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COURSE INTRODUCTION

The phenomena we normally observe in nature can be broadly classified into two
categories: thosc concerned with matter and those concerned with waves, Physics
courses usually begin with discussion of phenomena dealing with' matter-

mechanics and properties of matter. Next comes the phenomena of waves, Out of. our
five scnses (touch, taste, smell, hearing and seeing), two deal with the waves—hearing
and seeing. Our contact with-the external world is mainly through thesc two senses.
Sound and light, though of entirely different nature, have many properties in
common. In this course, you will learn about waves in general. This unified approach
to wave motion is meant to bring out the underlying similarity between apparently
widely differing phenomenra. Even our understanding of modern physics, particularly
quantum mechanics, depends upen a clear understanding of this course, '

Before coming to wave motion it is essential to understand the physics of oscillations

of an isolated body as well as of two or more bodies coupled together. This course is
therefore divided .into two Blocks. Block-1 deals with the study of oscillations of an
isolated system such as a pendulum and two or more bodies ‘coupled together, under
different conditions. In particular, the effect of damping and an external harmonic

force are discussed in detail.Block 2 deals with wave motion. The basics of progressive
waves, their reflection, transmission and refraction are discussed in detail. Superposition
of waves can give rise to beats, stationary waves, interference and diifraction.

These have been discussed with particular emphasis on sound waves.
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BLOCK INTRODUCTION

This Block deals mainly with the sindy of oscillations of an isolated body as well as
two or more bodies coupled together under different corditions. In Unit 1 of this
Block we have developed mathematical theory of simple harmonic motion. It is used
to study oscillations, by anology, of entirely different systems from different branches
of physics. Unit 2 deals with the superposition of two or more collinear or orthogonai
harmonic oscillations of same/different frequencies. :

In nature, most oscillations left to themselves die’down gradually. This happens
because of damping. The effect of damping on harmenic oscillations is discussed in
Unit 3. In Unit 4 you will learn about the motion of a damped harmonic oscillator on
which a periodic harmonic foree is acting. This leads to the spectacular phenomenon
of resonance. Unit 5 deals with the analysis of coupled oscillations. You will

learn that in the limit of their number becoming very large, we are lead to the
phenomenon of wave motion. In each unit, we have given many SAQ’s and TQ’s to
fix-up your ideas. If you are not able to solve them yourself, you can look for
solutions at the end of each unit.

Me hope that after studying this Block you will realise the wide applicability of simple
1armonic motion and its connection with wave motion. You are, therefore, expected

o master the mathematical technique needed to study SHM under different
:onditions.

We wish you success,
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UNIT1 SIMPLE HARMONIC MOTION

Structure
[.1 Tntroduction
Objectives

1,2 Simple Harmonic Motion (SHM): Basic Characteristics
Oscillations of Spring-mass System
1.3 Differential Equation of SHM
1.4 Solution of the Differential Equation for SHM
Amplitude and Phase
Time Period and Frequency
Velocity and Acceleration
1.5 Transformatibn of Energy in Oscillating Systems: Potential and Kinetic Encrgies
1.6 Calculation of Average Values of Quantities Associated with SH. 4 '
1.7 Examples of Physical Systems Executing SHM
Simple Pendulum
Compound Pendulum
Torsional Systems
An L-C Circuit
An Acoustic Oscillator
-A Diatomic Molecule: Two-body Oscillations
i.8 Summary
1.9 Terminal Chicstions
1.10 Solutions

1.1 INTRODUCTION

In your school science courses you must have-learnt about different types of motions.
You are familiar with the motion of falling bodics, planets and satellites. A body
released from rest and falling freely (under the action of gravity) moves along a
straight line. But an object dropped from an acroplane or a ball thrown up in the air
follows a curved path (except when it is thrown exactly vertically). You must have
also observed the motion of the pendulum of a wall clock and vibrating string of a
violin or 'some other string instrument. These are examples of oscillatory metion. The
simplest kind of oscillatory motion which can be analysed mathematically is the
Simple Harmonic Motion (SHM}. We can analyse oscillatory motions of systems of
entirely different physical nature in terms of SHM. For example, the equation of
motion that we derive for a pendulum will be similar to the equation of motion of a
charge in a circuit containing an inductor and a capacitor. The form of solutions of
these equations and the time variation of energy in these systems show remarkable
similanities. However, there are many important phenomena which arise due to
superposition of two or more harmonic oscillations. For example, our ear drum
vibrates under a complex combination of karmonic vibrations. Bul we shall discuss
this aspect in the next unit.

In this unit we will study oscillatory systems using simple mathematical techniques.
Our emphasis would be on highlighting the similarities beiween different systems.

Objeciives
- -After studying this unit-you should be able o

® state the basic criteria for the simple harmonic motion of a system

@ establich the differentisl squation for 2 systam exscuting SHM and solve it
®  define the terms amplitude, phase and time period

@ compute potential, kinetic and total encrgics of a body executing SHM

® deuwuce expressions for average potential and average kincetic energies and
discuss their significance
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Oseillations - ® write down the equation of motion and expressions {or displacement, time
period and energy of simple physical systems executing SHM

® identify similarities between different oscillating systems.

1.2 SIMPLE HARMONIC MOTION: BASIC
CHARACTERISTICS

You all know that cach hand of a clock comes back to a given position after the lapse
of certain ume. This is a fumiliar example of periodic morion. When a body in
periodic motion mioves to-and-fro (or back and forth) about its position, the motion i»
called vibrutory or escillatory. Oscillatory motion is a common phenomenon. Well
known examples of oscillatory motion are: oscillating bob of a pendulum clock,
piston of an engine, vibrating strings of 4 musical instrument, oscillating uranium
nucleus before 1t fissions. Even large scale buildings and bridges may at times undergo '
oscillatory motian. Many stars cxhibil periodic variations in brightness: You must
have observed that normally such oscillations, left to themselves, do not continue
indefinitely, i.c.. they pradually die down duc to various damping factors like friction
and air resistance. evc. Thus, in actual practice, the oscillatory motion may be quite
complex, as for instance, the vibrations of a violin string. We begin our study with the
discussion of the esscntial features of SHM. For this we consider an ideglised model
of a spring-mass system. as an example ol a simple harmonic oscillator.

1.2.1 Oscillations of a Sbring-mgss System

A spring-mass system cansists of a spring of negligible mass whose one end is-ixed to
a rigid support § and the other end carries a block of mass m which lies flat.on a
horizontal frictionless table (Fig. I.1a). Let us take the x-axis to be along the length of
the spring. When the mass is at rest, we mark a point on it and we define the origin of
the axis by this point. Thal is. at cquilibrium the mark lies a1 x = 0.
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Fig. 1.1 A Spring-mass System as an ideal oscillator (a) "The equilibrivm confliguration, (b) An extended
conliguration, {¢) A compressed configuration.

If the spring is stretched by pulling the mass longitudinally, due to elasticity a
restoring force comes into play which tends to bring the mass back towards the
equilibrium position (Fig 1.1b). If the spring were compressed the restoring force
would tend 1o extend the spring and restore the mass to its equilibrium position
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(Fig.).1c). More you stretchfcompress the spring, more will be the restoring force. So
the direction of the resioring force is always opposite to the displacement. If total
change in the length is small compared to the original length, then the magnitude of
restoring force is lincarly proportional to the displacement. Mathematically, we can
write

F= —kx o (L.1)

The negative sign signifies that the restoring force opposes the displacement. The
quantity k is called the spring constant or the force constant of the spring. It is
numerically equal to the maqnilude of restoring force exerted by the spring for unit
extention. Its ST unit is Nm™

SAQ1 .
The spring in Fig. I.1a is stretched by 5 cm when a force of 2 N is applied. Calculate
the spring constant. How much will this spring be compressed by a foree of 2.5 W?

How does the spring-mass system oscillate? To answer this question, we note that
when we pull the ‘mass, the spring is stretched. The restoring force tends to bring the
mass back to its equilibrium position (x=0). Therefore, on being released, the mass
moves towards the equilibrium position. In this process it acquires kinetic energy and
overshoots the equilibrium position. Do you know why? It is because of inertia. Once
it overshoots and moves to the other side, the spring is compressed and the mass is
acted upon by a restoring force but in the opposite direction, Thus we can say that
oscillatory motion results from two intrinsic properties of the system: (i) elasticity and
(ii) inertia.

What is the direction of the restoring force vis-a-vis the equilibrium position of an
oscillating body?

The restoring foree is always directed towards the equilibrium-position of the
oscillating body.
In discussing the spring-mass system we observed 1wo important points:
(i) The restoring force is linearly proportional to the displacement of mass from its
equilibrium position.
(i) The restoring force is always directed towards the equilibrium position.
Any oscillatory motion which satisfies bolh these conditions is called simple harmonic

motion. The study of SHM is important because, as you will see, oscillatory motion .
of systems of entirely different physical rature can be analysed in terms of it,

Let us now study the elfect of gravity on oscillations of spring-mass system. Consider
a spring of negligible mass suspended from a rigid support with 2 mass m attached to
its lower end (Fig.1.2).

N

Fig. 12 A vertically hanging spring-mass system. (s) The spring with no object suspended from it, (b) The
spring in equilibrium with mass rr suspended, {¢) Spfing-mass sysicm dispiaced from equilibrium position.
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Onclltntions

Let us choose the X-axis along the length of the spring. We take the bottom of the
spring as our reference point, X = 0, when no weight is attached to it (Fig. 1.2a).
When a mass m is suspended from the spring, let the reference point move 1o

=Xy (Fig. 1.2b). At equilibrium, the weight, mg, balances the spring férce, & Xo.
Since the net force is zero, we have

or mg—kXo=0
mg = kXo. . (1.2

Now if the mass is pulled downwards so that the reference mark shifts to X,
(Fig 1.2¢), then the total restoring force will be kX, and point in the upward direction.
The net downward force will therefore be (using Eq. (1.2))

mg — kXy =k(Xo— X\)=—kx
where x=X,.— Xo.

Thus, the resulting restoring force on the mass is
F=—kx

where x is its displacement from the equilibrium position, Xo. This result is of the
same form as Eq. (1.1) for the horizontal arrangement. 1t is thus clear that gravity has
no effect on the frequency of oscillations of a mass hanging vertically from a spring; i

* only displaces the equilibrium.

1.3 DIFFERENTIAL EQUATION OF SIMPLE
HARMONIC MOTION !

Let us now find the differential equation which describes the oscillatory motion of a
spring-mass system. The equation of motion of such a system is given by equating the
two forces acting on the mass:

mass X acceleration = restoring force

or
2
m d ': = - kx
dt
2x
where T is the acceleration of the body,
t .

[t is important to note that in this equation, the equilibrium position of the body is
taken as the origin, x = 0.
1

You will note that the quantity k/m has units of Nm™ kg’ = (kg.ms ) kg'm' =57
Hence we can replace k/m by wi where wo is called angular frequency. Then the above
cquation takes the form

It may be remarked here that Eg. (1.3} is the differential form of Ea. (1.1) and
describes simple harmonic motion in one dimension.

A differential equation having terms involving only the first power of the variable and
its derivatives is known as a linear djflerential equation. Il such an equation contains
no term independent of the variable it is said to be homogeneous. We may, therefore.

_ say that Eq. {1.3) is a second order linear homogeneous equation. Its solution will

contain two arbitrary constants.
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1.4 SOLUTION OF THE DIFFERENTIAL EQUATION

FOR SHM
To find the dmplaoemcnt of the mass at any time f, we have to solve Eq. (1.3) sub]ect disin af) _
to given initial conditions. A close inspection of Eq. (1.3) shows that x should be such. o = acos e

a function that its second derivative wlth respect to time is"the negative of the function
itself, except for a multiplying factor w3. From clementary calculus, we know that sine and '
and cosine functions have this property. dGina g

= — o sim ot
You can check that this property does not chanfe even if sine and cosine functions . « '
have a constant muitiplying factor. Similarly
. ; ] ] dicotay) .
A general solution for x (£} can thus be expressed as a linear combination of both sine « "= — ohm e
and cosine terms, i.e. . i
x{f)= A, cos at + Aj sin ot (14) ddewan o
dr
Putting A, = 4 cos ¢ and A: = — A sing, we get oot (A + B)= condcoa B

—sin Adn B
sn{d + Byxdn Ao B
+oomanzal

x ()= Acos{at+ ¢)

D:ﬂ‘erenuaung this eguation twice with respect to time and comparing.the resultant
expression with Eq. (1.3), we obtain a = & ax. The negauve sign is dropped as it gives
negative frequency which is a physically absurd quantity.

Substituting @ = we in the above equation, we get
x ()= A cos (wot + $) (L5)

The constants A and ¢ occurring in Eq. (1.5) are determined using the initial
conditions on displacement (x) and velocity %
: t

Let us assume that the mass is held steady at some distance a from the equilibrium
position and then released at ¢ = 0. Thus the initial conditions are: at =0, x =g

dx

and -d— = @. Then, from Eq. (1.5) we wouid have
t
x{att=0)=Acos =g
and
—‘-31 (atr=0) =—Adawpsing =40
t

These conditions are sufficient to fix A and ¢. The second condition tells us that ¢ is
either zero or nn w (m = 1,2,...). We reject the second option because the first condition
requires cds ¢ to be positive. Thus with the above initial conditions, Eq. (1.5) has the
simple form

X = a cos wql. (1.6) .
C‘AQ ¥
Take 4, = B sin & and Ar= E cos 0in Eq (1 4) In Hm. case show thal the solunon is
x (= Bsin (wot + 8)

We therefore observe that both cosine and sme torms are valid gnlutinne of Eq (1.0
If you plot Eqg. (1.5), the graph-will be a cosine curve with a definite initial phasc
(Fig. 1.3)

141 Phase and Amplitude-

'I'he quantity (wo 1 + ¢), occurring in Eq. (1.5) is called the phase angle or the phase of
vibration of the system at time 1. At == 0, the phase is ¢ and is called the initial phase .
or the phase constant. This gives us information about the initial position from where y
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Flg. 13 Displacement-time graphof simple harmonic mation with an initial phase ¢.

we start measuring the displacement. If at 1 = 0, the body is at x = xo. then 1rom
Ey. (1.5) it follows that

Xo = acos g

We know that the value of the sine and cosine .functions lies between , 1 and —1.
When cos (wot + ¢) = I or —1, the displacement has the maximum value. Let us
denote it by a or —a. The quantity a is called the amplirude of oscillation,

We can, therefore, rewrite Eq. (1.5) as

x (1) = a cos (wof + ¢) (1.7)

The displacement-time graphs for ¢ =0, /2 and = are shown in Fig.[.4. In all the
cases, the graphs have exactly the same shape il we shift the origin along the time
axis. When the phase difference is 7 two oscillations are said to be in opposite phase
or out of phase by .
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Nimple Hm-mk-ﬁ

SAQ)
The mass in Fig.l.1 oscillates with an amplitude 4. If the time is measured from the
instamt when it is at (i) x = + g, (ii) x = — g, and (iil) x = a;‘\/.calculdle the phase

constant for the equations (a} x = 4 sin (wal + ¢)and (b) x = g cos (wul + @)

-1.4.2 "Time Period and Frequency

If we put 2= ¢ + (2] wo) in Eq. (1.7). we obtain
x(1) = a cos [we (t + 2/ wq) + |
= g cos [ag 1.4+ 21 + ¢]
= g cos (wa r + @)

That s, the displacement of the particle repeats itself after an interval of time dmiwe.
In other words, the oscillating,particle completes one vibration in time 27/ ax. This
time is called the period of vibration or tht 1ime period. We denote it by T :

T=2m/w | (1.8)
For a spring-mass system, ws == kjm so that

. T=2mmlk (L9

The number of vibrations executed by the oscillator per sécond iscalied the
Jrequency. The unit of (requency is hertz (Hz). Denoting f by vo, we have for a
spring-mass system

Iv'l\"—"_l. = I_ _k (I.IO)
T 2 Y .

This means that stiffer the spring, higher will be the frequency of vibration.

1.4.3 Velocity and Acceleration
We know thart the displacement of a mass exccuting simple harmonic motion is given
by

x=acos{wef+ )

Therefore, the instantaneous velocity, which'is the first time dcnmlwe of
displacement, is given by

dx

V= —=--gusinf{wf+e) ) ' (LD
dr - :
We can rewrite it as
v=awoa cos (mf2+ wi T &) {1.12a)
You may also like 10 know the value of v at any pomt x. To this end, we rewrite-
Eq.{1.11) as
V=_t|.lq[ﬂ — a’ cos (.:a.-mr+¢;p};)]”2 _ :
=— we (@’ — )" for—a<x=gq (1.12b)
We also know that acceleration is the first time derivative of VEIOCIIy From Eq. {1.11y " sind= JT-cor'®
it readily follows that . _ cos (90 8} =—sin 8
& =—a.|odcos(aml+¢)
o dt

= wi a cos (1r+wur-|_-¢) - ' (1.13a) .

Obvicusly, in terms of displacement

dr s _ | (i.130)
dr :
If you compare Eqs (1.7), (1.12 a) and (1.13 a) you will note that (1) we a is velccity
amplitude and w? a is acceleration amplitude, and (ii) velocny is ahead of I

displacement by /2 and acceleration is ahead of velocity by /2.
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If you plot displacement, velocity, and acceleration as functions of time, you will get
graphs as shown in Fig.[.5. .

N

Fig. 1.5 Time variation of displacement, velocily and acceleration of a body executing SHM (¢ = 0)

SAQ 4

The displacement of a particle executing simple harmonic motion is given hy
% = 0.01 cos 47 (1 + 0.0625) metre. Deduce (i) the amplitude, (ii) the time-pefiod,
- (iii} maximum speed, (iv) maximus- acceleraticn and {v} initial displacemem.

1.5 TRANSFORMATION OF ENERGY IN
OSCILLATING SYSTEMS : POTENTIAL AND
KINETIC ENERGIES

Consider the spring-mass system shown in Fig .1.1. When the mass is pulled, the
spring is elongated. The amount of energy required to elongate the spring through a
distance dx is equal to the work done in bringing about this change. It is given by dW
= dU = Fy dx, where Fp is the applied force (such as by hand). This force is balanced
by the restoring force. That is, its magnitude is same as that of F and we can write
Fo = kx. Therefore, the energy required to elongate the spring through a distance x is
I &,
v=f Fdx=kf xdx=%k'jc’ T4
L I B . I :

This energy is stored in the spring in the form of potential energy and is responsible
for oscillations bf the spring-mass system.
On substituting for the displacement from Eq. (1.7} in Eq. (1.14), we get

U= % ka" cos’ (wef + @) ' (1.15)

Note that at 1 = 0, the potential energy is

Us = % ka’* cos® ¢ (1.16)
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As the mass is released, it moves towards the equilibrium position and the potential
energy starts changmg into kinetic energy (K. £). The kinetic enérgy at any time { is’
given by K.E= % mv", Usmg Eq. (1.11), we get

E="% muwha sin’ (wot + &)

= 1 ka® sin® (wot + @) (1.17)
since ws = kfm.
One can also express K. E in terms of the displacement by writing
=% ka' [! — cos’ (et + ¢} ]
= 14 ka’ —'4 ka® cos’ (wor+¢)
= ka' —V4 kx> =4 k (@ — x°) (1.18)

This shows that when an oscillatmg body passes through the equilibrium position
(x = 0), its kinetic energy is maximum and equal to %4 ka’.

SAQS
Show thal the periods of potenlml and kinetic encrgies are one-half of the period of
vibration.

It is thus clear from the explicit time dependence of Eqgs. (1.15) and (1.17) that in'a
spring-mass system the-mass and the spring alternately exchange energy. Let us
consider that the :m}lal phase ¢ = 0. At / = 0, potential energy stored in the spring is
maximum and K. E of the mass is zero. ‘At = T/4, the potential energy is zerc and
K.Eis maximum. As-the mass oscillates, energy oscillates from kinetic form to
potential form and vice versa. ‘At any instant, the total energy, £, of the oscillator will
be sum of both these energies. Hence, from Eqs. (1.15) and {1.17},-we'can writé

v ka’
(1.i19

E= U+ KE=%ka cos’ (wot+ @)+ % ka' sin’ (wyt + ¢) =

This means that the total energy remains constant {(independent of time} and is
proportional to the square of the:amplitude. As lorig as there are no dissipative forces
like friction, the total mechanical energy will be conserved.

Total Energy = K E + U = l, k o
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Fig. 1.6 Variation of potentia) energy (1), kinclic energy (X.E) and tota) encrgy (E) with displacement
scconding ta Eqgs. (1.14), (1.18) and (1.19).

The piots of {/ and K.E as a function of x as obtained from Egs. (1.14) and (1.18) are
shown in Fig 1.6. You wili note that

{i) the shape of these curves is parabolic, (ii) the shape is symmetric about the origin,
and (iii) the potential and kinctic energy curves are inverted with respect to one
another. Why? This is due 1o the phase difference of »/2 between the displacement

Simple Harmonle Motion -
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and velocity of a harmonic oscillator. At any value of x, the total energy is the sum of
kinetic and potential energies and is equal to 1/2 ka®. This is represented by the
horizontal hne, .

The points where this horizontal line interseets the potential energy curve are called
the 'tumning points'. The oscillating particle cannot go beyond these and tums back
towards the equilibrium position. At these points, the total energy og the oscillator is
entirely potential (E'= U = 1/2 ka?) and K.E is zero. At the equilibrium position

(x = 0) the energy is entirely kinetic (K.E = £ = 1/2 ka?) so that the maximum speed.

Vmax is given by the relation 12mv?__ =E.ie. ".lm =1JZE/m.I '

At any intermediate position, energy is partly kinetic and partl_;,' potential, but the
total energy always remains the same. The transformation of energy in a spring-mass
system is shown in Fig. 1.7 . '

nm

0 0
/ U K.E v K.E \
' {b) : (d)

| I

K E
)

U U KE
{a (e)

ke S ' ‘
7 /i
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‘U KE~ '

(g}

Fig- 1.7 Energy transformation in a spring-mass system o various times. The bars indicalating potential and
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Do you know why the point of minimum potential energy is regarded as the position
of stable equilibrium? This is because there is no net force acting on the system in this
position.

SAQ6
A body of mass m fell from height h ontc the pan of a spring balance. The masses of
the pan and the spring are negligible. The stiffness constant of spring is k. Having

* stuck to the pan, the body executes harmonic osctllations in Lhe vertical direction.

Find the amplitude and energy of oscillation.
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1.6 CALCULATION OF AVERAGE VALUES OF
QUANTITIES ASSOCIATED WITH SHM

In Fig. 1.5 we have plotted displacement, velocity and acceleration as a function. of
time; You will note that for any complete cycle in each case, the arca under the curve
for the first half is exactly equal to the area under the curve in the second half and the
two are opposite in sign. Thus over one complete cycle the algebraic sum of these
areas is zero. This-means that average values of displacement, velocity and
acceleration over one complete cycle are zero. If we plot X (or v¥) versus.+, the curves
would lie in the upper half only so.that the total area will be positive during one
complete cycle. This-suggests that we can talk about average values of kinetic and

potential energies.

The time average of kinetic energy over one complete cycle is defined as

f K.Eds _ (1.2oa)

<KE>= T

On substituting for K. E from Eq. (1.17)}, we get

!
< KE>=_Ka

,
[sin? (wo 1 + @) di (1.20b)
1]

On splving the integral in Eq. (1.20b) you will find that its value is 7/2. So, the
expressioh for average kinetic encrgy reduces to

<KkE>=EL o

Similafly, one can show that the average value of potential energy over one cycle is

<U>= "‘:' (1.22)

That is, the average kinetic energy of a harmonic os¢illator is equal to the average
polential energy vver one complete period.

Thus the sum of average kinetic and average potential encrgies is equal to the total
energy :

CRKRE>H+UD>=Y ka* + Y kd’
=Y kat =E

1.7 EXAMPLES OF PHYSICAL SYSTEMS
EXECUTING SHM

We have seen that for a system to execute simple harmonic motion, i¥ must have two
pearts: onc which can store potential energy (hke sprmg) and the other capable of
storing kinétic energy (such as mass), We will now study physu:al syslcms cxccuung
QPV Seing techn niquss d-"ck‘p-c-d o7 sur mode! api"lug-"'\aaa Syatdimi. -

1.7.1 Simple Pendulum

A simple pendulum is an idealized system consisting of a point mass {(bob) suspended
by an inextensible, weightless string. As the bob of mass m is displaced by an angle 8
from its equilibrium position the restoring force is provided, by the tangeatial
component of the weight mg along the arc (Fig. [.8). It is given by

F=—mgsinb.
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Flg. 1.3 A simple pendulum.

The equation of mation of the bob is, therelore,
x
m ET =—mg sin # (1.23)
The bob is moving along the arc whose length at any instant is given by x, if the |
corresponding angular displacement from the equlllbnum position i$ #, then the
length of arc ls
x=Lg (1.24)

where £is length of the string by which the bob is suspended. Differcniiating Eq. (1.24)
twice with respect to £, and substituting the result in Eq. (1.23), we ge1
de . &

P = - T sin 6 ([.25)
!

" For smalt -angular displacements, sin # may be approximated to 8. In this

approximation, Eq. (1.25) takes the form
d'g
el +ai8=0 , (1.26)

where wo = \/ E.

Eq. (1.26) is exactly of the.standard form (I 3) showing that pendulum executes
simple ha.rmomc motion. The time period of oscillation is given by

=272 21 /Ug (1.27)
[iH))

By analogy, we can write the general solution of the Eq. (1.26) as
8 =0 cos {awpt + ¢) : (1.28)
where 8 is the maximum angular displacement.

From Eq. (1.27) you will note that for.small angular displacements, the frequency of

‘oscillation of a simplé pendulum depends on g and £ but ot on the miass of the bob.

The appeafance of the facter g.in Eq. {1.27) implies that a peadilum clock will move
slower near the cquator than at the poll:s Do you know why? This is because the
value of g varies with Iamudc For the same reason, the period of a pendulum will be
different on moons and planets.

When the amplitude of oscillation is not small, we are required to solve the general
Eq. (1.25). The time period, which can be expressed in the form of a series involving
the maximum angular displacement &8y, is given by

i, 8 Ix3V .8
T=20 Jig[l + = sin? —"'+( ) sin* Om 1.29
fgli+ — sin 3 2% 4 2 T (.29)

=y 7y
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You can check the accuracy of Eq, (1.27) by comparing the value of T obtained from Simspls Harsnomie Motion
Eq. (1.29). For example, you will find that when 6. is 15° (corresponding to a total to .

and fro—angular displacement of 30°), the actual valye of time period differs from

that given by Eq. (1.27) by less than 0.5%.

SAQ7
Use the pnnc:plc of conservation of encrgy to show that the angular speed of a slmple
pendulum is given by

8= [m [E=gl{l —cos8) }]”’
where the symbols have the usual meanings.

1.7.2 Compound Pendulum

A compound pendulum is a rigid body capable of oscillating freely about a horizontal
axis passing through it (Fig 1.9). At equilibrium position, the centre of gravity G lies
vertically below the point of suspension S. Let the distance SG be L If the pendulum
is given a small angular displacement & at any instant, it oscillates aver the same path.
Is its motion simple harmonic? To answer this question we note that the restoring
torque about S is —mg €sinf and.it tends to bring the pendulum towards the
equilibrium position.

If 1is the moment of inertia of the body about the hoerizontal axis passing through §,
the restoring torque equals 7 d°0/dt’. Hence, the equation of motion can be written

as
Flg. 1.9 A rigid body oscillating sbout & horizoatal axis: Compound pendulum .
fo _ o - ' T I
— =~mglsin@ - {1.30)  The moment of inertia is the ratio
dr? of the torgue of a body rotsting
. oo about a given axis to the angular
For small angular displacement, sin & == & and Eq. (1.30) takes the form arelorstion abiwt ther suis: Note
d B mg'! thal podent of inertis always
+ a=90 {1.31)  refers 10 a definite axis of
dr I rotation. -
This equation shows that a compound pendulum executes SHM and the time period '
is given by
=% on/Timgt . (1.32) 17
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There is a very useful and important theorem of paralle] axes in the study of moment.
-of inertia. You will study it in detail in Block 2, Unit 4 of your Elementary Mechanics
Course. According to this theorem, the moment of inertia f of a body abqut any axis

aﬁ_d its inertia I, about a parallel axis passing through its centre of gravity are
connected by the relation

I=A,+ me (1.33)

where ¢is the distance between the two axes and I; = mk2. The quantity k. is the
radius of gyration of the body about the axis passing through &. It is the radial

distance at which the whole mass-of the body could be placed without any change in
the moment of inertia of the body about that axis.

On substituting the expression for 7 from Eq. (1.33) in Eq. (1.32), we obtain

1, p
T=2myf X2, - (1.34)
/g

On comparing this expression for T with that given by Eq. (1.27) for a simple

pendulpm; you will note that two periods become equai if €in Eq. {1.27) is replaced by
L=/ (k3/b + ¢ This is called the length of an equivalent simple pendulum. If we

. N 2
produce the line SG and take a point O on it such that SO = ﬁ+ fthen Ois
called the centre of oscillation. ¢

1.7.3 Torsional Systems

If one end of a long thin wire is clamped to a rigid support and the other end is fixed
to the centre of a massive body such as a disc, cylinder, sphere or rod, then the
arrangement is called a rorsional pendulum (Fig 1.10). You wiil come across many
instruments in your physics laboratory which execute torsional oscillations. The most
familiar of these is the inertia table. It is commonly used to determine the moment of
inertia of regular as well as irregular bodies. Ammeters, voltmeters and moving coil
galvanometers are other measuring devices where restoring torque is provided by
spiral springs or suspension fibres.

\-( ) -
e el —

;’ - / ('-.'.\*

rest? e

‘o'."-\

Fig, 1.1¢ Torsional Pendulum: Restoring torque is vppusile to 6.

When a torsional system is twisted and then left free, it cxecutes torsional oscillations
in a horizontal plane. For an angular displacement 8, the restoring torque is —k. .
Here &, is a constant which depends on the properties of the wire.

If 7is the moment of inertia of the system about the axis of rotation and d°8;d:’ is
the angular acceteration, then the equation of motiun is

= TRt = RS ROST R ERTET




de _
I ;'-!1— ==k 8
46 __ e 1.35
or ?— ' ( )

where wo = \/kdI This is exactly of the standard form (1.3). Hence, the motion is
SHM and the period of oscillation is

T=2na\/1lk " (1.35m)

You will note that this expression for T contains no approximation. This means that
thie time period for large amplitude oscillations will also remain the same, provided
the elastic limit of suspension wire is not exceeded. The solution of Eq. (1.35) is given
by Eq. (1.28).

SAQS

A solid sphere of mass 3 kg and radius 0.0 m s suspended from a wire. Find the
period of oscillations, if the torque required 10 twist the wire is 0.04 N-n rad™". The
moment-of inertia of a sphere about an axis passing through its centre is given by

I=gmr"

1.7.4 An L-C Circuit '

So far we have discussed oscillations of mechanical systems. We will now discuss
harmonic oscillations of charge in an ideal (R = 0) L-C circuit depicted in Fig. 1.11.
As we know, an L-C circuit has no moving parts. But the electric and magnetic
energies in such a circuit play roles analogous to potential and kinetic tnergies
respectively for a spring-mass system. For simplicity, we assume that the inductor has
noe resistance. '

Fig. 1.11-. An ideal LC circuit.

in a peadulum, the mean position is taken as the equilibrium state. What is the

equillbriun‘! state in an L-C circuit? It corresponds 10 the state when there is no.

current in ihe circuii. it may be disturbed Dy charging or discharging ili¢ capacitor,

Lel the capacitor be given a charge O coulomb. Then the voltage across the ¢apacitor’

plates will be Qo/ C. Now if the circuit is disconnected, the capacitor discharges
through the inductor. As 2 result current starts building up in the circuil gradually
and the charge on the plates of the capacitor decreases. At any time ¢, let the current
in the circuit be 7 and the charge on capacitor plates be ¢. Then the valtage drop
across the inductor will be

Ve=—-L il_

Simple Harmuonic Motion
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This must be equal to the voltage Vc = g/C across the capacitor plates at that time.
Thus, we can write

Ve=VL

or I 4 (1.36)
c dr

: di_ dq
Since I=dg|dt and —- = ——, Eq. (1.36) takes the form
dr di

d’gq
— +taig=0 1.37
i q (1.37)

where wi = L_IC'_ This means that one can have a wide range of frequencies by

changing the values of L and C. That is how you tune different stations in your ragio
sets.

Eq. (1.37) represents SHM and has the solution

g = Qo cos (w1 + ¢) (1.38)
This shows that charge oscillates harmenically with the period

T=2rVIC o ~L39)
Differentiating Eq.(1.38) with respect to time, we get the instantaneous currc:ﬁ _

I=— Qowosin (wof+ ¢)
= fhcos (ool + d+ mf2)

where fo = Qb wo.

Thus the current leads the charge in pkase by 7/2. In practice, you will always find
that an indueror offers some resistance in an L-C circuit. Its effect on charge
oscillations will be discussed in Unit 3.

Let us now calculate the energy stored in the inductor L and the capacitor C at any
instant £ As the current rises from zero to /in time {, the energy stored in the
inductor, Ey, is obtained by integrating the instantancous power with respect to time,
ie.

E=—[iv.a
a

The negative sign implies that work is done against, rather than by the emf. On
substituting for V., we get
I

EL=1L I g = 15 LP
_ dt .

¢
The energy stored in the capacitor at time 1 is

Ec=¢q"12C

T-hu.s the total energy 3
.., 1 @
E=E+E=%LI*t T : - (1.40)

‘Fhus éxpression for total energy is similar to the one for mechanicai osciiiator
(E=1% mv + % kx*). As ¢ and / vary with time, the inductor and capacitor
exchange energy periodically. This is similar to the energy exchange in the spring-
mass system. Further, the mass and inductor play analogous roles in mechanical and
electrical systems, respectively.

SAQY

Calculate the frequency of electrical oscillations when an inductor of 20 mH is
connected with a capacitor of 1y F. If the maximum poiential difference across Lthe
capacitor is 10 V, calculate the energy of oscillation.
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1.7.5 An Acoustic Oscillator ' Simple Harmonie Motion

Consider a flask of volume V with a narrow neck of length £ and area of cross-section
A such that ¥ >>!A(Fig.1.12). Such a system is also called Helmholtz resonator
because the system can resonate when the frequency of sound incident on it coincides
with its natural frequency. We will here calculate the expression for the natural
frequency of the resonator.

A

Fig. 1.12 (a) An Acoustic oscillstor, (b) As uir in Lhe neck is pushed, air in (e flask is compressed, and (c)
Due to elasticity, air in the {lask exerts a resioring {orce on the air in the neck,

We consider free vibrations of air in the neck of the flask. As the air in the neck
moves in, the air in the flask is compressed. If air in the neck goes out, the air in the
flask is rarefied. So the air in the neck behaves like the mass and the air in the flask
behaves like the spring in a mechanical oscillator.

Suppose that the air in the neck moves inward through a distance x from the
equilibrium position. The change in the volume of the air in the bulb A¥ = x 4. Let
the increase in pressure over the atmospheric pressure be Ap. We know that the
volume of gas depends on the pressure as well as the temperature. Therefore, the
pressure changes in acoustic vibrations shouid alternately heat and cool the air in the
flask as it gets compressed and rarefied. We assume that the pressure changes are 0
rapid that they do not permit any exchange of heat. That is, the process is adiabatic.
Hence, we can write

AV Ax
ap T -

where E, is the adiabatic elasticity of the gas. [t is defined as the ratio of the stress 1o
volume strain. Numerically, siress is same as pressure. So we can write

- __4
& e

The negative sign signifies the fact that as pressure increases, volume decreases and
vice-versa.

This excess pressure Ap.of air inside the bulb provides.the restoring force F, which
acts.upward.- We can therefore write - .
ExA?
Vv
If p is the density of air, the mass of the air in the neck m =% A p. Hence, the
equation of motion of air in the neck can be written as

F=ApA=—

X

d’x E.,A’
4 == 2 x
P dr v

or
' dx | EA _, (142)

B et = —ha|
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This eqﬁaﬁon has the standard form for simp;lc harmonic motion. Hence, the
frequency of oscillation of air in the neck is

= LfBA v i '
Vo: Vv = 5 = {[.43)

wherev, = V E p is the speed of sound. We know that v, is proportional to square
root of temperature. So the frequency of vibration of air in a flask is also
proportional to.the square root of temperature.

SAQ 10
A flask has a neck of radius | cm and length [0 cm. !f the capacity of the flask is 2

litres, 'delelrmine_the frequency at which the system will resonate (speed of sound in air
=350ms”).

1.7.6 A Diatomic Molecule: Two-Body Oscillations

‘A diatomic molecule like HC! is an examplc of a two-body systera which can oscillate
along the line joining the two.atoms. The atoms of a diatomic molecule are coupled
through forces which have electrostatic origin. The bonding between them may be
likened to a spring. Thus we may consider a diatomic molecule as a system of two
masses connected by a spring. We will now consider the oscillations of such a system.

Suppose that two .masses /11 and m; are connected by a spring of force constant &.
The masses are constrained to oscillate along the axis of the spring (Fig. 1.13a}. Ler r,
be the normal length of the spring. We choose X-axis along the line joining the two
masses. 1f X; and X; are the coordinates of the two ends of the spring at time 1, the
change in length is given by

x=(X:—X|)’-ro (1.44,
X -
j———X | ——— ey
L ?
- /7Y 3 X
v Fy £
(a)
k
¥
H -1
)

“Flig. 1.13 (4) A 1wo-body oscillatar {b) An equivalent one-body oscillator.

Forx >0, x =0and x<0, the spring is extended, normal and compressed
respectively. Suppose that at a given instant of time the spring is extended. i.e. x> 0.
Though the spring exerts the same force (kx) on the two masses but the force Fy (= kx)
acting on rm; opposes the force Fr (= — kx) on m, i.c.

Fi=kx and F=—kx

According to Newton's second law, above equation can be written as

2
m ¢ X = kx
dr
and
1
n d .-‘fz = —kx
dr

On rearranging terms, we obtain

dX _ kx ' (1.45 )
Jr m

ETal——F=io 1.
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and

d:.\'z kx '
-_— = - — 1.45b
dl‘r [2:H . ( )
‘On subtracting one from the other, we gel
a“(xz - .‘r. - ( J
m
Since ry dcnotes a constant length of the spring, Eq. (1.44) tells us that
dx _ d (- X)
dar’ dr
Hence, the equation of motion of a diatoraic molecule reduces to
dx | kg (1.46)
dr’ i
! 1 - _ mma -
where p=f — + — = ———— is called the reduced mass of the system.
m my m + m:
Eq. (1.46) describes simple harmonic oscillation of frequency
w= — Jkin (1.47)

2

This means that a diatomic molecule behaves as a single object of mass u, connected
by a spring of force constant k (Fig. [.13b).

SAQ 11

0

For an f/Cl molecule, r, = 1.3 A. Find the value of the force constant and frequency

of oscillation. Given that m,, =1.67 x 1077 kg and m_ =35 my.

I
Use—— =9 x 10° Nm? ¢
4m=0

1.8 SUMMARY

| Simple Harmonic Motion: An oscillatory motion is said to be simple harmonic
when the acceleration is proportional to the displacement and is always directed
againsl it. We can also say that in SHM the restoring [orce is linearly
proporiional to the displacement and acts against it.

2 Differential Equation of SHM is

2
3-— + wd x = 0 where wy = Vikim
r

3 The most general solution of the diffcrential equation of SHM is

x= gcos (e + ¢)

4  The period and frequency characterizing a SHM are respectively g;wen by the

‘rclal:ons
T:zl andvg=ﬂ =l
wo 2w T
5  Total Fnergy of oscillation
E= U+ K.E
= 'Aka‘cos (wo t + @) + 14 ka’sin’ (wot + @)
= B ka*= 1;2 mvia

The time averaged kinetic energy and potential energy are same; equal to % ka.

Simple Harnsiinle Motion
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Table of Analogies
System Differential Equation  Inenial Spring wo Period of
Factor Factor Oncillation
Spring-mass sysiem mr +kx =0 m k Jikfm 2r Jmik
Simple Pendulum mé + -?53 =0 m e N/ 2w il
- f
Coempound Pendulum o+ mglo=0 i mgf Jmgtf} 2 N I mgt
Torsional Pendulum 10+ k8=0 ! b Vi1 2n f Ik,
.. . 1
L-C Circuil L +Eq=0 L 14C 1LC 2 JLC
1 :
Acoustic Resonator 'Tlpir' + gi—.r =0 tAp Ed v Ea 2n e
4 4 ¥ip ExA
Two-body oscillator  pk+ kr=0 = — k N 2 ik
m -+ m:

1.9 TERMINAL QUESTIONS

F i

In Figs Fig. 1.14 a, b and c, three combinations of two springs of {orce constants
ki and k2 are given. Show that the periods of oscillation in the three cases are

BN 2adml o+ k)
by 2m/miCe + )
C] 2#\}m{lfk|+ ch;)

(a) (b (c)

A smooth tunne! is bored through the earth along one of its diameters and a ball
. is dropped into it. Show that the ball will execute simple harmonic motion with

period T= 2w/ R/g where R is radius of the earth and g is acceleration due t0

gravity at the surface of the earth. Assume the earth to be 2 homogeneous

sphere of uniform density.

Find the angular frequency and the amplitude of harmonic oscillations of 2
particle if at distances xy and x: trom'Lhe equilibrium position ity velotiiy ¢guals
v and v: respeclively.

Show that the centres of suspension and oscillations in a compound pendulum
are mutually interchangeable,

The potential energy of a diatomic molecule at a szparation r of its aloms is
represented as

[
+ -

drre r

tin=-—

A= ¥7 - | = = ]

TITR

LR e et

ot




The first'term represents the attractive part and the second term represents the
repulsive part. Show that the force constant is 2¢%/ e ro’, where 7o is the equilibrium.
separation,

Hint: F=-krand F=~ d_!_!
dr
1.10 SOLUTIONS
SAQ1 ’
Force constant k = —-_E&-—— = —-LN_:- = 40 Nm™'
Displacement 5.0X107"m
Compressed length = Force/ Force constant = -ﬁ-ﬂ_l— = 63X 10”%m

SAQ2
Putting A; = Bsin # and A; = Bcos § in Eq. (1.4), we get x(t) = Bsin (af + 6)
since sin (4 + B) = sin A cos B+ cos A sin 8

SAQ3

(@) x=auin (owof+ ¢)
Since time is measured from the instant x = g, we get
() x=a=agsing,ie.sinp=lor¢=m/2
Similarly,

(i) x=—g=+asing,ic.sinp=—lor¢=-m/2
and :

(i) x= 7"‘? = asin g, ie. sinp = 7'2.'or¢=’l-n;4
(b) x=acos(at+ ¢)

Ati=0

(i) x=g=acose,ic.cos¢=1 ¢=0

(i) x=-a=acoso,ie.casp=—1 ¢=1r

(iil) x=2 = acos ¢, ie.cosd= Lor'<b= w4

V2 V2

SAQ4
x = 0.01 cos 47 (+ + 0.0625)

Compare it with the standard equation x = a cos (wor + ¢). We can write

(i) Amplitudea= 0.0l m

(i) Period T=2" =27 _ o555
wo 4
(iii) Maximum speed = woa = 4w s’ X00lm= 0.i13ms", 4

(iv) Maximum acceleration =wiag= (7Y s X 0.0lm= [.6 ms>.
(v) ‘Displacement at r =0 is xp = 001 cos4r X0.0625m
=00l X — m= 7.1 X 10'm
V2
SAQ 5

The graphs for the variaiion of U, K. £ and £ with time arc shown in Fig. 1.6
Since U (1 + m/ax) = (1/2) ka® cos* [ (1 + m/we) + ¢)
(1/2) ka® cos® (wol + & + )

(1123 ka’ cos® (wo 1 + ¢)

U

Simpls Harmonle Motlon
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This means that the period of oscillation of potential energy is /wo i.e. one half of
that of vibration,

Similarly, you can show that the period of oscillation of kinetic energy is w/as. This
means that in each cycle, fixed amount of energy is transferred from the mass to the
spring and back again twice.

SAQ 6

Potentidl Energy (P.E.) = mgn and Maximumn Kinetic Enctgy (K. £ juus = (1/2) ka®. By
equating these expressions we can calculate the amplitude of the oscillatidn, i.e.,

(1/2) ka* = mgh

a= ( 2 mgh } A
k
SAQ7 ' .
U=mg(t—tcos 6); K.E = 1sm(t6)
E=KE+ U=mgl(l — cos 8) + Y%m (§)
8= [2/mF{E — mgt (1l — cos 6)}]'*
SAQS
T= 2w/ Ifk; ki is the torque producing unit angular displacement.
For a sphere I= (2/5)m R
T= 2-;\{ 2m K
5k,
- 2 \/ 2X 3 kg X (0.01)*'m’
5% 0.04 Nm rad™
=0.34;s
SAQ9
1 S T & -1
v = = (2r/20 X 107 mH X 10°F) .= 1125 Hz
‘ 211'\/1._(: (@ )
E= % CVI=1 X100 FX 100V =5%X10").
SAQ 10
po= B A
T vi

Since ¥ = 2 litre = 2000 c.c. = 2000 (105’ m’ = 2 X 107 m’, we get

350 ms™ \j # X (.01)* m?
27 2X10°mX10"'m
vo = 69.8 Hz.

o=

An audible not:z of about this frequency can be heard when an empty flask of this size
is suddenly uncorked. -

SAQIL . .

The force constant of a diatomic molecule is given by
2 _2(1.6X10° Y X9X 10’ Nm’ C”

k=

drer’ (1.3 %X 107" m’
= 209.7 Nm™'
Since
-21
p= my mCE — 35X 1.67X 10 k.

s+ mC 36

[T = i 2 -~y

ey
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_ 1 1 209.7 Nm' X 36
W= —— Vkjpu= — —_
2w 2 A5 X 167 x 10" kg

=.5.7 X 10" Hz.

Terminal Questions

1. a. In this arrangement, both springs will be extended by the same lengti x. The
restoring force

F= —k;x —_ kzx

or

m";—’:z + (4 k)x=0

Hence, the period of the system is given by

T=2r ﬂ i (i)
i+ k2

b. In this arrangement, if the mass is displaced up or down by z, the restering

forces arc

Fi=—kxand F;= — kox.
Hence,

F=—kix— kx

i.c.

m %:—;- +(ktk)x=0

so that time period T= 2m/m/(k, + k2)

¢. Herc the two springs are connected in series. When the mass is displaced by x,
the same restoring force will act in the springs, extending them by x, and x; due
to their different forde constants. Thus

F=—kix=-kix;

and

ie X= x 4+ = _F/k[ - F/k:
x=—(l}jk + ];'J'\'.:)F

or F=-— L x

o*e)
ki Kk

Therefore time period T=2r ‘} LI .l.)
ki k)

2. The force on B mass m at the surface of the earth is

- GmM . GM : :
mg = R Le.g = ‘-E-i- : (1)

Now M = (4/3)r R’ p assuming the earth to be a sphere of radius R and of
uniform density p, Therefore,

4 Rp G 4 .

Reg=-#n = — 7 RpG i

3 R 3 ©

If g” is the acceleration due to gravity at'a depth 4 below the surface of the carth,
then

g= 4/3)y 7 p G(R—d) (i)

T AL T

R ) LT AT T L

@ rmpebe e pop e

P




Dividing Eq. (ili) by Eq. (i), we get

gig= (R-d) /R (iv)

If the distance is to be measured from the centre of the earth, let us put
R-d = x. Then Eq. (iv) can rewritten as

dx. _ _ 8
£= R

where negative sign shows that acceleration |s dirccted towards the centre of the
earth, Thus

d’x [
+=x=0
@ R
This equation represents SHM whose period is

T= 2r v R/

x= acos (wol + ¢)

v= dx _ - awqg KN {cel + ¢)

dr
=“am'ﬁ’l—f:-

Hence, we can write

B

aaw a

va -_'__J _x

On squaring theéc:e:_tprgssions, we get

(2)=1-2 @
aok a

X2 ’ =] i i1
and (m), 1- (i)

These equations may be combined to give

o= /ﬁ—ﬁ
. x3=x
Using this result in Eq. (i), we get on simplification
F]
a= J v?x% = v;.r}

vi— v

_ _ T
For a compound pendulum time period T = 2= \/ Gfht b 2w \} "-EL D
-

Suppose T”is the time period, when the pendulum is suspended from the centre
of oscillation. Then we can write B T

=1 J@ e I (ii)
4

The distance between the centre of oscillation and centre of gravity U= k'l ie.
k = ', Using this in Eq. (ii), we get

T'= 2#1‘M =T
g

Thal is, the periods about the centre of suspension and centre of oscillation are
eqral. This property of a compound pendulum is called mutual
interchangeability of the centres of suspension and oscillation.
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The mutual interchangeability of centres of suspension and oscillation of & -
compound penduium arises because the periods of ascillation about S and O
are equal. In all there are four points (S, &, 0. 5) on the line S5’ (s0 that
GS= G¥ and GO = GO') about which the periods of oscillation are the same.
R i ¢
. = - + -
ur 4 eor rf

__du_ ¢ 1 9

F=e -4 - £

dr  4re P

At the equilibrium separation r = ro, force vanishes, i.c.

¢ L —_9.5 = 0
aree 13 n
or c= e
rea
d'v ¢ 2 9%0c
N —_— - 4+ =
o drt Ir'{.. dreg £ lrens Modean
-—— ¢ 1 + 3 ¢
2mee  ri rh 2me
_ ¥
eo 1o

which is positive. Hence r = ro is the separation at stable equilibriura, and

Force constant
3
k= 2
ey Fo

Simple Harmonic Motlon
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UNIT 2 SUPERPOSITION OF SIMPLE
HARMONIC OSCILLATIONS

Structure
2.1 Introduction
Objectives

2.2 Principle of Superposition

2.3 Superposition of Twa Harmonic Oscillations of the Same
Frequency along the Same Line

2.4 Superpotition of Two Collinear Harmonic Ozcillations of
Different Frequencies

2.5 Superposition of Many Harmonic Oscillations of the Same
Frequency
Method of Vector Addition
Method of Complex Numbers

2.6 Ouscillations in Two Dimensions
Superposition of Two Mutually Perpendicular Harmonic
Oxcillations of the Same Frequency
Superposition of Two Rectangular Harmonic Oscillations
vi Nearly Equal Frequenciea: Lissajous Figures

2.7 Summary

2R Terminal Questions

2.9 Solutions

2.1 INTRODUCTION

In Unit 1, we studied simple harmonic motion and considered a number of examples
from different arcas of physics. We found that in each case the motion is governed by
a homogeneous second order differential equation. The solution of this equation gives
us information regarding displacement of the body as a function of time. In many
situations, one has to deal with a combination of two or more simple harmonic
oscillations. Do you know that our eardrums vibrate under a complex combination of
harmonic vibrations? The resultant effect is given by the principle of superposition.
You must have observed that oscillations of a swing gradually die out, when left to
itsell. This is due to factors-like friction and air resistance. The system loses energy
and its motion is said to be damped. We will discuss damped harmonic oscillations in
the next unit.

In this unit we first discuss the principle of superposition. Then you will learn to apply
this principle to situations where two (or more) harmonic oscillations are superposed,
either along the same line or in perpendicular directions.

Objectives

After studying this unit you should be able to

state the principle of supcfposilion_
apply the principle of superposition to two harmonic oscillations of (a) the same
frequency and (b} different frequencies along the same line

® apply the methods of vector addition and complex numbers for superposition of
many simple harmonic oscillations, and

@ apply the principle of superposition to two mutuatly perpendicular harmonic
oscillations of different frequencies/ phases and describe the formation of
Lissajous figures.
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2.2 PRINCIPLE OF SUPERPOSITION

We know that fo: small oscillations, a simple pendulum executes simpte harmonig
motion. Let us reconsider this motion and release the bob at the instant z = 0 when it
has initial displacement 1. Let the displacement at a subsequent time ¢ be x;. Let us
repeal the experiment with an initial displacement a:. Let the displacement after the
same 1nterval of time 7 be x;. Now if we take the initial displacement to be the sum of
the earlier displacemenlts, viz. a; + a2, then according to the superposition principle,
the displacement x; after the same interval of time ¢ will be

xn=x+x.

You can perform this activity by taking three identical simple pendulums. Release all
three bobs simulianeously such that their initial velocities are zero and initial
displacements of the first, second and the third pendulum are a, o; and & + a3,
respectively. You will find that at any time the displacement x; of the third pendulum
will be the algebraic sum of the displacements of the other two. In general, the initial
velocities may be non-zero. Thus, the principle of superposition can be stated as
follows:

When we superpose the initial conditions corresponding to velocities and amplitudes,
the resultant displacement of two (or more) harmonic displacements will be simply the
algebraic sum of the individual displacements at all subsequens times.

You will note that the principie of superposition holds for any number of simple
harmonic oscillations. These may be in the same or mutually perpendicular directions,
i.e. in two dimensions.

In Unit 1, we observed that Eq. (1.3) describes SHM:

2
d'x
—_— = 2x

ar
This is a linear homogeneous equation of sccond order.

Q.1

Such an equation has an important property that the sum of its two linearly
independent solutions is itself a solution. We have already used this property in Unit 1
while writing Eq. (1.4). ~

Let x; (t) and x: (1) respectively satisfy equations

2
d’xy 1

S = —ebx 2.2)
md Exoo g @3)
Then by adding Eqgs. (2.2) and (2.3), we get

LICRE ) N N (2.4)

dt’
According to the principie of superposition, the sum of two displacements given by

-I___-'_x(t)-_=_ x| .(rj_-i-x; (1), S s e
also satisfies Eq. (2.1). In other words, the supcq;ositién- of two di;splaccmenl_;; satisfies

the same lincar homogencous differential equation which is satisfied individually by
X and Xz

SAQ1
Fora sirﬁple pendulum we know that the equation of moticn is
d'g

7 =— wsin @
dt -

ey

Superposition of Simple Harmonic
" Dscillatlons

A linesr differentinl equation has
terms involving only the first
power of the vanable and its
derivatives. A homogeneous
equalion containa ne term
independent of the variable.

Lzt there be a set of functions
X1, X1,..., Xa Il Lheir linear
combination

CiL X +t‘1.l'z+... +f. Xa
vanishes only when ¢, = ; = _..
= =0, x1, x1,..., Xu are said to
be lincarly independent.
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_E_in this equation you use the expansion
U
ino=o— £, 8_6¢ . -

n stF _
will it remain linear in 87 If you retain the first two terms and consider the resultjng
equation for the two displacements 8, and 8;, will the principle of superposition stil)
hold? If not, why?

Youwlllﬂndthu’intheciuofuimplepcndulumyoumnpplytheprindpleof
superposition-only for small oscillations, i.c. when sin 8 = 8. Hore we shall study only
those osclllations for which the displacement satisfies linear homogeneous differential
equations,

2.3 SUPERPOSITION OF TWO HARMONIC
OSCILLATIONS OF THE SAME FREQUENCY

ALONG THE SAME LINE

Let us superpose two collinear (along the same liney harmonic oscillations of
amplitudes : and o) having frequency ax and a phase difference of =, The
displacements of these oscillations are given by

X1 =@ cO aiof (2.6)
and X2 = a1 co8 {aof + 7)
=& cos axt 2.7

According to the principle of superposition, the resultant dispiacement is given by

x@=xi(+x:(
= g; COf el — @3 COB ail
= (a1 — a3) con ol (2.8)

This represents a simple harmonic motion of amplitude (a, — ;). In particular, if two
‘smplitudes are equal, i.c. 4; = a; the resultant displacement will be zero at all times.
Displacement-time graph depicting this situation is shown in Fig, 2.1.

] |

] - 1
\__T_/ “'-.._{,..’

1 1

Fig. .1 Superposition of 1wg collinesr harmonic oscillations of equal amplitude but out of phase by ,
BSAQ2

Two harmonic escillations of amplitudes a: and a; have the same frequency wo and
are in phase. Show that their superposition gives a harmonic oscillation of amplitude
a + a.

We will now discuss the general case of superposition of two harmonic oscillations.
Let one of these he characterised by amplitude a; and inital phassg, sad the Sthér
with amplitude g, and phase ;. Both oscillations have frequency aw and are collinear,
i.c. they are along the same liné, Then, we can write ’

x1(1) = a1 cos (et + ¢) (2.9)
and x1) = a; cos (ot + ¢2) (2.10)

According to the principle of superposition, the resultant displacement is the sum of
= and x; and we have

x(1) = xy(t) + x1) = a) cos (awos + 1) + a2 co8 (ol + ¢2)

=~ ¢ ey
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Using the expression for the cosine of the sum of two #ngles, this can be written as

x (1) = a\| cos wul cOS ¢ — @1 Sin wel Sin ¢y
"+ a1 co5 wof cos ¢ — d; 5N wol Sin ¢z

Coltecting the coefficients of cos wof, and sin wet, we get

x{f} = (@ cos ¢: + az cos ¢3) cOS wot
— (a1 sin ¢+ gz sin ¢z2) sin wot 2.11)

Since ai, o1, &1 and ¢; are constant, we can set

and . acos ¢ = a cos ¢, + a1 cos ¢ (2.12)
asin¢g =a sin ¢, + a; sin $: ' (2.13)

where a and ¢ have Lo be determineci. Then, we can rewrite Eq. (2.11) in the form
x{f) = a cos ¢ cos wyl — g sin ¢ Sin wo!,

It has the form of the cosine of the sum of two angles and can be expressed as
x{N)=a cos (wo! + P) (2.14)

This ¢quation has the same form as either of our original equations for separate
harmonic oscillations. Hence, we have the important result that rhe swm of 1wo
collinear harmeonic oscillations of the same frequency is also a harmonic oscillation of
the same frequency and along the same line. But it has a new amplitude a and a new
phase consrant ¢. The amplitude can easily be calculated by squaring Eqgs. (2.12) and
(2.13) and adding the resultant expressions. On simplification we have '

a' = al + & + 2a, a; cos (¢ — ¢2) 2.15)

Similarly, the phase ¢ is determined by dividing Eq. (2.13) by Eq. (2.12) :

a) sin ¢ + az sin ¢ ]
ai cos ¢ + az cos ¢

¢ =rtan" [ (2.16)

SAQ3

Two harmonic oscillations of frequency wo have initial phases ¢ and ¢; and
amplitudes @, and .. Their resultant has the phase

@) ¢~ ¢:=2nm
and )¢ —¢2=(2n+ D

where nis an integer. Using Eq. (2.15), show that the amplitudes of the resultant
oscillations are equal to (& + a2) and (a1 — a3), respectively.

SAQ 4

Two harmonic oscillations of frequency o having an amplitude 1 ¢m and initial
phases zero and /2, réspectively, are superposed. Calculate the amplitude and the
_ phase of the resultant vibration. o

2.4 SUPERPOSITION OF TWO COLLINEAR
HARMONIC OSCILLATIONS OF DIFFERENT
FREQUENCIES

In a number of cases, we have.to deal with superpesition of two or more harmonic
oscillations having different angular frequencies. A microphone diaphragm and
human eardrums are simultanesusly subjected to various vibrations. For simplicity,

Superposition of Simple Harmonlke
Osciltations

cos{d + By =cos Acos B .
— sinAsin B
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we shall first consider superposition of two harmonic oscillations having the same
amplitude g but slightly different frequencies a) and w; such that o > wz:

x) =@ cos (wif + ¢)
and x1= g cos (wat + ¢a)

We note that the phase difference between these two harmonic vibrations is
% = (an — ) + (1 — ¢)

The first term (w) — )t changes continuously with time. But the second term

(%1 — ¢2) is constant in time and as such it does not play any significant role here.
Therefore, we may assume that the initial phase of two oscillations are zero. Then two
harmonic oscillations can be written as

xi{f) = a cos s
and x:(f) = a cos war (2.17)

The superposition of two oscillations gives the resultant
x(f) = xi(f) + x2(f) = a (cos wit + cos w2e) (2.18)

This equation can be rewritten in a particularly simpl: form using the formula
A—B

B
cos
: 2

cos A+ cos B=2cos A+

x{t)=2acos (u; _2'”2) f cos (9—’—--;&) ! (2.19)

w, + an

This is an oscillatory motion with angular frequency ( ) and

amplitude 2a cos (—‘9%-91) ‘.

Let us define an average angular frequency

war = -‘f‘% L @209)

and a modulated angular frequency
Wmed = (an — wz)/2 {2.20b)
Then we find that the modulated amplitude

Guod (1) = 28 €08 Wmod ! (2,20¢c)

Wmod W w2

varies with a frequency

T 4

This also implies that in one complete cycle the modulated amplitude takes values of -
2a, 0, — 2a, 0 and 24 for wmes ¢t =0, w/2, m, 3m/2 and 21, respectively. The resultant
oscillation can be written as

x(r) = Buoa (1) €08 wul ' h (2.21)

This cquation resembles the equation of SHM. But this resemblance is misleading
because its amplitude varies with time,
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The displecement-time graph depicting the resultant of two collinear harmonic Seperpasition of Simple Harmomke
oscillations of different frequencics is shown in Fig. 2.2. You will note that individual Oscitlations
oscillations are harmonic but their superposition shows variation with time: n u .

periodic but not simple harmonic,

In the general case, we consider two narmonic oscillations having a.mpl.ltudu a and -
a; and angular frequencies o and w; . If their initial phases are zero, the ruultant
oscillation can be written as

X(8) = Guot (£) CO8 (et + Ouca). 2)

The modulated amplitude and phase constant are respectively given by

amod () = [ + ai* + 2a1 a3 cos (2~...;)]95 (223)
' _[ (a.—a;)sinm..u
and oo =
i (a1 + a2) cO% amos ¢ ] 224

For a, = a; you will note that the expression for gu (f) reduces Eq. (2.20c)
and fumos = 0.

If w and o are nearly equal, esmw would be much less than o, and modulated
amplitude will vary very slowly with time. That is, for amcs << ans 0n¢ can regard
duos (£) As cssentially constant over the period (21/aw). Then Eg. (2.22) will represent
an almost harmonic oscillation of angular frequency .

The amplitude of the resulting motion is maximum (= a; + a;) when -

€08 2aimear = |
This means that
Ztmeg T = 2017 n=0,12..
or (w1 —an)t= 2nwr n=012 ..
or =0, L . hd s ey i (2.25)
(ri=p) (o — ) . (=)

where () = (a/2r) and ¥3 = w1 / 27 are the frequencies of two harmonic
oscillations.

Similarly, you will note that the amplitude of the resultant oscillation attains aminimum
value ¢1— a;) when

CoS L tmoa = — 1

That is, when

1 3 5
= . —_ 26
BT N YT Yoy #20

2.5 SUPERPOSITION OF MANY HARMONIC
' OSCILLATIONS OF THE SAME FREQUENCY

In the preceding sections, we considered superposition of two collinear harmonic
ascillations, How will you calculate the resultant of a number of harmonic oscillations
of the same frequency? You may suggest that an obvious way is to extend the
procedure outlined in Sec. 2.3."But we find that the mathematical analysis, though
simple, becomes unwieldy. A convenient way out in such a case is to use either the

method of vector analysis or complex numbers. We will now discuss these in turn. 35
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Osclilations

36

2.5.1 Method of Vector Addition

This method is based on thie fact that the displacement of a harmonic oscillation is the

projection of a uniform circular motion on the diameter of the circle. Therefore, it is
important to understand the connection between SHM and uniform circular motion.

Uniform Circular Motion and SHM

Let us suppose that a particle moves in a circle with constant speed V (Fig. 2.3). The
radius vector joining the centre of the tircle and position of the particle on the
circumference will rotate with a constant anguiar frequency. We take the x-axis to be
elong the direction of the radius vector at time ¢ = 0. Then the angle made by the
radius vector with the x-axis at any time ¢ will be given by

Fig. 2.3 Uniform circular motion and its conncction with SHM.

length of the arc

Ve

8= =

radius of the circle

R

The x- and y- components of the position of the particle al time ¢ are

x= Rcos#,
f'r'l'ld y= Rsin 6
us
O Rsing 28
ot dr
= —woRsin @
) e _ ¥
since —_— — = —
dr R
Similarly, you can write
—Q =wo R cos @
dr

Differentiating again with respect to time, we get

d:.r_

_ 1
O
d'y
and E‘% = — we'y

(2.27a)

(2.27b)

- These cxpressions show that when a particle moves uniformly in a circle, its
projections along x - and y-axes execute SHM. In other.words, a simple harmonic
motion may be viewed as a projection of a uniformly roiating vector on a reference

- axis. -

Suppose that the vector OP” with | OF" | = gy is rotating with an angular frequency
wo in an anliclockwisc direction, as shown in Fig. 2.4, Let P be the (oot of the
perpendicular drawn (rom P’ on x-axis. Then OP = x is projection of OP’ on the
x-axis. As vector OP" rotates at constant speed, the point P executes simple harmonic
motion along x-axis. Its period of oscillation is equal to the prriod of the rotaling
vector OP’. Let OF be the initial position of a rotating vector. Its projection OA on
the x-axis is o cos &. If this rotating vector moves from 0P, to OP'in time ¢, then
LP'OP= wurand 2 P7O..= (war + ¢). Then we can write

f = v = e ey

FH=TT i
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. FI-; 24a Projections of a rotating vector along the diameter of a circle.
OP=OP’cos L P’ Ox
or X = go cos (wo? + ¢) ; ) . (2.28a)

Thus, point P executes simple harmonic motion along x-axis.

If you project OF ‘on the y-axis, you will find that the point corresponding to the foot
of the normal satisfies the equation |

¥ = ao sin (ot + @). ' ‘ ' (2.28b)

This means that a rotating vector can, in general, be resolved into two orthogonal
components, and we can write

Superposition of Simple Harmonic
Oncliiations

r=x: tyy (2.29)

where x.and yyare unit vectors along the x-and the y-axes, respectively.

Vector Addition

Let us now consider superposition of # harmonic oscillations, all having the same of
amplitude a and angular frequency ay. The initial phises of successive oscillations
differ by ¢o. Let the first of these oscillations be described by the equation

X1 (1) = aa cos wer

Then other oscillations are given by

x3 (1) = ao cos (wof + ¢o)
X3 (¢) = a0 cos (wof + 2¢0)

X2 {f) =aocos {mot +(n— 1) o} . (2.30)
From the principle of supcrposition, the resultant oscillation is given by

x (f) = aolcos anpt +¢08 (et + ¢o) + cos (ams + 2¢do) + ...
+ cos {axt + (1 — 1) gl ‘ (231)

Let us denote the harmonic oscillations given in Eq. (2.31) as projections of rotating
vectors OP[, OP;, OPs, ... (Fig2.4b).

Fig. 1.4 Projections of rotating vectors OF, OF;, .... oo the diameter of a circle

To find the resultant of these vectors, we translate them parallel to themselves 30 that
the head of the first coincides with the tail of the second and 50 on. You will observe
that

i)  combining vectors form successive sides of an incomplete n-sided polygon
(Fig 24 ¢)

ii) OP;:. || OP/, P/ P; || OP;, P;: P; || OP;s and so0 on.

When & vector is tranalated

paralie] to itszlf, it remains
unsitered,

37
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A circle it an inlinite-sided regular
polygon.

a8

|-h_.---——— -

Fig. 2.4« Superponuon of a large number harmonic oscillations of equal amplitude a; and having successive
phase difference ¢y,

Lﬂmnowpmjuénhufthevﬁonmumexqﬁi.m“pt
xi = Proj (OP1): = a cos ant
x; = Proj (P{ P1): = a0 cos (axf + dv)
xy = Proj (P; P1): = ao cos (axt + 2¢)

= Proj (Pi-1 P3) = a0 cos fat + (1 = 1) ¢o}
The law of vector addition implies that the resultant of OP:, P{ P4, P: Ps, ..... is given

by the vector OP;, ic.

OP,=OP{ +PiP; + PiP; +.. + P, P;

Thus, Proj (OP.); = Proj (OPY); + Proj (P P): + .....

- =)+ Fn{t.
LetthelengthofOP’bcamdﬂsphascmthrtspedtotheﬁ:stveﬁorhe:ﬁ Then the
projection of OF; along x-axis is given by

x (£) = Proj (OP2), = a cos (wo! + ¢). ‘ (2.32)

Hence the sum in Eq. (2.31) reduces to calculating @ and ¢ characterizing the resultant
vector OP,. To this end, we recall that any regular polygon will lic on a circle of
radius r, as shown in Fig. 2.4 b. The angle subtended at the centre C of the circle by
individual vectors will be equal to ¢u. Hence, the total angle subtended at C by the
resultant vector OP: will be ndw.

From the triangle QCP, we note that
a2 =27 —2"cos n o

Using the trigonometric relation cos 26 = I — 2 sin’6 and simplifying the resultant
expression, we get

a = 2r sin (no/2) (2.33a)
_Simihrly, we ca.n _uhow that _ _ _ _
a0 =2 sin (¢0/2) ' (2.321)

On combining Eqgs. (2.33 a) and (2.33 b) we obtain the amplitude of resultant
vecior OF :

sin (o) 2) | 2.34)
sin (¢o/2)
The phase difference ¢ of the resultant osciilation relative to the first oscillation is

g = o

. gven by

¢ = LCOP{— LCOP, . (2.35)
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In the isosceles A COP/, LOCP{ = dgo and LOP| C = =/2. " Superposition of Simple Hurimonkc

Since the sum of the angles of a triangle is equal to », we can writé

COPi=m~LOPIC— L OCP
—_— m

| - ?w —do ' (236 8)
Similarly, in the isosceles ACOP., £ OCP. =n¢n and LCOP. = LCF.0,

Therefore, 2 ZCOP, =« — n dy

or LCOP, =7 _ %o ' (2.36 b)
2 2
Hence, by combining Eqs. (2.35) and (2.36), we get
o={Z -#)-(% —n")—(n—l)‘“ @37

Thaus.themmalphueofthemulu.ntomnmonueqmltohalﬂhephm
difference between the n th and the first oscillations. Hence,

x@) =0 — 2" ea[..,:+(n—ni2°] | (2.38)

We shall obtain the same result in the next sub-section using the method of complex
numbers. For the moment let us examine the behaviour of the amplitude of the
resultant oscillation defined by-Eq. (2.38) :

(3 )
sn (3 )

You will note that the value of @ depends on the value of ¢o. When n is very ln.rgc. o
becomes very small. Then using Eq. (2.37), we can write

d=(n—1) T Ak

— O

2
so that sinﬁ - 8 =@
2 2 n
Hence, l'orhrgcn, have
g = ¢ - n“.ﬁ_.n_Q .
T e N
_ , sing '
— 4y H9 2.9
% (2.39)
A sind
d‘= lm A:ﬂao

Oscillations
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The sum of a finite géomelric
serics is given by
s= 1Zf

l—r
wlicre r ts common ratio.

That is, the polygon becomes an are of the circle with ceatre at O and length na, = A
with g as chord. The plot of A 5“;‘35 for different values of ¢ is shown in Fig. 2.5.

The pattern is symmetric about ¢ = 0 and is zero for sin ¢ =ar{n=1,2,..)except
at ¢ =.0. When ¢ =0, ¢p = 0 and the resultant of » oscillations (vectors) is-a straight
lineoflengthA.Mﬁhﬂcam,Abecomesthcarcofthecircleunlihut = m/2 the
last and first contributions are out of phase and the arc 4 becomes a semi-circle

whose diameter is the resultant a. A further increase in ¢ curls the length A into the
q:h‘cuqurenee of a circle (¢ = 7) with a zero resultant and so on.
SAQS -

Three collinear harmonic oscillations, ltprnented by x; _=4cm2bﬂ..n =4 cos
(201 + 7/3), X3 = 4 cos (20ms + 2w/ 3) are superposed. Determine the amplitude and
phasé of the resultant vibration. . '

2.5.2 Method of Complex Numbers

In the preceding section we used a geometrical method of vector addition to calculate
the resultant of # superposed harmonic oscillations. The same result can be obtained
in a very convenient and compact form using the method of complex aumbers, In
fact, as you proceed you will obsérve that the use of complex numbers simplifies
mathematical steps yery much. We know that in complex number notation, a vector
can be represented as.z = a exp [i (wo? + ¢)]. The complex exponential exp (i8) is
given by ' '

exp (if) =cos @+ isin b,
with cos @ = Re [exp (16)]
and. sin 8 = Im [exp (i6)]. ‘

"Let us now see how this technique of complex numbers is used to obtain the resultant

of n harmonic oscillations given by Eq. (2.30). In the complex exponential notation,
we can write

Z: = @ exp (iwol)

Z: = a; exp [i(wor + ¢o))

Z; = ag exp [{{wor + 2¢9)] (2.40)
The principle of superposition implies that the resultant, Z, is given by

zZ= aoc"hf_*_ auc"(n-u-""‘o) o+ ﬂoe[ (o + (1 — 1) do}
— mihﬂl [l +eiﬁ+c1iﬁn+"" +ciln-|]¢0]

This series is in geometric progression with common ratio €. Its sum is given by

. |—e*
Z = aptxp (iwgt) —
—e
: Indof2 e-ivkl — gisdus2
= doexp (iwof) T o — gen: : (2.4
Using the relation
' @ -
sing= 2 _¢
2
we get
TN
sin {n 7J . f — %
Z=agsexp (iwgf) —— = exp (—%’iJ cxp( ; )
sin( d’_u]
) 2 ) .
=mummn-ﬂﬁﬁ@em[ﬂhﬁﬁ] (2.42)
. sindon 2

Since Z = a exp [i(wof + ¢)], we fina that the amplitude and phase of the resultant
vibration are the same as given by Egs. (2.34) and (2.37), respectively.

The cosine form of the resultant oscillation is obtained by taking the real part of
Eq. (2.42).
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2.6 OSCILLATIONS IN TWO DIMENSIONS

So far we have confined our discussion to harmonic oscillations in one dimension.
But oscillatory motion in two dimensions is also possible. Most familiar example is
the. motion of a simple pendulum whose bob is free to swing in any direction in the

x — y plane. (We call this srrangement a spherical pendulum.) We displace the
pendulum in the x-direction and 49 we release it, we give it an impulse in the
y-direction. What happens when auch a pendulum oscillates? The result is & composite
motion whose maximum x-displacement occurs when y-displacement is zero and
Jy-velocityis maximum and vice versa. Remember that since the time period of the
pendulum depends only on acceleration due to gravity and the length of the cord, the
frequency of the superposed SHM's will be the same. The result is a curved path, in
general, an ellipse,

We now apply the principie of superposition to the case where two harmonic
oscillations are perpendicular to each other.

2.6.1 Superposition of Two Mutually Perpendicular Harmonic
Oscillations of the Same Frequency

Consider two mutually perpendicular oscillations having amplitudes a; and a; such
that a; > a; and angular frequency wo. These are described by equations

X = a: cos axt
and ¥y = a2 o8 (ot + ¢)

Here we have taken the initial phase of the vibrations along the x and the y-axes to
be zero and ¢ respectively, That is, ¢ is the phase difference between the two
vibrations.

We shall first find out the resultant oscillation for a few particular values of phase
difference &. )

Casel. ¢ =0orm

Forg¢ =0
and X =a; co3 ay!
Y = dz €08 axf
Therefore
yix =afa
or y={(afa}x (2.45)
Similarly, for¢ = 7
X = a,cos agl -
and ¥ = —az cos wol
so that
y=—(@/a)x (2.46)

Eqs. (2.45) and (2.46) describe straight lines passing through the origin. This means
that the resultant motion of the particle is along a straight line. However, for ¢= 0
the motion is along one diagonal (PR in Fig. 2.6a) but when ¢= r the motion is
along the other diagonal (QS in Fig. 2.6b).

Casell. ¢ = m)2
" In this cace the twa vibrasisss srs givin by
X 2 4 COS ol

and y =agcos {ao + 7w/ = —a: sin ant.

On squaring these expressions and adding the resultant expressions, we get

2 2

X+ Y oo +sin?6 = | (2.47)
1 2

a az

This is the equation of an ellipse. Thus the resultant motion of the particle is along an
ellipse whose principal axes lic along the x- and the y-axes..The scmi-major and semi-
minor axes of the ellipse are a; and a;. Note that as time increases x decreases fron its

@43)
e

Superposition of Slmple Harmonke

Oscllations
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Fig. L6 Superpodition aof two
mutnally perpendicular harmonic
oscilletions having the same
frequency different phases.

The cquation of a straight line is
y=mx+ ¢

where m is the slope of the line
and c is intercept on the j-axis.
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maximum positive value bat y becomes more and more ncgative. Thus the ellipse is

. described in the clockwise direction as shown in Fig. 2.6¢. If you analyse the case
when ¢ = 37/2 or ¢ = —m/2, you will obtain the same ellipse. But the motion will be
in anticlockwise direction (Fig. 2.6d)-

When amplitudes a; and a; are eﬁual, i.t. a1 = a; = a, Eq. (2.47) reduces to

2+y =g
This equation represents a circle of radius a. This means that the ellipse reduces to a
circle. '

General case

We will now consider the general case for any arbitrary value of @. Let the two
SHM's given by Eqs. (2.43) and (2.44) be superposed. To find the resultant
oscillation, we write Eq. (2.44) as

£-=cos(anl+¢)=coswo:cos¢—sinaml sin ¢ (2.48)

From Eq. (2.43)
€os wol = x/ay
sothat  sinawet = /1 — (x"/qi)
Substituting these values of cos wet and sin we! in Eq. (2.48), we have

J . xcosé 1—(x*/d) sing

7] 1]
or ¥l cos¢——y = /1 —(x'/a}) sin¢
a1 az

‘ Squaring both sides and rearranging terms, we get

1 .
f¢'+ y_z ~2 X cos ¢ =sin’ ¢, (2.49
af az dy a2

as the equation of the resultant path. This describes an ellipse whose axes are inclined
to the coordinate axes.

For some typical values of ¢ lying between 0 and 2 , the resuitant paths traced out
by the resultant oscillation when two mutually perpendicular SHM's of equal
frequency are superposed are shown in Fig. 2.7. These can be most easily
demonstrated on a cathode ray oscilloscope, ’

¢g=0 wid

irjd oo T S - £

i

N~

2 /4 ¢=2r

-Fig. 2.7 Superposition of two mutually perpendicular harmonic oscillations of same {requency and

having values of ¢ lying between O and 2 1.
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~ We may thus conclude that an elliptical motion is g combination of two mutually
perpendicular linear harmonic oscillations of unequal amplitudes and having a phase
difference . A circular motion is a combination of two harmounic oscillations of equal
amplitudes

SAQ 46 , , _
In a cathode ray oscilloscope, the deflection of electrdns by two mutually
perpendicular electric fields is given by

x=4cos2wrvr
and y=4cos(2r v+ nj6)

What will be the resultant path of electrons?

2.6.2 Superposition of Two Rectangular Harmonic Oscillations of
Nearly Equa! Frequencies : Lissajous Figures :
We now know that when two orthonormal vibrations have exactly the same
frequency, the shape of the curve traced out by the resultant oscillation depends on
the phase difference between component vibrations. For a few values of the phase
difference ¢ in the range 0 to 2 or radian, these curves are shown in Fig. 2.6. When the
two individual rectangular vibrations are of slightly different frequencies, the resulting
motion is more complex. This is because the; relative phase [¢ = ont + ¢y — ane' =
(an — wr) 1 + ¢w) of the two vibrations gradually changes with time. This makes the
shape of the figure 1o undergo a slow change. If the amplitudes of vibrations are a
and a;, respectively, then the resuiting figure always lies in a rectangle of sides 2a, and
24;. The patterns which are traced out are called Lissajous figures. When the two
vibrations are in the same phase, i.c. @ =0, the Lissajous figure reduces to § straight
line and coincides with the diagonal y = (az/a1) x of the rectangle. As ¢ changes from
0 to /2, the Lissajous figure is an ¢llipse and passes through oblique positions in the
rectangle. When ¢ increases from /2 to 7. the cllipse closes into a straight line which
coincides with the (other) diagonal y = (azf @) x of the rectangle, Further, as ¢
changes from i to 2 , the series of changes mentioned above take place in the reverse
order. In general, the shape of curve depends on the amplitudes, frequencies and the
phase difference. All these changes are shown in Fig 2.7. The phase ¢ changes by 2
in the time intervial 2 7/ (w2 — wi). Therefore, the period of the complete cycle of |
w2~ W

changes is 2/ (w; — wy) and its frequency is T = ¥t~ i, equal to the

difference of the frequencies of individual vibrations.

Lissajous figures can be illustrated easily by ineans of a cathode ray oscilloscope
(CRO). Different alternating sinusoidal voltages arc applied at XX and Y'Y deflection
plates of the CRO. The electron beam traces the resultant effect on the Hourescent
screen. When the applied voltages have the same frequency, we can obtain various
curves of Fig. 2.7 by adjusting the phases and amplitudes.

I the frequencies of individual perpendicular vibrations are in the ratio 2:1, the
Lissajous figures are relatively complex. It has the shape of parabola for ¢ =0 or
and for ¢ = w/2 its shape is that of figure *8". To clarify this let us study the following
example . : :

Two rectangular harmonic vibrations having frequencies i the fa5c 2l are
represented as follows: - - T : '

X = ai cos (2wet + ¢)

o A
na ¥ = 62 08 aiot

We will calculate the resultant motion for ¢ = 0, m/2 and .

() When ¢ =0, x=a cos 2w = ai (2 cos > wer — 1)

Sqapdﬂn.dﬁhhw.
Oucillations

43

s T ST IS T

ta- -]

LAY




i
and " y = a: €08 oxd i
Since 2 = CO3 aof, we can rewrite the above equation as
a; {
| a; .
On rearranging term, we get
: a4 (2.52)
= .— (x+a
Yy ™ ( 1)
This equation represents a parabola (Fig. 2.8 )
” T i
Whenod = — . .
(i) ® 2 I
X = — g sin 2 ool
or — X = 25in oxt cO8 axd
a
and Y= a3 cosael
Since we can wrile
cos ane = ;
& e
¥ .
and sinapr =4/ 1 - =
a@
the first of these equations reduces to
-_— _x = 2_y ]-—i
R | a2 a§'
On squaring and rearranging terms, we get
4 '(y' )+ 2
— |==1}+==0 2.53
a} ﬂ% alz ( )

which represents {igure ‘8" in shape (Fig. 2.30) -
(iii) When¢o=rm
X = a; co5 Auof.

x
or ~ = = 2cos’awot — |
a -

and ¥ = a3 cos wol

On combining these equations, we get

3
]
L]
=
i
i
g
E
Lr
;
3
B
!
!
3
:
i
:
r

m/2 T
(i) (ii) (iii)

-Fig. 1.8 Superposition of two harmonic oscillations having frequencies in the ratio 2:1 and phase difference
(i} ¢ = 0, (ii} /2, and {iii) r respectively.

[




=X
Ba-xyy
or F=- ?:% —a) @.54)

This representa a parabola which noppoﬁtelydnected to the case when ¢ = 0.
(Fig. 2. Bc)

2.7 SUMMARY

The principle of superposition states that if wo superpose the initial amplitudes
and velocities corresponding to two (or moere) harmonic oscillations, then the
rmdnntduphcementuthedsabmcmofmdmdulduphmmenhnnﬂ
subsequent times:

x()=x (&) + x2(6)
¢  When two collinear harmonic oscillations of the same frequency, given by

x1 = a1 cos (axf + 1)
and x: = cos (wof + ¢a)

are superposed, the resultant is given by
x=acos(ast+¢)
where a={a} + a} + 222 cos (¢ — &1) )4

and ¢ = tan” ay sing; +a sin ¢y
(_a1eos¢;—a:m¢z

®  When two collinear harmonic escillations of different frequencies are
superposed, the modulated oscillation is représented as

x=0-u(?)mm..t
where  gmed (f) = 29 COB o 1
Wi!hm.m=_-———-w1-—wz

and o= 2tten

®  Superposition of n harmonic collinear oscillations of the same amplitude {a)
and frequency (ax) but haviog a constant phase difference (¢v) between
successive oscillations yields a harmonic oscillation. It is given by

x(f) = a cos (axt + &)
dolin(;hﬂ;)

where g= - ——: - e S e e

MI

‘and  Sp=(n—1)

"I?

e  When two mutually perpendicular harmonic ascillations are superposed, the -
resultant form traces out different curves. If the oscillations have equal
frequencm the shape of the curve depends on the phase difference. In gcneral,
the curve is elliptical but for certain phases, it closes into a straight line. When
the frequencies are nearly equal, the curves are termed Lissajous figures.

- Buparpositios of Siwple Fwrmowle
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2.8 TERMINAL QUESTIONS

L")

The monon of a simple pendulum is described by the differential equation

é+4x =0

dr?

Solve it for the following initial cor_ldilion.s: (Natr=0, x=3cm and ;ﬁ =0;
. t

‘@ar=0,r=2cmand %* = 4oms". Denote these two solutions by
x) and x3. dr :

Show that for a new displacement x; = x; + x, the initial conditions of the bob

‘are the superposition of the initial condmons of x) and xa.

Two sunple harmonic vibrations are representcd by
X1 =3 sin (20«! + w/6)

afd

x2 = 4 gin (20wt + x/3).

Find the amplitude, phase constant and the period of resultant vibration.

Consider the following two simple harmonic oscillations

TXLI=a cosanl -

and

X2 = &1 CO% anl

Use complex number analysis to obtain the following exprusmus of the
amplitude for the resultant motion:

a=[dt + & + 2a.a; cos (an —ew3) ]2

Show that the resultant amplitude oscillates between the values @ + a; and
a1 a3 ’

Two tuning forks A and B of frequencies close to each other are used to obtain
Lissajous figures and it is observed that the figure goes through a cycle of
changes in 20 5. Now if A is loaded slightly with wax, the figure goes through a
cycle of changes in 10 s. If the frequency of B is 300 Hz, what is the frequency of
A before and after loading.

2.9 SOLUTIONS

 SAQ
L

On using the given expansion, we get

3 3
LA [o—_+_9 __....]zo
a 5

Since this cquation contains terms of power higher than 8, it is not linear.

Even if we retain the first two terms in the expansion, the resulting equation will
not be linear and hence the principle of superposition will not hold.

X| = a; COS wel
X2 = d; COS wol

" According to the principle of superposition

x=Xx: +x;—(a.+az)cosmr

Since the cosine funiclion-varies between + 1 and —1, the ampl.lmdc of the .
- resultant-oscillation-is - -+ ag | S s

The resultanl of two harmonic oscillations having amplitudes q, and a; and
lmua]aghases ¢ and ¢; is given by

=at + a + 24141 cos ($1— o) (i)
(8} When ¢, ~ ¢==2mr, cos (¢1 — ¢2) = | and Eq. (i) reducss to

@ =a+ad+2aa
= (g + a;)*
so that
a=(a +'a1)
The ncgative sign is dropped as it will be physically absurd.
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() Whendy ~ ¢z =(2n+ ), cos (1 — 1) = — 1.
Then Eq. (i) reduces to “

d=a +d— 2ma.
= (a1 — @)’
s that
a=(m — ay)

- As before, the negative sign is dropped.

4.  From Eq. (2.15), we get fora) = a,
4= V2ai [1'+ cos (¢ ~ $)]%
Since ¢1 — ¢2 = 7/2, this expression reduces to g = \/2_a|=\/2_cmaincc
a=lcm ' -
Similarly, from Eq. (2.16), we get
tan ¢ = ] or ¢ = 7/4.

5. Heren=3, a =4 units and o = /3 rad. From Eq. (2.34) we note that the
amplitude of the resultant oscillation is given by

“(5)

Sincesiﬁ—25=l.andsin?’r=%,wegct'
a = 24q, = § unils
The phase of the resultant oscillation is given by Eq. (2.37) :
— ¢ o
p=@r—-1N =
( ) >
6.
3
6. Using Eq. (2.49), we have

2,7

& 4

i

Lo X4 X

or x_’+yz—\/3_xy—4=0
The regeltant path s 2n ellipss.

Terminal Questions
2
L 92X par=o¢
dr . .
Comparing it with the standard equation for SHM %
' t

+ agx=0,

@)

Superposition of Sitmple Harmonic
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we find that the solution of this equation is -
x=acos (2 + ¢) (i)

Differentiating Eq. (ii) with respect to 1, we get
‘;—’:= ~2asin (4 + ¢) | -

(1) Since st r=0,x=3 cm and %’:—=o. from Eqs. (ii) and (iii), we obtain

decm=gcos ¢
and 0= —2g1in¢

- The latter of these two relations implies that ¢ = 0. Using this in the former, we

get
~ a=3cm
Therefore, the complete solution is

x.(t)=3cos 2t cm ' (iv)
(2) Againifat1=0,x=2cm anc ?=4cms".wcfmd

s

2em=acos ¢
and 4cms’ =—2asin¢
or 2cms'=—gsing

On dividing one by the other, we get
tan¢=—lor¢=——4—"-l{cneea=2\ft2_cm'.
Therefore, the solution in the second case is
x:=2\/2_cos(2!— T’r)cm . )
Since superposition of x; and x; yields x, from Eqgs. (iv) and (v) we get
.t;=x|+.tz=3c052!cm+2\/2_cos (21— T’r)cm
= 3 cos 27 cm + 2+/2 [cos 2 cos 7r/4 + sin 2s sin /4] cm
=3cm2!cm+2\/5(71§c0321 + Vl;sinh) om
= 5 cos 2t cm + 2 sin 2t cm (vi)
Now if:re superpose the initial conditions of x| and x;, we have
at{=0,x=35cmand o fems
. dt
“ Scm=acos¢
and 4ecm=-— 2asin¢

l-l_'en'cetandb=—-§
2

seing == s,
il ﬁ . .- .
and a=+/29 cm.

Therefore the solution obtained on superposing initial conditions is

X3 = /29 cos (2 + ¢) ecm = /29 [cos 2t cos¢ — sin 2t sin $]cm

On substituting for cos ¢ and sin ¢, we get

X3=5c0os2fcm+ 2sin2f cm (vii}
This is the same as given by Eq. (vi) and obtained py the superpositionof

X1 and xz.
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X1 =3 cos (20t + w/6— 7/ cm _ Swperposition of Simple Harmonlc

and x;=4cos (20m + /3= #/2) cm
Or x;=3cos(20mt—x/3)em
and x2=4'cos (20 — #/6) cm

Hence, resulting vibration is defined by
x=g¢o3 (Hmt + P)cm

where g = (3 + 4 + 2 X3 X4 X cos 7/6)% em
= (9 + 16+ 12/3)% cm

=6.77cm

— wap)f 350 w/3 + 4 5in /6 ) _ -1(3\/3_+4.)
and ¢ m(3cos1r!3+4eos1rl6) e 3+4/3

=—024r

z = a) exp (iwit) + a: exp (iwos)
& = (22%) = (a1 + axe—id) X (@re+iov + r8in)

=a +a +.a|c: exp [i(len — aa)i] + @az exp [ — f{n+ag)i]
On taking the real part, we get
G=[ﬂ2|+d§+2ﬂ|ﬂ:cos(m"‘ma)l']'é
When (a1 —anfi=mor(n+ 1) m daa=a) — @&
When (o) —aa)t =00rn o, dea = a1 + o
Hence the resultant amplitude oscillates between the values
a +a; and a; — a;.

Va—Va=1005Hz

Now on loading the prong of the tuning fork A with wax, the frequency of A
will decrease. However now the cycle of changes of figures is completed in 10 s
and hence the frequency difference increases to 0.1, This means that the
frequencies of A before and after loading are respectively (300 — 0.05) Hz

= 299.95 Hz and (300 — 0.1) Hz = 299.9 H2.

Oscillatlons
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UNIT 3 DAMPED HARMONIC MOTION

Structure
3.1 Introduction
Objectives -

3.2 Differential Equation of a Damped Oscil'ator
i3 Solm.jons of the Differential Equation
Heavy Damping
Critical Damping
Weak or Light Damping
3.4  Average Encrgy of a Weakly Damped Oscillator
Average Power Dissipated Over One Cycle
3.5 Methods of Describing Damping
Logarithmic Decrement
Relaxation Time
The Quality Factor
3.6 Examples of Weakly Damped Systems
An LCR Circuit )
A Suspension Type Galvanometer,
3.7 Summary
3.8 Terminal Questions
3.9 Solutions

3.1 INTRODUCTION

In Unit | you learnt that SHM is a universal phenomenon. Now you alsa know that
in the ideal case the')total energy ol a harmenic oscillator remains constant in time and
the displacement follows a sine curve, This implies that once such a system is set in
motion it will continue to oscillate forever. Such oscillations are said to be Jree or
undamped. Do you know of any physical system in the real world which experiences
no damping? Probably there is none. You must have observed that oscillations of a
swing, a simple or torsional pendulum and a spring-mass system when left to
themselves, die down gradually. Similarly, the amplitude of oscillation of charge in an
LCR circuit or of the coil in a suspended type galvanometer becomes smaHer and
smaller. This implies that every oscillating system loses some encrgy as time elapses.
The question now arises: Where does this energy Eo? To answer this, we note that
when a body oscillates in a medium it experiences resistance to its motion. This means
that damping force comes into play. Damping force can arise within the body itself, as
well as due to the surrounding medium (air or liquid). The work done by the
oscillating system against the damping forces leads to dissipation of energy of the
system. That is, the energy of an oscillating body is used up in overcoming damping.
But in some engineering systems we knowingly introduce damping. A {familiar
cxample is that of brakes—we increase friction to reduce the speed of 2 vehicle in a

“short time. In gengral, damping causes wasteful loss of encrgy. Therefore, we

invariably try to minimise it.

Many a time it is desirable to maintain the osciliations of a systermn. For this we have
to feed energy {rom an outsjde agency to make up for the energy losses ducto

* daitiping. Such oscillations afe called forced osciflations. You will learn various
. Bepects of sich oscillations in the meAt Ubit.. - - -0 oo - oo o Loal

" In this unit you will learn to establish and solve the equation of motion of 2 damped

harmonic oscillator, Damping may be quaatified in terms of logarithmic decrement,
relaxation time and quality factor. You will alsv learn to compute expressions for the
logarithmic decrement, power dissipated in one ¢ycle and the quality factor.

Objectives
After going through this unit you will be able to

®  cstablish the differential equation for a damped harmonic oscillator and solve it
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o analyse the effect of damping on amplitude, energy and period of oscillation Damped Harmonde Motion

®  highlight differences between weakly damped, critically damped and over-
damped systems

® derive expressions for power dissi;'mtcd in one oscillation
® compute relaxation time and quality factor of a damped oscillator, and .

® draw analogies between di.ﬂcrcnt physicaksystems.

3.2 DIFFERENTIAL EQUATION OF A DAMPED
OSCILLATOR

While considering the motion of 2 damped oscillator, some of the questions that come
to our mind are : Will Eq.(1.2) still hold? If not, what modification is nemsary? How
to describe damped motion quantitatively? To answer these questions we again
consider the spring-mass system of Unit 1. Let us imagine thet the mass moves
horizontally in a viscous medium, say inside a lubricated cylinder, as shown in
Fig3.1. As the mass moves, it will experience a drag, which we denote by Fe. The
question now arises : How to predic¢t the magnitude of this damping force? Usually, it
is difficult to quantify it exactly. However, we can make a reasonable estimate based
on cur experience. For oscillations of sufficiently small amplitude, it is fairly
reasonable 10 model the damping force after Stokes® law. That is, we take Fato be

. proportional to velocity and write

Fa=—+v 3.0

The lorce experienced by a body
lalling frecly in a viscous maedium
is given by

Fg=6mry

This 15 known as Stokes’ law.
Here 1 is the coeflicient of
viscopity of the medium and ris
radius of body—assumed to be
spherical, and v is its velocity.

Fig. 3.1 A damped spring-mass sysicm.

The negative sign signifies that the damping force opposes motion. The constant of
proportionality ¥ is called the damping coefficiens. Numerically, it is equal to force
-2 '

per unit velocity and is measured in % = kgm_sl = kgs"

We will now -establish the differential equation which describes the oscillatory motion
of a damped harmonic oscillator. Let us take the x-axis to be along the length of the
spring. We define the origin of the axis ¢x = 0) as the equilibrium position of the
mass. [magine that the mass (in the spring-mass system) is pulled longitudinatly and
thenrreleased. It gets- displaced from-its equlhbnum pomnon ‘At any msuml.. the T
forces actmg ‘on the spring-mass.system are : A DT

(i) a restoring force : — kx where k is the spring factor,-nnd

{ii} o damping force: —Y v, where v= %ﬁr iz the instantaneous vélocity of the
/]
oscillator. This means that for a damped harmonic oscillator, the equation of
motion must include the restoring force as well as the damping force. Hence, in
this case Eq.(1.2) is modified to i _ _
2 )
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The roots of the equation

a4 bx + ¢ =0 are given by

-X=

—bt /P —dac

L

_52 .

~ After rearranging terms and dividing throughout by m, the equation of motion of a

damped oscillator takes the form

,
%+Zb-i£+mx 0 G.3)

where on = k/m and 2b = {m;. (You will note that a factor of 2 has been introduced -

in the damping term as it helps tis to obtain a neat expression for the solution of this
equation.) The constant b has the dimensions of -

force = _MLT® _

velocity X mass LT'M
Hence, its unit irs™, which is the same as that of .

You will note that like Eq. (1.3), Eq. (3.3) is a linear sccond order homogeneous
differential equation with constant coefficients. If there were no damping, the second
term in Eq. (3.3) will be zero and the general solution of the resulting equation will be
given by Eq.(1.5),i.e. x = A cos (m.r +.¢). On the other hand, if there is damping of
no restoring foree, the third term in Eq.(3.3) will be zero. Then the general solution of
the resulting equation is given by x (1) = C ¢+ D where Cand D are constants.
{You can show this by substituting the assumed solution in Eqs. (3.3).) This means

that the displacement will decrease exponentislly in the absence of any restoriiig force.

Thus we expect that the general solution of Eq. (3.3y will represent an oscillatory
motion whose amplitude decreases with time.-

3.3 SOLUTIONS OF THE DIFFERENTIAL EQUATION

How dogs damping m.ﬂuence the amplitude of oscillation? To discover this we have to
solve Eq. (3.3) when both the restoring force and the damping force are present, The
general solution, as discussed above, should involve both exponential and harmomc
terms, Let us therefore take a solution of the form

x (t)= aexp (af) (3-4)
where 2 and « are unknown constants, '

Dlﬂ'mﬁnhng Eg.(3.4) twice with respect to time, we get

dx - g exp {af)

dt
x .
and e aa’ exp {2
Substituting these expressions in Eq. (3.3), we get i :
(o + 2ba + ol) a exp (af) = 0 a.5)
For this equation to hold at all times, we should cither have
’ a=10
which is trivial, or
o +2ba+al=0 (3.6)
This equation is quadratic in a. lztuscaﬂthetworootsa.anda;: T
o =~ b+ (b —ad ) (3.79)
amd  ap=—b— (b —ald)¥ (3.7b)

These roots determing the motion of the oscillator. Obuou.sly o hias dimensions.of -
inverse ume ‘Did you not expect it from the form of exp. (r.u)?

Thu:. the two pol.uble mluuons of Eq. (3.3) are

x ()= ay exp [~ b — (6* ~ )%]q
and x:()=a exp[—fb+ (" — mn) 1) (3.8)

Since Eq.(3.3) is linear, the principle of superposition is applicable. chcc the general-
solution is obtained by the superposition of x; and x; :

x(1) = exp (= br) [a exp [ (5 — ad)4}]
+ @ exp { —(5* — )%} SR € £
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You will note the quantity (5’ —wd) can be negative, zero or positive respectively
depending on whether & is less than, equal to or greater than wo| respectively, We,
tl erefore, have three possibilities : .

.. ) If b>wo. we say that the system is over damped,

(i) M &= wo, we have a critically damped system,

(i) If b<ao,we have anunder-damped system. .

Each of these conditions gives e different solution, which describes a particular
behaviour,

We will now-discuss these solutions in order of their increasing importance.

33.1 Heavy Damping

When resistance to motion is.very strong, the system is sald to be heavily damped. -
Can you name.a heavily damped system of practical interest? Springs joining wagons
of a train constitute the most important heavily dadiped systeds. In your physics
laboratory, vibrations of a pendulum in a viscous medium such as thick oil and
motion of the coil of a dead beat galvanometer are beavily damped systems.

Mathematically, a system is said to be heavily damped if b > aw. Then the quantity
(" — ai)is positive efinite. If we put

8=V —ab

the general solution for damped oscillater given by Eq. (3.9) reduces to -

x (1) = exp (— b1) [a1 exp (B1) + a1 exp (— 81)]. (3.10)

This represents non-oscillatory behaviour. Such a motion is called dead-bear. The
actual displacement will, however, be determined by the iniial conditions. Let us
suppose that to begin with the oscillator i at its equilibrium position, i.e x = 0 at
1 =0. Then we give it a sudden kick so that it acquires a velocity vo, i.e ¥ = v at
£ =0. Then from Eq. (3.10) we have

d + a=0
and = - b(a taltBla—a)=v

These equations may be solved to give

Yo
al=—az= —

On substituting these results in Eq. (3.10), we can write the solution in compact [ortn:
Y
x()= ;‘3 exp (— b1) [exp (Bf) ~ exp (— B9))

= -31 exp (~ b1) sinh Bt (.11)

where singh 8t = [exp (8t) — exp (— A1)] 2 is hyperbolic sine function. From Eq.
(3.11) it is clear that x (f) will be determined by the interplay of an increasing
hyperbolic function and a decaying exponential, These are plotted separately in Fi.g
3.2(a). Fig. 3.2(b) shows the plot of Eq. (3.11) for a heavily damped systemn when it is
suddenly disturbed from its equilibrium position. You will note that initinlly the
(isplacement increases with time. But soon the exponential term becomes importemt
and displacement begins to decrease gradually.

Damped Harmomi: Motion
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Like x, ¢ is 8 transedental and is
equal to 2,718,
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Fig. 3.2b Plol of Eq. {3.11) for & hesvily damped system.

3.3.2 Critical Damping

You may have observed that on hitting an isolated road bump, a car bounces up and
down and the occupants feel uncomforiable. To minimise this discomfor, the
bouncing caused by the road bumps must be damped very rapidly ard the automobile
is restored to equilibrium quickly. For this we use critically damped shock absorbers.
Critical damping is also useful in recording instruments such %s a galyanometer
{pointer type as well as suspended coil type) which experience sudden impulses. We
require the pointer to move to the correct position in minimum time and stay there
without executing oscillations. Similarly, a ballistic galvanometer coil is required to
return Lo zero displacement immediately.

Mathematically, we say that a system is critically damped il & is equal to the natural
frequency, w, of the system. This means that b2 ~ wf = 0, so that Eq (3.9) reduces to

x{(f)=(a +a)exp(—ht)
=gexp(— bs)
where @=a, + a,.

(3.12)

Let us pause for a minute and recall that the solution of the differential equation for
SHM involves two arbittary constants which are fixed by giving the initial conditions.
But £q. (3.12) has only one constant. Does this mean that it is not a complete
solution? It is important to understand how this happens. The reason is simple : the
quadrittic equation for « (Eq. 1.6) has equal roots. So, the two terms in Eq. (3.9) give
the same time dependence and reduce fo onc term. It can be easily verified that in this
case Lhe gencral solution of Eq, (3.3) s

x{f)={(p+ q1) exp (— b1} (3.133)

where p and g are constants. p has the dimensions of length and g those of velocity.
These can be determined easily from the initial conditions.

- -

Let us assume that the system is disturbed from its mean equilibrium position bya
sudden impulse. (The coil of a suspended type galvanometer receives some electric

charge at r =0.) That is, at 1= 0, x(0) = 0 and 2%

P L=

= vy, This gives p =0 and

g = vo, so that the complete solution is

X {i} = voi cap (—h1) {3.13p)
Fig. 3.3 iltustrates the displacement time graph af & critically damped sysiem
described i
by Eq.(3.13 b). At maximum displacement, -2 = 0and £X <0
d bX = Xenaz t X=X mas
This occurs at time 1 = |/b:
B =736 I

Xmga = Vole-l =068 —
b

B =l P=-rrrer= reararaii
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Fig. 33 Displacerent-time graph for a critically damped system described by Eq. (3.13b).

33.3 Weak or light damping

When b < o we refer to it a3 8 case of weak damping. This implics that (5° — o) is a
negative quantity, i.c. (b* — ad)'4 is imaginary, Let us rewrite it as

(6" ~ o) = =1 (a} — b4

where i=+—1and
2
ae= (ol ~ by = [;:5 _ ZET’ ]“ (3.14)

is a real positive quantity. You will note that for no damping (b = 0), wa reduces tn
o, the natural frequency of the oscillator.

On combining Eqs. (3.9) and (3.14) we find that the displacement now has the form
x (1) = exp (— b1) [a1 exp (iwar) + a2 exp (— ivat)] 3.15)

To compare the behavioyr of a damped oscillator with thet of a free osciliater, we
should recast Eq.(3.15) 50 that the displacement varies sinusoidally. To do this, we
write the complex exponential in terms of sine and cosine functions. This gives

x (£) = exp (—bt) [a: (cos ant + i sin war)) exp (£ix) = cos x £ isin x.

— @:1{cos al—1 510 axf )]

On collecting coefficients of cos war and sin wyt, we obtain

% (1) = exp (— bn) [(a: + a3) cos awf + i (@1 — a2) sin wat)) (3.16)
Let ua now put

a1 + a2 = ao cosd g
and — i1 — &) = g0 sin ¢ 3.17
where g and ¢ are arbitrary constants. These are given by

&= 2/ ma:

and -

tan¢=—i L% (3.18)

&1 T W2

From the second of these resuits we note that tan ¢ is a complex quantity, Does this
mean that ¢ is also complex? How can we interpret a complex angle? To know this,
we use the identity

. sec’d =1 + tan’g
and calculate cosg. The result is

1 S =—nimrean
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+ a»
COS¢= al_f:.

2o
This means that cos¢, and hence @, is real.

Substituting Eq. (3.17) into Eq. (3. IG) we find that the expression within the
parentheses is cosine of the sum of 1wo angles. Hence, the general solution of Eq. (3 k)
for a weakly damped oscillator (b < wy) is

xfr) = ap ¢xp (— bt) cos (Cﬂdf + ¢} : 3.19)

with wq as given by Eq. (3.14). You will note that the soluuon given by Eq. (3.19)

- describes sinusoidal motion with frequency ws which remains the same throughout the
motion. This property is crucial for the use of oscillators in accurate time-picces. How
is the amplitude modified vis-a-vis an ideal SHM? You will note that the amplitude
decreases exponentially with time at a rate governed by b. So we can say that the
motion of a weakly damped system is nos simple harmonic.

The damped osciflatory behaviour described by Eq. (3.19) is plotted in Fig. 3.4 for the
particular case of ¢ = 0. Since the cosine function varies between + 1 and — |, we
observe that the disptacemient-time corve lies between acexp (— br) and

— a0 exp (— b1). Thus, we may conclude that damping results in decrease of amplitude
énd angular frequency.

x(t)

. 2, exp (—br)

Fig. 3.4 Displacement-time graph for o weakly damped harmonic osciltater.

How does damping influence the period of oscillation? You can discover this effect by
noting that the period of oscillation is given by

T _21 — 2 - 2w
o (- 69
) Kk _ 7
m am’

i b2 0, s < cio. This means that the period of vibration of a damped oscillator is

more than that of an ideal oscillator. Did you not expect it since dambing forces resist
motion? -

SAQ1

The amplitude of vibration of a damped spring-mass system decreases from 10 cm to
2.5 cm in 200 s. If this oscillator performs 100 oscillations in this time, compare the
periods with and without dampmg

We have discussed solutions of the differential equalu:m for a damped oscillator for

heavy, critical and weak dampings. In the fallowing distussion we shall concentrate
only on weakly damped systems.
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3.4 AVERAGE ENERGY OF A WEAKLY
DAMPED OSCILLATOR

In Unit 1 we calculated the average energy of an undamped oscillator. The question
now arises: How does damping influence the average energy of a weakly damped
oscillator? To answer this we note that in the presence of damping the amplitude of
oscillation decreases with the passage of time. This means that energy is dissipated in
overcoming resistance to motion. From Unit | we recall that at any time, the total
encrgy of a harmonic oscillator is made up of kinetic and potential components. We
can still use the same definition and write

EaFKE@W+U®m)

=Ym (f)’ + Yk . 020

where (dx/dr) denotes instantaneous velocity,

For a weakly damped harmeonic oscillator, the instantaneous displacement is given by
Eq. (3.19): .

x (1) = ao exp (— b1} cos (aur + @)
By differentiating it with respect to time, we get instantaneous velocity:

-d—réfi)=v=—aocxp(—br)[bcos(nm+¢)+m¢sin(mr+¢)] (3.21)

Hence, kinetic energy of the oscillator is

KE=Ym (—j—’: )2 = 1 ma} exp (~ 21 [b cos (et + ) + axe sin (wet + S)F

= limal exp (— 2b1) [6* cos 1-(&,; + ¢) + e sin? (@t + &)
‘ + b wa sin 2 (wet + ¢)] (3.22a)

Similarly, the potential energy of the oscillator is
UsYkd =% madd

since k = muw

On substituting for x, we get

U= Yomabas exp (— 2b1) cos® (amt + ¢) (3.22b)

Hence, the total energy of the oscillator at any time 1 is given by
E(=14 mg.?'.tXp (=250 [(&* + ) cos® (wat + )
+ wi sin’ (wet + @)
+ baws sin 2wat + ¢)] (3.23)

When damping is small, the amplitude of oscillation does not change much over one
oscillation. So we may take the factor ¢xp (— 2br) as essentially constant. Further,

since <sin’ (war +$) > = <cos * (wer +¢) > = 14 and <sin (wat +&)> =0, the
enetgy of a weakly damped oscillater when averaged over one cycle is given by

<E> = Y maj exp (~ 260) <[ (B> + o) cos? (m, 1 + A+ 2? sin? (war - 8
+ bwa 8in 2 (wet + ¢)]>
I 2 s s \rb2+tﬂi§ .r_.'lgl"
= 71 rmap eAp (< Z01) +
17 2 |
=14 m a} wj exp (— 2b1) (3.242)

From Unit | we recall that £o = % ma? o is the total caergy of an undamped
oscillator. Hence, we can write - )
- <E> = Eyexp (— 2by) i (3.24b)

Damped Harmionle Mntioll_ -
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This shows that the average energy of a weakly damped oscillator decreases
exponentially with time. This is illusirated in Fig. 3.5. From Eq.(3.24 b) you will also
‘observe that the rate of decay of energy depends on the value of b; larger the value of
b, faster will be the decay.

M

R o R T I R r e o Pt e s E

Fig. 3.5 Time variation of average energy for a weakly damped sysiem.

34.1 Average Power Dissipated Over One Cycle

Since energy of a damped oscillator does not remain constant in time, (%)m not
]

zero. In fact, it is negative. The rate of loss of encrgy at any time gives instantaneous
-power dissipated. From Eq. (3.20) we can write

SIS T TR

2
dr dt dr

Roaltams 31 by £ rul

On combining this resuit with Eq. (3.2) we find that power dissipated by a damped
oscillator is given by
dx \?
P{=— v|— )
0 ”

This relation shows that the rare of doing work against the [rictional force is directly
proportional to the square of instantanzous velocity. On substituting for (j‘r—) from
.r

Eq.(3.21), we obtain
P{1) = — yad' cxp (— 2b1) [6* cos’ (aut + &) + w4’ sin’ (wet + @)

+ by sin (2ent + ¢)]
Hence, the average power dissipated over one c¢ycle is given by

< P>=— 1 ya, o exp (~ 261
=— X <>
bry )

=— 2B<E> (3.25)

The negative sign here signifies that power is dissipated:

3.5 METHODS OF CHARACTERISING DAMPED
SYSTEMS

We now know that in the viscous damping model, a damped oscillator is :
characterised by -y and ax. We also know that this model applies to vastly different !
physical systems. Therefore, you may ask: Are there other ways of characterising !




damped oscillations? Experience tells us that in certain cases it is more convenient (o
use other parameters to characterise damped motion. In all cases we can relate these
to ¥ and we. We will now discuss these briefly.

3.5.1 Logarithmic Decrement

The most convenient way to determine the amount of damping present in a system is
to measure the rate at which amplitude of oscillation dies away. Ley us consider the
damped vibration shown graphically jn Fig. 3.6. Let o and a; be the first two
successive amplitudes of oscillation scparated by one period,

L
N
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Fig. 3.6 A damped oscillation. The first two amplitudes are g and a,.

You will note that these amplitudes lje in the same direction/quadrant. If Tis the
period of oscillation, then using Eq. (3. 19) for a weakly damped oscillator, we cam
write

M =aoexp(—bHT)

sothat 2 =exp (bT) = exp (v T/2m) (3.26)
a

You will note that in the ratio o/ a1, the larger amplitude is in the numerator. That is

why this ratio is called the decrement. It is denoted by the symbol 4. You may now

ask: Is the decrement same for any two consecutive amplitudes? The answer is: yes, it

is. Ta show this let us consider the ratio of the second and the third amplitudes. These

are observed for t = Tand r = 27T, respectively in Eq. (3.19). Then, we can write

LI as exp (— HT)

=exp (bT) -

az dg EXp (_ZbT) P
So, we may concludg, that for any Iwo consecutive amplitudes sepagated by one
period, we have -

Il = exp(hT)=d (3.27)

[

That is, decrement is the same for iwo successive amplitudes and we can write

as =i — . dn-)
a

a) ay thn

= d (3.28)

The logarithm of the rativ of successive amplitudes of oscillation separated by one
period is called the logarithmic decrement. 1t is usually denoted by the symbaol A:

A=|n(ﬁ) = 2T (3.292)
an 2m

Damped Harmonle Motion
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This equation shows that we can measure A by knowing two successive amfplitudes.

But from an experimental point of view it is more convenient and accurate to

compare amplitudes of oscillations separated by n periods. That is, we measure do/a,.
To compute this ratio, we first invert Eq, (3.29 a) to write

ﬂ._—t = exp (A) (3.29b)

The ratio asf g, can now be written as

.-E.o.. = ( .ﬂ ( i) ( ._a.:.._)-"(_..a'-l )=[CKP(A)]-'
- a az as o
= exp (nA) (3.30)
since the ratio of any two consecutive amplitudes is the same, -

Taking log of both sides, we get the required result;

L (ﬁl (.31)
n

This shows that if we plot 1a (av/as) versus n for different values of n, we will obtain a
straight line. The slope of the line gives us A.

SAQ12

A damped harmonic oscillator has the first amplitude of 20 cm. It reduces to 2 cm

after 100 oscillations, each of period 4.6 s. Calculate the logarithmic decrement and
damping constant. Compute the number of asciliations in which the amplitudc drops .

by 50%.

352 Relaxation Time

In physics we often measure decay of a quantity in terms of the fraction e’ of the
initial value. This gives us another way of expmsmg the damping effect by means of
the time taken by the amplitude to decay to &' = 0.368 of its original valuc. This time
is called the relaxation srime. To understand this, we recall that the amplitude of a
damped oscillation is given by

a(f) = aq exp (— bf)

If we denote the amplitude of oscillation after an interval of time 7 by a (r + 7), we
can write

a(tt+rn=amexp[— &+ )]
By taking the ratio a {r + 7)/ a (¢}, we obtain

a(et1) _ b
a0 exp (— b 1)

=L forpr=1 ' (.32)
-]

This shows that for & = 7', the amplitude drops to 1/e = 0.368 of its initial value.
Using this result in Eq. (3.25), we get
2CES

r

<p>=

The rciaxation lime, T, is therefore 3 measure of the rapidity with which motion is
damped. (You wjll note that the negative sign occuring in Eq. (3.25) has been dropped

here.)

3.5.3 The Quality Factor

Yet another way of expressing the damping effect is by means of the rate of decay of .

energy. From Eq. (3.245) we note that the average encrgy of a weakly damped
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oscillator decays to Eoe ™' in time 1= -é =2 seconds. If i its angular

¥
frequency, then in this time the oscillator will vibrate through g mfy radians. The
number of radians :hrough which a weakly damped system oscillates as its average
energy decays to Ece”' is a measure of the quality factor, Q :

Q: ﬂ:ﬂ:% (3.33)

You will note that Q is only a number and has no dimensions. In general, v is amall

so that @ is very large. A tuning fork has Q of a thousand or so, whereas a rubber

band exhibits a much lower (~10) Q. This is due to the internal friction generated by

the coiling of the long chain of molecules in a rubber band. An undamped oscillator
" (v = 0) has an infinite quality factor.

For a weakly damped mechanical oscillator, the quality factor can be expressed.
in terms of the spring factor and damping constant. For weak damping,

o ==wo =\ kfm

Hence 0= Vkmjy:
That is, the quality factor of a weakly damped oscillator is du'ectly proportional to the
square root of k and inversely proportional to .

We can rewrite Eq. (3.33) in a more physically meaningful form using Eq. (3.25):

25 Ta <P>
o average cnergy stored in the aystem in one éyclc (.39)

average energy lost in.one cycle

The quality factor is related to the fractional change in the frequency of an undamped
odcillator. To establish this relation, we note that

Y cmyes

2
@Wo

or

5 ¢

~1- L
ag

where we have used Eq. (3.3'3). This result can be rewritten as

. ( — L )'/5
o 4Q’
8¢’

'where in the binomial expansion we have retained terms upto first order in Q°.
Hence, the fractional change in ax is 1/(8 7).

SAQ 4
The quality factor of a tuning fork of frequency 256 Hz is 10°. Calculate the time in
which its energy becomes 10% of iis initial value.

3.6 EXAMPLES OF DAMPED SYSTEMS

You know that ail harmonic escillators in nature have some damping, which in
general, is’quite small. Te enable you to appreciate the effect of damping, we will
consider two specific cases: (i) QOscillations of charge in an LCR circuit, and (i)
motion of the coil in a suspension type galvanometer. These are of particular interest
to us as the former has wide applications in radio engineering and the latter is used in
the physics laboratory.

Damped Harraouic Motion
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3.6.1 An LCR Circuit

In Unit 1 we observed that in an ideal LC circuit, charge execrites SHM. Do you
expect any change in this behaviour when a resistor is added? To answer this question
we consider Fig. 3.7. If a current J flows through the circuit due to discharging/
charging of the capacitor, the voltage drop across the resistor is R\, Thus Eq. (1.36)
Now modifies to

C dt dar
. {3.35) may be rewritten as
Eq. (3.35) may L c R
¥ 1 II VYV

Flg. 3.7 An LCR cireuit

d!
7,4 9 _, (3.36)

L
ar dt C

Comparing it with Eq. (3.2) we find that L, R and 1/ C are respectively analogous to
m, <y and k. This means that a resistor in an electric circuit has an exactly analogous
effect as that of the viscous force in a8 mechanical system.
To proceed further, we divide Eq. (3.36) throughout by L obtaining

d? di

49 , R4, 1

ar L df LC
In this form, Eq. (3.37) is analogous to Eq. (3.3) and the two may be compared
directly. This gives

g=0 {3.37)

1
Wy

and b=

1
LC
R
L 138
Y (3.38)
We know that b has dimensions of time inverse. This means that R/ L has the unit of

5!, same as that of ao. That is why anL is measured in ohm.

With these analogies all the results of Section 3.3 apply to Eq. (3.37). For a weakly
damped circuit, the charge on the capacitor plates at time ¢ is

g () =qoexp ( -~ _:.% l)cos (anr + @) (3.39a)
with angular frequency
_ 1 _ R’
“Vic "ap (-390

Eq. (3.39 a) shows that the charge amplitude go exp (— 2—}1 r) will decay at a-rate

w_hif:h depends on the resistance. Thus in an LCR circuit, resistance is the only
dissipative element; an increase in R increases the rate of decay of the charge and
d=creases the frequency of oscillations.
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When 1/ LC >> R 4L,
1

LC

or wol = L
wo
Since wol is measured in ohms, 1} weC is also measured in -ohms. These are

respectively referred to as inductive reactance and capacitive reactance.

-
wi = wd=

For R =0, Eq. (3.39 a) reduces to Eq. (1.38) and w4 — an. The Q value of 2
weakly damped LCR circuit is

L _ 1 /L
w L= L
2% R R Yc

This equation shows that for a purely inductive circuit (R = 0), quality factor will be
infinite,

SAQS
In an- LCR circuit, L=2mH and C=5uF. If R=
" frequency of oscillation and the qua]lty factor ‘when the discharge is oscillatory.

3.6.2 A Suspension Type Galvanometer

A suspension type galvanometer consists of a current carrying coil suspcnded ina
magnetic field. The field is produced by a horse-shoe magnet. The magnet is shaped
so that the coil is aligned alWays along the magnetic lines of force. To ensure uniform
‘strength, an iron cylinder is suspended between the poles of the magnet, as shown in
Fig. (3.8). When we pass charge through the galvanometer coil, it rotates thmugh
some angle #. Since the coil is mechanically a torsional pendulum, it experiences a

- restoring couple — k8 and a damping couple — 7y % . Do you know how damping
t

creeps in, in this case? It has origin in air friction and electromagnetic induction.

Fig. 1.8 A schematic representation of a suspension type galvanometer.

(3.40)

i}, 400) and 1001}, calcuiate the

Damped Harmonle Motlon

Part of the demping arises [rom
the viscous drag of air, In general
it is small,

As the galvanometer coil rolates
in the msneuc field, an induced
e.m.[. is produced, which opposes
its motion in accordance with
Lenz's law, This so-called
electromagnetic damping conirols
the motion of the coil when
galvanometer is in use,
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Hence, for the motion of the coil, Eq.(1.35) modifies to

de dd
loe == kfi— vy — 34
dr ' Y4 (3.41) X

where Jis moment of inertia of the coil about the axis of suspension. Comparing it
with Eq. (3.2) we find that J and k, are analogous to 1 and k respectively.

]

Dividing throughout by 7 and defining '
2= y/I - :

and ol =ko/1 (3.42) !
" d’g 46

we —_—_ + 2 — + b= 0 3.43 g
&t dr dt b (3.43) 7

This equation is of the same form as Eq. (3.3). Hence, all results deduced earlier will
apply to the motion of the coil deseribed by Eq. (3.43).

For low damping, the solution of Eq, (3.43) is

@ = 6o exp (— b1) cos (aut + ¢) (3.49)
where & exp (- bi) is the amplitude of oscitlation, Eq. (3.44) describes oscillatory
mnotion with the period of oscillation T given by

2 2 —

o (ed— oY% [h_f__]%
ar

- e ATl T e

T= (3-45)

T

This explains why a weakly damped suspension type galvanometer is called a ballistic
galvanometer. You will note that for damping to be small, we must decrease - and
increase I, The question now arises: How can we reduce 4? As mentioned earlier, air e
damping is usually small. Nevertheless, it will always be present. To reduce L
electromagnetic damping, we must minimise induced emf. To ensure this, we wind the
coil over a non-conducting bamboo or ivory frame. If the frame is metallic, it is cut at i
one place, so that no current can flow through it.

The quality factor of a ballistic galvancmeter is

2

g I kl ¥
= = - —_— 3.46&
¢ 2 v ¥ I 4r .462)
kr ‘Y
U 7 e aF , this expression reduces to
o=,/ (3.46b)
v

This relation shows that a lightly damped suspension type galvanometer will have
_ high quality factor.

SAQ 6 -
The period of vibration of a galvanometer coil is 4 5. The amplitude of its vibration

decreases 1o 1/ 10th of its original value in 46 s. Calculate the damping constani v and .
quality faclor.

3.7 SUMMARY

i  The differential equation of a damped harmonic oscillator is
FH . .
9y Ey ix=0 r
ar dr _
where 2b = y/m and wo’ = kjm.
The solution of the equation for heavy damping is



x () = exp (—be} [a1 exp (36) + a1 exp (—81))
where 8= /b* — o,
For critical damping

x()={(p+aqexp(—b)
and in case of weak damping

x (1) = Goe™ cot (wat + @)

The amplitude and average energy of a weakly damped oscillator decrease
exponentially with time:
a=age
and <E>= Eexp (—2b1)
where gq is the initial amplitude and E; is total initial energy.
The period of & weakly damped system is given by
-T= 2_17 = _.....‘_...._:2# 7 = ,21r
m am’
The logarithmic decrement is defined as the logarithm of the ratio of auccessive
amplitudes separated by one period. Tt ia given by
A=In ( Es:i) =bT
g
The rate of losa of energy or power dissipated by a weakly damped harmonic
oscillator over one cycle is
<P>=2 <E?f T :
QO-factor of a weakly damped harmonic oscillator is given by
0= aur/2
The differential equation describing flow of charge in 8 LCR circuit is
&
4 R4, 1 __,
dad L LC
The effect of L, R and 1/Cin an LCR circuit is respectively analogous to those
of m,y and k in a mechanical oscillator. In a weakly damped circuit, the charge
oscillates harmonically :
"R '
f = — —
q() =qoexp | 2L r) cos (aaf +¢)
and the frequency of oscillation is given by
_ 1 / ! R
ve= — _— =
2r YLC 4o
For low R circuit
Q= aL/R= E‘- VIIC
8 The differential equation of a damped suspension type galvanometer is
d’6 dg
I — 4+ v =~ + k8=0
at &
For weak damping it describes ballistic motion given by
A=A exn {~ b coa {pat + )
F
where wg = '!? — Iz
4
3.8 TERMINAL QUESTIONS

A simple pendulum has a period of 2 s and an amplitude of 5°. After 20
complete oscillations, its amplitude is reduced to 4°. Find the damping constant

and time constant.
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2 The qualityfactor of a sonometer wire is 4,000. The wire vibrates at a frequency

of 300 Hz. Find the time in which the amplitude decreases to half of its initial
value,

3 Abox of mass 0.2 kg is attached to onc end of a spring whose other end is fixed
to a rigid support. When a mass of 0.8 kg is placed inside the box, the system
performs 4 oscillation per second and the amplitude falls from 2 cm to | cm in
30 5. Calculate (i) the force constant, (i) the relaxation time,and (iii) Q-factor,

4. Inan LCRcircuit L= 5 mH, C =2uF and R = 0.20). Will the discharge be
oscillatory? If so, calculate the frequency and quality factor of the circuit. How
long does the charge oscillation take to decay to haif? What value of R will
make the discharge just non-oscillatory?

5. The quality factor of a tuning fork of frequency 512 Hz is 6 X 10, Calculate the
time in which its energy is reduced to &' of its energy in the absence of damping.
How many oscillations will the tuning fork make in this time?

3.9 SOLUTIONS

SAQrs

1 Ta= —%.:2,
100

2T
(0} — pH¥
80 that wg = n* + 5%
2 2

Hence = <L = 27 ___
R (= + )4

Now Ta=25=

To compute b, we use the relation
d = ao exp (— b1)

This may be rewritten as

b= 1 in (_a_u)
t a

_ 1 IOcm_}
— ln —
2003 2.5¢em

2.3

R TRk
=6.9X 107"
Substituting this value in (i), we get

_ 27
Th=
[+ (6.9 X 1072

=20s=T.

This means that the system is weakly damped.

1] o 3 TR eryer I = Py ey

T TTITATET T




[
R

= == logi 10=2.3X 107

Further, to calculate n for which the amptlitude drops by 50%, we invert (i) to

100
Since & = L)
T
we get
-3
b= 23X 10
465
= 50X1075"
write
n= L1 en(ﬂ)
A an
— In2 — 23 logis?
23X 107 23X 107
= 30
"Since

A=bT = 11n(;"2)
n

we can write
1

b= — In(as/an

T (ao/an)

= ind

200
— 23X06000
200

Hence

TrT= - =

b

200
2.3 X 0.6010 5™

Q= 10’ and v = 256 Hz

we know thal for weak damping  is given by

=]455s

e L
=— = myr
¢ >
On inverting this relation, we get
3
T = £ = _.....!.9.._:? = 1.245
T 256w s

[Ty 3 by b gy ey

T CUTTUIY T TS AR TR

TTISEATT T

BRI

Since E= Eyexp (— 2b1) = By exp (— 21/7), we get for E/ B = 1/10

=ew (=2
| T
Hence,
T = -
i= — {n 10
2

=14s
L=2%X10"Hand C=5X10"F

1 _ L =105

LC IXI0PHXSX 0P F

— e



Casel.R=10

2 . F]
R = = exi0t &
4L 4% (2 X 107PH H
Thus, )
1 s s0 that the discharge is oscillatory. The {requency of
LC 4L’
oscillation
— | | R
v-— r— e - —
2T LC ar’
= l.6kHz

and quality factor of the ¢ircuit
agl _ 27X 1.6XI10°%'X2 X 10°H

¢= = 10
=2
Case 11 .R =400
In this case
R _ 40 X 40 0* _ a2
I 32 112 _lo""':"
4L 4X(2X 10 H H
H 1 _ R’ - .. .
ence, — = - and this is the case of critical damping.
LC 4L

Case 11I.R=10010

Here
2 . 2
;Riz'__- l!Ilzﬂ_!; 7 6% 10° a
a> 4aX@2X10°)H H
That is, i: > L This corresponds to dead beat motion.
4L LC .

You will note that increasing resistance in the circuit increases damping.

T=L=4s
ai—b
or
b= T
4
in (ﬂ) =mi0= b
gy .
or
1
b= = 1 10
{
= 23 15010 = 0055
46 5
Hence.
wi = (0.0025 + 2.4649) s7°
= 2.467 s>
=>wy=157s"
and

o= ®T. w _ 157 _ o,

2 2 0.1

=

WHE =T == 3% T A




Terminal Questions

1 Since8 =8 e, we can write

_ 1. (¢}
i

Substituting the given data, we get

b= _l_ B 2
40 g 4
= 557X 107%"

and 1
7= == [7955s
- b

2 4000
2 Since@ = 27 wecanwriter= —2 = 2X400 _ o
2 wo 2 X 300
~bt —tr

Now a=ae" = aoe
ct=rle B =4245X/.2=2945
a

3 (i) Herewo=Zrv=2X314rad Xds' =25 rads™
But o = vVk/mork=mue’ = 1 kg X 25*s? =625 Nm™

(i) a=ae™or0.0l m=0.02me ™,

b= B2 = 53x107s"
30
Hence, relaxation time r = I _ 1 __ - 435

b 23X 1075

(iii) For a weakly damped system @ =27 25X 43.5 = 1088

2
4  Here 1= _Jl ~ =10%s?
LC S5XI10"HX2X10TF
12 1
ma B oo ODO g 0
4L 4X(5XIW)H H

Jig

Since é > VEL the discharge is oscillatory and has frequency

y=1 \f_' - R - sexi0he
2w VIC  ar

The quality factor of the circuit is
wl _ 2w X1.59X10's'X5X 107 H

= = 250
¢ R 020
Also
(qo) ozn_a !nj=l43.

IXS5X1W0H
The dlscharge will be just non-oscillatery when
LR oo AL SXSXICH e
LcC 41’ c 2X 104 F

= 1004},

5 The average energy of a damped harmonic oscillator at any time ¢ is given by

<E> = Eexp (— 2b0)
= Eyexp(— 21f1)
where 7 = 67! is the relaxation time.
When 1= 1/2, <E>= 2
war ¢

Also, Q0 =

-~

[ B rord e e




Hence,
_ 20 2X6X100 _  3Xx10*

T = —— = =

ay 2r X 5125 256w s~

=37.3s

Thus energy will reduce to 1 of its initial value in 18.7 s.
. €
The number of oscillations made by the tuning fork in this time is given by
n=w Xt

=512X 18.7
=95.7X 10’

B il Rl

L1 FUTI [ B e peeey

|LICT = oy aarery

T SRR




UNIT4 FORCED OSCILLATIONS AND
RESONANCE
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48 Summary
49 Terminal Questions
4.10 Solutions

41 INTRODUCTION

In the previous unit we studied how the presence of damping affects the amplitude
and the frequency of oscillation of a system. However, in systems, such as a wall clock
or an ideal LC circuit, oscillations do not seem to die out. To maintain oscillations we
have to feed energy to the system from an external agent called a driver. In general,
the frequencies of the driver and the driven system may not match. But in steady-
state, irrespective of its natural frequency, the system oscillates with the frequency of
the applied pefiodic force. Such oscillations are called forced osciflations. However,
when the frequency of the driving force exactly matches the natural frequency of the
vibrating system a spectacular cffect is observed; the amplitude of forced oscillations
becomes very large and we say that resonance occurs. Do you know that Gatilea

was the first physicist who understood how and why resonance occurs?

Resonances are desirable in many mechanical and moleculer phenomena. But
resonance can be disastrous also; it can literally break an oscillating system apart. For
instance, fast blowing wind may sct a suspension bridge in escillation. If the frequency
of the fluctuating force produced by the wind matches the natural frequency of the
bridge, it gains in amplitude and may ultimately collapse. In 1940, the Tacoma
Narrows bridge in Washington State collapsed within 4 months of its being opened.
Similarly, when the army marches on a suspension bridge, soldiers are instructed to
break step to avoid resonant vibrations. In practice, isolated systems are rare. In solid
state and molecular physics, two or more systems are coupled through interatomic
forces. In an electric circuil we have inductive and capacitative couplings. The
oscillations of such systems will be studied in the next unit,

In this unit we shall study, in detail, the response of a system when it is driven by an
external harmonic force.

Objectives

After studying this unit you should be able to

¢ cstablish the differential equation of a system driven by a harmonic force and
solve it

® analyse the response of the oscillator at different freovencies

n
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® compute resonance width and the quality factor of a forced oscillator, and

® establish the differential equation for an LCR circuit under the influence of
. harmonic emf and write its solution by drawing an analogy with a mechanical
system.

4.2 DIFFERENTIAL EQUATION FOR A WEAKLY
DAMPED FORCED OSCILLATOR

To establish the differential equation of a forced weakly damped harmonic oscillator,
let us again consider the spring-rass system of Unit 3. It is now also subjected to an
external driving force, F (1). That is, instead of allowing the model oscillator to
oscillate at its natural frequency, we push it back and forth periodically at a frequency
w (Fig. 4.1). We can write the driving force as

F{t) = Fa cosw! 4.1)
where Fo is a constant,
Lo
dt
Da—F
Fig. 4.1 A weakly damped forced spring-mass system.

Let the mass be displaced {rom its cquiiibrium Posilion and then released. At any

instant, it is subject to (i} a restoring force, —kx, (ii) a damping force, — ¥ _ax
- dt
and (i} a driving force, Fp cos wr.
So for a forced oscitlator Eq. (3.2) is modified to
d*x dx
—. = —fkx—y =— + Facoswi 4.2
dr dr @2

Dividing by m and rearranging terms, the equation of motion of a forced oscillator
takes the form

2
Ax 4o {rﬁ + wd x = fo coswt {4.3)

where 2b = y/m , wi=k/m and /o = Fofm is a2 measure of the driving force,

You may now ask: Does this equation apply only to a mass on a spring? No, it applies
Lo any oscillator whose natural frequency is wo and is subject to a harmonic driving
Torce.

You will notc that Eq. (4.3) is an inhomogeneous second order lincar differential
equation with constant coefficients. We will now solve this equation to learn about
the motion of a forced oscillator.

4.3 SOLUTIONS OF THE DIFFERENTIAL EQUATION

Before we solve Eq. (4.3), let us analyse the siluation physically. From the previous
unit you will recall that when there is no applied force, a weakly damped system
(b < wo) oscillates harmonically with angular {requency wg = Ver — . But when a
driving force of angular frequency w is applied, it imposes its own lrequency on the
oscillator. Thus, we expect that the actual motion will be a result of superposition ot
two oscillations; one of frequency wy (of damped oscillations) and the other of
frequency « (of the driving force). Thus, when w # wo Lhe general solution of
Eq. (4.3) can be written as,

) x()=xi(t)+ x (1)
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where xi (1) is a solutien of the cquation obtained by replacing the RHS of Eq.4.3)
by zero.

On substituting this result in Eq. (4.3), you will find that x; (¢) satisfies the equatjon

dix; dx» 1 .
+ 26 — + wex: (i) = j.coswt
dr’ dr 2 (1)

Itis thus clear that (x; + x;) is the complete solution of Eq. (4.3). In your course on
differential equations you rhust have learat that x, is called the complementary
Sfunciion and x; (1) is called the particular integral.

You may recall that when there is no driving force, the displacement of a weakly
damped (5 <wo) system at any instant is given by Eq. (3.19) :
x(n) = ae™ cos (wgi + @)

Obviously this complementary function decays exponentially and after some time it
will disappear. That is why it is also referred to as the transiens solurion. In the
transient state, the system oscilluwes with some frequency which is other than its
natural {requency or the frequency of the driving force.

After a sufficiently long time (¢ >>7), natural oscillations of the Spring-mass system
will disappear due to damping. However, we know that the gengral solution of

Eq. (4.3) will not decay with time, That is, the system wiil oscillate.with the frequency
of the driving force. The system is then said to be in the steady-state. We will now
obtain the steady-state solution of Eq. (4.3).

4.3.1 Steady-state Solution

To obtain the steady state solution of Eq. (4.3), let us suppose that the displacement
of the forced oscillator is given by :
xit) = dcos (wl — 8) 4.4)

where a and # are unknown constants. By comparing Eqgs. (4.1) and (4.4) you will
note that the driving force leads the displacement in phase by an angle 8.

"To determine 2 and 6 we differentiate Eq. (4.4) twice with respect to time. This gives,
dx;

- = — aw sin (wr — B)

t
2

and %il? = — g’ cds {wt — 8)
¢

Substituting these results baek in Eq. (4.3), we get
(wh — w’) a cos (wr — 8) — 2 abw sin (w! — 6) = /o cos w!
Using the formulae cos {wf — ) = cos w! cos 8 + sin wf sin & and sin {wt — &)
= sIn e cos 8 ~ cos wr sin € and rearranging lerms, we get
f(wd — w') a cos 8 + 2abw sitf 6— fo] cos wt
+ [w§ — ) @ sin 8 — 2 abw cos 6] sin wf =0 {4.5)

We know that both cosws and sin wf never simultaneously hecome zero; when one
vanishes, the other takes a maximum value. Therefore, Eq. (4.5) can be satisfied oniy
when both terms within the square brackets become zero separately, i.e.

(wa — @) acos 8+ 2 abw sin 8 = f, (4.6a)
and (wh — @) asin @ — 2 abw cos § = 0 (4.6b)
Fq (4.6 b) readily gives the phuse by whith the driving 1orce leads ibe displacement:

. -1 2bw
= tan” —— (4.72)
W T w

The amplitude of steady-state displacement can be determined from Eq. (4.6 aj once
we know the values of sin & and cos 8. To gel these values we construct the so-called
acoustic impedance triangle, as shown in Fig. 4.2. We can readily write

Forced Qaclllations and Resonsrce
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o (@? —a?) Q
tin 8 = 2be 4
[(0d — o) .+ 4577
and  cosd = (5~ o)

[(ag —_ 03)2 + 4b2 m!]% .
Using these values of sin & and cos 8 in Eq. (4.6 &) and rearranging terms, we get
a=a— L = i 4.7
[(d — oY + 4b® &’)% m (05 — o’y + 46 P4
Thus, we find that thc steady-statc amplitude of forced oscillations depends on (i)

amplitude and angular frequency of the driving force, (ii) mass and the natural
angular frequency of the oscillating system and (iii) the damping constant.

Putting this value of ¢ in Eq. (4.4) we can write the stcady-state solution of
Eq.(4.3) as
F,

x{n = cos {wf — @) 4.8)
m [(u’; - ouz): + 4bzm:]'/5
Theimportant poinf to note here is that the steady-state solution has the frequency of
the driving force and its amplitude is constant. Moreover, its phase is also defined
completely with respect to the driving force. Therefore, it does not depend on the
initial conditions. In other words, the motion of a driven system in steady-state is
independent of the way we start the oscillation.

The transient solution, steady-state solution and their sum,

blios (aae 1 + )

Focos(wt—6)
m (@6 — o' + b’
i.¢. the complete general solution of Eq. (4.3) are shown in Fig. 4.3. The contribution
of the transient part diminishes with time and ultimately disappears completely, The

time for which transients persist is determined by b and hence by the demping factor
7. The greater the value of b, more quickly do the transients die out.

x{f) = ae

+

For an undamped system, the stcady-state solution is obtained by putting 5 =@
in Eqgs: (4.78) and (4.8). This gives

=0
o

d 1 (=
an x: (1) m(mé-a:’)

€os w! (<.9)

That is, ihi¢ dniviag {orce and the dispiacoment are in the same phase
(¢ =0). From this we may conclude that phase lag i€ essentially a consequence of
demping.. We further note that if the frequency of the driving force equals the

frequency of the undamped oscillator, its amplitude will become infinitely large. Then
resonance is said to occur.

You may now ask: Do we observe infinitely large amplitude in practice? No, the
amplitude is finite since some damping is always present in every system.
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Fig- 43 lime variation of 1he wransient solunion, steady-state solution and the gencral solution of Eq. (4.3)
for a weakly Jamped svstem.

X (=X (1) + %,4)
T

4.4 EFFECT OF THE FREQUENCY OF THE DRIVING
FORCE ON THE AMPLITUDE AND PHASE
OF STEADY-STATE FORCED OSCILLATIONS

We know that the vanation with the frequency of the driving force of the steady-state
amplitude a (w) of a forced system is given by Eq. (4.7b). Depending on the relative
magnitudes of the natural and the driving frequencies, three cases arise. We will now
discuss these separately in detail.

4.4.1 Low Driving Frequency (v << wo)
To know the behaviour of g (w) at low driving frequencies, we first rewrite
Eq. (4.7b) as
Jo
1,1 R ks
o
w?

4
1]

afw)=

For w << we,we note that the ratio w’/ wj will be much less than one.

So. we neglect terms coniaining w?/ w2z, This gives

a(w}= Loj = FD} ’ = f?. (4.103)
wo maox k

Thus, at very low driving frequencies, the steady-state amplitude of the oscillation is
controlled by the stiffness constant and the magnitude of the driving force.

Under this condition Eq. (4.7 a) yields

o 26w Con e @ ... .
ane — ——— >y ior — << . {4.1UDb)
wn — W (/3%

That is, the driving force and the steady-state displacemnent are in the same phase,

4.4.2 Resonance Frequency (w = wo)

To calculate the value of a {(w) at resonance, we set @ = wo in Eq. (4.7b). The first
lerm in the denominator vanirhes and the amplitude is given by

Forced Oscillations and Resoaan
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Jo

a (o) = {4.11a)
From this we note that at resonance the amplitude depends upon the damping; it is

inversely proportional to b. That is why in actual practice the amplitude never
becomes infinite,

Similarly by setting w = aw in Eq. (4.72) we find that
tanf —»oco

50 that :
8= =/2 ‘ {4.11b)

This means that the driving force and the displacement are out of phase by /2. You
may be thinking that the value of g (w) given by Eq. (4.11 a) is maximum. This
bowever is not true. Why? To answer this, Jet us maximise a (w}). That is, differentiate
Eq. (4.7b) with respect to o and set the resulting expression equal to zero. The
frequency at which the first derivative becomes zero and the second derivative is
negative gives the correct answer :

o) 4 [ Iz
do de [(d — &Y + 4 b'0?)

%

= _  _Jd— 4o (e — oY)+ 8b0)
A(od — &) + 4p%’P”

=0 forw=qa

This equality will hold only when the numerator vanishes.identically, i.e.
— dafag —0) + 8b'w =0 forow=w

We ignore the root w.= 0, which is trivial. Then we must have
wr — of + 26° =0
This equation is quadratic in w, and the acceptable root is
w = (wh— 257" (4.12)

The root corresponding to the negative sign is physically meaningless and is ignored.

For a ()} to be maximum, its second derivative with respect to w should be negaltive.

You can easily verify that at w: = (ws — 26", and % 18 negative, Thus, we can.
w - oa

conclude that the peak value of amplitude is attained at a frequency sfightly below wo.

The shift is caused due to damping. We can visualize it as follows: When the driver

imparts maximum push, the driven system does not accept it instantly due to a finite

phase difference between x(¢) and F ().

On substituting for wo lrom Eq. (4.12) in Eq. (4.70) and simplifying the resulting
expression, we get the peak value of steady-state amplitude:

=S
263/ — B

dmax

(4.13)

‘When at a particular frequency, the amplitude of the driven system becomes

maximum, we say that amplitude resonance occyrs. The frequency e, is referred 40 as
the resonance frequency. Tt is instructive to note that w, is less than we as well as

we = Vo' — &
4.43 Iigh Driving Frequency
For & >>w0 we rewrite Eq. (4.7b) as

o fo
ey

v =
. 2 .2 1 als2
wh 4b
i3] [43]

and neglect terms containing wo'/ o’ as well as {25/ w)?, a.s. they are both much smaller
than unity. Then the amplitude of resulting vibration is given by

a(w) = L”z ' (4.14a)
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That is, at high frequencies the amplilude decreases as 1/’ and ultimately becomes
zero.

Similarly from Eq. (4.7a), the phase is given by

tan 6= ________221‘:@: ~— 2 —> 0
{wo — o) & Qe

or =, (4.14b)

This means that at high frequencies the driving force and displacement are out of
phase by .
We may thus conclude that
(i) The s.mpluude of osclllanon in steady-state varies with f uency It becomu
maximum &t w, = \/ — 25 and has value fo/ 26 (ws — #).
For ai> e, a(w) decreases s o™,

(i) The displacement lags behind the driving force by an angle 8, which increases
from zero at @ = 0 to r at extremely high frequencies. At © = ax, 8 = 72,

The frequency dependence of a{w) and & (w) is shown in Fig, 4.4.
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¥ig. 4.4 Freguency variution of {a} sieady-siate amplinide, and ¢b) phase of a forced oscillator.

4.5 POWER ABSORBED BY A FORCED
OSCILLATOR

You now know that every oscillating system loses energy in doing work against
damping, But osciilations of & [orced oscillalor are maintained by the energy supplisd
by the driving force. It is, therefore, important to know the average rate at which
energy must be supplied to the system to sustain steady-state oscillations. So, we now
calculate the average power absorbed by the oscillating system.

By definition, the instantaneous power is given by

P(1) = {orce X velocity
=F(Xv

Differentiating Eq. (4.8) with respect to time, we get

v = dx: (l') - — FOCU
di m [(wd — ') + 4b" ']

= — vyosin{wr—8) = vpcos{wr — D) (4.15)
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where Jfow
Vo = 4.1
T m [w} — ) + 4b% 0] @132
it the velocity amplitude and
¢=0'—-1r}2 (4.15b)

is the phase difference between velocity and the applied force. On substitufing for
F{#) and v from Eqs. (4.1) and (4.15), respectivelv - . find that the instantaneous
power absorbed by the oscillator is given by

P ()= Fo vo cos ot cos {af — @)

Since cos (wr — &) = cos af cos ¢ + sin wi sin ¢, we can rewrite the expression for
instantaneous power as

P(1) = Fowo [cos’ w! cos ¢ + cos et sin o sin ¢}

From this we can easily calculate the average power absorbed over one cycle:

<P>= % Fovo sin ¢ <sin 2 wi> + Fovo cos ¢ <cos'ar> (4.16)

From Unit | you may recall that <sin 2wt™ = 0 5o that the first term on the RHS of
Eq. (4.16) drops out. Also <cos® wt> = 1/2. Then Eq. (4.16) reduces to

<P>= % Favocosgp= % Favo sin 8 (4.17)

On substituting for sin @ from Fig. 4.2 and vo from Eq. (4.15a) in Eq. (4.17), we get

(4.18)

2 H
<p>=(bF°) d

m [(ad — «®)* + 4b% o*

From Eq. (4.17) we note that the average power absorbed by a forced oscillator will
be maximum when sin 8 = 1 = cos ¢ i.e. ¢ = m/2 (¢ = 0).This happens for & = do.
Using this result in Eq. (4.18), we get

PO = —— F (4.19)
abm

That is, the peak value of average power absorbed by a maintained system is
determined by damping and the amplitude of the driving force. The frequency
vanation of <<P>> is shown in Fig. 4.5
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[t is important to note that unlike the case of amplitude resonance, maximum average
power is transferred at the natural frequency of the system. This arises because
velocity and driving force are in phase.

46 QUALITY FACTOR

In Unit 3, we defined the quality factor of a damped oscillator as

Average Energy Stored in one cycle
Average Energy Dissipated in one cycle

g=2r
You can usc the same definition to calculate Q of a forced oscillator once you know

< E>> and <P>.

SAQ1
Show that the average energy of a forced oscillator is

CE> = i m (o + wn)) @
and the quality factor is given by

w® + wh
4bw

Q:

Another equivalent and more useful interpretation of the quality factor is in terms of
amplitudes. The Q factor is defined as the ratio of the amplitude at resanance to the
amplitude at low frequencies (w—0). Using this definition, the value of the quality
factor can be calculated rather easily on dividing Eq. (4.13) by Eq. (4.10a).

18

o= = - b x

(4.208)

Iy 172

alw — 0) (e — )" S Wled—b)

2
_ an
a__
If damping is small, ¥ <<ax® and the expression for the quality factor reduces to
o= 2 = @7 (4.20b)

wnich is the seme as Eq. (3.33) with b = 0.

SAQ2
Using Eq. (4.20b}), show that the amplitude and phase of a weakly damped torced
oscillator can be expressed as

a (w) = aeo cucitu 7
e E) + J_]
( [ wo Qz
and lan B = 179 ;
e " o)

whete ap = Fol mos.

For different values of , frequency vanation of a4 (m) and 6{w) based on these
equations is shown in Fig.4.6. We observe that as Q increases (i.c., damping
decreases), the value of a{w) increases.
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Flg. 4.6 (x) Amplitude as n function of driving frequency for different values of @, (b) Phase difference 6 a3
& [unction of driving frequency for different values of .

SAQ3 .
Expregs < P> in terms of 0 and show that <P> = Fa o 0,

k

PN

4.6.1 O ln Terms of Band Width: Sharpness of 2 Resonance

The Q of a system can also be defined s

Q:

Frequency at which power resonance ogcurs @4.213
Full width st half-power points -




To ealculate the frequency at which average power drops to half its maximum'value Foresd o-dl-uu- ond Roenance
we can write from SAQ 3

| Pl wol 1
ke -[(ma—-u’)’+ %] ¢k

On simplification we can write

- (@h—aie 2o

¢

80 that

ol — o) = & N
{ o) 0

This equation has 4 roots. Of these two roots correspond 1o negative frequencies and
arc physically unacoeptable. The other two acceptable roots are

~.=—-2°%+~o( 14+ T!Q’)m
ad =% + u( 1+T'Q-;)"’ 4.22)

Obviously, the second of thess roots is greater than ax and the otber root is smaller
than ax. This is illustrated in Fig. 4.5.

The frequency interval between two half-power points is

an — o = 24w =%
From Eq, (4.23) it is clear that a high ( system has small band width and the
resonance is said to be sharp. On the other hand, & low Q system has a large band
width and the rezonance is said to be Nat. This is illustrated in Fig. 4.6. Thus, the
sharpnem of resonance refers to the rapid rate of the fall of power with frequency on
cither side of resonance. We measure it in terms of the Q-value of the aystem, The
factor has its greatest importance in reference to electrical circuits which we will
discuss now,

(4.23)

SAQ 4

Calculate the energy stored in a mass of 0.1 kg attached to a spring. The mass is
oscillating.with an amplitude of 5 cm and is in resonance with a driving force of
frequency 30 'Hz. If'the Q factor is 100, calculate the power loss.

47 ANLCR CIRCUIT

We have so far discussed the resonant behaviour of a simple mechanicat system
subject to a periodic force. Another physical system which also exhibits resonant
behaviour is a series LCR circuit containing a source of alternating e.m.f. We wiil
discuss the behaviour of this system by drawing similarities with 2 mechanical system.

rrom Unit 3 we know that in an LCR circuit, charge oscillations die oul because of
puwer losscs in the resistance. What changes do you eapeet in this behavieur when 2
source of alternating e.m.f. of frequency w is introduced? To answer this question, let
us consider Fig. 4.7. Let / be the current in the circuit at a given time. Then, the
applied EMF is equal to the sum of the potential differences across the capacitor,
resistor and the inductor. Then Eq. (3.35) modifies to

TOT=

T RETEGTE TS

i e

TETTas

e weiog

R N Pt

dr ) 81 l

‘72+ Ri+rt 4 = B cosa (4.24)
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E;cos ax

Fig. 4.7 A harmonically driven LCR cincaic

Since [ = % , this equation can be rewritten as
¢

r}
L 99 + R 99 4 9- g cosan (4.25)
dt di

e
Dividing throughout by L, we get

2
‘Lg + Rdg | ¢ B . .. (4.26)
dt L dr LC L

In this form Eq. (4.26) is similar to Eq. (4.3). Hence its steady-state solution can be
written by analogy. For a weakly damped system, the charge on capacitor plates at
any instant of time is given by

g= - B/ L cos (wr —6) 4.27)
(-« F+ ()]
LC L
1 . I
wh = —— = — is the angular frequency of oscillation and
cre w Ic Ve 2 QUency scillation

tang = @R/ (4,28)
— wz
LC

defines the phase with respect to the applied EMF.

The current in the circuit is obtained by differentiating Eq. (4.27) with respect Lo ¢.
The result is

I= 2
R+(al— —y
J (w wC)

cos (el — ¢) (4.29)

where ¢ = 8 — /2 is the phase difference between E; and /. Since

| :
= _w
L

@RI L

tan g =—cotff = —

we find that

al— — (4.30)

—1--

=T




When wl << L the circuit is capacitive in naturc and we can wnte
w

(ﬂJL_ .-.I_')2= ll'l
wl w

Thus, if we are working at low frequencics and R is also small, the current amplitude
will be small. What will be its magnitude for w—0? In this limit /-0 and leads the

applied EMF by m/2.

As the driving frequency increases, the reactance (mL - —!-) decreases and cur-
rent amplitude increases. When oC
|
wl= — 4.31)

wC

the term under the radical sign in Eq. (4.29) becomes minimum; equal to R. Then the
current attains its peak value Jo = Ep/ R and the circuit is said to resonate with

frequency ,

4.32)

1
Ve —
2mLC
At resonance, the current and applied c.m.f. are in phase. When the driving frequency
is high, the circuit will be inductive and the current lags bebind EMF by #/2.

_ For different values of R, the frequency variation of peak current and phase is shown
in Fig. 4.8. You will observe that lower the resistance, higher is the peak value of the

current and sharper is the resonance.

5 R,7”R> R
~ 4 A R=
= Ep———————— _—0 Rl

. af{w)

wi

/

/

apbd V - W
w = e wea

Fig. 4.8 Frequency vanation ¢f peak currenl und phase [or differemt values of R in a driven LOR aircuil.

The power in an electric circuit is defined as the product of current and EMF. For an
LCR circuit, we can write

P= EI= El cos wi cos {wl — ¢}

where 10=.a,/\/ R+ ( wl — L)’
wC

Using the formuia 2 cos 4 cos B=cos (4 + B) + cos (4 — B), we can rewritc the
above expression for power as

P= E;’-E {cos ¢ + cos (2wt — @)]
Power averaged over one complete cycle is obtained by noting that
< cos (2wt — ¢) > = 0. Hence

Ely

— cos ¢
“ | 4.33)
=T E e o COS @ -

<P>=

Forced Osuclilations nad Resonance
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where B = Eyf \/2_ and Jos = o/ /2 hre, respectively the root mean square values
of p.m.f. and current. Since <{P>> varies with cos ¢, it is customary to call ces ¢ as the
power tactor.

The quality factor of an LCR circuit is given by

anl
e oL 4.4
R (4.39)

where s = 1/ VLC

You can verify that the band width of power resonance curve for an LCR circuit is
given by

L]

g — o

il

o
= - (4.35
0 )

30 that

0= Frequency at resonance
Full width at half-power points

The Q of a circuit determines its ability to select a narrow band of frequencies from a
wide range of input frequencies, This, therefore, acquires particular importance in
relation to radio receivers. Signals of various frequencies from all stations are present
around the antenna. But the receiver selects just one particular station to which we
wish to tune and discard others. Normally redio recelvers operating in MHz region
have Q values of the order of 10° to 10°: Microwave cavities have Q values of the
order of 10,

4.8 SUMMARY

e  When a harmonic force F= F; cos wr is impressed upon a damped harmonic
oscillator, the oscillator executes forced oscillations. The differential equation of
motion of a drivea oscillator is

2
9'_;"_ +2b£ + ol x = “Fycos !
dr dt

where 26 = X, wo= \f-’f-_andfn= £
m m m

e  The generai solution of the differential equation of a driven oscillator is
x ()= acos (wt— 8)+ doe cos (waf + 6)

where

= Jo

- [(ﬂ.% — mz)z + 4b2w3]lﬂ

and

2bw

2 1
g = W

are steady-state amplitude and phase respectively.

8= tan”’

& Amplitude resonance occurs at a frequency

o= e = 2 = - 47285
Al resonance irequency
-__ b
2b{wd — b1
®  The average power absorbed by a forced oscillator is given by

Oeux

<P>= % Fn\r"n sin 8.

It becomes maximum when 6 = /2.
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The quality factor of a forced oscillator can be interpreied as amplitude
amplification. It is related to full width at half maximum by the rejation

‘o

Q=
w; —
The differential equation of a driven LCR circuit is
d;‘i + ﬁg’_q_ + —]-q=écoswl
dt L dt Lc L
Its steady-state solution is given by

Bt L
= cos (wt — &)

U ey (s

with tan 8 =

LC

4.9

TERMINAL QUESTIONS

A body of mass 0.1 kg is suspended from a spring of force constant 100 Nm™".
The frictional force acting on the body F» = Sv N. Set up the differential
equation of motion and find the period of free oscillations. Now a harmonic
force F= 2 cos 20¢ is applied. Calculate the amplitude of forced oscillations

and phase lag in the steady-state.

For a high O-system, show that the width of the amplitude resonance curve is
nearly /35, where the fult width is measured between those frequencies where
a= Gma/2.

An alternating potential of frequency 10° Hz and amplitude 1.2 V is applied to a

series LCR circuit. If L= 0.5 mH and R = 40}, find the value of the
capacitance C to get resonance. Also calculate the rms value of this current.

4.10 SOLUTIONS

5AQ1

<K E>= (1) m<y>

= (1/2) mw’a’ <sin’ (wt — 8) > = (1/4) ma'd’

<U>= (1/2) k <x'>
= (1/2) mah @ <cos* (wr — 8)> = (1/4) mwsa®

Iherefore, time-averaged energy is
<E>= (1) m{e + o) &
Average energy dissipated per second is < ¥ > = mbo'd
By definition, :

Avcrage energy stored in one cycle

Q=12 —
Average encrgy dissipated in one cycle
= 2 Average energy stored in one cycle
Time period X Average encrgy dissipated in one-second
= o m{es + o)a’
4 Tmbo'a’
_ witd

dwb
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SAQ2
From Eq. (4.7b) we recali that amplitude of a weakly damped forced osciliator is
given by
L FO
mi(ed — o) + 40"

g {w) =

— Folm
2 a2
m[(ﬁ_ﬂ)’ +3-2b—]
_ o o s

If we put @ = i and use Eq. (4.20), we get the required result :
man

2

a(w) = a

[=-=y=aF

Similarly, from Eq. {4.7 a) we recall that

tan § = mez
wo —
— 2ba
_ (_"2 - _w__)
Fid) o
or ten@= 1/
g -]
w ax
SAQ3
From Eq, (4.18)
bﬁz wl

<p>=
m  {(wi— o)+ 4° ')

Putting 0= = . we get
g 0 %% g

2
w

woFd
2mQ [(ws—w’)’ﬂm’aﬁp’) ]

<P>=

At @ = ax, the denominator in the parentheses will become minimum and the
average power absorbed by the oscillator becomes maximum:

P> = 2
2mexg

wo P

2
@0

o

N =
3|2

=
E

B [
a-

il b i kel

FIET ST
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SAQ4
"From SAQ 1, you would recall that average energy of a weakly damped
oscillator is given by

<E>= % (@ +o?) &
At resonance @ = aw, and the expression for average energy. reduces to

<E>= (1) madd .
= (1/2) X 0.1 kg X (2 X 30s™)? X (5 X 10”°m)?
= 4.44J. :

3

Now
Average energy stored in one cycle

Q= 2m -
Average cnergy absorbed in one cycle

Since period 7= (1/30)s.

2r X444 ]

Average encrgy dissipated in (1/30) 5. = 100

=028
Average energy dissipated per second = 30 X 0.28J = 8.4 7,

Terminal Questions
1 For [ree oscillations, the differential equalion is

mx=—kx—vyx

Substituting m =0.1kg, &= 100 Nm™' and v =5Nms- we get

2
0.8 LX = — 1o0x—5 &
dr dr
2
or X 4+ 50 &4 1000x= 0
dr dr
Period T= — 27 = o =032,
[wa — b']Y [1000 — 625]'*
On the application of the harmonic force, the equation of motion becomes
2
X 4 509X 4 1000 x = 20 cos 201
dt dit
Here
a= o
[(ed — &®) + 4b%0%)"
_ 20 N/kg
[(1000-400)" + 2500 X 400]' s~
= 11.X10 ' m
_ %w . 50%X20
tan f = 7 - =
w — w 1000 — 400
tan 6 = 1.67
or
8= 59.1°

G

2 Let « bedhe value of the angular frequency when a =

Using Eq. (4.7b) and (4.13), we get

Forced Oscllistions snd Resomancy
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f I
[(ed — o) + 46%]'? ab(wi — )"

On cross multiplying and squaring both sides, wo get

(0} — &) + 46 * = 16° (3 — bY)
Since w? = wd — 2 b, we can rewrite it as

(0} — o + 2 + 45 o = 1667 (wi + 57)
For low damping, we can write'it as
(@} — o) + 40P = 168 o}
or
(01— o) =125 o}
On taking square root, we get
ol =o' =12 3o,
or

.w;=:t2\/3bmr= :t\ﬁb
o, +a

.- Half band-width Aw = | @, — w | = /3 b.
and Full band-width 2 A =2 | o, — @ | =238 = 3 y/m.

[ F

At resonance, capacitance is given by
1 1

C = =
ar’ AL 4(3.147 X (10°Y 872 X 05X 10" H
_ = 51X 10"F
R RZ  +l20

= 0.21 A (at nesonance Z = R}

Pcak-potential difference across the capacitor
= Peak current X reactance offered by the capacitor

E !

= T ¥ ——
R wl
_12v 1
= X
AN 2r X 1085 XS X I07F

95.5V.
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UNITS COUPLED OSCILLATIONS

Structure
5.1 Introduction
Objectives

5.2 Oscillations of Two Coupled Masses

Difierential Equation

Normal Co-ordinates and Normal Modes

Modulation of Coupled Oscillations

Energy of Twe Coupled Masses

General Procedure for Calculating Normal Mede Frequencies
5.3 Normal Mode Analysis of other Coupled Systems

Two Coupled Pendulums

Inductively Coupled LC-circuits
5.4 Longitudinal Osciliations of N Coupled Masses: The Wave Equation
5.5 Summary '
5.6 Terminal Questions
5.7 Solutions

5.1 INTRODUCTION

In this block so far you have studied isolated (single)-oscillating systems such as a
spring-mass syslem, a pendulum or a torsional oscillator. In nature we also come
across many examples of coupled oscillators. We know that atoms in a solid are
coupled by interatomic forces. In molecules, say the water molecule, two hydrogen
atoms are coupled to an oxygen atom while in & carbon dioxide molecule oxygen
atoms are coupled to one carbon atom. In all these cases, oscillations of one atom are
affected by the presence of other atom(s). In radio and TV transmission, we use
electrical circuits with inductive/capacitative couplings. Therefore, it is important 10
extend our study of preceding units to cases where such simple systems are coupled,

We begin this unit with a study of longitudinal oscillations of coupled maszes. Do you
expect the motion of these masses to be simple harmonic? You will learn that their
motion is not simple harmonic. But it is possible to analyse it in terms of normal
modes, each of which has a definite frequéncy and represents SHM., The presence of
coupling leads to exchange of energy between two masses. To illustrate this further,
we will determine, by analogy, normal mode frequencies of two coupled pendulums
and two inductively coupled LC circuits. This analysis will then be extended to N
coupled oscillators. When N becomes very large, i.e. we have a homogeneous
medium, exchange of energy leads to the ppenomenon of wavemotion.,

In the next unit you will learn the details of wave propagation with particular
reference to waves in strings, liquids and gases.

Objectives

After studying this unit you should be able 1o
® describe the eifect of coupling on the osciliations of individual oscillators

® establish the equation of motion of a coupled system executing longitudinal
oscillations

o define normal modes and analyse the motien of two coupled oscillators in terms
af normal modes

® compuie, by analogy, the normal mode frequencies for a physical system of
interest, and

e drive the wave equation,

i
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5.2 OSCILLATIONS'OF TWO COUPLED MASSES

To analyse the effect of coupling we start sgain with the model spring-mass system,
We consider two such identical systems connected (coupled) by a spring, as shown in
Fig. 5.1a. In this system we have two equal masses attached to springs of stiffness
constant &k and coupled to each other by a spring of stiffness<constant k. In the
equilibrium position, springs do not exert any force on cither mass, The motion of
this system wil{ depend on the initial conditions. That is, the motion may be
transverse or longitudinal depending on how the masses are disturbed. For simplicity,
we first consider longitudinal motion of these two coupled masses.

We pull one of the masses longitudinally and then release it. The restoring force will
tend to bring it back to its equilibrium position. As it overshoots the equilibrium
mark, the coupling spring will pull the other mass. As a result both masses start
oscillating longitudinally. This means that motion imparted to one of the two coupled
masses is not confined to it only; it is transmitted to the other mass as well. We now
establish the equation of motion of these masses.

5.2.1 The Differential Equation
We choose x-axis along the length of the spring with O as the origin (Fig. 5. 1a).

NN
RAY
NS
\

1 1 |
- L n o I K
0 & ‘—:l :..-—-:1—:‘
-— AB L
(b)
Fig. 5.1 Longitudinal oscillations of 1we coupled masses. (s) Equilibrium configuration (b} Configurationat

timz £

Let X, and X5 be the coordinates of the centre of the masses A and 8 respectively,
When mass B is displaced towards the right and then reieased, mass A will also get
pulled towards the right due to the coupling spring. The coupled system would then
start oscillating. Suppose x4 and x5 are the instantaneous positions of masses 4 and 8
respectively. Then their displacements from their respective equilibrium positions are
given by

X1:=xp— Xpand xy = x4 — Xa

Now at any instant of time during oscillation, the forces acting on mﬁs A are
(i) restoring force : — k* (xa — Xa) = — &’ x, ; and
(ii) a coupling force : k (s ~ xa) — (Xp — X3} =k (2 — x1)

We are here assuming that the masses are moving on a frictionless surface. By Newton's
scoond iaw, the equation of molion of mass A is thus given by

dlIA — r
m=—t == k'(xs — Xa) + k [xs — Xs) — x4 — X4)
dz (IA'— XA) _ dzl'l — »
or m —dfl-—-——-m ?——Axl-f-k(xz—_xl) (5.1)
since aXa =0
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Dividing throughoin by m and reairanging terms, we get Conpled Oucilistions

z »
i—? + wpxi —awr (x2—x) =0 ) (5.2)
dt '
r ' L
where ws= L3 and o) = k
m m

Similarly the equation of motion of the mass B8 is

1
m% =—k'x:—k(x:—x)) (5.3)
t
This can also be rewritten as
¥
d d:,’ + whxs + ok (2 — 1) =0 (5.4)

Let us pause for a minute and ask: Do Eqs. (5.2) and (5.4) represent simple harmonic
motion? No, we cannot, in general, identify the motion described by these equations
as simple harmonic because of the presence of the coupling term w; {(x; — x,). This
means that the analysis of previous units will not work since these equations are
coupled in x| and x;. The question now arises: How to solve these equations? These
equations will have to be solved simultaneously. For this purpose we first add Eqgs.
5.2) and (5.4) to abtain
2

drt

Next we subtract Eq. (5.4) from Eq. (5.2) and rearrange terms. This gives

2
-j? (1~ x2) + (w8 + 2e) (11 — x2) =0 (5.5b)

ntx)t e (atx)=0 (5.58)

By looking at Egs. (5.5a) and (5.5b) you will recognise that these are standard
equations for SHM. This suggests that if we introduce two new variables defined as
E=x+ x: (563)
and
H=x X2 . (5.6b)
the motion of a coupled system can be described in terms of two uncoupled and
independent equations:

d€

" + wier =0 (5.7
and

dzfz C2a

= + wif2=0 (5.8)
where we have put

wli=wt=kIm (5.9)
and s

W5 g+ 2= T2 (5.10)

m

We therefore find thal new co-ordinates i and £ have decoupled Egs, (5.2) and (5.4)
into two independent equations which describe simple harmonic motions of
frequencies w) and w: and w; > w;. The new coordinates are referred to as normal co-
ordinates and simple harmonic motion associated with each coordinate 15 called a
normal mode. Each normal mode has its own characteristic frequency called the
normal mode frequency. .

5.2.2 Normal Coordinates and Normal Mades

The normal coordinates &; and §; are not a measure of displacement like ordinary
co-ordinates x) and x:. Yet they specify the configuralion of a coupled system at any
instant of time. Using the analysis of Unit |, you can readily write the general solution
of Eqs. (5.7) and (5.8) as

£ (1) = ay costant + 1) {5.11)

and £ (1) = az cos (wf + ¢1) (5.12) i
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where 4, and o; arc the amplitudes of normal modes and, ¢; and ¢, are their injtial
phases,

Since xi(f) = (&1 + £2)/2, we can write the displacement of mass A as
x(= % (a1 cos (@: £ + ¢} + az cos (wat + ¢2)) ' (5.13)
Similarly, we can write the displacement of the mass B as

X)) = % [@1 cos (ant + ) — az cos (war + )] (5.14)

The constants a1, a1, $. ¢ are fixed by the initial conditions. Once we know these. we
can completely determine the motion of the coupled masses.

SAQ!
Solve Eqgs..(5.13) and (5.14) subject to the following initial conditions:
@  u@=gn0=q ﬁ[ = 0,and 22| =p
dr = dr beo
(B) MO =axO0=—a ]| = 0 ad d—xll =0
dr h=o dt L=

On solving this SAQ you will observe that when both masses are initially given the
same displacement to the right and then released, their displacements are equal, i.e.
x1 () = x2 (7), or §2 =0 at all times. The motion is described by Eq. (5.7) and the
normal mode frequency is the same as that of the ancoupled masses, This means that
coupling has no influence and both masses oscillate in phase. In this mode of
vibration, the coupling spring is neither stretched nor compressed (and is as good as
not being.there), as shown in Fig. 5.2a.

Fig. 5.2. Normal modes (a} When two coupled masses are given equal displucement in the same direction,

- {b)When two coupled masses are pulled together equally.

When two coupled massés are initially pulled equally towards each other and then
released, the displacements are equal but out of phase by r, ie. xi= —x;0r f1 =

(Fig 5.2b). The normal mode frequency will be higher than that of the uncouplcd
masses (w2 > ). This means that the coupling sffring is cither compressed or
stratched and we say that coupling is effective, We chus concluds that nomal
coordinates allow us to write the equation of motion of a coupled system into a set of
linear differential equations with constant coefficients. Each equalion contains only
one dependent variable. Maoreover, the motion of a coupled svstem may be regarded
as a superposition of its possible normal modes.

5.2.3 Modulation of Coupled Oscillations

In the above discussion we assumed that the two coupled masses are pulled equally in
the same direction or in opposite directions. What will happen if only one of them is

-pulled and then released? To understand this we have to solve Eqs. (5.13) and (5.14)

subject 1o the following initial conditions:

-
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¥x dxi

x({0)=2a, x(0)=0, =0 and &2 ﬁO' (5.15)
dt = de-
You will find that the displacements of two coupled masses a.ré given by
x (£} = a {cos ent + cos wst), ) (5.16a)
and - B
x2 () = a (cos wif — ¢Os wai) . (5.16b)

Expressing the sum (difference) of two cosine functions into their product, these
equations can be rewritten in a physically more familiar form:

nm=hm%2;g)!m%ﬂiﬂ% (5.17)
and 2 - 2
x3 (1} = 2a sin (3-’2;—“"): sin (m';-m ) ! ‘ (5.18)

You would recall that Eq. (5.17) is essentially the same as Eq. (2.19) obtained for
modulated oscillations. As before, we define wy = () + w3)/2 as the average angular
frequency and wmes = (w2 — an)/2 as the modulated angular frequency.

Then Eqs. (5.17) and (5.18) represent modulated oscillations respectively defined by

X1 (1) = Gmod (1) COS wal (5.19)
and

X2 {£) = broa (1) sin andt (5.20)
where )

Oroa (1) = 24 COS Wmcal 5.21)
and

Bcd (1) = 24 SIN @eeafl : (5.22)

are modulated amplitudes.

Clearly Eqs. (5.19) and (5.20) do not represent SHM, since duod () and bawa (f) vary
with time.

What is the phase difference between the displacements of the two masses? Since sine
and cosine functions differ by /2, the phase difference between the displacements of
the coupled masses is /2. The same is true of modulated amplitudes as well.

The di- ~Jacement-time graphs for the two masses are shown in Fig. 5.3, We observe
that at ¢ = 0 the araplitude of the mass A is maximum while that of mass at B is zero.
With time, the amplitude of A decreases and bécomes zero at £ = T/4 while that of B

becomes maximum. After t = T4 this trend is reversed for the succeeding quarter of

!thc period. This process will repeat itself indefinitely provided damping is not present.

Fig. 5.3 Displacement-time graph for 1.} dass A and (b) mass 8,
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The roots of the equation
ax?+ bx + ¢ =0are given by

bt 57— dac

= 2a

On substituting for xi and xs in Eqgs. (5.26a) and (5.26b), we get

(“‘3+;kl‘“’1) “?','fj"’ (5.27a)
and (mg-i-;k:—wj)xz = ?kle (5.27b)
From Eq. (5.27 a) we can write

xn _ kimy

" e

m

and from Eq. (5.27 b} we have

(i &
X _ mz

X2 k!ml

For non-zero values of x, and xz, we can equate these valtes of x1/x; to obtain

1 k 2
et — -
k/:h _ ( ma NJ
1
{mu+ _ml —mz) k/m;

On cross-multiplication, we get

ot — 2a,§+_k+_k)m=+ (a,g+_“+_’£_) wi=10
m maz m, ma

This equation is quadratic in «® and has roots

(5.28a)

wi = wi
and 1 1
w%=w%+k( LI _)
i iz

(5.28b)

You will note that for m; = m: = m these resuits reproduce Eqs (5.9) and (5.10).

5.3 NORMAL MODE ANALYSIS OF OTHER
COUPLED SYSTEMS

So far we have analysed the motion of two coupled masses. This analysis can readily
be extended to other systems of entirely different physical nature. We will first
compute normal made frequencies of two coupled simple pendulums by drawing
anafogies from the preceding analysis.

5.3.1 Two Coupled Pendulums

Lét us consider two identical simple penduiums A ang B having bobs of equal mass,
m, and suspended by strings of equa! length £, as shown in Fig. 5.4 (a}), The bobs of
two nendulums are connected by a weightless spring of force constant &. In the
equilibrivm position, the distance between the bobs is equal 1o the length of the
unstretched spring.

Suppose that both bobs are displaced to the right from their respective equilibrium
positions. Let x; (£) and x; (£) be the displacements of these bobs at time £, 2s shown “
n Fig. 5.4 (b). The tension in the coupling spring will be k& (x; — x2). It opposes the
acceleration of A but will support the acceleration of B. For small amplitude
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5.2.4 Energy of Two Coupled Masses

If the coupling between two masses is weak, w; will be-only slightly different from w,,
50 that wmea Will be very small. Consequently dmos and bmaa Will 1ake quite some time
to show an observable change. That is, @mes and bmes will be practically constant dver
a cycle of angular frequency w,,. Then Eqs. (5.19) and (5.20) can be regarded as
characterising almost simple harmonic motion. Let us now caiculate the energies of
masses A and 8 using these equations.

We know that the energy of an oscillator executing SHM is given by

E = —;— Ml 6o (1) = 2 ma® o, cos® whodt (5.23a)
and

E = % MWy Basa (1) = 2 ma® w?, cos® wmeat (5.23b)

The total energy ol two masses coupled through a spring which stores almost no
eneggy is piven by

E=E + E; = 2mad*ol, (5.24)
which remains constant with time.

Using Eq. (5.24}, wg can rewrite Egs, (5.23a) and (5.23b) as

E= 5114 cos (e — wn1] (5.25)
and 2

E= ‘g [1 = cos (w: — @i} 1] (5.25b)

These equations show that at r = 0, £, = £and E; = 0. That is, to begin with mass at
A possesses all energy. As time passes, energy of mass at A starts decreasing. But
mass at B begins to gain energy such that the wotal energy of the system remains
constant, .

Whem (w2 — @)} + = /2, two masses share energy cqually. When (wz: —an) r=m,
Ei=0and £; = E, i.c: mass 8 possesses all the encrgy. As time passes, the energy
exchange process continues. That is, the total energy flows back and forth twice
between two masses in time T, given by

T=12r/{an — o)

5.2.5 General Procedure for Calculating Norma) Mode Frequengies

In most physical situations of interest, coupled masses may not be equal. Then the
above analysis is not of much usce; it has to be maodified. To calculate norma! mode
frequencies in such cases, we follow the precedure cutlined helow.

(i) Write down the equation of motion of coupled masses
(i) Assume a norm:il mode solution

(1)) Substitute it in the equations of motion and compare the ratios of normal mode
amplitudes

(iv)  Solve the resultant cquation.

We now tilustrate this pracedure Tor 1wo unequal masses 7 and #1: coupled through
a spring of force constant k. The equations of motion of two coupled masses are
T A VR X S (5.26a)
and
nt :\": =& Xy — k (.'(': - .I’|] (526 b}
l.et us assume solittions nf the form
x; = gy cos (wi + )
and
X: =@ ¢os (wr+ )
where ¢ 15 angular frequency and ¢ is initial phase.
Then
¥ =- f.uz.\‘l
and, g .
= w X *
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approximation, we recall from Unit 1 that the equation of motion of a simple
pendulum is

I

|

|

I

I

|

|
ok
(a) (b)

Fig. 5.4 Two identical peodulums simple together {a) Equilibrium configuration (b) Instantancous
configuration.

In the present case, the equations of motien of bobs.4 and B are
dn (7
1

"

) x— k(= xi)

and
dzxz ( mg
— =={ — +k(on—x
i 7 ) Xz (1 — x2)
The term £ & (X1 -— X2) arises due to the presence of coupling.
Dividing throughout by m and rearranging terms, we get.

dx, 2 —
b wn—axn—x)=0 (5.292)
ar
and
dzxz 2 - [
" + X2 — ¢ (x— x3) =0 (5.29b)

where we have substituted o = g/ fand o} = kim.
You will recognize that these equations arc respectively identical to Eqgs. (5.'2) and
(5.4). Thus the entire anelysis of preceding sections applies and we can describe the

motion of coupled pendulums by drawing analogies. The normal modes of this system
are shown in Fig. 5.5. In mode | (xi = x,), the bobs arc in phase and oscillate with

frequency an = an = lng But in mode 2:(x) = —x; or x2 = —x)), the bobs are in

opposite phase and osciltate with frequency w; = [w) + 2641 = [(g/1} + 2 (k/m)]""

! .l: | |E |
i | A
| | | 1
| { l
I |
! I
-~— —r — -~
(b)

Fig. 5.8 Normal modes of a coupled pendulum (a) In-phase normal mode (b) Out-of-phase
normal mode,




SAQ2
The kinetic and potential energies of two idenuca coupled pendulums are
given by :

KE = %’- [(%)? + (%2)]

Uz_;. (E;-g) (xf+x§)+ %k(:n—x;)’

where % = dx; (i = 1,2). Express these in terms of normat coordinates
dt ’
On solving this SAQ, you will observe that

KE= Z ¢y + Z ¢y
a &) 3 D]

and
U= i (me? € +ma £)

We can rewrite these expressions in a more clegant form by defining normal
coordinates as )

.§.=\/-"2£ (0 +x) and fz=\/% a—x) - (3-30)
SAQ3

Using the definition given in Eq, (5.30), calculate the total energy of a system of two
coupled pendulums in terms of normal coordinates. At any instant,

& = 1.5 X 10™ mv/kg and &= 0.5 X 10 mv/kg. Calculate x; () and x2 (1) at the
same instant. Given m = 0.1 kg.

In the above discussion you have learnt.to calculate normal mode frequencies of two
pendulams whose bobs are coupled. Will these frequencies remain the same if the
strings of thiese pendulums were coupled, as shown in Fig. 5.6 (a). To discover answer
to this question, we consider the configuration shown in Fig 5.6 (b). At any time ¢, let
the change in the length of the spring be x§ — x{ = (d/1) (x2 — x1), where x, and x1 arc
displacements of the bab from their cquilibrium positions and 4 is the distancs
between the points of suspension and coupling. Hence, the restoring force in the
spring is given by

F="k(xi—x))= krii(xz—xl)

WILIIIIIIINRININIIIIg

k
p—yen—oy !
1 J.l
® ®

A

m\

Fig. 5.6 Two identical simple pendulums whese strings arc coupled by a spring (&) Equilibrium
configuration (b) Instapiancous configuration.

SAQ4
Write down the equations of motion of two pendulums coupled at a distance
d from the point of suspension. Compute the normal mode frequencies by analogy.
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Two electrical circuity are said to
be inductively coupled when a
change in the magnetic flux linked
with one circuit inducss e.m.f (and
hence gives rise-10 a current) in the
other circuit. The coupling
cocflicient is given by

8= MINLL, where Mis
mutual inductanct and Li, Ly are
sel{-inductances of two coupled
cireuity,

98

You will find that the frequencies of the normal modes are given by

and

& . 2%d
1

‘This'shows that e deperids on the distance between the points of suspension and
coupling. Obviously, for 4 =1, the expression for w; reduces to that for coupled bobs,

532 Inductively Coupled LC circuits

In Unit 1 we learnt that in an LC—circuit, charge oscillates back and forth with a
frequency vo = 1/ (27 \/LC). The form of encrgy. repeatedly changes from electric to
magnetic and vice versa. If two such circuits are coupled, we cxpect that some energy
will be exchanged between them. This study finds. important applicatigns in areas of
power transmission and radio reception. Let us therefore consider two LC-circuits, as
show in Fig. 5.7. Do'you know as to how these circuits are coupled? These circuirs
are coupled inductively. This coupling forms the basis of operation of a voltage
transformer as well as an oscillator.

Fig- 5.7 Two inductively coupled identical L.C circuits.
Let 7, and 1, be the instantaneous values of currents in two cireuits. The equation of
motion of charge in circuit I is obtained by modifying Eg. (1.36) as

A -y dh . dh

Ch dr dr

where M diz/di is the e.m.f. produced in circuit 1 due to current [; in the second
circuit. Obviously, it tends to increase [y, Similarly, for circuit 2 we can write

G —_ g, dh e dh

G dr dt
2
Since [= A and ar _ H—f’ » We can rewrite these equations as
dt dt di
4q + wig = M dq {5.31a)
dr* Ly dr
and
dlq:, T M dza: (- o
249 , = &£ 44 5.30p)
dfz T Lz dl-“

Eqgs. (5.31a) and (5.31b) are two coupled equations. To find normal mode frequencies,
we write

g1 =Acos (wt+ @)




Using these 1n Eqs. (5.31a) and (5.31b), we get

o= M g
1

and
E—ahgp=— M w’qu
La
Equating the values of 41/ gz obtained from these equations, we have
M o_o L @—d)
L (o) — o)) M &
This expression may be rearraaged as
Mz
(wi— o) (e — ) = — o'=ua (5.32)
' L

where u is the coupling coefficient.

Eq. (5.32) is quadratic in @ its roots give us normal mode frequencies. For
simplicity, we assume that the circuits are identical so that their natural frequencies
are equal, L.e. wp = a, = ax, say, then

(m!n — =t
or

wo—w =% g’
so that

+ =2

V(I £ )
The acceptable normeal mode frequencies are those values of @ which correspond to
positive roots and are given by

o
W= —— (5.33a)

V(I p)

w = —— (5.33b)

(=

When coupling is weak (p << [}, w) = w2 == wq and the two circuits behave as
cssentially independent. But when coupling is strong, w, and w: will be much
different.

and

5AQ5

Two identical inductively coupled circuits, each having a natural (requency of 600 Hz,
have coupling coefficient 0.44. Calculate the two normal mode frequencies.

5.4 LONGITUDINAL OSCILLATIONS OF N
COUPLED MASSES : THE WAVE EQUATION

We know thal cvery fluid or a solid contains more than two coupled atoms held by
intermolecular forces. To know normal modes of such a sysien: we have to extend the
preceding analysis Lo three or in general to A coupled oscillators, which may not all
be of the same mass.

For.simplicity, we [irst consider a system of ¥ identical masses held together by

(N + 1} identical springs, each of force constant k, as shown in Fig. 5.8. The free ends
of the system are rigidly fixed at x = 0 and x = In the equilibrium state, the masses
are situated at x = a, 2a..., Na so that 1= (N +'1) d. If Yn-1, ¢ and e are respective
displacements of (7 — 1), 2™ and {r + 1)™ masses from their mean positions, we can
write the equation of motion of the nth mass as

Coupled Oucidlations
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k m k m k m k m k g

NS Y LT Y 1T L

1 12 I N-1 iN

| I
= 0 ' 1 [ ! X =
a 2a (N-1)a Na

Fll.”- Equilibrium conliguration for &V identical coppled. masses

2

m %’: =—k (% - *rl) —k (*ﬂ'_ *‘rl) (534)

From Unit 1 you may recall that the spring constant k is defined as restoring force per
w'  ¢xtension. So we can write k¥ = F/d, where d is extension in the spring. Using this
relation in Eq. (5.34), we get

cREA CERREES

Now let us assume that ¥ — o2, The separation between any two consecutive masses
will become very small. That is, we will have a continuous distribution of niasses.
Then we can replace d by Ax and Eq. (5.35) becomes

d. _ F [w—% _ wu.—w-]

dr m Ax Ax

s, _ F .i'fi) _ _52) ] 5.36
dr m [(6x ntt (le:_ ©-36)

If the n' mass is located at a distance x from the origin, then in the limit Ax —~ 0, we
lrave

or

dy _ F [:"_'i' __di)] 5.37
dar m (dx - (dx x ©:37)

This means that ¢ is now a function of ¢ a well as x. We know that any continuous
function f(x -+ Ax, r} can be expressed in terms of the function defined at x and its
dernivatives using the following expansion:

Sotan o=+ LoD a1l D oy (s3m)

dx 21 ox*
Taitdng b/ dx as fand retaining terms only upta fisst ovder in s, we can wrie
r.’!,ﬂ' 2,01 a'i“f,
iyl = ¥ & T Avo- f8.am
dx {s+ax ar = 3y T
50 lhet terms within the square brackets in Bqg. 15.37) ¢an be rewritten as
3y . ay Sy
dx letvas " T lx T g O
x Ix X ix X (5.40}
Using this result in Eq. (5.37) and re-arranging terms, we get
2 .
¥ - F % -
ar ol gx* (4D
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where p/= m/ Ax. You will observe that Eq. (5.41) is a partial differential equation.

Moreover, the quantity F/p/has dimensions of square of velocity. For this reason,
this equation is referred to as the wave equation.

We thus find that longitudinal motion of a large number of coupled masses results in
the phenomenan of wave propagation. We obtain a similar equation for a system of
large number of coupled masses executing transverse oscillations. These will be
discussed in detail in the next block.

55 SUMMARY

The longitudinal oscillations of two (identical) coupled ‘masses are not simnple
harmonic. The resultant amplitudes of coupled masses resemble a modulated
pattern.

The displacement of either of the two (identical) coupled masses can be regarded
as superposition of normal modes of the system. Each-mode represents an
independent $HM, Thic normal mode frequencies are given by

_ ‘ k’ _ ’k'+2k
w =% — andwi=
m m

where k and &’ are spring constants,

The total energy of iwo identical coupled masses is given by £= 2ma* o,
It flows back and forth twice between the masses in time T given by
27
W — Wy
The normal mode frequencies of a system of two ccupled pendulums are given

by
w = V_Ig- and e = \’-—f— + -—2£
m

The énergy-exchange during lengitudinal oscillations of ¥ coupfad masses leads
to the propagation of a wave in the limit N —oo. The wave equation is given by
Yo _ P v,

— = —

a,? Pj ax?.

T =

5.6 TERMINAL QUESTIONS

|

An object of mass m is suspended to a rigid support with the help of a spring of
force constant K. It vibrates with a frequency 2 Hz (Fig. 5.9a.). Next two
identical objects A and B, each of mass m, are joined together by a spring of
force constant K’. Then these are connected to rigid supports §) and S5: by two
identical springs, cach of force constant X (Fig. 5.9b). Now, if A is clamped, B
vibrates with a frequency 2.5 Hz. Calculate the frequencies of the (wo modes of
vibration.

/]
A
.

©
]
'\\\ Y
'S
=
g x
- -}
gi
uU'l

Fig. 5.9, {b)
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Two equal masses (m) are connected to cach other with the help of a spring of i
force constant K and then the upper mass is connected to a rigid support by an ‘
identical spring as shown in Fig. 5.10. The system is made to oscillate in the
vertical direction. Show that the two normal frequencies are given by

=35 K
2m

e
:
x .
®
Fig. 5.18 ,
#= 3 Consider two capacitatively coupled circuits shown in Fig, 5.11. Write down the r%
equations of motion for current and compute normal mode frequencies. 5
;
5
L L ;
L C C ;C I
Fig. 5.11 .
5.7 SOLUTIONS
SAQ1
x, = 55;- LI % [ai cos {wit + @) + a2 cos (war + ¢2)] (1)
and
xn= E'?— ff. = % [a) cos (@i £ 4+ B1) — a2 cos (wat + )] (ii)
do,  _ 1 . . 1
T =— 5 [4) @t sin (w7 + ¢1) + a2 w2 sin (wat + ¢2)] (i)
'
dx: . 1 _ ' . . {-
- 3 [— a1 wisin (w) £ + ) T @& w2 sin (@f + $2)] (iv)
{ :
(A) Using the initial conditions, we get )
2a = zicos ¢; 4 g: £Os ¢y, 26 T @) €OS P — g; cos
and
D= mesin o oin 0, 0 5, wi 80 @y — Gy dus 310 o
Hence
ay cos ¢ = 2a, a; cos 2 = 0, a1 w sin ¢ = 0, @an sing, = 0
As ay, @r, w1, w; are not equal to zero,
=¢:=0,a=2am:=10
X1 = ace0s w L, X3 = oS5 wf
That is, {1 = & cosw tand £ = 0.
(B) Substitution of the initial conditions in Egs. (i) to (iv) gives

Yo X = @ oS wyl, X2 = — 4 C0S wil

!
fr
¢l=0|¢2=0val=0vai=za l
and §, =0, & = 22 cos wyt ‘




SAQ2

At the displacements x12nd x3, the speeds of pendulums A and B will be dxfdt = X
and dx;] df = x2 respectively. Thcrel'orc,

Kinetic energy K.E = lam (x:) + Lm (i) (l)
Potential energy P.E = Yam wh (¥ + x3) + Jamad (xi — x2)’ (i)
where wd = = andol = *
£ m

From Egs. (5.6a) and (5.6b), we have

Lt éh &—
xp = ,andxnp = ——
2 2
Hence _ h+6 . h—&
= and a2 =
2 2

. KE= -;- m(E+ &) + % m (1 — &)

= -‘:—' [(E) + @] (i)
and 1 i
PE= -2- mews (x + x§) + E mat {x1— ch)1
= i med €+ 5+ L malfl
= E‘ (2 &+l £) ™
wherca.n os + 2 ol

SAQ3
If normal coordinates are defined as

\‘ (xitx) and £ = ((xl-—xz)

x,=_;m_ (6, + &) and P )

Vam

Wwe can write

Substituting in (i) and (ii) of SAQ 2, we get
KE = 3 [0+ @ @

and
PE = 5 [wiEl + wiEd] (i)

Hence, the total encrgy of the coupled pendulum in terms of normal coordinates is
E= o WS + @ + ol + o]

J i - -
\j (150 +0.50) X 107 kg" m = 4.5 X 10°m
0.2kg

X1

x = \/ _c;"iLf (1.50 —0.50) X 10” kg’ m = 22 X 107m

SAQ4
The equations of motion of the coupled pendulums 4 and B are
2
0= - —f— x + k—ﬁ; (xz—xn)

Coapled Oscilations

(s +b) +ia— b)Y =1(a +¥)
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wd
n=- —f- x - "% (x2 — x1)

By comparing these equations with Eqs. (5.29a) and (5.29b), we get
ol = wi= £

and
o} = u%+2ai=(~‘i’-+ -”‘i)
¢ mp
SAQS

From Eqs. (5.33a) and (5.33b), we have
&y

V(I +p)

and a = o

V(1 —g)

Here an = 600 Hz and i = 0,44 50 that

600 Hz
- = 500 H=z
-] r——l.“
ond o= WOHI
0.56
Terminal Questions
1 “._:_11} K- o _ gy,
2# m 211'
E - ol = 4l = 4 X2 = 1607 0y
m-

When A is clamped, the equation of motion of B will be given by

d’xn

=— (K+K)x
ar ( )
d’xz (K K')
or + (= + = =0
ar m m e

The frequency of this simple harmonic motion is given by

,,=_l_,/£ + K = sms
2w m m

b oy = a@sH) = 250 ()
nt Hi

Subltracting Eg. (i) from Eq. (i), we get

¥

= = 95 (Hz)
i

MNow the anmtar freousneiss

13

frwo norm

LR
§]
@
&
2,
i
i

- 2
of = 4ghd

-
-

M:

= 16n° (Hz)*

3 |

or m=2Hz

d=dnd = K 4 2K _ (16x° + 182%) (Hz)’ = M+ (HDH

m m

(i)
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17 Coupled Ouclilations
n= EY Hz= 29H:z ) .

Equations of motion of masses A and B are

d*x

m._d;T=_K(xl_xﬂ
and
1
m %=—Kx:—-!((x:—xl).
Hence
d*x K K .
o 4+ === = x2=10 1
dr m ' m ! @
and
dix; K 2K -
= - Zxt = xa=0 (i)
dar m m :

Let us assume that
X1 =AI°°3(“”+ &)

and

x1 =A;c08 {wt + @)
Then

n=- tu’.'n
and

[ 1
X3 = — X3

Using these results in Eqa. (i) and (ii) we get

(--:-ZE -—w’)i‘;— 5 =0
m m

For non-zero values of x; and x;, this set of simultaneous equation. can be
solved'for normat mode frequencies by equating the following determtinant to
2810;

1

w — — w +-£—-0
m
—

”

2
5

2R 4 22
2m m

<

%
Thus o’ = (3 — V3) —2": for the slower mode.

and
o=+ \/5_) 2£m- for the faster mode,
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Reter to Fig. 5.11. The equations governing the balance of emf's in two circuits

are
L ‘_ﬂ.l. =- 9 + L'i]
dt C C
and
L% - _ &9
oot C C
Differentiating these equations w.r.t. time and using the relation § = dg/dh,
we gel
d’i 1 1
L — == —h+ — (h—i
@’ chT e
and
d’h ! 1 .
L =——h— —(h—i) .
a7 c"T T

fwe replace Lbym, 1/ Cby k" = kand i by x, then these equations become identical to
Eqs. (5.1) and (5.3). Hence, the two normal frequencies of the system are

o=y L

‘ Lc
and

.:= i

LC.
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BLOCK INTRODUCTION

In Block-1 you have studied the characteristics of isolated and coupled oscillators.
Coupling leads to energy exchange which for large number of oscillators gives rise to
wave propagation. In this block you will study the characteristics of wave motion.

. Particular emphasis will be placed on waves in the audible region. This block has four
units on wave motion, waves at boundaries, and superposition of waves.

In the first unit you will learn the basic concepts and vocabulary of wave motion as well
as wave propagation in one and more dimensions. The wave equation for one
dimensional progressive waves in a stretched string as well as fluids (gases and liquids)
are established. Its connection with wave impedence presented by a medium is also
discussed for transverse as well as longitudinal waves.

In Unit-7, you will learn the chenges a wave undergoes at the interface of two diffetent
media using Huygen'’s construction and the concept of wave impedence. Expressions
for reflection and transmission amplitude and energy coefficients are derived. In this
unit we have also discussed the Doppler’s effect and Shock waves.

In Units 8and 9, you will learn about the superposition of waves. You will study
superposition of waves in different conditions. You will see that the superposition of
two waves which have same amplitude, frequency and wavelength but are moving in
opposite direction result in the formation of stationary waves. There are basically
responsible for production of music. Two waves having slightly different frequencies
but travelling in the same direction give rise to wave group a.id beats. In Unit-9 you will
learn that the superposition of waves from two cu nevent sources results in the
phenomenon of interference of light. Then you will study diffraction of waves. There
are two known classes of diffraction; Fresnel and Fraunhoffer diffractions. You may
have studied some of these topicsin your earlier classes. But we have included these for
completeness. We hope that you will enjoy studying this course.

We wish you success.
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UNIT 6 WAVE MOTION

Structure

6.1 Introduction
Objectives

6.2 Basic Concepts of Wave Motion
Types of Waves
Propagation of Waves

Graphical Representation of Wave Motion
Retation belween Phase Velocity, Frequency and Wavelength
6.3 Mathematical Description of Wave Molion
Phase and Phase Difl¢sence
Encrgy Transporied by Progressive Waves
6.4 One-Dimensional Progressive Waves : Wave Equation
Waves on a Stretched String
Waves in e Fluid
Waves in a Uniform Rod
6.5 Wave Motion and Impedance
Impedance olfered by Sirings : Transverse Waves
Impedance ofTered by (rases : Sound Waves
6.6 Waves in Two and Three Dimensions
6.7 Summary
6.8 Terminal Questions
6.9 Solutions

6.1 INTRODUCTION

In Unit 5 you have learnt that when one mass in a system of & coupled masses is disturbed,
the disturbance is gradually felt by all other masses. You can think of muny other simitar
sitwations m which oscillations at one place are transmiticd 1o some other place through the
imervening medium. When we tatk, our vocal cord inside the throat vibrates. [t causes air
molecules to vibrate and the effect-speech-is transmitted, When it makes our ear drum to
vibrate, it is heard. Do you know what carsics the audio information? The information is
carried by 2 (sound) wave which propagates through the medium (air). IT you have cver stood
at a sea shore, you would need no descriptzon of waves.

In addition Lo sound 2nd waier waves, other familiar types of waves are : Ultra-sound waves
and clectro-magnetic waves, which include visible light, radio waves. microwaves and x-rays.
Mualter waves, shock waves, and scismic waves are other less familiar but important 1ypes of
wives, You will note 1t ali our commumcations gepend on transmission of sipnals through
waves. The use of x-ray< i medical diagnosis 2 s very well known. Now-a-days we 2o use
ultra-sound waves - - scund waves of frequency greater than 20 kHz— 1o make images of soft
tissucs in the interior of humans. Sound waves are used in sound fanging, sonars and
prospecting for mineral deposits and oil - commodities governing the economy of nalions
these days. This means ihal understanding of the physics of wave mation is of fundamental
importance to us. In this unit we will confine to mechanical waves with particular reference to
sound waves.

When a progressive wave reaches the boundary of a finite medium or an interface between
lwo media, waves undergo reflection and/or refraciion. These will be discussed in detail in the
next umi.

viom Block-1 you would recall that our discussion of oscillations was simplilied tecawe of
cornc basic simitarities between different physical systems. Once we understood the behaviour
Of a iAdEh 3PIng-itdss sysiein, we Couid wasily draw analvgies for viners, Exacity 1he same
simplification occurs in the study of waves. The basic description of 3 wave and the
parameters required Lo guantify this description remain the same when we deal with a one-
dimensional (1-D) wave travelling along a string, a 2 D wave on the surface of a liquid or &
3-D sound wave. For this reason, in this unit we shall Grst consider basic characteristics of
wave motion. Then we would calculate the energy transpurted by progressive waves. The
vocabulary. language and ideas developed here will then be apptied to waves on sirings,
liquids 2nd gases, '
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Wavea

Objectives

Alter going through this unil, you should be able 1o

define wave motion and state its char- ~teristics

dislinguish between longitudinal and transverse waves

represent graphically waves at a fixed position or at a fixed time

rclate wavelenglh. frequency and speed of a wave

cstablish wave cquations for longitudinal and transverse waves
compute the energy transported by a progressive wave

derive expressions for velocities of longitudinal and transverse waves
derive expressions for characteristic impedance and acoustic impedance
write two and threc dimensional wave equations.

6.2 BASIC CONCEPTS OF WAVE MOTION

You may have enjoyed dropping small pebbles in still water, Jt will not take you long to
convince yoursell that water itself docs not move with the wave {(evidenced as circular
disturbance)- If you place 4 paper hoat, o Mower or a small pigce of woad, you will observe
that il bounces up und down, without any forward motion. You may like (o know Why the
paper boat bounces up and down? It bounces due 10 the energy imparted by waves. Let us
reconsider the mation of a system of N coupled masses (Fig. 6.1). If we disturb the first mass
from s equilibsium positton, individual masses gradually begin to oscillate aboul their
respective cquilibrium positions. That is, ncither of the masses {or connecting springs) nor the

“system as @ whole moves from its position. What moves instead is a wave which casries

cnergy. How can you say that? It is evidenced by compression and streiching of springs as the
wave propapates. Thus the most important characleristic of wave motion is * A ware
fransports energy but not matier,

Fig. 6.1 : The motion of a disturbed mass in the coupled spring.mass system, The disturbance is eventually
communicaled to adjacenl masses. This resulls in a wave propagation, You would note that regions of
compression and elanealion move along the system. which is shown here at two different times.

A vivid demonstration of the energy carried by water waves is in damage caused in coastal
areas by tidal waves in stormy weather, You will be astonished 10 know that in April 199} an
cceanic (fidal) wave generated in the Bay of Bengal created havoc in Bangladesh. 1t is
estimated thal aboul hundred thousand people lost Lheir lives and more than a million were
rendered hometess. In May 1990 a similar oceanic tde destroyed propesty over coaslal areas
in Andhra Pradesh. An earth quake in Chile produced a tidal wave which carried huge
amount of energy across 15,000 km of the Pacific Ocean and caused untold damage in Japan.
Do you know that 3m high oceanic wave can lifi 30 bags of wheat by about 10 .7 You may
have read thal we now plan to harness tidal energy to mect our increasing energy
requiremnents,

Another imporlamt characleristic of mechanical waves is their velocily of propagation, referred
to as wave refociiy. It is defined as the distence covered by a wave in unit time. It is dilferent
from the parlicle veloeity, i.c. the velocity with which the parlicles of ihe medivm vibrate to-
aed Fer nhand thair recanciire annlibeine macibiane Adarsainre tha wwnara valaoiie Adomnndes s
and fro chout thair respeetive sguilithrinm positions. Maoreover, the wave valocily depends on
the nature of the medium in which a wave propagates. A wave has a characleristic amplitude,
wavelength and frequency. You must have learnt about Lhese in your earlicr classes, We will,

hawevar recapilulate these in sub-section 6.2.4.

You can se¢c with unaided eyes the actual propagation of a distucbance in water. Can you sce a
sound wave propagating in air? Cbviously, you cannol, Then you may like 10 know as 1o how
we detect sound waves. We observe the motion at the source {iike sitar siring or tabla
membranc) or at the receiver (microphone membrane). Another question that comes to our
mind is : Are sound waves and water waves simitar? I nol. how are waves classified? Let us
row proceed to know the answer Lo this questicn.
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6.2.1 Types of Waves « Wave Motion

In your school you must have learnt that waves can be classified as transverse or longitudinal
depending upon the direction of vibration of particles relative to the direction of propagation
of the wave. In fact, we can classify waves in many other ways. For instance, we have
mechanical and non-mechanical waves depending on whether a wave needs a medium for
propagation or not. Sound waves and water waves are mechanical (or elastic) waves whereas
light waves are not. Waves can also be classified as one-, two- and three-dimensional waves,
according Lo the number of dimensions in which they propagaie energy. Waves oft strings or
the slinky are onc-dimensional (1-D). Ripples on water are two-dimensional (2-D). Sound
waves and light waves originating from a small source are three-dimensional (3-D), Sometimes
we classily waves as plane waves or spherical waves depending on the shape of the wavefront
[a 2-D, a spherical wave appears circuler, as in case of waves on the surface of waler.

Waves set up by a single, isolated disturbance are called pulses. The dropping of a stone in still
water of a pond, the sound produced by clapping of hands, a single word of greeting or
command shouted from one person (o another belong to this category. When an engine joins
the compartments, the jerk produces a diswrbance which is carried through as a pulse. Bul
continuous and regular oscillations produce periodic waves. This, alongwith wave forms for
sound produced by a violin and a piano, is shown in Fig, 6.2. The simplest type of a periodic
wave is a harmonic wave.

4 Harmonie

{(a)

" Violin

(b)

AVA f \J\m;/

~J ~J,

e

Fig. 6.2 : Waveforms for {u) harmonic wave (b die viodin nd () plang,

When the motion of panticics of the medium is perpendicular w :he direction in which the
Wave propageates, it is called a fransverse wave. Waves ¢n a string under terfsion are transverse,
as m a ektara, sarangi, sitar, vina and violin. You can generate transverse waves on a coupled
Spring-mass system of Fig. v.1 by displacing 2 mass at right angles to the spring as shown in
Eig. 6.3a. (Eictromagnetic waves are also transverse in natute. But they do-80t require

medium for propagation.) ‘ ’
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(2)

(b)

Fig. 63 (a) : A transverse wave and (b) a longitudinal wave on a coupled spring-masa system. The broad arrow
indicales the direction of wave propagation.

When the motion of particles of the medium is atong the direction in which wave propagates.
the wave is called a fongitudinal wave. Sound waves tn air are the most lamiliar cxample of
longitudinal waves. You can pencrate a longitudinal wave on a coupled spring-mass system of
Fig. 6.1 by displacing a mass along the tength of the spring (Fig. 6.3b).

In your schoo! you may have been told that water waves, produced by winds or otherwise. are
transverse and the motion is confined to the surface. But this is fiot correct. Strictly speaking.
the motion gradually extends with diminishing amplitude to deeper fayers. Moreover,
oscillations have longitudinal as well as (ransverse components. Thal is, water waves are

-compasite; partly transverse and partly longitudinal. This is fllustrated in Fig, 6.4, Similar

wives can occur at the surfaces of elastic soiids. Such waves are called Rapleigh wares.

Fig. 6.4 : Waler waves are composile. The arrows at different points indicate instanianeous velocity of water
whereas dolled circles are paths traced out by parcels of water as the wave passes, The direction of wave
propagation is shown by the broad arrow.

In general, only longitudinal waves can propagate in gases and ligurds but in solids both
transverse and tongitudinal waves can propagate,

In the previous block, you have read about torsional oscillaiions, When such a disturbance
prapagates in a medium, we have a rorsional wave. In the following sections, you will learn
about mechanical waves in general and sound waves in particular. But before that you should
answer the following SAQ.

5AQ1
(i} The frequency of ultrasound wave is more than ..........

(ii) Water waves arc ......... Waves
{iti) Waves transfer .......... [1]+] S
(iv) Light waves reqguire .......... medium

(v) Waves on sitar sirings are _........

6.2.2 Propagation of Waves
To see how waves propagate in & medium, you can perform the following activity :

Take a Jong elastic string and fix its on¢ ¢nd to a distant wall. Hold the other end tightiy.
pMove your hand up and down. What do you observe? A disturpance traveis aiong the string.
This disturbance is duc to the up and down motion of the partictes of the string about their
respective rean positions. When the motion of the arm (hand) is periodic, the disturbance on
the string is @ wave with a sinusoidal profile. The shape of a portion of the string at intervals of
T/8 is shown in Fig. 6.5. You will observe that the waveform moves to the.right, as shown by
the broad arrow. You may ask : Why is the whole string not displaced simultaneously? The
time lag between different paris is due 10 gradual transfer of disturbance between successive
particles,
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Fig. 6.5: A periodic motion of the hand generates waves with 2 smusoidal profile. In parts (b}-{j) we have
depicied wave profile on the siring at intervals of T/8,

In this connection, it is important Lo distinguish belween the motion of the wavelorm and the
meion of a particle of the string. While the waveform moves with a constant speed. Lhe
particles of the string execute SHM. Te illusteate this difference clearly, [et us mark nine
cyuidistant marks on the inittal portion of the string. We assume that thes string oscillates with
 period T Let us tie one end of this string (at mark 1) 1o a vertically vscillating spreng-mass
system as shown in Fig. 6.6. As the mass » on the spring moves up and down; the particles at

7 8 9

Fig. 6.5 : A Mring (astenéd (0 a0 oscillaling spring ma< system ; ihudmation of (ke dadlerence between

motion of the wavelorm #na the motion of particies

the marked nedtions begin 1o oscilfate ane after the other T time £ the disturbance initated
at the first particle will reach the ninth particle. This means that in the interval T/8, the
disturbance propagates from the particle at mark 1 to the particle at mark 2. Simitarty, in the
next T/8 interval, the disturbance travels from the particle at mark 2 to the paticle at mark 3
and so on. In parts (a)—(t) of Fig. 6.7 we have shown the instantancous positions of particles
at all nine marked positions at intervals of 778. (The arrows indicate the dircctions of motion
along with which particles at various marks ar¢ about to move.} You will abserve that

Wave Motion
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Fg. 6.7 : Insteniancous profiles at intervals of T/8 when a (ransverse wave is generzied on a string.
(i} At¢=0, all the particles are at their respective mean positions.

(i) Avs= T, the first, Rfth and ninth particles are at their respective mean positions. The first
and pinth particles are about to move upward whereas the fifth particle is sbout to move
downward. The third and seventh particles are at position of maximum displacernent but on
oppasite sides of the horizontal axis. The envelop joining the instantaneous positione of all the
particles at marked positions in Fig. 6.7 (i) similar to those in Fig. 6.5 and represents a
Aransverse wave. The positions of third and seventh particles denote a frough and a cresi,
respectively.

The impqriant point to note here is that while the wave moves along the siring alf particles of

the string are oscillating up and down about their respective equilibrium positions with the
same period (T) and amplitude (a). This wave remains progressive till it reaches the lixed end.

We would now like you to know to represent a wave graphically as well as mathematicaily.

Thin foreme tha cuhiont af ans dicouseinn in tha follawine cephinne,
o alf IDTTRD A8 Sudject o0 our clscussion 10 LS 100owWing e0nos
6.2.3 Representation of Wave Motion

Trom the above aclivity vou would recall that when a wave moves alone a string/spring, three
parameters are involved : particle displacement, its position and time. [n a 2-D graph, you can
cither plot displacement against time (at a given position) as shown in Fig 6.8a or
displacement against position (at a given lime) as shown in Fig. 6.8b. You can easily identify
that both plots are sinusoidal and have amplitude . We can represent these as

T
The argument of the sine function ensures that the function reneats itself regularly.

-y (f) = asin 2n ( L) and  y(x}).=asin2mw (x/A) (6.1)
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Fig. 6.8 : (a) The profile of vibrations a1 » given position In the path of & wave, and (b) the profiie of a wave o
a pariicular instant. It is snapshot of the wave travelling aloag the string.
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We can draw an analogy between the wavelength and the period. The wavelength is
separation in space between suocessive in-phase points on the wave. On the olher_hgnd, _
period is separation in fime between equivalent instants in successive cycles of vibration, This
meaqs Lhat the wavelength and the period are respectively the sparial and the temporal
properties of a wave, :

[CEEZE L2 O] =Fa = ]

Iris important to note that the scales for (x) and (1) are different. For sound waves, the
displacement amplitudes are a small fraction of a mm whereas x extends to several metres.

Human ears can hear sound of 1000 Hz quite clearly. The amplitude of the wave ‘ H
corresponding (o the (aintest sound that a normal human ear can hear is approximately

10" m. This is smaler than the radius of the atom (= 10 "'m). Yet our ears respond 1o such e
small displacement!

Another point about graphical representation is that it can be used for both Lransverse and
longitudinal waves,

Fig. 6.9 : Graphical representation of a longitudinal wave,

In lengitudinal waves, the displacement of particles is along the dircction of wave propagation.
In Fig. 6.9, the holtow circles represent the mean pusitions of equidistant particles in a
medium. The arraws show their (rather magnified) longitudinal displacements at a given Lime,
You will observe that the arrows are neither eyual in length nor in the same direction. This is
clear [rom the positions of solid circles. which deseribe instantancous pasitions of the particles
cerresponding 16 the hieads of ihe arruws. Tiie dispiacements (o the nght are shown in the
graph 1owards + paxis and displacements 1o the lefy towards the - » axis,

For every arrow directed to the right. we draw a proposlionate line upward. Similarly, for
every arrow direcled 10 the left, a proportionate ling is drawn downward. On drawing a
smooth curve through the heads of these lines, we find that the graph resembles the
displacement-time curve for a wransverse wave. If we look at the solid cireles, we note that
around the positions 4 and B, the panicles have crowded together while around the position
C, they have separated fanther, These represent regtons of compression and rarefaction. That is,
there are allernate regions where density (pressure) are higher and lower than average. A ’
sound wave propagaling in air is very similar to the longitudinal waves thal you can generate

on your string/spring. This similarity is clearly illustrated in Fig. 6.10. A sound wave may be



Waves

Fig- 6.10 : Longitudinal waves on a spring are analogous lo sound waves.

considered eilher as a pressure wave or as a displacement wave. However, the pressure wave is
90° put of phase with the displacement wave. That is, when displacement from equilibrium at
a point is maximum, the excess pressure (over the normal) is zero and vice versa. The
variations of pressure and density arc represented graphically in.Fig. 6.11. This means that in
longitudinal waves, aliernate high and low pressures propagate along the wave.
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Fig. 6.11 : The sound waves can be viewed in 1erms of chunges in pressure or density.

6.2.4 Relation between Wave Velocity, Frequency and Wavelength

Refer 1o Fig. 6.7(1). You will notv that the first and ninth particles are in the same state of
vibration, They are. therefore. said (o be in phase with one another. The distance Petween two
successive particles vibrating in phase is knawn as the wavelengih. 1 is vsuzlly denoted by the
Greek letter A {lambda). Since the wave moves a distance of one full wavelength in one
pertod, its speed viis

Wavelength A
VS e = — (6.3)

Perind T

Since frequency, v. is reciprocal of the period T, we can also write
V.= (6.4)

That 1s, the speed of any wave is cqual to the product of-ils [requeecy 2nd the wavelength.
This cquation predicts that in a given medium, the speed of a wave of given frequency s
constant. This is a very important relauon.

You will note that we have derived By, (6.4) with reference 1o a ransverse wave in a string.
But it holds tor all other med a like air, water, glass cte, as well as longiludinal waves, At STP,
the speeds of sound waves in air, water and steet are 332 ns ', 1500 ms ' and 5100 ms .
respectively. (1 lus explaing why the whisde ol an approaching train may be heard 1wice--—lirg
as the sound travels through the railroad track and again as it fravels through the air.} Ripples
on Lhe surface of 2 pond move with a qpucd of about 0.2 ms *. The scimic waves move with «
specd of the Ulucl of & 2536 un " i eadins vuier crust and hight mosves with a specd of

3 % 10° ms . That is why light that originates on or ncar (he carth reaches us almost
mstantly.

SAaQ2
Light moves w'lh zspeed of 3 X 10" ms™, In the visible regios, A hes in ihe Laige
4000 -- 7200 A . Compute the corresponding frequencies.
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Wave Motion

6.3 MATHEMATICAL DESCRIPTION OF WAVE
MOTION -

In the preqeding section you have leamt that at a particular time, a wave is described by

Eq. (6.1). As time passes, the wave propagates along the + x direction. So at a given value of
x, the displacement of medium particles must change with time. This information is not
contained in Eq. (6.1). This means that it is not a complete equation for the wave, You would
like to know as to how we can modify Eg, (6.1). To answer this question, let us consider Fig.
6.12, which shows a ‘snapshot’ of a wave moving with speed v along x-axis. Now imagine two
particles, say at A (x = 0) and at B separated by a distance x. You can easily convince
yourself that a disturbance created at A will reach B in time t/y. This means that the particle at
B will have the same displacement as particlé at A at time £ = 7 — x/v Mathematically, we
can express this as

X
YEOD=pHx=0,r=1—- =) {6.5)

.—-"”I ‘-“'#’
[ , ! !
'/ -

t

I x=0 1 X-axis
U !
I x —
-~ A “7B

Fig. 6.12 : Planey A and B are separated by a distance x.

We can obtain p{x = 0, i) on replacing rin Eq. (6.2) by ¥ = — x/v Then il readily follows
that when & wave moves along + x direction with speed v, the displacement of medium
particles as a function of x and { is given by the equation

L[ 2w x
yx r]-—asm.—F(f—T)] - (6.63)
or

L[ 2w
¥x, £y = asin = {vi — x)] (6.6b)
since ¥ = A/T. We can also rewrite Lhis equation as

T ! x
rix r)=asm-2-rr(?—r)] {6.6c)

At 1 = 0 (as also when /T is an integer), this equalion reduces to Eq. (6.1). [The negative sign
implies slight re-adjustment in the phase of the wave at r = 0.] Further, you can check that
this equation displays periodicity by calculating the displacement at & distance x + A from the
origin. To cosure that you bave grasped thesc ideas we would like you to solve the following
SAQ.
SAQ3
A 275 Hz sound wave travels with a speed of 340 ms™' along the x-axis. Each point of the
medium moves up and down through 5.0 mm. Write down the equation for the wave.
Calculate (i) the wavelength of the wave, and (i) velocity and aceeleration of mediem
particles.
Ens. (6.68), {6.6b) and (6.6c) show that if we sit at a fixed position x = 0 say, then the
Gplaceieni variss siousoidaily wi time @y (& = 5, ) = a sin{2a /T ). We Kuuw idai inis
relation expresses SHM with angular frequency w, = 2%/T.
Another equivalent and convenient form for y(x, 1) is wrilten in terms of the wave number, k
defined as the number of radians of wave cycle per unit distance :

_

TN
(You should nol confuse this k with spring constant used in.Block-1.) 13
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Waves

You will recognize that the wave number is the spatial analog of the angular freﬁucncy. In
terms of wy and &, we can also write the wave equation as
2(x ) = asin (w. ! ~ kx) (6.6d)

“The simple way in which k and w, enter this desgription of the wave explains why these
quantities are so often used.

On comparing Eqgs. (6.6a) and (6.6d) you will observe that v and & are connected through the
relation

(]

v=-7 (6.7)

Eqgs. (6.6a - d) provide us equivalent description of a travelling wave moving in the + x

* direction. But the choice of the particular form to be used for a specific problem is a matter of

convenience. How would you describe a wave propagaling in the negative x-direction? You
can easily convinge yourself that to describe a wave moving in the negative x-direction, we
should replace x by — x in Eq. (6.6).

$AQ 4

A sinusoidal water wave having a maximum height of 7.4 cm above the equilibrium water
level is propagating in the ~ x direction with a speed of 93 cm s, The distance between two

successive crests is 55 cm. Write the wave equation in lerms of angular lrequency and wave -
number. Also calculate the particle velocily.

6.3.1 Phase and Phase Difference

Int a periodic motion, particle displacement, velocity, and acceleration repeatedly undergo a
cycle of changes. The different siages in 2 cycle may be described in terms of phase angle. The

‘argument of the sine function is called the phase angle or simply phase. We will denote it by

the symbol @. Thus, (he phase at x at time ¢ in a wave represented by Eq. (6.6d) is given by
8 = wd — kx _ (6.8)

You will note that the phase changes both with time and the space coordinate. With time, it

_changes according o
B8 = wolAt = 2wrrAt for fixed x (6.9a)

and with posilion according to

Ad =~ kAx forfixed {6.9b)

The minus sign in this equation signiltes that in 2 wave moving along + x direction. the
forward points lag in phase. That is, they reach the successive stages of vibration later.

6.3.2 Phase Velocity

From our experience we know that water waves trave! with constant vetocity as fong as the
properties of the medium _remain constant. For harmonic progressive waves, this velocity is
called 1he phase velocity, x,. To show this, let us follow a piven wave crest or through as the
wuve propagates. In order to keep the phase ¢ (x, 1) defined by Eq. (6.8) constant, we must
laok for different .v as 7 changes. Thus by taking the differential of ¢ {x, r) and setting the resuit
equal to zeTo, You can find the relation between x and 1 for a point of constant phase, The
differential of & {x, £) is given by

d¢ = e dn' - k d,r
it wiii Decome sero provided ¢ amd dr e ciawd by

vp (%)4,:%& (6.10)

On comparing Egs. {6.7) and (6.10), vou will observe that Lhe expression deduced carlier is
actually the phuse vefocitr.
6.3.3 Energy Transported by Progressive Waves

We now know that the most spectacular characterisiic of progressive waves is that they
trunsport caergy. We will now calculate the energy carried by a wave. To do so, we should
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know both the kinetic energy and the potential energy. If the instantansous displacement of a Wave Motion
particle is y(x. £), then the equation of a wave moving along + x direction is
yix )= asin(wd — kx)

Let us consider a thin layer of thickness Ax and cross-sectional area 4 at a di'smnoc x from the
source. If p is lhe density of the medium, the mass of the layer is pAx 4. Therefore, kinetic
energy of the layer

KE(.r.)—-Lm A[aﬂ;r} .r

% paxd wl ' cos® wof — kx)

=27 rpAdAx & cos’{ws — kx) (6.11)

. S . 1 2 ;
This expréssion implies that kinetic energy oscillates between zero and 7 pArA w,a. Thisis

because the value of the function cos’ (W — kx) varies between 0 and 1.

1
Over one fulf cycle, the average value of cos’§ i8 7 So, the average kinetic energy over a
time period is
1 3
<KE>=p wl2’dAx = mallApAx (6.12)
What about the potential energy? From Unit 1 of Block-1 you would recall that in SHM., the -

average kinetic energy and average polential energy are equal. Is the same true for a harmonic
wave as well? Physically. we except 50. Let us now compute potential energy analytically.

The layer under consideration will be subject 10 a force
a'y(x. 1)

ar’
= — 47 vl pAxd pix 0

F=pAdx

We know that the work done by this force, when the layer ofinlerﬁ‘l( is displaced through y
from its equilibrium position, is stored in the layer as its polential enérgy. So we can write

¥
U gy = —J A dn? vl pAxydy

= = 211'2 Jfop_\r/{)'
- 2wt il pAAY @t sind(owe — kx). (6.13)

H

The minus sign tells us that the work 15 done on the layer. (This is of no consequence when wu
calculale total energy of the wave.} The ume-averaged potential energy of the wave is

< U= T pdd’dx = < KE> (6.14)

On combining Eys. (6.1 1y and (6.13), we find that the towa! encegy of the wave is

E- KE + U
drtdti2p A Ax
=T KNE e el U (6.15)

This shows that half the energy ol the wave is Kinetic and the other hall' is potenteal.

Whaut happens to this energy? As the layer moves, it pushes the next layer. In the process it
lransmits its energy, Now you may Iike ta knm» H(w. Iong dm.s lhis I.1ycr 1ake to gi\-L up ity

I3 E D S Y
p- Do riEien
2%y AV
=7 2 pvA {6.16a)

Thix shows thal average rate ol encrgy flow, or what we call power. 1s proportional to wave
speed and the square of the amplitude.

6.3.4 Intensity and the Inverse Square Law

Ftom our common experience we know that chirping of birds, the shout of a person, vehicular

noise, sound of crackers or light from a iamp fade out beyond a certain distance. If it were not 15
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true, noise pollution would have made life hell in cur planet. To understand the principle
goverming such siluations, we note that amplitude of an outward spreading wave decreased as
the distance from the source increases. This means thai the average rate of energy flow
associated with a wave decreases as it spreads oul. It is therefore not very useful to talk about
the total energy of progressive waves. In general, it makes more sense to describe the strength
of a wave by specifying its infensity. It is defined as the energy carried by a wave in unit rime
across a unit area normal 1o the direction of motion.

Using this definition, Eq. (6.16) gives

I=20a vlpv= (/D ' (6.16b)

where ¥V, = 2mp.a

The ST units of intensity are J m™s ' or W m™. From Unit | of Block 1, you will recall that
total energy is proportional to square of the amplitude of oscillation. In the same way, the
intensity of a wave at a given position is proportional to the square of amplitude at that
position. For a second wave, we can write

I« pi (6.18 a)

where p, is the maximum change in pressure ovee normal pressure. Note that when we express
intensity in terms of p,, the frequency does not appear explicitly in the expression. This .means
that 100 Hz sound wave has the same intensity as a 10 kHz sound wave: both have the same

amplitude.

How does the intensity of a wave at a point vary with distance from the source?

We know that the area crossed by a wave increases as it spreads out. If it originales from a
point source or the distance [rom the source is much greaier than the size of the source, the
area will be almost spherical (ar”). Then principle of conservation of encrgy demands that
E = 4xIr* be constant. So as r increases, intensity decreases as 1/7

o1
JTa—
r .
On combining Egs. (6.18 a) and (6.18 b), we find that

1
P~

(6.18 b)

Since a a p., this relation implies that amplitude of a wave 15 inversely proportional to the
distance from the source, This explains why we can be heard upto a ceriain distance. (Beyond
this the amplitode becomes too small to affect our ear drums.) You must note that these results
will hold if the wave is not absorbed or obstructed. In Table 6.1 we have listed intensities of

waves generated from different sources.

Teble 6.1 Wave Intensities )

Source/Wave Intensity (Wm™)
Sound
Threshold of hearing 107"
Rustle of leaves 107"
Whisper, intensily al eardrum 1071
Ordinary conversation 32X 107
Street traffic 1070
Bussting cracker, at Im g x 107
Jet Taking cff, at 30m 5
Electrontagnielic Waves
Radio in home 1’
TV signal, 5.0 km: from 50 kW transmitter 1.6 X 107
Sunlight intensity a1 earth’s orbit 1368
Im from typical camerz flash 4000
Inside microwave oven 6000
Target of laser fusion experimeat ('
Seismic wave

"5 ki from Richter 7.0 quake 4 X 10*

H i
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SAQ 5
At a distance of 1m from a bussting cracker, the i mtens:ty of sound is 8 X 107 Wm™™. The
threshold of human hearing is about 107 Wm™, If sound waves spread out evenly in all
directions, how far from the soutce could such a sound be heard?

Our ear is sensitive o an extremely large range of intensities, So we cun defme s loganthmic
intensity scale. The intensity level of a sound wave i< defined by the equation

B = 101In (J/L).

where [, (= 107" Wm™) denotes (hreshold of hearing. Intensity levels are expressed in
decibels, abbreviated as db. Our ear can tolerate intensity of upto 120 db.

6.4 ONE DIMENSIONAL PROGRESSIVE WAVES :
WAVE EQUATION

As a child, the music of ektara must have attracted you. The performances of sitar genius
PtIRavi Shankar, shahnai maestro Ustad Bismilla Khan or music queen Lata Mangeshkar must
have delighted you. Do you know how this music reaches you? What determines whether or
not waves can propagate in a medium and when they move, how fast they do so?
Experimental investigations show that speed.of waves does not depend on (he wavelength or
period. This means that afiswer 10 these questions should lie in the physical properties of the
medium. To discover this, now we consider particular physical systems, For simplicity, we first
study waves on a stretched string.

6.4.1 Waves on a Stretched String

Consider a uniform string, having mass per unit length m, stretched by a force F. Let us choose
x-axis along the length of the siring in its cquiltbrium state. Suppose that the string is plucked
so that a parl of it is normal (o the lenpth of the string, i.c. along y-axis (Fig. 6.13). What
happens when the string is released? It results in wave motion. We wish to know the speed of
this wave. We cxpect that interplay of inertia and elasticity of the medium will determine the
wave speed. For a stretched string, the clasticity is measured by the tension in the siring and
incrtia is measured by m. Before proceeding further, we would like you 1o carry aut the
following cxercisc.

-t

1
|
|
t
1
i

- X

dx

Fig- 6.1} ; A magnified view of 3 small elettent of the steviched string. The set foree acting on it ks ROM-2870.
The vertical distortion i exaggerated (for clariny ).

SAQ6
Using dimensional analysis, show that

v=X\/F/m
where K is some dimensionless consiant.

We will now analyse the problem mechanically by considering a small element along the
siring.

Suppose thal the string is distorted slighily 5o that the magnitude of Lension on the string
essentially rernains unchanged. Fig. 6.13 shows (magnified vicw of) a small element of the
distorted string. You will observe that the direction of the (tension) force varies along the
element under consideration. Why? This is because the étrmg is curved. This means that the
tension forces putling at opposite ends of the element, allhough of the same magnitude, do not
'exaclly cancel out. To calculate the net foroe along xand axis, we resolve Fin rectangular

Wave Motion
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The Taylor scries expansion of 2
funciion Ax + Ax) about the poim x
is given by

ar
fix +&r}=ﬂx}+3r—A.r+,,,

18

components. The difference in the x and y components of tension between the right and the
left ends of the element is respectively piven by ’

F, = Foos 8, — Foos 8,
and
F,=Fsin9; — Fsin b,

Where 8, and 6: are angles which the tangents drawn at the ends make with the horizontal.
For small oscillations (8 = 4°)

cos 0, =cos0; =1
This means that there is no net force in the x-direction, £, = 0, and the string will be very

nearly horizontal. This implies that the sines of the angles are very nearly the same as their
langents, i.e. )

sin 8, = wan &,

and

sin 8; = 1an 0,

But the tangents of the two anples are just the slopes of the string—or the derivatives dy/dx at

the ends of the clement under consideration. Then, the y-component of force on the element is
approximalely

F,= F(tan9; —1an 9))

= p[ YD d(x

From the previous unit you may recall that the quantity in parentheses is just the change in the
first derivative from one end of the interval Ax to the other. Dividing that change by Ax gives,
in the limit Ax — 0, the rate of change of the first derivative. But we know that the
displacement of the string is a function of position as well as time. IT either of these variables
changes, the displacement also changes. You will recognise that Eq, (6.20) is valid for the
configuration of the string at a particular instant of time. Thercfore, the derivative in this
cquation is to be laken with time fixed. We call a derivative taken with respect [0 one variable
while other(s) is (are) kept constanl a partial derivative, We denole partial derivatives with the
symbol d in place of the usual symbol d" Then, Eq. (6.20) can be rewritien as

F=plyxo
dx

This equalion gives the net force on the segment Ar, By Newion's second taw of motion, we
can equate this force to the product of mass and acceleration of the segment. The mass of the
segment of length Axis mAx, Then, we can write
'y (x, aly(x,
Ax y(J‘r D _ g y(J: )
ar ax

m Ax

Cancelling Ax on both sides, we obtain
== = 6.21
ar Fooar (21

You can check that £/m has dimensions of velocity square.

Eg. (6.21) has been obtained by applying Newton's second law 1o a small elemnent of 2
siretched string. Since there is nothing special about this particular element on the string, this
equation applies to the whole of it. '

Let us pauce for 2 minute and ask : What goals we 5ci fo7 oumscives and how Ey. {6.2i} heips
Us in attaining them? We wished to kniow what determines the speed of 2 wave. To know this
let us assume that a harmonic wave described by

P(x ) = asin (wo — kx)

-moves on the stnng. If this mathematical form is consistent with Newton's law, then you can

be sure that such waves can move on the string. To see this, you shonld calculate the second
partial derivatives of the particle displacernent :

[ e o ey T re
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3 _
ax
and

2
3y = wia sinfwor — kx).

ar

Substituting these derivatives in Eq. (6.21), we get, on simplification

k’=%m§

—&'a sin(wo — kx)

What is implied by this equality? We know that it has followed from Newton's law of motion
applied to a stretched string when a harmonic wave is travelling along it So, the above
relation tells us that only those waves can propagate on the string for which wave properties
wo and & are related to Fand m through the re)ation

we _\/ F

k=~ m

But wo/k is just the wave speed (Eq. 6.7), 50 that
— (6.22)

This relation tells us that velocity of a (transverse) wave on a siretched string depends on
tension as well as mass per unit iength of the string, not on wavelength or ime period. This
means that v is nol a property of the material of the string. It involves an external factor-
tension-which can be adjusted for fine tuning. This explains why musicians are seen adjusting
tension in their stringed instruments. However, no such thing is done in case of 2 flute or a
harmonium.

Using Eq. (6.22), we can write Eq. (6.21) in the form
o _ 19y

ax v2 ar

(6.23)

This result is identical to Eq. (5.41) and expresses one dimensional wave equaiion. It holds so
long as the oscillations of the string have small amplitude. You may now ask : Will Eq, (6.23)
hold for large amplitude disturbances as well? The answer (o this question is that farge
amplitude oscillations result in a more complicated equation and the wave speed tend to
depend on wavelength as well. Before you proceed further, you may like to solve the lollowing
SAQ.

SAQ7
A I m long string having mass ] g is stretched with a force of 10 N. Calculate the speed of
transverse waves.

We now know that the speed of a wave is determined by the interplay of elasticily and inertia
of the medium. Elasticity gives rise 1o the restoring force and inertia tells us how the medium
responds to them. Since a fluid (gas or liquid) lacks Tigidity, lransverse waves can propagate
only in solids. However, longitudinal waves can propagate in all phases of matter—plasmas,
pases, liquids and solids—in the form of condensations and rarefactions. We will now consider
Wwave plupagaiion in a fiuid.

6.4.2 Waves in a Fluid

Let us consider a fixed mass of a fluid of density p contained in a long ube of cross sectional
area A and under pressure p.. As for a string, we shall consider a small element (column) of
the Ruid. Let us assume that the column is at rest and is contained in the region PR RSP
extending belween planes at x and x + Ax; (Fig. 6.14a). Then the mass of the column o
RSP is pAxA. How can you generste longitudinal waves in the fluid? You can do so by
placing a vibrating tuning fork al its one end or displecing the fuid to the right ustng a piston.
As the wave passes through the column under consideration, its pressure, density and volume

Wave Motlon
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change. Let us assume that in time ¢ planes PQ and SR move to P'Q" and S'R’, respectively,
as shown in Fig. 6.14b. If the planes PQ and SR are dlsplaoed thirongh J{x} and Y(x + Ax)
the chance in thickness, A, is

Y

Al= Y{x + Ax) — 'JJ(I)“—AI

. In writing this expression we have used Taylor series expansion for Y(x + Ax) about P (x).

This means that the change in volume AVis

AV=AAl= A Ari‘l’-

ob——=g=——-%
5

Q R R

]

Fig. 6.14 : (a) Equilibrium state of the column PQRS of a Muid contained in 2 long tube of cross sectional area
A. (b) Displaced position of column under pressure difference.
The volume strain, which is defined as the change in volume per unit volume, is given by
AV __Aaxoy 9 (6.24)

Vv - A Ax dx
The minus sign signifies that the column is compressed. This happens because the pressure on
its two sides does not balance. Let the difference of pressures be p{x + Ax) — p{x).

The net force acting on the column is, therefore A[p(x + Ax) — p(x)]. Using Taylor series and

retaining only first order term in Ax, we can write

6‘p(x)
dr

3(Po + AP)
T ax

F=4—Ax

where p. is equilibrium pressure and Ap is the excess pressure due to the wave.

Hence, the equation of motion for the column under consideration, according to Newton's
second law, is

prAaaf Amﬂiﬁ- (6.25)

To express this résult in 2 familiar [orm, we note that Ap and E, the bulk moduius of elasiicity,
are connected by the relation
Stress Ap

E= Volume Strain = AV/V

The negative sign is included to account for the fact that when pressure increases, volume
decreases. This ensures that E is positive.

We can rewrite il as
AV
o =~5{)

=)
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On substituting for AV/¥ from Eq. (6.24), we get

_ g
A‘D_Eax

Using this result in Eq. (6.25) we find thal

B _pd (v
P = Egr ax)

(626)
If we idenufy

v=\Elp

as the speed of longiludinal waves, Eg: (6.26) becomes idcnlit::al 10 Eq. (5.41).

| (6-iﬂl)

You will note that the wave speed is determined only by F. and p; two properties of the
medium through which the wave is propagating. Let us now consider propagation of sound
waves in a gas.

a. Sound Waves in a Gas

For a gaseous medium, such as air, the volume elasticity depends upon the thermodynamic
changes arising in the medium, when a longitudina! wave is propagation. These changes can
be isothermal or adiabatic. For sound waves, Newton assumed that changes in the medium are
isothermal. For an isothermal change, you can check using Boyle's law that the volume
elasticity equals equilibrium pressure. Then, we can write :

v=plp

This is known as Newton's formula for the velocity of sound.

(6.27)

For air at STP, p = 1.29 kg'm 2 and po = 1.01 X 10° Nm™%. Then the velocity of sound in ‘
air using Newton's formula comes out to be

01 X 10° Nm™? .
V:\/lm 10° Nm — 280 ms™!

1.29 kg m>

But experiments show that velocity of sound in ‘air at STP is 332 ms™'. This gives rise to an
interesting question : How could Newton come so clase 10 the correct answer and yet miss it

by about 15%? It means that something is wrong with his derivation. You may now ask : How

to explain the discrepancy? The problem lies with the use of Boyle’s law, which holds only at

. constant temperature. The discrepancy was solved when Laplace pointed out that when sound
waves move in a medium, the particles oscillated very rapidly. In the process, regions of
compression are heated up while th- regions of rarefaction get cooled. That is, local changes in
temperature do occur when sound propagates in air. This effect produces a larger phase
velocity. However, Lhe total energy of the system is conserved. This means that adisbatic
changes occur in air when sound propagates.

For an adiabatic change, £ is y times the pressure, where + is the ratio of the specific heats at
constant pressurc and at constant volume, ie. E = v po Then Eq. (6.27) becomes

V:Y_p_l.‘
V p

For air'.-y = |.4. So the velocity of sound in air at STP warks ut 10 be 331 ms™", which is an
excellent agreement with the measured value. This shows that Laplace's agreement is corpect, -

(6.28)

Al a given temperature, Po/ p is constant for & gas. So Eq. (6.28) shows that velocily of a
- longitudinal wave is independent of pressure. :

You will now like to know why the heat does not have time to flow from . Compression to 8
rarelaction and equalize the emperature everywhere. To-atain this condition, heat has to flow

‘Wave Meties

A process is said 10 be isothermal if -
lemperaiure remains constant during
the process. In an adisbatic process,
the wotal energy of the sysiem
remains constanl.

For an isothermal process, Boyle's
law states that p¥ = constant |
Any change in p and/or ¥ is related
sVap+pay=0 ‘

or _-—.—EE:p-
av/v

Far an adialaiic change, the
exjicuiren ufyinis s pFY = comsant
The changs in p and ¥are constamd
through the relation ¥ Ap + py
Plav=o0

or ~—— M E =y
X% . ¥
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a distance of one-half wavelength in a time much shorter than one-half of the period of
oscillation. This means that we would need
Vheat > >'Ifwund (6.29)

* Since heéat flow is mostly due to conduction, the speed of air malecules is given by

kyT

Vrmi = M (630)
where M is mass of air molecules and T is absolute temperature. We can similarly write

knT
Ysound = 'Y‘I:; (63])

Thus, even'if air molecules trave] a distance of A/2, they will not be able to transter heat in
time. In practice they move randomly in zig-zag paths of the order of 107%cm and as long as
A > 107 cm, the adiabatic flow is a very good approximation. The shortest wavelength for
audible sound (1.6fcm) corresponds to 20 kHz.

The ability 1o measure the speed of sound has been put to many uses in defence. During
World War 1, a technique called sound ranging was developed to locate the position of enemy
guns by using the sound of cannon in action,

b. Sound Waves in a Liquid

Liquids are, in general, almost incompressible. For water, £ = 2.22 X 10° Nm™and p = 10?
kg m™. This gives a wave velocity of about 1500 ms . Compare il with the speed of sound in
air at STP. Though air is about 107 times less dense than water, sound propagates faster in
water than air. This means that we can send messages from one ship to another faster via
water than air. This has led lo the development of a Sonar. High frequency sound waves are
used in 2 Sonar which can measure the depth of sea bed, detect submarines and enemy
torpedoes. ’

6.4.3 Waves in a Uniform Rod

For a solid elastic rod, changes take place only in length; the volume remaining almost
constant. The bulk modulus is replaced by Young's moduluy defined as

Stress _ Ap
Longitudinal Strain Al
Then Eq. (6.26) modifies 1o
3’ Y 3ty
e (6.322)
ar P 3x
which is the cquation bf wave motion on the rod. The velocity of longitudinal waves is given
by —~
v = \J Y

p

Y=

(6.32b)

This shows that¥ is independent of the cross-sectional area of the rod.

SAQS
For asteel rod. ¥ = 2 X 10" Nm™ and p = 7800 kg m * Compute the speed of sound.

On working out this SAQ you will find that v=5 X 10> ms™', which shows that longitudinal
waves travel {aster in a solid than in a gas or a liquid. This means thal you can know about
coming rain by putting your ear on the rails. However, you are advised never to do 50!

6.5 WAVE MOTION AND IMPEDANCE

When a wave travels through a medium, the medium apposes its motion. This resistance to
wave molion is called the wave impedance. You should not confuse it with the electric
impedance in the case of AC circuits where it arises due o resistance offered to the flow of
current. The impedance offered to the transverse waves travelling on strings is called the
Characteristic Impedance. Usually, the impedance offered to the longitudinal (sound) waves in
air (s called the ‘gcoustic impedance’. You may now ask : Why impedance arises and what
faclors?gﬁtermine it? To discover answer ta this question, we recall that when a wave
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propagates in a medium, each particle vibrates about its mean position. Moreover, each
particle in motion attempts to make the succeeding particle vibrate by transferring energy.
Likewise, cach particlc al rest tends 10 slow down the neighbouring particle. That is, a
vibrating pariicle experiences a dragging force. which is similar to the viscous force. According
to Newton’s third law of motion, it will be cqual to the driving force F. From Unit 3 of Block
1 of this course you would recall that when oscillations of the particles are small, we can
model the viscous force on the basis of stokes’ law and write

F=Zv

'.l'hr: constant of proportionality Z is called wave impedance. From this equation itis clear that
impedance 15 numcrically equal 1o the driving force which imparts unit velocity 1o a particle.
We will now consider some specific examples.

6.5.1 Impedance Offered by Strings : Transverse Waves

Let us consider a wave wravelling on a stretched string. Let us choose x-axis along the length of
the string (sce Fig. 6.15). The ransverse waves are generated by applying a harmonic force

F = F. cos w. at the end x = 0 of the string. The displacement of the particles of the string at
position .x and at 1ime # is given by Eq. (6.6d).

: YT
Focos wi

x= 0%_\ m /
9}’1Tsin s\ /S

X

¥

Fig. 6,15 - A string vibraliﬁg under the harmonic lorce F = Fy cos w!

Let T be the tension in the string. The vertical component of tension (7) along the negative p-
direction is equal ta the applied transverse force (o give zero resulant force at the x = 0 end
of the string) :

Focos @yt=-TsinB

For simall values of 8 (< 5%), sin 8, = lan  so 1l we can wrile

F,cos 0yf=—T tan © ' (6.33)
The tangent (or slope) is defined at x = 0 end of the string, Using Bq. (6.6d) we can relate
(ey/dx) to (dy/dr) -

di__ kody
dc~ w, dr

Inserting this resultin Eq. (6.33), we pet

Fo cos 0, = KT (dy
o ST, |dr)

. dy i
Since [:!-; = a @), cos Wyt , this equality becomes
=i
1k
F,cos @yt = o, cos Wyt
ml‘l

- I
= -, @ W, COS Glg!

Wriii. g = vy, as velocity amiplitiude of the wave, e above equation reduces to
Tv,
F,cos gt = =, cos wyf
giving
F Tv,
Ty
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Waves

R
. W

_ T _
=5 | (6.34)
This resaudt q:euﬁs the ratio oflheamplimde of the applied force to the amplitude of particle
velocity for transverse waves in terms of the tension in the string and particle velocity. This
result can be used to get an expu'esnon for the characteristic impedance (Z) of the string which
B ddimd as: :

Amplitude of the tracsverse applied force (Fo)

Trangverse velocity nmphtude of the wave (Vo)

z_

Uanc Eq. (6. 3#), we ﬁnd that
; F _ T

Vo L4

This resubt shows that the characteristic impedance has units of Nm ‘s but its dimension are
MT. ' -

. - T '
From Eq. (6.26a) we recall thatv = ot where m is mass per unit length of ihe siring.

Then Eq. (6.36) car be written as :

T . ’
Z=-=\Tm (6.36a)
Alternatively, if we climinate 7" we can write
v'm '
=~ o my : {6.36b)

From Eq (6.36a) we find that the characteristic impedance is governed by mass per unit

length of the string and tension in it. This means that a sonometer wire will offer different
impedance when it is loaded by different weights. Eq. (6.36b) tells us that since Z is related to

. -the velocity of the wave, it depends on inertia as well as elasticity of the medium.

SAQY
Calculate the chamcteristic impedance oﬂ'ered by a thin wire of steel stretched by a force of
SON It weights2 g pcr metre,

6.5.2 Impedance Offered by Gases : Sound Waves

For sound waves propagaling [n 2 gas, the role played by excess pressure due 1o the wave is
analogous to that of applied force in case of a ransverse wave. So’we define the acousfic
impedance as .

Excms pressure due to a sound wave _ Ap
zZ= particle velocity T

(6.37)

* It means that dimensionally Z is the ratio of force per unit area to velocity.

The excess pressure Ap experienced by the medium when a longitudinal wave propagates

through it is given by
Yy :
Ap=—F 73 (6.38)

where E is the Bulk modulus of elasticity of the medium. This means that to know Z, we must
a d . ) I
compute -(%and % - To do 50, we recalt that the particle displacement for 2 longitudinal

wave travelling in the +ve x-direction is writien as
. [ 2w

Y(x, f} = asin { = (vt~ x)

Differentiating it with respect to x and I, we get

By _ _2m
ax 8T ws _f"‘x)] (6392
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and Wave Motlos

"’a—‘:'_aﬁ’?’)ms %F-(w—x)] - -(6:39b)

On combining Eqgs. (6.38) and (6.39a), we find that
M:Ea'(zT“)m'zT“(w—x)] _ (6.40)

On substituting for Ap and 3{:/9¢ from Eqgs. (6.40) and (6.39b) in Eq. (6.37) we find that the
acoustic impedance is given by

Ap __ Ea(2n/A)ycos[2n/A (¥t — X))
I/t a2mv/A) cos [ 2m/A (M — x) )

7= (6:41)
E
v

where v is the wave velocity. This result shows that the units of acoustic impedance are Nm™s
and the dimensions are ML™T™" (You should verify these before proceeding further.)

From Eq. (6.26a) we recall that the wave velocity is given by

E
¥V = -—
p
where p is the density of the medium, Hence the acoustic impedance Z can also be expressed
as:
E .
Z=—=/Ep = pv (6.42)

¥

This result shows that the acoustic impedance Z is given by the product of the density of the
medium and the wave velocity. This means that denser the medium, greater will be the
impedance offered. Yet we know that sound moves faster in solids than gases.

{n the next unit, you will apply these resulls to compute reflection and transmission amplitude
and energy cocflicients for a wave incident on a boundary separating two media.

SAQ 10
CaIculalc the acoustic lm]:xdanoc of air at siandard lcmp-ualure and pressure. Use p = 1.29
kg m” and v = 332 ms™', Will this value be more for air or water? Justify your answer.

6.6 WAVES IN TWO AND THREE DIMENSIONS

So far we have confined ourselves 1o waves propagating along 1-D, as in a stretched string.
The waves are constrained to movc along the string whereas particles vibrate in perpendicular
direction. But all musical instruments are not stringed. Have you enjoyed tabls performance of
Ustad Zakir Hussain or Allah Rakha Khan? You may have played on Sistrum, What happens
when a tabla or drum membrane is suddenly disturbed in a direction normal to the plane of
the membrane? Particles of the membrane vibrate along the direction of applied force. But
tension in the membrane makes the disturbance 1o spread over the surface. That is, waves on
stretched membranes are two-dimensional (2-D). Similarly, surface waves or ripples on water,
caused by dropping a pebble into 2 quite pond, are 2-D. In such cases, the displacement is a
function of x, y and 1, i.e. p = Y(x, . 7). You may now ask : Whal is the equation of a 2-D
wave? Will the preceding analysis as such apply in this case?

We will pot go into mathematical details to answer these questions. However, from physical
consideration extension of Eq. (6.23) for 2-D wave is a straight forward exercise. Since forees
zlong x and y axes act independently, each one will contribute analogous term to the wave
equalion so that Eq {6.23) modifies to

3%(x, y, 0 _ 3’ a’

—_— I 6.4
> ( ety )¢(: 0 (643)

The solution of this equation is

¥(x, » 1) = asin (ws — k1) (6.44) 5
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where ko = (k3 + k).l + ) = kex + kpand & + 1,

Let us pause for a minute and ask : Do sound and light waves emanate radially from a small
two-dimensional source? How can we describe seismic waves or & wave propagating in an
elastic solid? These ase three-dimensional waves. To analyse 3-D waves we have 10 extend the

preceding arguments. The result is a 3-I wave equation.

SAQ 11 .
Generalize Eq.(6.43) in three dimensions.

6.7 SUMMARY

¢ Mechanical (elastic) waves can be transverse as well as longiludiial. In 2 transverse wave,
particles of the medium vibrate normat to the direction in which a wave moves. In a
tongitudinai wave vibrations of the panticles of the medium are along the direction of wave
propagation. '

- The wave velocity, frequency and wavelength are connected by the relation 1 v = vA. We

_ can also express V as ratio of the angular frequency and wave number ;v = wT

* A harmonic wave in 1-D is described by the equation
¥ = asin[2n(:;—,— {-)]

= asin[zT“(w.— x}]
= gsin {w. — kx)
where Tis the time period. The phase of a wave, & = wof — kx varies both with time and
space.,
* Waves carry energy. The total energy carvied by a wave is half kinelic and half potential :
E=2na"y}paAx
=<KE >+<U>

The average rate of energy flow or average power is proportional to the wave speed and to
the square of the wave amplitude:

L P>= 211-&21.'.’,;3 vA

For waves propagaling in space, intensity is a more useful measure of energy carried by

waves. The intensity of a plane wave remains constant as the wave propagates. But for
spherical waves, the infensity decreases as tnverse square of the distance trom the source.

A wave propagating along a string (1-D wave) is described by the equation
Fpx ) _ 2%
ar ax :
where Y(x, £} is the displacement and v is the wave speed.
The speed of a wave on a stretched siring is given by
Y =/Fim
where F is tension in the string and m is mass per unit length. For 2 longitudinal wave
v=\V E/p
where £ i; elasticity and o is density of the medium. For sound waves in air,
¥ =y y/p,

wicre 7 is (he ratio of specific heats at constant pressure to that at constent valume.
For sound waves in solids

v=/Y/p

* When a wave travels through & medium, the medium opposes its motion. This FESIStAnce to

wave motion is referred 10 as the wave impedance. In case of transvene waves, the
' dnmdmsuc impedance is given by

[ TPt 7 e prer v p
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Z=%=\/fﬂn=mv

For sound waves in air, the acoustic impedance is given by
z:%:-«gp:pv

A wave propagating in 2-D is described by the equation
n ) _ ,p 9 @

—— _+‘_ "

v el Peaed

The solution of this equation in given by

¥(r, ) = asin (ws — k1)

where kr = kox + kypand ¥ = &2 + &2

6.8 TERMINAL QUESTIONS

A transverse harmonic wave of amplitude 1 cm is generated at one end (x = 0) of a long
string by a tuning fork of frequency 500 Hz. At onc instant of time, the displacements of
the particles at x = 10 cm is — 0.5 ¢cm and at x = 20 cm is 0.5 om. Calculate the
velocity and the wavelength of the wave. If the wave is travelling along the positive

x- direction and the end x = 0 & at the equilibrium position at t = 0, write the displ

in terms of wave velocity.

In normal conversation, the intensity (energy flux/area) of sound is 5 X 10 Wm™ The
frequency of normal human voice is about 1000 Hz Compute the amplitude of sound -
waves, given that the density of air at STP is 1.29 kgm ™. Take the velocity of sound at
STPas 332 ms™.

The wavelength of a note of sound of frequency 500 Hz is found to be 0.70 m at room
temperature (15°C). Given thal the density of air at STP is 1.29 kgm ™, calculate .

A longitudinal disturbance generated by an earth quake travels 10° km in 2.5 minutes. If
the average density of the rock is taken to be 2.7 X 0 kg m™, calculate the bulk
modulus of elasticity of the rack.

6.9 SOLUTIONS

SAQs
1. i)20kHz i} composite iii) energy, matter iv) no v) lransverse
2. From Eqg. (6.4}, we have '
=L
TR

For A = 4000 & = ¢ X 10""m, the frequency of visible light in
, = 310" ms
4% 107 m
=75 X i0"s.
Similarly for A = 7200 &, we have
Lo 3% ms!
72X 107 m
=41 X 10"
The wave equation i
X
#(% 8 = (2.5 X 107 m) sin {600~ (r — 30

‘The wavelength is given by

Wave Motion
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Waves

The velocity of the medium particles is
a - -
v=—a{—=(zsx lO”m)(GOOws')ous[GOOw(f“—3":—o“)]
and acceleration is
a=a_1{=-(§,sx lO"m)(ﬁOOws")zsin[Gll}rr(r—-x—)]
ar . : 340

A wave moving along —x-direction is described by the equation
¥(x 1) = asin (et — kx)

The angular frequency is connected to v and A by the relation
2y
Wy = =

A .
Herev =93 cms™ and A = 55 ¢m. Hence

_2mr X93cms''

W 55 cm
_m,

=5

55
Similarly the wave number is related 10 wavelength as
k___z_wz 2X22 =—4-crn'

A 7X55em 35
Hence,

L4324
)’(I.r)-(?.ilcm)sm( 35 t+ 35 .\)

= (7.4 cm) sin {10.67 + 0.1x) , N

The particle velocily is given by

ar 35 cos| 35 1t 35

= 78.6 cms”’ cos (10.6 ¢ + 0.1 x)
7=8X10" wm™
L=10"wm?
The intendity lalls off as the inverse square of the distance. If r denctes the distance i
which this sound could just be heard, then
8 X 10° Wm™? r

107 Wm?  (Im)
r=9X10’"m = 9 km

3y _ 14X 3N2cms’ 312, 4 I)

But this is not observed in practice. It is because of absorption of energy by the medium.

v = kf(E m)
i1 = [K] [F}* fm)®

LT = MLT")" ML™)?
or

LTI = M (L7 [T

On comparing the powers of T, we get

—1=—-2a
or
a=1/2
On comparing the powers of L, we have
a—b=1
or
b=a—1
=—1/2
Hence

|
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7.

10.

We know that wave velocity on a stretched string is given by
v=/F/m 1
On substituting the given values, we get '

) } 10N
107 kgm™

=100ms™
From Exq. (6.32b)

V=1/v/p
On inserting the given values, you will get
V2 X 10 Nm !

7800 kg m™
=5§X10°ms™

m=20gm" =20X10"kgm" and
T=80N _
From Eq. (6.36b) we recall that impedance offered by a string is given by

Z=+\/Tm

On substituting the givcn data, you will get

Z=/(80N) X (20 X 107 kgm™")

=04 Nm's

From Eq. (6.41), we have
Z=py
Herep = 1.29kgm’ and v = 332 ms™'.
L Z=(1.29kgm”y X 332 ms™)
= (428 X 107} kgms™
=4.28 X 10° Nm™s
The impedance offered by water will be more than that offered by air. This is because the

density of water is much greater than that for air at STP, Also, the velocity of sound in
waler is almost five times the velocity of sound in air.

. In 3-D, the wave equation has the form

a-u;(: = e

TQs

L.

We know 1hat a har.nenic wave in 1-72 is descrined by
2
i 1) = asin[—f-m—- x)]

wherea = | cm
(a) Atx=10cm, b{x, ) = — 0.5cm

& —05cm = (I cm) sin[zT"(w - 10)]

or

L2

sin{ 25 (vt — 10) ) = —1/2 = sin (w + 5
[ H

This equality implies that

211- I 15N 7ﬁ
T T vy = '6_
ar
7
wv—-10= —!'2—)\ )

(B) Atx =20 cm. Y(x. ) = + 0.5 cm

Wave Motion
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Waves S~ 0.5cem = {1 cm)sin [ %\l vt — 20)] = sin -161
5o that

A

12

Frora (i) and (i), we get

A

?=|0

vi—20=

or
A=2cm
=02m
We know that
v=v)
. ¥ = (500 Hz) X (0.2 m) = 100 ms™'

Hence,

Y(x, £) = 10.01 cm) sin [%(IOOI —x) |= (001 m) sin [ 10w (100 ¢ ~ x}]

2. The expression lor the intensity is
I=2'eviay
so that

i 1

a=—

. ¥ 2pv
Here v=332ms ', p = 1.29kgm *,v, = 1000 Hz, F = 5 X 10" Wm . Hence,

a

_ ;\/ 5 X 107 Wm
314 X 1000 Hz ¥ 5 5 ) 29 kgm™* X 332 ms”?
=24X 10'm

3. Here we use the expressions

Y L7 S 7
p £

‘and the gas equaltion
ann _ pV
T, T
The gas equation can be rewritten in terms of p and p, as
po_ T
Ppn_ T
since, p = m/¥and po = m/HK.
.- . Since v, = vA, we lind that
= vi=500Hz X070m

=350 ms"'
Hence,
v oo 1 _ [k
v Voo VT V@BFHK
50 that

vie = (350 ms'') \_.J'%E—{,— = 34| ms™
¥ 200 R

Hence, «y, the ratio of specilic heats at constanl pressure 1o thai al constant volume, is
given by

2 -132 -1
_ VoPe (3¢l ms ) X 1.29kgm

Pe 076m X 98ms’ X 136 X'10° kg m™’
1.5
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4. The speed of the seismic waves is

WX 10°m _ v
V—W—G.Txmm
Since

E
=4 —

p
we can write
E=0rp.

On substituting the given dala, we get

E=(6IX100ms"'Y X 27X 10 kgm™*
=12i X 10" Nm™

Wave Moties
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UNIT7 WAVES AT THE BOUNDARY OF
TWO MEDIA

Structure

7.1 Introduction
Objectives
7.2 The Concept of Wavefront and Huygens' Construction
on of Waves
Refraction of Waves
7.3 Refiection and Transmission Amplitude Coefficients
Transvere Waves
Loagitudinal Waves
7.4 Reflection and Tranmission Energy Coefhicients
7.5 The Doppler Effect
Soarce in Motion and Otmerver Statiorary
Source Stationary and Chserver in Motior,
Source rnd Observer both in Motion
7.6 Shock Waves
1.7 Summary
7.8  Terminal Questions
7.9 Solutions

7.1 INTRODUCTION

In Unit 6 we discussed the basic characteristics of wave motion. The propagation of waves on .

strings and in fluids was discussed with parficular reference to'sound. You may now ask :
What happens to a wave when it encounters a rigid barrier, as for instance, in the case of a
string whose one end is tied to a rigid wall. The wave energy will not flow into the wall. But
the wave cannot stop there. Then where will its energy go? What happens is thet the wave
tumns around and bounces back along the string. We say that the wave has been reflecied.

You must have experienced sound reflection in the form of echoes in large halls or in the
neighbourhood of hills. You must have also observed reflection of water (sea) waves from a
fixed barrier (sea shore). In the case of light, reflection from silvered surfaces, say in a looking

. mirTor, is the most common optical effect we know. The reflection of ultrasonic {sound) waves

forms the operating principle of sonars in depth-ranging, navigation, prospecting for oil and
mineral deposits. The reflection of ¢.m. waves governs the working of a radar for detection of
aircrafts. Reflection of radiowaves by the ionosphere makes signal transmission from one place
10 another possible and is 50 crucial in the area of communrications,

You may now like 1o know as 10 what would happen to the incident wave. You would agree
that the boundary is not very rigid and properties of the medium change suddenly. Now
suppose that we connect two strings of different mass per unit lengths, We observe that in such

8 case energy is panily transmitted into the second string and the rest is reflected back along the

first. The phenomenon of partial reflection and transmission at a junction of strings has its
analog in the behaviour of all waves at interfaces between two different media. Shallow water
waves are partially reflected if water depth changes suddenly. Light incident on our
atmesphere undergocs pantial reflection because of changes in the density of the medium.
Partial reflection. of ultrasound waves at the interfaces of body tissues with ditfferent densities
mekes altrascund & valuable diagnosiic ool

Does this mean that waves never undergo complete refraclion? Were this true, we could not
explain working of lenses, which is fundamental to secing and our contact with the
surroundings, You may have seen the sun before actual sunrisc and after actuai sunset. This s
because of relraction of light in the atmosphere,

In Sections 7.2 and 7.3 you will leare, using tke concepts of Huygens' construction and the
concept of impedance, that when 2 wave is incident at a boundary separating two media, its
wavelength changes but frequency remains constant. But there are many situations where

frequency of a wave also undergoes a change. This effect is'known as Dappler Effect. You will

learn it in Section 7.5.
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Objeclives . ’ Waves al the Boundary ol two

After going through this unit, you will be able to Medit
define a wavefront

construct the wave front for a given source

explain reflection and refraction of waves using Huygens’ construction

compute the reflection and transmission amplitude coefficients

compute reflection and transmission energy coefficients

compute the gpparent.frequency of sound when the source and/or the observer (listener)

are in motion.

7.2 THE CONCEPT OF WAVEFRONT AND HUYGENS’
CONSTRUCTION

Let us consider propagation of a wave on the surface of water. If you dip your finger in water
repeatedly, a series of crests and troughs travel out. That is, waves set out in all directions. At
any instant, a trough or a crest is circular in shape. The locus of points in the same phase at a
particular time is called 8 wavefronr. The shape of the wavefront depends on the nature of
source. In the case of waves from a point source in air, the wavefronts are spherical. (In two
dimensions, as on the water surface, the wavefronts are circular.) i the source is a long slit, the
wavelront will be cylindrical. At large distances from the source {(whether point or slit}, the
wavelront appears (o be & plane. To understand the formation of wavefronts, we use Huygens’-
construction,

Following Huygens, we make the following assumplions :

i) Each point on a wavefront becomes a fresh source of secondary wavelets, which move
out in all directions with the speed of the wave in that medium.

ii) The new wavefront, at any later time, is given by the forward eavelope of the secondary
wavelets at that ime.

ii) In an isotropic medium, the energy carried by waves is transmitted equally in all
directions.

If $ is the source of sound or light {Fig. 7.1a), then after an interval of time ¢ ail particles of
the medium lying on the surface A8 vibrate in the same phase. This is because all particles on
the surface A 8 are equi-distant {rom the source. Any disturbance emanating {rom § ts handed
on to them at the same time.

According to Huygen's construction, surface 4B is called a primary wavefront. Each point on
AB, like the @ b, ¢ elc. acts as secondary source {derived frum the original source 5). Fhese
secandary sources give out waves (or disturbances) in all directions as demonstrated by
drawing circles around the points g, b, ¢, etc. The envelope of all these waves (which acts as a
angent to all of them at any given instant), like the one at CD, forms another wavelront,
called the secondary wavelront. This, in short, means that the source S gives out wavelets in
all directions, The envelope of these wavelets acts as a primary wavefront. Each point an this
primary wavefront acts as a source for secondary wavelets. An envelope of these secondary
wavelets forms a secondary wavefront. Each point on this sccondary wavefront gives out
further wavelets to form further secondary wavefronts. This process goes on and the wave
keeps on spreading in space.

The direction SP (Fig 7.1a) in which the disturbance (originating al §) propagates is called a
ray. A ray is always normai to the expanding wavefroni.

To visualise the Huygens' construction in space, you may imagine a poinl source (o be al the

centre of o holtow sphere. The cuter surface of this sphore then acte ac o primary wavafrony, if

this sphere is further enclosed by anather hollow sphere of larger radius, the outer surface of

the second holiow sphere wiil then act as a secondary wavefront, If this sphere is further

enclosed by another sphere of suill bigger radius, the suriace of the outermost sphere becomes

the secondary wavefrant. For this, the surfzce of the inner sphere acts as the primary

wavefronl. in (wo dimenstons, the primary and secondary wiavelrons appear to be concentric

ciscles, the parts of which are shown in Figs. 7.1a and 7.1 b. 3
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Fig. 1'.1 : (a) Construction of Huygens’ wavefront, (b) Depletion of a secondary soarce

The formation of secondary sources as visualised by Huygens can also be understood
pictorially through a simple diagram. If we place a screen XY with a tiny hole at $ in the path
of waves emanating from the source S, 5’ acts as a secondary source (Fig. 7.1b). This gives
out'waves an the other side of the screen, These waves spread out from $* as if $’ is an
original source itself.

In your school classes you have studied reflection and refraction of waves. We observe these

" whenever 2 wave travelling in one medium, say air, meets the boundary of another medium.

Suppase we clamp one end of 2 string 10 a rigid wall and generate a puise by moving the aother
end. You will observe that the pulse is reflected at the fixed end. Similarly, you can study
reflection of ripples in a water basin. You will be surprised to know that same physical laws
govern the reflection (refraction) of all waves, including light. We will now consider reflection
and refraction of waves using Huygens' wave theory, -

7.2.1 Reflection of Waves

Refer to Fig. 7.2. LM represents a part of a plane wavefront travelling towards a smooth
reflecting surface §)S.. It {icst strikes al A and then at successive points towards 2. If ¥ is the
wave speed. the point M on the wavelront reaches D at a time t = DC-Viater compared to
the point L. According to Huygens' Principle, each point on the reflecting surface will give rise
to secondary wavelels. In this case we expect that they should constitute the reflected
wavefront. Can you locate the reflected wavefront? To discover this, we nole thal al the
nstanl O is just disturbed, the wavelet [rom 4 has grown flor time DC/v and has tiavelled 10 £
so that the distance A£ is equal to DC. We can draw a circle of radius 4E =IO w

M
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Fig. 7.2 Hurgenn” construclion for reflection of waves
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represent this wavelet with A as centre. Similarly, we can draw many circles from the Waves at the Boundﬂrr of two
intermediate points. The tangent or the envelope to these circles from D defines the reflected ‘ Meodia
wavefront. '

From Fig. 7.2 it is clear that As ACD and DEA, are congruent. Hence

L CAD = £ ADE
or _ ,
i=Lr . 7.1

That is, the angle of incidence is equal to the angle of reflection. Moreover, you will note that
the incident ray, the reflected ray and the normal at the point of incidence lie the plane of the

paper.

In this connection it is important to mention here that the reflected wavefront undergoes a
phase change of . In fact, it is tru¢ for any wave travelling in a rarer medium (air) and
undergoing reflection at the interface with a denser medium (water). However, the reverse is
not true.

7.2.2 Refraction of Waves

When a wave reaches the boundary of two different media, it may be pantly refected and
partly transmitted. You can study this by joining two strings : one thick and another thin so
that their mass per unit fengths are different. In Unit 6. you have learnt that velocity of a wave
is inverscly proportional o the density of the medium. This means that when a wave moves
from a lighter to 2 denser medium, its velocity decreases. This results in a change (decrease) in-
wavelength. But the frequency remains the same. Fig, 7.3 depicts this situation when 2 wave is
refracted (i.c. only transmitted).

rarer medium . denser medium

ARNYA A
S W

.
>

i Az

t\lb.\z
VIV

Fig. 7.3 : Refraction of a wave changes its wavelength

Letv, and A, respectively denote the speed and wavelength of a wave of frequency v in a rarer
medium. On being refracted al the interface of a denser medium, let iis speed and wavelength
bevi and Ay respectivelv. Mathematically, we can connecl these quantities through the

relation

Ll
2 (7.2)
A Ay

Since + 15 Lhe same.
This relation: holds for waves in water, air and string alike.

Using Huygens' principle, you can prove the laws of refraction as well {TQ1} But yon will

agree that Huygens' metbod is essentially gec.netrical and can be used when the wave is either

reflected or refracled at the interface. You may now ask : Can we apply this method to study

partial refleclion and refraction, as in the case of two sirings having different mass per unit

lengths? In principle, we can do so but it is more convenient to study partial reflection and

refraclion in terms of impedance offered by 2 medium. To this end, we normally compule

reflection and transmission amplitude coefficients. You will now leam to compute these in the

{otlowing section. 35
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7.3 REFLECTION AND TRANSMISSION AMPLITUDE
COEFFICIENTS

From Unit 6 you would recall that different media offer different impedances to waves
travelling through them. These impedances depend on properties of the medium. You may like
to know how waves respond to the abrupt change of impedance a( the boundary of the

media? We now answer this interesting question by considering transverse waves.

7.3.1 Transverse Waves

Lel us reconsider the strings AQ and O8 joined together at O and kept under the same tension
T. Let us assume that they offer charactesistic impedances of Z, and Zs, respectively. A wave

travelling in the positive x-direction (Fig. 7.4) gets parily reflected and partly transmitted at O,
The particle displacements due (o incident, reflected and transmitted waves can be written as :

¥i (%, ) = a; sin (gt — k; x) (7.3)

yr(x £) = a; sin (@yf + &y x) (7.4)
and '

¥t (x, 1) = ag sin (Wof - kp x) (7.5

A /\u pd z B

o1

y A W—— s
N 0

Fig. 7.4 : Tranuwverse waves in.strings having diffecent mass per unit}Jenpths
where the subscripts & rand £ on displacements and the amplitudes refec 1o the incident,
reflected and the transmitied waves, respectively. You will note that the angular liequency of
these waves renutins the same. Morcover the propagation constant for the incident and 1he
reflected waves is the same but differs for the transmitted wave. Do you know why? This is
because Lhe wave speed changes as density of the medium changes. You would also sote that
for the reflecied wave we have used a positive sign before & v This is because 10w traselhing in
the negative x-direction,

To give physical meaning to the reflection and transmission coefficients, we have 1 consider
the boundary conditions, The boundiry conditions are the conditions which ntust be satisficd
at the interface where the two media meet. Here the total displacement and the 1ot iransverse
component of tension on one side of the houndary are the result of the combination of
incident and reflected waves. So the boundary conditions in this case are !

1. The partcle displacements immedrtely w the left and the right of the boundary, (e at

dy(x ¢
x = 0) must be the sume, This imphies that the particle velocitics —}—T n, should also be

the same.
. e X !
The transverse components of Ladon f T==="—3% mus also be the samie
ax
rmmediately on two sides of the boundury.
These conditions require ¢,
. 1
¥, (v ) + ool = N ke !
) A= | V= |
and
o |
Ay ‘ Ay Cdyy .
7 = — ] =t
? e vze

l
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Using Eqgs. (7.3) to (7.5), the condition expressed by Eq. (7.6)

@, 5in wof + 4, 5if wof = a, Stn w.f
or
N - 79

The condition expressed by Eq. (7.7) gives :
a; ka1 T cos wof — ac by Tcos wor = a, k1 T cos wat

ar
kyTin—a)=kiTen (7.9)
We know that
. 2 . 2w
kT= “\lr" = "'Tl'li T= 2:wm|m = 27‘“’2|
: Vi !

where Z, is impedance offred by the first medium,
10 arriving at this result , we have used Eqs. (6.22) and {6.36D). Similarly, you can wrile
kT = 2nvls

where Zs is the impedanée offered by the second medium,
Using these resuls, we can rewrite Ea. (7.9) as

2meZila; = a7 Iwedaty
or
Zita; 4l = Ly (7.10)

Cys. (7.8} and (7,107 coabic us 1o calcutaie the ralios a./a, and a,./a,. These ratios give us the
fractions of the incident ampditude reftected and transmitted at the boundary. These ratios are
usuaily called thie refleciion and iransinission amplitude coefficients. We will denoie these by -
the symbols Ry - and T2

Rp= 2 = Lol
BT Lt (7.10)
and

. _ t: o -}ZI

Ta = A (7.12)

We note that the reflection and transmission amplitide coefficients depend only on the
impedances'of the two media.

Let us now consider the implications of results arrived at in Egs. (7.11) and {7.12):

i) Assume that the suing is rigidly fixed to a wall. This means that the second medium is
extremely heavy, meaning thereby that Zy= = Insuchacase, Ry, = - land Typ = 0.
This result implics thata, = ~a; and ;= 0. Thatis, the amplitude of reflected wave is
equal to the amplitude of incident wave with just a reversal of sign and there is no
ransmitted wave. This means that the incident wave suffers a change of phasc of on
reflection from a denser medium.

ii) When Zx > Z. it second string (medium) is denser, R:. is still negative implying a
phase change of @ on reflection. In this case, however, the incident wave is partly
reflected and partly uansmitted.

i) When Zz << 7 Ry is #ve indicating ro change of phase on reflection. Both transmitted
and refected wives exist in this case also,

ivi When 2, = Za Ry = 0 <liowng no reflected wave. In this case Ty = I, which gives
a. = a, Vhis means that the amplitude of a transmitted wane is equal to the amplitude of
the incident wave.

The points i}, it} and iii) above clearly show that 1f a wave travelling in a medium of fower
impedance meets the boundary of a medum of higher impedance {air to water), the reflected
wave undergoes & phase change of o If, however, & wave travelling through a nicdium of
pigher impedance meets the boundary al 2 medium of iower impedance {waigr, i atr), nu
change of phase takes place for the reflected wave. You may also note thatF i3S dlways +ve
indicating hat Lhere is no change of phase for the vangnitied wave'in any case. These.fesults
aie Jepicted in Fip. 7.5. P T ot

X i
P S BT R
U ,-'S" - =

From Eq. {6.36a, b), you will recall thut for a givcn";e'ryioni;ﬁft;gw wEimi}y_ wi‘.ﬁs:::],(;ﬁ;r i

a mediium of higher impedance. Using this observation, can.you few &anect the above ")/,

Giscaseion with the one given in Sec. 7.2.17 Is thore not a one to ea2 comespordence belween
f S e

-
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incident wave .
i boundary
I
H
i
ZI 1 Z)
t

! —w lransmitted

1 wave
1

—ifr——— Il
reflected wave

Z: > 4

(a)
incident wave
—_—

: boundary
[
[

Zy : 2y
!

N A

[ — « lransmitted
—-— i Wave
reflected wave
L < 2
(b)

Fig. 7.5 : Reflecied and Iransmitied waves when the incident wave (20 travels from a medium of lower
impedance to u medium of higher impedance. and (B) when reverse is the case

the two cases? This explains why we expected all waves, whether onnd waves, water waves,
waves on string or light waves to follow the same 'aws.

Coming to the point {iv) above, we note that when Zy -~ Zs, the two strings are made up of
the same materiai and there effectively exists no boundary That i why ihere is no reflection a
all.

5AQ1

Two strings of linear densities m: and m: (= 4/) are joined together and stretched with the
same Lension 1. For transverse wave, calculate the reflection and transmission amplitude
coefficients.

7.3.2 Longitudinal Waves

To anaiyse the reflecuon and transmission of longitudinal waves, you can follow the same
precedure as outlined for transverse waves Let us consider @ wave inuident on a boundary at
x  { separaitng media of acoustic impedances £, and Zx As 10 Lhe e of wransverse waves,
you can represent the parncle displacements for the incident, reflected and iransmyitied waves
by expressions similar (o Eqgs, (7.3+ (7.4) and (7.5).

The boundary cenditions in this case are

1) The particle displacement W(x, £ 15 continuous 2t e boun er Thit s it has the o
value immedialely to the left and right of the houndary a1 v

i) The excess pressure is also the same immediaiciy on tw sides of ithe Duundary.

Using the boundary conditions stated abave vou can show that the reflecied and the
transmitted longitudinal waves obey the same characteristics as transverse waves (TQ 3).
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e
7.4 REFLECTION AND TRANSMISSION ENERGY
. COEFFICIENTS

e ——

We know that progressive waves at¢ a useful means of transferring encxgy from one point to
another in a medium. It is therefore interesting 1o consider as (0 what happens to Fhe energy in
a wave when it encounters the boundary between two media of differing impedances. As
before, we will consider transverse as well a5 longitudinal waves.

You have seeh in Unit 6 that when 2 string of mass per unit length m vibrates with amplitude
a znd angular frequency wo, the (o1l €ncrpy is given hy

E= -lz—ma’mﬁ , (1.13)

Let us assume that the wave is raveling with a speedv. Thep the rate at which the energy is
carried atong the string is obtained by multiptying the expression {Or €NEIEY with the speediv |

. 1
of the wave and IS equal o 5 ma'wdv

Now refer to the cast of the transverse waves discussed in section 7.3.1. The ratc at which the
energy reaches the boundary alongwith lize incident war't is given by

1

P = mla'.{uﬁ\'{. = A% (ﬂ::ﬂ:, -- (7.14)

1
2

rc\—

Sumitarly, the rates at which the cneigy leaves the boundary alonpwith the reflected and the
transmilled waves arc

| ’
prf: _'z"fclm;ﬂ.r (T‘S}
and
_ 1 10
P = ] Zawad {7.‘6}

Using Eqgs. (7.8) and (7.10), we can write a; and d, in lerms of a.. Substituting the resulting
expression in Eqgs. (7.15) and (7.16) we find that

— 1 Coa Zt"Z: : .
P.= E’wa.,(—zl—:__z‘;] ar (7.17)
and
— l M 22] : *
P=gyzei(zrm) @ (7.18)

These results can be used 10 obtain the reflection and transmussion energy coefficients Ry and
TE .

_ Rate at which encrgy i< reflected at the interface _ Pr _ -4y 719

£ Rale at which energy js incident at the ‘nerface P ( 7+ 2 ) (719N
Rate at which energy ist ansmitled at the interface _ P LY ATYA

E = 4 ! g}'__________________._.l' ! = = __._.VE-——‘ (‘?20)

Rate at which energy is incident at o merface . P (Zi+ 7Y

We note from Eq. (7-19) that if Zy = Z» (which is also possible if we have Tvm: = Tama),

Re = 0. That is, po ¢NeBY is reflected back when impedances match. Such an impedance
matching plays a very important role in cnergy {ransmission. Long distance cables carrying
energy need 0 be matched accuralely at all joints; otherwisc a lov of energy will be wasted due
to reflection. We need Hnpedanc® matching when we wish to transfer sound energy {rom air in
a loudspeaker to the aif of the roorn. Similarly, when light waves travel from atr jinio glass lens
of a siab, we wish not to have reflections {as it will reduce intensity).

[AQ !
. that e enesgy 15 comseiver) “¥HEn B ransverse wave meets the houndary batween (WO
of characieristic inpedsnces 2y and Za.

ngitudinal waves, it is customary 1¢ calculate encigy wansfer in terms of their intensity.
Unit & we recall that intensity of sound waves in a gas is given by
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Waves

Representing the same situation in terms of waves, as shown in Fig. 7.8, we find that if vis
the speed.of sound produced, v waves occupy a length v in one second, if the source is
stationary. After one second, when the source has moved a distance , lowards the listener, the
same number of waves get crowded a length (v — ;) as shown in Fig. 7.8 (b).

i (v-us)

(b)

Fig. 7.8 : Crowding of waves when source is moving

The reduced wavclength A, then becomes

LY T
K=—3
The apparent frequency of sound (heard hy the listener) is then
v ¥
W = T P (7.27)

~

If, however, the source moves away from the observer (in a direction opposite to sound). . is
negative and Eq. (7.27) becomes

Vo=p— (7.28)

To fix up the ideas discussed above, you may now like 10 solve a SAQ.

SAQ4

A person is ‘,{andmp near a railway track. Rajdhani express approaches him/ber with a apu'd
of 72 kmh ', The apparent frequency of the whistle heasd by 1he petsen is ;0{] Heo What is
the aciual frequency of the whistle? Use the speed of soand in air as 350 ms

7.5.2 Source Stationary and Observer in Motion

If the observer is at rest, the jength of the block of waves passing him per second is  and
conlains ¢ waves. However, when the abserver moves with speed ., he will be at £ after one

_second and find that only a block of waves with length (* — ) passes him in one sccand. For

him the apparent frequency s then

. - i V- i,

vo=—— _ {7.29)

b
>

--- -uﬂ---b-
- A\

, N\
AN A/

- - ——(v-ug)- —— >
Fig. 7.9 : Warcs received when listener is musing,

If the listener moves towards the source. &, is negative, and the apparent frequency i~ gnen by

— (7.30)
L
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Representing the same situation in terms of waves, as shown in Fig. 7.8a, we find that if vis
the speed.of sound produced, v waves occupy a length ¥ in one second, if the source is
stationary. After one second, when the source has moved a distance u, towards the listener, the
same number of waves get crowded a length (v — «,) as shown in Fig. 7.8 (b).

qu-—— e Gl L pyy S W S VL
» v -
()

|
Ug..‘.-.:
:ﬂ (V- us) '
(b}

Fig. 7.8 : Crowding af waves when sourec is moving
The reduced wavelength A", then becomes
v —
x=2"5
¥

The apparent frequency of sound (heard by the lisiener) is tien

v v
S e = g e—— e )
) T p (7.27)
If, however, the source moves away from the observer (in a direclion opposile o sound), . is
negative and Eq. (7.27) becomes

v
»r+ [

Fl

p=y

(7.28)

To fix up the ideas discussed above, you may now like to solve a SAQ.

SAQ 4

A person is 5landmp near a railway track. Rajdham express approaches him/her with a \pL(‘d
of 72 kmh™". The apparent frequency of the whistle heard by the person is ;00 Hz. What is
the aciual frequency of the whistle? Use the spzed of sound in air as 350 ms '

7.5.2 Source Stationary and Observer in Motion

If the obscever is at rest, the lenglh of the block of waves passing him per second is  and
contains - waves, However, when the observer moves with speed &, he will be at O afier one

-sccond and {ind that enly a block of waves with length (» — &, \) passes lim in oae sccand. For

him the apparent frequency is then
V- u, V- u,

V= T . (7.29)

Fig. 79 : Was, received when tistencr is muving,
If the Tistener moves wwards the source, «. is negative, and the apparent frequeney v given by

v (7.301

FE TR P e e e e

EIDC T L H A0 S - e




The electromagnetic waves, including light, arc also subject (o the Doppler cfff:CI. In air
nagivation, radar works by measuring the Doppler shift'of high frequency radic waves
reflected from moving acroplanes. The Doppler shift of star-light allows us to study sle_,llcr
motion. When we examine light from stars in a spectrograph, we observe several spectral iines.
These lines are slightly shified as compared to the corresponding lines [rom the same'elemer}ts
on the earth. This shift is generally towards the red-end and is attributed to steller motion. This
is illustrated in Fig. 7.6 for hydrogen atoms in a double star system. {The Doppler shift of
light from distant galaxies is an evidence that our universe is expanding.)

A rece ding (redshifted) A approaching (bh.-te shifted)
4 approaching B recending (redshifted)
H HG(HT:. Hg He Hy Hy Hpg
. ' A AR
A A B 1 A '
.‘:‘n.::.:‘ A B 'E A b
S B 8 B
| B E
200 nm 500 nm 400nm 500nm
Observed wavelength —

Observed wavelengih —+
Blue Toward red — Blue Towardred —

Fig. 7.6 : The wavelength of light emified by hydrogen atoms in 3 biram star reveals the siefler motion.

To study the Doppler effect for sound waves. we have to consider the [ollowing siluations :
1) Whether the source is in motion, or the abserver is in motion, or both are in molion.

i)  Whether the'motion is along the linc joining 1the source and the ebserver, or inclined (at
an angle) to it

i) Whether the direction of motion of the medium is along or opposite to the direction of
propagation ol sound.

iv) L Whether the speed of the source i presler or smaller thin the speed of sound
produced by .

We wall now consider some of these possibilibes.

7.51 Source in Motion and Gbserver Stationary

Let us suppuse thai o source S is producing sound of frequency v, and wavelengih A The

waves emitied by e source spread oul as spherical wavelrents of sound. When 1he velocity of

saurce 5 Iess than the velocity of sound, wavefronts he instde one another. The distance
hetweeen suceessive wavelronts is mintmum along the direction of motion and maximum in a
direction opposite 1 11 (Fig, 7.7).
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‘753 Source and Observer both in Motion Waves at the Boundary of twa

VWhen both source and observer are in motion (and approach each other), we have lo combine Hema

the results contained in Egs. (7.27) and (7.29). The source in motion causes a change in
wavelength. The listener in motion results in & change of number of waves received. In such a
case, apparent frequency »” is given by

, _ Length of block of waves received

¥y =

Reduced wavelength
_{V— i
“("3' —ur) (731)

You may now ask : Is there any' difference in the apparent frequency when the source
approaches the listener or the listener approaches the source with the same velocity? Eq. (7.31)
tells us that the apparent frequency will be dilferent in these cases,

For electromagnetic waves, Eq. (7.31) has to be modified. For sound, u. and u, are measured
relative Lo the medium. This is becauvse the medium determines the wave speed. However,
e.m. waves do not require a medium for propagation so that their speed relative o source or
the observer is always the same. For these waves we have to consider only the relative mation
of the source and the observer. If «, is the speed of source relative 10 observer. and us <<y

we can rewrite Eq. (7.31) as

. ( d
IJ =
v ¥ — I )

v {l "—’]I (7.32)

14

Using binomial expansion and setainig only st order terms in (a/vj, we gel

v ( | + ’5 (733

In air nagivation, we lake &, 10 be twice the approach velocily of the aeroplane. This is
becausc the radar detects e.m. waves sent by it and reflected back by the aeroplane.

SAQS
A stationary observer notes that the spectral line of wavulength 4000 A emitted Dy a star is

shifted towards the red from its normal pu.muon by 100 A. Calculate the speed of the star in
-1

the linc of sight? Speed of light = 3 X 10" ms™".

7.6 SHOCK WAVES

So far we have cansidered the cases where the velocity of <ound is greater than the veldeity of
ihe sonree. As g increases, Fgo£7 31 predicts that Doppler shilted treguency sill inerease
praduaily and diserge for g 1 What does this man? When the source moves exactly at
wave speed, wave crests emilled in the forward direction pile up ato a very large amplitude al
the front of the source. as shown in Fig. 7.10.

Now you may ask . What happens when the speed of source exceeds the specd of sound
waves as for supersoniv planes? To discover the answer 10 this question, let us see if we can
draw wave paiterns simtlar 1o those shown in Fig, 7.7,

PN

e rd —)

Ug= Vv
Fig. 7.10 : Schematic represcnistion of piling of waves when the snurce moves a2t {he wave speed.
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Waves

The ratio i, g % called the Mack

Let us suppose that the source is at point 4 at ¢ = 0. Afier ime f; the waves emittediad 4 are
on a sphere of radiusvr. Since u, > v, the distance travelled by the source AS = wtit nvore
than the distanice travelled by sound waves. The waves emitted at successive powts, B, C, D,
E, ... arc on the line A’S, where the circles are most crowded. We thus see that sound waves
pile up on a cone whose half angle is given by sin 6 == v 4 as shown in Fig. 7.11a. No sound
waves are present outside this cone. The velocity of souad waves is noonmal to the surface of
the core. When this cone hits an observer, he detects the sudden arrival of a large aroplitude
wave, known as shock wave A supersonic aircraft generates shock waves, also called sonic
booms, due to the formation of two principal shock fronts; one at its nose and the other at its
tait (Fig. 7.11b). A strong boom can break window glasses or cause other damage to buildiogs,

Shockwave cone ”
i = e
sing= e
s

.
i

Fig. .11 : {n) Shock waves created bynammdmcemvhgflsurtimdnqxfdo!sound.
{b) Somk booms prodiced by & supersoaic sdrerart,

Shock waves are also generated in a ripple tank by 2 moving source for Mach numbers greater
than one. You can also observe that shock waves are formed by a boat moving faster than the
speed of water waves,

1.7 SUMMARY

® The locus-of points ia & given phase & called a wavefront. The shape of a wavelront
depends on the nature of the source.

* According to Huygens, each point on a wavefront becornes a fresh sanres of cecondary
wavelets, which move out in all directions with the speed of the wave in that medium,

*' When waves travelling through one medinm meet the boundary of another medium with 2

differsnt imnadoncs 1hey arm ractly soflatad amd mnelu tonsemlord T oMo
T ey SEpSiiot, SRy AN PRILY (GRS 308 pamay WAnsANed. fh G0N alo
tragsmission amplitude coefficients are respectively given by
Z| - Z:
Ry =5—>
2+ 2,
and
T 22
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* When a wave travelling from a medium of lower impedance is reflected from a medium of Waves at the Boundary of two
higher impedance, a phase change of  takes place. , Media

* Due to the relative motion between the source of sound waves and the observer (listener),
{he apparent frequency of the sound is different from the actual one. This is known as the
Doppler effect. The Doppler shifted frequency (when both approach each other} is given by

. F VT Uy

v = —
vV — Ly

7.8 TERMINAL QUESTION

sin f

. . . . vy
1. Using Huygens™ construction, verily that iz = — = —
Va sinr

2. A sound wave travelling through air falls normally on the surface of water. Calculate the
ratio of amplitude of sound wave that cnters the second medium to the amplitude of
incident wave, Use p = 1.29 kg m2 Speeds of sound in air and water are 350 ms™' and
1500 ms™' respectively. :

3. A rope is made up of a number of identical strands twisted together. At one point, the

- rope becomes frayed so that only a single strand continues (Fig. 7.12). The rope is held
under tension and a wave of amplitude 1.0 cm is sent from the single strand. The wave
reflected back along the single strand has an amplitude of 0.45 cm. How many strands are
in the rope? :

. %ﬂ_ _.f._.‘;-\-...___ﬁ

Fig. 7-12 1 A [rayed rope

4. A car movingal a velocity 20 ms~ passcs Dy a slationary source of frequency 500 Hz.
. The closest distanee between them is 20 m. Calculallc the apparent frequency heard by the
driver as o function of distance, Takev = 340 ms

boundury conditions for longitudinal waves, calculate the amplitude refletiion and

5. Using
transmission coclficients,

7.9 SOLUTIONS
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Waves From Egs. (?.l'l) and (7.12). we note that the reflection and transmission amplitude
~ coefficients are :
a- Z|‘—Z;_Z|/Z}_"|_|/2‘—I_ 1

R = — = = e} = —
T Zi+ Zy ZZ+ 1 172+ 1 3

and
a: ’ 22, . 22\/Z2 2

o ZitZ ZiLF1 3

T=

The negative sign in Ry implies a phase change of 7 at the intérface.

2. From Eq. (7.14) we know that the rate at which energy reaches the boundary is given by

] .

P= 7 2 ws d.

Similarly, the rate at which encrgy leaves the bbundary with reflected and transmitted

waves is given by '
1 ]

P; = "2—Z| u.lﬁaz, + ?Zz u.r%d?

On substituting for a; and gz, we get

_ I 3 Z|-_Z',l 1 Fl I a1 22I 2 2
P = 2 Zuuo(zl +Zz) a; + 5 Zzwo( 7T Zz) a;
Lo i Z - Ly 474,22
S (TR
29N Z+ ) 2+
|
=72|w1'a-f

Since the rate at which energy arrives at the interflace is equal 10 the rawe at which energy
leaves the interface {with reflected and transmitled waves), we can say that energy is
conserved in this process.

3. Reflection energy cocfficicnt
2 = [ Z - 22)1_[(1.43 —39)10° Nm *s ]‘
;=

ZitZaf L (143 + 39) 10°Nm s
_{ 31574y
-( w043 ) 086

This means thal when sound witves are incident on water-steel interface, only 86% of the
encrgy is reflected back.

<4 From Eq. (7.27) we have
v

.

v =r

¥ — g

Rearranging terms, we can wrile

Here v = 3500 ¢ = FO0 1L,

and . = 72kmh ' = 20 ms’
F3s0ms - 20ms oy

| - | ~ 7{K) Hz == &60 Hy
i IS0 ms /

5. Siace the wavelenglh increases, we can say that the star is moving away alang the ling of
sight. This means that frequency decreases. Using Eq. (7.28) for the case of light you can
write

. { ¢
ar = -

LT i 1]

T
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=1+
P
Ly
=y 1—? foru, <l ¢

Since ¥ = ¢/A, you can write

L, _m
;\'“4\( c)

or

__c__ Al’_‘\
u,—.h,( )
Here A = 4100 A A = 4000 Aand ¢ = 3 X 10* ms™

- Hence
3 X 10% ms™
U =—————5—"
4000 ?\
=73 X 10* ms™
=173 X 10’ kms™

TQs '
l. Refer to Fig. 7.13. AB represents a part of a wavefront moving towards the interface

51 53, which separates the two medium say ai
T ) y air and water. Let us
in medium 1 angd medium 2 be v, and v, res ively. assume that wave speeds

X (100 &)

Fig. 7.13 : Huygens' construction (o deduct ihe laws of relructlon

The wavelront will first stike at C and Lhen al succassive poinls towards 2, The point B
on 'the wavefront reaches I} al a time 1 = B2°[2/v later than the poini 4 reaches L. From
each poinl on 51 Ss, a secondary wavelel slaris growing into the second mediuimn at speed
+he Al the instant when D s just disturbed, the wavelet from C has growz’%r time

=y o0 A vy 2nd acquired e Tediuy v

IS U)
i

104 ol replesent tms wavelel oy drawing an 22 of radius CC” with C as czntre. Draw

ceenermans Lf e i thie L) lyyo Ly " ' '
5 wagcut ©C from D to this e I you repesd this precess for other intermadiaie pomis

Latween O and £ vou will observe thal XC™ is 2 common tangent to ail of them. Thus,
DO repreginic the vefracted wavelrant,

" Waves at the Boundary of two
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Waves

a8

From As CB’D and CC” D, you can write )
sini _ B'D/CD _ B'D .
sinr  CC'/CD _CC” , Gy

Using the result contained in (i), you would get
sini _ % _ a constant
sinr ¥y o (i)

That is, the sine of the angle of incidence 1o the sine of angle of refraction of the
wavefront is equal to the ratio of the wave speeds and is a constant. This constant is
known as refractive index of medium 2 with respect to medium |. We denote it by the
symbol u;.

For sound, with medivm ! as air and medium 2 as water

Bz = 023 . :
and for light
piz = 1.33

. =129k m3

pr = 1000 kg m™?
vi = 350 ms”
v = 1500 ms™

Since sound waves are longitudinal, from Eq. (7.12) we have

a 27 — 221/ 23) -
q, o+ 24 1 + (Z/Z3)

Since Z =P ¥, we can wrile

Z P _ 1.29kgm™ X 350 ms”'

Z: paa 1000 kg m X 1500 ms’'

=301 X 10°*%

Using this result in (i), we get

-4
a _ 2(3.01 X 107) — 6.02 X 107
a1+ (3.00 X 107Y

From Eu. (7.11) you can write
[N _ Z'| - Z]
a I+ 2

(22 -1
THZZ) o

X =

For a string under lension, Z « /. So we can write

Z_ fm
Zs - my
Hence

N mmy — 1
omim 41
Assume thut ftrst portion has n surands. Then
-Yao1
RV

Solving this fer n, we find that

~ 1-+2 1.45

X

VST T 05
Hence

[ Lasy
=55
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In this case, the velocity of the car is not directed towards the sound source (Fig. 7.143),
and we have 10 find the component of the velocity vector directed towards the source.
Referring to Fig. 7.14b it is given by

20m

—Se—e——-p

H

0

>
I

(a)

Fig. 7.14 : (a) Observer moving along a line not intersecting the line of molion of source

20m

(b)
(b} The companent of velocky y observer towards the source is responsibie for Doppler shifi.

Waves at the Boundary of two
Media
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Waves

50

x " x
VX + 20 Vo + 200
Then the space dependence Doppler-shifted frequency is given by

v u,
y(x)=,,°_“.i°‘i

o056 = u,

X
=mmu“+a%—————),
V2 + 20!

You can plot this as 2 function of x for — 100 m < x < 100 m. At-x = 0, the car is
moving perpendicular to the wave and at the instant when the car passes this point, the -
driver hears the true frequency, 500 Hz. .

The particle displacement for the incident, reflected and transmitted waves are

Px 1) = a, sin {wod — kix) (1)

g.{x ) = a sin (wot + kix) (i)
and

Ui(x 1) = a,sin {(wof — kax) ' (iii)

The boundary conditions in this case arc :

1.. The particle displacement §(x, t) is continuous at the bofndary. That is, it has the
same valu¢ immediately 1o 1he left and the right of the boundary at x = 0.
2 The excess pressure is same on the 1wo sides of the boundary.

The first condition implics that .
a+a=a (iv)

a ; L . .

for a longitudinal wave, Ap = — E % where E 15 elé.suc_uy. Since E = + p., where
¥ = CF + and g, is equilibrium pressure, we find that p, cancels out on both sides and
the second condition implics that
a'l'- alb! — alyl
ax T ox  3x &
Eq. (v) gives :
- ﬂ’J"l'l_ cos myf -t a,-kp cos i = — ﬂ'gk: COS i sf
giving
kvola, — a) = ks (Vl)
We know that
k| = b

V1
Multiplying by pivi, we gel

I * m,Z

ki = “ T Pive = I

M YPo
as 21 = pvr and v, = ﬁ::k

1
Sirnilarly, you can show that
. 0:923
B ~~

Using these results in (vi}, we find that

nl_-zl_ ( _ a) _ |_|\;Z_\_

o Po

or

Zi{(a, — a)) = Zaa (vii)

Since relations (vi} and (vii) connecting the incident, reflected and transmitted amplitudes -

are exactly the same as in the transverse case, the reflection and ransmission amplitude
coeflicients are also given by the same relations,

Ty
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UNIT 8 SUPERPOSITION OF WAVES-I

Structure

8.1 Introduction
Objectives
8.2 Principle of Superposition of Waves
83 Stationary Waves
Velocity of a Particle and Strain at any Point in a Stationary Wave
Harmonics in Stationary Waves
Propesties of Stationary Waves
8.4 Wave Groups and Group Velocity
8.5 Beats
8.6 Summary
8.7 Teminal Questions
8.8 Solutions

8.1 INTRODUCTION

You have studied in Unit 2 of Block !, how a particle acted upon simuitaneously by two
simple harmonic oscillations gives rise to the formation of Lissajous figures.

You have also read about the general characteristics of waves in Unit 6 of- this block; and of
their behaviour at the interface of two media in Unit 7. In this unit you will study aboul the
principle of superposition of waves. Under certain conditions, the superposition of waves leads
to some interesting phenomena like the formation of stationary waves, beals, wave groups, _
interference, diffraction etc. In the present unit you will study the pheromena of stationary .
waves, wave group and beals. The other two topics, viz. Interferenée and Diffraction, will be
discussed in Unit 9 of this Block.

In the present unit you will study the basic features, espécially the sound producing part of the
woodwine instriuments. There are two basic types of pipes, viz. flute pipe and reed pipe, which
you wilt study in this unit, Stationary waves are formed when two waves of the same angular
frequency (i.e., same w), same wavelength (i.e., of the same wave vector or propagation
constant k} and of same amplitude, travelling on opposite directions superpose on each other.
On the other hand, if two sound waves of slightly different frequencies are superposed, they
produce beats.

Wave groups, sometimes also called the wave packets, are the result of superposition of waves
of slightly differem frequencies. The concept of wave packet is of great importance in the study
of quantum mechanics, which we consider later.

In the next Unit you will study the superposition of two waves, which leads (o the phenomena
of interference. There you will also study about the necessary conditions for the interference of
two waves. Towards the end, you will learn about diffraction of waves and some 1ypical cases
of diffraction phenomena,

Objeciives

After going through this unit, you will be able 1o

@ Describe the principle of superposition of waves

®  Explain the ideas undeddying the formnatiun of stafiunary waves

@ Identily the pasitions of rodes and antinodes on a stationary wave

9 List Lhe characteristics of stationary waves

9  Describe the formation of wave groups

® Compute the value of group velocity knowing the dependence of wave velocity on
wavelength

®  Calculate the number of beals produced if the frequencies of two superposing notes are
known.
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wWaves

8.2 PRINCIPLE OF SUPERPOSITION OF WAVES

In Unit 2 of Block | you have studied the superposition of simple harmonic motions. You saw
that when (wo or more simple harmonic motions act simultaneously on a particle, the

resultant displacement of the particle at any instant of time is simply given by the algebraic
sum of the individual displacements. This can also be extended 10 the case of waves.

Two or more waves can traverse the same path in a given space, independent of one another.
This means that the resultant displacement of a particle at a given time is simply the alpebraic
sum of the displacements that are given (o the particte by the individual waves. In other words,
we can say that the resultant displacement of the paricle is found simply by adding
algebraically the displacements due to the individual waves. This is known as superpusition of
WAvVES.

An interesting case of superposition of waves is that of radio waves. You know that radio waves of
different frequencics are transmitted by different radio stations to hroadcast their programmes.
When they fall on the receiving antenna. the resultant elceiric current set up in the anteona is
quite complex because of the superposition of different waves. Nevertheless, we find that we
can stitl tune to a particular station. That is. out of the many, we can still choose and pick up
the particular wave we want. In other words, if we have a wave group obtained by the
superpasition of a large number of individual waves, one can still separate the different waves
that were superposed. This is indicative of the individual behaviour of waves, which is the

* basis of the superposition principle in waves.

Now you can demonstrate the principle of superposition by considering two pulses trivelling
on a rope in uppasite direction as shown in Fig. 8.1, Before and after crossing each other, they
act completely independently. At the time of crossing the resultamt displacement is the
algebraic sum ol the individual displacements.

I~ N\ -~

Resultant at the
time of crossing —_—

b

s 77 I pye v ey

e

T ITTITT S

ST T

Before crossing

-~ S _/\
Aler crossing

(a) (b)
Fig. 8.1 1 Superpesition of two pulses traveliing in opposite directions

N/

You have also studied in Unit 2 of Block I, the mathematical basis for the superposition of
oscillations. It lies in the linearity of the equation. Consider two waves acting independently on
a particie at any position x. Let yi(x, £) and y+(x, 1) be the displacements of the particle at she
instant of time £ due to the two waves. Then the resultant displacement ¥{x, ¢ of the partrcle is
mathematically written as :

Y 0 =yplx -+ plx, 0 (&1}

You have studied in Unit 6 of the present block, thar @ wave is essentially characterised by its
ampiiiude, anguiar frequency, wave vector and phase. Depending on which ot these
compoaents are same or different, you will study the various phenomena in Physics duc i the
superposition of waves. Let us consider some of these phenomena, For this, vou consider the

superpoaition of the lollowing pair of waves,
[}y = asin (wf — kx) Bna y1 = az sin (wf — kx)

I y = asin (wr— kx) and y: = asin (wf = kx 4+ ¢)
Ile »1 =.asin (wir — kix) and p1 = asin (wat — kax)

52 IV) yi = asin (wf — kx) and ;> = g sin (ot + kx) (8.2)




You will draw the following conclusion from sbove combination of waves.

(a) In case (T) only the amplitude of two waves differ .
Now let us consider the superposition of two waves of same angular frequency, wave -
vector and phase but different amplitude. These two waves are shown in case {T). Now
applying Eq. (8.1) we can calculate that the resultant wave is given by
Y(x, §) = a) sin (w¢ — kx) + a1 sin (i — kx)
= (a1 + a3) sin {wt — kx) (8.3)

Ey. (8.3) implies that the resultant wave has same frequency and phase and the resultant
amplitude is (a1 + a2). It is shown in Fig. 8.2.

i’ {a * 8} sin (wt - kx)

Fig. 8.2 : Superposition of two waves of mme frequency, wave vector mnd phase, bt dfieriig amplitndes
a; mnd 4.
(b) In case (II) only the phase of two waves differ. :
Now you will tonsider the superposition of two waves which have same amplitude,
frequency and wave vector but differ in phase. When such waves superpose, you will find
that the phenomenon of interference will occur. You will study this phenomenon in detail
in Unit 9 of this block.

{c) In case (II), the frequency w and wave vector k of the two waves differ.
Now let us consider the case when the frequencies and wave vectors of two waves differ
slightly. In"such a case, irrespective of phase difference the superposition results in an
interesting phenomenon of ‘Beats”. If however many waves of slightly different frequencies
superpose, then they form waves groups or the wave packels. These give rise to group
velocity, quite distinct [rom the wave velocity. You will study group velocity in detail in
Section 8.4.

(d) In casc (IV), the waves equations have different signs before the wave vector (k). In this
case, the first wave, yi(x, 1) is propagating along the positive direction of x-axis, while the
other wave, ya(x, 1), is propagating in negative direction along x-axis. This implies that
they are propagating in opposite directions. When such kind, of waves superpose then

stationary or standing waves are produced. You will study stationary waves in Section 8.3.

8.3 STATIONARY WAVES

You have just leamt in above section that stationary waves result if two waves of same angular
frequency (i.e, w) and wavelength (i.e. of same wave vector k), and of same arnplitude
travelling in opposite direclions superpose on each other. To realize waves of exactly the same
amplitude and wavelength, it is easier to consider one wave as incident wave, and the other as
reflected wave from a rigid boundary.

The reflection of the incident wave can take place at a fixed boundary (like that of & string
fixed 16 & wall, oi ihe closed cid of #n organ pipe) or at a frec boundary (like the free end ol a
string, or the open end of an organ pipe). We have learnt in the last Unit at a fixed boundary,
the displacement y{(x, ) stays zero, and the reflected wave changes its sign. At a free boundary,
however, the reflected wave has the same sign es the incident wave. In other words, ai & fixed
boundary, a phase change of 1 lakes place, while at a free boundary, na such change of phase
Lakes place.

Let us consider the case where the reflection is taking place at a free boundary. In this case, the
resultant displacement is given by :
¥(x, 1) = asin (wt — kx} + @ sin (wf + kx)

= 2asin w! cos kx (84)

Seperpotition of Waves-1
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Waves

This can be wrilten as :
¥(z, § = (22 oos kx) sin w? ' (8.5)

From Eq. (8.5) you see that the amplitude is given by (24 cos kx) which is not fixed. It is
dependent (or varies harmonically) on the position x of the particle. Further, the resultant
motion has the same frequency and the wavelength as the individual waves.

Looking at equation (8.4) we note that the particles distributed along the x-axis execute
vibrations perpendicular to the x-axis. The amplitudes with which they execute these
vibrations are different at different positions along the x-axis. However, the time period of
vibrations of all the particles is same.

' We note that Eq. (8.5) does not represent a travelling wave since the argument of the sine

function is independent of the space varizble x. We thus see that although we started with two
waves propagating in opposite directions, we have ended up with something that does not
propagalte in space. The wave that does not travel (or propagate) is called a stationary (or a
standing) wave. Since it does not propagate, it transports no energy along with if.

From equation (8.5) it is clear that the displacement ¥{x, 1) is maximum when

2
oosk.r=msT"x=il (8.6)
and minimum when

2 1
ooskr=cosT“x=0 (8.7

. 2 .

To saisfy Eq. (8.6) we require, T“x = prr. Similarly Eq. (8.7) requires 2T" =@2m+ 1)
w/2, with m = 0, 1, 2, ..... These give the points'of maximum displacement al x = 0, A/2, A,
ey mA/2; and minimum displacement at

X = A/4,3M/4, ., 2 + 1) A/4

The points of maximum displacement are called ‘Antinodes’, while those of minimum
displacement arc called ‘Nodes'. The distance between any two consecutive nodes or antinodes
is A/2, while that between a node and an antinode is A/4 (Fig. 8.3).

From the above discussion you have leamnt that a stationary wave resulls due to the
superposition of lwo identical progressive waves travelling in opposite directions. The result is
a non-progressive wave in which the disturbance is not handed over from one particle to the
next. The space {or the region) where the two waves superpose gets divided into
compartments or segments (Fig. 8.3). Each segment ends with points called the nodes where
the displacement of the particles is always zero.

¥
h Antinode Antinode Antinode

[

Node Node
Nl‘-li:

Le d
et
Fig 8.3 : The envelope of 2 standimg wave showirg 'h pattern of nodes and antinodes

The particies al the centrai points of wiese scgraents (catied the anunodes) execute vibrations
with maximum amplitude. The particles lying in between the nodes and the antinodes execule
vibrations with amplitudes lying in between zero and the maximum amplitude. This is shown
in Fig. 84.

The particle a, for example, is always at rest. The particle h always executes vibration with
maximum amplitude, and the particle ¢ always with inicrmediate amplitude as shown in
Fig. 8.4.
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Fig 8.4 : Stationary wave, with arrow-heads indicating the amplitudes with which various particles vibrate

SAQ 1

Derive equation for the displacement of a particle lying on a standing wave on a striog fixed at
both ends. Will the fixed end of a string be a node or an antinode? If the standing wave is in
an open ended air pipe, will there be a node or an antinode at the end? How do you explain
the absence of energy flow in a standing wave?

8.3.1 Velocity of a Parlicle and Strain at any Poinl in a Stationary Wave

You know that the velocity of a particle is defined as the rate of change of displacement with
respect to time. The velocity of a particle in a stationary wave is calculated by differentiating
the resultanl displacement ¥{x, f} with respect to time keeping x as constant. If we differentiate
Eq. (8.5) w.r.L time, we get

dy
" Velocily = 7 240 oS kX COS w! (8.8)
The velocity is maximum when cos kx = £ 1, i.e. at points where x = 0, A/2, A, ..., ";—h

(see Eq. (8.6) and the discussion that fotlows). The velocity is minimum (zero) when

cos kx = 0, i.e. at points where x = A/4, 3x/4, ..., (2m + 1) A/4. It means that the velocity
is maximum at the antinodes where the displacement is also maximum. The velocily is zero at
the nodes where the displacement is zero. At points in between the antinodes and nodes, the
velocity gradually decrcasces from maximum at the antinodes to zero at the nodes. The lgngihs
of the arrow heads in Fig. 8.4 may also bé taken 1o represent the velocities of the particles in
a stationary wave.

The strain on a particle in a stationary wave can be calculated by differentiating the resultant
amplitude i.e. ¥(x, ¢) wort. x keeping ! conslant. If we diflerentiate Eq. (8.5) w.r.t. x we get
strain

dy

—— = — Dok sin kx sin wl. (39
ox

You can show that the strain is maximum at the particle at the nodes where the displacement
and the velocity are zero. This can also be visualised from Fig. 8.4, The particles at the nodes
are stretched by particles moving in opposile directions. The strain is minimum at the
antinodes where the displacement and velocity are maximum. Again referring o Fig. 8.4, we
can see that the particles at the aminodes always move along with the particles at their sides,
not causing much strain on particles at the antinodes.

In case of stationary waves, the particles get divided into segments like the P, Q and R in as
shoum in F:g 8.4. Particles tn one scgment always move along in the same direction. When

m P move down Thnt is, in any iWo adjauznl scgments, pamclm move m opposuc dll'eCUODS.

All particles in a particular segment reach Lhe extreme positions at the same time, and also
pass through the mean positions al the same time. This is shown in Fig. 8.5. All this is possible
since alf particles have the same time period T- but have different velocities. These particles
which have 1o cover larger distances have grester velocities. Those wlnch have to cover the
smaller distances, bave smaller velocities.

g
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Fip H.5 ; Stativnury waves on g siring fixed at both ends. Shape of 1he striny at different 1imes during a time
period iy shown.

Now coming to the individual particle, we can see when its velocity is maximum, and when it

15 zero, Wriling Eq. (8.8) as :

aY 4 2w 2

FTRE Tay Cos iy X GOs Zmt
_ 4ma s 2w
= T cos _’\ X Cos ——T i

You can see thal the pariicle velocity is zero lor t = T/4 and 3774, and is maximum for

t =0, T/2 and T. Thus during each time pericd, the panicles of the medium have their
maximum velocity when they pass through the mean position, and have zero velucity when
they are at the extreme positions. Now in the next section you will study the conditions for
producing differeni harmonics in stationary waves.

8.3.2 Harmenics in Stationary Waves

All musical instruments based on strings utifise the stationary wave phenomena. A string
clamped at both ends allows stationary waves with some fixed wavelengihs.

If the length of the siring is [.. the wavelength of the possible stationary waves on this string,
starting from the longest wavelength are

= 2L, L, 2/3L, L/, .... elc. (See Fig. 8.6)

These wavelengths determine the frequencies o escillation of the suring through the relation
Av =v. Here v the velocity of the transverse wave on the string, [t is given by the relation

T
v=y/ —

[
wiere T b iie woosivn in the sinng, und g i tae lincar mass density {mass per uait icagin) of
the string.

The lowest ffequency v, of vibration is called the fundamental frequency, It is given by :

v 1 fT
Vo == 5p -;' (8.10)
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Fundamental frequency {1st harmonic)

= G
b

gcmé =3
©

Fig. 8.6 : Alowed stationary waves on a siring of length L clamped st ils ends

The other frequencies arc called the overtones, ana are integral muitiples ot the fundamental -

frequency v, (See Fig. 8.6).

Ti'xe fundamental frequency is also called the first harmonic. The first overtone, with frequency

v = 2u,, is called the second harmonic. The second overtone, with frequency » = 3, is

called the third harmonic, and so on.

The musical instruments based on the principle of standing wave are flute and reed etc. The
primary élements, which determine the tone quality and overall sound are (1) the source of

noisc or vibration (2) the size and shape of the bore, and (3) the size and positions of the {inger

holes. The quality of woodwind tones depends on the combination of physical and musical

experience. From the physics point of view, the air is stored under pressure in the wind chest.

A large reservoir is required to keep the pressure steady, while the vanious combinations of
notes are played with fingers. In the above instruments one end is open, making them open

ended organ pipes. The closed end of an organ pipe acts as a fixed boundary, while the open
end as a free boundary. At the closed end there is always a node, and at the open end there is

always an antinode.

For a pipe having one end closed, thg fundamental wavelength is A = 4L. This gives the

¥ , '
fundamental frequency ». = —. In such a pipe, the cven-numbered harmonics are absent

4L

{See Fig. 8.7). For a both ended open pipe, the fundamental wavelength is A = 2L, giving

LY

fundamental frequency », = 5L

<

Fundamental

>

3rd harmonic

ayahd
D N N

5th harmonic
= i_ fa)
&% aL

>

Fundamental

XX

2nd harmonic

N N

4.th harmeonic

= _l,;— (b)
YY)

Flg. 8.7 : Modes of vibrations of fongitedinal siadonsry v:aves in organ pipes with {2) one end closed, amd

{b) both ends open
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(2) A piano string of leggth 1m is fixed at both ends. Its mass per unit length is 0.015 kg m "’
is used to strike a fundamental note of frequency » = 220 Hz. Find the tension to be applied
to the string. )

(b) Estimate the frequency of the fundamental mode in a one end closed organ pipe of lengpth
1.0 m. Use velocity of sound v = 350 m/s. What happens to frequency if the pipe is
overblown? )

8.3.3 Properties of Stationary Waves

The properties of the stationzry waves that distinguish them from progressive waves have been
hightighted in the forgoing discussion. Can you now write down the various points which
characlerise the stationary waves. After doing this, compare your points with the ones listed
below :

i} Siationary waves are not progressive. In these the disturbance is not handed over from
one particle to the next.

ity The amplitude of each particle is not the same. It is maximum at the antinodes and zero
at the nodes. In between it gradually decreases from that at the antinode to the one at the
node, i.e. zero.

iif) The distance between two conseculive nodes or two consecutive antinodes is half the
wavelength of the stationary wave. The medium splits into segments, with length of each
segment equal to half the wavelength.

iv} All the particles between two consecutive nodes are in the same phase, i.c. they reach
their maximum and minimum displacement positions (mean positions) at the same time.
The phase of particles, in one segment is oppasite 10 that of particles in the adjoining
segmenl.

v) The velocity of particles at the nodes is zero. The velocity of particles at the antinodes is
maximum. For particlesin between, the velocity gradually decreases from that at the -
antinodes 1o the one at the nodes (i.e. zero), '

8.4 WAVE GROUPS AND GROUP VELOCITY

So far we have considered the superposition of two identical waves travelling in opposite
directions to give Fise 1o stationary waves. Now let us see what happens when two waves of
slightly different angular frequencics w) and w, travelling in the same direction, superpose on
cach other (Case II1). To avoid unnecessary mathematical complexities, we take the
amplitudes of the 1wo waves to be equal. The superposition of such twa waves is given by

Y(x, 1) = asin (o — kix) + asin (waf — kax)

— (& —w)t — (ki — k
= 2asin {w) + w} > ki + k;).r] CDS[ (e — w)f - (k1 X 8.11)
If i and w;, and similarly &, and &2, are only slightly different, we can write
wi —wr = Awand k| — k; = Ak ’
Further, wriling
+ - Ky T ka
oy = 2 5 t and k,. = —
z p
Eq. (8.11) becomes ;
Aw Ak )
Ty N = taaun l'—bvr*rw{——-l-_.___.:‘ '8. ~
Yo it = 2asin {waf — ko) ey P {8.12)

Now let us see what the new wave form represented by Eq. (8.12), looks like. Firstly. its
amplitude is twice that of the amplitude of either wave. Secondly, it is made up of two parts.
The faster varying part (i.e. sine part) has a {requency which is the mean of the fréquencics of
the two component waves. The-slowly varying part (i.e. cosine part) has a frequency which is
half of the difference of the two frequencies. The propagation vector of the slowly varying part
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of the superposed wave is 4k/2. IL'acts as an envelope over me faster varying part as shown in
Fig.8.8.

AT s
1

Envelop of frequency
Ao @ -2
2. 2
Fig. 8.8 : Superposition of (wo waves of slightly different frequencies w; & w»

The superposition, as you can see in Fig. 8.8, resulls in the formation of groups (or segments)
called the wave groups {or the wave packets). A wave group can travel with a velocity which
may be different from that of the individual waves, or of the resultant wave. The velocity of *
the wave group is called the group velocity. The ratio of angular frequency and wave vector of
the stowly moving part of the superposed wave is called group velocity. It is given by the
following relation :

Aw/2 _ Awm

Ak/2 ~ Ak (8.13)

Ve =

If a group consists of a number of component waves with angular frequencies lying between
w; and e (with w) = w;), and similarly in wave vector k. and k; (with |&\| = |k2{), the
group velocily V; is then written as :

\!_‘A_m_ﬁ,—. 8
FTAK T @ 8.14)

Here dw and dk represent the spreads (gaps between the maximum and the mifimum) in
angular frequencies and propagation constants of the component waves that go to make a
wave group.

The velocity of the resultant superposed wave is called the i)hase velocity. You can obrain this
using Eq. (8.12), i.e.
Wy

"~ %o

v

If, however, the individual wave velocities are equal, i.c.
(k) w2

T ke

wtwy Akt kv
kv + k¥ ki + ke

w w22 Pk| —I-"kz_
ki—k/2  ki—k ¥
1.e. the group velocity is equal 10 the phase velocity.

then v, = =y

and v, =

The group velocity is a more fundamental quantity in physics as the energy is transferred by
the wave with the group velocity. The relation between the phase and the group velodities is
given by ;

,J g

Ve =

& =@
which on S:mplll'cauon gives

""H‘E (8.15)

If we write,

k=2n/\

Then dk = ——ild)\

Superposilion of Waves-1
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6l

‘Inserting this in Eq. (8.15), we get

: 2T av
V, =v+ &8 4V
& A —2mAl(dn)
_ v (8.16)

di\
This gives another relation connecting the phase and the group velogities,

The wavelength of the resultant wave is given by

2n
~ Tk
and that of the envelopping wave by:
A= 2r _ 4rxm
< Ak/2 Ak

since Ak is very small compared to k, A, >> A .

If A1, and A2 represent the wavelengths of the component waves, it can be easily shown that

A Ay (8.17)

2 M- A

This gives the length (or the extent) of the wave  group. We can sce from Fig. 8.9 that the
length of the wave group is half of the wavelength of the enveloping wave, i.e. it is equal to

AR
To illustrate the difference between phase and group velocities, we consider the striking

example of waves in deep water-called "gravity waves”. These waves are srongly dispersive.,

For them the phase velocity is found to be proportional to the square root of the wavelength
ie.
_ 172
vp=CA
or

v=CK " (Since K= ZT“)

Here, the new constant Cj= CV2x

vp= % therefore w= C| x'?
Differentiating « with respect to &, we get
] dw l -2 _ 1
B -2 9K T

That is the group velocity for gravity waves is just half of the phase velocity. In ather words,
for these waves, the component wave crests move faster through the group as a whaole.

‘yr(-_'— Kpﬂz/ﬁ}"‘l\l'_._’_'l

e wave graup————» —- 2“‘_; :
'y
Fip. B9 - Wave proup and its onient
SAQ3
The phase velocity ol 3 wave in a cerain medium is icpresented by :
v = C[ + C:u\

where C; znd C; are constants, What is its group velocity?

8.5 BEATS

‘We have seen above Lhat the soperposition of two waves of slightly different angular

frequencies w) and w; feads to the formation of wave groups. You may have noticed from,_

e o) =il ey
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Figs. 8.8 and Fig. 8.9 that we have plotted the resultant displacement Y(x, r) aganst distance x.
This may be called the superposition in space. For this we kept the time ¢ as constant, We may
pow consider another type of superposition, where we may plot ¥{x /) against £, and call it as
superposition in time. For this we may keep x as constant.

The superposition in time for sound waves leads to the interesting phenomenion of beats. The
beats ere loud sounds which we hear at regular intervals of time depending on the difference in
frequencies of the two superposing waves. The beats are often used by musicians for toning
their instruments.

Let us consider two waves of slightly different angular frequencies w; aod w2, and of the same
amplitude a, proceeding in the same direction, as we have done in the last section. Let us fix
the spatial coordinate x in Eq. (8.10), say, at x = 0. This corresponds to an observer standing
at x = 0, and watching the waves passing by. He will observe a resultant waveform.given by :

Y(x, ) = Y(0, ) = asin (anf) + asin (w2f)

=2asin w.,:cas%‘”—r (8.18)

Like the earlier case discussed in Section 8.4, Eq. {8.18) indicates that the amplitude of the
resuliznt wave at a given point is not constarit, but varies in ime. This has a angular frequency

+ . L .
Wee = 9'2—‘“2 Its amplitude varies between 2a and zero, because of the presence of the
Aw '
oo (T #) term. This term acts as an envelope on the sine term.

If w, and w; are nearly equal, Aw is small. In that case the amplitude of the resultant wave
varies slowly. The periodic ris¢ and fall of this wave leads to the appearance of beats; or to the
hearing of loud sounds at regular intervals of time.

Beat are heard at the maxima of amptitude (See Fig. 8.10). They occur whenever

cos A—;— ¢ = =+ 1. This is because the intensity of sound is directly proportional 10 the square

of the amplitude. The maximum amplitude occurs twice in every time period associated with
| the angular [requency 9-22 . Thus the frequency of beats is simply the difference of the two

component frequencies i.e. (w1 — w2).

Aw
in terms of frequencies » and vy, (he beat frequency is Av = vy — ¥ = 5 The time

1
elapse between any two conseculive beats, called the beal period = Ay (see Fig. 8.10).

Fig. 10 : Formation of beats due (o superposition of Lwo waves of nearly the xame freqoency.
SAQ 4
Wica a cerisin noic of 2 piano is sounded wiih a {uniig fork of requency 56U Iz, & beats i

heard every second. Find the [requency of the pote.

8.6 SUMMARY

1. When two waves travelling through the same space superpose on each other, the resultant
displacement at any point is given by the algebraic sum of the individual displacements.

2. Stationary waves Tesult because of the superposition of two waves of same amplitude,

Superposition of Waves-1
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frequency and wavelength travelling mn opposite arections ang conlined betwesn two
points, '

3. On astationary wave, nodes and antinodes are points of zero and maximum
displacement, respectively. Distance between any two consccutive nodes or antinodes is
half the wavelength of the stationary wave.

4. Both transverse and longitudinal waves can have different modes of vibration.

3 Superposilio:_'t of two waves of slightly different frequencies travelling in the same
direction gives rise to wave groups, and beals.

6. Number of beats produced: per second is equal to the difference in the frequencies of the
two waves.

7. The velocity with which a wave group travels is called the group vetocity. It is equal to
the wave velocity if the two component waves have the same velocity; otherwise, it is
different from the wave velocity.

8. The smaller is the difference between the wavelengths of the component waves, the

greater is the length of the wave group.

8.7 TERMINAL QUESTIONS

T8 it

T TRTTO TR

1. Two points on a string are observed as a travelling wave passes them, The pointsare at
X1 = 0and x: = | m. The transverse motion of the two points are found o be as
follows :

2 =02 sin 3wt

Y2 =02sin (3m + 7/8)

{8) What is the frequency in herz?

(b) What is the wavelength?

(c) With what speed does the wave travel?

2. Fifty wning forks are arranged in order of increasing frequency and any 1wo successive
forks gives 5 beats per second when sounded together. If the last fork gives the octave of
the first, calculate the frequency of the lateer. (A note is octave of another note if its
frequency is double that of the other )

3. A closed pipe, 25cm long. resounds when full of oxygen, 1o a given wning fork. Find the
length of a closed pipe, full of hydrogen which will resound to the same tening fork.
{Velocity of sound in oxygen = 320.m/s and velocity of sound in hydrogen = 1280
m/s).

4. The phase velocity (1) of transyerse wave in a crystal of atomic separaton d i given by

sin (kd/2)
(kd/2)

where Cis 2 constant. Show that the group velocity is € cos {(kad/2).

=

8.8 SOLUTIONS

SAQ |
Since there is & phase change of 7 on tefiection at the fixed end,the reftecled wave is given
by : '

Fr = — asintod + kx)

This teads to the resultant displacement Vix f)as:
¥(x. ) = asin (wt — kx) — asin (wr + kx)
=~ 2asin kx cos u¢
= A COS w!
with A = — 24 sin kx.

e e B TE



At the fixed end, there is always a node, as the displacement is zero. In open ended pipes, as Superpc'lfillon‘_ol' Waves-1
shown, there is always an antinode at the epd.

A standing wave is formed because of a positive x direeted incident wave, arid a negative x C
directed reflected wave. Each carry the same amount of energy in opposite directions. The net
cnergy flow is thus always zero. -";;‘j" open

{a)

SAQ2
(a) Wavelength of fundamental mode

A=2L=2XlIm=2m - =

Velocityl of wave = 220 Hz X 2m = 440 m/s Open Open

T end (b) end
From v=1/ —, T=
K
= (440 m/s}1 X 0.015 kg/m
=29 X [0'N.
(b} Wavelength of fundamental mode
A=4L =4 X 1lm =4m
v 350m/s
Frequency v = Y T am o 875 Hz == 88 Hz.
By over-blowing the pipe, pitch jumps by a factor of 3 giving the ncxt harmonic with
frequency v=3 X 88 = 264 Hz -
5AQ3 -
We know thal
dv
V‘ = .p— h K d
. v
For the wave in question, e G
Insenting in above equation,
v, = +Cz.\—')\C:=C|
SAQ4
Let the frequency of the note be v, Then
6 = [560 — v}
" v = 554 Hz or 566 Hz
In this case, the frequency of the nole cannot be found without ambiguity. Hawever, it is
cither of the above two.
TQs
I. (@) v=15Hz '
6
. = — = 7 -y 1 o
() A en—1™" 1, 2,3 .., for +ve moving wave.
~ 16 m,on=1273.. for +v i
T len+ 1™ "= 123, for +ve moving wave,
{c) U=+8/5msselc,
¥V = — 24 m/setc,
2. Let the frequency of the first note be .
Then the frequency of the Second fork = n + 5 = n + (2—1)5
Frequency of the Third fork = n + S+ 5=n+ 10 = n + (315
Frequency of the Fourthfork =n + S+ 5+ S=n + |5 = pn + 4 - 15
Frequency ol the Fifth fork = n + 20 = n + (5 - 1)5
Therefore the frequency of (he 50th fark '
=R+ (30— 1)X5=n+ 245
Since the frequency of 50th fork is 2n then
n+245=2n
Son=245Hz
3. For the first pipe, the fundamental frequency -
by = — 63

44
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where ¥, is the velocity of sound in oxygen and /; is the length of the Ist pipe. For the

second pipe, the fundamental frequency is
Va

V-z=4—!2

Where ¥, is the velocity of sound in hydrogen and /; is the length of the pipe.

Since both the pipes resound to the same frequency, therefore

N S 4}

ve=mor al, = a
4
Lh= —I}-'-'- X ]
Substitutions the values of V,, V, & 4, we get
1280 ms™'
2 =—§Oi_lx 25 cm = 100 em
ms
Group velocity
dw

S
and |
w = kv we have

e sin (kd/2)

- {(kd/2)
Now

. .sin(kd/2)

= kv =k O

=z sin (kd/2)

or
v = dw _ 2C° kd d

B T g s )y
ur

ve = C’ cos (kd/2)
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UNIT9 SUPERPOSITION OF WAVES-II

Structure

9.1 Intreduction
Objectives

9.2 Interference
Cobherent Sources
Inierference berween Waves from Two Slits
[niensity Distribution in Intetference Pattern
[oterference in Thin Films

0.3 Diffraction
Different Types of Diffraction : Fraunhofer and Fresnel
Fraunbofer Diffraction by a Single SLit
Diffraction at m Straight Edge

9.4 Summary

9.5 Terminal Questions

9.6 Solutions

9.1 INTRODUCTION

I'n the last unit you have studied the principle of superposition of waves and employed it to
study the phenomena of formation of stationary waves, wave groups and beats.

You have also learnt about the superposition of twa waves which have the same amplitude
and frequency but differ in phase. When such waves superimpose on each other, the
phenomenon of interference is said to take place. For producing interference, the sources of
vsaves must be coherent. That is they must emit waves with zero or constant difference of
phase. In this unit you will study how coherent sources are produced, and how intensity varies
in an interference pattern. You will also lears about the appearance of colours in thin flms of
oil spread over water.

The phenomenon of diffraction which results due 1o the superposition of many waves of same

amplitude and frequency, but differing slightly in phase, is usually referred to as the bending of.

waves round the corers, Because of this phenomenon, we are at times inclined to think as if
waves do not travel in straight lines. There are two classes of diffraction patterns, called
Fresnel and Fraunhofer classes of diffraction. You will learn that the distinction between these
two types of diffraction is related to the relative separations between the sources of waves and
the obstacles (or the apertures} producing the diffraction patterns.

Both interference and diffraction are very importaat phenomena in physics. They have
contributed immenseiy in justifying the wave nature of light. The difference between (he two is
quite subtfe. Interference arises because of superposition of waves originating from two (or
more} narrew sources, derived from the same source. Diffraction arises from superposition of
wavelets from differenl numerous parts of the same wavefront, as will be discussed later in this
unit.

In Unit 6, you have studied about different kinds of waves like sound and light waves. You
have also studicd that sound waves are longitudinal while light waves are transverse. Both give
rise to the same phenomena when waves superpose on each other. Basically whatever is true
for one kind of wave is also true for the other. i light waves show the phenomenon, of
interference and diflraction, so do the sound waves. Light wave effects have to be obsérved
while sound wave effects have to be heard. Since the wavelength of sound waves is much
greater than the wavelength of visible region light waves, the sound wave effects are in general
on a larger scale compared to the cffects of the light waves.

Objectives

AfL.r going through his unit, you will be abic 1o
give examples of coherent sources

@ derive the condition connecting the path difference between waves from two coherent
sources and the wavelength of the waves used for getting maxima and minima of intensity
on a screen placed in the path of waves

@ outline the variation of intensity in an interference pattern
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explain the principle associated with the appearance of cotours in thin films
explain the phenomenon of diffraction .

explain the diffraction oblained by a single slit, and

describe the intensity distribution in a diffraction pattern.

9.2 INTERFERENCE

In Unit 8, you have studied the superposition of two waves. You have seen that under certain
special condition superposition leads to the phenomenon of interference. We will now study
the phenomenon of interference in detail. Let us consider the superposition of the following
two waves :

» = asin (wl — kx)

~and

y2=asin{wl — kx + ¢)

_ These two waves have the same angular frequency w and the sume wave vector k. and are

travelling-along the same direction. They have 4 phase difference ¢ that remiing constant with
time. Can you determine the énergy distribution after thisse waves have superposed? IF you iry,
you will find that this distribution is not uniform in space. The encrgy is found Lo be
maximum at certain points and minimum {or probably zero) at athers. This type of encrgy
distribution in space is known as an inierference pattern.

In Fig. 9.1, the interference pattern of two waves in a shallow waler tank is shown. Tere S,
4nd S; are two sources which produce circular waves on the water surface. The sources 81 and
S, have (o be adjusted in such a way that the waves produced by them on the surface of water
are in constant phase. The resultant of these waves will produce an interference patiern. When
the crest of one wave fatls on the crest of another wave, a stronger crest (i.c., one wilh larger
amplitude) is produced. Similarly, when a trough of one wave falls on the trough of another
wave, a shallower trough is produced. However, when a crest of one wave mees a trough of
another wave, theéir effects cancel out. Thus it Jeads to doubling of the amplitude al some
points and its reduction to zero at others. This leads 1o, what we call. ‘an interference patiern’.

Fig 9.1 : Imerference an the surface of waler waves.

in most intederence experiments performed in the taboratory, the interference pattern is in the

form of fringes. The interderence fringes are alternately bright and dark bands, s shown in Fig. 9.2.

H\I

. ight [ri
Dark fringe Bright fringe

Fig 9.2 : Interference fringes.
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another, or wherever the trough of one falls on the trough of another. Wherever the crest of
one falls on the trough of another, & dark band is produced.

From the above discussion, we can draw the conclusion that for producing an interfexence
pattern, you require basically two sources. Now, the question arises, what should be the pature
of these sources? .

921 Coherent Sources

For producing interference we require two coherent sources. Let us now discuss what coberent
sources are and what their special properiies are.

We find from experience that to have a stable and a well defined interference pattern, the two
sources must emit waves either with zero, or with constan difference of phase, say,.¢. If the
sources emit waves with zero or constant difference of phase, they are called coherent sources.
How can we obtain such sources? The easiest way to obtain coherent sources is.to obtain them
fram the same original source, -

One way 1o obtain such sources in optics is 10 put an opaque screen containing two slils in the
path of waves emitted.by a single source, as shown in Fig. 9.3. The waves originating from the
slits have zero, or a constant difference of phase. When these waves overlap, &n interference
pattern is obtained. This you will study in detail in Subsection 9.3.2.

| <z

Flg.9.3 : Two coherenl sources 8, and §; obiained [rom u singhe surce § in sn optics experinenl

In sound, two coherent, sources may be obtained by dividing the original longitudinal wave
into two parts as shown in Fig. 9.4. Here one part goes via path I, while the other part goes
via path {1. These parts combine again to produce interference. The intensity of sound art any
point czn easily be noted, though qualitatively, by lislening to the sound around this point.

d d
’*
Source 11 Lath 1l _\Qﬁﬁ
X
q { ¢ e
77
Source | Path |

Fig 9.4 : Coherent sources. Path L and L lor producing interference of sound waves

Let us row pause for a minute and think as to what will happen if instead of two coherent

sources we use two independent sources. We find [rom experimentation that if we use any two

independent sources, interference pattern is not produced. This is because with independent

sources, the phase difference bétween the waves changes rapidly and at random, giving rise to

fast changing interference patterns. Two independent light sources just give a general

illumination on the screen. 67
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SAQ1

* Can two small bulbs of 60 W cach placed behind two slits form two coherent sources for

interference purpose? If not, why?

9.2.2 Interference of Waves from Two Slits

In the last section, you have seen how two coherent sources can be formed from a single
source. In the present section you will study the formation of an interference patiern due to
such a system. Let S be a point source of the waves, Here (Fig. 9.5) S) and S: are two narrow
slits which-are equidistant from the source. A screen MN is kept parallel to the plane of the
slits. The screen is at a distance D from the mid-point of the slils. Since the slits are equidistant

from the source, the wavefronl reaches the slits S| and S; at the same time ie. with zeto phase
difference,

- Light

otensity

Scresn

Fip 9.5 ; Sel up for observing interference of waves

The waves from slits S, and Sz, separated by a distance 4, are in phase with each other.
Whatever phasc difference gets created subsequently between the waves from the two sources
1 dhue Lo their travelting different distances. The shits S, and S» act like coherent sources and A
waves of angular frequency o and amplitude A, Lel us consider a point P at a distance of x
from § and x; from S Lel these distances be sufficiently large compared to d. Let the
displacement at P due 1o the waves from S; be

v = A sin {wt — &xp) 9.1
then the displacement at 1he same point due 10 source S will be
y2 = A sin (wt — kx)) 9.2)

It is clear from Egs. (9.1) and (9.2) that the path difference {i.e., the difference between the
paths covered) between the two waves at P is given by (x; — xy). This will lead to & phase
difference of '

2
5= —:— (x: — x7) (9.3)

" This is because the phasc difiercnce is always associated with Lhe patn difterence according lo

the relation
Phace difference  Path difference
2 - A

Due to the superposition of waves al P we get
Yy=ntn
= A [zin (ws — kxi) + sin {wf — kx2)] (9.4)

In the expanded form Eq. (9.4) can be written as
¥ = A [sin wt cos kx) — cos wesin kxn + sin wf cos kx; — 008 wi sin kx;)
= A (cos kxy + cos kx) sin i — 4 (sin kx; + sin &x;) cos wf (9.5)
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The terms in parentheses are constant in time. Let us write

A(coskx) teoskx)=A,cosd (9.6)
and )
A (sin Jxy + sin kxz) = A, sm & 9.7

s0 that Eq. (9.5) can be expressed as
y=Asinwicos ¢ (— coswlsind)

=A;sin(wf— ) - (9.8)
Using Eqs. (9.6) and {9.7), we pet

AP = A% (cos kxy + cos kx;)t + A(sin kxy + sin &xz)’
= 2471 + cos kx| cos kx; + sin kx; sin kx2)
=247} + cos kix2 — x)) = 242 ] {1 + cos &) 9.9)
where, we have used Eq. (9.3) for the phase difference §. Dividing Eq. (9.7) by (9.6), and
expressing the sum of sine and cosine terms as produced, we get
. sin kx, + sin kx
cos kx; + cos kxp
ki, + x3) k(xy, — x)
2 T 2
k(x + x1) k(x, — x1)
7 T2

x + x;
)

x + x:
)

tan ¢ =

2 sin

2 cos

Lank(

(9.10)

ord = tan”' k(

Eqg. (9.9) gives us an expression for the intensity of the resultant wave at point P. as

Tadl=24"(1 4 cos §) (5.11)

or

] o 4A? cos’ /2

clearly, when cos 5/2 = £ |,

the intensity / o 44°

which is the maximum intensity and may be denoted by .-

(9.12)

Now we calculate the position of maxima. Let d be the distance between the cenires of the
two slits, 6 be the angle at which we observe the beams and (x: — x1) is the path difference
belween the 1wo waves,

Then from Fig. 9.6,

Xy — X

d

sinf) = ordsind = (x: — x))

Maxima in tntensity are obtained whenever this path difference is an integral multiple of A, the
wavelength of the waves used. Thus for maxima,

dsind =nhwithan=20,1%2 .. (9.13)

Interference minima occur whenever this path difference becomes an odd iniegral multipte of
A2, e

dsinf = 27 + 1) X2 withn=0,1,2, ... (9.14)
A
A
e ‘l‘ Seataiats : -
A"
j\
d Y
l (x.g "IXIJ

Fig 9.6 : Relation between d and§.
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sin € + sin L)
C+D

= 2sin

s C FoosD -
cC+D

=2cox
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SAQ2

Light passes through two narrow slits with = 0.8mm. On a streen 1.6m away the distance
of the second order maximum from the axis is 2.5 mm. What is the wavelength of the light
used? )

In our discussion 50 far, we have assumed that the two waves have equal amplitudes. If,

however, we suppose them: o have amplitudes a; and a; respectively, then one can show that
the resultant amplitude 4 will be given by -

A’ =a’ + o’ + 2818, 0056 (9.15)
In this case the maxima and minima of intensities (as will be shown i6 Subsection 9.2.3).
become :

Iou = (@ + )’

I = (@1 — @)’ } . (9.16)
with their ratio as '

fou _ (@ + a3)’

Lin (a1~ @) _ (8.17)

9.23 Intensity Distribution ir Interference Paitern

We have seen that the two waves of amplitudes @, and a; and having a phase difference, 8, are
superposed, the resulting intensity 7, is given by
I=d4"=a + a;® + 2a10; cos §

To study the vaniation of intensity with phase difference, 8 let us plot a graph of 7 v 8. This is
shown in Fig. 9.7. When the phase difference is 0, 2m, 4w etc., cos § = 1. We then have
maximum of intensity, i.c.

ha=A"=g +a’+ 202

= (a1 + @)’ . i8)

(&1 +a z)J

(2 + a2} h

L 2 T 4w 5T

Fig 9.7 : Graph between { ant &

On the other hand wheaever the phase diflerences s it, 3m, Str, etc. cos § = —1. We then
have minimum of intensity, i.e.
in=A=a’+a’— 2a\a;

= (@ —a) {9.19}
For a particular case, when the amplitudes ora squalis, 2, = g, = G, ihe intensity vaie
from a maximum of 42’ 1o 2 minimum of ze7o. In the case of light waves from a
monochroimatic source, one would observe the dark fringes of zero intensity separated by
bright fringes.

- The infensity distribution curve shows that when the two waves arrive at a point on the screen

(exactly) out of phmse, they intesfere destructively and the resulting intensity (or energy flux) is
aer0. Whatever amount of energy is lost from a dip in the zero intensity is, by energy

. comservation, found to be redistributed in the nisximum intensity peak. .

We have seen carlier that for waves of equal amplitude, the intensity can be written as
I'= 251 + cs&) = 4a* cos® 5/2.

T AT




Since the average value of cos” 2 is 1/2, the dotted line at / = 24" in Fig. 9.7 is the average Seperposition of Waves-I1
intensity, which is actually the sum of the separate intensities from each slit.

It can be seen from Fig. 9.5 that the path difference between the waves mcl'iing Pfrom S,
andS': = (x; — x1) = d'sin 0. If 0 is very small, and is measured in radians we can use the
approximation

sinB =1tan6 =0
Using {9.13), we can write for maxima

dsinf = d%‘l = A
giving

A
I = "3 wheren =0, 1,2, ...

where p, is the distance of the #™ maxima from the point where the perpendicular bi.'_;e'cto»r of
the line joining the two slits meets the screen.

Wriling the pasitions of two adjacent maxima as
nD '

Jo =

d
and

D
Pt =+ )= A

the separation Ay between any Iwo consecutive maxinia (or the fringe width B) is
D

B=ywi —p =" ‘ (9.20)

This shows that as long as @ is very small, the separation between the two consecutive maxima
of intensity is independent of n, i.e., the maxima are evenly spaced. Similarly, il can be shown

. . ., D : )
that the separation between two adjacent minima is also equal to ——, and that they too are

equally spaced.

SAQ3
(2) IMthe two sources S and S: in Fig. 9.3 emit waves (i) in phase, and (i) out of phase by
™, discuss the intensity of resultant wave along the perpendicular bisector of S, and S-.

tb) If rwo waves of amplitude ratio 5:1 inlerfere, deduce the ratio of intensitics at maxima
and minima.

5AQ4 :

Two loudspezkers connected to 2 common amplificr are 5m aparl, As on¢ walks alonga'
straight path 100m away from the speakers, 2t what spatial period does the intensity vary?
Assume that the wavelength of sound waves = 0.3m.

The interference of light also explains the origin of beauliful colours from the oil films on
walter or soap bubbles. In the nexi section, we attempt to discuss these in brief,

9.2.4 Iaterference in Thin Films

You have studied the relations for bright and dark [ringes in Subscction 9.2.3. These relations
will be used 1o account for the colours in thin films.

Consider a ray of light A8 incident on a thin film of uniform thickness 7 and refractive index p
as shown in Fig. 9.8. A part of this is reflected along BC while the remaining part is refracied
along B into the film. At is again partly reflected along DE. The ray DE partly emerges
v lire &t alung £¢, which s paraliel o 8C. The incident ray thus divides at B imo two
beams of different amplitudes, out of which the refracied beam suffers multiple reflections at
D, E, etc. EH is perpendicular from E on BC.

The path difference between the rays BC and EF in the reflected system is

w(BD + DE) ~ BH

* This can be shown 1o be equal to 2t cosr, ie. 7

T TTATI T IR

BT Cr b e

e R

B L et



. Wiaves

t

.

-
-
1 -
e e ey i o g — i p—— s

-
-
Ty ——

Fig. 9.3 : Interference o thin flme BD is extended to | 0o that BD = DI, The puth difference between
the refiected ey BCand EFa g (BRDX DE) = p @I = 2uce

Paih difference = 2 cos r . 3.21)
where r is the angle of refraction in the film. We have already leamnt that a phase change of =
takes place on reflection at & denser medium. This is equivalent to a path difference of A/2.
The ray BC is due to rellection at a denser medium. Hence the net path difference between the
reflected rays BC and EF is given by : '

Path difference = 2ptcos r — A/2

The Slm appears bright when

2ureosr — N2 =nA (9.22)
and dark when

2uicosr — A2 =(2n+ 1)A/2 (9.23)

We thus see that with monochromatic light altenate bright-and dark [ringes are obtained.
With white light, which is a mixture of several colours, coloured fringes are obtained.

We have seen above that he path difference depends on p and 1, apant from 7 and A, Path
difference is different for different cofours as p is different for different colours. Similarly, for
different angles of incidence, the angles of refraction r are different. Viewing it from difterent
direction shows different colours. These alt lead to the appearance of colours in thin films.
These arise because of interference of light. '

93 DIFFRACTION

It is experimentally observed that when a bean of light passes through a smiall opening (a2
smail circular hole or a narrow slit) it spreads to some extent into the region of the geomctrical
shadow. This is known as diffraction of light.

Consider a point source of monochromatic light S as shown in Fig. 9.9. Place an obstacle, say
a penny or a sharp razor blade, half way between the source and the screen. Following the
rufes of geometrical optics, we expect to see 1 well-defined and distinct shadow as shown in
Fig. 9.9. Now you carefulty examine the shadow. If the experiment is performed in a dark
toom and the wavelength of the light uscd is of the order of the size of the edges of the
obstacle, you will find that the edges of the shadow are not sharp, Inside the shadow, near the
edges, the intensity of light gradually decreases. Outside Lhe shadow it gradually increases,
forming alternatively bright and dark [ringes as shown for a penny in Fig. 9.10.

o o s e




Fig 9.10 : Phatographs of diffeuaction paltern in the shadow of peany

Consider water waves in a ripple tank. Suppose you generate plane waves on the surface of
walter in a ripple by giving a periodic up and down motion to a straight vibrator such as a
ruler. Consider an obstacle, such as a slit 458 placed in the path of the waves which are
“travelling as shown in Fig. 9.11a. As long as the opening A8 is large the plane waves passing
through it appear nearly plane waves. The edges of the emergent plane waves roughly
carrespond to the edges of the slit A8, However, when the widih of Lhe slit is made narrow,
say comparable to the wavelength of the water waves, then the parallel plane waves entering
inles the smali opening spread out in Lthe form of approximately circular cancentric arcs as
shown in-Fig. 9.1 1h.

Fig 911 : Dilfeaction pattern ehiuined by bending of waves round comen.

Consequently, these circuiar waves not only travel in the straight direction but also around the
boundaries of the apening. This phenomenon of bending of waves around the edges of the
aperwire (or of 1ne obsiacie) 15 known as diffraction.

This property of bending of waves is distinctly observed when the wavelength of the waves
invalved is comparable to 1he size of the opening (or of the ohstacle) through which the waves
pass. For sound waves of {requency 500 Hz the wavetengih in air is 0.6m, while that for
yellow jight it is 6 X 107'm. Clearly, in the case of sound if the entrance to the room is abous
im, we may observe diffraction of sound. However, in the case of light, the dimension of the
opening must be of the order of 10™m for a similar diffraction of light 1o be observed, Thus it
is far more difficult to observe diflvaction of light than of waier waves or sound waves.
Anyway difTraction of light can be observed in specially devised experiments and we will
discuss these now,
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9.3.1 Different Types of Diffraction : Fraunhofer and Fresnel

Dilfraction of light is usually classified into two types : Fraunhofer and Freshel diffractions. In
Fraunhofer diffraction (or the far-field diffraction), the difiracting system (i.e. an obstacle, or

an aperture) is 5o away from the source that the waves generating the pattern may be regarded
&s plane. This can be achieved in the laboratory by making the rays of light parallel by placing

. the source at the focus of a convex lens, In Fresnel (or the near-field diffraction), on the other

hand, the source of waves is so close to the diffracting system that the waves genere"'ng the *
patiern still retain their curved characteristics, This means that in Fresnel diffraction. 1e
convex lens is not used, and the wavefront remains spherical or cylindrical depending on the
nature of the source.

Whatever may be the class of diffraction, wme resultant distribution of energy in space, or on a
screen, is obtained due to the superposition of waves from differenl pars of the same wave
front. In the Fraunhofer class the wave front considered is plane, while it is spherical or
cylindrical in the Fresnel class. In interference, we have two or more wave sources; while in
diffraction, we have many, slmost tending to infinity.

In the discussion to follow, we consider two cases in optics, one of diffraction due to a narrow
single slit, and the other of diffraction at a straight edge. The former belongs to the Fraunhofer
class, while the latter to the Fresnel class.

9.3.2 Fraunhofer Diffraction by a Single Slit

Let us analysc the diffraction pattern produced by plane waves passing through a single slit.
We may note that a given slit or an aperiure, howsoever smalt or narrow it may be, has a
finite size. According to Huygen’s principle, every point in it acts as a source of secondary
wavelets. This fact gives rise to an interference between waves from various regions of the
same slit.

Fig. 9.12 represents an cnlarged diagram of a narrow slit of width, ¢ Let us assume that as the
plane wave-front reaches the slit, all points in it emit the sccondary wavelets in the same
phaese. Thus if the disturbance is observed at point’' P oa the far side cf the stit at angle 8 to the
normal, then there is a net path difference of d'sin § berween the waves from the two edges of
the slit AB: According to Eq, (9.3), this corresponds to a phase difference of 2w sin 8/A.

Screen

Light
n.ensily

pallern
on screen

Flg 9.12a : Diffraction dve lo a slagle shit. Note that light Is nol iravelling in 2 straight line.

inteusity

A

0 m 21 Jw 4w

Fig 9.12b : Graph of sin = versus =
k3
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Now imagine the slity AB s divided into a large number of strips of equal width, Ad. Each of
these sirips sends secondary wavelets apnd the path difference between the waves arriving at a
point P from two adjacent strips is equal to Ad sin 8. The corresponding phase difference d I
given by

21m.i sin @ | ©24)
If we divide the slit 4.8 into a total number of N strips, then clearly d = NAd, and the total
phase difference

2Ad5in8 _ 2n ©9.25)

—A———-—TNddSmB=NIS

6 =

Suppose that the amplitude of the secondary wave from each strip is denoted by A, Then the
resultant disturbance at P is oblained by the superposition of the waves from all these strips. In
other words.

Y = A,sin0 (wf — ¢) + A, sin (wf — ¢ —3) + A4, sin (wf — ¢ — 26)
+ ... {upto N terms) (9.26)

where ¢ = 2wr/h is the phase difference corresponding to the distance r from the first slit to
point P.

You would recall that we have already discussed this problem of superposition in detail in
Unit 2 of Block-1. It was shown there that the amplitude A of the resultant is obtained by the.
vector sum of ¥ vectors of length A,, each of which makes an angle & with its adjacent vector

(see Fig. 9.13).

Amplitude As
Fig 9.13 : Vectorial addition of contributions from adjacent sources o give the resultant amplitude.

In this case the resultant amplitude is given by
sin (N 672)

A= 4, sin (872)

9.27)

We must, however, remember that this subdivision of a slit into 2 finite number of sub-slits (or
strips) is artificial, We take the limit as N — o2, & —~ 0. In this casc we have a conlinuous
variation of ph:  The vector diagram given in Fig. 9.13 then becomes a smooth circular arc
of radius R, The resultant amplitude is then

A=A sin o

(9.28)

Tdsing
A

with A, = R¥ 5, anda =

From Eq. (9.28), the intensity £. of light at #ny angle 8 with respect to the incident direction is
given by
sin’ o
I = [0 —— 9
= (9.29)
The plot of intensity on screen is given in Fig, (9.12}

For u single slit Fraunhofer diffraction pzliers, the minima of intensity are observed at angles
@, from the incident direction, where

nA = dsin 8, (930)

Here n = 1, 2, 3, ewc. is the number of the diffraction dark band, starting from the central
maximum.

Saperposition of Waves-T1
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From Eq. (9.29), you may also note that in the limit as o — 0, f, approaches Io. This becomes

. . . . .. -, sina
the intensity of the central maximum. This is because h_na*l kel I.
o

For values of o, for which sin a = 0, fo= 0. This gives us the pasitions of various minima
which appear for values of & equal to #w. The corresponding values of 8, may be calculated
using the earlier given relation, ie.,

a = ndsind,/X,

For finding the positions of various maxima lying in between the differenl minima, we have 1o
sin g

differentiate the [unction - with respect to o and equate that 1o zero. An elaborate
calculation shows that these“maxima, also called the secondary maxima, appear at values of
p = 1.42%, 2459, 3.471w etc. (The details of this calculation will be given in our course
on optics). The heights of these secondary maxima are 1/21, 1/61. 17120 respectively of the
central maxima. This gives us an idea of the intensity distribution in a single slit diffraction
pattern which is shown in Fig, 9.12b.

The angular spread of the intensity curve is given by

A
L = —
in g =
This shows that as the wavelength A increases, or the width of the slit decreases, the angular
spread increases. That is, the narrower the slit, the wider the diffraction pattern. Similarly, the
greater-the wavelength, the more widely spread is the patiern.

In terms of the distance [ between the shit and the screen the width of the central maximuem,
Ay, on the screen is given by

DX
ay = i (9.3

The central peak in the inensity curve is called the primary maximum. while the other peaks
are called secondary maxima. The height of the primary maximum is much more than any of
the secondary maxima.

SAQS5
Calculate the angular spread of the central maximum for fight of wavelength 6000 A when the
width of the slit is (i) 107m and (i) 2 X 10”'m.

$.3.3 Diflraction 2t a Straight Edge

Il we put an obstacle in the path of waves, like a shaving blade in the path of light [rom a 1iny
source, we find that the image of the edge of the blade is not sharp. insicad, the intensity of
[light on the screen shows a pastern as shown in Fig. 9.14, The light is also faund in the segion
which otherwasz should have been a shadow region.

Huygens
_S0Urces
Light
intensity
¢
_______________ : _______.___é‘_';
i Geometrical
shadow Diffraction
region pattern
COOARTCChO
fet D w ,
‘Obstacle
— l
Cylindrical or Spherical
wave [ront

Flg 9.i4; Diffraction due t0 an obstacle placed in the path of light waves. Note that there is light intensity In the
Geometrical shadow region, showing that light is nut travelling in a straight line.
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The intensity curve of a diffraction pattem is always quite different from that of an interference Superposition of Waves-1l
pattern, In the latter, the heights and widths of peaks arc always equal (see Fig. 9.7) meaning

thereby that all the maxima (or minima) are of the same intensity, and arc equally spaced.

This, however, is not the casc in a diflraction pattern. In a diffraction pattern, the maxima (or,

minima) are not of same intensity, and are not equally spaced {sce Figs. 9.12 and 9.14).

SAQ 6

Sound waves of frequency 1650 Hz fall normally on an opening of width 0.6m. A listener

watks paralel 1o the opening at a distance of 3m, starting from a puint on the perpendicular

bisectot of the opening. Find the positions at which he will abserve a minima of sound.

Take the speed of second in aif to be 330 ms”™

9.4 SUMMARY

1. Two sources arc said to be coherent if they emit waves with no or constant difference of
phase.
2. As a result of the superposition of waves from two cohereni sources, the distribution of

energy in space is not uniform. It is found to alternately pass through maxima and
minima. Such a distribution of energy is called an interference pattern.

3. If two waves of Lhe same frequency and of ampliludes a, and a2, and phases ¢ and &7 are
acting on a particle. then according 10 the superposition principle, the amplitude A of the
resultant wave is represenicd by

Ar=a + &> + 2aia; cos () — b2)

4. The phasc difference between two interfering waves {from (wo coherent sources), if they
travel in different paths, is calculated by using the relation :
phase difference = 2ar/A (path difference)
Maxima in intcnsity are observed where the path difference is an integral multiple of A
the wavelength of light used.

5. The distance between any two adjacent maxima or minima in an interference pattern 15

given by :
DX
b=

where B is called the fringe width, A is the wavelength of the light used, 3 is the distance
between the two coherent sources, and I is the distance between the sources and the
screen.

6. Diffraction refers to the bending of waves around corners. There are two classes of
difftaction patlerns. named as the Fraunhofer and the Fresnet diffractions,

7. Fresnel diffraction phenomena are observed when the source and Lhe screen for observing
the diffraction pattern are at a finite distance from the diffracting aperture or the obstacle.

8. Inthe Fraunhofer diffraction the source and the screen are at infinite distance from the
aperture causing the diffraction.

9. In a single slit diffraction pattern, the minima in intensity are observed at angles 6, given
by : '
nA = dsin 0,

9.5 TERMINAL QUESTIONS

1. What will be the path dilference between the light waves from two coherent sources 1o
produce the third dark fringe? It is given that the wavelength of the light is 5896 A.

2. Young's experiment is performed with the light of the green mercury line. If the fringes
are measured with a micrometer eye-piece 80 cm behind the double slit, it is found that
20 of them occupy a distance of 10.92 mm. Find the distance between two slits. Given
that the wavelength of green mercury line is 5460 A.
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3. lagbiofwnvdengﬂlsmﬂmnadmtnormﬂymadmm&mmmmum,o[the
diffraction pattem is observed to lic at a distance of 5 mm from the central maximum on
Ibe screen placed at a distance of 2 metre from the slit. Calculate the width of the slit.

9.6 SOLUTIONS

SAQs

SAQ1
The light wavcsemrtta:lbymescbulhsmnmhermthcsumcphase,noruelheywnha
constant difference of phase,

SAQ2
For small angles, sin 8 can be set equal to y/D, where y is the distance of a given maximum

from the axis and D is the distance from the slits to the screen., Forammmumofsmnd
order, we can wrile :

dsind =n A withn=2
which gives :
A
d(D) ni
dy

LOTA = ==

nD
where y = 2.5mm, D =16 mandd = 0.8 mm
_ (8 mm) (2.5 mm) (1.25 X 107*mm )

— -1
18 m =125 X107 mm

SAQ3

(a) Patk differenoe between waves along the perpendicular bisector is zero. If sources emit
waves in pbase, there will be maximum intensity aloug the perpendicular bisector. In the
second case, there will be mumimm of intensity along the perpeadicular bisector.

_ 'd_|1_ 25!121 _
(b) B"' a}z - azz
f/

Sound

- B
Lt >
>

m | 100 m

<

N

SAQ

(i) Using Eq.9.30

-10
sin @ = A/d = —-—-—————GUUDIE,IO T = 6000 X 10 m
m
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For such a small value of sin §
y 1
sing = 0 = 6000 X 10°%=6 X m’=———230 degrees

(i) sin® = 6000 X 107'%/2 X 10 = 3000 X 107
= .03 radizns
03 X180

T 31416

= 1.8 degrees

SAQ 6
speed ©o330
= = = (). d
frequency ™ 1650 0.2man
o = 0.6 m.

Positions of minima appear where
dsinQl = nA withn=1,23. ...

R 7
Positions of minima thus kie along thé directions 8, = sin”~' —— . i.e,
.2 .
0y = sin ':Cz sin”™' 1/3 = 19°
a2 X2 .-
B = sin”' "3 =sin"' 2/3 = 42°

The observer will find minima at
xi=Ditand, =3unl9° =3 X 0344

=103 m
N=Dung,=3und2°=3X09=27m.
{Note that the positions of minima are not equidistant.)

TQs

1. Letd be the path difference between waves for the 3rd dark fringe. Then
B=(2n+ NA/2withn =2
A=5896 A& = 5896 X 10" m
S A= (52X 5896 X 1071%/2 = 1.4740 X 10°* m

2. Tne innge width (8 1n young's experiment is § = A D/d. Since 20 fringes occupy a
distance of 10.92 mm, the (ringe width f is
B = (10.92/20) mm = (10.92 X 107/20)m
Also
D=80cm=08mand A = 5460 X 10" m
L 5460 X 1077 X 0.8 X 20

d 3
1092 X 10
=80X 0" mm =03 mm.

m=80X10*m

Soperposition of Waves-31
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3. The angles of diffraction for minimum intensity due to Fraunhofer diffraction at a single

slit are given by :

" dsin@=nmAwithn=1,23, ..

For the first minimum, 7 = 1, We can thus write
dsind = A
[f 6 is small, then sin § = 8 (8 is in radiens)
M = Aorf = A/drmadians .
Here A = 5000 A = 5000 X 10" cm, andd =1
8 = 5000 X 107*/d radians s (A)
The distance between the first minimum and the Central maximum is 0.5 cm, and the
distance of the screen from the slit is 2 m,
ie. 200 cm. This gives
0 =0.5/200 @digns (B)
Equating Eqs. (A) and (B), we get
5000 X 10*cm _ 0.5¢m
d . ~ 200 cm

or

. d = 5000 X 107 cm X 200/0.5

= 02cm
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