.’

Iet us look at an example. The circle x2 + y2 = 9 is symmetric about both the
axcs and the origin. On the ather hand, the line v = x is not symmetric about any
of the axes, but it i5 symmetric about rthe origin.

Geometrically, if a curve is symmelric about the x-axis. it means that the portion
of the curve below the x-axis is the mirror image of the portion above the x-axis
(see Fig. 10). A similar visual interpretation is true for symmetry about the y-axis.
And what does symmetry about the origin mean geometrically? It means that the
mirror image of the portion of the curve in the first quadrant is the portion in the
third quadrant, and the mirror image of the portion in the second quadrant is the
portion in the fourth quadrant {see Fig. 11).

Why don't you iry some exercises on symmetry to see il you have grasped the
concept?

EIl) Which axis is the curve v2 = 2x symmetric about? Is it symmetric about the
origin?

-

E12) Discuss the symmetrics of the lincy - 2.

E13) Which of the curves in Fig. 12 arc symmetric about the x-axis? And which
ones are symmetric with respect to the origin?

N

A RS

(a) . {h)

il
NS

\0 X 0 X

\

|

El4) a) Show that if Fix, y} = 0 is symmetric about the x-axis, then F(x, y} = 0
iff Fix, - v = 0.
b) Show iha: - Fix, y) = 0 is symmetric about both the a.x‘es. then it is
syminer  nhaut the origin. Is the converse true? -

{c) Flg. 12 {d}




There is another concept that you will need while studying Units 2 and 3, which
we shall now take up.

1.4 CHANGE OF AXES

In the next unit you will see that the general equation of a circle is x2 + y? + 2ux
+ 2vy + ¢ = 0. But we can always choose a coordinale sysiem in which the
equation simplifies to x2 + yZ = r°, where r is the radius of the circle. To see
why this happens, we need to see how to choose an appropriate sei of coordinate
axes. We also need to know how the coordinates of a point gel alfecied by the
transformations to a new set of axes. This is what we will discuss in this section.

There are several ways in which axes can be changed. We shall sec how the
coordinates of a point in a rectangular Cartesian coordinate system are affected by
two types of changes, namelv, translation and rotation.

1.4.1 Tralislating the Axes

" The first type of change of axes that we consider is a shift in the origin withour
chaaging the direction of the axes.

Let XOY be a yectangular Cartesian coordinate system. Suppose a point O’ has
the coordinates (a, b) in this system, what happens if we shift the origin to 0O'?
Let O'X’, parallel to OX, be the new x-axis, Similarly let O’Y ", parallel to OY,
be the new y-axis (see Fig. 13). Now, suppose a point P has the coordinates (x, y)

i
Y
[
| i
] Y’
|
|
I
L-————-—-—u———-.._.. P (I.y]
¥ ' v _'_1 (.!'._\"'}
1 I
[ |
|
i ,
i ]
b o’ I o
I |
I
; 1
I 1
— e e - —— e —— —— — L - o — — — —_——
a x X

Fig. 13 : Translatlgn of axes through (2. hh.
and (x’, y°) with respect o the old and the new coordinate systems: respectively.
How are they related? From Fig. 13 you can sce that
X =x"+aandy = y'+ b, {14
Thus, the new coordinares are piven by
-x"=x-aand y' =y‘— b. ...[15)
For cxampie, il we shilt the origin to (-1. 2), the ncw {or current} coordinates

(x*, y') of a point P(x, y) will be given by x* = x + ° y' =y-2

When we shifl ihe origin, keeping the axes parailel, we say that we are translating
the axes. So, whenever we translate the axes to a point (a, b), we are transflorming
the coordinate system to a system with parallel axes through (a, b). We can write
this briefly as dransforming to parallel axes (hrough (a, b).

Now, if we translate the axes to a poini {a, b), what will the resulian change in

Preliminaries in Plane Geometry
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Canles any cquation be? Just replace x by x* 4 aand y by ¥ + bin the equation, anq
you get the new equation, For example. the straight line x + 2y = 1 becomes
{x' + a) + 2(y" + b} = 1, that Is, x' + 2y + a«+ 2h= |in the new system,

Now for somg exercises?

ElIS) If we translate the axes to (-1, 3}, what are the new coordinates of the
’ origin of the previous system? Check your answer with the help of a
dingram. :

E16) Transform the guadratic cquation 5x° + 3y® + 20x - 12y + 17 = O to
paraitel axes
a) through the point (-2, 2), and
h) through the'point (I, 1.

IT you've done El6, you would have realised how much simplification can be
achieved by an appropriate shift of 1he origin,

Over here we would like to make an important observatipn, :

Note : When vou apply a transtatlon of axes (o a curve, the shape of the curve
daesn’t change. For example, 2 line remains a line and a circle remains a circle of
the same radivs. Such a transfarmatian is called a righd bady mation.

Now et us consider another kined of change nf aves.

i.4.2 Rotating the Axes

et us now see what happens if we change the direclion of the coordinate axes
without shifting the origin. Tha is, we shall consider the transformation of
coordinates when the recrangular Cirtesian sysiem is rorated about the origin
through an engle . Let the coordinate system XOY be rotated through an angle 8 - . i
in the anticlockwise direction about O in the XOY plane. Let OX’ and OY' be the

new axcs (sec Fig. 14). Le1 P be a point with coordinates (x, y) in the XOY

system, and (x’, ¥") in the X' OY " svstem. Drap perpendiculars PA and PB from

i
yi
! P
| N
{ | \
1 A
k ' o /;
! | N 3
! Dot
| | A
! ! '
. 1 1
\ | |
{ 1 1
1 -~ | |
4 T
Ed n 1
________ - __n.*_.h__.._al_.....-
0 14 « hY

Lig. 145 The aves OGN andl (0% are obtaine:d by eatating the aves DX znd O% Itrougk == spgic £,

1o OX7 and OX, resnectively. Alse dree AC perpendicuiar to OX, and AD
perpendicalar 1 PR Then OR. v PRV = QA v = PA,
Ao 2 DA s AN A, Therelore, o DPA = 8,
Thus, ¥ - OB = OC - AD '
OA cos? - PAsin# - ;
NTcos A - v kin A ..(16) |
and ¥ = PB = PD + AC [
14 = x'sind + y cos @ AT




(16) and (17} give us x and y in terms of the new coordinates x* and ¥ Preliminories n Plane Geomeiry
Now, how can we get x' and y* in terms of x and y?-

Note that the XY-system can be got from the x "y’ -system by rotating through
(-8). Thus, if we substitule -8 for 8, x* by x and y" by y in (16) and (17}, we gcl
x" and y~ in terms of x and y.

Thus, x” = xcos A + ysin B LA1R)
and y° = -xsinf + ycos#f

For example, the current coordinates of a point P(x, y), when the rectangutar axes
are rotated in the anticlackwise direction through 45°, ar¢

. o I
X' = xcosd45” 4+ ysindST = — (x + y)
V2
in 45° + 45° " vy -x)
"= - X SN cos = —< {y -
Y X 51 Y \12
Now, what happens if we shift the origin and rotate the axes? We will need o
apply al! the transformations (14) - (17) 1o get 1he current coordinates,

-For example, suppose we (ransform to axes inclined at 30° {0 the original axes, the
equation 11x% + 2V3 xy + 9y? = 12(xv3 + y + 1), and then translate the system

through (-;—. 0). what do we get? We [irst apply (16) and {17}, to get

HEC V3 -y ) + 23 (0 V3-y ) (¢ + y" V3) + 90x" + vy VI =
12 (V3 YI-y)+ (x' + y VI + 1), that is,

6 (x' i)z + 4y'2 =3
: )

Now if we shift the origin to (?, U) and use {14}, we find that the new

l
coordinates (X, Y) are related to (¢, ') by x" = X + ?. v =Y + 0.
Thus, the equation will become
6X? + 4Y? = 3.
Isn't this &n easier equation o handle than the one we started with? In fact, both

the translation and rotation have been carefully chosen so as to simplify the
equation at each stage.

Note: The rotation of axes is a rigid body motion. Thus, when such a
transformation is applied to a curve, its position may change but its shape remains
the same.

Try these excrcises now.

E17) Write the equation of the straigit line x + y = 1 when the axes are rotated
through 60°.

El18) a) Suppose the origin is shifted to (-2, 1) and the rectangular Cartesian

axes are rotated through 45°. Find the resultant transformation of the
eguarion x> + y° + 4x - 2y + 4 = 0.

b} Now, first rotate the axes through 45° and then shift the origin 10
(-2, ). What is the resulting transformation af the eguation in (a)?

¢) From (a) and (b) what do you learn about interchanging the
fransformations of axes? {You can study more about this in our con
‘Lincar Algebra’.)

So far we have been working with Cartesian coordinates. But is thére any other
coordinate system that we can use? Let's see.

Is




A

Fig. 16: P's polar coordinales
(=
are | -5, 3

A point has many different
polar coordinates,

A}

/0 A

Fig. 17: The lize L i given by
4 = x/3.

Flg. 18: The circle r = 1.

1.5 POLAR COORDINATES

In the late 17th century the mathematician Rernoulli invented a coordinate system

which is different from, but intimately related to, the Cartesian system. This is the
polar coordlnale_syslem. and was used extensively by Newton. You will realite the
utility of this system when you study conics in Unit 2. Now, let us see what polar

coordinates are.

To deline them, we first fix a pole O and a polar axis OA, as shown in Fig. 15.
Then we can locate any point P in the plane, if we know the distance OP, say r,
and the angle AOP, say ¢ radians, (Does Lhis remind you of the geometric
Tepreséntation of complex numbers?) Thus, given a point P in the plane, we can
represent it by a pair (r, 6), where r is the ‘*directed distance” of P from O and &
is £ AQP, measured in radians in the anticlockwise direction. We use the term
*‘directed distance' because r can be ncgative also. For instance, the point P in

. 5 :
Fig. 16 can be represented by(s, —41- or (—S, ‘:-) Note that by this method
the point O corresponds to (0, 8), for any angle 8. ‘

Thus, for any point P, we have a pair of real numbers {r, 8) tha_t corresponds to
it. They are called the polar coordinates.

Now, if we keep § fixed, say 6 = o, and let r take on all real values, we get the

line OP (see Fig. 17}, where < AOP = o. Similarly, keeping r fixed, say r = a,

and allowing-§ to take all real values, the point P(r, ) traces a circle of radius a,
with centre at the pole (Fig. 18). Here note that a negative value of 6 means that
the angle has magnitude |7}, but is taken in the clockwise direction. Thus, for

3
example, the point (2, - %) is alse represented by (2. 7’)

As you have prabably guessed, the Cartesian and polar coordinates are very closely
related. Can you find the relationship? From Fig. 19 you would agrée that the
relationship is

X =rcosf,y =rsing or

r = ‘x! + y!,ﬂ = tan™! A

X

(19

Mo e e = o rm wm

Fig- 19 : Polar erd Carleslan coordinates,

Noie that the origin and the pole arc coinciding here. This is usually the sitwarion.

We use this relationship often while dealing with equations. For example, the
Cartesian equation of the circle x? + y? = 25, reduces to the simple polar form r
= 3. So we may prefer to usc this simpler form rather than the Cartesian one,

Doing the following exercises will help you get used to polar coordinates:




E19) From (9) and (19), show that the polar equation of the line AB in Pig. 7 i
rcos (f - a) = p.

E20) Draw the graph of the curve r cos (6 - %) = {}, as r and & vary,

E21) Find the Cartesian forms of the equations

a) v =13rsing
b)) r = afl - cos ), where a is.a constant.

Apart from the polar coordinate system, we have another method of representing
points on a curve. This is the representation in terms of a paremeter. You will
come across this simple method in.the next unit, when we discuss each conic

separately.

Let us now summarise that we have done in this unit.

1.6 SUMMARY

In this unit we have briefly run through certain elementary concepts of two-
dimensional analytical geometry. In particular, we have covered the following

points: . :
1) The distance between (x;, y)) and (x, y2) is f{x, = %2 + (y; - y2)
ZY  The distance between (x;, y,) and the lineax + by + ¢ = 0 is

ax, + by, + ¢

. Ia!+bz .

3) Any line paralle! to the x-axis is y = a, and parallel to the y-axis is x = b,
for some constants a and b, . :

4) The equation of a line in
1) slope-intercept form is y = mx + ¢,
ii) point-slope fomisy-y = mx-x), -

. . - X -
i) two-point form is ~—31 — _x‘ .
Y2~ X=X
L . X y
iv) intercept form is — + —E- =1,
a

v) normal form is x cos @ + y sinw = p.

5} The.angle between two lines with slopes m, and m, is

m; - m

ot (a2
I + mm; /,

The lines are parallel if m;, = m,, and perpendicular if mm; = -,

6} Symmelry about the coordinate axes and the origin.

7) 1} ii we transiate the axes to (a. b). keeping the directions of the axes
unchanged, the new coordinates x’ and y' are given by x* = x - a and
y' =y-b.
i) If we rotate the axes through an angle 4, keeping the origin unchanged.
the new coordinates x* and y* are given by
X" = xcos8 + ysin 8
Ly ~-xsin@ + ycos 6,
8). A point P in a plane can be represented by a pair of real numbers (r, 6),
" ' where r js the directed distance of P from the pole O and.-§ is the angle that
OP. makes with the polar axis, measured in radians in the anticlockwise
direction. These are the polar coordinates of P. They are related to the

1

Preliminaties i Plase fioan? -

Also see Unit 9 of MTH n°
{Calculusy for mime -d._ar
tracing of curvexr.
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Conics

Fig. 20: y = - (V3x + 1).

:13

Cartesian coordinat'eslﬁ!; y)of P by

r? = x? + y?and
6 =tan" L
x

In the next unit we shall start our study of ellipses and ather conics, But before
going to it, please make sore that you have achieved the unit ohjectives listed in
Sec. 1.1. One way of checking is to ensure that you have done all the exercises in
the unit. Our solutlons to these exercises are given in the following section,

1.7 SOLUTIONS/ANSWERS

El) a) (5—;3 4+ 2) =, -1

2

8 (a.+b, a;+b2)
’ 2 ' 2

. E2) PQ.= [0 -2+ (0-3)F = VI8

QR = [2-DT+ 3-37T =13
PR = J0-1D%+(0-3?% =3

Thus, the sides of the triangle are not equal in length.
Hence, APQR is not equilateral.

E3) The x and y-axis are y = 0 and x = 0, respectively.

E4) In Fig. 20 we have drawn the line. Its equation is y = mx + ¢, where
¢ =-1andm = tan 120° = - V3.
Thus, the required equation is
y=-NIx+ 1)

ES) Here ¢ = 0. Thus, the equation is y = x lan 8.
E6) 2a) (2, 0) and (0, -3) lie on the line. Thus, its two-point form is
y-0 p

2 .
= , that is, 2y = 3(x - 2).
-3-0 0-2 y ( )

b) (a, 0) and (0, b) lie on the line. Thus, its equation is
_y-0=x—a“i+i=].
b2 0-a a b ;
E7) The equation of the lincisy = - x + —2--, that-is, 2x + 2y -1 = (.
The distance of (1, 1) fromm this line is

21 +20-b 3
¥4 + 4 vE
E8) a) m0-0+c| ¢
YmZ + 1 vin? + 1
. .
NI
1
I
¢) |1 -npl
a o
E$) Using the intercept form (8) and Tir 7. we see that the equation of the
ling is )
I S ..(20)
QA OB
V.. 20AC = © -nand £OBC = a. This,

-




Preliminaries in Planr Cienm=ir,

OA = OC cosec (? - n-) =p sccr-r = _.'_J.___ and

cos o
OB = QC cosec ¢ = _p -
5in o
. Thus, (20) = Xcose  ysina I
p P

© Xcosa + ysine =p, PR

El0} a) Anylineparalleltpy + x + | = Qisof theformy + x + ¢ = 0,

where ¢« R. Since (0, 0} liecsonit, 0 + 0 + ¢ = 0, that is, ¢ = 0.
Thwus, the required line sy + x = 0.

b} The slope of the liney + x - 0is -1. Thus, the slope of any line
perpendicular to it is 1,.by (13). Thus, the couation of the required line
isof the formy = x + ¢, whersc ¢ R, Since (2, 1Y hes onit, | = 2 +
¢ = ¢ = -1. Thus, the requircd line is y = x - {,

¢) Inthiscasem, = I, my = 2. Thus, the angle briwoen the lines is

1 =2 1 |
= - —_—— = SLIY [ = -1 -1 _—
& : tan (l " l.xz) tan ( 3) an 3

. - . 1
- Note that both -tan™! (-— %) and tan”! (— -3—) are angles between the
givén lines. :

ELl) If we substitute ¥ by {-y} in the given cquation, it Temains unchanged.
Thus, the curve is symmemc about the x-axis. If we substitute x by (-x). the
curve changes to y2 = -2x, Thus, it is not symmetric about the v-axix.

If we subsutulc {(-x) and (-y) for x and y, respectively, in the equation, it
changes to y? = -2x. Thus, it is not symmetric about the origin.

Ei2) It is not symmetric about cither axis or the origin.

El13) (a)is symmetric with respect to the x-axis.
(2) and (d) are symmetric with respect to the y-axis.
(a} and (¢) are symmetric wilh respect to the origin.

El4) a) The curve is symmetric about the x-axis Thus,
Fix, ¥) = 0= Flx, -y} = 0¥ x, ye R
R -y) =0 =Fx, -(-y) =0 = Fix,¥y) = 0v¥x. y R.
. Hence, the equivalence.
b} The curve is symmetric about both the axes.
Now Fix, y) =
= F(x, -y} = 0, becausc of symmetry about the x-axis.
= F{-x, -y) = 0, because of symmetry ahout the y.axis.
= F is symmetric aboui the origin.
The converse is clearly. not true, as you can ‘see from Fig. It,

"E!5) In Fig. 21 we show the new and old systems.

Y’ Y

0y - X’
J v
1 '
| f

.___.__....T_F} e

3
1

Fig. 21: The coomditates it rurr 1, o ~ith coype - ta X 'Y, 19




Ela}

E17)

E13)

LV} ) Ji

T -

i) Tt the new coordinates are x’ and y'.then x = x°-2,y = y' 42, Thus,
the equation becomes

5 -2 4 My ' 4+2)F 4 20(x°-2) - 12(y'+2) + 17 =0
= 5t s 3y to15 <=0 '

b} The cquation becomes |
SN R Ay HD 0+ D - 12+ D 4 17 =0
= 5%k Iyt a0k -6y 43 =0,

Hcrex:x——y‘f}andy=_"_‘)§.+y_
2 2 2

Thus, x + y = 1 becomes

(f—'--ﬂi)+(""ﬁ + 2N 21 that i
2 2 ) zl)" » that Is,

x'{l_+ VI + y (1 -V = 2,

a) By shifting the origin, the new coordinates x” and y’ are related 1o x
and y by . o
x=x"=-2,27vy=¥%" + 1..
Thus, the equation becomes
-2+ + D+ -D-2Ay + D+ 4=0

ox'l4y?t= . (21
Now, rotating the axes through 45°, we get new coordinates x and y

given by,
o XY e e XY
y vz

Thus, (21) becomes e
(x-'{)=+ (x+ Y)!_- ,
V2 V2 B
w X2_2XY + Y24+ Xt 4+ 2XY + Yi =2

=X+ Y =]
b) Tf we first rotate the axes, the given equation becomes

() () o (B2 () e

w Ayt R - Wy +4 =0 ' . (22)

Now applying the shift in origin to (-2, 1), the eqluation {22) becomes
X2 4+ Y2 4 X(VZ-4) + Y2-3V2) + 9-5V2 = 0.

¢} From (a) and (b) you can see that a change in the order of
transformations makes a difference. That is, if T, and T, are two
‘transformations, then T, followed by T, need not be the same as T,
followed by T,. Diagrammatically, the clrcles €, and C; in Fig. 22
carrespond Lo the final equations in (a) and (b). respectively.




. Fig. 22

El19) From {9), the equation of L is
xXcosa + ysina = p.

Usihg (19}, this becomes

r{cos @ cosa + sin# sin o) = p.

E20)

E)

=rcos(#-a) =p .

b)

Fig. 23 : The line r con (8 -

Yoo

Since 1? = x¥ + y*andy . rsin ¥, the Cyuslion becirmes

x? 4+ y? = 3y
The equation hecomes

M 2 X
KT+ oy o= (l - . ,)
. \‘x- - 5"'

~ -~ y ~
= X"+ ¥t alx + x4 o) =0

Trellmingers -

21
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UNIT 2 THE STANDARD CONICS

Structure

2.1 Introduction

Objectives tr
2.2 Focus—Direclrix Propcﬂi'
2.3 Parabola

Description of Standard Forms
Tangents and Normals

2.4 Elipse

Description of Standard Form
String Property
Tangents and Normals

2.5 Hyperbola

Dﬁcriplion of Standard Form

String Property

Tangents and Normals -
2.6 Polar Equation of Conics
2.7 Summary '
2.8 Solutidns/Answers

2.1 INTRODUCTION

In this unit you will be studying spme curves which may be familiar to you. They
were first studied systematically by the Greek astronomer Apollonius
(approximately 225 B.C.). These curves are the parabola, ellipse and hyperhola
They are called conics (or conic sections) because, as you will see in this courst,
they can be furmed by taklng the intersection of a plane and 2 cone.

We start this unit by defintng conics as curves that salisfy the *focus-directrix’
property. From this definition, we will come to the paric ular cases of standard
forms of a parabola, ellipse and a hyperbola. The standard forms are so called
because any conic can be reduced to one of these forms, and then the various

properties of the conic under consideration can be studied easily. We will tface the

standard forms and look at their tangents and normals. We will also discuss some
ather characterlstics, along with some of their applications in astronomy, military
science, physics, etc.

In the next unit we wili discyss conics in general. And then, what you study in this
unit will certainly be of help. If you achieve the following unit objectives, then you
can be sure that you have: grasped the contents of this unit.

Objectives

Arlﬁr :hlr‘ulnﬂ thic umit oA
o Fur

® ob!ain the cquation of a conic if you know its focus and directrix;

€ Obluin lhe standard forms of the Cartesian and polar equalions of a parabole,

an cllipse or a hyperbola;
prove and anply the string property of an ellipse or = hyperbols;
oblain the tangent ‘or normal to a standard conic at a given point lying on it;

check whether a given-line is & tangent to a given standard conic or not;

find the asymptotes of a hyperbola in standard form,
Let us now start our discussion on conics.




2.2 FOCUS-DIRECTRIX PROPERTY

Suppose you toss a ball to your friend. What path will the ball irace? it will be
similar to the curve in Fig. |, which is a parabola. With this section, we begin 10
take a olose look at curves like a parabola, an ellipse or a hyperbola. Such curves
are called conic sections, or conics. These curves satisfy a geometric property,
which other curve satisfics. We treat this property as the. del'nmon of a conic

- section.

Definition: A conic section, or a conle, is the set of all those points in two-
"dimensional space for which the distance from a fixed point F is a constant {say.e)
times the distance from a fixed straight line L (see Fig. 2).

The fixed pdint F is called a focus of tRe conic. The line L is known as a directrix
-of the com'c The number ¢ is catled the eccentriclty of the conic

Smce there are infinitely many lines and points in a plane, you may thmk that
there are infinitely many types of conics. This is not so. In .ne rest of this block
we will list the types of conics that there are and discuss them in detail. As a first
step in this direction, let us see what the definition means in algebraic terms.

We will obtain the equation of a conic section in the Cariesian coordinate system.
‘Let F(a,b) be a focus of the conic, and px+qy+r = 0 be the directrix L

(scc Fig. 2). Let ¢ be the ecommcuy of the conic. Then a point P(x,y) lies on the
conic iff

Jx-8)° + (y-b) =

pxii-qy+r
+q

, by Formulae (1) and (10) of Unit 1.

¥ - b)) ® + 07 = e¥px + qy + 1)? L (D)

Thus, (1) is the equation of the conic with a focus at (a, b), a directrix px + qy
+ r = 0 and eccentricity e.

o ((x-a)? +

For exarnple, the equation of the conic with eccentricity.1/2, a_focus at (I, 1) and
a directrix x + y = lis

ool ry-1?
x~-13+ -0 ik > }

Why don't you try an exercise now?

The Standard Conles

Fig. 12 The ball, when thrown.,
iracer @ parabaln.

l/

El} Find the equation of the conic section with
a} eccentricity 1, {2, 0) as its focus and x = y as its directrix,

b} eccentricity 1/2, 2x+y = | as its directrix and (0, ‘1} as its focus.
{Note that in this case the focus lies on the directrix). .

In E! you have seen the two different possibilities that the focus may or may not
lie on the directrix. Let us {irst consider the case when the focus does not lie on
the dircciriz. In this case the Conics we gei are calied non-degencruiv cunivs. There
ar¢ threg types of such conics, depending on whethere < 1, e = 1 ore > 1.

When ¢ < 1, the conic is an an cilipsc; when ¢ = I, we get a parabola; and when -
e > 1, we gel 2 hyperbola. We shall discuss each of these conics in dcetail in the
following sections.

Let us start with the non-degenerate conics with eccentricity 1.

0 X

Flg. The set of al polois P,
where PF = ¢PM It 2 conle.
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2.3 "ARABOLA

In thiy section we will discuss the equation and properties of a parabola. Let us
firsl define a parabola.

Definition: A parabola is the sct of all those peints in two-dimensional space that
are cquidistam from a line I’;.’\'arlnd a point F not on L. L is its directrix and F is its
facus. et ’

Ecl'us use (1) to ohiain the equation of a parahola. To s;arl with lel us assume F
i {f), M and 1. is the siraight line x + ¢ 0, where ¢ > 0. {Thus, 1. i parallel 1o
the y-axis and lies 1o the left of F.) Then, using (f), we «ee that the cquation of
the parabaka s

x + ¥y = (x + ¢), thal is.

¥ s oe2x 4 o) ...{2)
Now, to simplify the cquaiion let us shift the origin to (— % 0). IT we put —;- =u,

then we arc shifting the origin 10 (-a. 0). From Secc. 1.4.1 vou know that the new
caordinates x* and y' are given by

x = x'-aandy = y

Thus. (i) hccames

v dax’,

This parabola hay a focus at (a, 0} {in the XY "~ sy<rem) and the cquation of the
dircctrix '

" 4+ a =0

So. what we have found is that-the equation

y? = dax ’ - (3)
represents a parabola with x + a = 0 as its direetrix and {a, 0) as its focus.

This is one of the slandard forms of the equation of a parabola.
There are three ather standard formis of the cquation of a parahola. They arc

X = day, (3}
y? = - dax. and : L AS)
X = - day, . (6)
where a > 0.

These cquations are called standard forme hecause, as you widl see in Unit 3, we
can 1ransform the equation of any parabnla into one of these formy. The
transformations that we use are the rigrd body mations given in Sec. 1.4, So they
do no! affect the gcometric properties of the curve that is being transformed. And.
as you will see in the following sub-sections, the geomectry of the standard forme
are very casy Lo study. So, once we have the equation of a parahala, we transform
it to a standard form and study its propertics. And these propertict “v.: be the
samc as the properties of the parabola we started with.

Now let us sce what the standard farms laok like.
2.3.1 Descripiion of Siandard Forms

Let us now see what a parabola looks Hke. We starr with tracing (1) Tor this, ot
us see what information we can get from the cguation, Firstly, the curve intersects
cach of the axes in {0, 0) only.

Nexl, we {ind that for 1he points (x, ¥) ol the paiabola, v = 0. anee v* =70,
Thus. the curve lies in the Tirst and Fourth quadrants.

Further, as x inereases, y also increascs tn mapnitude.

And finally, the parabola (3) is svinmetric about the x-axis, but not abont the




y-axis or the origin {see Sec. 1.3). Thus, the portions of the curve iu the [first The Standard Cowics

quadrant and the fourth quadrant are mirror images of each other.

Using all this information about the curve y? = dax, we trace ¢ in Fig, 3

Y

x+umi)

Flg. 3:v! = dav. @ ~ 0,

The line through the focus and perpendicular to the directrix is called the axis of ] _
the parabola. Thus, in rhis casc the x-axis is the avis of the parahaly 3

The point at which the parabola cuts i1s axic is called its vertex. Thu-, (ﬂ ) is the l ,’
verten (plural ‘vertices') of the parabola in Fig, 1. ’

Now, what happens if we interchange x and y in (3)7 We will get {4). This i« also
a parabola. Its focus is a1 (0, a), and directrix is y + a = 0. If we study the
symmetry and other geometrical aspects of the curve, we find thar its geomerrical
representation is as in Fig. 4. Its veriex is also ar {9, 0) bwd its axis is not the same

as that of (3). Its axis is x = 0, that is, the 'y\l—axi'a. - ’ '{"
Why don’t you Lracc some paraholas yourself now?

: Fipg 4:3°  fox.a - N
E2) Trace the standard farms (5} and (61 al a n;'. Jhala, Fxplicals state the Tt s e plipad ol oy

coordinates of their vertices and focr.

So far we have considered parabolas whose vertices are at (0, 0} and fovi lic an

* one of thd coordinate axes. In Unit 3 you will see that by applving the changes in
axes that we have discusscd in Sec. 1.4, we can alwqys obtain the equanons ol o
parabola in one of these siandard Farms, In this seetion we shall keep o
discussiom to parabolas in standard form, '

Now let us look at a simplc mechanical method of triecing a parabala. On a shees
of papei draw a sitaight line [. and fix a peint ¥ not on 1., Then. av m g, 5t
one end of a piece of string with a drawing pin to the vertex A ol a sehsgquare,
The leagth of the string should be the lengih of 1he side AD al the sl square.

Fix the other end of the siring with a drawing pin at the point I Now slide (he
other 'eg of the sci-squire along a ruler placed on thy lee T fas in 1w Sh and
keep a pend! point P pressed 1e the side AT wo that the siring st et hen
PD = PF. Thus, as P movcs, the curve that vou draw will be pirt ol a pacalol
with foees F and directrix 1.

Why don’t you try this mcthed for yoursel[? Inslead of a sei-sguare you couldd
simply cut owt a night-angled iriangle from a piece of cardboard.

E3) Use the mechanical methed to trace the parabola «? + 8y ()

So far we have .expressed any point on a parahala in terms of jte € arieaan 25




Conky

The line scgment PQ is called
a chord of the parabola.

Fig. 6: PQ is & chord of the
peraboln.

e e e e —— — — —— —— —

Fig. 5: Mechanical method for tracing a garalmie,

coordinates x and y. But sometimes it is convenienl 1o express it in terms af only
one variable, or parameter, say 1. You can check thar the point (at2, 2at) lies on
the parabola y2 = 4ax, far all t € R. Further. any point (x, ¥) on this parabola is
of the form (at?,.2a1) where t = y/2a ¢ R, Thus. a point lics on the parabola

y? = dax ilf il can be represented hy (ar?, -2at) for some t € R. In other words,

the parametric representation of any point on the parabola:
y? = daxis x = a1®, y = 2at, where1 € R.

And now let us look at the infersection of a line and a parabola.

2.3.2 Tangents and Normals

1 &1 us consider the parabola v* - 4ax. What is the equation of the line joining
twa distinel poinis P{x;, ¥)) and Qx.. ys} on it (see Fip. 6)?

Fram Unit 1 we know that the eguation of PQ) is

¥~ ¥ N - X

Ya-¥ X2 - N

Since P and Q lie on the parahola,

yi = dax, and vT = dax..

So we can write the cquation of PQ as
Y-n N - x"

- -- [
N Y | 1

= {0 vidlyy + vl - da {x - ) {Nole that vy & v, sinee P and Q are distinet) -
e vy, U ¥ -y, - i+ yi - dax, )
@ vy, + v} = 4ax + yy.. since yi = dax, AN

This is the equation of any line passing through two distinct points on the
parabola. ' )

In particular. the equation of 1he line joining A(a, 2a) and B(a, -2a)is x = a,
which is parallel to the directrix of the parabola.




The chord AB has special significance. It is called the latos rectom of the parabola
y? = 4ax, and its length is 4a. Dlote that the focus lies on the latus rectum. Thus,
the latus rectum is the chord of the parabota which corresponds to the line
through its focus and perpendicular to its axis (see Fig. 7).

Note that (he Iéng_th of the latas rectom is the coelfficient of x in the equation of
the parabola,

Similarly, the length of the latus rectum of x? = 4ay'is the coefficient of y.

Now for an exercise.

The Stawdsrd Comics

Ed) Find the equation of the latus rectum of x* + 2y = (.

Now, let us go back to Equation (7). Suppose we take the point Q closer and
closer to P, that' is, Q tends to P. Then x; tends 10 x; and y; to y,. In this limiting
case the line PQ is given a special name,

Delinition: Let P and Q be any two points on a curve C which are cfose 10 each
other. Then the line segment PQ is called a secant of C. The position of the line
PQ when the point Q is taken closer and closer 10 P, and ultimately coincides with
P. is called the tamgeni to the curve C al P. P is called the point of contact ar
point of tengency.

Thus, in Fig. 6, as Q moves along the:curve towards P, the line PQ becomes a
tangent 10 the parabola at the point P(x;, y,) {sce Fig. 8). So, from (7) we see that
the equation of the tangent at P is

y .2y = dax + yf
= 4a (x + x,), since y} = dax,.
e yy, = 28(x + x,i.'
So, (8) is the equation of the tangent to the paralbola
y? = 4ddx at (xy, y)).

For example, the tangent to (3} at its vertex will be the y-axis, x = Q.

And what will the equation of the tangent to y? = x at (4, 2) be? It will be

X + X1 :
m = ( 5 )Where X; = dand y, = 2, that is, 4y = (x + 4).
Have you nouccd how we obtained (8) from (3)? We give you a rule of thumb
that we follow in the remark below.
Remark 1: To get the equation of the tangent to the parabola y? = 4ax at the
. 1
point (x,;, y;}, we replace y? by yy, and x by -2— (x + x;}. Similarly, 1he equation

of thlc‘ta.ngcm to'x* = day & a point (x;, y,} lying on it will be
xxp = 2aly + yy).

Yon mawv luba o tre tha fallamins avacaies —a...
-y L2 v“l'lb Ml Wl JIWTTY,

E5) Find the equation of the tangent to

a) x¥ 4+ 2y = 0 at its vertex, and
b} ¥? + 4x = 0 at the ends of its latus rectum.

E6) Give an example of a lire that intersects y2 = 4ax in only one point, but is
not a tangent to the parabola.

Fig. 7: AB s 1ke latw recliom of
the parabola.

Fig. A: To+¢ Hoe L b5 thre txngent
o P 1o the prrahnls,
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Contles So, piven a parabola and a point on i, vou have scen how 1o find the tangent al
that point. But, given a line, can we tell whether itis a langent to a given
parabola? Tet us see under what canditions the fine v mx + ¢ ise tangent (o
v dan,

[y mx 1 ¢ meels the parabola a1 (v, ). then
¥i - dan,and ¥ - omy, 4 e
S (mx, 4+ ¢) - dax;, that is. -

My 4 Gme - dayy, 0o = O - ()

Now, 1hiere are 1wo possbilitics—m O and m = 0. Can the lirst one arise? Can
the line y = ¢ he a tangent 10 y* : 4ax? Suppose it is a tanpent at a point

(2. y1). Then y = ¢ is the same as vy, - 2Zady = x) This is nar possible, since
a = 0 ;

Tlius, bon My e o he g timpent ooy dax, we must have m = 0. Then
Ch o querdratic equation oy Soor bas v rools, Corresponding te each rouf,
we will g1 g point of daierseciion o the e and the parabola.

Thus, o hine can intersect @ parabali in at most (twe points, T the roois of (9 are
real and distingt, the line and parabola have rwo disting commun points. If the
roots of (9) e real and coincide, the line will meet the pagabola in exactly one
paint. And 1l the roots of (9 are imaginary, the line will not inlersect the parabola
at all.

So. iy - mv 4+ cis alangenl to v¢ = dax, the discriminant of (9) must be zero,
that iy,
(Zmic - d4a)° = 4mie?
= 4m°¢” - 16amc + I6a° = 4mc’
o

=g Csincem #Z ),
m

Thars,

the straieht line vy = mx + ¢ it rapgent 1o
. . a
voo= dax ifm # O0and v =

And then, whpl wiil the point of coniacr be? Since (9 has coincidenl roots, we sce

that
|
J - 2m
Ja hae m a
A R = . . oand then
2me m 11N
a a 2a
Ve - MY, 4 ¢ o= om -~3) + - .
1) m m

3 a b .
Thus, ¥ = mx + — will he a tangent to y° = 4ax at the point
m .

/ 2
e '

Using the condilion Tor tangency, we can sav, lar example, thal the line 3x +
= Sisatangent 1oy’ + 15x = O, but not to ¥* = 15x.

\nd now far an cxercise.

i.7 Under what conditions on m and ¢, will v = mx 4+ ¢ be a ranpent o
X dn?

EETRNE T SEFY

. : o nershola has several properties, but one of them in particular has




many practical applications. This is the reflecling property, According to this,
suppose a line L, parailel to the axis of a parabola, meets the parabola ar a point
P (sce Fig. 9). Then the tangent to the parabola at P makes equal

Fig. 9: RzMNecting property of & parmbate.

angles with L and with the local radius PF. That is, &« = 3 in Fig. 9.

The reason this property is called the reflecting property is the follawing
applicalion:

Take a mirror shaped like a parabola, that is, a parabolic mirror (sce Fig. 10}. If a
ray of light parallel to the parabola’s axis falls on the mirror, then the reflecied
ray will pass through the focus of the parabola. Thus, a beam of light, parallel 10
the axis converges 1o the focus, after reflection. Similarly, the rays of light 1hat are
emitted from a source at the focus will be reflected as a beam parallel to the axis.
This is why parabolic mirrors are used in car headlighis and scarchlights.

1t is also because of this property that the ancient Greek mathematician
Archimedes could use parabolic reflectors 10 sel fire 10 enemy vevwsels in the
harbour! How did he marage this? Archimedes ingeniausly thought of applyiay
the following facr:

If a parabolic refector is turned 1owards the sun, then the rays of the sun will
reflect and converge to the focus and create heai at this peint.,

This is also the basis of solar-cnergy collectors like solar cookers,

The reflecting property is also the basis for using parabolic radio and visual
telescopes, radars, etc.

The following exercise is about the reflecting property.

oy A mrrabhalic mierse e n canealilinabe ic 1a b

Cuy Fr PATSCTOC MTToT 1OF G SCarcoapnt il ol construcicd with wid
and depth 0.2 metres. Where should the tight source be placed” 1o Tae. 1) we
have given a cross section of the mirror.

Aadele |
e

P
LTI Y

(Hint: The parabola is y* = 4ax, and (0.2, 0.5} lics on i)

Now let us consider certain lincs that are often spoken of along with fangeor Ines,
These are the normals. :

Deffvition: The mormal 1o a curve at a point P an the curve is a stratght line
which is perpendicular to the tangent at P, and which passes through 1* {sce Fig.
12).

The Statlared < vna: -

The focal radias of o poont *
on a parabala wirh foous 114
the line segment PIF.

Fig. M. -\ pamhallc mirror.

Pewwd' v T Y Claepl.

|
1
"s\ |
L
D\I
W
P, 11
\\ ;
h\ L
/
~p
\ J
A //
\

Fip. 12: L is the normnl to the
parahnla a1 P
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For example, a parabola’s axis is the normal at its vertex.

Now, let P(x,, y,) be a poinl on y? = 4ax. Then, you know that the equation of
the tangent at P is

¥y, = 2a(x + x;).

IT y, = 0. then x; = 0 and the normal at (0, 0) is y = 0. the axis of the
parabola.

On the other hand. if y) # 0, then the slope of the tangent at (x,, y;} s —ZE-.
Yi
So the slope of the normal will be - % (see Equation (13) of Unit 1}. Then,

from Unit | you know that the equaltion of the normal ar (x,, ¥} is

Yoo, .
Y-n=- '-'2;— {x - x;). that is,
yi

g_az' A1

}'=-'£I'¥"+)'1+
2a

since yi = 4ax,.

Note that (10 is valid even when y, = 0.

So, for example, what will the equation of the narmal 10 3,'i = x at {1, |) be?
Herea = %. x; = ¥y = [, So, by (10) we find thar the required cqu.ation is

Yy==2x+1+2=-22+ 3,

We end this section with some easy exercises.

E9) Find the equation of the tangent and normal at (i, 1) to the parabola
X2 = dy.

ElI0) What is the normal at the point of contact of the tangent

a
y = mx + — to the curve y? = dax?
m

With this we end our rather Jong discussion on the standard forms of parabolas.
Now lei us consider a conic whose (ocus doesn't lie on the directrix, and whose
eccentricily is less than |+ -

2.4 ELLIPSE

As the 1itle of this section suggests, in it we shall study an ellipse and its
properties. el us start with a definition. '

Definition: An ellipse is a set of points whose distance from a point Fise (<)
times its distance from a line L which does not pass through F.

Let us find its Cartesian cquation. For this we shall return to Equation (1) in Sec,
2.2, As in the case of a parabola, lel us slart by assuming that F i< the origin and
Lisx + ¢ = 0, for some constant ¢, Then (1) becomes

o+ oy = e+l

which is equivalent 1o

(N - L_I’.';‘)' + Y- 7 = ——E.L: 7 {CheckD.

, et , .
If we now shift the origin 1o ( © e ﬂ). the equation in the new X 'Y .system
becames l-er :




This is of the form

xf] y-Z

— + —— I 1.

a? b2 . }

where a = e_cl and b? = (eL)z =al(l -ed).
(- e 1-¢

In the X' Y’-systems, the focus is {(~ae, 0) and the direcirix is x" +ac + ¢ = 0,
a

thatis, x* + — = 0, t

e o

Note that b2 = a? (1 - éz} and e < 1. This, b? < a%.

So, il we simply retrace the steps we have taken above, and find the equation of
an ellipse with focus (-ae, 9) and directrix

x = = 0, we will get

e
2 2
% + % = 1, I

where b? = a2 (1l - ¢?).

(I1) is the standerd form of the equation of an ellipse. As in the case of a
parabola, we can always rotate and translate the axes so that the equation of any
ellipse can be put in this form, for some a and b. We call it the standard form
because it is a convenient form for checking any geometrical properties of an
cllipse, or for solving problems related to an ellipse. .

Let us now study (11) carefully, and try to trace it.

2.4.1 Description of Standard Form

Let us start by studying the symmetry of the curve (see Sec. 1.3). Do you agree that
the curve is symmetric with respect 1o the origin, as well as both the coordinate
axes? Becgause of this, it is enough to draw the ellipse in the first quadrant. Why is
this. so? Well, the portion in the second quadrant wili then be its reflection in the
y-axis; and the rest of the curve will be the reflection in the x-axis of the portion
in these two quadrants.

Next, let us sce where (11) intersects the coordinate axes. Putting y = 0 in (11), we
getx = + a; and putting x = 0, we ger y = + h. Sp, {11) cuts the axes in the

four points (a, 0), (-a, 0), (0,'b), (0, -b).

Thirdly, let us see in which area of the plane, the ellipse (11) is defined. You can
see that if |x| > a, y is imaginary. Thus, the ellipse must lie between x = -a and
x = a. Similarly, it must lic between ¥y = bandy = -b,

This information helps us to trace the curve, which we have given in Fig. 13.

|

Y i}

Bi{a.b)

afe

{—ac, 0y \

A':(—a..t_?]' ' Q JA{H..Q)

r=-
-
£l

a

B’@©, -b

Tog? yl
Fig. 13: The cliipse — + <~ = 1.
|
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[.ooking a1 the symmetry of the curve, do you expect (ae, 0) 1o be a focus also? If
you do, then you arc on the right truck. (11} has another focus at F'(ac, 0), with

, . a
correspon. g directrix x = -, Thos, (11} has two foci, namely, F(-ac.0) and
¢

F{ae, 0) : and it has two directrices (plural of “direcirix’), namely,
x - - a and x = 3 .
¢ ¢ : i

The chord of an elipse which passes through the foci is called the major axis of
the ellipse. The ¢nd points of the major axis are the verfices of the cllipse. Thus,
in Fig. 13, A and A" are the verlices and the chord A'A is the major uxis. ks
length is 2a.

The midpoint of the major axis is called the centre of the ellipse. You can sce that |
the centre of the ellipse (11) is (6, 0). :

The chord of an ellipse which passes through its centre and is perpendicular to its
major axis is called the mimor axis of the ellipse. In Fig. 13, 1the minor axis is the
line segment B’B. Tts length is 2b.

Let us look at an example.

Example 1: Find the eccentricity, foci and centre of the cllipse 2x* + Wy = |.

_ x? y?
Solution: The given equation is _l + = =1,
I
PR}
Comparing-with (I1), we gel 2 = ! b I Since
1 T N = —=, = —.
TR E
b =a’(-e} — = — (1 -e}, thatis, e = .
( ) 3 2( ) | Al
The foci are given by (xae, 0) = (:I: \76 0).

And of course,-the centre is (0, 0).

Now Ict us sketch an ellipse whose major axis is along the y-axis. Tn this case a
ahd b in {(14) get interchanged.

_ x? v
Exempie 2: Sketch the ellipse — + — = |.

9 25

Solntion: This ellipse intersects the x-axis in (%3, 0), and the y-axis in (0, +5).
Thus, its major axis lies along the y-axis, and the minor axis lies along the x-axis.
Thus, a and b of (11) have become interchanged. Note that (0, 0) is the centre of

this etlipse too.

4
Also, if e is the eccentricity of this ellipse, then 9 = 25(1-¢2). Therefore, e = e
Thus, the foci lie at (0, 4) and (0, -4). (Remember that in this case the major axis
lies along the y-axis.) The directrices of this ellipse are y = + % .

We sketch rhe ellipse in Fig. 14.

Here are SOME exercises now,

Etl) Find the length of the major and minor axes, the eccentricity, the coordinates
of the vertices and the foci of 3x2 + 4y? = 12,
Hence sketeh it,

El12) Find the equation of the ellipse with centre (0, 0), vertices at {+a, 0) and
eccentricity 0. Sketch this ellipse. Does the figure you obtain have another
name?

|
|
ET3) The astronomer Johann Kepler discovered in 1609 that the carth and other ‘




v=254

A (0, 5)

B
(-3, 0)
AT (0, -5
v—- 250
. xt ¥?
Flg. 14: The cllipre G + 3% 1.

phanets travel in approximateiy elliptical orbits with the sun ar one focus, If
the ratio of the shortest 1o the longest distance of ihe carth from the sun is
29 to 30, hind the cccentricity of the earth™ orhit.
_ _ x2 y?
El4) Congsider the ellipse — + --- 7 -yt 1.owhiere o 1y i seconinicaty,
4 41 - ) l 1

3
Sketch the ellipses thar you get when ¢ 4 ¢ - and e e Can

you find a relationship between the magnitude ¢! ¢ and the Ratness of the
elipse?

What E 12 shows you is that a circle ix a particular case of an ellipse, and the
equition of a circle with centre (0. 0) and radius a i

x? + y? = al, .12

You may be wondering about the direcirices of a circle. In the following note we
make an observation about them.

Note: As the eccentricity of an ellipse gets smaller and smaifer its directrices get
farther and farther away from the centre. Ultimarely, when ¢ 0, the dicectrices
become lines at infinity.

At this point let us mention the paramelric represenralion of ae cliipse. As in the

. . %" v ,
case of a parabola, we can express any point on the cllipse . 4 h - 1in
H :
)
terms of a parameter . In this case, you can check that any point {x, ¥} on the
ellipse is given by x = acost, y = bsint, where 0 €t < 2x. Note that the

vertices will correspond 101 = Dandt = .

Let us now look at some imporiant propertics ol an cllipsc.

2.4.2 Siring Proneriy

In this section we derive a properly that characterises an cllipse. lel us go back 10
Equation (11). Its foci are F(ac, 0) and F'{-ac. 0). Now, takc any point P(x, v)
on the elipse. The focal distances of P arc PF and PF*, What is their sum? [ You
apply the distance formula, you will find that PF + PF* = 2a, which is a
constant, and is the length of the major axis. This property is true Tor any cllipse.
Let us state it formally.

Theorem 1 a) The sum of the focal distances of any point P on an cllipsc is the

L]
-
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Fig, 15

Fig. 16: Kketching an «ltipse
using a string.
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length of the major axis nf the ellipsc.
b) Conversely. the xet of all points P in a planc such that the sum of distan csof P from

Awo fixed points F and F in the plane is a constant, is an ellipe.

Proof: Wc have already proved (a), Let us prave {h). We can rotare and translate
our coordinate system so that F and F* lie on the x-axis and (0, 0 is the midpoint
of the line segmeni F'F, Then.if F has coardinates {c, M. F  will e Etven hy

(-c, 0). Let P(x. y) be an arbitrary point, such that PF + PF .. la, where a is a
constant (see Fig. 15). Then, by the distance formula we gel

f(il'c]’ £y 4 \;’(x -e¥ 4+ vz 2
= ﬁx-‘ 4y = 2a- ‘.-{(x'—'C)r*' v’

On squaring and simplifying we pel

(a® - ¢y x° + a’y? - oa¥a' - ¢f).

Now, since PFF* forms a triangle, FF' <« FF + PF'. Thercfore, 2¢ < 2a. that

is, ¢ < a. So we can rewrite the above equation as

)

K y =
— + =3y = 1, whereb = ‘a” - ¢l
a b

M~

Cotnparing this with (11}, we see that the set of all points (x, ¥) that satisfy the
given condition is an ellipse with foci F and F’, and major axis of length 2a.

Mathematicians ofien use Thearem | as the definition of an ellipse. That is,

I an ellipse is the set of all point= in a plane lor whrch thr sum nl
| the distances from two fixed poinic in the plane iz constant.

This property of an eflipse is also called the string property, because it is the basis
for.the following construction of an ellipse.

A mechanical method for drawing an ellipse

Take a piece of string of Ienglh 2a and fix its ends at the points F and F° (where
FF’ « 2a) on a sheet of paper {see Fig. 16). Then, with the poim of a pencl P,
rretch the string into two segments, Now, rotate the pencil peint all around on the
paper while sliding it along the string. Make sure thatl the string is taut all the
**1i2. By doing this the point P will trace an cllipse with foci F and F* and major
asis of lengih 2a.

Why don't vou try this methed now?

T——

. . , , Lo
E15} Use the method we have just given to draw an ellipse with cccentricity ;5 and

a string of length 4 units. What will the coordinates of its vertices and foci
be?

There is another property of an cllipse which makes it very useful in engineering,
We shall tell you ahout it in our discussion on tangenis.

2.4.3 Tangenis and Narmals

In Sec. 2.3.2 vau studied ahon o tangent of o parahala, We will th\um the
tangents af an ellipse in the same manner.

X ¥ 2
Let Pixg. y)) and Q(x,, y,) he 1wo distinct points on the ¢llipse :: + -y45 = |.
if x; = x» = ¢, say, then the equation of PQ is a b _
X = c. A1
Similarly, iy, = y, = d, say, then the equation of PQ is

|
y = d. (14) |
If x; # x»and y, = y,, then the equation of PQ is
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since (X, ¥} lies on the eHipse.
S0, (13), (14) and (15) are the various possibilities far the equation of the line
joining P and Q.

Now, Lo get the equation of the tangent at P, we see what happens 1o the equation
of PQ as Q tends to P (see Fig. 17). In this case, can you see from Fig. 13 thar we
need to consider (15) only? This is because as Q nears P, the line PQ can't be Fig. 17: I is langent tn the
parallel to either axis. Now, as x, tends to x, and y, approaches ¥,.(15) becomes, in ellipse ot I,

the fimiting case,

2(H~l~ + y_y_,) = '2. that is,

a’ b?
X X ¥
al _bz = I. 2 1 - (16) !
x 2
Thus, (16} is the equation of the tangent 1o - + % = 1 at iy, ¥y
a

Remark | may have already suggested this equation to you. The same rule of
thumb works here too, that is, replace x? by xx; and y? by yy,.

1
For example, the tangent to the ellipse in Example | al (% »_-'F:) is
ZX(l)+3(l = 1, that is, x + G =1
2 y JE) - h xrJzyen

Now try this exercise on tangents.

El6) Find the equations of the tangents at the vertices and ends of the minor axis

2 z
X
of the ellipse — + R i.

al b2

L.et us now find the equation of the normal to (11} at any point (x,, y,). [Ty, = 0,
from EI5 you know that the slope of the tangent will be #/2; and hence, at these
points the normal is just the x-axis, that is, y = 0. Similarly, you can see that the
normal at the points at which x;, = 0 is the y-axis.

Now suppose x; # 0, y; # 0. What is the slope of the normal at (x,, v,)? By (16)
2

. X
you know that the slopc of the tangent is - 3 L Thus, the slope of the narmal

_2 .. ary
. - a F - -
at (x;, v;) 10 the ellipse is 3 ! {see {13} of Unil!}, Thus, the cquation of the
normal at (x; + y,} is,

]

X

b d| .
Y-y = X - X,), thatis,
b, € I
y-w X=X
A= el -~
b4 x/a A diameter of an cllipse (v a
. Why don't you try these exercises now? chard that passes throngh ihe

—— £cnire

E17) Find the equation of the tangent and norfal at (2, 1) to x7 + 4y2 = R, s
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Canfesr FARY Show hier the suneenie at te essremns " al o Jupneter »f an clhipse arce

parudliel
I/
Now. in Sec. 2.3.2, we discusaeet the reflecling property ol a parabola. Do vou
/ expect it Lo hold for an cllipse toa? The same property is not satisfied, but
I something like that is.
7 . i
¥ . - .
! Reflecting property: The tangent 1o an cllince ar a point makes eaual angles with
,' the Tocal radii fram thar pnint.
{5
) That is, if you take the tingew BT oat o paint P oop e ollipss {see Fig, 182, then it
/ makes egual angles with the Hnes 1 ona 0t
/
/ [ We shall not prave the here We lepve the proofl (o you as an exercise (see
MiscoNancons Fruergieged,
Because of Hhe reilect o nroperny, @ ray of ughr (or cound, or any other type of

i wave) that is emined ltom ope foces of g palished eflipticat surface is reflecred
back to the ather facus (see Fig 19} e of the applications of this Tact is its use
for making whispering galicrics

Why don't you try and apply this property now?

E19) An ellipfic reflleetor is 1o be designed so as to concentrate all the light
radiated from a point source on 1o znather point & metres away. 11 the width
of the reflector 1s-10 metres, how high should it he?

o, 19 ; Reflected wave
. eierly,

Let us now scc under what conditions a given line will he a 1angent 1o the ellipse
2 2
X y

—_— 4k S = |. N PR
a2 b? s
Letthelinebey = mx <+ c.

Substituting for y in the equation of the cllipse we get

2 2
X (mx + ¢ .
— ..-__.,_‘.._.L = |, that is,
a‘ b* -
©oxMe s oa'm?) + 2mea’k + af(e’ - bY) = 0.

y = v + ¢ will be & tangent to the ellipse il this quadratic cquation in x has
equal ror ts. Thix will happen if itz discriminant is zero, that is,

dmiciat = do + alm® a¥et - W

= ¢ ~ a'm? + b’ . . (18)
So (I8) is the condition that y = mx + ¢ is a tangent 1o

X2

_2 + y,
a b=

Here's an opportunity for you to use this condition.

L&)

We shall now stop our discussion on cllipses, and shift our focus to another
standard conic.

2.5 HYPERBOLA

Let us now consider the conic we get if ¢ > 1 in Equatior (1), namely, a
hyperbola. Let us define it explicitly,

e,
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Definition: A byperbola is the set o points whose distance from a fixed point F is The Stemdard Coir.

¢ (> 1) times its distance from a fixed line L which doesn't pass through F.

There is a similarity between the derivation of the standard equation of an ellipse
and that of a hyperbola. In the following exercise we ask you to obtain this
equation for a_hyperbola.

)

E21) a) Show that the cquation of a conic with focus at {0, ), directrix x + ¢ =
0 and eccentricity e > 1 is

cel \? ¥ o2
X+ =3 R = T3 7"
BT - 1 e -1 {ec - 1)
b) Shift the origin suitably so as to get the equation
xifz yfz

a2 b?

ec -
where a = pramrel b=a fez- 1.

c) ‘Whet are the coordinates of the focus and the equation of the directrix in
the X'Y -system?

E22} What is the equation of the coaic with a focus at (-ae, 0) and direcirix

a . ..
x = - —, where e (> 1} i5 the ecceniricity?
e

As in the case of the other conics, we can always translale and rolate our
coordinate axes so as to get the focus of any given hyperbola as {-ae, 0), and 15

. ) a .
. directrix as x = - —. Thus, we can always reduce, the equation of any hyperhola
. € -
to the equation that you obtained in E21, namely,
2 )
X y
= - -, (1)
a? bl . - .

where b2 = a?(e? - I).
So (19) is the stendard form of the cquation of a hyperbola.

Let us now trace this curve.

2.5.1 Descripticn of Standard Form

Let us stedv (19) for symmetry and orher properties.

5

2
. . . . . g X
Firstly, if -a < x < a, then there is no rea! vidue of y which salisfies -— - ::—2 =1,
a2
Thus, no part of the curve lies between the lines x = -a and x = a.

Secondly, it is symmetric about both the axes. zs weil as (0, 03. So il is enough to
trace it in the Mrst quadrant.

Thirdly, the points (+a, 0) lic on it, and_il does not intersecl the y-axis.

? b
) . X .
Finally, since — = 1 + —%?. as x increases so dovs y. Thus, the hyperbola

extends Lo infinity in both the x ang vy directions. We have sketched thic conic in

Fig. 20. You can sce that & disjoint branches, unlike the niher conie
i, 'I
Looking at the curve's mymmelry, do you fecl that it has anciher locus ana
directrix? You can check that {ae, 0).is another focus with corresponding tlirecirix
__ a
A = T

e

A hyperbola intersects the line joining its foci in two points. These poinrs are
calied its vertices. The line segment joining its verfices is called its fransverse axis.
(Some people call the line joining the vertices the transverse axis ¥ Thus. the poinsts - 15




Conles

i8

Y
<
TR =
]
Flonc. 1}y | A {-a.m ol _ A m x;
T ' '
-

1 1
Fig. 20: The byperbols -:, . E! _—

A’(-a. 0)and A(a, 0) are the vertices of the hyperbola in Fig. 20 and the line
segment AA 15 its transverse axis. The length of this iransverse axis is 2a.

The midpoint of the transverse axis is the cenire of the hyperbola. in Fig. 20, the
line segmenmt BB*, where B is {0, b) and B" is (0, -h} is called the conjugate axis of
the given hyperbola.

Note that it is perpendicular to the transverse axis and its midpoint is the centre of
the hyperbola. The reason il is called the conjugate axis is because it becomes the
_ .2 x? -
transverse axis of the conjugate hyperbola of (19), T))— - — = |. {(We shallnot
al
dnscus% conjugate hvperholas in this caurse. If vou would like to know more about
them. you can look up 'A Textbook of Coordinate Geometry' by Ramesh Kumar),

Let us consider an example of a hyperbola.

Fxample 3: For the hyperbola 4x* - 9y = 16 find the vertices, eccentricity, foci
and Lhe axes.

. . v
Solulion: We carn write the eguatien n the <tandard form as ' '..1“ = 1.
Comparing this with (19}, we find thara = 1, h = 2.
Theretare, the verticey are (£ 3, 0),
b L3 L] - Ll I:‘ . . Il
Now. since b* = a- {e° - |}, we find that ¢ = . Thus, the cccentricity s

V13

== Then rhe fock are (xae, 0). that is, {73, 0). The transverse axis is rhe
3

line sepment Joining (3,0) and (-3,0). and the conjugate axis is thc line sepment
joining (0, 2y and (0, -2).

Why don’t vou Iry some exercises now?

E2N) Find the standard equatien of the hyperbola with E&cntricit_\- v2. {Such a
hyperbala is called a rectangular hyperbala.)

E23) Find 1w cquation of the hyperbola with centre (0. 01, axes along the
eoordinate axes, and for which )
a) a verfex is at (0. 3) and the transverse axis is twice the length of the
Cee-njugate axis: -
b) a vertex is at {2, 0) and focus at F 113, )




E25) a) Show that the lengths of the focal radii franmany point P(x, ¥} on the
hypertola (19) are jex + al and |ex - a].

o X y’
b) - Whar is tive analogue of (a} for 1he ellipse ~— —h~.; = 1?
al :
E26) The more eccentric 2 iyperbola, the more its branches open out from s
transverse axis. True or Jalse? Why? - )

As in the case of the other conics, we can give a parametric representation of any
point on a hyperbola.. What do you expect it to be? Docs the equation sec?l - tant
‘= 1, ¥ 1 € R help? Using this, we’can give the parametnic fym of any point an
{19 by x = i sect, y = btant, for 1 ¢ R such that &t < 1 < 2rx.

Let us now Jook at some propercties ol 2 hyperbola,

2.5.2 String Property

In Theorem 1 you saw that an eilipse 1w tl:c\path traced by a point, the sum of the
distances of which from two fixed points is a constant. A similar property 15 true
of a hyperbala. Only, tn this case, we look al the difference of the distances.

Theorem 2: a) The difference of the foval distances of any point on a hyperbola is
equal to the length of its (ransverse axis.

b) Conversely, the set 01 points P such that |PF| - PF,| = 2a. where F, and F,
are two fixed points, a is a constant and F,F, > 2a, is 2 hyperbola.

2 3
X .

Proof: a) As you } now, we can always assume that the hyperbola is — - -i-i-
a

= L. Let P(x, y) be a pomnt on it, and le1 its foci be F, and F,. Further, lct D, and
D; be the feet of the perpenchculars from P on the two directrices (see Fig. 21). In
the figure you can sce both the cascs — when P is on one branch of the hyperbola
or the other.

}
¥
=-uf¢
\ Dz
f"__'___.-—""-"-—-
O X
Sl & DR ]
0D,

Fig. 21: [FF, - "V, is constant,

Mow, by delinition,
PF, = e PD, and PI', & e PI},. Therefore,

N I 2_ \
|[PF, - PFy) = ¢ 1., - PD,| = ¢ (ﬂ ) = 2a, the length of the transveise axis.
e !

(You can also prive (his by using E25(«).) .

We ask you o prove (bt in the following exereive.

"‘J )
The Ntapdard Coakes
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Cl;nks

E27) Prove Theorem 2(b). Where is the condition F,F; > 2a used?

Theorem 2 is called the string property, for a reason that you may have guessed by
now. We can use it to mechanically construct a hyperbola with a string. Since this
construction is more elaborate than that of an ellipse, we shall not give it here.

The string property is also the basis for hyperbolic navigation — a system
developed during the World Wars for range finding and navigation.

And now we shall see how to find the tangent to a hyperbola.

2.5.3 Tanger;ls and Normals

You must have noticed the similarity between the characteristies of an ellipse and a
hyperbola. The derivation of the equation of a chord joining two points on a
hyperbola and of the equation of a tangent are also obtained as in Sec. 2.4.3. We
shall nor give the details here. Suffice it to say that all these equations can be
obtained from the clliptic case by subsiituting -b? for b2,

2 2

X
Thus, the equation of the tangent ta — - ? = | at a point (x;, y,) lying on
it is a
XXy YYi
—_— -— =], (20
az. p? (
Also, the equation of the normal at a point (x,, y,) to
X _ ¥ = 1is
al b

a? (x_.*_r) + b2 (u) - 0. 2N
Xy %1
Similarly, the condition for the straight line y = mx + ¢ to be 2 fangent to

2 2 .
X * . 2
—-i-—y—z=llsc2=a 2_b2-
a b

Now for a short exercise.

] o 2 ) .
E28) a) Find the tangent and normal to e -3-;— = 1 at each of its vertices.

b) Is 3y = 2x a tangent to this hyperbola? If so, find the point of tangency.

We will now introduce you 10 some special tanpeats to a hyperbdla, Consider the
2 2
X . b . .
hyperbola —- - % = | and the lines y = + — x (see Fig. 22). These lines
a . a
satisfy the condition for tangency. They are the pair of tangents to the hyperbola
which pass through its centre. Such tangents are called the asymptotes of the

hyperbola.

Now, let P (x, v) be a point of the branch of the hyperbola in the first quadrant.

. _ b
Then its distance fromy = —x 1§

a
lay-bx|  |a%y- b
va® + b ’az+b!(ay+bx)
2

a’b

Ja? + p? (bx-l-bez - ad)

b —y——
since b2x? - a%y? = a’b? and y = -~ X -t
a’bh

al + b (x + {xz—azl




The Siasdard Conles

b FLE—
Fig. 221y = = -- £ ure the wsympiviea of e il = L
a [

As x increases, this distance gets smaller and sinaller. Thus, us P tends to_infinity

b oy - L b
along the branch y = — ‘xl - a2 of the hyperbola, its disiance fromy = — x

; a a
tends t zero. Bul the asymptote never actually intersects the curve, So we say that

its poitl of contact is at an inlinite distance.

, b ' . .
You can check that the same is‘true of y = - — x. In fact, tangents with their
a

points of contact ‘at infinity” are called asymptotes.

Try these exercisés now. Asymprotes are discussed ir
~ the course MTE-0) in dziail.

E29) Find rthe asymptotes of the rectangular hyperbola x2 - y2 = a?, Are they the
same for any value ol a?

L30) Under what condilions on a and b will the asympiotes of the hyperbola (19)
be perpendicalar o euch uther?

So fur we have discussed the Cartesian und parametric equations of the conics.
But, in some applications the polar equution (see See. 1.5) of a conic is more
useful. So let us sce what this eguation is. :

2.6 POLAR EQUATION OE CONICS )

Consider a conic with eceentricity ¢, Tuke a focus ¥ as the pole. We can always
rotate the conie so'that the corresponding direetria L lies to the left of the pole, as
in Fig. 23. Let the line FA, perpendicular 10 the directrix, be e polar axis and d
the distance between F and L.

Let P(r, 8} be any point on the vonic. Then, if D and E are the feet of (he
purpendiculars from P onto L and FA, we have

PF = ¢PD
= e{d = EF} = e {d-r cos (x-8))
=e{d + reos ).

4]




Conics l

Feg. LV, traing iy ponar crquitiosn ol a vamr,

I L (20)
-ecws B

which 15 the polar equanem of & ¢ani,,
Can you lind-the polar cyuations of 1he sjanddoi comes f1am this?

For instance, the polar equation of the parabola (18 r = - -- A .
where d = 2a, - I - cos f?

Now, supposc you i1y 1o delwve the peied cquation of « conie by aking the
dirct:l{ix L corresponding 10 a focts =, 1 the right of B, Will you get (2257 You
can check that the equation will now by
(] ..
[ - e ...f;‘}
_" L S EL '

Let us conseder an applicatiun ol the polar tonn.
Exampie 4: In Fig. 24 we sivow the elhipiwal orbn of the carth aronund the sun.

which is at a locos I, The poar &~ o the cilipae closes 1o the sun i cdiled the
perihelion: and. the poni A7 Tacthest Toe the sun s called the aphehen.

k. 29: Aphielian ant peahehian an the aemt al the caria aronng (ne san.

~ -m . _m LU T T e e L T T S L U T
SVIIRIWS TIRAAT RRRET JRMCE MELTERZIE WRINEATILY F'0% I LTIL UL e LSRR F oy e RIVER LY

, v . el . :
FA . and FA© - . where d s i given o (22) and (23).

R P
Soletion: The polar coordinares of A are (FA, 0) and of A° are (FA', =, Thus,
from 21 we Hind tha

ed . vd
FA - and FA®

1 | [y
You can des the [ollowime evergises Toosee iF yon leane minderstoomd what we have

dane ne ilas s twen

42



The Standurd Conles
E3by Let 2a be the dengtht of the majon axis of the ellipse
vil wd
ro- . Show 1l a }
I +woosf |

E32) A comer is travelling in a parabolic course. A polar coordinate system is
introduced in the plane of the parabola so e the sun lics at the Tocus aod
the polar axis is along M axis o' the parabola, drawn in the direction in

- . ) - 1 . .
which the curve opens. When the comet is 3.0 X 10°km from the centre of
the sun, a ray from the sub (o the conet nakes an wigle of =73 with the
polur axis. Find
alb an eguation for the parabolic pah,
by  the minintm distanee of e cotel tem the sy,

¢} the distangce between the camdt aod the sun when ¢ =

]

Su in this unit you have scen the Canesian, paraserric and pular representations
uf the various conivs for which the Foci do um lie on the vuriesponding direelrices,
Such conies ure called non-depenerute conivs, -

In case & foeus of a conie lies on the directng con respuitding to it, the conic we get
culled a degenerate conte, We will ot go into details abour dhem. Bui let us list
¢ possible types that there we.

A degenerate vonic cuan be ol 3 tvpua:
a point, a pair of inteesectiog lines, i puair of distne paridlel lines, a pair of

voincident Enes and (he empty el

Now et us do a brie! run-thraneh o st we s e covered in this unit.

2.7 SUMMARY
Ln this unil we e discussed the followmg points:
[y Fhe focus-directrin detiving propeity of conivs.

o Atndared form of o pioaboda syt B 1S Tacns s w ta, O} and
directeix i v S dt evveittieny o 1 e gl standind torius A
Voo day, A - - day and ! laa, a0+ U

U lhe wogent to s ' 2 Jux w g ponn oo rd vty e itas 3y, - 2a (v oy N3

. o |
A s LLE T S R O R N T { PN T S Tas ¢l v ) .
ni .
- L}
vy ¥y
b Lhe pormad al tay, 3,0 ey W NEy, - -
2a LHN

v The standard torm of e cyutiion of an cilipse with eecenttivily ¢ (<3 1}y

x- - 1] Ll ]
Sy F y I, where b - o () o9
u- b_
L , a
Hs foci are [xae, U) aad duedirice e s 1T
v

71 The sunt ot the Poeal distgopres o oy i~tihi S i cibiae equitis e tength of
the najor asis of the b, -

. R bl Al - AR
SEbhe wengent o the ciipay . Pty vy . M |
1 » u- -
Yhoy om0 ey @ ocgent e ) Pl Lt O TR PR
" . n w
Wy Lhe normal o 7, ¢ : ooyy) : (AT
H Ih- % '

1y Fhe standand Losmal the = L I R IV FO B TN 43




Eonte ) o - ' )
ii), The standard form of tht equation of a Lypwerbol with cocentricity e(>1)ix

X y ) . .

= = 1, where b = a2 (e? - 15, Ns foci are { =ae, 0 and directrices
a

are x = =+ —,

€

12) The difference of the focal distances of any point or a hyperbola equals the
length of its transverse ams

2
X
13) The tangent to the hyperhala — - % 1 at (xy, vi) I8 _x,_ _ ):21 1
F: |
) . xz y? ) - )
14) y = mx + cis a tangent 10 — o =tifc? = am?-b
: a _
2 . g az bz
15) The normal to — - =5 = lat(x, y)is— (X =x) + — {y -y} = 0.
a h Xy A ¥
x: h
16) The asymplotes of the hyperbola - - s = jarey = & -ox,
. 2l ; .

17) The parametric representation of any poinf on

a) the parabola y? = dax is (at?, 2at), where t € R;

x2 v
b) the ellipse — + el = lis {a cos 0, bsin §), where 0 < 8 < 2,

a

xt R
c) the hyperbola —- - —‘;—i- lis (asecd, blan 8), where 0 = § < 2rx.
a’
ed

18) The polar equation of a conic with eccentricity ¢ is r = T- P or
- € cos

ed . . . . . .
r = —————, depending on whether the directrix being considered 15 to
1 +ecost .

the lefi or to the right of the corresponding focus.

Here, d is the distance of the focus from the directix.

. 19) The list of possible conics is
lable 1: Standard Forms of Conics.

Conic Standard Equation Sketch
)
x! y]
Ellipse - + ; =l,a,h>0
: Circle x*+yt = af,az= 0 _é}
' X2 2 \ /
Hvperbola —-—=1,ab>10
* /
Parabola y' = dpx,p >0 A
44




= x The Siandard Coics
) . X'y /
Pair of intersecuny lines T IR - B
' a* b- —
e
s
Pair of paratlel lines yleaLa>0 1T T T
Pair of cuiacident line< PARN —-—__L_.,
|
4
xl vJ.
Poim conic =t prae Oab=0
J
1 v}
And now you may like to check whether you huve achieved the objecilves of this
unit (see S=c. 2.1). If you'd like to see our solutions to the exercises in this unit,
we have given them in the following section.
................ - o
2.8 SOLUT!ON&/ ANSWERS
2
- : . X -
El)  a) rhe reguired wuuation s (x - 2)? + y? = |2 (—5—”— -

o x? + yt L v -8 4§ 0

I 2x + y-1)?
4 5
w 16x* - dxy + 19y° + 4x - 38y + 19 = 0,

b} The required equation is x* + (y - 1}2 =

E2) In Fig. 25 we have traced the parabola y? = - 4ax, a>0. Its vertex is (0, 0)
and focus is {~a, ¢). In Fig. 26 we have drawn x¥ = -day, a > 0. lis veriex
is (0, 0) and locws i (O, -

£3) The parabola is sitnilar 1o the vne in Fig, 26.

Ed)  The parabola is x¢ = -2y. Thus, its focus is €0, - 1/2), and its latus rectum
18y = - —2-
. L Y+ o¥ .
E3) a) The equation is xx;, + 2 _i ) = 0, where x, = y, = 0, that is,
y = O,
bl The ends of the latus rectum are (<1, 7Y and (=) 23 The tangants ar
these poinisare x + y -1 = Jandx -y-1 = 0,

E6) The axis of the purabola intersects it at the verrex _only, but it is not a
tangent al the vertex.

E7) Thl.. first puint to note is that no tangent line can be parallel to the axis ol

¢ paracola. For eny oiher w, ihe fine will be o fungent ai {x), ¥} i

4ay), y, = mx, +¢, and x{ = 4a {mx, + ¢) has coincident roots. Thus,
y = mx + ¢ witl be a tangent if m A'tan 7/2 and ¢ = - am?,

E8) We have to find the locis of the parabola. We know that (0.2, 0.5) lies on
it, Therefore,
Q.25 = 4a(0.2) = 0.8 - o 0. %125,

Fig. 2%: y2 = -dax, 2 > 0.,

Fig. 26: 2% m wday, n > 0.

45




Conirs

Fig. 28: The circle x? + y3 =2,

E9)

Elh)

Ell)

EfD

El4)

The tangent is x = 2{y+ |}, Tts shape is _l'

=2 {(x-1.

Thus, the normal is y-1 =

The point of contact is (-E-,-. —zf-).
m*~ m

. |
The slope of the normal is - -—-.

m
Thus, its cqualion is
2a 1 ( a )
y - ——— = X - g
m m m-
ux+my-a(2+—-,)
m:
- o ¥
The equation can be rewritten a5 -- .} " l.

The major axis is of length 4 and lics alang the x-axis.
The minor axis 1s of length 2v3,

S (VA2 = 22 (1-e?), where ¢ is the eceentricity.

!
= f = —e=-
2

The vertices are (22, 0} and the foci are (+£1, 0). We trace the curve in
Fig. 27.

vi
I M

"

A

Flg. 27

N & v o, . \ L
The cquation ix - + -— = [, that is. x~ + y- = a-, The faci coincide
ar a*

with the centre (0, 8. In rthis case the ¢llipse becomes a circle, piven in
Fie. 28.

The shoriest and longest disiances will be the distances of the vertices from
the focus ar which the sun lies,

b L)

So, suppose the orhit is \-;- 4 % = I and the sun is a1 (ae, Q).
a asl - ¢*}
‘The vertices lic at (a, 0} and (-a. 0). Then
a-a 29 |
‘a + ac 30 ST 59°

As e grows larger the minor axis hecomes smaller. and the ellipse grows
flatter. Thus, the eccentricity of an ellinse is a measure of its flatness



15)

~ E16)
E17)°

t18)

E19)

E20)

r21)

E22)-

E23)

Your ellipse should he similar o the one in Fig, 27. Uy vertices will be The Standard Comles
{ 22,00 lts tovi will be (£ 1,00, .

X S Y .

The rangent at {a, ¢y s - }h‘ I = » . a. Simijlarly, the 1angents
as .

at (=a, 0}, (. b) and W-hares = -q,y - band v -b. respectively.

The tangent is 2x = dy - & thar iv, « + 2y = 4, Therelre, the slope of
the normal iy 2. Thus, its cquationt s y - 1 = 2(x -~ 2) =2y - 2% -3,

) X" y’
Let the ellipse be Y 1 b2 -
v = mx, for some m, since it paces through (0, U). Further, if one end of
the diameter is (x,, y,}, then y, — mx;, Thus, {-%,. - v,} also lies on l'hc ’
cllipse and the line y = mx. Thus, # is the other end of the diameter. So,
we nued (o find the 1angents at (x), y,) aud (-x;, - ¥)). They a:e¢

r : LY
_xi!_ 4+ )’! .I = l and - (..-_\:\_'l_ ¥ gy.i
a* N a h-

- 1. Thy equation of any diameter will be

= = i, respectively. Since both their

! F
slopes are - -l-;l. they are patallel.

A%y,
We have shown a cross-section of the reflector in Fig. 29. The major axis of
this ellipse is 10 metzes and its foei lie at (+ 3, 0). Thus, ils cecentricity,

3 \
Bo= =,
S o F F
So, if h is it height, then h = 5 ¥1 - e* = 4 metres.
] H Fig. 19

in this case a? - i h: - T ¢ - Sandm = 1.

*

w2 # a?m? + bl So the line is not a 1angent to the given ellipse.

a) Using (1), we sce that

vyt etk - )t

e Nt y? el o
S xF =) - efee = e as in Sec. 2.4,
e -1 e - fe- - i)
e .. cel
b} Shifting the origin to (— 33 0). the cquation in (a) becomes
e

b y' cc -
D ememee = e o g o= = g dmf
i s I, where a = ST and b = afe? -1. "
¢) lu the X’Y’-system the focus is (-ue; 0) and directrix is x + — = 0,
' e
The required equation is

ow 37

. d
(x+ae)2+y’=c2(x+ )
¢

x? y?
= -—2" - = ——2—— =

a a- (et -1
The required eguation is
XZ yz i 2 1 a
- —— =1 x"-y" = a%,
82 al@2-1) Y

E24) a) The transverse axis lies along the w-axis in this case. 'l'hus; we

interchange x and y in {i%). Also, the length of the transverse axis
is 6. So, the required equation is

- o =leyioax! oy,

a7
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A lates rectom of a hyperbola
is the chord through a focus
and perpendicular to s
transverse axis, -

E25)

E26)

27

E28)

E29)

E30)

Ein

E32)

b) Here, the transversc axis lies along the x-axis and a = 2 and ae =‘VT§.
I
Joe= _i_ \/ﬁ
Thus, the required equation is

xz ) y2 k! yz
—-....—---—:]H-————-'=1.
4 4 9

4(—'1 - |)
4
a) The foci lie a1 F(-ae; 0) and F’ (ae, 0}, Thus
PF = ﬁx- + ac)l + y?
But, since P lies on the hyperbola.
¥ = (x? - a? (e? -1).
" PF = Jlex + 2)% = lex + af
Similarly, PF' =‘lex - a].
b) Im this case PF = ex + aand PF’' = a - ex.

Remember, from Sec. 2.4.2, that PF + PF* = 2a.

Suppose you [ix the transverse axis and increase the eccentricity of a
hyperbola. You will see that the lengths of its latera recta (plural of ‘latus
rectum’) increase. Thus, the given statement is true.

Let F\F; = 2¢ and let (0, 0) bisect F,¥,. Then the coordinates of F, will be
(~c, 0} and of F, will be (c, 0). If P is given by (x, y). then [PF, - PF;| =
2a

= 1 Jx + 9T ¥y - fx ¥ T+ v = 2a

= (x?+¢? 4 ylo2aY? = ﬁ;r—_?:T}z + 2ye? + x¥ + v2, on sguaring
and simplifying.

= (¢’ - aY) x* - a%y? = a (c?- a?, again squaring and simplifying.

Now, since ¢ > a, we can rewrite this equation as

x2 y?
al ¢
a) The vertices are (2, 0) and (-2, 0}.

The tangents at these poinls are x = 2 and x = -2, respectively. The

normals at both these points is the x-axis.

5—3 = |, which is a hyperbola.
-a

b) Here a? = 4, b?

2
Hm=-—c=0
3
¢ # a’m? - b2 . 3y = 2xis nor a tangent to the given hyperbola.

y = =+x, which arc independent of a. Thus, these are the asymptotes of any

" rectangular hyperbola.

b b ) , .
y = —xand y = - —x will be mutually perpendicular iff
a a L]
b b . . .
— ] [- — ] = -1, that is, iff a = b, that is, ilT the hyperbota is
a a
rectangular.
ed ed
Asx in Examnle 5. vau can show that FA = and FA' = —mom
T ! I-e 1 + ¢
where A and A” are the vertices of the cllipse and F is a focus,
2cd
Then la = AA" = FA + FA'™ = 7 -
1l -¢
) ed,
.a = ; 5 -
1 -

a) Since the curve is a parabola, its equation is r = -I-—-? We also
- COS

know that (3.0 x 107, #/3) lies on ir.

Sd =30 x 10 (1 - €OS -;) =135 x 107 km.



Thus, the required Equa‘lion is -
_LSx1o?
1l -vost

b) The nunimum distunce will be when the comet is ut the vertex of the
parabola, that is, when ¢ = . -
Thus, the minimum distance

1.5 10?

—— km
2

¢) ‘The required distance is 1.5 x 107 km.

The Saderd Coales
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UNIT 3 GENERAL THEORY OF CONICS

Structure

3.1 Introduction
Objectives

3.2 General Second chrec'E'quat'ion
3.3 Central and Non-central Conics

3.4 Tracing a Conic
Central Conics
Parabola

3.5 Tangents
1.6 Intersection of Conics
3.7 Summary

3.8 Solutions/Answers

3.1 INTRODUCTION

So far you have studied the slandard equations of a parabola, an ellipse and a
hyperbola. We defined these curves and other conics by the focus-directrix
property of a conic, This defining property was discovered by Pappus (approx. 320
AD) long after the definition of conic sections by the ancient Greeks. In his book
“Conics"’, the ancient Greek mathematician Apollonius defined these curves to be
the intersection of a plane and a cone. You will study cones later, in Unit 6, but
let us show you how conics are planar sections of a cone. with the help of
diagrams (see Fig. I}.

Fig. 1: A planar seciion of v cane con be _Inl sn elilpas, (b} & parabols, {(c) B hyperbols (4) o pair of

M ek _m_.
AT, LES B prnBi,

In this unit we will prove a result that may surprise you. According to this resule,
the generai second degree equation ax? + hxy + by? + gx + fy + ¢ = 0 always
represents a conic section, You will see how to identify it with the various conics,
depending on the conditions satisfied by the coefficients.

In Unit 2 you saw one way of classifying conics. There is another way of doing 50,
which you will study in Sec. 3.3, We shall discuss the geometric properties of the
different types of conics, and seec how to trace them, After that, we shall discuss
the tangents of a conic. And finally, we shall see what curves can be obtained
when (wo conics interesect.



With this unit we end our discussion on conics. But in the next two blocks you Geoerat Theory of Conley

will be coming across them again. So, the rest of the course will be easier for you
to grasp if you ensure that you have achieved the unit objectives given below.

Objectives

After studying this unit you should be able 1o

® identify the conic represented by a quadratic expression;

find the centre (if it exists) and axes of a conic:

trace any given conic; : c

find the tangent and normal 1o a given conic at a given point;

obtain the equations of conics which pass through the points of intersection ot
two given conics.

3.2 GENERAL SECOND DEGREE EQUATION

In Unit 2 you musi have noticed that the standard equation of each conic is a
second degree equation of the form

ax? + hxy + by? + gx + fy + ¢ = 0,

tor some a,b,¢,f,g,h ¢ R and where at least one of a,h,b is non-zero. We write the coefficients of
i zy, x and y as 2h, 2g, und 2f
in this section we will show you that the converse is also true. That is, we will to have simpler expressions

prove that the general second degree equation later on, as you will scc.

ax? + 2hxy + by? + 2gx + 2fy + ¢ = 0 1)

where at least one of a,h,b is non-zero, can be transformed into a standard
equation of a conic, We achieve this by translating and rotating the coordinate
axes. Let us see how.

We first get rid of the Lerm containing xy by rotating the XY-system through a
“**suitable’” angle ¢ about 0. You will see how we choose ¢ a little further on. Now,
1 by {16) and (17) of Unit I, we see that (1)} becomes
a(x’cos # <y’ sin 8 + 2h(x’cos ¢ ~ y’sin 8) (x’sin 6 + y’cos §)
+b{x’sim @ + y'cos 8) + 2g(x‘cos § - y'sin §) + 2f(x'sin @ + y'cos8) + ¢ = 0
= (@acos?@ + 2hcosfsiné + bsin26) x'2-2 [(a-b)sinb cos 8 -
h{cos? & - sin? 6)} x'y’ + (a sin? & - 2h 5in 6 cos @ + b cos? By *
+(2g cos 8 + 2f sin 6) x* +(2f cos 8 - 2g sin #) ¥+ ¢ =0

The x"y" term will disappear if (a - b) sin 8 cos § = h(cos? § - sin? 8), thar is,
—%— (a~b)sin 20 = h cos 24.

) . . T, .
So, 1o get rid of the X"y’ term, if 2 = b we can choose § = —" otherwise, we sn 28 = 2a0 @ cosd
2 ) 4 €os 20 = cas?s - glglp

a-b

C T R A T ] )
WOOSE Sueh a ¢ iyig boiween - ? and ?) For this choice

1 -1
can choose ¢ = ? tan
/ We
\

of & the x’y’ lerm becomes zero.

e mleiimao
“ang avways

L1

. ! 2
So, if we rotate the axes through an angle § = — ran-! (—-——), then (1),
transforms into the second degree equation 2 a-b

Ax'z + By'? + 2Gx’ + 2Fy" + C = 0, {2}
where A = a2 cos?2§ + 2heos #sind + bsin?8 and
B = asin? - 2h sin 8 cos® + b cosd,

[hus, A + B = u ¢ b, 51
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ﬁlmlso. with a bit of computation, you can check shat ab - h2 = AB. Now various
situations can arise,

Cuse T (ab - h? = 0O) In this casc we see that cither A = 0 or B = . So, let us
assume that A = (. Thep we claim that B must he non.zera, Do you agree? What
weuld happen if A = 0and B = 07 In this case we would get a = 0, b = 0 and
h = 0, which contradicts our assumplion that (1) is a quadratic equation.
So,let A = 0 and B = 0. Then (2) can be wrilten as
F \? F?

Bly"' 4+ —} =-2Gx"-C + —

(y B ) 5 3
Now, if G = 0, then Lhe above equation is

/, F\* F*-BC _
y + — = ———— that is,
k B) B?

+F_* ’F‘—BC
Y* g T BY

This represents a pair of parallel lines if F? = RBC, and the emply sct if F2 < BC.
On the other hand, if G = 0, lhcnlwc write (3) as

5T %)
¥+ -] = — [x'+ = -
B B 206 2BG

F? -F .
Now if we shift the origin to ( - £ . —F— ),- then the equation becomes
G 2BG 2G B

Yi=- = X,
B

where X, Y are the current coordinates, From Sec. 2.3 you know that this

G

G
represents-a parabola with focus (- -, 0) and directrix X = —,
2B 2B

Now let us look at the other case.

Case 2 (ab - h?.% (): Now both A and B are non-zero. We can write (2) as

. 2 2 2 1 -
A (x’ + E) + B (y' + E) = G— + f__ - C. which is a constant K, say.
A B A B

. .. G F . .
Lel uy shift the origin 1o (.- K‘ - —B— . Then this equation bzcomes

AX?! + BY? = K, A
where X and Y are the current coordinates.

Now, what happens if K = 0? Well. if both A and B have the same sign, that is,
if AB = abh - h? = 0, then (4) represents the point (. 0).

And, il ab - h? < 0, then (4) represents the pair of lines,

’B
X==x_[-—Y.
A ®

And, what happens if K = 07 Then we can write (4) as

el e
AT T

A (S)
K/A K/B

Doss this equation look familiar? From Sec. 2.2 you can seg that this represents an

cllipse if both -K— and % are posilive, Ih%! is, if Kk > 0 and AB = ab - h? > 0.

But. what il K/A < 0 and K/B < 07 In this case ¥ < 0 and ab - h? > 0. And

then {5) represents the cmply sel.
. K K . .. 3
~And, il o and Y are of opposite signs, that is, if AB = ab - h? < 0, then

what will (5) represent? A hyperbola.
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Su we huve covered all the poussibilities for ab - h?, and hence tor (1). Thus, we
haye proved the following resulr.

Theorem 1: The general second degree equation ax? + 2hxy + by? + 2gx + 2y
+ ¢ = 0 represents a conic.

While proving this theorem you must have noticed the importance we gave the
expression ab - h% Let us tabulate the various types of noa-degenerate and
degenerate conics that ax? + 2hxy + by® + 2px '+ 2y + ¢ = 0 represents,
aceurding to the way ab - h2 hehaves, (Recall from Unit 2 that a degenvrate ¢onic
s i couie wheae Lucus lies on e coresponding directs.)

Table 1@ Clussifivation ol Conies.

Cuonditiosn Types of Conics
Nun-degenerate Degencrate
ao - hi = 0 parabola pair of parallel lines, or
empLy sct :
ab-ht>0 eHipse point, or emptly set
an - h? <} Ityperbola pair of intersecting lines !

Tahle | ells us ubout all the possible conics that exist. This is what the following
exUCESe s uboal.

1) ar Wiote down all the possible 1vpes of conics there ure. Which of them dre

degeneale?

b) AU G} represents a circle, will ab -~ b2 = 2

Now Jet us use the procedure in the prool above in some examples.

Exampte 1! I'ind the conic represented by

Ox~ - xy + ley? - 124ax + 132y + 324 = Q.
Solution: The given equation is of the totm {1}, wherea = Y. b = 16, h = - 12,
Mow lec us tutate the ases througl wn anple #, whete
2h 24 . 2lan 24
lan 20 = - - ~  —--, that is, - o= 7 . Uit s,

a - b 7 I - an” ¢
12 tant¢ + 7 tang - 12 = 0.

]
S0 we can lake e @ - 4 , and then sin ¢ 5 and cos ¢

‘Then, i the new coordinate systen the grven equattion beceines

» 124 132
25y°° - S (4x’ - 3y") + 5 (x’ 1 dy7) + 324 < 0, that i,

(, IB)-' 4
e X,
’ b] 5

. .. 14
Now let us shill the origin w (U. -

) Then the equation becomaes

. L)
vi- C X

= E

5

wliere X and Y are the current coordinales.
a

Can you recognise the conic represeted by this equation? Ieom Unit 2 you know
that this is 4 paraboly, Since the transformations we have applicd Jdu nei alter the
cu. e, the original equarion also represenis a parabola,

Example 2: [geni. she conic X2 - 2w - 3,
53




Recall the dehinition of 2
determinant frgm Unit 5 of
MTE-4,

54

Solution: Over here, since 2 = b = 1, wé choose # = 45°. So, let us rotate the
axes through 45 The new coordinates x’ and y” are given by

N, 0 )
x—J—.z.(xTy)andy—ﬁ(x + ¥

Then, in the new coordinate system,
xZ - 2xy + y? = 2 transforms to
ylz = l‘ I."‘I i

which represents the pair of straight linesy’ = fandy’' = ~ 1.

You can do the following exercise on the same lines.

E2) Identify the conic

a) x2-2xy + y! + Vix = 2,
b) 9x2 -6xy + yi-4d0x - 20y + 75 = Q.

So far you have scen that any second depgree cequation represents one of the
following conics:

a parabola, an ellipse, a hyperbola, a pair of straight lines, a point, the empty set.

But, from Table | you can see that even if we know the value of ab - h2, we can't
immediately say what the conic i5. So, each time we have to go through the whole
procedure of Theorem | to identify the conic represented by a given equation. Is
there a short cut? Yes, there is. We have a simple condition for (1) 10 represent a
pair of lines. It can be ohtained from the proof of Theorem 1 after some
caleulations, or independently. We shall only state it, and then see how to use it to
cutl short our method for identifying a given conic,

Theorem 2: The quadratic equalion
ax? + 2hxy + by® + 2gx + 2fy + ¢ = 0
represents a pair of straight lines if and only if abc + 2fgh - al? - bg? - ch? = 0,

that is, the determinant

o
h b fi=0
|g f c

Further, if the condition is sntisfi-cd. then the angle hetween the lines is

ey

a+h

The 3% 3 determinant given above is called the discriminant of the given conic.
You can secc that the discriminant looks neater if we 1ake 2h, 2g and 21 as
cecfficients, instead of h, g and 1.

Lel us consider some examples of the use of Theorem 2.

Fxample 3: Show that x* - Sxy + &y? = 0 represenis a pair of straiéhi lines. Find
the angle berween these lines.

5
Solution: With reference to Theorem 2, inthiscasca = 1, h = - = . b = 6,
g = 0 = = ¢. Thus, the related discriminant is 2
5
i - - 0
2
5 . i
-5 6 0|, which is ¢, as i
(t 0 0 '



you know Itom our course "Elementary Algehra’.
Phus, the given equation represculs 4 pair ol lines.

25 ) .
- -6 = lan
4 7

Fxample 4: Find the conic represented by 2x* + Sxy + y2 = |

. 2z
The ungle between them is tan ! ( )

Solution @ In this case ab - h = - 23 < 0, So, from Table | we know that the
equation represents a hyperbola or a pair ol lines. Further, in this case the
discriminant becomes,

2 3 0 5
? 2 2 17
= - = _Qtu
i 0 5 ] a
0 0 -1 2

S0, by Theorem 2 we know that the givenr equation doesn't represent a pair of
lines, Henee, it represents a hyperbola.

Why don't you do these exercises now?

E3} Check whether 3x* + 7xy + 2y? + Sx + S5y + Z = 0 represents a pair of
lines,

E4} Show Lhat the real quadratic equation ax? + 2hxy + by? = 0 represents a
pair ol lines.

E5}) Under whar conditions va a, b and h, will the equation in Theorem 2
represent
4} a pair of parallel lines?
b} a pair of perpendicular lines?

Sy far we have studied all the counics in a unified manner. Now we will categorise .
them according to the property of centrality.

3.3 CENTRAL AND NON-CENTRAL CONICS

v+ e=0
lu our discussion on the ellipse in Unit 2, we suid Lthat the midpoint of the major
axis was the centre of the ellipse. The reason that this point is called the centre is
bevause ol a property that we ask you to prove in the tollowing exercise.

- ILAl 1S,
2 M

E6) Consider the equation XT + i}- = 1. Let P{x,, y)) be a point on this ellipse
. d

and O be (0, 0). Show that the line PO also meets the cllipse in P’ (-x,, -y,).

What you have just proved is thatOW, 0} bisests every choid of the eilipse

2 2
X ¥ . . .

T + "3 = 1 shat passes through it. Simglarly, any chord of the hyperbola
x? yl

vl i 1 through O(0, 0) is bisected by O. Hence, according to the following

definddon, O is the cenire of the ¢Hipse and hyperbole given above,

Definition: The centre of & conle C is a point which bisects any chord of C tha
passes through it, - '

Not all conivs have centres, as you will see. A conic that has o ventre is called a

Genernl Theory of (o,
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Conics tenlrsd coitic. For example, an elifike an’a hypérhala afe cenrral conics,

Now, can a central conic have more than ‘one centre? Suppase it has two cenires
) ond Cy Thea the chord ot the canic mreseepicd by the line C€; must be
hisected by hath C; and ;. which i< not passible.” Thus,

a ceniral conic has a uniaue cenire.

P
Lel us see how we can focaté YAV Piddint.

Consider the epnic (1), Supposc it is contral with centre at the origin, Then we
have the following result, which Wé will give without proof,’

Theorem 3: A central canic with cenire at (0, 01 is of the form ax? + Zhxy + by?
I.I
for somc a, h, b in R,

This result is used to prove the (ollowing theorem abour any central conic. We
shall not prove the thcorem in this course bur we will apply it very often,

Theorem 4; Let ax2 + 2hxy + by? + 2gx + 2fy + ¢ = 0 be a central conic.
Then its centre is the intersection of the lines

2x + hy + g = OGand hx + by + [ = 0.

What this theorem tells us is that if ax + hy + g = 0and hx + hy + f =0

intersect, then the conic is central; and the point af intersection of these straight
lines is the centre of the conic.

But what if the lines don'l intersect? Then the conic under consideration can't be
central; that is, it js non-cemtral. Thus, the cunic is non-central if the slopes of
these lines are equal, that is, if ab = h2,

So, we have the following result:

The conic ax? + 2hxy + by? + 2gx + 2fy + ¢ = D is
i) .central if ab # h2, and
ii)- non-central if ab = h?

Does this result and Table ! tell you which conics are non-central? You can
immediately tell that 8 parabola doesn’t have a centre.

. ) .
Let us see how we can apply the ahave resulis on centres of conics,

Exemple 8: Is the conic 17x2 - 12xy + Ry? + 46x - 28y + |7 = O central? If it
is, find its centre.

Selmiiem: Inthisense 2 = 17,b =B, h = -6, 8 = 23, = -l4.
So, ab & h'. Hence, the conic is central, Its centre is the intersection of the lines
17x -6y + 23 = Oand Ix -4y + 7 = 0, which is (-1, ).

Why don't you try 50mMe exercises now?

E7) Is the conic in E3 central? ¥ yes. find its centre.

ERY jdemtily the conle %2 ~ 3xy + y* + MW - v + 21 = 0. If li is ceniral, find
its centre.

E9) Which de..cnerate conics are central, and which are not?

‘e gttt

Oye point that has been made in this sub-section is that 2 parabola is a non-central
conic, while an dlipse and a hyperbals are central conics. Now let us see il this
fact helps WS (0 trace a conic corresponding 1o a given quadratic equation,
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3.3. TRACING A CONIC

Suppose you are given d quadratic equaton. Can you gel enouglh geometric
iformation from it 10 be able to draw its geomelric representation? You are now
in u position 1o check whether it is 2 pair of lines or not. You van also tell
whether it is a central conic or not. But there is still one piece of information that
you would need before you could draw the required conic. You need to know the
equation of its axis, or axes, as the vase may be. So’lel us see how 1o find the
axes. We shall consider the ceatral und non-central cases separalely.

3.4.1 Central Conics

Suppose we are given the equation of a central conic. By translating the axes, if
RECessary, woe van assume diat iis centre lies at (0, U). Then, by Theorem 3, its
equation s

ax? + 2hxy -« by? < 1 ..(6)
where a, h, b e R.

In Theorem 1 you saw that it we rotaie the coordinate axes through an angle

1 2h R — .
: Y tan! -v——l-J , then the gxes of the conie lie along 1he coordinare axes.
F a -

Therefore, the axes of the conic are inclined at the angle ¥ 10 the coordinate axes.
{Here if'a = b, we take # = 45°. rNow,

2h
wn 2 = . . .
a-b
& il
£ ) N - o=
iolant ¥ A

. “da-hb
*—vluu‘ﬂﬂ-k --)luno- I v -
i :

This is a quadratic equation in 1an @, and hence s sutisljed by two values ot 8, sav
f; and ;. Then ti slupes of the axes of the conic are tan Y; und Lan ¥y, Nute thay
the axes are mutually perpendicular, since (tan i) (tan #;) - -1,

Now, o find the lengths ol thie axes of 1he voIte, we write 16) in pular form {see

b2, 1.5). For this we subatitute 5 = r cos U, % - rsintin (h). Then we BCt

rPacosT O+ 2 cos Gsin g + boin® 0)- |

oSt B + sintw : s

. <o . Ca .o whithing viost ff + st v

L™+ 2hheon O sint + bosint v
by tante

. . -{7)

A4 Zhaa ¢ + ban- ¢

Lo we substitute tan ¢, and 1an @ in (7), we will gel the corresponding vabaes of r,

which will give the lengths of the corresponding semi-iuxcy. A seilii-axis s hadfl the uxs

Le! us use what we have Just dong 10 trace the conic in Exwnple 3. Sinee ab - 1?
> 0, I'rom Theorem | we know that the eonic iy an elipae, You fiive afrvady seen
Lhar its centre lies at (-1, 8. Now, we need to shilt the axes o Ihe centre (-1, 1),

to get the equartion in the form (6). Uhe cguation becanes

. | 2 . |
AT - - XY+ ¥y .
20 5 5
Now we cin obiain the directions o ihe axes NHun

, 1
tan- ¢ - , e # -1 0
‘This gives us tan ¢ - 2, .
57




Conics Therefore, we can take I9| = tan'' 2 - &3.43° (approximately), .and

w
8, = — 4+ tan”' 2.

2
The lengths of the semi-axes, r, and r,, are given by substituting these values in
(7). So )
rf = —-I+—4,=4mr,=2.and
' 17 6 8
—_ - =% —
20 5 5
{ 1
Y ] + 71
r% = ——————— = ] = fz = 1
17 3 1

10
Thus, the tength of the major axis is 4. and that of thc‘minor axis is 2.

So now we can trace the conic. We first draw a line O'X" through O'(-1. 1) at an
angle of tan! 2to the x-axis (see Fig. 2). Then we draw O°Y’ perpendicular to
O’'X'. Now we mark of A* and A on O'X’ such thar A‘Q’ = 2and O'A = 2.
Similarly, we mark off B and B’ on O°Y~ such that OB = 1 and O‘B’ = |,

&=
=]

|

The required ellipse has AA* and BB” as its axes. For further help in tracing the
A curve, we can check where it cuts the x and y axes. 1t cuts the x-axis in (-.4, D),
(-2.2, 0), and the y-axis in (0, 2.7) and (0, .8). So thc curve is what we have
drawn in Fig. 2.

’ Now why don't you see if you've understood what has been done in this section?

Fig. 2: The ellipse 1722 - 121y +
By? 4+ 48x - 28y + 17 w O,

El10) Trace the conic in ES.

El1) Under what conditions on the cocfficients, will x* + 2hxy + y* + 2fy = 0
be central 7 And then, find its ¢cenfre and axes,

" So far you have secen how to tracc a central conic, But what about a non-central
conic? Lel us look at this case now.

3.4.2 Parabola

In this sub-section we shall laok at a method for finding the axis of 2 parabole.
- and hence tracing it. We will use the fact that if (1) is a parabola it can be wrilien

in the form

Ax + By + C\* A'x + B'y + C’
( x+ By + ) .—.k( LIS S ) A8
\-’A-, + Bh JA' + B )

where Ax + By + C = 0is the axis of the parabola and A’x + B’y + C' = 0
is the tangent a1 the vertex, and hence they are perpendicular to cach other.

The vertex (x;. ¥} of this parabola is the intersection of Ax + By + C = Oand -
A’'x + B’y + €' = 0, k is the length of its latus rectum, and

F (x. + -:-:— cos 8, y, + % sin 8) is its focus, where tan 8 is the slope of the axis.

o

Let us see the method with the help of an illustration,

learnple 6: Show that the conic x* + 2xy + y2 - 2x - 1 = 0 is a parabola: Find
its axis and trace ir, ’

Solution: Herea = 1.b = I,h =1. = ab-h®=0.
R

. Furl_her, the discriminant of the conicis | | | 0= -1=#0.
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Hence, by Theorem 2, the equation does not represemt a pair of straight lines. Geatrat Theory of Cohica

Thus, by Theorem 1, we know that the given conic is a parabola.
We can wrile the given equation as'(x + y)? = 2x + i.

Now we will introduce a constant ¢ so thal we can write the equation in the form
{8). So, let us rewrite the equation ns
X+ y+02=2x+1+ 2x+ 2cy + 2, that is,

E+y+)? =2l +Ox+ 2y +ct+ ] ‘ ()]
We will choose ¢ in such a way that the line8 x + y + ¢ = 0 and ’
20 + OIx + 2cy + e + 1 = 0are perpendicular. From Equation (13) of Unit |,

you know that the condition is
=20 + o)

=1 —_— = u]l = = -

K R

Then (9) becam:s

i
2 .

142 5 .
(x+ y—?) =X-y + T.thaus.

This is in the form {8). ]
Thus, the axis of the parabolaisx + y - — = 0, and the tangent at the vertex is

2
7
] B)-

)] 7
Thus, the focus is at (— i + —cosf, — ¢+ L_ sin 8}, where § is the
) 8 43 8 42

angle that the axis makes with the x-axis, that is, § = tan™? (1),

5
X-¥+ — = 0.
y 4

The vertex is the intersection of these two lines, thar is, (—

o | w

1.
The length of the latus rectum of the parabola is :’5

. i I
LSnd = - — cos P = —,

V2 V2

Therefore, the focus is F (— %, %)

What are the points of intersection of the parabola and the coordinate axes? They
are (1 + v2, 0), (1 v, 0), (0, 1), (0, -1).
[ 4

So, we can trace the parabola as in Fig. 3.
Y

I-'Ig.IJ: The paraboln x? + 2y + y e 20 -1 = ¢ ' ' 59
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Has the example helped you 10 undersiand the method (or iracing a parabola? The
following excercise will help you 10 find our.

E12) Trace the conic 4x° - dxy + y* - v 6y 1 5 0.

l.et us now see how 10 oblain the tangenis of a general conic,

3 5 "l AN(:I‘ NTS

In Unit 1 you studied the equations of 1angents to the conics 1n standard form.
Now we will discuss the equation of a tangent 11 the geacral conie (1),

So, consider two dislinct points Py, vy} and Q(x,, ¥ on the conic ax® + 2hxy +
by’ + 2gx + 2fy + ¢ = 0.

Il x, = x; = a, say, .then the line PQ is x = n.

Similarly, if ¥, = y; = a, 5ay, then the line PQ isy =

Otherwisc, the line PQ is

S—n = Seent (1)
Y- ¥ X - %
Since. P and Q lie on the conic,
ax} "hx,y, + byl + 2gx, + 2fy; + ¢ = 0 1Y
and ax3 + 2hxy; + by + 2gx; + 2fy; + ¢ - 0. U4 |
Then (12) - (11) ‘
= a(x - x}) + 2h{xys - X)) + byi - yh + 2806 - x)) + 2Wy; - y) = 0
= a(xd - x}) + 2hixava - xiyz + X,¥2 - X:Yu) + blyf - yD + 28(x; - %))
+ 2y -y) = 0 :

= (X3 - x;) [a(x) + x5} + 2hy; + 281 + (y; - ya) [(bly) + y2} + 2bx, + 20) =
o (Yz'h) _ o laly + x)) + 2hy; + 2g]

X3 - % [b{y; + y2) + 2hx; 4 2f]
Putting this in {10), we gel '
yoy = -2t Ty + 28 ) (1D

bly, + vy + 2hx; + 2f

As (X3, ¥») tends 1o (x). y,). (13) gives us the equation of the tangent 10 the given
conic at (X, yu). v

Thus, the equation of the tangent at P(x,, y,) is :

(y-y) by, + hxy + 1) + (x-x)(ax; + hy, + g) =

o x(ax, + hy, + @) + y(by, + hx; + f} + (gx; + fy, + ) = 0, using {11).

@ axx, + h(xy, + xy) + byy, + g(x + x;) + fly + y)) + ¢ = 0. ...(14)
Thus, (14) is the equation of the 1angent te the comnic ax® + 2hxy + by? + 2gx +
2fy + ¢ = 0 at the paint {x;, yy) lying on the conic.

From (14) you can sce thai we can usc the following riule of thumhb to oblain the
equation of a conic.

- R e am e =

In the equation of 1hc‘ conie, replace x° hv KXy, y by vy,. 23
by (x + x,), 2y by [y & ¥y} and 2xy by {(xy; ! ¥X;it0 gol the
cquation of lhc tangent at (x,, i) o i

.

For instance, the tangen! (o the narahola v= - 4ax = 0. at a poin (x,, ¥) s
yy,-2a{x + x) = 0

We have already derived this in Sec, 2.3.2.

In fact. the eguations of tdngents to the ¢llipse and hyperbola given in standard
form are also special cases of {14), a» you can verify {from Einil 2.

Now von may like 10 try your hand a1 linding rangents at some points,
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Ell) Obtain the eguations of the tangent and the normal to the conic in E8 at
the points where it cuts the y-axis.

by

In Unit 2 you have scen thal not every line cun be g tangent o a given standard
u.)m-. Let us now see which lines gualify lur being tangents 1 the general couic
ax® + 2hxy + by® + Dgx 1+ 2ly + ¢ . 0. With your experience in Unit 2, can.
you tell the conditions under which 1he Ilm. Px + gy + 1 - O will be a tangent to
this conic ?

Suppose it is o tangent a point (x,, v} to the conie, Now, either p»0or

e . qr + 1} .
g = U. Let us suppose p # 0, Then we can substilute x = - . ————2 in the

equation of the conie, to get n

: 2h . .

d, ay + % - "o gy + 0y + by - E fay + ) + 2y + ¢ = Q.
p- p p

= (aq? - 2hpy + bp*) y* - 2v (prh + pqgg - agr - p't) + (ar? - 2gpr + ¢p3=0

The roots of this quudralic equativn in ¥ give us the y-coordinates of the points of
intersection ol the given line and conic. The line will be a tangent. it these points
coincide, that is, il the quadrdm cquation has coincident roots, that is, if

{prh + pyg - aqr - p n = (.lq 2hpy + bp?) tar? - 2gpr + up ). -.(15)
L rerms of determinants (see MTE-(4, Unit "}, we can write this condition as

.F d h Y P
v b 1 4

g { ¢ v = 0 ...(16)

p a r 0]

Thus, (15) or the determinwm condition {16) telt us it px + gy + 1 = 0isu
Langent to the generul conic or not,

For exampie, the line y mx + ¢ will touch the parabola y? = dax, if

] H -2u H

| |

{ 0 | 0] -l]

T N TR - v

!! m -1 [\ 4] 1
0 [ —I| ‘ 0 l 0 |

= (-2a) 0 cll -m} 2 G }] v U, expanding along the first row.
moo-l 0 | m -1 ¢

= (-2a) (vm - 2a)  m{2u) ]

a
SN -

ni
This is the same condinon it we derved i See. 23,2,

Wh\-’ ton™ i lr\.l rh.-.‘: J.‘l':f'\'ih"u‘:; nuw

Eid) Isx + 4v = D a tangent te the conic x° & Ay o+ 3wt - 8x - Sy + 3 - (7
Find all the tangents to this conic that are paratlel to the given line.

E15) a) Prove thal the condition lor ax + by + | = 010 touch
X+ oy e 28X+ 2y + ¢ = 0is
(ag + bf - 1)° = (a + bY(g? + 12- o),

b) In p.muuldr undcr whal conditions on C will ¥y = Mx + Ctouch
x2 4 vyl AT -
61
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dANS
Q‘x

Fig. 5: ¥ = Ixand x? + y? = |
Intersect in the polats P and Q.

62

" may coincide.

In this section you saw that a line and.a conic intersect in at most Lwo points.
Now let us see what we get-when two conics intersect.

3.6¢ INTERSECTION OF CONICS

Consider the intcersection of an ellipse and a circle (Fig. 4(a)) or of an ellipse and a
hyperhnla (Fig. a(b)), Cae

(a) ' (b)

l"llt.' 4: Intersecting cnnles.

You can see that these conics interseet in four points. But, do any two conics
intersect in four poins? The following result answers this question.

Theoarem 5 : In general, two conics intersect in four points.

Proof : Let the cquations of the two conics be

ax® + 2(hy + gy x + hvl 4+ 2fy + ¢ = 0, and.

a x2 + 2thy og)x - byt 4 2y + ¢ = 0.

These equations can he considered as quadraiic equations in x. If we eliminate x
from them, we will gt a fourth degrec equation in y. This will have four roots.
Corresponding to each of these roots, we will get a root of x. So there are.in
general. Tour potnts of intersection for the (wo conics.

Since a fourth degrec equation with real coefficients may have two or four
complex roots (see MTE-04, Unit 1), two conics can intersect m

i} four real points, :

ii} 1wo real and two imaginary poims, or

" iii) four imaginary points.

These points of intersection can be distinel, or some may coincide, or all of them

Let us consider an cxample.

Example 7: Find the points of intersection of the parabola y? = 2x and the circle
x* + y° = | (sec Fig. S).

Solution: If (x,. ¥,) is a point of intersection, then x? + y, = t and y} = 2x,.
Eliminating y; from thesc cqual‘mn: we gel

xi + 2x, = 1. thatis. (x; + )? =

Sox, = -1 + V2,

Then yi = 2x, gives us

y, = = V(W2 -1)%ifx, = -1 + V2, and

¥, = + VI (V2 « }V2ifx, = -1 - V2,

Thus, there are only !wo real points ql’ intersection, namely, -

o2 - 1, V2¥2 - V% and (V2 - 1, - V2 (VZ - 1)}, This is why you sct only lwo

points of intersection in Fig, 4.

Here is an exercise for vou now.

2 y? x2 y?
E16) Find the points of intersection o ~— = land —-._,- + — =1
b b a2




You have seen that 1wo conics intersect in Four real oF inuigtiar puiqw Now wye Genersl Theury of Conies

witl Tind the equation ol any conic that passes (hfough these points,

Let ux® + 2hxy + by® + 2px + 2fy + ¢ ~ U and
ax + 2h, xy £ by o+ 2 x + 2fy r e 0
be the equations of {wo conies.

Let us bricHy denote them by 8 - Dand &, 1), reapeciinely

Then, Yor cuch k« R, 85 + k¥, 0 s a1 sweond degree eguatioe: oy ol
15 @ vonie, For cach value ol k.

On (he other hand, any puing af satersection of The tsu Conties satisies barh tie

equations 8 == Gand b, - 00 Heoee it sastics S« RS, U, s, the cons
%+ k% = 0 passes threugh all the points of mterseenion of & U and N, u.

S0 owe have prosed

‘theorem 6: The equation ‘ol any conic passing thivugh the intersection of 1wo
wonics 8 = Gand 3, = s of the form 8 ¢ kN, 0, where Kkt R,

For different vatues of k, we gel different conics passing thionel the points of
intersection of S = 0 and 8, = 0. But, will all these conics be of the same typl
If you do the following exercises, you may answer this question

iy Irs - Dand 5, = Oare rectangular hyperbelas, then show tha
S + k& - 0is a recrangular hyperbola, for all réat k.

(Hint: Recall that ax® + 2hxy + by? + 2gx + 2v o+ ¢ - Disa
rectangular hyperbola if a + b = 0.} ' .

. Coxt !
El8}) LetS = —(;—- + —4—-| =Qand 5, = xy -9 - 0.

Under what conditions on k will S + kS, = 0 be
a) an ellipse ?

b) a parabola ?

<) 4 hyperbola ?

Nuow we huve come (0 the end of our diseussion on conics. Let us see what we
huve vovered in this unit.

3.7 SUMMARY

In this unit we discussed the following ﬁoims:
1) The general second degree equation
ax? + 2hxy + by® + 2gx + Hy + ¢ = 0
represents a conic, It is

| a h gl
i) 4 pair of straieht lines iff | h b fl =0
E t C |

Further, if the condition is satisfied, thén the angle between the lines is

(B
tan™ [ ————— | ;
a+b | -
i) a parabola if ab - h* = 0, and the determinant condition in {3} is not
satisfied | . '
it) an ellipse il ab -~ h* > 0 ;

v} a hyperouvla if ab - K° < 0.
63
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2)

K}

4)

5)
6)

.7]

An ellipse and a hyperbola are-ceflival conics: a parabola.is a non-central.

.conic.

A central conic with centre at ‘thé:arigin is of the form ax?® + 2hxy + by?
= 1, wherea, h, b« R.

ax® + 2hxy + by? + 2gx + 2y + ¢ = 0 represents a central conic if

‘ax + hy + g = 0 and.hx + by + f = 0 intersect. And then, the centre of
the conic is the point qf_‘imerse'clion‘ of these-lines, The slopes of the axes of
this conic are Lhe rootd ot {the equation

tan® 8 + ('T'b)-une- 1 = 0.

Tracing a conic.
The tangent Lo the conic ax? + 2hxy + by? + 2gx + 2(v + ¢ = 0 at the
noint (x;, ¥;) is

axx; + hixy, + xiy) + yy + mlx + X} + My + y) + ¢ =0,
Provided
by, +hx, +f=20

Further, a line px + qQy + r = 0 is tangent to the given conic if

a h g p

| b f q )
=0

3 c r

p q r 0
Twa conics interséci"i'n‘Tour—poims,__\_vhich can ve¢ real or imaginary.

L

The equation. of a conic passing through the four points of intersection of the
conics S = 0and 8, = 0is S + kS, = 0, where k ¢ R.

3,8 SOLUTIONS/ANSWERS

EI) a) There are 3 types of non-dégenerate conics: parabola, ellipse, hyperbola.

There are 5 types of degenerate conics: point, pair of intersecting lines,
pair of distinct parallel lines, pair of coincident lines, empty set.

b) A circle is a particular case of an ellipse, Thus, if (1} represents a circle
then ab - h? > 0.

E2) a) x*-2xy + y? + VIx-2 = 0.

Herea =1 = b, h = -I. ‘
If we rotate the axes through /4, then the new coordinates x° and y°
are given by

X = %’(x' ~y'Yandy = Jli(:' + v

Thus, the given equation becomes

y'P 4 x -y =2

.yal_ y‘+-—-x‘=l

1
2 2
(, 1\? 1, 17 1(, 17)
sy - — = -—3 ++ — =-—|x" - —
4 2 16 2 g

7 1 .
Now, if_we shift the origin to (-I---, -—). the equation becomes the
parabola 8 4

Y - - -2- ¥, where X and Y are the new ccordinates.

b) 9x - 6xy + y?-40x - 20y + 75 = O,
" Herea =9.b=1,h =3,
So, et us rotaie the axes through 8, where



E3)

E4)

ES)

E6)

E7)

ES8)

1 6 3 Geoernl Theory of Conica
¥ = 7 tan”! (— —8—) Jlan 28 = - e

3
So we can take tanf = 3, so0 that sinf = - T\/_O" cosf = -

_.I_
2

Then the equation in the X’ Y<+system becomes

% y'2 - WGk’ - 10ViOy’ + 75 = 0,

which can be transformed and seen to be the equation of a parabola.

5 7
Inthiscasea =3, b =2, ¢ =2, = -~ =g, h = —,
: 2 2
h 3 7 5
¢ 5 12
7 5
§} b i = —_ 2 - =
2 2
5 5
f — — 2
B ¢ 2 2

Hence the given equation represents a pair of lines.

Here the discriminant concerned is

a h i
h b U] = O,
0 0 0

Thus, the given equation represents a pair of lines,
a) The lines will be parallet if fh?-ab = 0, that is, ab - h? = 0, -
b) The lines will be perpendicular if o + b = 0.
Since P lies on the ellipse, so does P’.
. - X-X ,
The equation of PO is Y- h _ L that B, X r-y) =y x-x)
-¥1 =X}

P* also lies on this since (~x,, -y,) satisfies this equation.

Hence, we have shown the result,

In this case ab # hZ. So the conic is central. s centre is the intersection of

7 5 7 5
3x+?y+—=03nd?x+2y+—*=0,

2
Ihalis,(—i,—i.
5 5

In thiscasea = | = b,h=—~;—.

. 5
ab-h?=. 2 <o
4

Su the given equation is central, and can be a hyperbola or a pair ol
ingersecting lines,

3
| - = 5
2
. 3
Since | - = I -5 20,
2
| 5 -5 2t

using Theorem 2 we can say thal the eguation represents a hyperbola.
Its centre is-the intersection of

3 3
x-—y+5=0and-—x <+ y~5 =0, that is, (-2, 2).
27 2 y 22 65



E9) The central degenerate conics : point. pair of intersccting Jines.

The non-central degenerate conics : pair of distinet parallel lines, pair of
coincident lines. The empty sl is hoth central and non-central.

E10) The equation represents a hyperbola with centre (-2, 2). If we shift the origin
to (-2, 2), the cquation becomes

+2

-x + 3xl},l _yal =1,

Here a = -1,b=-1,h=—.
) : x 3x .
Thus, the axes of the conic arc at an angle of 2 and — 1o the x-axis,

So. putting these values of # in (7). we get the lcngl'hs r, and ry, of the semi-

axes. on solving r{ = 2and r: = -

S
Thus, r; = v2Zand 1y = JE

Notc that over here, though ri is negatisc, we only want it~ magnitude 10
compute the length of the axis.

Now, you know that if ¢ is the cccentricity of the hyperbola then

- . P -
T, =T, .'f?_-l,that 15,\/; = V2 aem -1
JE
= g = -,
5

Now let us also see where the hyperbola cuts the x and ¥ axes. Pultingy = 0
in the given cquation, we gt

k2 + 10x + 21 = 0 = x = -3, -7

$o, the hyperbola intersects the x-axis in (-3, 0 and (-7, 0). Similarly,
putting x = 0 in the given equation and solving for y, we sce that the
hyperbola intersccts the y-axis in (0, 3) and (0, 7).

With all this information the curve is as given in Fig. 6.

vl

/
e

Fig- 0



E11) It will be ventral if h* 3 1. And then its centre will be the intersection of Geoersl Throry of Conles

x +hy =UOandhx + y + I' - 0, which is

hf -f )
1-h%" | -h?)
If we shilt the origin to this point, the given cquation js transformed to

X?-2hXY + Y2 = 7o

1-h* _,
"TE YT
This is in the standard form ANX" + 2HXY + BY? = | of a central coic,

1 -0 , .
Here A = B = - 3 - Theretore. the axes of the conic are at an angle of
i .

_h2 _hz
2h(l h_) XY + [_r'z-_ Y2 =1

457 and 135 10 the x-axis. Since they puss through the centre, their
cquations are

{ hr
+ —--p = X - - o= oand
Y 1 -~ h? I - h=
N i ( ht ) '
—_— = - [%x - = - |
¥ | - p? , I - h?

12} The conic is a parabula since ab = h*, and the determinant condition for it
10 represent g pair of lines is not satisfied,
We can rewrite the equation us
(2% - y)* = Bx + 6y - 5. _
We introduce a constant ¢ 1o the eyuation, to gel
(2x -y + ) = 8x r oY -5 + dex - 20y + <L,
®2x-y+eF =42 v X+ 20-0)y +cl-5
We choose ¢ in such a way that
2(—4—!2—1-9—)=—!=c=—l.
2Ac-3)
Then the eqﬁatinn of the curve becomes
x-y-1D =ax + 2y-1

-(Zx—y-13 4(x+2y~l)
& == ] = | —————— ]
vi vS V5

The vertex ol this parabola is the intersection ol 2x - y-1=0and

. 3 | .
X+ 2y -1 = 0, that is, (? —5-) The lovus livs at

Al

3 | |
(..H + = cost, — + — s5ind |, where tanf = 2.
5 ¥5 5 V5

2 ]
Losing = = cosf = —,
v5 vs

. , 4 3
.. The focus lies at (—. -\.
VS 5/
The curve intcrsccui the y-axis in (0, 1) and (0, 5). It doesn’t intersect the
X-axis,

Thus, the shape of the parabola is as given in Fig. 7.
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:

/!

Fig. T

E13) The conic's equation is

x? - 3xy + y2 + 10x - 10y + 21 = 0.
From E10 you know it intersects the axes in (-3, 0), (-7, O}, (0, 3}, (O, 7.
The tangent at (-3, 0} is

—3x-%(x-0-3y)+y-0+5(x-—3)—5{y‘—0) +-21 = 0,

1
a2x-—y+6=0
z}’

" Its slope is- 4.
.1 . L.
Thus, the slope of the normal at (-3, 0)is - T Hence, its eguation 1s

1
[ pp—— + 3,
¥y 4(3‘ )

You can similarly check that the tangents at (-7, 0), {0, 3) and (0, 7) are
respectively,

dx - 11y + 28 = 0,

x-4y + 12 = 0,

1lx - dy + 28 = 0.

The normals at these points. are respectively,

4
=—(x+
b4 “( )

1
-3 = —X,
y 4"

7 ”x
y- /4 = —X%
4

Ei4) x + 4y = ( will be a tangent 10 the given conic if

5
1 2 -2 !
2 3 -3 4
- =0
.3 3 3 0
2
1 4 0 0
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2 3 -3{ l P2 -2
2
o - |- 3 3l+4|-i-3 31=0
2
b4 o jt 4 0

@ 40 = 0, which is false.
Thus, the given line is nol 2 tangent Lo the given conic. .
Aﬁy line parallel to the given line is of the form x + 4y + ¢ = 0. This will
be a tangent to the given conic if (15) is satisfied, that is,
(5¢ + 28)* = 3(3c? + 24c + 48)
@ ¢ = -5 or -8
Thus, the required tangents are
] X+ 4y -5 =0and x + 4y -8 = 0,
E15) a) Using (15), we see that the condition is
i U ¥ a

j ;

s
r
—

a b L (¢]

@ b{f-be)-{L-bl) +g [al + blug-af| + u [(ac-g) + 1'{bg'—al')} =0

& b + a’f? + 2bf - 2ablg - b% - | + 2ag - a% = O.

Adding a’g® on both sides and simplifying, we get the given condition.
i i

by In(@ywepuwtg =0 .. f, ¢ = - A% - [1‘ =M, - b_ = C.
So the condition Tor y - Mx + 1o touch x* 1 y! = a2y
U7 = AYMT 4+ 1)
Lhus, ¢ = A\h_fl“"_rT
1 2 2
E16) Substituting x? = a? (l - -—2—) in 5o+ ::— = |, we get Yk

%
L
—
1
J
"]
—
=
(=3 -
= | %
L] =)
Il
i
w
r
i
[
[
s
=
U 1
2%}
1

LY = ox e—
q‘ul + b? . \% X
. ' .'1‘! :l'lb" al
Then x2 = u'(l- -, ‘_) . . =X % -‘.‘1.’.,_5.
. a4t v b- u v b- R Iy
Ulus the 4 poiins o1 Bwessection e . Eig. 8

( ab _ub ( -ab aly ab -iab
Jal+b?’ alyp? ) ATeb T aten? ) ( at+b? 'w'u3+b3)

-ab -ab
.md( ——i .s_d ST
Jat+b o w4+ bC

W have drawn the situation in Fig. 8.

Ei7) Ler S = ux? + Zhxy + by" + e + 21y v 0 =0
and Sy =.ap’ F 2hixy 4 byt o 20+ 24y ¢ oo = 0
be rectangular hyperbuolus, Then

4+ b=0andu, - » -y,
ay



Conje (@a+b)+ kia, +b)=0vkeR

{2+ kay) + (b +kb)=0vkeR
= 8 + k&, = 0is a rectangular hyperbola v k ¢ R.

EI8) S + kS, = 0

x2 y?
& — - kxy + — - (1 +9k) = 0.
. 9 y 7 ( )

a) This conic will be an cllipse if

2
(i) (—I ) L > 0, that is, k¥ < L.
9 4 4 9

b) The conic will he a parabola if

I k
— - - 0
9 2
k* = — and X 1 0 = 0, that is,
2 4
0 0 -{1 +9Kk)

) | } k2
ifk = a:—-and{l+9k)(———)#0.
. 3 36 4

But this can't be.
So the conic can’t be a parabola.

1
But it will be a pair of lines if k = & 3—

.
¢) The conic will be a hyperbola if k= > ry
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MISCELLANEOUS EXERCISES

(This section is optional)

In this section we have gathered some problems related to the contents of this
block. You may like 10 do them 1o get a bette, understanding of conics. Our
solutions to the questions follow the list of problems, in case you'd like to

counter-check your answers.

1}

2)

3)

4}
3

6}
7)

8)

9)

1)

11)

i2)

13)

14)

15)

L6}

Find the equation of the path traced by a point P, the sum of the squares of
the distances from (1, 0) and (-1, 0) of which is 8. . A path traced by a moving

Find the equation of the circle which passes through (1, 0), (0, -6) and (1. 4).  Point is called its locus,
(Hint: The general equation of a circle is x? + y2 + 2gx + 2fy + ¢ = 0).

Prove the reflecting property for a parabola.

(Hint: Show that « = ¢ in Fig. 9, Unit 2.)

Prouve Tﬁ:urcm 2 of Uniu 3.

A circle cuts the parabola y? = 4ax in the points (at?, 2ay) fori=1, 2, 3, 4.
Prove thot t;, + ¢; + ty + 1, = 0.

(Hlnt: 1), t3, t5 t are the solutions of the yuadric equation cobtained by
putting x = Q.). ¥y = 2at in the equation of a circle.)

Trace the curves xy = 0 and xy - 4x - Sy + 20 = Q.

What relations must hold between the coefficients of ax? + by? + cx + cy
= 0 for it to represent o pair of straight lines?

Find the angle throuph which the axes should be rotated so that the equation
Ax + By + C = ¢ is jeduced to the form x = constant, and find the value
of the constant,

Prove that y2 + 2Ax + 2By + C = 0 represents a parabola whose axis is
parallel to the x~uxis. Find its vertex and the equation of its latus rectum.

Prove that the set ol midpoints of all chotds of y2 =4ax which are drawn
through its vertex 15 the parabola y? = 2ux.

: 2
X Yi . . . .
a) Prove thay - ', + t;; - | 13 negative, 2ero or positive, according as the
Hi =
x2 y? !
point (x,, y) lies inside, on or outside the ellipse -5 + o7 = 1. 2
a

by Is the point (4, -3) inside or outside the ellipse 5x2 + 7y = 117 h

A line segment of lixed length a +b moves so that its ends are always on two
tixed perpendicular lines (see Fig, 1). Prove that the path traced by a point
which divides this segment in the rutio 1 ; b is an cllipse.

Find the equation of the connuon tungent to the hyperbolas

: . Fig. 1
x2 yl y! x*
- T hamd g - - =)
a - H| b
K2 2
Anormal to -5 - ", = 1 meets the x und y axes in M and N. respectively,

iH- D~
The lines through M and N drawn perpendicular 10 the x and y-idxes,
respectively, meer in the point P. Prove that the locus of P is the hyperbela
alx? - bly? = (4?4 b2)2,
Consider the hyperbola in Fig. 20 uf Unit 2. Through A and A’ draw
paraliels io the conjugate axis, and through B and B* draw purallels to the
trausverse axis “low that the diagonals of the rectangle so toomed lie along

the asymptote - the hypuerbola. A eiuad Toi diawing
asymniies ol o hyperbola,

Wihich conics . 2 represented by the folloa iy equations? ) .
a) (x~y)® 1+ .. )7 - W, 71

~



Conics

72

17)

b) rsin% = 2a cos 8,
I

e — =1 + cos® + V3 sind, -
r

Trace the conics

a) 9x?-24xy + 16y2 - 18x - 101y + 19 = 0.
b) xy-y?=a?

€} (x -4y + DNDE4x + Iy + 1) =

18) Find the equation to the conic which passes through (1, 1) and the
intersection of x2 + 2xy + Sy - 7x - 8y: + 6 = 0 with the pair of straight
lines 2x -y -5 = 0 and 3x+y-11 = 0,

Solutions

1)  Let P be (x, y). Then
Ix- D+ ¥ + {(x + 1) + y*) =8
o 2k + 2y =6
o x? + y? = 3, which is a circle with centre (0,-0) and radius V3.

2) Let the equation be x2 + y* + 2gx + 2fy + ¢ = 0. Since (1, 0), (0, -6) and
(3, 4) lie on it,

1 + 28 +c¢c =0,

6-12f +¢c =0,

9+ 16 + 6g + 8f + c = 0.

Solving these three linear equations in g, f and ¢, we get
71 47 69

g="_-|r_ — L= —.
4 8 2

Thus the equation is

+ 71 + 47 + 69 0
x? -—Xx + — — = 0. ' :
-3 VRN
3) The parabola is y_2 = 4ax. The tangent T at a point P(x), y;) is
¥y = 2a(x + x).
2a
So tane = —-
Y1
— B _ . . n . A 41 X - X;
The line PF, where F <, D} is the focus, is, =
¥ a - X
Its slope is L .
X —-a
_h 28
Thus, tanf=_*t"28 ¥ \ysing (11) of Unit 1.
) 2a
1+
X -a
=", using the fact that y{ = 4ax,.
¥
Thus tane = lanf and o and B are both less than or equat (o 90°,
o= B
4) We want to show that

ax* + 2hxy + by’ + 2gx + 2fy + c = 0 D)
can be written as a praduct of two linear factors iff its discriminant is 0.
if a » 0, we multiply (1) throughout by a and arrange it in decreasing
powers of x. We get .
a%x® + 2ax (hy + gh= - aby? - 2afy - ac.

On completing the square on the left hand, we get

alx? + 2ax thy + g + (hy + g)! = y¥h? - ab) + 2y (gh - af) + g2



5)

6)

7)

B)

9

eax + hy + 4 = = ,,hfz{h2 - ab) + 2y (gh-af) + g‘-sc

From this we can obtain x in terms of y, only invdlving the first degree iff
the quantity under the square root sign is a perfect square, that is, iff

(gh - aD? = (h? - ab) (g? - ac),

o ab¢ + 2fgh - af? - bg? -~ ch? = 0.

a h g '
o h b f = {
B f c

Let the circle’s equation be

x4 y2 4+ 28x + 20y + ¢ = 0.

- Substituting x = at®, y = 2at in this, we get

aht' + 4a%?% + 2age? + daft + ¢ = 0.

We know that it has 4 roots 1), 13, t3, 1,. So, from MTE-04 you know that
| s

the sum of the roots will be —- (coetficient of 17} = 0.
a ;

..l|+lz+l3+l4=0.

xy = 0is the pair of hnes x =0 and y = 0. We have traced it in Fig. 2.

Xy ~4x - 5y + 20 = 0 is a pair of lines since its discriminant is 0. In lact,

we can easily factorise it as

x-3ly-49 =0

Thus, it represents the pair of lines x = 5 and y = 4, which we have traced
in Fig. 3. '

ax® + by? + cx + cy = O represents a pair of lines iff

a 0 =
2
p . 2

0 b. —|=0e@+b)— =0wa=-borc =0
2 4

e

2 2

Lel us rotate the axes through 8. Then the equation becomes
Alx’cos# - y'sin) + B(x'sin + y'cos) + C = 0.
= X'(A cos® + Bsinf) + y'(Bost —A sinf) + C = 0.

This will reduce (o the form x* = <onstant iff B cost = A sing,
B .

that is, ¢ = tan™' —.
A

And then the equation becomes

A B
X’ (A Y 3 + B Ty ‘) =0
AT+ B Al + Bt/

) -C ’ -
Thus, the consiani is - (_: —_,
' \;‘X’ - B?
We rewrite the given equation as
¥y -(2Ax + 2By + Q) ._
@1y v k)= -2Ax - 28y - C + 2ky » k°, where k Is a constan.

o (y + k) = 22Ax + 2(k - By y«k? . O
We choove k+so that

Geoeral Theory of Conler

Y
-
"
o
O y=l X
rlg. 2
Y
.\' =d
=5
O
Fig. 3
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Coudes’ )
Ax + (B -k)y +

= 0 is parallel to the y-axis, that is,
k=B, Then the equmion becomes ‘

. . 2
(Y+B)’=-2A(x+- c-B )

2A

. B’-C
hsaxisisy + B = 0, vertex Is ( YU B).and the eqguation of

BZ-A2-C
2A
10) The midpoint of any chord through P(x;, ¥;) and O(0, 0) is’

n oy . 2 1 \? X
—-, — - Since yi = dax,, [—| = 2a({—).
Q(z 2) nen s '(2) - (z)'
Thus, the set of all such Q Is y° = 2ax.
} : 11) a) Firstly, if (x;, i) lies on the ellipse, then clearly
2 2
X ¥i
— —
a? b

/'\!{ Now, if (x. y;) lies outside the cilipse (see Fig. 4) then either Ix;l > a
- 1 - or 1y'|| > b. .

its latus rectum is x =

-a O a Xr .
k»/ Skl > atoryf > b?

- xi o, o
. ;2— + _bT > 1.
Fig. 4 Similarly, you can show that if (x,, y;) lies inside the ellipse,
: 2 2
X Yi
. C—t <],
, az bZ .

b) Since 5(16) + 7(9) = 143 > I, the point lies outside the ellipse.

12) Let the perpendicular lines be the coordinate axes. Let the segment intersect
the -axes in (x,0) and (0,y). Then the coordinates of the point P are

ax by
] Y = > .
X. ¥ -(a+b a+b)
Now, since x2 + y! = (a+b)?
) 2
A A
(a + b)? (a+b)?

L (YL
(a+b a? . \a+b,/ b?

=

_x?. YZ
= —--,-'— + —-? = l.
a- b
x? y?
Thus. the path traced by P is the cllipse — + 3-2— =1,
a‘ .
. xl yz.
13)  Any langent [0 — - -l;z— = lisy = mx + Jaz;ﬁ!-bz. and any
Py
¥ x2
tangen:(o?——? =lisx =m ¥y + Jja‘m -b..
For these two lines to be the same, we musi have — = m and
.y
—— 1 :
J?m - b* = - — Jja‘mj-b
my
e a’m? - b? = a’? - m? b? .

.14
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# m? = |, provided a? » b2 oe ot

Thus the common tangents are y = x + J:;z - b? and

y = -x + Jaz-bz.
_ . X2 y? 'Y‘
14) See Fig. 5 for a diagram of the situation. The normal to ~5 - ;i‘ =1
at (x,, y} is ‘ ¢ \1
N i
az b2 B sy .
T &%) s yrly-y) =0
2 2 2 2
. : b ] + b
Thus, M is (u U) and N iy (0, —(-?——2]-!1-)
as b
Thus, the coordinates of P are ’ .
az + bz) (H.l + bz :
———— x . — .
(( :]2 ] . bz y[
. . Fig. 5
Now, since {x;, y,} lies on the hyperbola,
ooy,
a? b2
a? a® + b? zxz b? _Elz+b2 2 2._1
@ + b)° ( % Y b?)? b? i
- a* + b? | a® + b?
e a%? - by = (a? ¢ b}, wiere X = —5— xadY = ———y,.
a b
Now, as P varies, X and Y vary; but always satisfy the relationship
a’x* - b%y? = (@? + b))% Thus, this is the locus of the point P.
15) The lines meet in (a, b), {a, ~b}, (-4, b) and (-a, -b), Thus the diagonals of
. b b ,
the rectangles lic along y = — x and y = - —x, which are the asymptotes of
the hyperbola. a a
13) a) (x-y)* + (x-a) = 0@
© 2x7 - 2xy + y?-2ux + a? = 0.
Herea = 2,b=1L,h=-1,g=-a,1=0¢=al
. ab - h* > 0. Thus, the conic is an ellipse.
b) rsin’t = 2a cosd.
Chianging w Cartesian coordinates, 1his equarion is y* = 2ax, a
parabola.
1 .
¢) — = I + cos# + V3 sind
r
o1 = KT+ y? £ x + 3y, since x = reos 8, y = rsin 6.
o 2y 4 VIxy + 2x + 2¥3y + | = O
Here ab - h? < 0 and irs discriminant is
l 0 vl t|
V3 2 V3 b e
I V3 l
Thus, the curve represents a hyperbola.
17) a) You can check that ab-h* = 0 and the discriminant is non-zero., Thus,

the equation represents a parabola. We can write it ay
3x - 4y)* = 18x + 101y -19.
o (I - dv o+ o) = (6c + 18} x + y(IU! - Bey + o2 ~19, where we 75



Conles ' ' choose the constant ¢ 50 that
3(6c + 18) -4 (101 - 8c) = O
=¢= 7.

Then the given cguation becomes .
Ox -4y + N = 15(4x + 3y + 2)

- 2
¢I’(?nt: 4;}'+7) =3(..‘.1i_+_iif__2p)_

Thus, the axis of the parabola is 4x + 3y + 2 = 0. The vertex is the
intersection of 3x - dy + 7 = Oand 4x + 3y + 2 = O,

that is, (— 33 il’_)

25 25
The length of its latus rectum is 3. Its focus F lies
29 ] 3
» at (-_-— + —cos @, E + —- sin 8). where tan § = —i.
25 4 25 4 3

.. Fis (-0, 71, 0.28).
: L 100 £ | (101)2 - 64'x 19
The curve intersects the y-axis in x oy 32) X \
. . 49 . 3
that is, approximately, ? and _I:‘%_

It doesn't intersect the x-axis.

We have traced it in Fig. 6.

1&

~

Fia £

By xv-v =]

l
This is a hyperbola. Tts centrv is the intersection of - 3 v Dand

l . - : .
- — x4+ v o= 0thaow, (0, 0 Trs aves are inclined o ihe coordinate
2 .
axes a! an angle of §, where tan *- Thus, the slope of the
. L . : .. i»
transverse axis is ) = rR and i Lol axisis 8y = s

76 . Since\mﬂ..ﬂ.._= .41, the length vi the transverse axis, 1), is given by
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s 1 A1) 1.168

S Gl
(1) + (417 .758

Loryp = 1.24, approximately.

We similarly find r; = .91,

Thus its eccentricity is 1.24.

It doesn’t interesect the axes. ‘

With all this information, we have Iraced the curve in Fig. 7.

]

Fig. 7
1 The equation is a hyperbola whose centre is the interseciion of
. 7 1
3x -4y +1 = O0and4x + 3y + 1 = 0, thatis, { - —, — 1.
; 25 25
Herea = 12, b = -12,h=—'2—.

Thus, its axes are inclined a1 angles 8, and &, to the coordinate axes,
where 1an 4, and tan 6, are roots of the cquation

’ a-b
tan? + e tan ¢ -1 = U

: 48
< lan H——7— tané -1 = 0

1
e tant¥, = 7andtan §; = - 7 = f = 81. 9" {approx.) and

6 = 171.9° (approx.).

The length of its axes are r; and r,, where

I + 49 2
r|2= =-=—-— =1 = .28,

12 -7x7 - 12x49 25

1
P+ —

R 49 2
rs.—__ .—.—-:;[1:.28-

25

A A

The curve interseeis the coordinuie axes in 0, 9, k-—--—, o],
12

("' - ‘fz—)-

So, its curve is as given in Fig. 8. 77
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Fig. 8

18) Let S, =x% + 2xy + Sy?-7x -8y + 6 = 0 and
S.=(2x-y=5(x + y-11}) = 0,

Then the required conic is §; + k3; = 0, where we choose k so that ({, 1)
lies on the curve. Thus, the curve is

Q+6k)x2 + 2-K)xy + 5-K vy -(T+37)x -~ (8 -6k} y +
{6+ 55k) =0.

|
Since (I, Iy liesonit, k = —.
{ ) 28
Thus, the conic is

34x? + SS5xy + 139y" - 233x - 218x - 218y + 223 = 0.

78
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BLOCK 2 THE SPHERE, CONE AND
CYLINDER

In this block we shall introduce you to some basic solid geometry. We will 'start with a unit
on lincs and planes in three-dimensional space. In this unit you will sec thal a planc in 3-
space is represented by a single linear equalion in 3 variabics, while a linc is represenled by
a pair of such cquations, We shall also discuss the inlersection of lines and planes.

In the next unit of the block you will study spheres from an analytical paint of view. This
study will include finding the equation of a sphere and of a tangent plane o a sphere, We
will also show you what the intersection of 4 plane and o sphere is, as well as the intersec-
tion of two or more spheres.

In the last unit of Lhe block we will focus our atlention on cones and cylinders. You will sce
that they are ruled surfaces, that is, se1s of lincs that salisfy certain conditions. We will also
find the equation of a cone, of a langent planc to a-conc and of a particular type of cylinder,

Al the end of this block, as in the tasL one, we have given a set of miscellahenus exercises.
These cxercises cover the conients of the block as a wholc. Daing them will help you 1o
improve your understanding of these conlents,

A sphere, conc and cylinder are particular cases of a conicoid, the focal concepl of the next
hlack. We could have combined the two blocks, and dealt with these surfaces as specific

. instances of ithe general theory of conicoids. But we leel that doing them separately will
preparc you to grasp the general theory more easily. This is why we have presented Lhese
surfaces and their geometrical properlics separately in this block. So. if you ensure that you
have achicved the objeclivés of the units in this block, you will find the next block casy 1o
undcrstand.

L







UNIT4 PRELIMINARIES IN THREE-
| DIMENSIONAL GEOMETRY

Structure

4.1 Inwroduction 5
Ohjectives

4.2  Points 5

4.3 Lincs 7

Direction Cosines
Equations of a Straight Line
Anple Between Two Lincs

4.4  Planes 12
Equations of a Plane
Iniprsecting Planes and Lines

4% Summary 19

4.6  Solutions/Answers 20

4.1 INTRODUCTION

With this unit we siart our discussion of analytical geometry in Lhree-dimensional space, or
3-space. The aim of this unit is to acquaint you with some basic [cis about points, lines and
planes in 3-space. We start with a short introduction 10 the Cariesian coordinate system.
Then we discuss various ways of represeniing a ling and a planc algebraically, We also
discuss angles berween lines, between plancs and between a line and 4 plane.

The facls covered in this unil will be used constandy in the rest of the course. Therefore, we
suggest that you dq all the exercises in the unit as you come to them. Further, please do not
£0 10 1the next unil till you arc sure that you have achieved the lollowing objectlives,

1

Objectives

Aller studying this unit you should be able 10

@ [lind the dislance betwecn any two points in 3-space;

® obtain the dircction cosines and dircclion ratios of a line;

® obtain the equations of a line in canonical form or in 1wo-point form;

® obiain the cquation of a planc in three-point form, in‘inlercepl form or in normal form;
® find the disiance belwceen a point and a plane:

® find the angle between two lines, or bevween (wo planes, or between a line and a planc;

o  hind the point (or poinis) of intersection of two tines or of 2 line and 2 planc.

Now let us start our discussion on points in 3-space.

4.2 POINTS

Lcl us starl by gencralising the wo-dimensional coordinale Sysiem to three dimensions. % :
Know thal any point in two-dimensional space is given by (wo rcal numbers, To locate the




The Sphere, Cone and
Cylinder

position of ¢ sointin three-dimensional space. we have (o give three numbers, To dos thys.
we lake the. wally perpenehcular hnes Gses) in space which ingersect i a point O (s
Fir. | (@)). O . called the origin, The posinve diicetiond OX, OY ant-OZ on (e e Tines ai
su chosen that it a righi-handed screw (Fig. 10hY placed a1 O is rotated from OGN 10 7Y i

moves in the dircetion of OZ., L
i
Z
f/'
P
,l
’I
e e e = —— _b,
0 v
I
1
1
|
l X Y
o4 X ] -
by

Fie 1. Vit aitesn connrlies o wseo i three chimensfons

Tolind tcecsamates o g poirt P oespace o Dk i taotal the perpendicutar from

onitheplan. M % feee Fag, 2 Cba 1 Lopthe - oo enne s o Mo the plane XOY be
txyrandihe loag ot M2 e d D Thontbe rona, v of Pare (x, y, 2) 2 1S posiove or
negative aeeorc-ng as MP s n the posae dirego - 02 oy g
F
%
Z

. '““; - 7 o
RN . R ¢
- i ’

l r
1 .
1 . , h
Jl’z

v M

L. 2

So, lorcuch point P in space, there 1 an ordered triple (x.v.23 of real numbers, i.e., an

clern ni o RY, Conversely, given an ordered triple of real numbers, we gan casily find a
pome Pin space whose coordinates are the gnen riple. So there 15 a one-one corrspondence
hetween Lhe space and the st RY, For this reason, three-dimensional space is ofien denoled
by the symbol R, For a similac reason a planc is denoted by R and a linc by R,

o n bwo-dimensioml space, tie distance of any point P ¢x .y from the origmm 18

-

. . :
sovs oy s Fra 2o yvou exiend tis expression to three thimensions? By
Pethpeoras™s theorem, we see tha

2 1
OP' = OM*+MP?

=()-'2+yi)+ ./'2
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2 OP = yfx?4y24 52 Blmensional Geometry
Thus, the distance of P(x, y,  om the origin is f/x2 + yi+z2.

And then, what will the distance beiween any two points P (i, Y1, % ) and Q {xy, V2, z+ Y be? ,_‘
This is the distance formula "

o D )
us you may expect from Equation (1) of Unit 1.

Using (1), we can obtain the coordinaes of a point R (x, y, 2 that divides the join of P (x1,
Yi. %1} and Q (x3.¥2, 23) in the ratic m:n. They are

nx; + mMx, ny, + my; , <+ mzy
= = I‘= -

(2

m+n m+n T men

For examplc, to obtain a point A that triscets the joinof P (1,0,0) and Q (1.1,1), wc Lake

T 1

m=1andn=2in (2). Then the conrdinates of A are (1- 3 EJ v

Notc that if we had taken m = 2,1 = 1 in (2), we would have the other poini that triscels PQ,
[5:3)
namnely, | 1. 3' 3 )

Why don’t you try some exercises now?

E1)  Find the distance bc.[wccn P(1,1,-1yand Q (~1. 1, 1). What arc the coordinates of
the point R that divides PQ in the ratio 3:47

E2)  Find the midpoint of the Joinol P (a.b, ¢) and Q (r, 5, 1).

Now let us shift our attention 1o lines,

4.3 LINES

I Unit | we took a quick look at lines in 2-space. In this section we will show you how 10
represent lines in 3-space algebraically. You will see that in this casc a line is determined by
a set ol vwo lincar equations, and not onc lincar CqqUition. as in 2-space.

- Let us swart by looking at a triplel of angles which uniquely detemine the direction of a line
In 3-space,

4.3.1 -Direction Cosines

Let us consider a Carlesian coordinaie system with O as the origin and OX, QY. OZ as the
axes, Now take a directed line L in space, which passes through O (sec Fig. 3). Let L make
angles a, 5 and v with the positive directions of the X,y and z-a¥es, respectively, Thon we
define €os e, cos B and cos v 1o be the direction cusines of L,

For cxampie, the dircction cosines of the X-AXi8 are cos 0, ¢os 7/2, cos 772, that is L, 0.0,

Note thit the direction casines depend on the frame of reference, or coardinale syslem, thay
we choose,
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Fig.d

Z

Flp. 3 : Cos m. gos f amdl cos y are Lhe direction cssines of the Tine 1.

Now take any directed line L in space. How can we [ind iis direction cosines with respect 10
a given coordinate sysiem? They will clcarly be the dircction cosines of the line through O
which has the same direction as L. For example, the direction cosines of the line through
(1,1,1) and parallel to the x-axis are 1.0, 0. .

Now let us consider some simple propertics satisficd by the dircction cosines of a line. Let
the direction cosines of a line L be cos o, cos B and cos y with respect to a given coordinale
sysiem. We can assume that the origin O tics on L. Let P (x, y, z} be any point on L. Then
you ¢an se¢ {rom Fig. 4 that

x=OPcosq,y=0PcosPandz=0Pcos.

Since OP? = x? + y2 4 v = OP? (cos? o + cos” B+cos? ¥ ), we find that

coso+costBrcosy=1 . (3)

This simple praperty of the direction cosines of a line is usclul in scveral ways, as you'll see
later in the course. Lel us consider an example of its use.

. n T .
Fxampie I : If a linc makes angles Znnd 3 with the x and y axcs, respectively, then what
is the angle that it makes with Lhe z-axis?
S 0 R . o . .
Solution: Pui o= 7 and p = 3 in {3). Then, i ¥ is the anglc that the line makes with the
7-3xis, we pel

i 2 1 n 2=
5+Z+ COs“Y=1=cos y=I—=Y=— Oor —.

2 3 3

Thos, therc will he two lines that satisly our hypothesis, (Don’tbe surprised ! Sec Fig. 5.)

y A
-7
! //Y
lun“ //
O ™~ase 2

Vip. 3
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There is another number triple that is related to the dircction cosines of a line.

Delinition : Threc numbers a, b, ¢ are called direction ratios of a line with dircction
cosines {, mand n,ifa=ki,b=km,c=kn, lorsomck ¢ R.

Thus, any triple that is proportional to the direction cosines of a line are ils direction ratios.

For cxample, +f2, 1, | are direction ratios of a line with dircction cosines —, % %

-

You can try these exercises now.

E3) Ifcos o, cos f and.cos yare the direction cosines of a line, show that
sin?o. + Sin®p + siny=2. '
E4)  Find the dircction cosines of
a) the y and z axes,
b) lﬁe line y = mx + ¢ in the XY-plane. -

ES}  LetL bea line passing through the origin, and et P (a, b, ¢) be a poinl on it. Show
thal a, b, ¢ are direclion ratios ol L.

E6)  Suoppose we change the direction of the line L in Fig. 3 1o the opposite dircction.
What will Lhe direction cosines of L be now?

Let us now sec how the directlien cosines or ralios can be used to lind the equation of a line.

4.3.2 Equations of a Straight Line

We will now lind the cquations of a finc in different forms, Let us assume that the direclion
cosines of a linc are ¢, m and &, and that the point P (a, b, ¢} lics on it

Then, il Q (x, v, z) is any other point on it, lel us camplele the cuboid with PQ as ong of ils
diagonals (see Fig. 6). '

Fig. 6 : {x ~ a), (v—b} and (z =} ure direction ralios of PQ.
Then PA = x—a, PB = y—b and PC = z—, Now, if PQ =1, you can sce thal
X—a . .
cosa = — thal is,

=222 Similarly, m:y_b. n= z—c'
r T T

Thus, any point or the line satisfies the equations
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X-2_y-b 7z-¢C

= , . (4)

{ " n
Nole that {4) consists of pairs of equations,
x-2 -b -b z-¢ X-2 zZ-¢ -bh z-c¢
=2 and Y = . or = anc y = or
! " n I { " m n
XN - g -h i-a t-¢
L antl =
{ m { n

Conversely, any pair of cquations of the form (4} rcprcscn( a qimghl line passing through
(a, b, ¢) and having direclion ratios !, m and »,

(4} is called the canonical Form of the equations of a straight line.

For cxample, the cquations of the straight line passing through (1, 1. 1} and having dircclion

N EREN

-1 y-1 z-1
1743 -1743 14437
x=-1 y~1 z-1
! (1) l
Note that this is in the form (4), but 1, -1, 1 are direction ratios of this line, and nat i1s
direction cosines. :

that 1s,

Remark T: By (4) we can sce that the equations of the line passing through {a, b, ¢} and
having dircclion cosines {, me, 1 are

X = atlr, y = b+dir, z= ¢c+ar, where r e R, s {5)

This 1s a one-parameter form of 1he equations of a line, in lerms of the parameter r.,

Let us now use (4) 1o find anather form of the equations of a inc. Let P (%, v, %) and
Q (xz. yo. #p) licen o line L. Then, il £, » and n are its directions cosines, (4) tells us that the
equattons of L arc

A% _ YN _ A=t

i = . B (D)
! " I
Since Q lics on L, we get
X2-N 1N Fa—h
= = — e ?
{ m n ™
Then {6) and (7) give us
SeXk _Y-on_*Eo4 )

Ng=Xy ¥Yr-yW Ha— iy
(8) is the generalisation of Equation (73 of Unu T oand is called 1he two-point form of the
cquations of a line 1n 3-space.

For example, the equations of the line passing through (1,2, 3 and (0, 1.4 Y are

%=1 = y-2 =~ (2-3)._

Note that, while obtaining (8) we have alse shown that

iFP(xy, vy, 20) and Q (x5, ¥y z2) liconalinc L, 1hcn A=K7, Yo=Yy and
zy—2y are dircction ratios of L,

N
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Now you can Iry some exerciscs.

E7)  Find the equations to the line joining (1,0, 1} and (1.2, 3).
E8)  Show thal the equations of a line through (2,4, 3y and (=3, 5,3) are x + 5y =22,7=3.

Now let us sec when two lines are perpendicular.

4.3.3 Angle Between Two Lines

In Unit } you saw that the angle between two lines in a plane can be oblained in tesms of
their slopes. Now we will [ind the angle between two lines in 3-space in terms of Lheir
dircclion cosines.

Let the lines Ly and L, have dircction cosines §y, my, ay and £, my, 1, respectively, Let 8 be
the angle between L; and L,.-Now let us draw straight lines L) and L'; through the arigin
with direction cosincs {y, my, i, and {5, mq, ny, respectively, Then choose P and Q on Ly and
L', respectively, such that OP = OQ =r. Then the coerdinales of P are (ye,myr, myr), and of
Q arc {(r, myr, nar), Alsa, 8 is the angle betwesn OP and OQ (see Fig. 7). Now

PQY =(f, - 1) + (my = m)™ P + {(n, - ny)*r Flg. 7

= 2(] - !| f;_—mlmz—m ﬂ?_)l'z.

using ﬁz + mjz + nlz =1, !3 + m% + .'122 =1
Also, from Fig. 7 ard clemenlary rigonometry, we know that
PQ* = 0P+ 0Q*—20P. OQ cos 6 '

=2(1—cos o,
Therclore, we [ind that @ is given by the relation
¢os 0= Lly+nnmytn ny v
Using (9) can you say when 1wa lines are perpendicular ? They will be perpendicular iff
6= /2, that is iff
Hila+ oy + nyny = Q. e (10
Now, suppose we consider dircclion ratios a;, by, ¢y and a3, by, ¢; of Ly and L, instead of
thetr direction cosines. Then, is 1t true that Ly and L, are pempendicular i€ a;a, +by by +c1c5 =07
I you jusL apply the definition of dircetion ratios, you wili see that this is so.
Ancl when are two lines parallel? Clearly, they are parallel if they have the same or opposite
dircctions. Thus, the lines Ly and L, (given above) will be paralle} ifl {= 1y, my = miy, 1y = 1,

orly =—=1{3,my =~ my, 1y =- n, in particular, this means that if a, b, cand 2", b, ¢ are
dircction ratios of Ly and Ly respectively. then

EY

=

=| =

¢
¢

.

o

Let us just summarise what we have said.

Two lincs with direction ratins a,, by, ¢, and 4y, by, ¢ are
i . pependicular iff aja:+ by by vy o=
;

4, b
(iiy panallelilf =+ = t=_%
‘12 2 (_,2

For example, the line % =y= % is not parallel (o the x-axis, sin¢ce 2, 1, 3 arc not propor-
) 1
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Fip. 8 : The plane z=3

tionat to 1, 0, 0. Further, x = y = 7 is perpendicular lo x = -y, 2 =0, since 1, 1, 1and 1,-1. 0
are the dircction ratios of these two lines, and L {1+ 1 (=1} + 1 (0} = (..

Why don't you try some exerciscs now?

E9)  Find the angle bet..cen the lines with direction ratios 1, 1, 2 and +3, - V6 . 4,
respeclively.

E10) 173 lines have direction ratios 1,2, 3; 1.-2, 1 and 4, 1, =2, respectively, show tha
they are mutually perpendicutar.

In this seclion you saw that a tine in 3-spacc is represented by a pair of linear cquations. In
the next sectiort you will sec that this means thata line is the intersection of two planes,

4.4 PLANES

In this section you will see that a linear equation represents a plane in 3-space. We will also
discuss some aspects of intersecting plancs, as well as the interseclion of a line and a plane,

Let s first look at some algebraic representations of a plane,

4.4.1 ELquations of a Plane

Consider the XY-plane in Fig. 1 (a}. The z-coordinate of cyery point in this planc is 0.
Conversely, any point whose z-coordinate is zero will be in the XY -planc. Thus, the equa-
tien z = { describes the XY -plane,

Similarly, z = 3 describes the plane which is parallel 10 the XY-plane and which is placed 3
unils above it (Fig. 8). ’

And whal is the equation of the YZ-plane? Do you agrec that it is x = 0?

Note that caek of these planes satisfics the properly that il any two points lie on it, then the
line joining shem alsa lics on it. This property is the defining property of a plane.

Definition : A plane i a set of points such that whenever P and Q belong to it then so does
cvery point on the line joining P and Q.

Another pointthat yon may have noticed about the plancs mentioned above is that their
cquations arc lincar in x, y and z. This fact is true of any ptanc, according to the following
thcorem.

Theorem 1 : The general linear equation Ax + By +Cz+ D=0, whercat least onc of A, B, C
1s non-zero, represents a planc in three-dimensional space.

Further, the converse is also true.

We will not prove this result here, bul will always use the fact that 2 planc is synonymous

with a lincar equation in 3 variables. Thus, for example, because of Thearem 1 we know that
2% + 5z = y represents 2 planc.

ALthis poinl we would like 10 make an imporiant remark,
Remark 2: In 2-space a lincar equation represenis a fine, while in 3-space a iinear equation

represents a plane. For example, y = 1 s the line of Fig. 9 (a). as well as the plane of
Fig 4 (b},
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[

{a} (k)

Fig. 8 : The same equatlon represents a Jine In 2-space und a plance in 3-space.

Let us now obtain the equation of a plane in different forms. To start with, we have the
following result.

Theorem 2 : Three non-collinear points determine a plane. In fact, the unique plane passing
through the non-collinear points (x,, ¥1, 21). (X2, ¥z, z2) and {x3, ¥a, z3) is given by the
dclerminant equation.

% ¥ Z 1

X Vi Z) . an
=0

X2 ¥ & 1

X3 Y o 3 1

We will not prove this result here, but we shall use it quile a bit.

As an cxample, let us find the equation of the ptane which passes through the points (1, 1, 0),
~2,2,-Dand (1,2, 1). L will be

% ¥ 7 1
I 1 0 !
=0,

=2 2 -1 1

I 2 1 1
1 0 1 1 0 1 1 ! 1
=x| 2 -1 1l -y |2 -1 Ty +z | -2 2 1
2 1 1 1 1 l 1 2 1

1 1 0
‘ - -2 2 -1 =0
! 2 11

= 3x + 3y-3z=5.

Why don't you try some ¢xercises now?

13
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Fig. 10 : The plane

x Y 4
— 4= +—=1
a b ¢

Fipg. t1: Obluining the normal
form of the cquutlon of the plone
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E11) Show that the four points (0. -1,-1), (4.5, 1), (3,9, 4) and (=4, 4, 4) arc coplanar,
that is, fic on the same planc.
(Hint : Oblain the equation of the planc passing through any three af the points, and
see il the fourth poing lics on it.)

E12) Show that the cquation of the plane which makes intcrEcp!s 2,-1.5on the threc axes
Xy 7
1s§+(_”+5.—l.
{Hint : The plane makes an intercept 2 on the x-axis means that it intersects the
x-axis at (2,0, 0))

In E12 did you notice the relatjonship between the intercepts and the coefficienis of the
cquation?

In generai, you can check that the cquation of the planc making intereepls a, b and ¢ on the
coordinale axes (sec Fig. 10) is

XLYXLE (12)
a b ¢

This is because (a, 0, 0), (0, b, 0) and (0, 0,c) lie on it
(12) is'called the intercept form of the equation of a planc.

Let us see how we can usc this form,

Example 2 : Find the inlercepts on the coordinate axes by the plane 2x - 3y + 52 = 4.

Solution ; Rewriting the cquation . we gel

. 4
Thus, the intercepts on the axes are 2, — 3 and %.

Now here is an cxercisc on the use of (12},

E13) Show that the planes ax+by+cz+d = 0 and Ax+By+Cz+D =0 arcthe same iff a, b, c.
d and A, B, C, D are proportional,

(Mint : Rewrite the cquations in intercept form. The two plancs will be the same Hf
their intercepts on the axes are cqual.)

Let us now consider another form of the equation of a plane, For this, let us drop a perpen-
dicular from the origin O onio the given plane (see Fig. 11). Letit meet the plane in the
point P. Let cos @, cos B and cos ¥ be the direction cosines of OPand p= |OP|. Further, tet
the plane make intercepts a, b and ¢ on the x, y and 2 axes, respectively. Then

cosa:%cosﬁ:%andcow:%. ...... (13)

Now. from (12) we know that the equation of the plane 1s % + % + % =1,

Then, using (13}, this equation becomes

KCOSG+yCosPercosy=p S -3
This is called the normat form of the equation of the plane,

Far example, let us {ind the normal form of the equation of the planc in Fig. 9 (b). The
perpendicular from the arigin onto it is of iength 1 and lies along the x-axis. Thus, ils
direction cosines are 1, 0, 0. Thus, [rom (14) we get its equation as x = 1,




wole that (14) is of the form Ax+By+Cz =D, wherc A< |, Bl LIC|< Tand D = ().

Now,.suppose we are given a plane Ax + By + Cz + D = 0. From iLs cquation, can we lind
the fength of the normal from the origin to 1”? We will yse E13 to do so. -

Supposc the equation of Lhe plane in the normal form is
xeoso+ycosfrzcosy—-p=0.

Then this is the same as the given cquation of the plane. So, by Et3 we sce Lhat there is a
constanl k such [hal
“cos ot = kA, cos.p = kB, cos v=kC,p=-kD.

Then, by (3) we get

+
K2 (A2+B2CY) = |, thatis, k.= )

JA*+ B4+ C?
D] ,
S0, p = - kD ———=——=—=, wherc wec take the ahsolute valuc of D sincc p= 0.
VAl+ B2+ (2
Thus. the length of the perpendicular from the origin onio the plane Ax+By+Cz+D = (0 is
Dl

,A2+B2+C2' )

. . . - o1
For cxample, the length of the perpendicular [rom the origin onto x+y+z=11is -\ﬁ

Now lelus go one step further, Let us find the distance between the point (a, b, ¢) and the
planc Ax + By + Cz + D =0, thal is, the length of the perpendicular from the point o the
plane. To obiain it we simply shift the origin Lo (a, b, ¢), without changing the direction of
the: axes. Then, just as in Sec.1.4.1.,if X, Y, Z are the current coordinates, we get x = X +a,
y=Y+bz=Z+e, .

So the equation of the planc in current coordinales is A(X +a) + B(Y + D)+ C(Z+c)+ D=0,
iThus, the length of the normal from (a, b, ¢} o (he plane Ax + By + Cz + D = 0 is the same
as Lthe length of the normal frem the curreal erigin to

AX+a)+ B (Y+B) + C(Z +¢) + D=, that is,
lAa + Bb+ Cc+ D)
\IAZ +BI+ 2

For example, the length of the normal from (4, 2, B o 3x -4y + 122+ 14 =01
2~ 12412+ 14 _26

SAERSFES
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Now you may like to do the following exercises.

El4) Find the distance of (2, 3, -5) rom ¢ach of the coordinate planes, as wetl as from
X+y+z=1.

E15) Show thatif the sum of the squares of the distances of {a, b, ¢) fram the plancs
X+y+z2=0,x=zand x+2z=2y 59, thena’+ B>+ ¢2=9.

Now that you are [amiliar with the various cquations of o plane let us talk of the interseciio
o} plancs,

4.4.2 Intersecting Planes and Lines

InSec. £.3.2, you saw that a linc is represened by two Hnear equations. Thus, i s 1he
inierscelion of two planes represented by these cquations (see Fig, 12).

Preflimlinariesin Threes
Dimenslonal Geometry

We have discussed the ransia.
ton of axces in detail in Unit 7.

Fig. [2: A straight linc Is the
intersectlon af (v plunes.
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In general, we have the fallowing remark.

Remark 3 ; A straight line is represented by a lincar sysiem of the form ax + by +cz +d =0),

Ax+ By +Cz+ D=0 We wrilc thisinshortasax + by +cz +d=0=Ax + By + Cz+ D.
For cxample, 3x + 5y +2 — 1 =0=2x + 1 represents the line obtained on intersecling the
planes 3x + Sy+z=1and 2x + 1 = 0. '

Now, suppose we are given a linc
ax+by+cz+d=0=Ax+By+Cz+D.

This linc clearly lics in both the plancs ax + by + cz+d=0and AXx + By + Cz+ D =0.In
fact, it lics in infinitcly many planes given by

{ax+by+cz+d)+ k{Ax+By+Cr+I=0, ... {7

where k & R. This is because any poinl {x, y, 2) lics on the ling ilT i1 fies on ax+hy+cz+d = 0
aswellas Ax + By + Cu+ D=0,

Let us see an example of the use of {17).

x+l _y-3 7+

-3 2 [

Example 3 : Find the equation of 1he planc passing throagh the line

and the point (0, 7, =7).

Solution ; The linc is the tntersection of 2 (x + 1) = 3 (¥ = 3} and x + 1 = =3(z + 2, that is ,
2x + 3y - 71=0=x+3z+ T

Thas, by (17), any plane passing thraugh it is of the form

Cx+dy-NN+k{x+ 3+ N=0forsomec ke R,

Since (0, 7. =7 lies on it, we gel

21 -7+ k(=21+7 =0, thatis, k=1.

Thus, the required planc is

Ix+3y+3z=0.thatis, x+y+z=0.

You can do the following exercise on the same lincs,

E16} Find the equation of the plane passing through {1, 2, 0} and the line
xcos+yeosB+zeosy= 1, x4y =1z,

Now, giiven a ling and a plane. will they always intersect? And, il so, what will their inter-
scetion fook like? In Fig. 13 we show you the three possibilitics,

(a) (h) (©

Fig. 13+ {a} Allneand a plane cun cither intersect in a peint, or () thetlne can lie in the plane, or (c) they may
nnl inlerseet at all.
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Let us sce some examples, ‘
Dimensional Geometry:

Example 4 : Cheek whether the plane x+y+z = 1 and the straight line % = y_z—__l‘= L;—z

inersect. If they do, then find their point (or points) of intersection.

Solution : By Remark 1 you know that any pointon the linccan he givenbyx =ty = 1 +21
and z = 2 + 31, in terms of a parameter 1. So il the ling and plane intersect, then (¢, 1 + 21,
2+ 31) must lie on the plane x+y+2 = 1 for some L. Let us substitule these values in the

cquation, We gel +1+21+2431= 1, Lhatis , 61 = =2, thal is, [ = _];. Thus, the line and planc

. . . . . L 1
inlerscel in a point, and the point of inersection is 3T L,

Example 5 : Find the point {or points) of intersection of

(a) x+2=y+3:'z~4

and 3x+2y+62. =12,
2 3 -2

()] x; I y;2=?‘F23 and x+7 = 1.

Solution : a) Any pointon the line is of the form (2k-2, 3k=3. -2k+4), where k € R,
Thus, if there is any point of inlersection, it will be given by substitting (his triple in
3x42y+67 =12,

So, we have

I2k-2y+2 (3k-3) +6 (-2k+d)= 12

= 0=10

Thisisruc Yk e R.Thus, forevery k € R, the triple (2k-2, k-3, —2k+4) lics in the plane.
This means that the whaole ling Jics in the planc. )

M) Any porwnt on the ling is of the form (20+1, 142, - 21+3), where 1t € R, This lies on x+7 = |
i, somic 1, G+ 1) + (<21+3) = |, hat is. iT 4 = |, which is lalse, Thas, the Tine and planc do
notinlerscel.

You can use the same method for finding the point (or points) of intersection of two lines. In
the fellowing cxercises you can check if you've understood the method.

E17)  Find the point of incrsectian of the line x = y =zandl theplanc x + 2y + 32 =3,

E18) Show lhatthe ling x—1 = ]5()'—3) = %(z—ﬁ) meets the ling _I_(,\+I)= _I-()'—-‘l) = %(z—‘)),
; 3 5

Now, consider any two planes. Can we find the angle between (them? We can, once we have
the following definition.

Definition : The angle between two planes is Lhe anglc between the normals o them from
the origin,

Su, now ict us find Lhe angic between (wo plancs, Let the equations of the planes, in the
normal form, be fyx+my+ny7 = py and x4 iy iz = pr. Then the angle belween the
normais is cos * (B mynaen; g,

Thus, the angle between the plancs f,x Y + s = peand fx+nny+ass = py s

cos {(hiy+myniy+any). e (18)
' 17
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aA +bB+cC
Val+b2+c?, YA+ B2+ 2

cosB=

This is because a, b, c and A, B, C are direction ratios of the normals 1o the lwo planes, so

that — 2 . b . = < and A .
" Vatebieg? VaZap+c? Valyblac? JA21 B2+ C2
B .. . .
. arc Lheir dircction cosines.
VAT+B2+ 2 VAT BZ4+C?
Thus,

the plancs ax+by+cz+d = 0 and Ax+By+Cz+D =0

i} arc parallel iff 2 = b :3, and
B C

A
if) arc perpendicular ifT aA+bB+¢C = 0,

Let us consider an cxample of the utility of these conditions.

Fxample 6 : Find the equation of a planc passing through the line of intersection of the
planes 7x — 4y + 72+ 16 = 0 and 4x + 3y =27+ 13 = (), and which is pcrpendicalar to (he
plane 2x -y - 22+ 5=,

Solution ; The general equation of the planc through the line of intersection is given by
Tx -8y + 72+ 16+ k(@x+3y-2z+ 13) =0,

= (T +4k}x + Bk -4y y+ (7-2k) 7+ 13k + 16 = 0.

This will be-perpendicular o 2x —y - 22 + 5= 0 if

2(7 +4k) - 3k - 4) =2 (7 - 2k) = 0, that is  k = "%' :

Thus, the required cquation of the plane is 47x ~48y + 71z + 92 = 0,

, Try these excreises now.

E19) ' Find the cquation of the plane through (1, 2. 3) and parallel 10 3x + 4y — S7.= (.
E20) * Find the angle hetween the planes x + 2y+22=5and2x + 2y +3=0.

E21) Show that the angle hetween the ling 2282 ¥ 2P _ ; € and the plane

o B

Ax +By +Cz+D=0is sin”’ - Aa+BB+Cy .
' \fA2+Bz+C2.'qja2+Bz+72

(Hint : The rcqu'ircg] angle is the complement of the angie between the line and the
. normal to the planc.) '

And now let us end il% unit by summarising what we have done in .




Preliminariesin Three-

4.5 3 SUMMARY o ' Dimenslonal Geometry

I this unit we have covered the fotiowing points.

1)

4

N
——

6}

7}

1)

9

10)

Distance formula : The distance between thepoints (x, y, 7) and (a, b, c)is

Y0 =+ (y - )+ (7 - ).

The coordinales of a point thal divides the join of (x,, y}, z;} and (%3, ¥2,%3) in the -
ratic m:n are

(nx|+mxz ny, + my, nz,+mzz}
— 2 AT Nzt mzy
“m+n m+n m+n

II'¢os o, cos B and cos yare the direction cosines of a line, then cos?or + cos? B+costy=1,

The canonical form of the equations of a line passing through the paint (a, b, ¢) and

having dircction cosines cos ., cos Band cos yis .
‘*-a _y-b z-c
cos e cos P ocosy

The two-point form af the cquations of a line passing through

X1y, z) and (x5, y. 7,) aré

A
X=X _¥Y—-W L=

= m—

XX YW -y

The angle between 1wo lines with dircctian raLios
ay, by, ey and ay. b, Ca s

1K Ay + by + ¢,

cos - :
Val+ b2+ cZ. ol b2 +¢3

Thus, these lines are perpendicular iff ajax+by by+e,c, = 0, and parallel iff
&= kg, by =khy, ¢ = kea, lorsome k € R.

The cquation of'a plang is of the form Ax+By+Cr+D =0, where A.B.C.De R and
natall of A, B. C are 7ero,

Conversely, such an CHUALION always represents o plane. T
The plane determined by ihe three noints

(NYE 70 (330 you 72) and (xq, ¥1. 29} bs

X y 7 | '
x Y1 % ! =0
Ky ¥2 %a o
X3 Y3 73 ]

The equation of the planc which makes intercepts a, b and ¢ on the X.y and z-axcs,

. Xy
fChl'}(‘.Cll\'cl)rl 15—+ =2 =,
a b o¢
The normal form of the cquation of a plane is x cos @+ y cos B+zcosy=p, |
where pis the leneth of lhe pemendicular Irom the origin onto the planc and cax o, .
cos 3, cos yare the direction cosines of the perpendicular,

The length of the perpendicutar from a paint (a, b, ¢} onlo the plane Ax + By + (Cy
+D=0is - ; -

-
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Crvlinder

12)
13)

14)

|Aa + Bb+ Cc+ D

'\/A2+ B+ C?

A ling is the intersection of two planes,

The general cquation of a planc passing through the lincax + by + cz+d=0= Ax +
By+Cz+Dis(ax+by+cz+d)+k (Ax + By + C2+ D)= 0, wherck € R.

The angle belween the planes ax + by + ¢z +d=0and Ax + By + Cz+ D = 0is

N [ aA + DB +¢cC ]
cos .

at+bhi+c?. YAZ+BE+C?

And now you may likc lo go back to Scc. 4.1, and see if you've achicved the unit objectives
lisicd there. As you know by now, onc way of checking this is {o ensure that you have done
all the cxercises in the unit. You may like to sec our selutions 1o the exercises, We have
given them in the following section,

4.6 SOLUTIONS/ANSWERS

El)

E6)

"E7)

E8)

E9)

PQ=(1- (DY + (1174 (-1-1)? = VR

. s 1 | A
The coordinaics of R arc [3, I.—7J.

(a+r b+s C+L)
2 2 2 f

sin? o + sin? b + sin?y = 3 = (cos® @ + cos? P+ cos> ) = 2.

a) 0, [, 0and 0, 0. 1. respectively.

b) Any line in the XY-planc makes the angle /2 with the z-axis. Now, il m = tan 6,
then y = mx+c makes an angle 8 with the x-axis. and /2 -- @ with Lhe y-axis.
Thus, its diceclion casines are cos 8. sin 8, 0.

In Fig. 14 we have depicted the sileation,

- . 3
Let OP = r. Then you can sce that the direction cosines of L are =

b

= la

Thus, a, b, ¢ are direction ratios of L.

Now, the line L makes angles of n—a, 7~ B and x -y with the positive directions of
the x, y and z-axes, respectively. Thus, its direclion cosines are - cos o, —cos 8 and
~C0S Y.

2 2 2

X+l y z-=1

The cquations are

5 -1

fa. b L Y i C% svwmdd P B N T
—AA T )= S\ —opania L= oouiie i,
x+9y=22,2=3.

1
1

Tpc direction cosines of the line with direclion ratios 1, 1, 2 arc
b

. N
J = , 1hat is, — -2--

{ i
\ﬁz+12+22‘\112+]2+22 J6' W6 Vo




" EI0)

E11)

E13)

El4)

- B13)

ﬁ
5

[

wia

Similarly, the dircction cosines of the other line are

" Thus, if 0 is the angle between them,

() (2} ) () (@6

, .
= m(s + ‘J§ - '\/g)
Since | (D +2(-2)+3(1)=0,
1@)-2(1)+1(2)=0,2and

1@ +2(1}+3 (-2) =0,

the lincs are mutually perpendicular,

The equation of the plane passing through the first three poinls is
X y ) Z 1
0 -1 -1 1
=0
4 1 1
3 9 4 |

= S5x -7y +1lz+4=0,
Sincc (- 4, 4, 4) saisfics it, the 4 poinis arc coplanar.
The poinis (2,0, 0), (0. -1, 0}, (0,0, 5) lie on the planc.

Thls, its cquation is

X v F 1
2 0 0 1 :
. =0 = 5x-10y+2z=10
0 -1 0 !
0 0 5 1
:;14._3.(—‘_-'_2:]
2 -1 5
s . - d d d
I'he imercepts of the two plancs on the axes are - —, _-f;' -—
a v
and — E - 2 _.-[.)., rcspéclivcly. Thus, the plancs coincide
"A B . C O o )
i 4. D4 D A Do,
@ A b B ¢ -C
iff 2B _C_ _cl hat is, iff a, b.c,d and A, B C, Darc proportional.
A B C D’

The distance of {2, 3, -5) [rom the XY-plane, z= 0, is -5 _ =5,

%P

Similarly, the distance of (2, 3, -5) from x =G and y = O is 2 and 3, respectively,

Iis distince rom x+y+z =118
R2+3-5-1 1
P24 2 3

We know that

Prellminaries in Three-
Dimenasional Geometry
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"he Sphere, Cone dnd = a‘+bi+ct=9.

Cylinder ! . . . o
E16) The equation of the planc passing through the given ling is

(xcoso+ycosP+zcosy —D+kx+y—2z)=0, ... (0
where k € R is chosen sa that (1, 2, ) lies on (he planc.

co(coso+2cosB-1N+3k=0=k= % (1- cos o~ 2 cos B).

Thus, the required equation is obtained by putting this valuc of k in (20},

E17) Any pointon the linc is (L, L, 1). The line and plane will intersect if, for semet e R,
L+ 2L+ 3=3 == l.
2
Thus, the piane and linc intersesl in only onc poinl [l l l)
2 2 2

E18) Anpypointon the first ling is given by
(41,2143, 345}, 1 ¢ R
Any point on the sccond line is given by
{3k—1, Sk+4, 7k+9), k € R. v

The two lines will intersect ift+ 1 =3k =1, 2t+3=5k+4and 31+ S=7k + 9 [or
sometand kin R,

On solving these equations we (ind that they are consislent, and k = 5 gives ux the
common poinl. Thus, the paint of intersection is (14, 29, 44),

E19) Any planc paraltel to 3x + 4y - 5z = O is of the form
Ix+4y-5z+k=0.wherck e R,
nee(1,2.3) liesonit, 3+8-15+k=0 =k =4,
Thus, the required plang is 3x + 4y - 52 +4 =0,
EX5)  Tiiheangle is 8, then -
o J2)+ 2(2)+ 200 o

NN

Loz,

E21y 11 he angle hetween the line and the plane, then I_ 6 is the angle between the
2

nine aul the normal 10 the plane (see Fig, 15). Now, A, B. C arc the direcuon ratios
ol i normal. Thus,

a-o;:{E—9]= Ao+ BB + Cy
«,J"A2+BE+C2_ \(“3"‘-[3?"'??
it = Ax+Bp+Cy
VAT+ B4 CE, ol 4 BTy
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5.1 INTRODUCTION

Wilh this unit we start our discussion of three-dimensional objects. As the unit title suggests,
we shali consider various aspects of a sphere here. A sphere is not new 10 you. When you
were & child you must have played with balls. You must also have caten several fruils like
limes, oranges and watcrmelons. All these objects are spherical in shape. But all of them arc
noL spheres from the point of view of analylical gecmelry,

In this unit you will sce what a gecometer calls a sphere. We shall also oblain the general
equation of a sphere, Then we shall discuss lincar and planar sections of a sphere., In
particutar, we shall consider the equations of tangent lines and planes 1 a spheae. Finally,
you will sce what the interscetion of (wo spheres is and how many spheres car s through
a given circke,

apheres are an integral part of the study of the structure of ¢crystals of chemica| ceitponnds,
You find their properties used by architects and engincers also. Thus, an analticat study of
spheres is nol merely Lo satisfy our mathematical curiosity,

A sphere is a particular case of an cllipsord as you will sce when you study Block 3, So, if
you have grasped the contents of this unit, it will be of help to you while studying the next
block. In ather words, if you achicve the following objectives, 10 »ill be easier (or you 1o
understand the contents of Block 3. .

Objectives
After studying this unit you should be able 1o
@ ohiain the cquation of 2 sphere if you know its contee and radius .

@ check whelher a given sccond degree cguation in three variables FCPIESenls a sphere:

®  check whelher u given line is langent (o a given sphere;
® obtain the tangent planc to a given pointon a given sphere;
& obuin ihe angle of intersection of two itersecting spheres;

® (ind the family of spheres passing through 1 viven circle.

23
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The Sphere, Cone und . Let us now se¢ what a sphere is and how we can represent il algcbraically.
Cylinder )

5.2 EQUATIONS OF A SPHERE

In‘2-spﬂ<;c you know that the set of points that arc at a fixed distance d from a fixed point is
acircle. A spherc is a gencralisation of this to 3-space (sce Fig. 1).

Definition : The set of all those points in 3-space which are at a fixed distance d froma
point C (a, b, ¢), is a sphere with centre C and radius d.

(2) !

Flg 1 {a) A circle, {b) a sphere, with aripin as centre ard rndivs d.

Spheres are, of course, notnew 1o you. A ball and a plum are spherical in shape. However,
whenever we talk of a sphere in analytical geometry, we mean the surlace of a sphere, Thus, o
for us a hollow ball is a sphere, and a solid crickel ball is nol a sphere.

Let us find the equation of a sphere with radius d and centre C (a, b, ¢) now, I P (x, y, 2) i§"
any point on the sphere, then, by the distance formula ({1} of Unit 4), we gel

(x-a+y-bP+@-cf=d, e )
which is the required equaltion,
For example, the sphere with centre (0, 0. 0) and radius T unit is, x4 yint= b

Now, if we expand (1), we get the second degrec cquation
x4 y2+ 72— 2ax —2by - 2z + at+ b4 ¢ -dP = 0

Looking at this you could ask il every cquation of the type
al+y D)+ 2ux + vy + 2wa v d=0, e 2
where a, u, v, w, d € R, represents a sphere. -

It so happens that if a = 0, then (2) represents a sphere. (What happens if a = 0? Unit 4 wilt
give you the answer.)

Let us rewrite (2) as

2u v iu' -l

2 2 2
XA YA e — Y h— = -—,
a a a a

72 2
. u v W . - \ . '
Adding = + s+ — 0N either side of this equation, we oblain
B a

L4 o

- ' (x+u]2+(y+v)z+(?+w)2_u2+v2+w2—ad
# a a " a a’




—

Comparing this with (13, we see that this is & spherc with centre #hfphere

Ju2+viiw?oad
|a] '

[—E — -\i. - F—-) and radius
a a

The following thecorem summarises what w¢ have said so far.
Theorem 1 : The gencral equation of a sphere is
X2+ ye 224 2ux + 2vy + 2wz + d =0,

Its centre is (—u, —v, —w) and radius is Yu?+ vZ+w?_4d.

Note¢ that the general equation given above will be a real sphere iff 2+ v2+ w? . d2 0.
Otherwise it will be an isnaginary sphere, that is, a sphere with no real points on it.

So, what we have seen is thal

a second degree equation in x, y and z represents a sphere iff

i) the coefficients of x7, y2 and z* arc equal, and

1) the cquation has no terms containing Xy, yz or xz.,

Why don't youn sce if you've taken in whal has been said so far?

EI}  Find the centre and radius of the sphere given by x2+ y2+ 22 - 2x + 4y —6z.= 11.
E2) Does2x 1 +2y%4 3+ 22° + 5= 0 represent a sphere?

E3)  Detcrminc the centre and radins of the sphere x%+y2+7” = 4z.

Now, if you look at the general equation of a sphere, you will sce thal il has 4 arbitrary
constants u, v, w, d. Thus, il we know 4 points lying on a sphere, then we can obtain its
equation.

Let’s consider an ecxample.

iZxample | : Find the equation of the spherc through the potats (0, 0, 00.(0, 1, -1), (<1, 2, ()
anel (1,2, 3L

Solution : Suppose the equation is

x2+y“‘+:r,1 +2ux + 2vy + 2w+ d =0,

Since the 4 given points lie on it iheir coordinales must salisty this cquation. So we get
d=0

242v-2w+d=0

S-2u+dv4d=0

144 2u+dv+6w+d=0.

Solving this system of gimulianeong lincar eaoatione (goe Rlock 2 MTE (MY we oot

ELE UL AR T b P Ry vl

15 25 _1m
“*‘ﬁ'-"—_ﬁv“’-"ﬁ-d—ﬂ-

Thus, the required sphere is

T3+ yP 5 28— 15% ~ 25y - 114



The Sphere, Cone und
Cylinder

A diameter of a sphere is a line
scgment through its centre and
“with end painis on the spherce,

Fig. 3 - A line intersecting a sphere

26
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Noite that it can happen that the syslcm obtained by subslituting the four points is
inconsistent, thal is, it docs not have a solutiot. (Such a siluation can accur if three of the ™
points lic on one line.) In this case there will be no'sphere passing through these points,

You can try 50me eXercises now,

E4)  Find the centre and radius of the sphere passing throngh (1, 0. 0), (0. 1,0, (0 .0, 1)

l 1 1
and (ﬁ‘ i Ji]'
ES)  Is there a sphere passing through (4,0, 1). (10,4, 9), (- 5, 6. - 1D and {1, 2, 3
50, [ind s cquation.

Now if, instead of four points on the sphere, we only know the coordinales of the two ends
of one of ils diameters. we can still determing its equation. Let us sec how. Lel A (x. vy, %))
and B (3. Y2, z;)"be the cnds of a diameter of a sphere (see Fig. 2). Then, if P (x, v, z) is any
pointon the sphere, PA and PB will be pcrpcndwular 10 cach other. Thus, from (10} of Unit
4 -we see that

x=x)E-x)+ - y-y)+GE-2)E-z2=0 ... B
This is satisfied by any point on the sphere, and hence is the cquation of the sphere.

For example, the equation of the sphere having the points (=3, 5, 1) and (3, 1. 7) as the ends
of adiameteris (X + DX =N+ -NH=-DN+E-N-1H=0

that is, x™+y>+z? = 6y + 82 - 3.

You can obtain the diameter form of a sphere’s equation in the following excrcise.

ES)  Find the cquation of lhe spherc described on the join of (3,4, 5) and (1, 2, 3).

_yge &\ . - . L}
By now you must be familiar with spheres. Let us now sce when a line or a planc inlersects
a sphere

5.3 TANGENT LINES AND PLANES

In this section we shall first see how many commaon points a ling and o sphere can have,
Then we shail do the same for a planc and a sphere.

5.3.1 Tangent Lines

Suppose you take a hollow ball and picrce it right through with a kniting needie, Then the
bail and the needle will have lwo points in common (sec Fig. 3). Do you think this is truc of
any line that intersects a spherc? Sec what the following theorem has Lo say about this,

Theorem 2: A line and a sphere can intersect in al most 1wo poinls.

Proof: Let x2 + y2+ 22+ 2ux + 2vy + 2wz + d =0and 22 = y-b_z-c_, (say) be a
o B i

given sphere and ling, respectivety. I hon any point on the line is of the form

(et +a, B+ b, yr+c), where t e- R, Il this lies on ihe sphereg then

(el + 2y’ + (PL+ b)?'+ (yi+ c)? +au(otray 2 (Prab) + 2w (yLac)+d=0

= (el + BP0 +2L(aa+bB+cy+uoa+v[3+wy)+(a +bt+ct+2ua+2vh+

z.v‘f\..'rul-r—n

This ds a quadralic in t. Thus, it gives twa values ol & For ¢ach value ol t, we will get-a poinl
of intersection, Thus, the line and sphere can.intersect in at most two points.



Note that {4) can have rcal distinct roots, real coincident roots or distinct imaginary roots. The Sphere

Accordingly, the linc will interscct the sphere in two points, in ane point, or not al all. This
icads us to the following definitions.

Dehnitions: If a line intersects a sphere in two distinet points, it is called a secant line 1o the
sphere.

1l a line intcrsects a sphere in one point P, it is called a tangent to the sphere at the point P;
and P is called the point of contact of the tangent.

For cxample, the line L in Fig. 3 is a secant line to the sphere; and the line L in Fig. 4 is a
tangenl to the sphere al the point P,

Now, (4) will have coincident roots iff
(aa+bp+cy+ua+ vB+wi=(0? + B2+ V) @+ b+ +2ua+ 2vb+2wc + d) ... (3)

. . X0 -b z-c . Fig. 4 : 1. intersocts the sphere n
Thus, (5) is the condition for =4 =2~ 10 be atangent Lo nnly one polint, P.
N
x24 yre 224 2ux + 2vy + 2wz + d = 0,
Let us consider an cxample.

Example 2: Find the imercept made by the sphere x*+y*+x2=9onthelinex-3= Y=z

Solution : Any point on the line is of the form (1+ 3. 1,1}, where 1 € R, This lies on the
sphere il

U+ + 2+ =9=32+61=0=1=0,-2,
Thus. the points of inlersection are (3, 0, 0) and (1, -2, -2). Thus, the intercept is 1th

dlisrance between the two points, which is /4 + 4 + 4 = 24/3,

You can Lry SOme exXcrcises now.

E7)  Cheekif X¥3_Y*4 _ Zicauangent o the sphere
4 3 5

P+ yie i dx + 6y + 10220,

E8) Ifwcextend the rule of thumb to find the lariigcnt Lo a conic (soe Unit 3) to a sphere,
will we get the equation of a tangent ling (0 a sphere? Why?

.

Ler us now discuss the intersection of o plane and a sphere.

5.3.2 | Tangent Planes

Consider a sphere and a plane that intersects it, What do you expect the intersection 1o he?
* The following result will give you the answer.

Theorem 3: A planar section of a sphere 13 a circle.

Proof: Lel S be a sphere with radius r and cenure O (sec Fig. 5), and let the. plane T1
intersect it,

Fig. 5: A planar Intersectlon of o sphere is a elrcle, . 27



The Sphere, Cone and - Drop a perpendicular ON from O onto TT. and let ON = a. Now lci P be a point which
Cxlinder helongs to T as well as S, Then OP = rand OP” = ON” + NP,

Thus, NP = /2 _ 42, which is a consrant.

Thus, the intersection of S and 1T is the seL ol points in TT which are at a fixed distance from

a fixed point N, Thus. it is acircle in the planc [T with centre N and radius /% _ 57 .

If a = 0 in the prool abave, the planc passes through the centre of 1he sphere, In this case the
circle of inlersection is of radivs r and is called a great circle (see [1ie, 6) of (he sphere.,

" Nnte that a sphere has infinitely many great circles, one for each plane that passes throngh
the centee of the sphere,

We'have scen thal the planar section of a sphere is a circle. Now let us Nind its’equation. 1.ci
the equation of the sphere be x?+y2 4+ 72 + 2ux + 2vy + 2wz + d = 0, and that of the plane
inlersecting it he Ax + By + Cz + D = 0. Then the equatioa ol 1he planar seclion can he

1. fi The intersectlon of 8 and T] :
ix o preat circle of the sphere S, wrillen as
x2+ }'2 70+ 20K+ vy + 2w+ d=0=Ax+By+Cr+ D or
X+ )'1 S dux ¢ vy + 2w+ =0, Ax + By + Cr+1=1{) JI

For cxample, the equation of the planar section of the sphere x* + 37 + 2° = Uby the plune

(see Fig. Disxt+y +72e 1=z - 1 20, Thisis the circle x% + v = 3 inthe plane

7= —
' 2 4

o | —

1o | —

Since the centre of the given sphere is (O, 0,0), we can geta great citcle of (he sphere by
intersecting it with 7 = 0, Thus, onc great circle is X% + y*= 1 in the plane 7 = 0.

i_ct us consider an cxample oltthe use of Theorem 3.

Example 3; Find the centre and radius of the circle

Xyt —Bx+dy+ 8§ - d8=(y 2y 4+ 2223,

Fig. 7: Planar sections of Solution: The cenure of the sphereis C44, 2, - 3y and ns radies is
2 1 1
XTayt a2t =

r=16+4+16+45=9.
The distance of the planc from the centre of the sphere is
_|4+4-8-7 o

d
Ml+4+4

Thuss, the radiius of the circle = \/? —d7 = 44fS.

The centre of the circle is the foot of the perpendicular rom C onto the plane, To find this,
we [irst need 1o find the equations of the perpendicular. Tts direction ratios are &, =2, 2. Thus,
It equations are

x-4 y+2 z+d
! -2 2

Therefore, any point on thopempendicular is given by (+ 4, -21-2, 2t ~4), where i € R,
This point will be the required cenire of the circle it it lies on ihe plane, that s, if
e o I

(l+d)=2(-2U-2)+221-4)=3= 1= -,
3
13 B i

Hence, the centre of the circle is L—{ - ; - TJ



. . TheSphere
You can do the following exercise on the same lines. P .

E9}  Find the centre and radius of the circle
XP+ ¥+ 22+ 12x— 12y - 162+ 111.=0=2x + 2y + 2 - 17. _ T

Now, if we take a = r in the proof of Theorem 3, then what happens 10 the circle of
intersection? It réduces to a single point, that is, a point circle. And in this case the planc
only touches the sphcrc (see Fip. 8).

Definition: A plane is tangent to a sphere at a point P if it intersects the sphere in P only.

In this case we also éay that the plane touches the sphere at P. P is called the point of
tangency, or the point of contact, of the tangent plane.

Remark 1: F you go back 10 the proof of Theorem 3, you will scc that the linc joining the Fig. b The plase [T is tangen@h
point of tangency to the centre of the sphere is perpendicular (o the tangent planc. We will the sphere $-at qm,ﬂjm N.
use this fact to oblain the equation of a tangent plane.

Let us find the cquation of the tangent planc to the sphere x2 + y2 + 72 + 2ux + 2vy + 2wz +
d=0arthe point P (a, b, c).

As P lies on the si:)hcrc,

az+-b2+cz+2ua+2vb+2wc+d=0. D)

Also, the centre of the sphere is C (~u, ~v, —w). Thus, the dircction ratios of CP are a + u,
b+ v, ¢+ w {(see Equation (8) of Unit 4).

Now, the 1angent plane passes through P (a, b, ¢). Thos, its equation will be
f(x-a)+g{y-by+h(z-c)=0,forsomef,g,he R. ... (8)

Now CP is perpendicular 1o (8), and hence, is parallel 10 the normal o (8). Further, £, g, h
are direction ratios of the normal to the plane. Therefore,a +u,b+v,c+wand f, g, hare
proportional.

r g
a+u b+v c+w

=1, say.

“Then (8) gives us
x—w}@+u)+(y-b)(b+v)+{z-c){c+w)=0.

= xa + yb + zC + ux + vy + wr = 2% + b+ ¢

+ua+vbrwe, L {9)
Using (7} and (9), we gel '
Ta+yb+sC+ X+ vy+wr=~ua-vbh-we-d.

Thus:

the equation of the wangent plane at Lhe point (a, b, ¢} 1o the sphere
x4y 22+ 20x + 2vy + 2wz 4+ d =0 is
xa+yb+zc+u(x+a)+vy+b)+w@mrc)+d=0.

Is this the equation you got while doing E&? From the equation you may have realised thal
therc is%a similar thumb nuic for the tangent plane (and not tangent line!) to a sphere.

‘Rute of Thumb: To'obtain the equation. of the tangent plane to a sphere at the point
{a, b, ¢), shnply subslitute ax for x% by for y?, ¢z for z*; and in the lincar terms substiwule

xra for X, }'gi fory, %—E for z in the equation of the sphere.
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For cxample, thetquation of the tangent plane (o x + y? + 2> = a? at (a0, B. v} is
xet + yp + zy=al.

Why don’t you try an exercise now?

EI0} Find he equations of the tangent plancs
loxt+yr+7 +22=29a1(2,3,-4).
b)tox®+y+2t-dy—6z+4=0a(2,3, 1).

So, what we have secn so far is that if a plane is ata distance d [rom the centre of a sphere
with radius r, then

i) if r < d, the-planc and sphere do not inlerscecl:

i) if r=d, the planc is langent to the sphere; and
i) if r> d, the planc iniersects the sphere in a circle of radius +fr2 _ d?.

Now, if you are given the equations of a sphere and a plane, can you tell if the planc is
langenl to the sphere? An obvious way would be 1o check what the distance of the centre of
the sphere from Lhe plane is. Let us use this method (0 derive the condition for the plane is.
Lot us usc this method 1o derive the the condition for the plane Ax + By + Cz+ D =0tobea
tangent plinc (o the sphere X2+ 2 + 27 + 2ux + 2vy + 2wz + d =0,

Now, the radius of the sphere is Yu? + v2+ w? - d.

The tength of the perpendicular to the plane from the centre (~u, -v, -w}of (he sphere is

|Au+Bv+ Cw+ D
VYaliBr+C?

This distance must equal lhe sphere's radius since the plane is tangent to the sphere.
5 (Au+Bv+Cwa+DP=(A2+ B2 CH @+ viewiody, (10)
which is the required condition.

Lct us consider an ckample,

Example 4: Show that 2x - y - 2z = 16 louches the sphere

X2+ y2 4+ 77 ~4x + 2y + 22 - 3 = O, and [ind the point of contact.

Solution: The centre of 1hé sphere is (2, -1, -1) and s radius is 4f22 £ 12417 +3 =

The length of the perpendicular from Lhe ceatre 10 the plane 2x —y -2z~ 16 =0 is

[22+1+2-16] 9

— =3~ 3. which is the same as the radius of the sphere.
V22 +1%+2

Sa the plane wouches the sphere.

Lct {x.. v., z,) be the point of contacL. Then (he cquation of the targent planc is
X%+ Yy 2 -2 R)+ (Y +y) F(2+2)~3=0

S -Dr A Dyt N2- v+ n-3=0

Bul this shoutd be the smine as the given plane 2x -y - 2n-16=10.

So the coelficients of x, y, z and the constanl term in both these equalions must be
proportional. :



xl-?._y|+l=z|+l=2x1—)’|—-zl+3
2 -1 -2 16

) ~
=X =—-2)’1| ) = 1+ Zyl, and then

y|+]_2x1—y1—z|+3_—7y|+2

=9y =-18=y=-2
1 16 16 y %

s Xy =4 and 2y = -3,
Thus, the point of contact is {4, -2, -3).

Using the same method, if we arc given apointand a plane, we can find the sphere with the
point as the cenre and the plane as a Langent planc. In Lthe example below we iliustrate this,

Example 5; Find the sphere with cenlre (-1,2,3),and which touches the plane 2% —y+2z2=6

Solution: The distance of the planc {rom the point is
|-2-2+6-6 _4

Jar+12420 3
This should be the radius of the sphere.

So, since the centre of the sphere is (=1, 2, 3), its equation will be
(x+ 1)1+(y—2)2+(?,-—3)3= 1_9(1 ‘

_Why don't you do some cxercises now?

E11) Show that the plane x + y + 2 = 4f3 touches the sphere x* + y? + 22 = 1. Find the
point of contact, :

E12) Show that the cquation of the sphere which lies in the oclant OXYZ and touches the
coordinate plancs is x* + y? + 22~ 2k (x 4 y + 2) + 2k* = 0, for some k € R.

£13) Find the equation of the sphere with centre {1, 0. 0), and which tonches the plane
2x+y+z-3=0.

In this scclion we have seen what sels can be got by inlersceting a line ar a planc with a
sphere. Now let us discuss what form the inlersection of 1wo or more sphefes can iake.

5.4 . INTERSECTION OF SPHERES

In this section you will first see that the result of intersccling two spheres is Lhe samc as that
abiained by intersecting a sphere and a plane, that is, a circle. And then you will see how 1o
obiain infinitely many spheres whose interseclion is a given circle.

54.1 Two Intersecting Spheres

1 el us considar rwo spheres given by
A
S, =%+ yz + 20+ 20X 2V y + 2wz + d, =0, and

2wt gl

Sy =x" oyt 4+ 2%+ 22X + vy + 2waz + dr = 0,

Then each point that satisfics S, = 0 as well as Sz = 0 wilf also salisly the equation
§:—S;=0,thatis, '

200 = U X + 2(v, ~ vy + 2w —wdz+dy ~ dp=0. L (11

The Sphere

31



The Sphure, Cone and
Cylinder

oo 105 0 s the angle berseen thy
Tan apheres.

Two spheres are called erthegonal if
their angle of intersection is /2.

32

But, from Theorem 1 of Unit 4 you know this is a planc. Thus, the points of intersection of
the sphieres S = 0 and S: = O are the same as those of any one of the spheres and the planc

(i1). Since the intersection of a plane and a sphere is a circle, the intersection of §; = 0 and
S:=0isa circle {sec Fig. 9).

T

ey

{4y Wby

[Fig. 9: Two spheres imersect in a circle which can hu-{ﬂ) a reald cirely, () a peint circle, or
(c) an imupinary circle,

In Fig. 9 (a), the circle of interseclion has positive radius, while in Fig. 9 (b} the two spheres
intersect in only 2 point. In Fig. 9 (c), they don’t intersect at all. While studying the motion
of rigid bodics, you may come across a silualion in which twa spheres just touch each other,
as in Fig. 9 (b).

Rernark 2: 1€ S, = 0 and §; =0 arc any1wo spheres, which do nol necessarily intersect. then
S, —5;=0is aplane, and is called the radical plane of thc spheres.

Now, when we discussed the intersection of lines or of planes, we spoke about the angle of
intersection. Is il meaningful 1o talk aboul the angle of interseclion of two spheres?

Definition: The angle of intersection of two spheres is defined to be the angle belween the
tangenl planes (o these-spheres at a point of contact.

You may wonder if the definition given above is 'proper’— the angle could vary from onc
point of contact Lo another. But, you will now sec that the angle is independent of the point
of contact.

Let the spheres he Sy = 0 and S, = 0, where

S =x¥+yta gl

Then, theirradii arery = Jy? + v+ wi-g, and = -JU% + \'§+ W%— d,, respectively, -

Let d be the distance between their cenires C) and Cp (see Fig. 10). Let P be a point of
intersection. Then the angle between the spheres is the angle belween the tangent planes at P
to each of the spheres. This, in turn, is the angle between the normals 10 these plancs, which
are PC; and PC,. Thus, if @ is the required angle, then from elementary trigonomelry you
know that

+20,%x + vy + 2wz + di =0, wherei= 1,2,

2PC, PC;cos 8- PO 24 PC?r 02

2+ 2 dz
ccosf= LTI A7 {(12)

2!’5T3
Thus, in particular, the spheres will be orthogonal iff r,® + 1,2 = @2
= W vt w o d) + 00+ vt Wt - d) = () (v v (w4 W)

= 20Uz + 2vyvy + 2wywy = 4y +dy : L e (13}




Thus, the spheres S) = 0 and §; = O intersect ar 907 i (1) 1s satr-Nied.

Lct us consider an cxamplé.

Example 6: Find the angle between x*+ y> + z2 =4 and x* + y? + 27 - 2x = 0.
Solution : Hereu; =0, v; =0, w;=0.dy=—4,u;=-1,v;=0,w;=0,d; = 0.

Thus, the centres of the two spheres are (0, 0. ) and (1, 0, 0, their radii are 2 and 1,
respectively, and the distance between their centres is 1,

Therefare, by (12}, the angle hetween the two spheres is

. 1 22'*]2—]1 - -1 =0
cos ETOYE =cos (1)=0. Flg. 11

You can sce these spheres in Fig. 11. They intersect in only one point P, and the x-axis is the
normal (rom the centres of the spheres 1o both tangent plancs.

You can iry some excreises on inlersecting spheres now.

2_2x+2y-dz+2=0and

El14) Find the angle of intersection of the spheres P ryiez
x2.+y3+;cz=4. .

E15) Find the equalion of the sphere touching the plane 3x + 2y -2+ 2=0at P (1, -2, 1)
and cutting the sphere x2 4 y2+ 27— 4% + 6y + 4 = Q orthogonally.

E16) a) Two spheres of radius ry and rp and with centres C) and C,, respectively, will
touch each other iff ry + ra= C,Cy. True or [alse? Why?

b) Under what conditions on r,, r, and C;C; will thc spheres nol intersect?

E17) Show that the spheres x* 4 y1 +28— 2x -4y -4z =02and P4yl ez 4 10x + 22+
10 = 0 touch each other. What is the point of contact?

80 fur you have scen that two sphercs inlersect in a circle. Now let us see whether, given a
cirele, we can find two or more spheres passing through it.

§.4.2 Spheres Through a Given Circle

Supposc we are given a circle. Can we find two distinct spheres whose intersection the circle
is? In facl, we can construcl many spheres passing through a given circle {sec Fig. 12).

Flg. 12: Part af a fam!1y of spheres thraugh & clrele,

In Fig. 12, thecircle is a greay circle of the sphere §;, but ot of §,. 8,4, cte. Let us sce what
the method of construction of this kind of family is.

You know that a clrcle is the intessection of a sphere and a planc. So iis cquation is of the
form § =0, T =0, where '

Sex? 4+ y2 w22+ 2ux+2vy+ 2wz +d,and [T =Ax +By +Cz + D.




'The Sphere, Concand Any sphere through this circle will be given by
Cylinder S+klI=0, (14)

where k is an arbitrary constant. Do you agree? Now, il you apply Theorem 1, you can sce
that (14} represents a sphere. ;

Furlher, cvery point thal lies on the circle must satisfy (14). Thus, (14) represents a sphere
through the given circle,

So, for cach value of k € R in (14) we get g distinct sphere passing hrough the given circle.
Thus, we have infinitcly many spheres Lhat intersect in the given circle.

Now, a circle can also be represented as the intersection of two spheres $y =0and S, =0.In
this casc whal will the equation of any sphere conlaining it be? Tt will be §; + kS8, = 0, where
k & R. Thus, the infinite set {§; + kS; =0 k € R] gives us the family of spheres passing
through the given circle. ‘

Lel us consider some examples of the use of (14).

Example 7: Show that thecircles x>+ y2 + 27~ y+ 22=0,x -y +z-2=0and
Xyt i ax —.3y +7-5=0,2x -y +4z—1=0 lic on a sphere, and Mnd its equatien.
Solution: The equation of any sphere through he [irst cirgle is

eyl oy + 224k (x~y+2-2)=0,thatis.

eyl ekx-(k+ Dy+&+Dz-2k=0, .. (15)
forsomek e R.

Similarly, 1hc cquation of any sphere through the sccond circle is

ey 2+ Ck+ Dx =+ Dy + @K F Dz~ +5=0, ... (16)

for some k), € R, _

To et & common sphere containing both circles, we must see if (15) and (16) coincide for
some k and k; in R. Comparing the cocfficients of x, y and #, and the constant 1crms Fn (15)
und (16), we get

=2k + L k+ 1=k + 3 k+2=4k +1,2k=k, + 5

These cquations are satisiicd for k=3 and ky = 1. _

Thus, there is a sphere passing through hoth the circles and ils equation is

Xy 42t 3x—dy + 52 -6=0,

2

Example 8: Find the cquation of the sphere through the circle X%+ yi4E=0,2x+ 3y +du=5

anel the origin,
Solution: Lel the equation of the sphere he x* + y? + 27 =9 4+ k (2x + 3y + 42— 5) = 0, where
ke R.

; {
Since, it passes through (G, 0, 0), we gel -9 — 5k =0, thal is, k=— %

Thus, the required cqualion is

S+ y 2 =9 (2% + 3y + 4z).

Example U: Find the path traced by the centre of a sphere which wuches Lhe lines y = x.
z=landy=—-x, z=-1,

Sefutinn: Lot x? + w2+ 22 + 2y + 2vy + 2wy + d = 0 he the cquation of 2 sphere Lhat
touches the two lines. Sincer = %, % = 1 1ouches it, the intersection of the line and the sphere
must be enly one point, Any :oint on the line is (1,1, 1), where t & R. It licg on the sphere il

Prdsl420+2vl+2w+d=0.

.




This chuaLion has equal roots if The Sphere

(r+v)2=2(1 + 2w + d).

Similarly, since y = ~x, z = -1 touches the sphere, we get
m-v)?=2(1-2w+d).

Subtracting these two conditions, we get

4uv =4dw (I + 1), thatis, uv = 2w,

Thus, the centre of the sphere, (~u, —v, —w), satisfies the equation xy + 22 =0.

This is truc for any sphere satisfying the given condinons. Thus, the required path is
xy—+2z=0.

Now, why don’t you check if you've understood what we have donc in this section so far?

E18} Prove that the circles
x° + y""+7,3-—2x +3y +472-5=0,5y+ 62+ | =0and
X+ Y+ -3 -4y +52-6=0,x+2y -T2=0
lic on the same sphere. Find its equimtion also.

E19) Find the equations of the spheres that pass throvgl Xy et =8 M av+dn=3
and louch the plane 3x + 4y = 135,

E20) Find the equation of the sphere lor which the circle 2x — 3y + 42 =8, eyl
Ty =22+ 2=0is agreatcircle,

We will stop our discussion on sphercs [or now, though we shall refer (o them ofl and on i
the next block. Let us now do a quick review of what we have covered in this unit.

55 SUMMARY

in this unit we have covercd the following points.

1)  The second degree cquation
l ¥ el (]
Xy 4z 2ux + vy + dwz v d =0
represents a sphere with centre (—u, —v, -w) and radius Yu®+ v7 + wiod.

Conversely, the equation of any sphere is of this lorm,

2)  Alincintersccis a sphere in al most two points. ILis a tangent o the sphere 3
' intersects Lthe sphere in only one peint,

3) A planc intersects a sphere in a circle. When this circle reduces 1o a point circle P, then
the plane is tangent 1o the sphere aL P, .

4) The cquuLidn of the tangent plane (o the sphere x* + y2+ 2%+ 2ux + 2vy + 2wr+ d =0
al thepoint (Xy, ¥y, 2} iS XX, + ¥y + 2z, + u i+ X+ v{y +y )+ w(z+ )+ d=0,
This is perpendicular to the line joining (x,, ;. %) to the centre of the sphere,

3} Two spheres mierseci in a circie.

6)  The anglc of interscction of the two intersecting spheres x* + y* + 27+ 2upx + 2vy +
.. .

I [ - d?y

L 2nn J

where 1, and ry are their radii and d is the distance between their cenres,

2wz +d; = 0and xf + y + 27+ 20X + 2vay + 2waz + da = O is cos

In particular, the two spheres are orthogonal if 2u,0; + 2vyv; + 2wywy = d; + ds,




The Sphere, Cone and 71 There are infinitcly many spheres it pass through i given circle,
Cylinder .- . . . . .
v You may now like @ go back 1o Sec. 5.1 and go through the list ol unit objectives Lo sce il

_ you have achicved them. I you want 10 sce whal cur solutions Lo the exereises in the unil.
are, we have given them in the Jollowing seclion.

5.6  SOLUTTONS/ANSWERS

‘ _ , {2 Iy ey
1Y s cenire is { "\TJ (—Z'J. \T }j 3 4 1'].
s raelius s \a'r{--- B an? s - A
- , . . ¥ ~ 1 {)
22 Wecan rewrite the equation as 3+ v+ 20+ = (),
1

Thix represents an imagmary sphere with cantre al the origin.
E3y  Hscentreis {0, 0, 2 and radhs s 4.

Edy  Letthe sphere be xF + 37 + 27+ 2un + 2vy + 2wz + d =0, Then, since the given
' paints lie on il, we gel

F+2u+d=0

1+ 2v+d=0

2w+ d=0

2 .

T+ == (B+v+w)+d=0

On solving these equations, we ind thatu=v=w=0.d = -1,

Thus, the centre of the sphere is (0, O, ) and radius is 1.
E3}  Suppose such a sphere exisis, Let its sguation be

X2yt et 2ux + 2vy A Qwa s d =0,
Since the grven poinis lic on it we ot (he linear system
17+ 8u+ 2w +d =10
197 + 20u-8v+ 18w+ d=0
192 - 100+ 12v=22w+d=0
ld+ 20+ dv 46w+ d=0
You ¢ check hat this xystem is inconsistent. Thus, the poinis do net fic on a
gphere,

E6)  The required equanion is
(- x-D={v-Diy-2+0/-3(-3=0
ey e - da—6y —Ru+26=0.

E7Y  Anypointon the line ix (41 = 3, 31—4, 51), where te R, This will lic on the sphereal
A3 4 (-4 4257 + 4 (@L- D+ 631 -4) + 10 (5) =0,
o S0+ 301-11=0

o= 36 % \/(36)2 +2200
. 100 '

Since these are real distinct toots, the line will inlersect the sphere in Lwo distinel
points, Tlence, b will ned be a mgrenid 1o the sphere.

B8 IWwe exiend the rule of thumb o obtain the iangani ata point P &4y, va, 7y on the
+ - hl
sphere 87+ v + 47+ 20% + 2vy + 2w+ ¢ = (), we pet -
R PR PR, e e Fae oo N L . PO PO CP R S Y & |
,\,\'l - }‘J"l - f,(.'l - u l\.'.-n' ,\E‘]T \'\}' - J]er \ﬂ‘l\(,?/,'lj_n L1 = 1},

This is o linear equation, and henge represents a plane, and nat a line. Thus, 1tcannet
represent Lhe tangent line.

0

gl



E9)

E1)

ElID)

El12)

E13)

E14)

El5)

The cenre of the sphere is C (-6, 6, 8).
Its radius is 7 = 3.
The distance of C from the plane isd = 3.

Thus, the radius of the circle = ~fr? - d* =4

The cquations of the perpendicular from C omio the planc arc x+b _y-0_ ,
p

Thus, Lthe centre of the circle is (- 4. 8, 9).

a) ‘2,\+3y—4z+(z—4)=29ﬁ2x+3y—3z—33=0
b) 2x+3y+2-2{y+3N-3@+D+4=0
=2 +y-22-5=0. :

The radius of the sphere = 1.

The distance of the plane from the centre (Q, 0, 0) af the sphere = 1.

Thus, the plane is 1angent Lo the sphere.

If the point of contact is {a, b, ¢), then the equation of the planc isax+by+cz-1=

0, as well asx+y+z-f=0.

Let the cquation be
X2 4yt 42+ 208 + 2vy + 2wr + 4 = 0. -
Since the planc x = 0 is a tangent 10 it, the distance of {-u, ~v, —w) from x = () must

be YuZ+ v+ w?—d =r, say.

Lo—uUu=r.

(Note that | - u § = —u, since the centre lies in the octaal in which the x,y and 2
coordinates are all positive.)

Similazly, -v=-w=r.

Then b2 +vi+w' —d=r =d= 21

Thus, the equation of (he sphere is

x4y aste A(iAy+a)+ 2t =0

-3 1

\/E 6

lis radius should be

|

]

Thus, its cquation is

(x—1)2+y2+7,3=l.
G

S GG +y +2)-12x+5=0.

Their centres are C; (1. -1, 2) and Ca (0, 0. 0), respectively.
Both their radii are 2, and C,Cy* = 6.
Thus, the angle of inlersection is

 (4+4-6 _,(1’)

cos ' | ————|[=cos | -}
22) (D 4/

Letthe sphere be given by
xZa y?+ 22+ 2ux + 2vy + 2wa v d=0.
Then the plune 3x + 2y -z + 2 =0 isthe samg as
x—2y+z+u(x+1}+v(;'—2)+wt/,:+l)+d=0
<=;-x(l+U)+y{v—-?,)+?.{v.f+1)+u—2v+w+d={'l

f+u v-‘lrw+‘|_u-2v+w+d

- j—

3 2 -1 2

The Sphere
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1)

E1TD

E18)

E19)

E20)

Ju+8 -u-4 d_4u-22

W= Ld=
3 3 3
Further, this sphere cuts

%+ y*+ 22 —4x + 6y + 4 = 0 orthogonally.
Thus, using (13) we sce that
-du+6v=d+4.

Subslituting the values of v and d., we gel 1= 1 Andlhenv=35 w= —-5-, d=12.
2

Thas, tic required sphere is x% + y2 + 22+ 7x + Ny -524+12=0.

i Thevis true onty if one sphere decsn’t lie inside the other. Otherwise, as in Fig,
1LCCazry +1g. )

br 10 one Ties outside the other and 1y + 13 > C,C,. then they won't intersect,
Itone hiesangide the other and | 1y ~ 15 | » C,C,. they won'tintersect.

Theircenires are C; (1,2, 2y and C; (-5, 0. =1).

o CCy=7=sum of their radii,

Thus, they 1ouch cach other.

The plane 8, - S; =0 is the common ngent plane, where Sy=0and $; =0arc the
two spheres. -

This will be 6x + 2y + 32+ 5= 0.

The point of contact will be the intersection of the line C,C; with this plane. Now,

X+35 y' z+1

C\Cisgivenby 27+ _ Y _ . Any point on this is (61 - 5, 2, 3t - 1). This lics

& 2 3
on the Langent planc if 6 (6t - 5) + 220+ 3 B1-1) + 520 = 1= 2.
7
Y
Thus, the point of contact :s( il -8- EJ
777

Solvmk Lhu. on the tines of Example 7, you can check that they lie on the sphere
X e Ox -2y -2 -6=0.

Any such sphere is giver by ey tosak (2x+y+32-3)=0, wherek € R,

Tts centre s (Hk, - ; - _‘?:)I_\_] lis distance from 3x + 9y = 15 is the same as the

- =

rudius of the sphere.

> KT 0K? 2
. |.;"+T+'-4—+(3k+5)=(k+3)h

4

=k=2-2,
5
Thua Lhc lwo spheres that satisfy the given condmons arc
x? +y 4t +4x + 2y + 6z - 11 = 0 and5(x? +y +zl) Bx -4y -12z2-13=0.

Any such sphcre will be given by :

X2+ yPez? +7y-22+2+4k(2x -3y +47-8)=0, wherck ¢ R,

Since the given circle is a greal circle of the sphere, the centre of the sphere must lie
on the plane 2x — 3y + 4z = §.

L2 -3( X v ag s =g
L J
=k = ]—3-
2Y
Thus, ihe equation of the sphere is
2h 164 a ah
x? +y +z- T Xt ——y - —y——=0

22, 297 297 29
=29 (4" + y2 + 2% + 26x + 164y — 67— 46 = 0,
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6.1 INTRODUCTION

In the previous unit we discussed a very commonly found three-dimensional object. [o this
unit we [ook at 1wo more commonly found three-dimensional objects, namely. a cone and a
cylinder. Bur, what you will se¢ in this unit may surprise youn—uwhat peaple usually calta
cane or a cylinder arc only portions of very particular cases of whatmathematicians refer 10
as a£one ora cylinder.

We shall start our discussion on concs by defining them. and deriving their equations. Then
we shall concentrate on concs whosce verlices are the onigin. In particular, we will obliin the
tangent planes of such cones.

The other surface that we will discuss in this unitis a cylinder. We shall define a general
cylinder, and then focus on a right circular cylinder.

The contenls in this unit are of mathematical interest, of coursc. But, the are alsa of intere
10 astronomers, physi: ists, engincers and archilects, among others, Thiv - because of e
many applications thai cones and cylinders have n varions Filds of st -and - ngmeer.
ing.

The surfaces that you will study in this unil are paeticular cascs of coniconts. wiliuch you wili
study in the next block. So if you go through this unil carelully and ensure (hat you achieve
1he following objectives, you will find the nexl block easier 1o undessiand,

Objectives
Alter studying this unit you should be able to

e obtain the equation of a cone if you know its veriex and base curve;

e prove and use the fact that a sccond degree equation in 3 variables represents a conc
with veriex at the origin if it is homogeneous;

nhtain the 1angenl nlanes 1o a cone:

o

obtain the cquation of a right circular cylinder if you know its axis and base curve.

Lat us now sce what a cone 1s.
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Fig. 2: A circular cone which Is not
right ¢ircular.

6.2 CONES

When you sce an ice-cream cone, do you cver think that itis a set of lines? That is exactly
whal it is, as you will see in this seclion.

Definition: A cone is a set of lines that inicrseai a given curve and pass through a fixed
paint which is not in the planc of the curve, The fixed point is called the vertex of the cone,
and the curve is called the base curve (or directrix) of Lhe cone.

Each linc that makes up a cone is calied a generator of the cone.
Thus, we can also define a cone in the following way.

Definition: A cone is a surfacc generated hy a line that intersects a given curve and passcs
through a fixed poinl which doesn’t lic in the plinc of the curve.

For cxample, in Fig, 1 (a), we give the conc gencrated by a line passing through the point P,
and intersccting the circle C. The basc curves of the canes in Fjg. 1 (bYand Fig. 1 {c) arc an
cllipse and a parabola, respectively,

(a) ® C©
Fip, I : (8} A circatar cone, {h)-an efliptlc enne, () a parabolle cone.

At 1his point we would like 10 make an imporiam remark., .

" Remark 1 Acome isa sel ef Jimes esecing ihmugh its vertex and base-curve. Ths, it

cxtends beyend the veriex and the basc éurve. So the concs in our diagrams arc only a
portion of the actual cones.

- Now let us introduce some new terms.

" Defnitions: A conc whase basc curve is a circle is called a circular cone. The line joining

the veriex of a circular cone 1o the centre of its base curve is called the axis of the cone. If
the axis of a circular cone is pependicular 1o the planc of the base curve, then the conc is
called a right circular cone.

Thus, the cone in Fig. 1 {a) is a right circular cone, while the anc in Fig. 2 is not,

Cones were given great imporance by the ancient Greeks who were studying the problem of
doubling the cube. A teacher of Alecxander the Great, Menacchmus, is supposed to have
geometrically proved the following result. This result is the reason for the condinuin

importance of cones, :

Theorem 1: Every planar scction of a cone is a conic.



This theorem is the reason for an ellipse, parabola or hyperbola to be called a conic section
(see Fig. 1 of Unit 3): It was proved by the Greek astronomer Appolonius (approximately
_200 B.C.). We will not give the proof here.

Now, according to Theorem 1 would you call a pair of intersecting lines a conic? If you cut
a right circular cone by a'plane that contains ils axis, what will the resulting curve be? See
Fig. 3. :

Let us now see how we can represent a cone algebraically, We shall first talk about a right
circular cone, which we shall refer to as an r.c. cone.

So, let us ke an r.c. cone. Let us assume that its vertex is at the origin, and its axis is the
z-axis (sec Fig. 4). Then the base curve, which isa circle of radius r (say), lies in a plane that
is parallel 1o the XY -plane. Let this plane be z = k, where k is a constant. Then, any
generator will intersect this curve in 2 point (a, b, k), forsome a, b € R, So the angle

belween the generator and the axis of the cone will be 6 = tan™’ ('15)' which is a constant

This is true for any generator of the cone.

Thus, every line that makes up the cone makes a fixed angle 8 with the axis of the cone. This
angte is called the semi-vertical angle (or generating angle) of the cone.

We can now defing an r.c. cone in the following way.

Definition: A right circular cone is a surface gencraled by a line which passes through a
fixed poinl (its veriex), and makes a constant angle with a fixed line through the fixed point.

“Let us oblain the equation of an r.c. cone in terms of its semi-vertical angle. Let us assume
that Lhe verlex of the cone is O (0, 0, 0) and axis is the z-axis. (We can always choose our
coordinate system in Lhis marner.) Now Lake any point P (x, y, 2} on the cone (se¢ Fig. 5).
Then, the direction ratios of OP are x, y, z, and of the cone’s axis are 0,.Q. 1. Thus, from
Equation (9) of Unit 4, we get - .
cos B= z

2

LS +},2+22

Thus, x*+y%+2? = 2% sac* ©
= x’+y? =22 tan® 6,
{1 is called the standard form of the équation of a right circular cone.

Now, why don’t you try the following exercises?

E1)  Show that the equation of the r.c. cone wilh vertex at (3, b, ¢}, axis x-a. Z.E_b
z—¢ . , .
= and semi-vertical angle 8 is
Y v

[ac(x—2) 4B (y~b) +7 (2 OF (& + B+ P) {(x -2 + (y- 1+ (2 <F } cos’6......2)
E2) Can you deduce (1) from (2) ?
£3)  Find the equation of the r.c. cone whose axis is the x-axis, vertex is the origin and
sémi-verticai angle isg. .

_Let us now look al a cone whose verlex is the origin, In this situation we have the following
resull,

_ Cones und Cylinders

Flg. 3¢ A patr of interseeling lines
is a4 conlc section,

X

[Flg. 4: A right clrcular cone with
verwex al the erigin and hase
l:urw:x’«-yz:rz, 7=k

Fig. 5:x" + y¥* =21 tan’ @

|
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An cguation is homogeneouws of

degree 2 iFcach of iis torms is of
degree 2,

42

Theorem 2: The cqualion of a cone whose base curve is a conic and whose veriex is
(0. 0, 0) is a homogencous cquation of degrec 2 in 3 variahles. :
Proof: Letus assume that thic basc curve is the conic

ax*+ 2hxy + by® + 2gx + 2y +c= 0, 2 = k.

Any generator of the cone passes th rough {0, 0, 0}. Thus, it is of the form

Co . k Bk
This line interseets the plane 7 = k at the point [-?i E— ]
'!'I’ ﬁ{ .
This point should lic an the conic. Thus.
k2, a kK
—.,(a(x +2haf + b )+ —({2g0 4 2B+ ¢ =0
T ¥

Eliminating o, 3, ¥ from this equation andl (3), we get

2 , 2 ‘ ,
kz(a X? + Zh%'f-by—_,]-l k(ggi+ 2{;\_)*_(;:0.
A s A ¥ 7

7

; . a2
= ax+ 2hxy + by% 20x 22y L4 S5
k vkOkT

This is the cquation of the cone., As you can sce, il is omogencous of degree 2 in the 3

" variahles x, y and z. :

2,2

- - . X .
For example, the equation of the cone whose base curve s the ellipse o= + X 2 in (e
4 9

plane z = 5, and whosc veriex is the origin. is

,{2 y?. 22

Al A

4 9 25’

Do you sce a patiern in the way we obtain the cquation of the cone from (he equation of Ihe

base curve? The following remark is about this,

Remark 2: To find the equation of the cone with vertex at (0, 0, 0) and basc curve in the
plane Ax + By + Cz =D, D #0, we simply homogenise the cquation of the curve, as

follows. We muliiply the Jincar 1erms by AX + By + Cr

. and the constant erm by

[Ax + By + Cx.
D
by this process is a homogencous cquation of degree 2, and is the cquation of the cone.

2
] »and we leave the quadratic erms as they are. The equation that we get

Lect us look at a fow examples of cones with their verlices at the origin.

Example I: Show that the cquation of the cone with the axes as gencralors is
fyz +gax + hxy =0, where [, g, h e R.

Solution: By Theorem 2, the cquation of the cone is
ux2+by2+c22+2|‘xy +200% + 2hxy =), for some ab, ¢. [, g he R,

Since the x-uxis is-a generator, (1.0,0) lies on i1, Therelore, a = 0, Similarly, as it passcs

threagh (01 O and (0,0, . b=c = 0. So the cquation becomes (yz + gzx + hxy = ().

Example 2: Find the equation of the conc with verlex at Lthe origin, and whose basc curve is
a

the circle x*1y2e 322 16, xa2yaly = 0,




Solution : On homogenising the cquatior of the sphere, we get Cones and Cylinders

x+2y+2z)2

2.2 ,2=16(
X'HY 7 , )

[

This is a sccond degree homogencous cquation in x, y, 7 and passes through the circle.
Hence, it is the required cquation ol the cone,

The following exercises will give you some praclice in homogenising cquations,

E4}  Find the cquation of the conc with vertex aL the origin and hasec curve

a) the parabola y* = 4ax, z = 3.

2 1

b) theellipse - + 2 =1 x=-2.
PEETS

E5)  Find the cquation of the cone passing through 2x* + 3y +dzi=landx+y+z=1.

Let us go back o Theorem 2 now. Do you think its converse is true? Consider the following
result,

Theorem 3: A homogencous equation of the second degree in 3 variables represents a cone
whose veriex is at the origin,

Proof: Lel the given equation be

ax®+ by + cz22 + 20yz + 2gex + 2hxy=0. . {4
Lel P (o, [3. ¥) be a point on this surface and O the origin, Then OP is given by the equations
y A
— === —=r (5ay).
o By
S0 any point on OP is (rax, £, ry). Since P lics on (4),
a4+ bP2+ e+ 2By + 2gy o + 2heBp=0. (5)

Multiplying (5) throughoul by r*, we get
agron? + b (B)° + e(r)® + 26(eB) (ry) + 2g () (ree) + 2h (ror) (1) = 0.

Thus. (ree, 13, ry) alse lics on (4),for any r € R. In particular, © lics on (4). So, tke line OP
lies on the surface given by (4). In other words, OP is a generator of (4). Thus, the surface
(4) is generated by lincs through the origin. Each of these lines will also pass through any
curvc ohtained by inlersecling (4) by a plane, and any of these curves can be trealed as a
hase curve. Thus, (4) represents a cone with the origin as vertex.

S0, [rom what you have seen o far in this section; whenever you come across a
homogencous cquation in 3 variables of degree 2, you know that it represents a cone.

. a h g
Remark 3 If h h I'l =0, then (4) can be written as a product of two lincar
B f C

cxpressions, Thus, in this casc (4) represenls a pair of planes containing the origin, We shall
consider this cuse as a degenerate cone, and any point on the Yine of interscclion of the 1wn
planes can be considered as ils veriey,

' Us‘ing Theorem 3, we can show thas if ¢z, f, y€ R, then a homogeneous equation in x — c,
— B,z -y represents a cune with veriex at (. B, ). (We shall discuss lhlq kind of shifting
in dclml tn Unit 7.) '

Wiy don'i you ry some excreises now?
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IT the hnes of interscetian of a conc
and a planc threugh the cone’s viemex
are imaginary, the intersectian
reidnesce a3 sinale eoing namaly the
cond's vanes faxin Fige e ol
Unir 33

E&) If r_r.z ” is a generator of the cone given by the hamogencous equation (4), then

x f
shaw that (c, B, v) lies on (4),

E7)  Which of the following equalions represents a cone?
3x+dy+ Su= 0 xt+y2e = 93k yia sy = xyi xyn=ya b ax 4+ xy.

2 2 2
ES) 1M+ % + 2 = q, show that ax?+ by? + cz¥+ 2ux + 2vy + 2wz + d = O represents
a c
a cone. :

Let us now go back (o Example 1. This is an cxample of a cmc wuh lhrcc mutualiy
perpendicular generators, 11s equation has no term conlaining x2, y? or 7%, Docs this mean
that whcncvcr a conc has three mutually perpendicular generators, its equation must have no
lerm with x2 .ytorz?? The following thcorem helps us 10 answer this question.

Theorem 4: I the cone ax®+ by?+ ¢z’ + 2fyx + 2gzx + 2hxy = 0 has 3 mutually
perpendicular generators, thena+ b+ ¢= 0.

Proof: Let the direction cosines of the three mutually perpendicular gencrators be f,. m,, n,
where i = 1, 2, 3. Since Lhey are mulually perpendicular, we can rolate our coordinate sysiem
so that these lines become the new coordinale axes.

Then the dircction cosines of the previous coordinate axes with respect (o the new axes are
{1, b tye oy, i, may and my, na, n, respectively,

So Unit4 (Equations (3} and (10)) tell us that
.Ill + .{2 + !] =1

m?+ myt +mif=|

PIENTRRTES 1 (6}
Ly + bmy + bmy = 0

M+ R gy =0

aly + il + a3l =0
Further, sinco the perpendicular lines are generators of the cone, using E6 we gel
aﬁl + b 4 er + 2m, 111 +2gm {; 4 2hfim =0

817 + b3 + cn? + Umymy + 2pmyly 4 2Nigiy = 0

at} + bmi +cnd + 2imyny + 2gnsdy + 2hiymy = 0
Adding thesc cqualions, and using (6), we gela+b+c=0.

Actually, the converse, of Lhis result is also rue. The prool‘ uses a fact thal you have already
scen in Fig, 3 in the casc of an r.c. cone, nimely,

any planc through the veriex ol'a conc inlersects the cone in two lines,
which may or may not be distinct.

The following resitt, which we shall nol prove, 1el1s us abont the angle hetween the lines of
interseclion.

Thearem 5: The angle between Lhe two lines in which the planc ux + vy + wz = 0 intersccis
the cone C(x, v, z) = ax? + by? + cx24 20z + 2gzx + 2hxy = O g



_|l apfuZ+ vie wl |
|(a +h+c) ('uz +.\|r1 + w2 - Clu, v, w)"

a h £ u
h b ) v
g F o w

where P =

u v w 0
Looking at (7), can you give the condition under which the angle will be n/2?
The lines of intersection of the planc and the cone will e perpendicular iff

C(u, v, w) =(@+b+c) (ulevi+wd)

Lel us usc (8) Lo solve the faltowing cxample, which includes the converse of Theorem 4.

Example 3: Show thatil'a + b + ¢ = 0, then the cone

C{x,y.2) fax byt + crl+ 20yz+ 2pex + 2hxy = ()

has inlinitcly many sets of Ihree mutually perpendicular generators.

. . Xy Z

Solution: Let — = = = 2 he any generator of the cone, Then, by E6, we know hat
a Y

C\(or.. B. v = 0. Therelore, using the lact that a+h+c = 0 and (8), we sce Lhal the plane
ax + Py + vz = 0 imersects the cone in two mutually perpendicular gencrators, say Land L.
Now * = ¥ _ 7 is normal 10 the planc ax + By + 7 = 0. Thus, it is perpendicutur Lo both L

a B ¥
and 1" Thus, these three lines form a setof three mutuatly perendicular generators of the
¢one.
Note that we choase = = 2 = 2 arbitrarily. Thus. for cach generator chosen we gei a sct of

o By

" hree mutually perpendicular gencrators. Hence, the cone has infinitely many such scis of
SCNCTALOTS.

Why don’( you try some exerciscs now?

E9y  Find the angle between the lines of interscelion of
I+ y + Sz = 0and 6ye - 2zx + Sxy = 0.
E10) Prove that ax + by + ¢z = 0, where abc = 0, cuts the cone yz + zx + xy = 0 in
perpendicular lines iff 1 + 1 + ! =10,
a b c
EJ1) Prove that if a right circular cone has three mutuaily perpendicular generaiors. its
semi-vertical angle is an /7,

Let us now discuss the intersection of a linc and a conc.

6.3 TANGENT PLANES

In Lhe previous unil you saw that a linc can imersect a sphere in at most two points. What do
you expect in the case of Lthe intersection of a ling and a cone? Lel's see.

Let the cquation of the cone be (4), that is, ax? + by? + cz® + 2fyz + 2gzx + 2hxy = 0.

Cones and Cylinders
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Note that, by shilting the origin if necessary. we cian always assime (his cyuation as the
cone’s cualion. -

For convenicnce, we will write C (x, ¥, 2) = ax” + by®+ ¢z’ + 202 + 2gzx + 2hxy.

Now consider the fine 2=

Xi YN _ 27 %4 Any pointon this ling is given by

, a B Y
(%, + rcs, y, o+ 1B, 70 + Ty forsome r e R, Thus, the line will interscel the cone, il Lthis poinl
lics an the cone lor somere R.

This happens if

0 (x4 1) b {yy + iBYe (g + 1 P20y + 1) (g + 19 4 20 (2 + 0ty + 1) +
2h (xy + 1o Gy TR = 0

e r'Clo B+ Er[nr_ (ax, + hy + g7+ fhxy + hyy + T2+ (gx 4y +cv.1)]
+Clxpyvv)=0 (n
Now. if (x). vy, %) docsn'tlic on the cone, then (D isa quadritic in r, and hence has 1wo

ronts. Each ool corresponds (o a point of interseclion of the line and the cone. Thus, we
have just proved the following resull.

Theorem 6: A straight line, passing thfough a point nol on cone, meets the cone in a1 maost
W0 DOINIS,

X-X _YZh _F7 4 jeaangent o thecone (Y at (x .y 7).
L B3 ¥

Now suppose that the line

Then, since (%, y1. 7 lies on the cone. C {xy, yi, 4} = 0. S0 (9 hecomes
r2Clee, B y) + 2r foGaxy + hy) + 22;) + P (hxy + by, + f2,) + 7lgx, + fy, + ¢} ) =0,
This cquation mnst have coincident roots, since the line is i tangent 1o the cone at

(%1, Y1, 71)- The condition Igr thisis

o (ax, + hyy+g2) + B ey + by + o)+ y(gxg + Iy + e =00 (1m

So, {107 is the conditiondor X=X _Y=¥ _ 27 M o he langent Lo the cone
- o § Y

ax2+y2 4 c2t# 20yz + 2gx + 2hay = (1
Note that (10} is satisficd by infinitely many values of o, fi, v Thus,
at ench point of a cone we can draw infinitely many tangents to the cone.

Now. from Sec. 4.3.3, vou know that (101 1ells ux that each of these lines is perpendicular 1o
Ihe line with direction ratios '

axy + hyy + g2y, by + by + Ty, g+ Ty + cng

Thus, the sct of all the tingent lines ai (X, y,. %) is Ihe plane

(x = x1) (ax, + hyy + g2 ) + (y = y0) (B, + by t2) + (2~ 2) {gn + Dy + €)= 0
= x (ax, + hy, + gz} +y (g + by + 2 + 2 (gx + frez) =0, .00

since C(xq, vz =00
This planc i< defined to be the tangent plane to the cone at (x), y:, 71},

Thus, (11) i5 the cquation of the tangent plane at (x5, y;, 7;) Lo the cone

ax®+ by + cu+ 2fyz 4 2gax + 2hxy =0,
There is a very simple working rule for writing (11).

Ruje of thantlx To write the equation of the tangent plane at any point (e, B.9) an the cone



(4), replace x* by ax, y2 by By, 2 by Yz, 2yz by vy + Pz, 22 h) oz + ¥ x and 2xy by Cones and Cylinders
Prtoy. ,

For cxample, the tangent plane to the cone 2%+ y1—2xz =0at(1,0,1)is 2x {1y + y (O}

—(x+2z)=0thatis, x=1z.

So far we have only found thée tangent planc wo a cone whose veriex is at the origin, What
about a general cone? The following remark is about (his.

Remark 4: Wc can find the tangem plane (0 a cone with vertex al (a, b, ¢} in the samie
manner as above. All we need 1o do is to shifl the origin (o {a, b, ¢) and {ind the tangent
planc in the new coordinate sysiem. And thor we can shift back 1o the old coordinate
system, making the required transformations in the cquation of the plane. This will give us
the required equation.

Now, il you look closely at (11), you will notice that (0, (4, O} saisfics it. Tiius, the tangent
plane to a cone passes through the vertex of the cone.

Therefore, the Langent plan at P (xy, y,, #,) contains P as well as the vertex O af the conc,
Henee, it contains the generator OP of the cone. Thus,

Lthe langent plane 10 a cone touches the cone along the generator passing
through the point of conuact,

This generalor is called the generator of contact of the planc. In Fig. & OP is the generator
of contact of the tangent plane T,

Fig. & T is the tangent plone 1o
the cone a8 P.

You can try SOME CXerciscs now.,

_ EI2) Find the equation of the tangent planc at the po:nl( . IJ to the cone

-..||--
-h-‘--

Syz —8zx = 3xy =0

E13) Use Theorem 510 ob* -'n the condition under which a given plane is tangent (o a
cone.

If you've solved El3, you would havc seen Lhal the condition for ux+vy+wz =0 1o be
tangent to the cone (4), that is, ax? + by’ +crl+ Zhxy + 2fyz + 2pzx = Qs

<

={Q, thavis,

< ™ o =T

g O ™ om

a
h
B w
u 0
Au?+ Bv?+ Cw?+ 2Huv + 2Fvw + 2Gwu = 0,

where A=bc -2, B=ca—g%, C=ab—h% F=gh—af,G=hf-bg, H=fg -ch.

Thus, the line » which is the normal at (0, 0, 0) to the wangent planc, is a gencra-

::|:u

£ M

3
¥
lor of the cone Ax”+ By?+ Cz*+ 2Hxy + 2Fyz + 2Gzx =0, v (12)

Thus, (12) is the cone generated by the normals 10 the tangent planes at the vertex (0, 0, 0)
of the cone {4). Since it is homogeneous, its vertex is also (0, 0, O).

Note that (12) is nothing but the delerminant equation
47
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a h g x
h b f vy

=0.
g f c  z
xoy z 0

Now, tf we constder the surface generated by the normals at (0, 0, 0) to the tangent planes to
(12}, what do we ger? On calculating, you will get a surprisc! The cone is (4), because
BC-F*=aA,CA-G*=bA,AB - H’=c4, GH ~ AF = fA, HF - BG = gA, FG — CH = ha,
where

a h g
A=|h b T
g [ ¢

Because of this relationship between (4) and (12) we call them reciprocal cones.

Actually, the following example shows why the name is appropriate.

2 2 L2
Example 4: Show that the cones ax®+ by’ + cz? = 0ard 2 1 Y L 2. _ ¢ arc reciprocal.
a b ¢

(Here abc0.)

Solution: The reciprocal cone of ax® + by® + c2? = 0 is given by the determinant cquation

a 0 0 X
0 b0 Y| =0
0 0 C Z
X ¥y z 0 .‘
b 0 0 |

<alld ¢ zi-x |0

[ Le] L]
Ll
o

y =z 0 X oy

& X2 + ylac + zfab = 0
(1.7 g2

== + 5 * T = 0, dividing throughout by abc.

This is the required équation.

Now you can do Lhe following exerciscs, This will help you to understand reciprocal concs
betier.

Eld) Find the cone on which the perpendiculars drawn from the erigin to angent planes to
the cone 19x%+ 11y%+ 322+ 6yz — 10zx - 26xy = 0 lic.

E15) Prove that the cone (4) has three mutually perpendicular tangent planes iff
bc+ca+ab= 2+ gl+ 2,

And now let us shift our atlenlion Lo anather surface thal is generated by lines.

6.4 CYLINDERS

You musl have come across several examples of the surlace that we are going to discuss in
this section. For instance, a drain pipe is cylindrical in shape, and so is a pencil, But for us,
the pencil will not be a cylinder, only its surface will, according to the following definition, I




Definition: A cylinder is the sc* of all lines wich intersect a given curve and whicl e Cones and Cylinders

paraltel te a fixed line which doc.. not lic in the plane of the curve, The fixe line is called
Lthe axis of the cylinder and the curve is called the base carve (or directrix) of the cylinder.

Allihe figures in Fig. 7 represent portions of cylinders.

(a) (&) (c)

Fig. 7: 8} A ciretlar cylinder, b) an clllptle cylinder, €} a parabalic cylinder. 7

In Fig. 7 (b) the cylimder’s base curve is an cllipse. while it is a parabola in Fig. 7 (c}.
Fig. 7 (a) is an example of a right circular cylinder according Lo the following definition,

Definition: A cylinder whose base curve is a circle, and whose axis passes through the
centre of the base curve and is perpendicular (o the plane of the base curve, is called a right
circular cybBnder. '

As you can see, in common parlance when peaple talk of a cylinder, they mean a portion of
aright circular cylinder.

Henceforth, in this section, by a cylinder we shall mean a right cireular cylinder,

. Let us now find the equation of a cylinder. We shall first assume that its axis s the z-axis, % %Y
and its basc curve is the circle x>+ y? = 2, 2= 0 (see Fig. 8). ' g‘*‘(’

NS
M (s m

Let P (xy, y1. 2y} be any point on the cylinder, Lel the gencrator through P intersecl the planc
of the base curve (that is, the XY-planc) in M, Then the perpendicular distance of P from the

axis isOM = xf + Y.
But this is also r. Thus, Fig. 8: The cylinder x* + y} :_r’.

2= xi+ : .

This equation is true for every point P (X1, 1.2} on the cylinder. Thus, the equation of the
cylinder is
| eyr=fdo (13)

You may wonder why z is not figuring in the cquation. This is because whatever value of 7
you take, e equation of the cylinder remains x* + y% = 2,

Whal does this mean gecometricaily? It says that whatever plane paralicl Lo the XY-planc you
take, say z = 1, and 1ake its Interseciion with the cylinder, you witl always gel the circle

* 1
XT+yi=r
Thus, in a sense;, the cylinder is made up of infinlely many circles, each piled up on the The radius af 3 cpiinder s the
other! radws of its base curve.
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Also nolc thai .ve length -1 tie perperiu. o fer, T 10 its axis s
equal to its rac.us.

Using this lact, let us find the equation of a cylinder of radius r and whosc axis is

x-a_y-b_z-c (see Fig, 9).
o B Y

Tlg, 1: A right circalar cylinder with azis AM.

Let P (x;, ¥1, %;) be any point on the cylinder, Let A be the point (a, b, ¢), which lies on the
axis, and M be thefoot of the perpendicular from P onto the axis. Then PM =r.

Also, AM == AP cos 8, where 9 is the angle belween the lines AM and AP.

oAM= iz 2o (- DB+ (2 -0y using Equation (9) of Unit 4,
J&;@ B: +y?

Since AMP is a right-angled triangle, we get AP? = AM? + MP?. Thus,

2_ {(x; - a)or + (y, - D) + (2 - C)T}z o2

bl 2
Xy —a)y+iv -+ -c
(xy—a) + 1y, =0+ (1 =) T

This equation helds for any point (x4, vy, %)) on the cylinder.

x-a _y-b z-c¢
a B 7

is {(x =2l +(y—bP+ - - P @+ PP+ vy = {x-Da+ (y-b) B+ @ -c)y}s  ..(14)

Thus, the equation of the right circular cylinder with radius r and axis

Let us lock at an example,

Example 5; Find the cquation of the cylinder having lor 11§ base the circle xtryez2 =9,

- e = al
A‘—)"f.(,—__'l,

Solution : The centre of the sphere i (0, 0, 03, and radius 3. The distance between (0,0,0)
andthe plane x —y +2=31i8 4/3. So lhc; radius of the base circle is /o ~ 3 = g’g {sce Fig. 10}.

The axis of the cylinder is perpendicular to the planc x — y + z = 3 and passes through (0, 0, 0).

So its cquations are % = i] = %
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Thus, using (14), we get the required equation as

I (x4 y‘z—kzz—6)= (x—y+2)°

2

=Py 2P xy+yz~2x-9=0.

Why don’t you Iry an exercisc now?

E16) Find Lhe cquation of the cylinder

a) whose axis is x = 2y = —z and radius is 4.

2-3

x-1 2 and radius is 2.
-1

2

b) whosc axis is

We shall end our discussion on cylinders here. Let us now bricy review what we have
covercd in this unit,

6.5 SUMMARY

In this unit we have discussed the following points,

1) Aconcisasurlace generated by a line passing through a fixed point {i1s vertex) and
inlcrsecting a given curve (its base curve), such thal the veriex does not lic in the ptane
ol the basc curve,

2) . A cone whose busc curve is a circle, and for which the Jine Joiring its veriex 1o the
cenire ol the base curve is perpendicular to the planc of the base curve, is called a right
circular cong,

.3) A planar section of a cone is a conic.
4) . Thecquation of a right circular cone with semi-vertical angle. 8 is x%+y* = 7% 1an* @,

5} A second degree cquation in x, y, 7 represents a conc with vertex at the origin if it is
homogceneous.

&)  Theccone axl+by2+czz+2I'y7.+2g7.x+2h:<y = ( has 3 mutually perpendicular gencrators
ifa+b+c =0, ‘

7 Any planc through the vericx of a cone intersects (he cone in two distinct or coincident
lines. The angle between the lines oblained by intersccting ux+vy+we = 0 with

C(x,y. 2y =ax?+ by’ + 2%+ 2fyzs dpzx + Zhxy=0is

2PVult+ vi 4 w? I

(@a+b+c)u+ v+ w?) - Clu, v, w)|'

tan~!

a h i u
h b ) v
where P2 = .
J [ c w
| u v w0

" Thus, the plane is tangent 1o the cone ilf P2 = 0.
8)  Theequation of the tangent planc 1o the cone ax#+ by?+ ¢t + 2yz + 2gzx + Zhxy =0}
aithe point P (x|, y;, 2y) is
(@) + hy; + g21) x4+ (0 + by, + ) y + (3, + Ty, + ¢23) 2.=0.
This contains the linc OP, where O is the vertex of the cone. 51
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9)  The cone formed by the normals to the tangent piancs Lo a given cone at ils vertex is
the reciprocal of the given cone, The recipracal conc of the cone ax®+ by® + cz2 + 2fyz
+2gzx + 2hxy =Qis given by  ~

a h g x
h b f vy
Y1 <o,
g f ¢ =z
X y z 0

10} A cylinder is a surface gencrated by a linc which is parallel 1o a fixed Tine (its axis)
and which cuts a given curve (its base curve), such that the line and curve are nat in
Lhe same plane.

11} A righicircular cylinder is a cylinder whose base curve is a circle and axis is the line
through the centre of the circle and perpendicular to its plane.

12) The cquation of a right circular cylinder with base curve a circle of radius r and cenire
(0,0,0)in the plane z=0is x? + y2 =%,
13)  The cquation of a right circular cylinder of radius r and axis —=2 = i; b_%2¢is
o Y
((x—a)y+ (y = b)Y+ (2 - ) ) (0*+ P2+ )= {(x—a} a + (y=b) B+ (z -} 7}
And now, you may like 10 g0 back to Sec. 6.1 10 see if yon have achieved the objectives

listed there. You must have solved the exercises as vou came 10 them in the unit. In the next
scclion we have given our answers to the exercises. You may like to have a look at them.,

6.6 SOLUTIONS/ANSWERS

El)  LetP(x.y,z}beany point on the cone. Since V (a, b. ¢) is its veriex, the dircetion
ratios ol PV are x - a, y — b, z — . Also, the direction ralios of Lthe axis of the cone
are o, B.v. '

o(x —a)+ By - b} + y(z - ¢}
Va2 + B2+ Jix— )+ (y -0+ (z-o)F
Hence, we get (2),
E2)  Yes Justtake x=0=8,y=1,2a=b=c=0in(2), and you will get (1).

SLcosB=

E3)  Thedirection ratios of Lhe axis are 1.0, 0, and the veriex is (0, 0, 0). 1f {x, Y.z} isany
point on the cone, then

T XI+y.0+70
cos —=

3 Jxi s y2-+ 2°
= x>+ y 4+ 22 = 4x,
which is the required equation.

2 _ z 2 _
E4) a) y°=dox 3 e 3y —dazx =0,

ES) 2x*+3y+42=(0+y+ )

-
& x74 2yT+ 3T = 2uy ~ 2yz - 2o = 0,

ES) letT=7< T say. Then putting % = rer, y = 18, z = ry in (4), and dividing

throughout by %, we get




ET)
ER)

E9)

Cly

EI

E12}

E1D)

ac” + P2+ ot + 2Py + ey + 2hafh = 0.
(e, B ) lies on (4),

Only 3 (x%+ v 4 75y = gy,

Substitating the valie ol d in the cquation, we can write iLas

{ J { vy ( wY
st — 1+ = 2 )
1;\4 hL) Y .(

¢/
. B . u Ay W
which is 2 homogeneous cquation ol degree 2in X = o yr T =
(8 L
_u v W
Thus. it 18 a cone with vertes ot .- ]— -
] ' ¢

The required anple is

1 V3T 14 5
= n -
O=-6(} () +2(M 1= 50 (D
noo2 a0 3l
2 )
L
s
20 3 1] aas
oy A ' e
where Pr=| - ) 1
|
d3 65|
|
300105 0
Lp=13
2

= tan | 4f33,

In this sitzation (8) 1ells us that the lines will be perpendicular T
be +ca+ab ={.

Fo1 o
s — F—+ —=1(.

a b

Lel its semi-verticol angie be 0.
Then the eguation ol the cone is (1), that is, xt +) =7 an? 0,
Since this has three mutually perpendhcutar generators, Theorem 4 1ells us that

1 +1-an?8=00=tan' 3.
The required equation is

[0y b ] (1Y
SRR A B

e “245x + 128y + du =)

A Langenl plane must ouch the cone along a peneralor, Thus, the two lines of

intersection of the plane and the cone must coincide. Thus, 1the angle belween th‘\L

lines must be 0,

Thus, from Theorem 5, we sce that wvy+wz = O isa tangent to the cong C (x, y. 7)) =0

&= P =0 (since w4 vie Wiz )

[ L - -1
H] 1 b I.II
1 H [ '
e " Y=o
a f c w
\ v w0

Cones and Cylinders
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E15)

El16)

19 13 _5 X
~13 11 3 y
-5 3 3 7
X y 2 4]
= 37+ 4y 4 S22 Qyz 4 dyx 5 Gxy = 0
The cone will have three muivally perpendicular tangent plancs ifT the reciprocal
cone has three mutually perpendicular generators. Usmg Theorem 4 and irs converse,
we see thal this happens iff in (12), A+ B+ C = 0, 1hay is.

U (he =17 ¢ (ca—gB + (ob = WY = O thar is
iffhe + ca s ab =12+ g4 b

ay  Theequation is (x> + v z"—lﬁ)(l+ %+I)=(:-' -7y

12}~

< 5x7+ By + 522 dxy + 4y + Sxy — 144 = 0
b)  The required cquationjs-.
14 {0174 P4 (223 d) = (245 = 1)+ By + (oo )
= 10x%+ Sy2+ 1377~ 12xy - 6yz - 437 - 8x + 30y - Mz4 59 =),

LY



MISCELLANEOUS EXERCISES

{This section is optional)

T thes section we bave gatiered sume probtems related 10 the contents ol this block. You
miay like 10 do them 10 et a beter undersanding of tese contents. Our solutions to the .
questtots Tollow the list ol prublems. incase you'd like 1o counter-check your answers,

- by : x-2 y-3 z-4 .
1) ! the equatons w the planes theaugh the e - = , which are

2 !
puallel o die covrdinate unes,
: - . k1 -3 s+ .
) Find the vquation ol the plane passing through N = = 2 und the poim
-3 2 1
. o 2.y 42 .
(0, 7. -7 Also cheek il x = = "3 lizs n this plane.

<= Lmeets the taes i the points A, B and €, Find the
v o
. Fig. L
equations determiinmg the circunwarele ol the wiangle ABC {see Fig. 1),

g \'
st The plane -+
J]

Ll T

db Prove that s every planir secuon ol wostnhwe arven by aquadralic equation 1s o virgle,
the suftae st beesphon:,

v Fid aneghaion of the setob pongs whach are twice ag lar from the origin as from
1,4 1o

6)  Ifthe sphere 2%+ y* + 27+ 2ux + 2vy + 2wz + d = O cuts 2+ yi+ o+ 20k + v’y +
Iw'z +d = 0in a great cirele, tien show that
2 (U’ + v+ ww') = (d + 'y = 2, whiere © is the radius of the second sphere,
1y Find the equation of the sphere inscribed in the wetrohedron whose faces are
x=0,y=ts=0,x+y+z=1 (see Fiz. 21
%) Show thal U sum ol the squares ol he intercepts made by a given sphere on any Lhree Fig. 2
mutually peependicular nes through o Gxed pomts conslani,
(Hint: Take the hixed pomi 1o be the origin.}

Y} Find the cquations (o the fines in which the plane 2x + y — 2 = 0 cuts the cone 457 - y?
+ Az =0

. b . . . R

oy lx= 5 T £ represenls one out ol g setof thrce mutually perpendicular gencrators of

the core 11yz + Gex - ld4xy = 0, find Lhe equations of the other two.
(Hint: Take 4 planc through the given line, and apply the condition for the lines of
inlersection ol this plane and Lhe cone 10 be perpendicular,)

1M} Find the equation of the right circular cone wilh vertex {1, 1, 3), axis parallel 1o Lthe
X 2 . . L .
line T === E and wilh one of ils generaters having direction ratios 2, 1, -1.

(A5 a4

13} Find the gqumion of the cone which passes tirough he common generators of the
cones x* + 297 32° = O and 3xy - v2'+ Sxz = 0 and the line with direction ratios

L4, 1

{Hint: The cone passing through the common gengrators of the cona C, =0and C;=0
t5 Cy+kCa = 0, where ke R)
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14)

15)

Find the equation of the right circular c;linder that is gencrated by lines which are

paraltel to X = % =2, and which are 1angent 1o the sphere x?+y%+2% = ¥ (see Fig. 3).
a o

{Note: Such a cylinder is cailed the enveloping cvlinder of the sphere.)

. . . . + - , o
The axis of a cylinder of radius 3 has equations % = y_z_[ =2 ] ! . Find the equation

of the eylindes.

Prove that for a cylinder the tangent plane al any point is parallc] to its axis
(sec Fig. 4).

SOLUTIONS

1)

Fig. 3: The ¢ylinder envelops the
phere,

2)
1
Fig. 4: The plane is tangent ta 1he
cylinder,
3
4)
5)

The cquation (e any plane through the given line is

Ax-D+by-3D+c(z-NH=0, where2a+4b+5¢c=0

IT this is paralicl to the x-xis, we must have

al+b@M+c(@=0=a=0.

Thus, the equatior of such a planc is 5y —4z + 1 = 0.

Similarly, you can check that the planes parallel (o the y and 7 axcs are 5x — 22 —2 = ()
and 2x —y - 1 = 0, respeclively.,

Theplanewillbea{x+ D+b(y~N+cz+2)=0, ... (1)
where -3a+2b+¢=0. (2)
Since (0, 7, ~7) lies on it, we have
.a+4b-5¢=0. {3
Eliminating a, b and ¢ from (2) and (3), we get
& b C a b ¢
= = S —= ==,
-10-4 1-15 -12-2 1 1 1

S (M) becomes 1(x+ 1)+ 1y -3)+ 1z+2)=0

=x+y+z=0.

J‘.tc[inci=l:_2= z+2
1 -3

point on il lies on the plane, Since 1 (1) + (=3) (1) + 2 (E) = 0, the Ting is parallel 10 the

planc. Also, (0, 2, -2) is a common point. Thus, the line lies in the plane.

will lie on this planc, if it is parallel to the plane and any

The circumeircle will be the intersection of the given planc with any sphere passing
through A, B and C. So, let us tike the sphere through O, A. B and C. The coordinates
of these points arc (0, 0, 0}, (1, 0, 0), (0, b, 0) and {0, 0, ¢). You can check that the
equation’is x> + y? + 22 —ax —by —cz = 0.

Thus. the equations that give the circumcircle are

X2+)’2+zz—ax—by_cz=(}‘i+i+_z_=1.

a b ¢

Let the equation of the surface be
ax?+ by? + c2®+ 2hxy + 2p7x + 2fyz + 2ux + 2vy + 2wz + d = 0.
Il intersects 2 = 0 in the conic

ax® + by? 4+ 2hxy + 2ux + 2vy + d = 0.

This will be acircle iffa=band h =0,

Similarly, on intereccting with x — 0 and v = 0 we will gela=b=cand = 0o g =

. Thus, the equation of the surface reduces to

rl k) -
a (xl TY 2+ 2ux F 2vy + 2w+ d =0,
which rcpresents a sphere.

Let (x, y, z) be any point in the set. Then

\jx2+y3+z2:2\/(x+ D+ (y -2+ (z-1)?
=3+ y?+ 7+ 8x - By — 8z + 12=0, which rcpréscms a sphere.



6)

7

&)

9N

10)

11}

If the 1wo spheres are $ =0 and S, =0, then (~u',—', ") lieson § - §; = 0, that is, Miscellancous Exerclses
on2u—-wx+2(v-v)iy+2(w-w)z+d-d’=0.

L 20—u) U+ 2y VYV 2w —w)w' = d - d

S 20 +w +ww) —d+d =2 e view) =207+ 20

=2’ + v +ww)—({d+d)= 22,

Let the cqualion be
x2+yl+ 22+ 20x + 2vy + 2wz + d = 0.
Since the given planes arc tangent (o it, the distance of (-u, v, —w) [rom these planes

isr=fu?+ v+ w?—d- Thus, we sce that

u=vows=—rand | —u-—v-w-1|=+3r

. 3+43
Solving these cquations, we gelL F =" ra
Thus, the equation of the sphere is
J+43
X eyl ezl - 2r(x+y+7) + 2 =0, where 1= 6\['—'

Let us assume that the fixed point is (0, 0. (0} and the three lines are the axes. Then et
the sphere be given by x* + y2 + 72 + 2ux + 2vy + 2wz +d = 0,

11§ intercept on the x — axis. thatis, y=0=1z, is 2Ju? ~d.

Similarly, the ather intereepts are 24/ v — d and 2 w - .

' 2 : z 2 2 2 2,2
Now, (2 u —d) +(2 v d] +(2 w —d) =4 (u*+ vi+ wi-12d).
which ts a conslant, since Lhe sphere is a given one.

Leta lineof interscction be -}-‘- == i Then 2{ + m ~n=0and u? -z + 3n* = 0.
FH] H

Solving these equations, we gel
m==2l,n=00rm=-4l n=-21.
Thus, the two lines arc

=L o gand Lo A
&2.3—Odndl—_4—_2.

.-..[x

2% —y + k {y —22) = 0, k € R, gives any ptanc through the given line. This will cut the
given cone in pempendicular lines if

NEK=DEK+6ED@ -4 &G-1)=0=k=-27/IL

Thus, the plancs are 2x — 3y + dz=0and 11x -2y -T2 =0.

* Now, 2x - 3y + 42z = 0 imersects (he cone in 1wo perpendicular lines of which one is

the given one which lies in the plane. Therefore, the other one has Lo be the normal 10

the planc 2t (0, 0,0). This is % - Ls - %_ So this will be another of the required sl of

mutually perpendicular gencrators,

Similarly; the third gencrator will be the normal 1o 11x — 2y — 72 =0 (0, 0,0, that

,ox ¥ i

T2 T

If 8 is its semi-vertical angle, then
2+2-2 2

cosez—m—=m- .

Also, Lhe axis is given by x;-1=y;l___z;3l
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12)

13)

14)
15)

Thus. the equation of the r... ~one s

? 2 3 A
(x=-D+2y-D+2@-21=9 [ - 1Y +y-D}+(z-3) 7
@;:2+10y3+1032+]2xy+?:-ly?.+12xz—50x—]04y—962+221=0.

Let the cone be (x* + 2y? + 327 + k (5xy — yz + 5x2) = ), where k € R. Since the line
with direction ratios 1,0, 1 lies on it, (1, 0, 1) must satisfy it. This givesus k = _%,

Thus, the required conc is
S (x4 2y2 +322) — 4 (Sxy - yz2 + 5x7) = 0.
Let (e, B, ) be any point on the cylinder. A cencrator throngh this will be given by
x-a_y-B_z2-y

a b c
This line interscets the sphere in (ak + @, b+ B, ck + ), where k is given by
(ak + o) + (bk + P2 + (ck + y) = 1%
This quadralic equation in k gives Iwo valu: - of k, which correspond [0 lwo points of
intersection. Thus, the gencralar will he a tanzent ta the sphere if these points
coincide, that is, ilT
(aa+ b +cy)l= @+ b +cH (@ + PP+ — 1Y), .
Thus, the locus of (e, B, ¥). which is the cquation of the enveloping cylinder. is
(ax+by+cn)’ =@+ b+ P+ yi+ 221,

3x7+ 3y2 + Bxy + dya+ dxz r A + 2y + 42+ 8 =0,

We can always assume the cquation of (he cylinder to be x2 + yi=r.

Tts axis is Lhe z-axis, thalis, x =0, y = 0.

As in the case of a cone, you can show that its tangent planc ata point (x), ¥, %) is
XXy + vy, = I'2

This is parallel o the z- axis. Hence. the result,



NOTER



NOTES



UGMM-05
Nez FTTAR PRADES Analytical Geometry

L=meymeshy, AJARSITI TANDON OTEN INIVERSITY

Block

3

CONICOIDS
UNIT 7

General Theory of Conicoids 5
UNIT 8

Central Conicoids 21
UNIT 9

Paraboloids 45

MISCELLANEQUS EXERCISES 57




BLOCK 3 CONICOIDS

In the last block you were introudeed to some basics of solid geometry. You also
studied the geometrical propertics of some commonly found surfaces like spherges,
cones and cylinders. In this block you will see that those surfaces are particular
cases of a more gencral class of surfaces called conicoids. Conicoids are surfaces,
which satisfy a general second degrec equation in three variables. White studying
them, you will redlise that these surfaces are analogous 1o conic seclions.

Expository articles on conicoids appcm:cd in the mid-eighteenth century, The first
book was by Alexjs Clairau (1713-1765). But. a more extensive and syslcmatic
study can be found in the second volume of the book. “Introductio® hy L.Euler,

We will start this block with a unit on gencral theory of conicoids. Tn this, we will
first define conicoids and then classify them into two categories — central and
non-central conicoids. We shall then introduce you to two transiormations of the
three-dimensional coordinate system — translation and rotation of axes. The
purpose of these transformations is (o reduce a general second degrec equation o
“Standard form™.

In Unit 8, we shall concentrate on central conicoids. You will sec that there aze
five types of such conicoids — cone. imaginary conicoid, cliipsoid, hyperboloid of
one sheel and of two sheets, In this unit we will concentrate on the geometrical
properties of only the last three central conicoids, since we have alrcady studied
cones in Block 2.

In the last unit of this block (and this course) we shall discuss non-central conicotds,
These surfaces are broadly of two types — cylinders and patabaloids. As you have
already studied cylinders in some detail in Block 2., we wiil restrict our attention ta
paraboloids. You will find that paraboloids can be further divided into elliptic and
hyperbolic paraboloids. As in Unit 8, we shall study all the geomctrical properties
of these surfaces.

At the end of this block, we have given a set of miscellancous exerciscs. which cover
the contents of the block as a whole. Doing these cxercises will help you to have
an overall understanding of the contents in this block. After doing the exercises you
can check your solutions with our solutions, provided at the end of the scetion,

While going through cach unit of the block, please do try the exercises as and when
you come to them. Also, do po through the unit objectives after studving a unit.
This will help you to check if you've really prasped the contents of the unil,

After studying this block please attempt the assignment that is based on this course,







UNIT 7 GENERAL THEORY OF
CONICOIDS

Structure

7.1 Introduction
Objectives

7.2 What is a Conicoid?

7.3 Change of Axes

Translation of Axes
Projection
Rolation of Axes

7.4 Reduction to Standard Form
7.5 Summary

7.6  Scolutions/Answers

7.1 INTRODUCTION

You have seen in Block 1 that the general equation of second degree in two
variables x and y represcnts a conic. In analogy with this we can ask: what will a
genceral second degrec equation in three variables represent? In Block 2 you have
studied some particular forms of second degree equations in three variables, namely,
those representing spheres, cones and cylinders. In this unit we study the most
general form of a second degree equation in threc variables. The ‘surfaces generated
by these equations are called quadrics or copicoids. This name is apt because, as
you will scc in Unit 8, they can be formed by revolving conic about a line called
an axis.

Alexis Clairaut (1713-1765). a French mathematician, was one of the pioneers to
study quadric surfaces. He specified that a surface, in general, can be represented
by an equation in-three variables. He presented his ideas in his book ‘Recherche
Sur Les Courbes a Double Courbure’ in which he gave the equations of several
conicoids like the sphere, cylinder, hyperboloid and ellipsoid.

We start this unit with a small section in which we define a conicoid. In the next
section we discuss rigid body motions in a three-dimensional system. We shall
constder two types of transformations: translation of axes and rotation of axes. You
can see that a conicoid remains unchanged in shape and size under these
transformations. Lastly, we shall discuss how to reduce the equation of conicoid into
a more simple form. :

Objectives
Alier studying this unit you shouid be able to
& define 2 general conicoid;

© obtain the new coordinztes whep o given toordinate systess ’s translated or
rotated,;

# use the fact that iranslaiion and rotaiion of axes are rigid body motions;
® check whether a given conicoid has a centre or not;

® prove and apply the fact that if a conicoid has a centre, then it can be reduced
to standard form.
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7.2 WHAT IS A CONICOID?

In this section we shall define surtaces in a three-dimensional coordinate system
which are analogous te conic sections in a two-dimensional system,

Let us start with a definition.

Defnitlon: A general second degree equation in three variables is an equation of the
form )

ax’+by? +cz’+2fyz+2pzx + 2hxy+2ux+2vy+2wz-+d = 0, e (D
where a, b, ¢, d, [, g. h,u, v, ware redl numbers and al least one of 2, b, c. f, £.

h is non-zero.

Note that if we put cither z = k, a constant. x = k or y = k. in (1), then the
equation.reduces to a general second degrec equation in two variables. and
therefore, represents a conic,

Now we shall sec what a gencral second degree equation in three variables
represents. Let us first consider some particular cases of (1).

Casel:Supposeweputa=b=c=1landg=h =f=0in(1). Then we get the
equation

x2+y3+23+2ux+2vy+2wz+d=0 v (2)
Does this equation seem familiar to you? In Unit 6 you saw that if

u? + v? 4w — d > 0, then (2) represents a sphere with centre (—f, —p. —h) and
radius V y v +wi—d.

Case 2 : Suppose we put u = v =w =d = 0 in (1), then we rel

ax’ + by’ + ¢z* + 2fyz + 2gzx + 2hxy = 0.

What does this cquation represent? You know from Unit 6 that this equation
Tepresents a cone,

Casce3:Ifweputa=b=1,h=0andz=kin (1}. then it reduces to

X2+ '+ 2ux + 2vy + d = 0, z=k )
This represents a right circular cylinder (see Unit 6, Sec.6.4). -
Similarly you can see that if we putx = kory=kanda=b =1, h = 0, then
again (3} represents a cyvlinder.

We will discuss the surfaces represented by (1) in detail §n the next unit.

The particular cases 1, 2 and 3 suggest thal the poinis whose coordinales satisfy (1)
lic on & surface in the threc-dimensional system. Such a surface is called a conicoid
or a quadric. Algebraically, we define a conicoid as foltows:

Definition : A conicoid (or quadric surface) in the XY Z-coordinate system is the set
§ of points (x. y, z) « B° that satisfy a general second degree cquation in three
variables.

So. for example, il

Fix.y.z) = ax’+hy e +2fyz + 2gzx+ 2hxy + 2ux+ 2vy + 2wz+ d=0

is the sccond degree equation. then

S = {(x.y.z) e R | F (x.y.2)=0)

Note that § can he empty. For example, if F (x.v.2) = x*+y*+2241=0,
then

= - T
S = ey i Fixysn

i
H A

- =0} = & the empiy sel.

Tn such cases we call the conicoid an imaginary conicoid.

Since the above expression is very sengthy, for convenience we often denote (his
conicoid by F (xv.2.) =7,

Note : In [uture, whencver we use the exprassion F (x. y. z) = 4. we will mean the
eguation {1).

In this unit you will sce that we can always reduce F(x. y. 2} to a'much smallér
quadratic polynomial. To do this we need to transform the axes suitably. Let us see
what this means,
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7.3 CHANGE OF AXES

In-Block 1, you saw that a general second degree equation can be traosformed into
the standard form using a suitable change of axes. You also saw that these standard
forms are very useful for studying the geometrical properties of the conic concerned,
Here we shall show that in the case of the three-dimensional systermn also we can
transform an equation F (X, y, z} = 0 into the corresponding standard form by
means of an appropriate change of coordinate axes. As in the casc of the
two-dimensional system, the transformations that we apply are of two types : change
of origin and change of dircction of axes. Let us consider these one by one in the

following sub-sections.

7.3.1 Translation of Axes

Here we shall discuss how the coordinates of a point in the three-dimensional system
get affected by shifting the origin from one point to another point, without changing
the direction of the axes. The procedure is the same as in the two-dimensional casé.

Let OX, OY. OZ be the coordinate axes of a three-dimensional system. What
happens when we shift the origin from O to another point O’ {see Fig.1)?

AT
(X, v, 2)
2
L xy2
;Oll ,7 - fY’
/ 1 /’
1 4
X' ic -",
; 1.
r Yy
0 | c L/ Y
l /
'J'
____________________ &

Fig.1 : Translailon of axes through O
Let the coordinates of O’ in the X YZ-system be (a, b, c}. Let O'X’, O'Y’ and
O'Z’ be the new axes-which are paralllel to the OX. OY and OZ axes. Suppose P
is 2 point as given in Fig.1. Let the coordinates of P in the XYZ- -system be
(x, y,z) and in the X'Y'Z'-system be (x’, y’, z’). We first find a relationship
between z and 2'. For this we draw a line through P, which is perpendicular to the
XQY plane. Let it cut the planes XOY and X'O'Y'in L and L', rcspectwcly
Then we have
PL = zand PL' = z".
From Fig.1 we have
PL = PL' + L'L
Now L'L is also the length of the perpendicular from the point O to the XOQY
plane. Therefore L'L = ¢ ‘
Thus we have z = ¢’ + ¢.
ermlar!v weagety = x Loandy =y + b
Hence if we sh:ft the origin from 0(0 0, 0} to another poimt O (a. b, ¢) without
changing the dircction of the axes, then the new conrdinates of any point
P (x, y,z) with TCSP\-Ct to the origin O’ will be
X'=x-ay =y—band? =% —c¢ ! T (4)
So, for example what will the nizw coordinates (x', vy, z') of apoint P (x y. z) be
when we shift the origin o (2., —1, 1)" They willbe x"=x —~ 2,y =y + 1 and
' =z-1 '

. . 7
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In (5) the group of terms
having degree 2, namely ax* +
by? + ¢2* + 2fyz-+ 2gzx + Zhxy
is called the aecond degree part
of the equation and the group
of the terms 2ux + 2vy + 2wzis
called-the llnear part of the
equation.

When we transform the axes in such a wav. we say we have shifted the origin 10
{2, =1, 1) or translated the axes through (2, —1. 1).

Now, what will the effect of such a transformation be on any cquation in x, v, z7
If. in an equation in the XYZ-system we replace x, y, z, by x"+a. ¥ +b.z'+¢. then
we get the new equation'in the X'Y'Z’ -system. For example, when we shift the
origin to (2, —1, 1}, then the equation of the plane 3x+2y—z = § will be transformed
into 3x'+2y’ — 2z’ = 2,

Note that the respective coefficicnis of x..y. z and of x’. v'. 2’ remain unchanged
under a shift in origin. Thus the direction ratios of the normal to a planc do not
change when we shift the arigin {Recat! 1he definition of dircction ratios from Unit
4.) Can you guess why this happens? This is obviously because we are nat shifting
the direction of the coordinate plancs. we are only shifting the origin.

Now let us consider the cffect of translation of axes on a gencral second depgree
equation,

Theorem 1 : Let the coordinates of a given surface S in a given coordinate system
XYZ satisfy a second degree equation in three variahles. Let.us shift the origin fram
O to another point O’ giving rise to a new coovdinate system X'Y'Z'. Then S is
still represented by a general second degree equation in three variables in the new
coordinale system. )

Proof : Let the given surface S satisfy the equation
F(x.y.z) = ax?+by*+cz’+2fyz+2gzx+2hxy+2ux+ 2vy+2wz+d = 0
For convenicnce we write the equation in the form
F(x,y.z) = Zax’+32fyz+23ux+d = 0 (8

Let (p. q, r) denote the coordinates of Q' in the XYZ-system. Consider now thc
new system of coordinate axes O'X’, O'Y’, O'Z’ parallel to the piven system with
origin O". You know that the reiation between the cnordinates in the original and
new systems are given by

X=x'+p .
y=y'+q o o (B)
z=7z'4r1

Siibstituting these expressions for x. y.zin {5}, we get

Za(x+p)*+E2f(y+q)(2+1) +Z2u(x+p)+d = 0.

Now we expand the above expression and simplify by collecting like terms. We act
ax'2 by ez 2y’ + 2g2 % + 2hx'y + 2u'x 4 2v' v + 2wz’ +d = 0, e (T
where

u'.= (ap + hg + gr) + v

vv=(hp+bdg+fi)+v

w=(gp+fq+er)+w , e (B)
and d"=ap*+bg’+cr+ 2tqr+2grp+2hpg+2up+2vg+ 2wr+d

Let G (X', y’,z") denote ihe expression in the left hand side of (7). Then we see that any
point (x', y’, z') belonging to S satisfics the equation G (x’, y'. 2") = 0, which is again a
gencral second degree equation.

Hence we have proved the result:

If you compare (5) and (7). then you will sec that the second degree part of the

equation remain unchanged whereas the linear part changes, Hence, we can
conclude that

under the transformation of shifting tne origin of a coordinate system, the second
degree part of a genaral second degree cquation does not change,

Why don't you try some exercises now?

El) a) What will the new equation of a right circular cone, with vertex O. axis
OZ and semi-vertical angle o be, when we shift the origin to (-1, 1, 0)?
b) What daes the new equation represent? Sketch the surface.




E2) Obtan the transformed equation of the following equations when the origin
' is shifted to (1, —3, 2).
a) x>+ ¥y + 22— 4X+ 6y — 27 +'5 = 0.
" b) x* — 2y* — 3z = (. :

Let us now consider the transformation in which the direction of the axes is changed.
For this we need to understand the concept of a projection. So let us first see what

a projection is.

)

7.3.2 Projection

In this section we shall talk about an important concept in geometry. This concept
has cven been used by artists through centuries for giving depth to their works of
art. Let us define it.

Definition : Let A be a point in the XYZ coordinate system.,
The projection of A on a line segment PQ is the (oot of the perpendicular drawn
from the point A to the line.

From Fig.2 you can see that the projection of A on PQ will be the point O where
the plane through A and perpendicular to PQ meets the line PQ,

e

Q 0 P

d

Fig. 2: Prn]écllon af the point A on the line PQ Is &

Definition : The projcciiﬁn of aline segment Al3 on i line P'Q is the sepment A° B
of the line PQ. where A’ and B’ are respectively the projections of the points A
and B on the line PQ. (see Fig. 3) '

\\ : A

e

P
Fig. 3 : The Prujection of the line segment AB on the Line PQ Ls the line segment A'B"

Genergl Theory of Canlcald:
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Remark : From Fig.4 you can scc that the length of A’'B* = |AB| cos6. wherc 8
is the angle between AB and A’B’ We also call this number the projection of AB
on PQ.

So what will the projection of BA be? 11 will be [BA| cos.(r + 8) that is — AB
cos@. This shows that the projection can be positive or negative depending upon the
direction of the line secgment.

Whenever you come across the term projection, from the context it will be clear
whelher we are referring to a linc segment or a number.

We shall now state a simple result which we shall need white discussing rotation of
axes.

Theorem 2 SllJpposc AL A, » A, are n points in space, Then the algebraic sum
of the projections of A A,, AyA;, ....... » Apo1A, on a line is equal to the projection
of A, A, on that line.

We will not prove this result in gencral here; but shall give you a proof in a
particular case onlty. The proof, in any situation, is'on the same lincs.

Proof: Consider the situation in Fig.5 concerning 4 points A, A;, A, A, and their
projections A';, A’, A"y, A, on a given line L.

' ' '
A 3 A 1 A 2 AI‘
- Fig. 5: Projectlons of the line scgments AjA;, A;Ay A\, on o given line 1.

Then
ANAL +FALA T+ ABA L= ATA, — (AALATAD) + (ALAY +
AflA‘: =+ ArzAfd) = A,]A’J,
This shows that the sum of the projéctions of the line-segments A\ A,, ArAq. AAg,

is cqual to the projection of A A,. So, we have proved the result for the situation
in Fig. 5.

Now consider another useful result involving projections.

Theorem 3 : Let P (x, ¥y, %) and Q (x3, v, Z3) be two points in the XYZ coordinate
system. Then the projection of the lire segment PQ con a line with direction cosines

I, m, n is given by

I N L T L ST Y

WAy TR Y YR T2y — gy i

Proof : In Unit 4, Sec. 4.3.2, vou have seen that the direction ratios of the linc

ioining P and O are (x, — xy), (v, — viholm — 7).

[F

Let {PQ| denote the distance between P and Q, i.e.,

1 PQ [ = Vi(x, ~ %) ¥ (v =yt (7 )
Then the direction cosines of the linc segment PQ are
Xy — X Y20 3, -4

[PQ| IPQ] {PQ|

Let 8 be the angle between the lines PQ and L. Then the projection of thc line
segnient PQ on the line L is |PQ| cos 8. But, from Unit 4, Sec. 4.3.3, we have




L X~ X -
cosb = = h, 2 Y1m+

_ [PQ {PQ| [PQ|
Therefore, the required projection = (x; — X)) + (yz — yi}m + (z; — 2))n

Zi— 4
g

For example, what;will the projection of the line segment joimng O (0, 0, 0,) to the
point P (5, 2, 4) on the line haying 2, —3, 6 as its direction ratios be ? We know that
the direction cosines of the line with directionratios 2, —3, 6 is.

2 -3
V @+ (SR 6F V@ + (=3 (OF
: 6
V(2P + (=3P+(6)?
. -2-36
1.¢. ﬁ’ 7, '? )
Thus, the projection of OP = 5 X % + 2 X (-%) + 4 x % = 4.

Now here is an exercise for you.

E3) Let P(6, 3, 2), Q(5, 1, 4), R(3, —4, 7) and S$(0, 2, 5) be four points in space.
Find the projection of the line segment PQ on RS,

Now we are in a position to discuss how. the coordinates in space are affécted by
changing the direction of the axes without changing the origin.

7.3.3 Rotaton of Axes

Let us now censider the transformation of coordinates when the coordinale sysiem
is rotated about the origin through an angle 8. Let the original system be OXYZ.
Suppose we rotateé the coordinate axes through an angle 8 in the anti-clockwise
-diregtion. Let OX’, OY’, OZ’ denote the new coordinate axes (see Fig. 6). Suppose
the direction cosines of OX', OY’ and OZ’ be I;,m,, ny;

Ly, 0y, I3,m15, 13, Tespectively.

Tt '
X
iy
Flg.6 : The axes OX*, OV and 7" are ohteined by rolnting the nxes OX, OV and OZ Ihrough an anple 0

Let, P be any point in space having coordinates {x, y, z) and (x’, y", z") with respect
to the old and new coordinate systems. Let PN be the perpendicular from P on
OY'. Then

ON = y'

The line segment ON is also the projection of OP on the line OY with direction
cosines I,, m,, n,. Therefore, by Theorem 2, we have :

CON = (x=U); + (y=0)m, + (z—U)n,.

Ceenernl Theary nf Coanfenide
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Hence we get

y' = xb + ymy, + o, : e 9
Similarly we can show that

X' = xl + ym + 20 11}
and .

2= xh 4+ ymy 4+ o2y .. (1

Therefore given (x, y, z) and the direction cosines of the new coordinatce axes, we
can get the new coordinates (x', y', z') using equations {9}, (10) and (11)

Now how can we find x, y, z in terms of x’, y’, z'? For this we draw PM
perpendicular to OY (see Fip.6). Then Sy

OM =y

OM is also equal to the projection of OP an OY. Now let us see what the direclion
cosinies of QY with respect 1o the new coardinate axes OX'. OY'. OZ' are. We
know that the direction cosines of OX!, OY’, OZ' with respect 1o OY arc My, B

and m,. Do you agree that the direction cosines of QY with respect to OX’. OY",

OZ' are also my. my, mY(We leave this as an exercise for you 1o verify.) Therefore,
by Theorem 2, we get
Y =0M= (=0 + (y — Oy + (2 — ),

e,y = mx" + my + mz' L2
Similarly, we get

x =4Lx' + Ly + hz' L
and

z=nx" 4+ ny + mz' - 1)

Hence (12), (13) and (14) give the coordinates of x, y, z in terms of x’. y and z'.

You may find that these equations are not easy to remember. For easy reference,
we arrange the equations in a table, as shown in Table 71,

Table 1: Transformalion of conrdinates

X ¥ z
x’ f moooom
y' {: i Ha
z' R TN

Note that for finding x, y, z we make use of the elements in the respective cotumins,
and to find x', v’ and z' we make use of the clemenlts in the respective rows. .
Let us consider an cxample.

Example 1 : Find the new equation of the conicoid

3x* + 5y? 4+ 322+ 2yz + 2zx + 2xy = |

when the coordinate system is transformed into a new sysiem with the same oy
and with the coordinate axes having dircction ratios =1, 0. 12 Lo =1, 100, 20 1 with
respect to'the old system,

Solution : The given surface is

3%+ Sy? 4 327 4+ 2yz + 27x 4+ 2xy = | L1359
Let OX' Y™ Z' be the new coordinate system. Then the direction cosines of X',
OY' and OZ' with respecl to the original axes arce

—]. 0, —1: —l :]: —[: I; —g: —]; respectively,
V2 V2 VI VB V3 Ve Ve V6

We form the transformation table:

N ¥ z
%' ! ) !
— — ( _—
VT VT
) ] -
¥ - - -
VIO V3 V3
1 i H
] - 1
z — | = =
VR Vi Ve
From the table we have
1 I . | .
X = — XX+ — Xy + — Xz
V7 V3 vV

r '

X ' Z
_ 4 4+ —
Vo2 Vv 3 VoG
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VI V6
and z = . + —)‘i _Z
2 vV o3 V' 6

To find the new equation, we substitute the expressions of x. y. z in a (15). Then we

get
. y' z .,
- GroErtve Y - g 7‘)+3(7“ Nelve
yooo2w X’ y' z' x' ¥ z'
+2 (- {7‘3;-'-%—)( \/h_T \/—_4' /—_)"‘(\/—__"'v—,-_ \7—?)
( x! N }'* z' Y42 ( - x_’ }’_ )‘__ ¥y 2z' ) =1
V7 \/_ V& \/T \/" \/— \/‘ V&

Simplifying cach term of the above expression and collecting the cocfficients of like
terms, we gel

2% 4 3y 4 627 = 1.

This is the new equation of the conicoid.,

You can do the following cxercises on the same lines.

E4) Find the new equation of the tellowing conicoids when the coordinates system
is changed into a new system wilh the same oripin and dircction ratios 1, 2,
[, =2, 1; 4,1, —2; with respect to the old system.
a) ¥ =5y + 28 =1
b) X +y 4+ 27 -2y —2yz -+ 2zx + X ~y 4.z =0

E5) For the conicoid in Example 1 and E4, calculate the surn of coefficients of the
square terms in the original equation and in the new equation. Can you infer
anything from the ouicome?

E6) What will the new equation of the plane x+y-+2 = ( be when the coordinate
system XYZ is transformed into anoiher coordinate system X'Y'Z’ by the
following equations?

X = — +

E7) Does a cone remain a cone under rotation of axes? Give reasons for your
answer.

Now let us consider the eftect of rotation of axes on F(x,y,z) = 0.

Theorem 4 : Let § be a conicoid satisfying a second degree cquation in a coordinate
system XYZ is transformed into another coordinate system X'Y'7’ hy the
direction of axes, without changmg the origin, § will stil be represented by a second
degree equation.

Proof : Supposc S is represented by the sccond degree equation
Sax? + 2%fyz + X 2ux + @ =  in the XVZ—systems.

Let &y, my, ny; by, my, ng by, m13, 1y be the direction cosines of the ncw coordinate axes
OoX’' oY, 0OZ' resPcctwely Then you know that the coordinales (x, y. 2},

(x'. y', z’) of a point in the old and new system respectively, satisfy the following
relationship.
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x=Nx'+ Ly + Lz"
y=nrmx' + my + mz’
Z=mx + ny + nyz'
Let us substitute these expressions in the given equation. We consider the second
degree parts and linear parts of the equation separately.

The second degree part is Sax* + 2Zfyz. When we substitute the expressions for
X.y,z in this part, we get

{(hx' + by +T1z') + 2(mx’ + my' + omy2’) (nx + ngy' + nz') }

The coefficient of x'? in the above expression is

(al? + bm? + cn? + 2fmgn, + 2gmil, + 2hlym,),

Similatly the coefficient of y'? in'the ahove expression is

(a} + bm3 + cn? + 2fm,n, + 2gny, + 2hl,m.,).

and that of 22 is

(all + bmi + cnd + 2fmany + 2ghyly + 2hlymy),

Similarly we collect the coefficients of y'z*, 2’x’ and x'y’ Then we get an expression
of the form ‘

a’x? + b'y? + ¢'2? + 2f'y'z’ +2g'7'x" + 2h'x'y’ ..(16)
You can also see thal the linear part becomes

u'x + vy + w'z (17
Where

u' =l + vy + wn,

v' = ul; + v, + wn,, and

W= uls + vmy + wn,

From (16} and (17) we see that the transformed equaticon is a gencral sccond degree
equation.

Now looking at expression (17), can you say anything about the change in the
constant term? It remains unchanged under rotation of axes. Another intcresting
fact that you may have obscrved in the proof above is given in the following exercise.

E8) Supposc that the second degree part Zax® + 2Zfyz of a general second degree
cquation transiorms into £ a'x"%, + 2f' y'z" under rotation of axes. Show that
a+b+c = a’+b'+c". '

_

Well, let us see what we can gather from Theorems 1 and 4. They say that if a
conicoid S is represented hy a second degree equation F(x,y,z} = 0 in one coordinate
system, then it is still 1epresented by a second degree cquation in any other
coordinate system obtained by a translation or rotation of axes.

Thus .

a conicoid remains a conicoid under transiation or rotation of axes.

In lact, every geamceirical fipure remains unchanged in shape and size under
translation or rotatios: of axes. Therefore these transformations are called rigid hody
motions.

In (his section we have discussed 1wo important transformations of a'three-
dimensional coordinate system. We also said that the importance of these
transformations lies in the fact that we can use them to reduce any general second
degree equation in variables into a simpler form. Let us sec how this happens,

In this seciion we shall show that by siitanly applving the rransfarmations tiat we
have discussed in the previous section, we can write the general equation of a
conicoid in a simpier form.

Let us consider a conicoid given by the equation
F(x.y, z) = Zax’ + 2Zfyz + Z2ux + d = 0

Let us assume that there exists a new Cartesian coordinate system, obtained by
translating the origin, in which the linear part of F(x.y,z) = 0 vanishes. You will
see that this is possibic on {or a particular type of conicoids.
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Let the coordinates of O be (X, Yo, Zo) in the new system. Then we know that jn onbeold

the transformed equation, the sccond degree part is un.:anged and the linear part
becomes

u'x’ + vy +w'z

where u', v' and w' are as in (8). We have assumed that the lincar part vanishes,
;Therefore u’ = v = w' = 0. This means that we should have

axg + hyg + gz +u =0

hxg + by + [zg + v =0

gxo + fyo ¥ czp + w =10

In other words, (Xa, Yo, Zo) is a solution of the system of cquations

ax +hy+g+u=0

hx +by+f2+v=20 ' -..{18)
gx + fy +cz+w=0

If the system of equations (18) sras a solution for (X, Yo, Zo} eR”. then the point,
(%o, Yo» Z), is called a centre of the given conicoid and we say that the conicoid has
a centre at (Xg, Yo, Zo)- You will understand why this is called a centre later in Unit 8.

Now let us assume that the given conicoid S has a centre. We-transfer the origin -
to the centre (Xq, Yo, Z). Then the transformed equation becomes

Tax? +.2%fyz + 2u' x + vy + 2wz + d' = 0.

(Recall that the second degree part does not changc by shlftmg the origin.)

Since (Xo, Yo. Zo} is a solution to (18), we see that v’ = v’ = w' = 0. Therefore,

the above equation reduces to

(Zax® + 2%fyz) + d' =0

This equation does not have any linear part.

We have just proved the foliowing result,

Theorem § : Supposc thal § is a conicoid which is represented by a general second
degree equation F(x,y,z) = 0in a coordinate system X'YZ. Suppose that S has a
centre Q' (i.e. the system of equations (18) has a solution (%, Yo, Za)). Then, by
shifting the origin to the ceritre Q, the equation assumes the form

ax? + by? + cz? +2fyz + 2gzx + 2hxy + 4’ = 0 ——
in the new coordinate system X'Y'Z’. Sce Block 2, MTE-04 for

ide simultancous linear eguatians,
Let us consider an example. -

Example 2 : Consider the conicoid given by the equation
2% + 3y? v d2? — 4x — 12y ~ 24z + 49 = 0.
Does it have a centre? If so, find it.

Solution : The given equation is
F(x,y,z) = 2x* + 3y* + 422 — 4x — 12y — 242 + 49 = 0

We shall first check whether the given equation has a centre or not, that is, if the

system of equations (18) has a solution or not, Herea=2,b=3,c=4,u = -2,
v = -6, w = —12, Then we have

2x—2=0

Iy -6=0

4z —-12=0

This set of equations has a solution, namely, (1,2,3). Hence, (1,2,3) is a cemire of S,

Note : Let us go back to (18) for a moment. There we saw that if the system of
equauons has a soiution {Xg,¥p.20), Then th,yg,zg) is a cenire of ihe conic. in Umi
5 of the course ‘Elementary Algebra’, you have seen that the system of equations
has a solution if

h b
=|h b f'iv‘ﬂ
i ci

In fact if A # 0, then there exists a unique solution.
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Why don’t you try some egercise now?

E9) Check whether the fcllowing conicoids have a centre or not
a) 3x* + 7y* + 322 + 10yz —2zx + 10xy +4x —12y +4z+1=0
B) X +y? 428 — 2yz + 2zx — 2Xy — 2x + 2y — 2z — 3 = 0.
€) SX2+ 6y — 2 =0

E10) Find a centre of the cohicoid :
© 14x% + 14y’+ 822 ~ dyz ~ dzx — Sxy + 18% — 18y + 5 = 0. What will its
new equation be if the origin is shifted to this centre?

We shall now state a theorem without proving it. To prove this we need some
advanced techniques in calculus which are beyond the scope of this course,

Theorem 6 : Suppose S is a given conicoid whose equation is given by F (x,y.z) =
ax2+by2+cz:+2f'yz+2gzx+2hxy+2ux+2vy+2wz+d=0.

with respect to a given system of coordinates XYZ. Then there exists a new
Cartesian coordinate system X'Y’Z' obtained by rotating the axes of the given
system XYZ, without shifting the origin, such that the representation of S in the
new system takes the form

G(x'.y'2) = a’x’ 24b'y? + ¢’z 2u'x’ + 2v'y' + 2wz’ + d' = 0,

That is, the new equation does rot contain the product terms. vz, zx and xy.

Combining Theorems 5 and 6 we have the following result.

Corollary I : Let S be a cotiicoid given by the equation F(x,y,z) = 0, which has a
centre O’ in a coordinate system XYZ. There exists a new coordinate system
obtained by shifting the origin from O to O’ and then Tolating the system about
O', in which the equation takes the simpler form
a:xfz + b;yr_: + sza?, 4+ d = 0 (19)
It d" # 0 then we can divide throughout by d’, and we get the form
ax’ + by’+ ezt =1,

a! bf cf
wherea== — b=- —andc=- —,

d’ d’ d’
(19} Is called the standard equatlon of a conicoid .

Recall that in the case of the two-dimensional system also we have scen that we can
reduce any second degree equation into a simple form.

Let us now consider some cxamples.

Example 3 : Show that the conicoid given by x* + 2yz — 4x + 6y + 2z = 0
has a centre. Reduce it to standard form by shifting the origin 1o the centre, and then
rotating the axes to get a new system in which the direction ratios of the new axes
are given by
o1 1 1 1 1 . 1
'—2 1 ,_-_2 ¥ 1 ,_2 r .—2 ] 1 T’ .—2

with respect to the original coordinate system.

Solution: Herca=1,b=0,c=0,f= LLg=d,h=0u=-2,v=3 w=2.

We first check whether the conicoid has.a centre or not. Using (18) we sce that
(2,0,0) is a centre of the given conicoid.

Shifting the origin from (0,0,0) to {2,005, we get ihe new £quarion as

4+ 29z - 4=90

Now we apply a rotation of axes 10 the new cquation. We note that the dircction

TosiNCs of the Aew aXey are
0, - — L R DL D
V2 VT VI VEvE vr A
From Sec.7.3.3 we have

—_—
—

N
4

X = —




1 1

: 1
z = xr 4 —— e z|l'
V2 V4 V4
Substituting these equations in the given equations of the conicoid, we see that

(._y,+_ir)2+2 -——lx'+-—'—_!‘z,)(_lx'+""1}"" 1
SVETVZ ST vE T vaE VA
2'? .

..——'x'z-—4=0

2

Lie y?+z? -t =8

2
ie. R
P

which is in the standard form’

Now here is an exercise for you.

— z') —4 =0,

i

EI1) Find the standard equation of the following conicoids.
a) x2+y*+2z'—2x—2y—2z—1 = 0, by shifting the origin to the centre.
b)  3nt+5y2+3z—2yz+2zx—2xy+2x+12y+102+20 = O, by shifting the
origin to the centre and then rotating the system so that the direction ratios -
of the new axes are
-1,0,1; 1,1,1; 1,-2,1.

We will stop our discussion on general theory ot conicoids tor now, though we shall
refer to them off and on in the following units. In the next unit we will discuss the
surfaces formed by (19).

Let us now do a quick review of what we have covered in this unit,

7.5 SUMMARY

In this unit we have covered the following points:
1) "A general second degree equation in three variables .
ax? + by? + cz? + 2fyz + 2gzx + 2hxy + 2ux + 2vy + 2wz + d =0

represents a comnicoid. )

2) Translation of axes: the transformation of a coordinate system in which the
origin is shifted to another point without changing the direction of the axes.
The cquations of transformations arc given by

x‘=x’+a
y=v +0b
z=12"+¢

3) Rotation of axes: the transformation of a coordinate system in which the
direction of axes is changed without shifling the origin. The equations of
transformation are given by the following table:

x | vy [ =
x’ )l. iy 1y
y' L my; 1 M
7t h 1 mym

where I, m;, m,i = 1, 2, 3 are the direction cosines of the axcs.
4) A conicoid remains a conicoid under a translation or rolation ot axes.

5) There is a Cartesian coordinate system in which the equation of a conicoid with
a cenire lakes the standard form
a'x'? 4 byZ 4+ ¢zt +d =0

"And now you may like to check whether you have achieved thc ohjectives of this
unit (see Sec.7.1). If you would like to see our. solutions to the exercises in this
unit, we have given them in the following section.

General Thenry of Conicokis
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7.6 SOLUTIONS/ANSWERS
ET)a) In Unit 6 of Block 2 you have scen that the cquation of a right circular cone
) with vertex O, axis OZ and semi-vertical angle a is
x4+ ¥ = z4an? a.
When we shift the origin 10 (—1.1,0), then the coordinates in the new syslem
are given by .
X' =x+1, Y =y—1, 7' =z, :

ie.x=x"—1 y=y+1, z=12' -
Substituting for x,y,z in the given equation of the cone, we get
(x'=1)+(y'+1)* = z'Mtan’a,

b) This equation represents a right circular cone with vertex at the point (—~1.1.,0)

axis along the line parailel to the z-axis through the vertex and semi-vertical
angle « (see El in Sec.6.2 of Unil 6, Block 2).

E2) The equations of transformation are given by

E3)

Xx=x+1,Y =y -3, z=2'+2
a) the given equation is

X2+y 4+ 22— dx+6y—22+5 = 0

Substituting for x,y,z, in the above cquation, we get

(X H1P+(y =3+ (2 +2)P—4(+ D +6(y' =) ~2z' +2} + =0
Simplifying, we get

X4y bz 2" +22" -7 = O

which represents a sphere

b) The transformed equation is

C X2y 42—y =32 =7 = 0.

The direction ratios of RS are —3. 6. —2.

Therefore, the direction cosines of RS are —%. t—'} —%.
Hence the projection of PQ on RS is

_ _3 3y x & - _ho3oz_4_ 13
(56)x(7)+(] 3)x?+(4 2) x ( 7)‘7 5=9= 5.

E4) a) The given equation is

x-5y? + 22 = | .

The direction ratios of the axes are given by

L2,3; 1, -2, 1,4, 1, -2

Therefore the direction cosines of the axes are given by

X Y z

) 2 3
X J— J— -
14 vid . 14

, 1 -2 |
v _ z __
3 Ve )

_ 4 i -2
B AT VTN il

le—k,-+_1_,+_3?_.
Via T o7 gy
y=i-xf—_£y»51_.
7R TV T
z=im’+—l—y'*—2—z’
V14 T




Substituting this in the given equation, we get

4 2 2, .
(I—x'+ ]—y‘+—z')2 -5 (—x"- —y + —2z2')
vz - - Vs V21 | Via 3 V21
Ly - 2 z : =1
(% v v
Stmphfymg we pet
i x:z 3y12+ E ZJZ 48 xryl 24 . J L 24 ¥z’ = |
14 21 VIdVE V6 Vf V21 V4
b) The new equationis x'2 + y'2 + 7’24 & y'z'-— & xz' =1

Ve V2T V2l V4

E5) From E4(a) we get
a+b+c = =542 =
and a’+b’+c" = 10 12 + i‘? -3
This show that under rotation the sum of coefficients of the square terms
remains unaltered in value, i.e., a+b+c = a’+b'+c’.

Similarly you can observe the same for E4(b) and Example ! also.

E6) -From the given equations of rransformations we see that the coordinate system
is changed into another coordinate system with the same origin and the
direction cosines of the new axcs, with respect to the old system, arc given by

12 F 1 1 1

To get the new equation, we substitute the values of x,y,z in the equation
x+y+z = 0. Then we get

r f

_E._+_.L+z__£_+i+i__Y_+z_=0.

V& VI VI V& VI V§ VI V3
Therefore under the transformation the plane x+y+z = 0 becomes the plane
z' =0,

E7) Yes. This is because with vertex at the origin is represented by a homogencous
second degree cquation.
ax’+by?+cz?+ 2hxy+ 2fyz+2gzx = 0.
Now, from the proof of Theorem 2, we see that under rotation of axes, the
above cquation becomes
a'xX"+b'y T+ 2+ 2R Ky + 20y 2 +2g2'x = 0,
which is again a homogeneous second degree equation.
Therefore, it represents a cone.

E8) From the proof of thecorem 2, we have .

a’ = an’,2 + bJrM,2 + cw,1 + 2fmny + 2gn 1, x + 2hhm,

b’ = afz + bm2 + cnz + 2fmyn, + 2gn; L, + 2hiym,

a..f_—, + bm; + CH3 +. me3n3 + Zgn3 [3 + 2h!3m3

then a + b+ ¢ =a(l+ L+ ED) +b(mt+  myt 4 mat) + c(n)?
+ 1t + ) F2(myny + oy + omy ong) +2g(n)l +
n!rz +‘ n3f3|)-+ 2h(‘!,m| + !2??12 =+ f_-;m;)-
We know that

3 3 3
CE f=1= X mi= Z u

=1 i=1 i=
{see Unit 4, Block 2),

Also, since the axes are mutually perpendicular, by condition for
perpendicularity given in Unit 4, Biock 2, we get

General Theary of Conlealds
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Therefore, we geta’ + b' + ¢’ =a + b + ¢

E®) a) We have to see whether the following system of linear equattons is

E10) The cenicoid has a centre at {—

Ell)

consistent or not,
ax+hy+pgz+u = 0
hx+by+fz+v = 0
gx+fy+ez+w =0
Herea=3,br=7,c=3,f=5g=-1.h=5u=2v= —6
w = —2. So we have )
I+Sy—z+2 =0
Sx+7y+5z2—6 = 0
—x+5y+32-2'= 0
On solving this system of equations, we find that it -has a unigue solution
" given by x = % y = — -.11 and z = -g '_I'hcrcfciw the givc'n conicoid has a
- Wl Lay
unigue centre a} .( 3 "3 3.)
b) This conicoid has infinitely many centres.
c} This coniceid has no centre since the system of equations (I8) is
incensisten in this case. )
%. % 0). Now we shift the origin from (0,0.0)
to (—‘%, %, 0). The equalions of transformation are

x=1x -;.l_--"y‘.: y' + .I._ 7z =7
Substitutinig for x,y,z in the given equation, we get the new cquation as
14x2+ 14y* 4+ 828~ 4yz—dzx ~8xy = 4

a) We know that the given equation represents a sphere with centre af
(1.1.1) {see Unit 5). Then by shifting the origin to the centre we get the
standard equation as
x2+y?+z'? = 4,

- b) The given equation is

3x%+5y2+ 32— 2yz+ 2zx — 2xy+ 2%+ 12y +102+20 = 0.
We first check whether the conicoid represented by this equation has a
centre. .
Herea=3,b=Sc¢=3h=-lg=1 f=—-l,u=1v=%
w = 5and d = 20. The system of cquations for transformations arc given
by
3x—y+z+1 =0
—Xx+3y—-z+6 = 0
x—y+3z+5 =0
Solving lhcselz cqusalior;sg we get x = —é, y = —% andz = — l%. Hence a
ceatre is (—»t, —35 _'E)'
Now we shift the origin to the centre. Then we get the new egquation as
3x* + 5y*+ 32— 2yz + 228 — 2xy + d' = O,

| Where d' = 3 (—g +5(-37 +3(= 137 <2(-3) (-13) wa(-13) (-]

1, 5 1 5 13 6 6 6

*2(—3) (—5) +2 (-a) +12(—§) +10{— 6) + 20.
Now we apply the rotation of axes. The cquations of transformation are
X = =x'+y4z
y =y~
z=X'+y'+z'
Substituting for x,y,z in the given equation of the conicoid, we get
3(=x"+y'+2) + Sy 22V x4y 'Y - 2y =22) (x' 4y +a) +
20x'+y'+2) (=x"+y'+z2") =2 (=x"+y'+2) (v'~22') + &' = 0
e, dx*+ %' + 3622 + d' = 0
This is the standard form of the given conicoid.
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8.1 INTRODUCTION

In the previous unit you were introduced to certain surfaces in a three-dimensional
system, which are called conicoids or quadric surfaces, There we discussed some
gencral theory of conicoids and showed that a conicoid remains a conicoid under -
translation and rotation of axes. You also saw thal some conicoids possess a centre
and some don’t. Based on this the conicoids are classified into two types — central
and non-central conicoids. In this unit we shail concentrate only on central conicoids,

We first observe that a central conicoid can be reduced to a simpler form by an
appropriate change of axes. Then we use these simpler forms to discuss the
geometrical properties of different types of central conicoids. You will see that there
are four types of central conicoids — cone, imaginary cllipsoid, ellipsoid, hyperholoid
of one sheet and hyperboloid of two sheets. You have already studied cones in
detail in Unit 6. The remaining three real conicoids are the three-dimensional versions
of the central conics that you studied in Block 1, namely, ¢llipses and hyperbolas.

Ancient mathecmaticians like Euclid, Archimedes and Appolonius were lamiliar with
the above mentioned geometrical objects, though they did not study them
analytically. The analytical study of thesc objects started much later, with the
application of the three-dimensional coordinate system to geometry. The first
mathematician to suggest the extension of the two-dimensional coordinate system
to three dimensions. was the Swiss mathematiciap John Bernoulli (1667-1748). But
the actual application*of space coordinates to geometry was donc by another Swiss
mathematician Jacob Hermann (1678-1733). He applied them to obtain the cquations
of several types of quadric surfaces.

Even though we are only concerned with central conicoids in this unil, in the first
section we shall consider some necessary general theory of conicoids which we have
not covered in the previous unit. We shall define a centre of a conicoid and obtain

a characterisation for central conicoids. Then we shall discuss the four different
types of central conicoids in separate sections, We will end this unit with a discussion
on sections obtained by intersecting a centrai conicoid by a fine or a piane. In ths
connection we also discuss tangents to a central conicoid,

In ihe nexi unit we wiii tackic non-centrai conicoids. Tnat will be easicr for you to
grasp if you ensure that you have achieved the objecrives given below.

Objectives )

After studying this unit you should be able to :
- @ check whether a conicoid is central or not if you are given its equation;
® obtain standard forms of an ellipsoid, hyperboloid of onc sheet and hyperboloid
of two sheets; 21




-Conlcolds -

-ig. 1: A ¢ylinder wiih %-axis 08 axds,

trace the standard forms of the above mentioned three conicoids;
ohtain tangent lines and tangent plancs at a point to a central conicoid;
check whether a plane is a tangent plane to a conicoid or not;

use the fact that a planar section of a central conicoid is a conic.

% a0

8.2 A CONICOID’S CENTRE

In the last unit you saw that a point P is called a centre of a conicoid F(x,y.z} =0

if its coordinates satisfy a system of lincar cquations (sce Equations (18) of Unit 7).
In this unit we define a centre peometrically and then see (he relationship hetween
the geometrical and analytical definitions. Let us start with a theorem. (We shall

not prove it herc, but we have discussed it in detail for a particular type of conicoid
in Sec. 8.7.)

Theorem 1 : Any line intersects a conicoid in two points, which may be distinct real
points, coincident real points or imaginary points. .
Note : If a line L intersects a conicoid in imaginary points, then we say that L does
net intersect S,

Let us consider an example.

Exemple 1: Consider the conicoid given by

ax? + by*+ cz* = 1, a,b,e, # 0.

Let P(x,, v, 2;} be a point-on this conicoid and O be (0,0,0).

Show that the other point of intersection of the line OP with the conicoid is
P'(=x), — 1. —2)). '

Solution: You know from Unit 4 that the equation to the line passing through the
points (0,0.0) and {x;, ¥, 2,) is

X =¥ _2 '

X3 Y1 -4

Clearly, {(—x,, —y;. —2;} lies on this line. You can easily verify that if (x,. ;. z,}
satisfies the equation ax® + by? + ¢z’ = 1, then (-x,, —y,,"—z,) also satisfies it.
Hence, P’ {(—x,. —y;, —2,) is another point on the conicoid and line OP. But hy
Theorem 1, there are only two points of intersection. Thercfore P and P’ are the
points of intersection. B

The above example shows that any line through the origin Q meels the conicond
ax® + by’ + cz? = 1 in two points which are equidistant from O. Such a point O is
called a centre of the conicoid, according to the following definition,

Definition ;. A point p is called a centre of 8 conicoid S if every line through P

i} intersects S in two points such that P is the midpoint of the line joining these two
" points, or

ii) does not intersect S at all,

Note that the definition is analogous to the definition of a centre in the
two-dimensional system.

Using the above definition we can casily say that the origin O(0,0,0) is a centre of
the sphere x* + ¥* + z* = 1. Does this sphere have any other noint as centre? If vou
do El, you'll be-able to answer this.

El) Show that (-u, —v, —w) is the only centre of the sphere
x>+ y 478 4+ 2ux - ey + 2we + d = Q.

E2) Shéyﬂ that every point on the z-axis is a centre of the ¢ylinder
x* + y* — 2 = 0 (see Fig.1).

N




Next, we shall prove a result which tells us something about the equation of a
conicoid with the origin as a centre.

Theorem 2 : The origin O is a centre of the conicoid
ax? +. by’ + cz’ + 2fyz + 2gzx + 2hxy + 2ux + 2vy + 2wz + d = O w1
ifand only ifu=v =w = (. .

Proof : Suppose that u = v = w = 0. Then the given equation of the conicoid takes
the form

ax? + by? + cz? + 2fyz + 2gzx + 2hxy + d = 0.

Suppose L is any line through O. Then, by Theorem 1. the line intérsects the
conicoid at two points, say P and Q. Now we have to show that O is the midpoint
of PQ.

Let the coordinates of P be (x;, y,, ;). Then we have

ax)? + by? + czf + 2yz + 2g2, x; + 2hxyy, + d = 0.

We can rewrile this equation as ‘

a(=x Y +b(=y1)* + c(—z ) +2(=y\) (~z))+2g(~2) {(~x)) + 2h{—x)) (-=y,)) + d = 0,

This shows that {~x,, ~y;, —z;) lies on the given cenicoid. Further, you can see
that the point {(—x,. —y,, —2}) also lies on the line OP. Hence the point Q must be
{—x;, —¥1, —z;). This shows that O is the midpoint of PQ.

The above argumenl is irue for any line L through O. Hence, O is the centre of
the conicoid. " ‘

Conversely, suppose that O is a centre of the conicoid given by (1), Suppose P is
any peint (X, vy, Z)) lying on the conicoid. Then the point P’ (—x,. —y,. —z,} also
lies on the conicoid, since O is the centre. Then we have

ax,> + by? + cz;? + 2fyyz, + 2gz,x, + 2hxyy, + 2ux, + vy, +

2wiz; +d =0 : ....(2)
and .

ax,’ + by,? + cz,? + 2fy,z; + 2g7x, + 2hx,y, — 2u)x, — 2vyy, —

2wz, +d =0 ' ()

Subtracting (3) from (2) , wc get

ux, + vy, + wz; = 00

This shows that (x|, yy, z)} lies on the plane ux+vy+wz = (. This is truc for any
point (%, y,, z;) on the conicoid. But how can every point on a conicoid lie on the
plane ux + vy + wz = 0? This can happen only if u = v = w = (.

Hence the result.

Does Theerem 2 give you an inkling about why a centre is called a centre? You
can see this [act in the following note.

Note : Supposc the origin is a cenire of the conicoid §. Then we have scen that if
a point P(x,, y;, ;) lles on §, then P' (—x,, —y;, —z) also lics on S. This means
thal if a conicoid S has a centre at the origin, then S is symmetric ahout the centre.
This is why such a point is called a centre (sce Fig. 2).

Fig. 2 : The Palr of points P ond P ore symmeiric about the centre O of the conlcold.

Now here is an exercise for you.

Cantrir! Canlosd
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E3) Which of the following conicoids has a centre at the the origin?
ay x2+y*+22~ 23 =0
b) 2%+ 3y —z2 =1
c} 14x% + 26y? + 2V 9122 = 1.
d). 41x? — 28y? = 0.

In Unit 7 you saw that the existence of a centre is connected with the solvability of
a system of equations. In the next thcorem we estahlish this fact.

Theorem 3 : A conicoid S, given hy the equation
F (x,y,2z) =-ax? + by? + cz + 2fyz + 2gzx + 2hxy + 2ux + 2vy + 2wz + d = 0,
has the point P (%o, Yo. Zo) 'as a centre if and only if

axg + hyg + gzo + 1 =10
th+an+ f20+v=0 ....(4)
0.

- Xy + fyp +czyg + w =

Proof ; Let us first assume that P (xg, yq. Zo) is 2 centre of the given conicoid in the
coordinate system XYZ. Now let us translate the origin from O to the centre.P.
Then from Unit 7 you know Lhat the equation of the conicoid in the new coordinate
syslem is given by
ax™ + by'? + cy't + 2fy'z’ + Zgz'x' + 2hx'y' + 2u'x' + vy + 2w +d =0
....(5)

where
u’ = axg + hyy + gz + u
v' = hxp + by, + Tzq + v

gx0+fy0+czn+w
and
d' = axi + byl + czd + 2I'ynzﬂ + 2gzon, + 2hxoyu + 2uxa + 2vy0 + 2wz, + d

- Now, this conicoid has a centre at the origin. Therefore, by Theorem 2, we have

’

. u' = v = w = 0. This means that
CaXg + hyg k gzg +u =0

hXy + byy + fzg + v =0
gxp Hfyg +czg+w=10

Caonversely, let us assume that (4) holds for some point P(xq. Yo, 2)- We shifl the
origin from O to P. Then we get an equation of the form (5). But since (4) holds
for P, we'see that

uw=v =w =0

Therefore the equation reduces to :

a'x'? + by? 4+ 2?4 2y + g7’ + 2h¥'y + d =

This equation does not have any first degree terms. Therefore, by Theorem 2, we
sce that the origin P is a centre.

Do you find any ronnection between Theorem 2 and Theorem 3? You mlghl have
noticed that Theerem 2 is a special case ‘of Theorem 3 in the case when the point
P is the origin.

Now let us go back to El and E2 From there you know that a conicoid may have

a unique centre or infinitely many centres. In Unit 7 you have also seen examples
of conicoids which have no centre, Mathematicians have divided all conicoids up
into two types depending on whether they have a unigue centre or not. We define
these conicoids as follows.

Definition : A conicoid is caiied a ceatral conicoid if it has a unigue centre. A
conicoid is called non-centrui, if it either has no centre or it has infinitely many
centres.

Thus, a sphere is an example of a central conicoid and a cylinder is an example of
a non-central conicoid.

Here is an exercise for you.

E4) Examine whether a cone is central or not.

a s




We will look at non-central conicoids in the next unil. In this unit we wili only Central Conlcolds

discuss central conicoids.

Let us now start this discussion.

8.3 CLASSIFICATION OF CENTRAL CONICOIDS

In this section we shall obtain the different forms of central conicoids. We shall also
study the shape of these conicoids.

Let us consider a central conicoid. Then, from Corallary 1 in Sec. 7.4 of Unit 7 you
know that by first shifting the origin 1o the centre and then rotating the axes suitably
about the centre, we can reduce the equation to its standard form

ax’* + by’ + ¢* +d = 0. (&)

Now, let's go back for a moment to Thearem 3. Over there you saw that a conicoid
F(x,y, z) = 0 has a unique centre iff the system of equations

ax + hy + gz +u =240

bx + by + fz+v =0

pr+fy+cz+w=190

has a unique solution, This means that

a h g
i b f # 0.,
B f c
Now, if the conicoid is in the form (6). then the cendition reduces o
a 0 0 o
0 b 0 # 0, that is
. Q 0 c
abc # U,

This means that az= 0, b# 0, c= 0.

Then, depending upon the signs of a,b.c and d, we have the following five
possibilities: ’

Case 1 (d=0) : In this case the equation reduces to

ax? + by? + 22 = 0. .

You know from Unit 6 that this represents a cone, irrespective of the signs of a, b
and c.

Case 2 (d # 0 and a, b, ¢, d are of the same sign) : In this case there are no real
values of (x,y,z) which satisfy (6). This is because for any (x,y,2)} eR*, the left hand
side is either positive or negative, never zero, We call such a conicotd an imaginary
conicoid, Infact it represents an imaginary cllipsoid

Case 3 (d # 0 and the sign of the cocfrlicients a.b.c are different from d}: In this case
we write (6) .in the form

ax? + by? + 22 = —d,
) el 2 72 :
le., — + r + — =1, - (7
_d d d )
a b c
d d d .
Note that the numbers —— | — — and — — are positive,
4 D [
| - 1; d . J{ d ) .‘r'll d .
LEL S -y ——, b=y —— and ¢y =y ——. Then (6) becomes
a b c '
X2 Yy ozt
b + =1
a, b2 <

This equation is the three-dimensional analogue of the equation of an cllipse. We

call the conicoid represented by this equation an ellipsoid. 25




Conlcolds

26

Case 4 (d +0 and I1wo of the four caefficients a,b.c and d are of the same sign)
Let us assume thata > 0. b > 0, c< 0 and d < 0.

d d d d
Then — — |, — — apnd — are pogitive, We put a, / -—
a b c . y a
. [ d d
D=l f — —.andoz=\/ — . Then (6) g _s us
. b c :
2 2 2
L S
a3 bi c

The conicoid gencrated by this equation is called & hyperbolaid of ane sheet. (You
will see why in Sec. 8.5))

Similarly, we can obtain the’equations of hyperboloids of ane «*.2ct in cases 11 < O
b<0,c>0,d>0, and so on.

Case 5 (d # 0 and two of a,b and ¢ have the same sign as d} : Asin the other case

I d d
we assume that a > 0, b < (. ¢ < 0 anc d < 0. Then — = = (. 5 =0, ?} 0.

d | 2
Puta; = \/ —— . b= \/% and ¢ =¥ ¢ Then we have

a C
2 2 2
z
¥ LYy _ 2,
2 2
aj b3 3

The conicoid is cailed a hyperboloid of two sheels. (You will sce why in Sec. 8.6.) The
other forms of hyperboloids of 1wo sheets can be similarly obtained.

Thus we saw that central conicoids can be classified into 5 types namely : cone,
imaginary conicoid, ellipsoid, hyperboloid of one sheet and hyperboloid of two
sheets. We have tabulated this fact in Table 1.

Table 1: Standard Forms of Central Conicoids

Type Standard farm
Cone ax’+byl+czi=0
N 2 2
. .. x zr
Imaginary ellipseid r.xr + L= =1
a® B 2
2 2 3
. . . X -
Ellipsoid — 4 —+ =1
1 ) T
as b e’
2 2 2
. . X ra
Hyperboloid of ont sheet — + LA —_=
2 h? 2
a
2 2 2
X y z
—_— =
al bt ¢t
xl 5‘,1 zz
——+ 4+ =
al B 2
T b A -
A T - x- b o
11¥pPeIuiod oI 1wo sheets —_— - - =]
> bl A
a~ b= c-
= o7 4
—— L - = !
at b
k] A b
X v 2
R
a® b

Why don't you do an exercise now?




E5) Identify the type of the conicoid from the following equations

a) x2+dyl-zl= d) z2=3x+3y?
b) 16z22=4x>+y*+16 e) x’—y'—2’=9
2 2
X 2, 2
c)_ ) +y+ 2 1

If you Jook clesely at the cases where d # 0, you will see that the equations in these
four cases can be given by a single equation

ax*+by?+czl=1

This v.;,rill represent

i)  an ellipsoid if a, b, c are all positive;

ii)  a hyperboloid of one sheet if two of a, b, ¢ are positive and the third is negative;

ili) a hyperboloid of two sheets if lwo out of a,b,c are negative and the third is
positive;

iv) an imaginary conicoid if all the a,b.c are negatix- .

We shall study the shapes of the real conicoids listed at- ' ¢ one by one. Let us starl
with ellipsoids.

8.4 ELLIPSOID

Let us consider the ellipsoid given by the cquation

T G2 2 2
x_+y_+z_= 1, wherea,b,c>0 {8
al. b2 o

Let S denote the surface generated by this equation.
From your experience of Unit 2, can you note some geometrical properties of S

from the above eguation? Of course, if a = b = ¢, then the equation represents a
sphere. And you have studied the geometry of a sphere in detai) in Block 2.

So, let us look at a more general case. From the following exercises you can get
some idea of the geometrical aspects of the ellipsoid.

L6) Show that the surface represented by {8) is symmiciric about the YZ-pilaoe,
ZX-plane and XY-plane.

E7) Do all the coordinate planes. intersect the surface 15)? If sa, find the sections
obtained by the intersections.

E8) Check whether the coordinates axes intersecLthe surface ;8.

Central Canlenlds

If you have done the exercises, you will have noticed that the surface (8) intersects
the coordinate axes in A(a,0,0) apd A (—a, 0, 0),.B (0,b,0) and B’ (0,—b,0),

We say that a surface given by an
equation F{x, y, z) = ('is

C(0,0,C) and C' (0,0,—0). symmetrle with respect to the
XY-plone, if, when we replace z
Now let us consider the intersections of the surface by planes parallel to the by -z in F(x. y. 2), we pet the
coordinate planes. Here we assume that a#b. Let us first consider a plane paralicl same cquation.
c almes srith marmal e ik

" 1l -
SAFRHIRCATY WS TOARCS il wnic

iv ihe AT-piane, say z = k, a constant. A i :
YZ-Piane and XZ-plane is

Putting z = k in (B), we get similarly defined.
x2 yl k2 -
—_ = = .1 —_— a-- 9
at. b- ¢ ' ©)
kZ
If_g-c 1,i.e., —c<k<c, the equation represents an ellipse.

This is tnie for all values of k such that |k| = c. If we put k = 0, we get an ellipse
‘whosé semi-axes are a and b.
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Thus, the surface can be considered as a family of cllipses placed one on top of
another tying between the planes z = c and z = —c. Now what il k > ¢ in (9)? The
equation only has imaginary rools. Therefore no portion of the surface lics beyond
the plane |z = c. Similarly, we can show that no part of the surface lies below 7

= —¢. You can also check that the surface lies beiween the plancs y = —b and v
= b, as well as between the plancsx = — aand x = a, Conscquently, the surface
is a bounded surface formed by cllipses
2 2 z
X k
— + Y_z =1- —,z=k, where [k] = [c].
a b c

Collecting all this information about (8), we get a {igure as shown in Fig. 3.

¥ ¥ 2
Fig. 3: Theellipsoid- — + — + — =1, 115 Intersection with (he planes

Al W 3 '

c c
2= — and 7= — —are the ellipses E, and E;
2 - 2

We shall make some remarks here.

Remark : Suppose we have a > b = ¢ in (8), Then (8) can be rewritten as

x? v
—+——=1.

a? b?

The intersection of this ellipsoid with, the plane z=0 is the eltipse
x oy

—+==1

a? bl

If we revolve this ellipse aboul its major axis, i.e., the x-axis, then you can see that
the surface formed is nothing but the given ellipsoid. This is the reason why the
surface is known as an ellipsoid.

Now, what can you say about the ellipsoid in the case whena = b > ¢ ip (8)?

'a = b > ¢, the ellipsoid can be obtained by revolving the cllipse
2

X
— T == 1,y = 0 about its minor axis {i.c., the Z-axis).
a c

Let us consider an example now.

a 2
- . - - X- ] 7 am
Examale 3: Trace 1he conicoid Y + B+ LA ... {i0

Solution : You know that the equation represents an ellipsoid. Let us try lo trace it

We firsi consider the intersection of the surface with the coordinate axes. From (10) we

see that the x-axis intersects the surface in points (3,0,0) and (—3,0,0), the y-axis f
intersects the surface in (0,4,0) and (0,—4,0) and the z-axis intersects the surface in two
points (0,0,1) and {0,0,—1). Now let us consider the intersectian of the ellipsoid with
planes,parallel to coordinate planes, _ O
Consider the plane z = ha constarit. Putting z = h in (10) we get 1




el (1D

You know that this represents an ellipse for all h such that [h| < [. If h = 1, we find
~ that the intersection of surface with the plane z = [ is'the point (0.0.1), Similarly

for b = —1{. we get the point (0.0.—-1). -

If[h] > 1. then there isno (x,y) satisfying (11). This shows that no portion of the surface
lies above the plane z = 1 and below the plane z = —|

Now we draw the ellipse corresponding to z =0 (E, in Fig, 4).

Note that the major axis of the ellipse is 4 and the minor axisis 3. The ligure shows some
more ellipses corresponding to a few planes paraltel to z = 0. Note that as h increases,
the cllipses become smaller and smaller.

Likewise, if x = h, a constant, then apain we get cllipses for {h] < 3."Since there is no
(x.y.}satisfying (10) for [h| > 3, we sce that no portien of the surfacc lies to the right of
the ptane x = 3 and left of the plane x = =3, For x = 0, we get the cllipse, as shown

in Fig. 4.

Similarly. y>u can see that the intersection with the planes y = h arc also cllipses for
|hl = 4. and no portion of the surface lies to the right of the plane y = 4 and left of the
piane y = —4. The ellipse corresponding to y = 01 is shown in Fig. 4.

Having got .he inlersections with the coordinate planes and the coordinate axes. we
obtain the ellipsowd as shown in Fig. 4,

Fig. 4: The ellipses E,. E; and E, are the Intersecilons of cllipsald

& 1 .
> + y—+z’=1 with the coordinele plancs. z = 0, x = 0 and ¥ = { respeclively.
In

Why don’t you trace an ellipsoid now?

E9) a) Traccthe ellipsoid x* + %+?_2=1

b) Check whether the eliipsoid in (a) can be obtained by revolving an ellipse
about any one of its axes.

So you have seen how to trace an ellipsoid in standard form, Actually, now you are in
2 positien to trace any elfipscid. How? Simiply apply the Wansionnaiions giver in See 7.3

of Unit 7, and reduce the given equation of ellipsoid to standard form! But we shall not
go into such details in this course.

Let us now cansicer an application of cllipsoids.

In Unit 2, you came across the reflecting property of acllipse. This properiy is made,

use of in constructing whispering galleries. Whispering gaileries are galleries with a
rectangular base and ceiling in the form of an ellipsoidal surface. Because any vertical
cross section of the ceiling is elliptical. the sound produced at one focus will be refected
at the other focus with little loss of intensity, Thisis called the reflecting proper(y of an
ellipsoid. This property is used by architects.

Centrnl Conicalds
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We shall now stop our discussion on ellipsoids and shift our attention to another central
conicoid,

8.5 HYPERBOLOID OF ONE SHEET

In this section we shall study the shape of a hyperboloid of one sheet in detail and study
some of its peometric properties.
Asin the case of an cllipsoid, we shall restrict our attentipn to the standard forms.

Ler us consider the hyperboloid of one sheet given by
C gl 2 2
XXX . {12)
a? bt
Do you agree that this equation is represented by the surface in Fig. 5?

X ¥ z

I
Fig, 5: The hyperbolold ofonc sheet — + — — —=1.
“1 h! l.‘J

You can obtain some geometrical propertics of this surface by doing the following
eXercises.

'l

"EI0) Show that the surface formed by (12) is symmetric about the coordinate plancs.

E11) Check whether the coordinate axes intersect the surface formed by (12), if so,
what are the intersections?

The next point ta check is the intersection of (11} with the coordinate planes. Its
interscetion with the plane z = (}is

- k:
—_ L,: 1
a b*

Which is an ellipsc. In fact, its intersection with any plane z = h will be an ellipse (sce

Fig- 6), and the size of the ellipses increase as hincreases in both positive and negative
directions. You muy wonder why we don’t call the surface an cllipsoid too.

A A
- Fig.6: Seviions of f. + '_: - _1=Iobt.alned by planes paralie] to the X Y- plane.
o’ b c .




But, now look at what happens when we intersect the surface with the YZ-plane. The Central Conlenlds
intersection is given by

yz Z:___
ok

which représents a hyperbola (see Fig. 7).

= ¥
Fig. 7:Intersectlonof — + — — — = 1 bylhe YZ-plane.
o s’ h e
Similarly, you can see that the intersection of the surface with the plane y = 0 is the
2 2
x* z .
hyperbola — — — = 1 (see Fig. 8). 11
a‘ ¢

o

o
Fig.8: Intersection of - + = - -;:lhythezx-plam.

a b’

From the above properties you surely agree with us that Fig.5 represents (12)

sometimes we say that the surface (12) is generated by the variable ellipse

x‘Z yz 2

S+ =1+ —,z=h,

e 1 L

which is parallel to the XY-plane and whose centre (0,0,h) moves along the z-axis. This
is because, as you can see, it is made up of these ellipses piled one top of the other.

Now, why do you think (12) is calted a hyparhn'~id of one sheet? Firstly, it is of one
sheet becauseit is a connected surface. This means that it is possible to trave! from one
point on it to any other point on it without leaving the surface. In the next section you

will'see that we also come across hyperboloids of two sheets. 3




Conlcolds Tosee why itis called a } ‘perboioid sec what happens if, for example, a = b in (12).
Then the equation reduces to the form

24,2 2
Xz, .. (13)
b? ¢t
If we put x = Qin this, then we get the hyperbola
2 2 :
y LR TR
Ez‘ - ?— 1, X—O,

whose conjugate axis is the z-axis. If we revolve this hyperbola about its conjugaic axis. -
then we get the hyperboloid (13). Similarly. we can abtain certain such hyperholoids by -
revolving a hyperbola about its transverse axes.

So far we have been discussing only ane standard (orm of a hyperboloid of one shect.
You know, from Table [, that there are two more 1ypes of hyperboloid of one sheet.
The following exercises are about them and the standard form (12).

E12) Consider the hvperboloid of onc sheet gtven by.x>+y2—z2=1.
a) What are its horizontal cross-scctions forz =+3, +67?
b} What are the vertical cross-sections for x = 0 or y=0?
Describe the sections in (a) and (b) geometrically.

El3) a) Sketch the surface defined by the cquation
2 yr 72
- — 4+ =
16 9 9
b) Sketch the curves of intersection of the surface given in {a) by the planc z=k,

when [k| = 3, when [k| < 3 and when |k| > 3.
Eld) a) Obtain the surface defined by the equation

xz yz ZZ
CR A

b) What curve is formed by intersecting it with the plane x = 1?

Another interesting property of a hyperboloid of one sheet which makes it very usefut
in architecture is that it is a ruled surface. This means that the surface is composed of
straight lines, and is therefore easy to make with a string (see Fig.9).

Fig 9 : A model of o hyperbolo!d of onc sheet.

Let us now discuss anothet type of hyperboloid,

8.6 HYPERBOLOID OF TWO SHEETS

" In this section we shall cuncentrate on the geometrical features of a hyperboloid of two
sheets, Its analytical properties are very sim¥ar to those of a hyperboloid of orie sheet
ot an ellipsoid. So it will be easy for you to bring out these proverties yourself,

Let us start with a hyperboloid of twe sheets given by-the equation |

N _;__BE_?:] . - (14), ‘

\




Note that this equation has two negative cocfficients while the equation of a Central Confcnids
hyperboloid of oné sheet has only 1 negative cocificient.

So let us sce what (14) looks like. To start with, why don't you try the following
,_exercises concerning (14)?

El15) D.iscusshthc symmetry of the surface obtained by (14) with respect to the
coordinate planes.

E16) Do all the coordinate axes and coordinate planes intersect the surface? Give
reasons for your answer.

In E16 you must have observed that the XZ-plane and XY-planc interscct the surface
. in hyperbolas. What about the YZ-plane? You must have observed that the ¥YZ plane
does not intersect the surface.

So, now you know why this surface is called-a hyperboloid. But, you may wonder why
this surface is called a hyperboloid of iwo sheets. This is because of the following
property.

Let us consider the intersection of the surface and the plane x = h, a constant. Youcan
see that the curve of intersection is the ellipse
2 2 K
z h
L+l =51 . (15)
B ¢ al i

in the plane x = b.
2

. ..h .
This ellipseisrealonly if > 1,i.e.,h >a orh< —a.
. a

Thercfore, it follows that those planes which are parallel to x = 0 and lic hetween the
planesx = —aandx = adonotcul Lhe surfacc. This means that no porlion of the surface
lies betweén the planes x = —a and x = a,

We note from {15) that the semi-axes of the cllipses are given by

’ 2 2
b\/ %—land cJ h—z-—l,

a
and the semi-axes increase as h increases. Hence we see that the surface has two
branches: one on the left of the plane x = —a and one on the right of the plane x = a.

Both thesc are generated by a variable ellipse. In fact, the shape of the surface is as
shown in Fig.10.

M

Z

I]

3

-Fig.10: The hyperbeloid ol twosheels — — =1

:H'-ﬂ
"L| W,

In the following exercise we ask yot: to trace the other two forms of hyperboloid of two

sheels:

2 2 2

X y z
-=—=+—==1,and

al p? g

2 2

X z?
Lz

a b ¢

33
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E17) Check witether - aegipate planes intersect the surface
2
X
2
a) 7°——-—
) 4
2 2
X
b) Y? -5-7=1.

If so, what are the curves of intersection?
EI8) Sketch-the surfaces given in EI7.

So you have seen what the standard forms of the varieus central conicoids' look like.
Now let us see what their intersections with various lines and planes are.

8.7 INTERSECTION WITH A LINE OR A PLANE

In this section we shall first discuss the intersection of a line and a central conicoid. This
will help us to derive conditions under which a line is a tangent to a central conicoid,
and to obtain the tangent planes. Then we shall discuss the intersection of a planc apd
a central conicoid.

8.7.1 Line Intersection

Con51dcr a central conicoid given by

ax? + by? +cz?f =1 ..(18)
According to Theorem 1, the intersectian of a given tine with this conicoid is two pmntq
Let us prove this fact.

Let L be a given line with direction ratios «, B, v that passes through a given point
{Xq, ¥o. Zo}- Then the equation of the line L is
X=X _ Y~¥o _ Z—Zy
a B Y
If B(x,y,z) is another point on the line L, which is at a distance r from A, then the
coordinates of B are given by x=xq + ar; y = y,+pr, z = zz+vyr.

007

If B is 2 point of intersection of I with the coniceid (16) then its coordinates must satisfy
(17). This means that

r(ac? +bR2+cy?)+ 2r(axgot byaf +czgy) + axg + by, ez’ —1 = 0 L I8

(18)is a qundrali'c‘in r. So it will pive us two values of r each of these values will give us
a point of intersection of L with the conicoid {16).
Thus, L will meet (14) in two points, which may be real and distinct, coincident or

imaginary.
This is true for any line. Hence Theorem 1 is true for a central conicoid.

Now let us supposc that the point A (. g, Zo) lies on the conicoid (16) itsell. Then (18)
becomes

r*(aa®+ bR ey} + 2r(axga+ by +ezgy) = 0 (1M
The line L will be tangent to the conicoid at A il the peints of intersection coincide
wmith tha aninr A (w Y v a aF 10N hae caiacidan b enedn

FTAREN WRAW !—’U““' EL \n") Jl}‘ ‘-ﬂ}! betfe gy L2 \‘J} LA S IR R WL B WS LT ;“" :’\)ll l-ﬂll ‘|\4|.. lll\.
condition for this is
2Xpa+byef+ezyy = 0 . {20)
Thus, (20) gives the conditon thai ihe line

X=Xg _ Y Yo _ 2%

is a tangent to the conicoid ax’+by?+cz®=i at A (xa, Yo, Zo).
£

LY
5 16+ z'=1 at (0,4,2}

because a=1=vy, B=0 You can also check that the line through the point (0,4,0)-
and parallel to the x-axis is also tangent to this ellipsoid. In fact, there are infinitely
many lines that are tangent to this ellipseoid at the point (0,4,0). '

For example, the line x =z, y = 4 is tangent to the ellipsoid —




This means that at each point of the ellipsoid we can draw infintely many tangents “Central Corlcolds
10 the conicoid. This is not only true for this ellipsoid. It is true for any conicoid.
Let us sec what the set of all tangents at a point of a conicoid look like.

Let us eliminate a«, B, -y from (17) and (20) Then we get
axo(x —xg)+oYo(y—yo) +czo(z—2) = 0.

== axgX+bygy+czgz—axyl—by,’ — ¢zl = 0
<==> axXp+byyp+czzg = 1, . 21
since (Xg, Yo, Z) lies on (17).
(20) is the equation of a plane. Thos, the set of all tangent lines 1o (16) is the plane
2n.

Definition : The set of all tangent tines to a conicoid at a point on the conicoid is
called the (angent plane.
So let us assume that (17) is a tangent of (16) at (Xq, Yo. Z0)
2 2
For example, if the conicoid is an ellipsoid % + % + 2 = 1, the equation of
the tangent plane at any point (0,4,0) on it is y = 4,
Simtlarly, the equation of the tangent planc at the point (0,4,0) on the hyperboloid
Py :
_t —— 2 = i = q._
of one sheet gt ¢ lisy=4

In Fig. 11 we have shown both these tangent planes.

Fig. 11 : 7 Is & tangent plane to (a) an elllpsold (h) a hyperhalold.

Note that the tangent plane y = 4 intersects the given ellipsoid in only one point
on the other hand, this plane intersects the given hyperboloid along the two tangent
lines x = *3z, y = 4 at (0,4,0). This should not be surprising, since the plane is
built up of tangeni lines.

Now, suppose we are given a plane and a conicoid. Can we say when the plane will
be tangent to the conicoid? Let us sce. Let us consider the plane given by

ux + vy + wz=p ' -(22)
and the coniceid given by

ax’+by’+cz® = 1.

You know from {203 that the plang uy + vy — ws = p will be & tangent nlane to the
given conicoid at some point (XY, 297 if and only if its equaticn is of the form
axxg+byygtezzy = 1 ..{23)
Therefore, if (22) represuiris o langent plang, the wellicients of (22) and (23] musi
be proportional, i.e.,

b
axp _ bys _ <& =£.P‘¢0
u v W P
. u v W
. l.e. = — = — = — . 4
Le., X apu}’n bp » Zpy ° (2)

(Remember that a # 0, b # 0 and ¢ # 0.) a8
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Now, the point (x,.%). ;) lies on the given conicoid. Therelore

, , 2 v w?
axnz+byn'+cz"*=l == 3 ‘;2+h T3 T ¢ ,2=l
a‘p bp* cp
L .2 2 -
u v we
- Y iYo . (25
a b c

which is the required condition that a plane ux + vy + wz = p touches Lhe conicoid
ax’+by’+cz’=1. Also note that the point of contact of the plane and the conicoid is
given by (24).

Le¢t us consider some examples.

Etample 4;: Show that the plane sx+'?°y—06z = 17 touches thec hyperboloid
3x*—6y+92°+17 = 0, and find the por 1 contact. '

Solution: We first rewrite the equation of the hyperboloid in the standard form as
- R B 9.\ .

(R R

The condition that 3x+12y—6z = 17 louches the conicoid is given by (25).

3 6 9
= _—— = — = _ — 2‘ ' = —0, _— '}"
Herc a ( 17).b 5 ( I_’,)u Jov=12,w=—-06.p=17 Then

—_—t — Y — =

a b C 3 fi 9
= 17[=3424=d] = 17'=p"

2?ov oWl gx(_]'}f) I44x[?+3ﬁ><("|7)

Thus the condition (25} is satisfied. Henee the planc (nuchcq the conicoid.
The point of conlacl is given by

= I(-17) |
" ENT

12x17

ST

2 (=6yx(=17) 2

" 9x17 3

Example 5 : Find cquations of the tangent planes to the conicoid 7x*+ 5y +3z2=60
which pass through the line 7x+10y-30 = 0. 5y—3z =0,

Solution : From Block 1 vou know that any plane through the given line is of the
form N

T+ 10y = 30+ A5y — 3z) =0,

where X is o real number. Since (his plane is a tangent planc o the given conivoid,
we sce thal the equation of the plane must be of the form

Txx 5 Jyy -
Co 2P I for some (Xa. Y. Za)-

60 60 60
Comparing the cocfficients. we get
Xy St 3z, 60
7 T T0asx T T30

e, Xe=2, y,=24 +4, 2,=—2)

Since (X,.v,.20) livs on the given conicold, we oct
Tl LRI .:_;1\"_L|‘l\3 = &0

= f\L/(;\ +‘m.‘. RO+ 120"=60

== 320 +80A+48=0)

- A

R R
ToLA TTLIIATT ST,

This is a quadratic equation in A. It voots are '~ 1 and ~2. For cach of these values
of A we get a langenl plane. Therefore. there are two mngcnt rlanes passing throuah
the given jinc. The required equations of the plancs are

7x+3y+3% = 30 and 14x+5y+9z = 60.

You can now try some exercises.




"'E19) Find the equation of the tangent planc to the hyperboloid
x*+3y°— 3z2 = 1 at the point (1,—1.1)

E20) Find the equations of the tangent planes to the conicoid 2x*—6y'+3z° = §
which pass through the line x+9y~3z = 0. 3x=9%+67—5 = (.

So far we have been discussing the tangent planes o a central conicoid. You have
found that sometimes such planes intersect the conicoid in a paint, and sometimes
in a pair of lines. Docs this give you a clue to what 7andS will he where # is a
planc and S is a central eonicoid? We discuss this now.

8.7.2 Planar Intersections

In this unit you have seen that the section of a standard cllipsoid or hyperboloid by

a plane parallel to the coordinate planes is either an ellipse, a hyperbola or their
degenerate cases, i.e., the section is a conic. Whal do vou expeci in the case of the
section by any plare which is not parallcl 1o the coordinate planes? Will it still he
a conic? Let's see.

Let us consider a central conicoid given by
ax*+by*+cz? = |, abc = 0.

We want to find the section of this conicoid by a planc ux+vy+wz = p. The
following result tells us about this. {We shall not prove it here. If you are interested
in knowing the proof, refer to the miscellancous exercises at the end of the hiock )

Theorem 4; The section of a central conicoid by a given plane is a conic section.

Further, if the conicoid is given by ax*+hy?+cz’=1 and the plane is given by
uxtvy+wz = p, then the section will be a hyperbola, parabola or an ellipse
according as : ' '
beu?+cavi+abw? < 0, beu+cavi+abw? = 0 or beul+cavi+abw? > 0.

In case abc>0, the condition reduces to

2 2 2 2 2 2 2 2
ut v o ¥ v oW @ ovow
— =t — <0, ~—+—+ =0, — + — 4+ —=0.
a b c a b c a b c

This theorem is not difficult to prove. We can obtain the condition by climinaling
either x, y or z from the equations ax>+by’+cz? = 1 and ux+vy+wz = p. Since it
is lengthy, we have not included it here.

From Theorem 4 you know that & planar section of a central conicoid need not be
a central conic. In Fig. 12 we illustrate this.

T - lJ
Fig.12 : A Planar szctlon of (he byperbolold = + -'f- -
. o

z A : .
— =1 can be a) ellipse b) a parabolar
2
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Let us consider an example.

Example 6: Show that the section of the hyperboloid 9x*+6y” — 14z% = 3 by the plane
x+y+z = 1 is a hyperbola.

Solution: Here a=3,b=2,¢= — E andu=v=w=1

Therefore, beu?+cavi+abw? = 2x(— %) —14+6 <.

Hence by Theorem 4, the section is a hyperbola.
You can try.some cxercises now.

E21);Find the sections of the following conicoids by the plane given alongside.
a) 2x*+y*— 2 = 1; 3x+dy+5z = 0.
b) 3x2#3y?+622 = 10; x+y+z = 1.

Let us now end our discussion on central conicoids by summarizing what we have
covered in this unit.

8.8 SUMMARY

In this unit we have covered the following points :
1} The definition of a centre of a conicoid.

2) The necessary and sufficient condition
for the conicoid to ax®+by’+cz?+2fyz+2gzx +2hxy +2ux+2vy+2wz+d = D

i h b
havcacentreis |[h b f # 0,
g f ¢

3) Conicoids are divided into two groups — those with a unique centre (that is,
central conicoids) and those which have either no centre or infinitely many
centres (that is, non-central conicoids). '

4) The standard form of a central conicoid is
ax® + by? +cz? + d = 0, abc # 0.
If d # 0, then there are four catcgories, as given in the table below -

Table I: Standard Form ol central conicoids

Type Standard form
Cone ax+hvl+er’=0
. o 2 o .
Imaginary cllipsoid 4 )_ + L= 1
a” b ¢
L <« Y 2
Ellipsoid R A
P a- > c
. e 3 2
Hyperboloid of one sheet =+ =5 - ==I
a b ¢
X . T
N }'\: s
A
PO
. 2 v 7 o
Hyperboloid ol lwo sheets — - === |
1 +h -
- L L
al b c
L2
a- b <




5)

6)

7

8)

9

Il 0 = U, TNEN INE€ ¢quarlon represents a Ccone.

How to trace the standard forms of an ellipsoid, hyperboloid of one shect and
hyperboloid of two sheets.

The condition for a line to be a tangent to the central conicoid ax*+by*+cz”+d
= 0 at (Xp, Yo, 29) 15 aXga+byeB+czgy = 0,
where «, B, v are the direction ratios of the line.

The equation of the tangent plane to a central conicoid ax?>+by*+cz’ = 1 at a
point {Xp, Yo, Zq) iS axxp + byy, + czzy = 1.-

The condition that the plane ux + vy + wz= p is a tangent to the central
conicoid ax? + by® + ¢z® = 1 is

u? . v? . whoo,

a b e P

A planar section of a central conicoid is a conic section.

Now'you may like to po back to Sec. B.1 to see if you have achieved the nhjectives
listed there. You must have solved the exercises in the unit as you came to them.
In the next section we have given our answers to the exercises. You may like to
have a look at them.

8.9 SOLUTIONS/ANSWERS

El)

E2)

E3)

E4)

E5)

Let O be the point (—u, —v, —w}. Suppose that the spherc has another poin
Q" as its centre. Let the line joining O and O’ intersect the surface at P and
P’. Then by definition, both O and O arc the midpoints of the linc segment

P P’. This is possible only if O = Q’. Hence O is the unique centre of the
sphere,

Let the equation of the cylinder be x*+y® = r?, z = Q.
Suppose A(0,0,z;) is a point on the z-axis.

Let a line through A meet the cylinder at two points P and P'. Let the
coordinates of P be'(x,, ya, 2;). Then the equation of the chord is

-

X2 ¥Ya Z4I
Now, consider the point (~x,. —¥s, 22; —z,). This point lies on the line

as well as on ke cylinder. Therefore, the point must be (—X-, —ya, 2z, ~7.).
Also, we can see that A is the midpoint of the line scgment P P,

The above argument is true for all lines passing through A. Hence A s a
centre of the cylinder. Similarly we can show that ail points on the 7-axis arc
centres of the cylinder.

a) Origin is not_a centre.
b) Origin is a centre.
¢) Origin is a centre.
d} Origin is not a centre,

A cone has a unique centre, and hence is central.

a) Hyperboloid of one sheet.
b) Hyperboloid of one sheet.
¢) Ellipsoid.

d) Cone.

¢) Hyperboloid of two sheel,

if we change x 10 —X, there is no chuange in the cquation. This implies that
the surface (8} is symmetric aboul the YZ-plane. Similarty, the surface is
symmetric about the XZ-ptane and XY-planes.

Yes. All the coordinate planes intersect the surface.

Let the equation of the ellipsoid be
x2 yz 21

Z+i 4l

a® b?  ¢?

antrnl Conlcolds
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Conleoids The equation of the YZ-plane is x = 0. To find the intersection, we put
' x =1 in the equation of the cllipsoid. Then we get

which represents an ellipse (or a circle).
Similarly, substituting y = 0 or z = 0, we gel an ellipse (or a circle) in the
XZ-plane or the XY-plane.

E8) The equation of the ellipsoid is (R). We first check whether the x-axis intersects
the surface. Any point on che x-axis is of the form (r,0,0). So, to find the
intersection of the x-axis, we substitute {r,0,0) in (8). We get

—=1,1.e., r==%a.
a!

Thus, the x-axis intersects the surface in the two points (2,0.0} and {(~a.0.0).
Similarly, the y-axis intersects it in two points (0.b,0) and (0.—h.0‘) and the
z-axis intersects it in the points {0.0.¢) and (0,0,—c).
E9) a) The given cllipsoid is x? + —):l—+ =1,
We first find the intersection of the ellipsoid with the coordinate planc.
Let z = h. a constant, Then we gel '
X+ %: 1-h>,
If |h] < I, this is an ellipse centred ar the origin.
Likewisc if x = h, a constant, we pet
2
y i ¥
=+z°=1-h".
4
This again represents an ellipse if |n] < 1.
Putting y=h, we get circles given by
2

2 k)
tr=1——
* 3

if |h| =4.
Let us ngw draw the cllipses and the circle for z = 0, x = 0, y =10
respectively (see Fig,13).

a
¥
Fig.13: The cllipseld x'+ T +z=1,

H

The shaded portion in Fig. 13 shows the ellipsoid.

D) Suppose we revolve the circle x2+2* = 4 around the-y-axis. We get the

ellipsoid.
‘ oy oz
E10) Let the equation of the surface be = + 2. — = 1.
a2 b

Changing x to —x, y to.—y and z to —2z, there is no change in the equation.

4 Therefore, the surface is symmetric about the XY, YZ and ZX planes.



; Xty 2
Ell) Letthe equation of the surface be — & = — —==1.
. ) a c
Then we see that the x-axis intersects the surface at the points (a,0,0) and
(-a,0,0). . _
Similarly the y-axis intersects the surface at the poims(O,b,IO) and (0,—b,0).
Next we put z = 0 in the given equation of the conicoid, to get z%2 = —c%.

This shows that the points of intersection are imaginary.
That is, the z-axis does not intersect the surface.

"E12) a) The given equation is x> + y* — 2 = 1'_

For z = *3, *6, the horizontal cross-sections are circles with centres on
the z-axis and radius i and 2 respectively (see Fig.14).

Flg.14: Circles obtalned by intersectlng the planes z = +1, £2
with the hyperbolold of one sheet x™+y?+3? = 1,

b) When x=0, the equation is y'—z=1,
Which represents a hyperbola (similar to Fig. 7} in the planc x = 0.
When ¥ = 0, the equation is x* — 22 = 1 or x = * z, which 2gain
represent a h}(perbola'.

E13) a) By renaming the axes, we can obtain the surface as shown Fig.15

Central Conlcnlds
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! yr' 2
Fig. 15; The hyperboleid of anc sheet ~ E + ? + —=1.
b} When |k| = 3, we get
2 2

1 3 1

which represents a pair of lines.

When |k| < 3, we gel

v X K2

916 9

which represents a hyperbola with transverse axis parallel to the y-axis.
When Izkl > 3, we get

! ! 1 I
$(T}'+——x)(—'}'_1—h =}

£ox_ K

9 16 9

] xl ),2 k2
R T

which represents a hyperbola with transverse axis parallel 0 the x-axis.

The cross-sections are shown in Fig. 1.
E14) a)

Ll P
Fig.16: The hyperbololi of one sheet % -r +

%
w| N,
Il
—

4




EI5)
£16)

C17)

E18)

£19)

E20)

-
"

-2 = inhe YZ.-plane.

2
T erbola —

b) The hyper o 3370

The surface ‘is symmetric about the coordinate planes,

The coordinale planes y = (1 and z = 0) intersects the surface in hyperbolas
2 P 2 2 .
X z X ,

— = ==1land— - Y—.‘,= | respectively.

- - b

Y

a- ¢ a
The plane x = 0 does not intersect the surface. The x-axis mects the surface
in points (a.0.0) and {—a.0}). The y-axis and .the z-axis do not meet the
surface.
a} The XY-planc does not intersect the surface. The YZ-plane and the

XZ-planc intersect the surfnfc in hyperbolas

Z—y’=land 7~ X = |,
4 ;

by The XZ-planc docs not intersect the surface. The XY-plane and the

Y1Z~planc intersect the surface m hyperbolas

y ¥
4 9
and

%—zz=l

Central Conicoids |

O

{R) ) I

o .
Fig. 17 : The hyperbolold of twa sheels ) 2'— .4_ —-¥=1. D) YT -5 =1.

The equation of the tangent plane at (5. Yo, Zo) 36 axxy + byy, + czzy = L.
The given equation is x* = 3y* 327 a 1. .

So,herea=1,b=3,c= =3, % =1,y=—iandz =i

Thus the required plane is x — 3y ~ 27 = 1.

Any plane through the line x + 9y -3z =0, 3x — 3y + 6z — 5 =0 s
X + 9 — 3z + X (3x—3y+6z-5)=0,
where X is a real number.

43




Cemlenids Now, we know that this plane touches the given conicoid.
Therefore, we must have

2Xx 4] 3zz

o _ D¥Yo + 1.

-1 far some (xp,y4,Zy). Then we pet

E 5 5
2X0 _ 6y, = 3z, _;__J_
T+3% 9-30 -—3+66 A
o I 9-m 346
pl e e o e
I S S5 W U 1

=2y = T Yo = TR = T
S'u-hsliluling this in the cque 27— 6y +327=5, we see thal A= 1 and A= - 1.
Hence, there are two tar-, planes —iven by

dx+6y+3z = 5 and 2x—1iyv+9z=5.

E21} a) Here a=2, b=1, c=—1, u=3, v=4, w=3,
' Then bew+cavi4-abw?=—-9 —32 +50 > 0.
Therelore the section is an elipse.
b) The section is an ellipse,




UNIT 9 PARABOLOIDS

Structure .

9.1 Introduction

Objectives
9.2 Standard Equations of a Paraboloi
9.3 Tracing Paraboloids
9.4 Intersection with a Line or a Plane
9.5 Summary -
9.6 Solutions/Answers

9.1 INTRODUCTION

In the previous unit we discussed central conicoids. In this unit, which is the last
unit of this course, we lock at non- central conicoids. You are already familiar with
one type of non-central conicoid, namely. a cylinder, Here we discuss another such
surface, called a paraboloid.

We shall start this unit with a discussion on the standard forms of a parabeloid. You
will see that paraboloids can be divided into two types : elliptic and hyperbolic
paraboloids. In Sec. 9.3, we discuss the shapes of the two types of paraboloids. The
last section contains a brief discussion on the intersection of a paraboeloid with a
line and intersection with a plane.

Like central conicoids, paraboloids arc also used in various fields. The mosl
commonly found paraboloidal surfaces are dish antennas, which most of us are
familiar with. You can see some more applications in the unit

The way this unit unfolds is the same as the previous onc. except for one diflerence.
In this unit we assume that you have enough experience by now to bring out many

properties of the surface by yourself. Accordingly. you will find thal we have left
" most results 10 you to prove.

Now please go through the following list of objectives. If you achieve these. then
you can -be sure that you have grasped the contents of this unil.

- Objectives

After studying this unit you should be able 10

¢ check whether a given equation of a conicoid represents an elliptical pafabnloid
or a hyperbolic paraboloid:

‘e race the standard elliptic or hyperbolic paraboloid:

. ® obtain the tangent lines and 1angent planes to a standard paraboloid.

9.2 STANDARD EQUATIONS OF A PARABOLOID

In this section.we shall obtain the standard equations of a non-central conicoid,
Then we shall define a paraboloid and discuss its standard equalions.

To begin with, let us go buck to Theorem 4 in Unit 7 for a moment: According 1o
this theorem any second degrec equation can be reduced to an equation of the form
ax?+by*+c22+2ux 4 2vy+2wz+d = 0 : e (1)
Now let-us assume that (1) represents a non-centrai conicoid. Since the conicoid
has no centre, by Theorem 3 in Unit 8 we find that either




Conicolds

i} exactly two of-the a, b and c arc zero, or
ii} only one of the a, b and ¢ is zero.

Let us look at these cases separately. .
We first consider the case (i). Let us assume thata =0, h = 0and ¢ # 0. (We can
deal with the casesa, c =0, b £ 0, b.c =0, a # Osimilarly. ) In this case (i) becomes

cz’ +2ux+2vy+2wz+d 0
2 w?

=2 C(Z+E) = —2ux—2vy- d+—

By shifting the origin to (0. a, - \—:) we see that the equation takes the form

eZ? + 2uX + 2vY + d, = 0.

where X, Y. Z. arc the coordinates in the new system. What daes this equation
represent? Let's sce.

If both u and v arc zero, then the surface represents a pair of lines.

If one of the cocfficients u and v is non-zero. say v # 0 and u = 0, then you can
see that the surface is built up of a series of parabelas along a line parallel to the
x-axis, Thus it is a parabolic cylinder. In fact, even if hoth u, v are non-zero. (he
surface is a parabolic cylinder,

Iet’s now go to case (ii}

Here we assumie that a = 0 and b. ¢ # 0. (We can deal with the other two cascs
b=20,c,a+#0 and c=0,a,b# 0similarly.)

In this case (1) reduces Lo the form

hv2+c72+2ux+2vy+2w?+d =

.2 v oow?

-r-— + -r——-— —+ —
(4 ) clz ) 2ux—d + 5 S

vioow?
= —2ux+d,. where d, = + ?—d

By shifting the origin to (0, — E .= \E\«'}‘ wc sec that the above equation takes the form

bY?*+¢Z*+2uX + d, =0 C(2)
where X,Y,Z are coordinates in the new system,

For example, y?+10z% = 2 and 2y’+z’ = 12x represent non-central conicoids. But
is there a difference in the type of conicoid represented by them ? Let's sec.

Suppose that u = 0 in (2). In this case we get by” + cz® + d = 0. Do you recognize
the surface given by this equation? It represents a cylinder or a pair of plancs., We
have already discussed these surfaces in detail in Block 2

Now, let us assumec that u # 0. Then we rewrite {2) in the form
by’ + cz° = —2ux - d

d
ie., byl +czl =20 (x - ﬂ')‘ where v’ = —u,
Now, by translating the origin to the point { — 50 0, Oj. the equation reduces to
bY? + cZ? = 2u'X i o (3)

Do you agree that this equation is = three-dimensiconal version of the standard
equation of a parabola? We cal} this surface a paraboloid.

So, for cxample. the equation 2y° + z* = 12x represents a paraboloid.

What are the other forms of an equation of a paraboloid? We leave this as an
exercise for you (se¢ El).

El) " Discuss whal happens Lo (1) in thc“f-t-alinwing cases:
a)b=0.a,c#0.
bye=0,2a b= 0"

If you've done E1, you must have found that there are two more types of equations
which represent a paraboloid, namely

ax’+by2 = 2wz, and ax*+cz? = 2vy : . ' . (4)
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Now let us look at the coefficicnts of 1hese cqualions more closcly, as we dict in the

case of central conicoids. Let us consider (4), We have the following twa cases:

Case 1 (a and b are of the same sign): Suppose a and b are positive. Let a,=Va

and b, = Vb then (4) becomes
2 3

X
7 ¥ ——=2wz

1/a, 1/b,

Similarly, if a and b are negative, we can write (4) in the above form,

thus, when a and b are of the same sign, (4) reduces 10 the form

x?. 2
a—2-+l—33=2WZ .. (5)

The paraboloid represented by this cquation is called an elliptic parabaloid.

Case 2 (a and b are of opposite signs): In 1his case you can see that (4) reduces 1o

the form
x2 2
P e . (6)

The surface represented by this equation is called hyperbolic paraboloid.

Il you do E2, you will scc why the adjectives “elliptic' and “hyperbolic® are
appropriate.

E2)  Show that the intersection with any planc parallel to the XY-plane of the
paraboloid
i) x* + 2y = 3z is an cllipsc.
i) 3" — y* = 4x is a hyperbola.

E3)  Check whether the following cquations rcpresent a paraboloid or nol? {or
those that do, classify the paraboloids as elliptic or hyperhniic.
a) 4y?—4z2~2x— 14y—22z+33 = @
b) x*+y*+z22—2x+dy = |
) dx*~y’— 22—8x—dy+82—-2 = 0
d) Ox2+42°-36 = 0
e) 2x%420y*+22x +6y—2z—2 = 0

From E2 you may have already realised that the (wo ypes of parabolr arg
geometrically different. Let us now see whether there are more differences.,

9.3 TRACING PARABOLOIDS

In this section we shall discuss the geometry of the two 1ypes of paraboioids, and sev
how ta trace their standard forms. We shall trace an elliptic paraholoid here and
lcave the tracing of a hyperbolic paraboloid as an exercise for vou.

So, let us consider (5), the standard equation of an elliptic paraboloid. We can
observe some geometrical properties. similar to the properties you have seen in Unit 8
for an cllipsoid or hyperboloid. :
In E4 we have asked you to obtain them, using the knowledge you have gained in
previous units.

Ed)  Check whether the surfuce (5) i symmelricad about the coordmate plapes

E3) Do all the coordinate aves intersest the wurface (537 19 s whal sre their
interseciions?

E6)  Obtain the intersections of the surface (5) with the XZ- and Y Z-planes,

If you've done E6, then you must have realized why this surface is called a
paraboloid. You already know why the surface is called elliptic from E2. You may

be more convinced about this fact if you look at the l'nllou_-"ing property. p
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Fig. 2: Antenna in the shape of a
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circulor poroboloid.

Let us look at sections of the surface by the plane z = k, where k is a constant. It

is given by

W2 i ,

X l-owk - O
al b?

The left hand side of (7) is positive for all values ot x and y. Therefore, w and k must
be of the same sign. So if w > 0, then k >0. In this case (7) represents an
ellipse (or circle if a = b) with centre at (0,0,k) on the positive direction of the
z-axis. Note that the size of the cliipse increases as k increases.

If k = 0, the plane z = 0 just touches the surface at the point (0.0.0). .

If k < 0, the plane z = k does not intersect the surface. Thercfore, no portion of
the surface (5} lies below the plane z = 0. We have drawn the surface in Fig. 1 (a).

Z‘l ‘Z.*
—=z7 o~ Y
\\
#, 1
7/ 1
1
L]
:
- x —_—— :._ —_
Y .
X
{n) (b}

X 1
Fig.1: The elliptic Parobolold — + -:—_ = 2wk in casc (n) w0, (Bl w< 0
i _

Now what if w < (0 in (7)? Then k has to be negative. In this case we get an ellipse
whose centre lie on the negative direction of the z-axis. As above, you tan sec thal
no portion of {3) lies above the plane z=0. We have drawn the surfacc in Fig. | {b).
Now you know geometrically why this surface is called an elliptic paraholoid,

Why don't you try 1o trace some parahaloids on your own now?

E7Y  Trace the paraboloid given by
a) x°+y? = z; and describe its scetions obtained by the planes x = 0
and y = {.
b} y2+422 = x and describe its scctions by the planes y = 0 and z = 0.

The paraboloid you got in E7 (a) is called a circular paraboloid. There you can sec
thai the plggr_- cartion af the surface h}f the p]m'lr‘ x=Nisn pnrnhn‘la with focus al
the point (0,0,1/4). When we revolvg this parabola about the z-axis, we get the
surface you have (raced in E7 (a). Therefore we also call ihis surface n paraboloid

of revolition.

Paraboloids of revolution have many applicaiions. Circular paraboloids are used for
dish antcnnas and antennas in radio telescopes (see Fig.2). This is hecause of the
property that of all the paraboloids having the same area, a circular paraboioid has
the largest reflecting surface. '

Circular paraboloids are also used for satellite.trackers and microwave radio links.




‘Now let us consider the hyperbolic paraboloid given by (6), that is, Paraholoids

2 .2

X Y

— — == 2wz,
.a? bl

As in the case of the elliptic paraboloid, we have two cases: w < 0 and w > ().
We shall restrict our discussion to w < 0. (Exactly similar properties hold for the
case w > 0.) In this case we ask you to (ind out the properties of the following
exercise.

E8)  a) What are the properties of a hyperbolic paraboloid which arc analogous
to those obtained by you in E4 for an elliptic paraboloid?
b) What are the sections of the paraboloid (6} withz = k. k < 0, and k > 0,

W

In E8 (b) you must have observed that the section of a hyperholic paraboloid by
2 2

the plane z = k (k # 0} is the hypcrbola-’% - §—= 2wk. This hyperbota is real for

a .

2

all non-zero values of k {#0), positive or negative.

if k > 0, it will have its tranverse axis parallel to the x-axis, and if k < 0, its
transverse axis will be parallel to the y-axis. You can see one branch of the
hyperbola in Fig.3 (a).

In Fig.3 (b) you can see the parabolas which are sections of the paraboloid by the
planes x = Qand y = 0.

ll
Fig. 3 : The planar sectlon of the hyperbolle parabolold =" -;i:-—— 2wz by the planes (2) z = { and
a :

z = =1, are the hyperbolas Hyand H, () X = 0 and y = 0, are the parabolas P, and P; 49
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You can also observe that for k = 0. the length of the semi-transverse axis of the
hyperbola is V2 k a . which increases as k increascs. Similarly for k < 0. the length
increases as |k| increases.

You can now 1rv these exercises.

£9)  Consider the hyperbolic paraboloid piven by
x*=2y' =z )
a) What are its sections by the planes x = (Fand y = 07
1) What are its sccltans by the planes 7 = 0, £17
¢) Skelch the surface deseribed by the given equation,

E10) Skeich the surface given by the equation 277 —y" = x.

So far we have discussed how o trace the standard paraboloids. For this purpose
we considered their intersection with planes parallel 1o the coordinaie plimes. Now
let us discuss the intersection of the paraboloeid with a general planc, as well as with
a line,

9.4 INTERSECTION WITH A LINE OR A PLANE

In this section we shall discuss some resulis lor paraboloids similar to those obtained
for central conicoids in Scc 8.7 of Unit 8. We shall present some of these results in
the form of cxercises for you to do.

"Lel us start with an exercise on the analogue of Theorem | in Unit § for the

paraioloid given by

ax’+by? = 2z. . (B

11} Prove that a line intersccts a paraboloid at two paints which may be real or
imaginary.

What can you say about (he intersection of a line parallel to the z-axis with the
elliptic paraboloid (8) (when a and b are.ol the samu sign)? Let us go back for a
moment to Fig.1. There you can see that there is only onc 1cal point of intersection
on the paraboloid. Let us sec what happens to the intersections with the x- and
y-axes. Again from Fig.1 and E7. we obscrve thal the fines just tonch the paraboloid.
thal is, the points of intersection are coincident. You know that such lines are called
tangent lines. As in the case of central conicoids, the set of all tangent lines at a
point of the surface is a planc, called the tangent plane. You should be able to write
the equation of the tangent planc from the corresponding results on central

conicoids. In facl, this is what the following exercises arc aboul,

EI12) Prove that the condition for a line with direction ratios «. B, v through the
point (Xg,¥,Zo) 0 be a tangent o the paraboloid (8) is axpa+byB—vy=10.

E13) prove that the equation of tHe tangent pianc at a point (Xa.ya.z:) on the
paraboloid (8) is
ax_xn-i-hy_v., = {z+%).

El4) a) Prove that the p}zine gx-+vywy = p wiil be a tangent plane to the
paraboloid (8) f
3 3
u- v
—_t = - e 9
a b 2PW 0 ) ) S )
b) Obtain the point of contact.




If you have done El4, you know that the point of contact in that situation will be
~u —v -p
Aaw  bw’ w

Let us consider an cxample.

Exemple 1: Show that the plane 8x—6y—z—5 = 0 touches the paraboloid

xZ yl
7" —3—-= z, and find the point of contact.

Solution: Let us check the condition given in (9). Herea = 1 b = —
v=-—-6,w=-1,p=35.

Substituting in (9), we get

64 ~ 54 — 10 = 0, which is true.

Therefore the plane touches the paraboloid. .

The point of contact is {8,9.5).

'-nf'|l\-l

In the following exercises we ask you to apply what you have proved in E13 and E14,

E15) Find the equations of tangent plane to the given conicoid at the indicated
point
a) x*+y? = 4z, 2.-4,3)
by x2=-3y? = z,7(372, -3)

E16) Show that the plane 2x—4y—z+3 = 0 1ouches the paraboloid x*—2y* = 2z,
and find the point of contact.

Let us now see what the intersection of a paraboloid with a penerai planc is,
Consider the following theorem, which is analogous to Theorem 4 in Unit 8, We
will not be doing its proof here, but leave it as an exercise for you to do if vou are
interested in proving it. (See Miscellaneous Exercises.)

Theorem 4
a) The section of a paraboloid ax*+by” = 2z by a planc ux+vy+wz = p is a conic,
b) If w = 0, the section is always a parabola.
c) If w # 0, then the section is
i) .a hyperbola i u and b are of vpposiie signs.
ii} a parabola if at Icast one of a and b is zero.
iii} an ellipse if a and b are of the same sign.

In Fig.4 we have diagrammatically illustrated some particular cases

Flg.4 : Pianar scctior of rm’+hg,rE = 2z hy the plane ux+vy+wz = p
when u,v,w, p # 0 .

Parabalalily

S




Conlcolds

52

In Fig.4 you can sce the elliptical section

Why don't you try an exercisc now?

E17) Skctch the sections of the following conceids by a plane perpendicular to the

XY-plane.
a) 3x2~y? = z.
b) 2x2+y? = z.

We shatl end Lhis unit now with a briel review of what we have covered in L.

9.5 SUMMARY

Tn this unit we have discussed the [oliowing points.

1) The standard form of a non-central conicoid is ax* +by +2wz + d = 0.
i w = 0, the equation represents a cylinder or a pair of straight lines. I
w # 0, the surface represented by the equation is called a paraboloid.

2) The standard equation of a paraboloid is
ax?+by? = 2wz, w # 0,
There are two types of paraboloids.
When a and b are of the same signs. we get -an elliptic paraboloid.
When a and b are of opposite signs, we pet a hyperbolic parabolaid.

3) How to tracc an elliptic paraboloid and a hyperbolic paraboloid,

4) The condition for a line with dircction ratios «. B, ¥ to he a tangent to the
central conicoid ax*+hy? = 2z at (xn. Yo Zo) IS axgo+hyaB=". :

5) The equation of the tangent plane to the paraboloid ax*+by’=2z at a point .
(X0.Yo Z) is axxo+byy, = (z+zn)-

6) The condition that the planc ux+vy+wz = pis a tangent plane to the parabolo:d
ax? + by’ = 2z is

u2 2

'y + %+ 2wp=0
7} The planar section of a paraboloid is a conic section.

Now you may like to go back to Sec.9.1 to sec if you've achieved the objectives listed
there. You must have sclved the exercises as you came 1o them in the unit. In the
next section we have given our answers to the exercise. You may like to have a look
at them.

9.6 SOLUTIONS/ANSWERS

El) a) Puttingb = 0, a,c £ 0in (1) we get
ax? + ¢z’ + 2ux + 2vy + 2wz + d = 0,
. ul? ’ wi? u? w2
Le,afx+—-|+c¢c|z+ - = —2yy—d+ —+—
a c a ¢
l]3 Wz
—2vy+d,, where d,= T+——d
L c

(e . u w .
By shifting the origin to (— — .0, — =), the above equation reduces to the
a c’

form
aX? + cZ? + 2vY + d = 0,
where X,Y,Z denote the coordinates in the new system,
b) Similarly, putting c = 0, a;b # 0, in (1) we get that the equation red:zes

1o the form
aX® + bY? + 2wZ + 4.= 0,



E2y

E3)

E4)

ES)

E6)

E78a)

where X,Y,Z denote the coordinates in the system obtained by shifting : Farabololds

. . u v
thcongmto( 3' " § ,0)

Any plane paralle] to the XY-plane is of the form z = k. where k is a constant
k # 0.

i} The given ellipsoid is x2 + 2y? = 3z,

Putting z = % in this equation, we get
2

—_—t —= .

¥

which represents an ellipse.

ii) Similarly, putting z = k in the eﬁuation of the hyperboloid, we get
Xy |

4Bk A&

which is a hyperbola.

(a) and (e) represent a paraboloid. (b), {c) and (d) do not tepresent a
paraboloid. (a) represents a hyperboelic paraboloid, whereas (¢) represents an
elliptic paraboloid.

Surface (3) is symmetric about YZ and ZX-plancs. It is not symmetric about
the XY-plane.

Yes. When we puty = 0 and z = (Hin (3), we sce that x =0, Thus, (0,0,.0)
is the only point of intersection of the x-axis with (5). Similarly, we can show.
that (0,0,0) is the only point of intersection with the y and z-axes.

a) Putting z = 0 in (35), we get
X2y
- -+ —= 0.
a? bl
The only point which satisfies the above equation is (0,0,0). T‘i-lerefore
the XY-plane intersects the surface in the point (0,0,0).

b) Putling y = 0 in (5) we get
3

X
— =2wz,

- 2 1 2
1.e. Xx° =2awz,
which represents a parabola.

c} Similarly, the YZ-plane intersects the surface in a parabola.

"< "

Fig. 5: The parabolas E; and E; ore the scctions obtained by

intersecting the clliptle paratniloid with the planes x = b and ¥y = 0, respectively. 53
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b)

Fip.6 : F, and F; are the sectlons nbtained hy

E8)

EY}

intersecting the clliptic parohalold with the planes ¥ = {t and z = 4, respectively.

The surface has the following propertics.
i) It is symmetrical about the XZ-plane and the YZ-ptane.

ii) The coordinate axes intersects the surfacc in the peint (0.0.0).

iii) By putting z = 0 in (6), we sec that the XY-plane intersects the surface in

{wo lines

y== 7%
Similarly. by putting x = 0 in {6). wc gci
y, = —2h’wz,

which represents a parabola. e, ihe imicrscction with the YZ- plane is o
parabola.
The interescetion of (6) with the ZX-planc also is @ parabola given by the

equation
) 2
X = 28wz,

b) Putting z = k in (6), we gel

¥
a- b
When k< 0 and k > 0. this represents a hyperbola.

. , b
When &k = 0. this represents a pair of linevy = & ~x.

<

a) The scction by the plane x = s (he parabola
y: = —% z (see Fig. 7)

T’hc sefuon by the plane y = 0 is the parabola

x* = z (see Fig. 7)

b) The seclion by the plane ¢ = 0 is the pair of lincs
;= +1
Y= ....—Z-vx.

‘Ihe seetion by (he plane z = 1 is the hyperiola

X 2 =]

and thc sceljon v ihe plime 7 —1 s the hypernais
2yt = xT = 1

This shows that the set af afl tangent lines i.e.: tangent planc is given by the
cquation
axx, + byy, =z + 2,




E10) The figure is similar to the figure in E9® with a change of the coordinate axes.

E11}y°

EI2)

E13)

-

Fig.7: The hyperbolic parabnlnid x* — 2y* = z.

The equation of a line through (xy.yy.20) with direction cosines a. 3. v s
X~Xo _¥Y—Yo 2%

« By
Any point on this line is of the form {ar-+x,, Br+y,, yr+2,) for some r. When
this line meets the paraboloid ax’+by*=2z. we have

aleer+xg)2kb{Br+yo)2=2a(yr+z,).

i.e. (aa’+bRH)rP+2r(aax,+bByy~v) + axy -+ by —27,=0 Lorm
This is a quadratic equation in r which gives (wo values of 1, which may he
real or imaginary. Hence the result,

The equation of the line L passing through (xq. ¥y, z,), having direction ratios
o, B, vis
X~Xg _Y—¥o I—Z

« B ¥
In EI3 we saw that this line L. meets the conicoid in 1wo points. which may
be real and distinet, real and coincident or imaginary.

If the line is a tanget to the conicoid at the point (x,. v,..7.). then the peints
of interscction coincide. That is. (1), in (E11) has real eningident roots.
The condition lor this is

aoxy+bBy,—v = 0. BUNARD
Note that since (%, Yy, 7a lics on the conicoid. we have ax) + byl — 2., = (1.

The conicoid is ax* + hy* = 2z Lt
We know that the tangent piane at (xq, ya. 23) is the st of all tangent lines
at (Xg, Yo Zo)- Let us assume that the line
X=Xo _Y—Yo 2%
o B Y

where «, B, v are the direction ratios of the linc, is a 1angent 1o the conienid

(11).

Eliminating o, 3. ¥ between {11) and (12}, we get
B ) ()\'"Xn) + b}’n {fl}__\'n] = {z—z4 =0

axxo + Dyyg — (axj + byp) = z — Za

axxy + byyn — 220 = z — zq. since axj + byd 5 2z,
axxy + byy, =2 1z

Paraholaids
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E14)

By E 13, the plare ux + vy + wz = p will be & 1angent plane to the piraholoid
ax? + by? = 2z if it is of the form

aXxp + byy, = 2 + z,

for some poinl {xn. ¥n. 24) on the paraboloid. That means. we have

axg b}'n __1 ﬁ
u v w P
< u v p
$ R I — N = — N ? = o — .
" aw Yo bw " w

Since (Xo, Yo, Z) lies on the conicoid ax? + by? = 2z, we get

2 2
a (T Ne of N 2
aw .hzw w

u® 2
le.-a; h_w=_2p
_ u? w2
i.e,, 2 +T+ Z2pw =1 A1)

b) The point of contact is given by ( -5 . X . 1)

E15)

"E16)

aw ow T ow
Equation of the tangent plane is axx, + byy, = z+z, (1)
a) The given equation can be written as
2y
— +==12z
2. 2
Soin thiscase a =4 = b and %, = 2.'y; = —4 and z, = 5.
Then we have from (14)
XX 2+HIXyX(—4)=2+5
i.e. x — 2y — z =5,
byex — 12y —z+3 =20
The given conicoid can be rewritien as
2x3 4y?
3 - T— 2z.
The given plane is 2x ~ 4y — z = —3. The condition that this plane touches
the paraboloid is given by {I3)in Eid, Inthiscasc u =2, v = =4, w = —1,
p=-3a= 3 b= %c Then we have

u?. 2

=+ fb_ 4+ 2pw = b—12+6=0.

This shows that the plane touches the paraboloid.
The point of contact is given by (3,3,-3).

E17) a)

56 Fig.8: F [s the sectlon of the parabolold 3x’ — y* = z by n plonc perperdicular to he XY-plane.
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Paraballits
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X

Fig. 9 : F is the'section of the parubalold 2x* + y* = 2 by n plane perperdiculor to the XY-planc,

MISCELLANEOUS EXERCISES

(This section is optional)

In this section we have pgathered some problems related to the contents of Lhis block,
You may like to do them 10 get a better understanding of these contents, Qur
solutions to'the questions foliow the list of prabiems, in case vou'd like to
counter-check vour answers,

)

2)

3)

Which type of the Conicoids do the foliowing equations represent?
) x* - 1622 = ay? :

i) 5%+ 2y* — 622 =10

i) 4y’ = x

iv)  x® + 4y? +i622 =12

v) 2yt x? =4z

vi)  4x? — 3y — 622 = 10

i) X2+ yr ezl =4

viil) 228 + x = y? ‘
X} 4y + 9x% — 3622 + 36 = 0
X) 25 — 9y? = 225

2 2
y_2= 1(a > b) is rotated about the z-axis. What is

Zz
a) The hyperbola = —
) yp 775

lhe surface formed in this situation? Obtain the cquation of the surface.

b) Find the vatue of x, such that the plane x = xq intersects the surface obtajned
in (a) in a pair of straight lines. '

a) A normal at a point P of a conicoid is the line through P which is
perpendicular to the tangent plane at that point. Find the equation of a
normal to a central conicoid ax® + by +cz? = 1 at a point {Xo, Yo.Zo)-

b) Using (a) obtain a normal at the point (1, 1.\72_) to the ellipsoid

\,'_' \.3
! ] -
p—E —_L ?-=]

4 4

Find the cquation of a normut to g parataloid ax® + by® = 27 a any point

(7'-'”- y:hzn) on it.

Suppose that the XY Z-cnordinate fystem is transtormed into another coordinate
system with the same origin and with the coordinate aves having

. . ) 1 1 1 -1
direction cosines { —— v —,0 —_, —=,0 d 0, i
(\/7 70 Y ekVe ) and  (0.0.1) with -
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&)

7

8)

9)

respect to the old system, What does the cqualion xy = 7z represents in the new
system?

Find the equations 1o the tangent plane of the given surfaces al the indicned
points

)X+ 2+ 2= 5 (1)
b) 9x* 4 4y — 362 = 01 (2. = 3.2)
) X+ Ay — 4 — 4 =0 (20.0)

Prave that the section of a central conicond by a given planc is a conie sechion,
Further, if the conicoid is ax”+by +cz'=1 and the plane is ux + vy - wz = 3,
then prove that the section will he

-

-
- = -

u
i an cllipse iff — + — + —> (.
) n cllipse 1 2 5 z

utovi W
il a hyperbola if — + — 4+ — < ().
) YP a b} C =

3 1 -

i} aparabelaif — 4+ — + — = (4
“\ a h ¢
a) Prove that the section of a paraboloid ax”’ + bv? = 27 by a planc
ux -k vy + wz = (s o conic section,

Y Tf w = 0, show that the section w alwave a parahola

¢) I w £ 0, then show that the section s
1Y o hyperbola il a and b oare of opposite signs
{i} « parabola il af least ane of @ and b is zero
iii) an ellipse il a and b arc of the same sign™
n) Show that the intersection of the plane ¥ =-2 and the etlipsoid
e B : :
— + =+ —= | isan ellpse.
Y 0 16
b} Find the lengths af the semi-major axig and semi-minor axis, the caordinaies
al the contre. and the coordinates ol the Toci of the ellipse obtained in in).

X 1 ! .
A tangent plane Lo the ellipsoid — v 22+ —o= 1T meed the coordimate

1t
i b ¢
axes in the points A B3.C. Prove that the ceriraid of ihe trtangle ABC lies on
the surface
R A . . . . .
— = = 4 (A centrord ol a niangle s the point of intersection ol
At A
the mediuns of the triangle.)
Answers
Iy iy Cane i) hyperholoid ol ong sheet niy evlinder iv) cllipsoid vy eliiptic
parabalaid vi) hyperholoid of two sheets vind sphere viid) hyperbolic paraboloid
ix) hyperboloid of two sheets x} cvlinder.
2y ay The surface Tormed is o hyperboeloid of anc sheel, Tt pquation s given by
v N
— - =+ ==1L
o b Db
hY 'uniing 7z = 2z, in the above equation, we et
[ v b
— = =+ —== I
a e e
Tire cquation represents a pair of stratght fines ondy if z,=%a.
3y YThe cauation of the angent plane at (X, ¥2q) 15

axxy 4+ byy, +oczzy = 1

where axy. by, and cz, arc the direction ranos of the normal (o the plane.
This means that the direction ratios of any line perpendicular to the plane
are axy. by, and cz,. Smee a normal to a conicoid at’ (g, Yo %) 15 a line
perpendicular to the tangent plane and passes through (Xs, Yo.20). its equation
is given by

X=xn _ ¥—¥y 72— 7

ﬂ.‘(“ h_\'u c7




b} The equation of the normal to the ellipsoid Parahotolds

x2 T g2 _
I + %5 + P 1 at (Xq, Yo. Zo) is
X=X _Y~Yo_ I7%
o N 7
a? b? c?
I
H =I,yo=1,2g= —_, a=2, b=2,c=1.
ere Xp Yo Zg N c
Then we have
x-=1 _ y—=1 2-1V]
IV 1 -
V2
This is the equation of a normal at the point
1
1.1, — :
(-v7)
4) X% _ YTV _ 2™
axp byy -1

5} The equations of transformations are

z=1z'.
Substituting for x, y and z in the equation xy = 2z, we get

1, 1, 1, 1 N
(W’”v_i”) (WXJ’W‘Y):z

which represents a hyperbolic paraboloid.

6) i) The equation represents an cllipse. Therefore the tangent plane is

X+ 2y + 22 =35,

i)  The equalion represents an elliptic paraboloid. The cquation of the
tangent plane is
Ix -2y — 3z =4

fiij  The equalion represents an hyperboloid of one sheet,
The equation of the tangent plane is
X+ 2y —-2z=0

7) Let the equation of the central conicoid be
ax® + by? + ¢z? = 1, abc # 0.
Suppose that the plane ux + vy + wx — p = 0 (u # 0) intersects the conicoid.
—Vy—Wwz+p
u
Substituting for x in the given equation of lhe conicoid, we get

ux+vy+wz—p=0$x=

%(_—vy——wz+p)2+by2+czz=1

E§+b\v2+(iv§+c\§+ Zavww_ Za\:p}r

¥ YR

\ u ) } L u ) u u
awp a ,

- ==z + —p—-1=0.
.ﬁZ uZP I

This is a general second degree equation and therefore represents a conic

section., Hence the resul:.

Let us now find the nature of the conic section,

i) You know from Block 1 Unit 3 that the above equation represents an
ellipse if _
avi+bu?  awltcu®  atviw? N

R A >0 59
v

2 u4
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i.e (avi+bu’)} (aw +cu) — aviw >0
e a®viw? + acviy? + abutw? + beu' — phiw > 0
i.c acv’ + abw? + beuw® >0 _
since abc #0, we can divide throughout the left hand: side by abc. Then we

get

utov W

—t — 4+ —>10.

a h c

ii}  Stmilarly we can show that the section will he an hyperbola if
b 1

oot oW
<«

ity  The section will be a parabola if
eV oWt

— +—=0

n h c

1l
-1

8) a)The given paraboloid is ax” + by’ = 2z. The given planc is ux + vy + wz.
Now ux + vy + wz = p=>wz = —4x — v + p.
Substituting for wz in the given cquation of the conicoid, we et
ax~ -+ by + 2(ux + vy —p) =0
i.e. wax? + why + 2ux + 2vy — 2p = (.
This is a general second degree cquation and therefore represents a comnic
section. The scetion will be a hyperbola. a parabola or an cllipse according as
wiab < 0. wib = 0, w? ab > 0} respectively.

b) If w = 0, we get wab = 0 and therefore in‘this casc the section is always a

parabela.

c) Il w & (0, then the condition in (a) reduces 10
ab < ), ab = O orab >
Thus the section in 1his case will be
i) a hyperbola if ab < U i.c. a and b arc of oppasite signs.
i) a parabola if ab = 0 i.c. at least onc of a and b is zero.
jit)an ellipse if ab > 0 i.c. a and b are of the same sign.

9) " a) Substituting for y = 2 in the given cquation of the ellipsoid, we get
2 2
X 4 z

e LiEo
9 g 16
) x2+zz_{ 4 5
e N T TR
¥ 9,
= 3t gee
G 72
= o
5 8079

This represents.an cllipsc.

b) The length of the semi-major axis = V 80/ 9.
The length of the semi-minor axis = V'§

{0,0) is the centre. :
_ g0\ _, 25
The focii are given by (0, %¢) where ¢ = 5]~ 5= ?\/"_?_.

25 25
IC,(O,—V?} and (0.—3\/?)
!
10) Suppose ux + ¥¥ + Wz = p is & tangent plane to the given ellipeoid
st oyt g
=1 =+t==
‘; b-’. of
Then we have the relation
p’ = afu? + bV + ¢ RCY

Now we find the intersection of the plane and the coordinate axes.
The planc meets the x-axis, y-axis and z-axis at the poin
]

P .
A(E 0.0 ) B( 0,20 ) c(o,o, E)respcctively.
u v o w .

"




Let (%o, Yo Zp) be the centroid of the: A ABC. Then

_ plu+0+0 . __ P
X{]‘— 3 e - 3X()
_. 0+piv0 _ P
Yoo T3 M Y3y
0+0+p/w P
T e e | T et
3
Substituting for u, v and w in (») we get
2,2 2.2 2.2 2 2 2
P’ = ap2+bp-l-‘:p2 Thatis,a—+b—2+c—,=9.
6 . 9l 94 % ¥ %
This shows that the centroid (g, Yo, Zo) lies on the surface
) : 2
represented by the equatioin = + =+ —==9.
4 I

Parabololds
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