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BLOCK INTRODUCTION

In Block 1, we discuss the material that forms the foundations for the latter blocks. 1
includes basic definitiuns, some basic notations and tools for analysis.

Unit 1 includes the discussion of the characteristic properties for a method to e
called an algorithm, of the role of available tools in solving problems and of
elementary analysis in terms of building blocks of a program. Also, an outline of the
various steps that form a part of the process of solving problems by algorithmic
means, is included.

Unit 2 is the most fundamental Unit of the whole course. As the titie suggests, it is
about basics of analysis of algorithms. The concept of time/space
complexity/efficiency is introduced. Then, two simple examples of analysis of
algorithms, are discussed. In view of the significance of the sorting algorithms in the
study of design and analysis of algorithms, eight of the well-known sorting
algorithms are discussed in sufficient details.

Further, it is shown that no single analysis technique is a valid paradigm for all
situations and hence the following four types of analysis of algorithms are introduced
and discussed:

(1)  worst-case analysis
(ii)  average-case analysis
(iii) average-case analysis
(iv) amortized analysis

Finally, methods of solving recurrence equations, that arise in the analysis of recursive
algorithms, have also been discussed.

in Unit 3, first the significance of the growth-rate functions and asymptotic functions
and notations w.r.t the discipline of Design and Analysis of Algorithms, is discussed.
Then five well-known asymptotic growth-rate functions are introduced and are briefly
discussed.

The advanced reader » ho
skips parts that appear too
elementary may miss mose
than the less advanced
reader who skips parts that
appear too complex.
G. Polya
Induction and Analogy
n
Mathematics






COURSE INTRODUCTION

MCS-031: Design and Analysis of Algorithms, s a one-semester, 4-credit
introductory course.

Algorithm — a finite systematic method with some other restrictions, to solve a
problem — is the central concept of Computer Science. Whole of Computer Science
can be thought of as revolving around the concept of algorithm — the machines are
designed and fabricated to execute algorithms; the programming languages are
defined to describe algorithms so that the machines can understand and execute
programs written in programming languages; the foundation/theory of Computer
Science is the study of the limits of algorithmic methods, i.e., the study that equips
with the capability of knowing whether a particular task is accomplishable by a
computer or not, etc.

Hence, the Design and Analysis of Algorithm is the core of the study of
omputer Science.

in-respect of algerithms for solving problems, ¢he foliowing observations are
aoteworthy:

ooy

)

{ii)

(i)

For an arbitrary problem, an aigorithm o solve it nay not exist. Also, just from
the definition of a problem, it can not be known whether an algorithmic/
computational solution of the problem exists or not.

Even for those problems, for each of which an algorithm exists, there is no
systematic method (i.e., algorithm} for writing/designing an algorithm.

For a given problem, for solving which, an algorithm exists; it may be possible
that thers are more than one algorithms to solve the problem. In such situations,
in order to know which one is the better/best among the available algorithms, it
is an important issue to find the resources required by each of such algorithms.
And, in order to resolve the issue, we must have tools and techniques to analyse
algorithms.

in continuation of the Observation (ii) above, it can be said that designing an
algorithm for an algorithmically solvable problem, is a difficult intellectual exercise.
Writing a really good algorithm for a new problem or to write a better algorithm in
place of an already existing one for some problem, requires creativity and insight and
hence, what Knuth says above, gives an aesthetic experience also.

Though, there is no general systematic method for desi igning an algorithm for solving
a problem, yet there are some well-known techniques, mentioned below, which have
proved to be quite useful in designing algorithms:

Divide and Conquer
Dynamic Programming
The Greedy Approach
Backtracking

Searches and Traversals.

Most of these techniques will be discussed in detail in the text.

in view of the difficulty of solving algorithmically, even the computationally solvable
problems, some of the problem types, enumerated below, have been more rigorously

studied:
(i)’ Sorting problems
(i)  Searching problems

The’process of preparing
orograms for a digital
computer is especially
2iiractive, not only because it
<an be economicaily and
scientificaily rewarding, but
also because it can be an
aesthetic experience much fike
compaosing poetry or music.

Dorald . Kautk

tia)

“The teacher should put
himself in the student’s
place, he should see the
student’s case, he should
try to understar” “vhat is
going on in the studens’s
mind and ask a question
or indicate a step that
<ould have occurred to
the student himself.”

. Polya

w
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(i) - ‘Lincar Programming Problems
(iv) Number-Theory Problems
(v)- String Processing Problems
(vi) Graph Problems

(vii) Geometric Problems

(viii) Numerical Problems.

Two approaches have, generally been pursued by various authors of books on the
subject matter. One of the approaches is to discuss algorithms for each problem type
independently of the other types. However, the approach has the limitation that for
most of the problems, irrespective of their types, there are some basic techniques, as
mentioned above, that guide the writing of algorithms. Hence, if the subject-matter is
dealt with according to the types of the problems, then the underlying techniques for
problem solving, are lost sight of.

This is why, in the course material, we adopt the latter approach, under which one
technique is discussed at a time, applying the technique to the solution of problems
from various domains.

The course material is divided into 4 Blocks consisting of 12 Units as detailed
below:

Block 1: Introduction to Algorithmics

Unit 1: Elementary Algorithmics
Unit 2: Asymptotic Bounds and Notations
Unit 3: Basics of Analysis

Block 2: Design Techniques-I

Unit 1: Divide-And-Conquer
Unit 2: Graph Algorithms

Block 3: Design Techniques-II

Unit 1: Dynamic Programming
Unit 2: Backtracking
Unit 3: Greedy Algorithms

Block 4; Complexity & Completeness

Unit 1: Computational Complexity

Unit2: Adversary Arguments & Linear Reductions
Unit3:  Introduction to NP-Completeness

Unit4: NP-Completeness Proofs & Hard Problems

Keeping in view what the greai G. Polya has said, in respect of the concern for the
learner, care has been taken while writing that the course material be presented in a
simple language and in a simple manner so that it is not only intellectually stimulating
and but accessible also to the iearner, who just has enough knowledge of the pre-
requisites.

The pre-requisites for the course are:

(i) knowledge of some basic mathematical techniques, including “The Principle of
Mathematical Induction”,

knowledge of some basic statistical concepts and techniques,

knowledge of recurrence equations and how to solve these, is an advantage.
However, the topic is discussed within the course materiai also
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UNIT1 ELEMEMTARY ALGORITHMICS

Structure Page Nos.
1.0 Introduction 7

1.1 Objectives 9

1.2 Example of an Algorithm 9

1.3 Problems and Instances 10

1.4 Characteristics of an Algorithm 12

1.5 Problems, Available Tools & Algerithms i4.
L6 Building Blocks of Algorithms 17

16.1 Basic Actions & Instructions
162  Control Mechanisms and Control Structures
1.63  Procedure and Recursion
1.7 Outline of Algorithmics 27
1.7.1 Understanding the Problem
172 Analyzing the Problem
173 Capabilities of the Computer System
1.74  Approximate vs Exact Solution
1.75  Choice of Appropriate Daia Siructures
1.76  Choice of Appropriate Design Technology
117 Specification Methods for Algorithms
178 Proving Correctniess of an Algorithm
179  Analyzing an Algorithm
1.7.10 Coding the Algorithm

i.8 Summary 32
I. Solutions/Answers 33
1.10  Further Readings 40

1.0 INTRODUCTION

We are constantly involved in solving problem. The problems may concem our
survival in a competitive and hostile environment, may concern our curiosity to know
more and more of various faceis of nature or may be about any othier issues of interest
to us. Problem may be a state of mind of a living being, of not being satisfied with
some situation. However, for our purpose, we may take the unsatisfactory/
unacceptable/ undesirable situation itself, as a problem.

One way of looking at a possible solution of a problem, is as a sequence of activities
(if such a sequence exists at all), that if carried out using allowed/available tools,
leads us from the unsatisfactory (initial) position to an acceptable, satisfactory or
desired position. For example, the solution of the problem of baking delicious
pudding may be thought of as a sequence of activities, that when carried out, gives
us the pudding (the desired state) from the raw materials that may include sugar,
flour and water (constituting the initial position)using cooking gas, oven and some
utensils etc. (the tools). The sequence of activitics when carried out gives rise to a
process.

Technically, the statement or description in some notation, of the process is called
an aigorithm, the raw materials are called the inputs and the resulting entity (in the
above case, the pudding) is called the output. In view of the importance of.the
soncept of algorithm, we repeat:

An algorithm is a description or statement of a sequence of activities that constitute a
process of getting the desired outputs from the given inputs.

Later we consider in detail the characieristics features of an algorithm. Next. we
define a closely related concept of computer program,

Two ideas lie gleaming
on the jeweller’s
velvet, The'irstis the
calculus; the second,
the algorithm. The
calculus and the rich
body of mathematical
analysis to which it
gave rise made
modern science
possible; but it has
been the algorithm
that has made possible
the modern weorld.

David Berlinski
in

The Advent of the

Aligorithm, 2060.
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Computer Program: An algorithm, when expressed in a notation that can be
understood and executed by a computer system is called a computer program or
simply a program.We should be clear about the distinction between the terms viz., a
process, a program and an algorithm.

A process is a sequence of activities actually being carried out or executed, to
solve a problem. But algorithm and programs are just descriptions of a process in
some notation. Further, a program is an algorithm in a notation that can be
understood and be executed by a computer system.

it may be noted that for some problems and the available tools, there may not exist
any algorithm that should give the desired output. For example, the problem of
baking delicious pudding may not be solvable, if no cooking gas or any other heating
substance is available. Similarly, the problem of reaching the moon is unsolvable, if
no spaceship is available for the purpose.

These examples also highlight the significance of available tools in solving a
problem. Later, we discuss some of mathematical problems which are not solvable.
But, again these problems are said to be unsolvable, because of the fact that the
operations (i.e., the tools) that are aliowed to be used in solving the probiems, are
from a restricted pre-assigned set.

Notation for expressing algorithms

This issue of notation for representations of algorithms will be discussed in soine
detail, later. However, mainly, some combinations of mathematical symbols, English
phrases and sentences, and some sort of psendo-high-level language netations, shall
be used for the purpose.

Particularly, the symbol ‘¢ is used for assignment. For example, x¢-y + 3, means
that 3 is added to the value of the variable y and. the resultant value becomes the new
value of the variable x. However, the value of y remains unchanged.

If in an algorithm, more than one variables are required to store values of the
same type, notation of the form Afl..n] is used to denote n variables
All}, A[2], ... Afn].

in general, for the integers m, n with m <n, A [m..n} is used to denote the
varjables A{m], Ajm+1], ..., A[n]. However, we must note that another similar
notation A[m, a] is used to indicate the element of the matrix (or twe-
dimensional array) A, which is in m™ row and n™ column.

Role and Notation for Comments

The comments do not form that part of an algorithm, corresponding to which there is
an (executable) action in the process. However, the comments help the human reader
of the algorithm to better understand the algorithm. In different programming
languages, there are different notations for incorporating comments in algorithms. We
use the convention of putting comments between pair of braces, i.e., { }. The
comments may be inserted at any place within an algorithm. For example, if an
algorithm finds roots of a quadratic equation, then we may add the following
comments, somewhere in the beginning of the algorithm, to tell what the algorithm
does:

{this algorithm finds the roots of a quadratic equation in which the coefficient of X~ is
assumed to be non-zero}.

Section 1.2 explains some of the involved ideas through an example,

Mathematicai Notations shall be introduced in Section 2.2.
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1.1 OBJECTIVES

After going through this Unit. you should be able to-

e explain the concepts: problem, so lution, instance of a problem, algorithm,
computer program;

¢ tell characteristics of an algorithm,

. tell the role of available tools in solving a problem;

° tell the basic instructions and control structures that are used in building up
programs, and

. explain how a problem may be analyzed in order to find out its characteristics
50 as to help us in designing its solution/algorithm.

1.2 EXAMPLE OF AN ALGORITHM

Before going into the details of problem-solving with algorithms, just to have an idea
of what an algorithm is, we consider a well-known algorithm for finding Greatest
Common Divisor (G.C.D) of two natural numbers and also mention some related
historical facts. First, the algorithm is expressed in English. Then, we express the
algorithm in a notation resembling a programming language.

Euclid’s Algorithm for Finding G.C.D. of two Natural Mumbers m & n:

EY.  {Find Remainder}. Divide m by n and let r be the (vew) remainder
{e have 0<r<n} -

E2. {Isrzero?} If r =0, the algorithm terminates and n is the ahswer. Otherwise,

E3.  {inrerchange}. Let the new value of m be the current value of n and the new
value of n be the current value of r. Go back to Step E1.

The termination of the above method is guaranteed, as m and n must reduce in each
iteration and r must become zero in finite number of repetitions of steps E1, E2 and
E3.

The great Greek mathematician Euclid sometimes between fourth and third century
BC, at least knew and may be the first to suggest, the above algorithm. The algorithm
is considered as among the first non-trivial algorithms. However, the word
‘algorithm’ itself came into usage quite late. The word is derived from the name of the
Persian mathematician Mohammed al-Khwarizmi who lived during the ninth century
A.D. The word ‘al-khowarizmi> when written in Latin became ‘Algorismus’, from
which *algorithm’ is a small step away.

In order to familiarise ourselves with the notation usually used to express algorithms,
next, we express the Euclid’s Algorithm in a pseudo-code notation which is closer to
a programming language.

Algorithm GCD-Euclid (m, n)

{This algorithm computes the greatest common divisor of two given positiv:

integers}
begin {of algorithm}

while n = 0 do

begin {of while loop}

r < mmod 1;

{a new variable is used 1o store the remander which is obtained b dividing
m by n, with 0<r < m}
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m €1

Jthe value of n is assigned as new value of m; tut at this stage value of n

re-mains unchangedy A
meT;

{the value of r becomes the new vaiue of n wund the value of r remains

unchangedy

end {of while loop}

yeturn {(n).

end; {of algorithm}

1.3 PROBLEMS AND INSTTANCES

The difference between the two concepts V iz., ‘problem’ and ‘instance’, can be
understood in terms of the following exam ple. An instance of a problem is also called
a question. We know that the roots of a g eneral quadratic equation

at+bx+c=0 2.+ 0 131

are given by the equation

-b i,} b? —4ac
x= ——-——23—’_"', (13.2)

where a, b, ¢ may be any real rmumbers except the restriction that a‘;t 0.
Now, if we take a=3,b=4andc=1,
we get the particular equation

I +4x+1=0 (1.3.3)

Using ( 1.2.2), the roots of (1.2.3) are given by

With reference to the above discussion, the issue of finding roots of the general
quadratic equation a® +bx+c=0,witha=z0is callled a problem, whereas the issue
of finding the roots of the particular equation

3x? +4x+1 =0
is called a question or an instance of the (general) problem.

In general.2 problem may have a large, possibly infinite, number of instances. The
abovg-mem.‘ioned problem of finding the roots of thie quadratic equation

ad +bx+c=0

with a = 0,band ¢ as real numbers, has infinitely many instances, each obtained by

giving some specitic real values to a, b and ¢, taking care that the value assigned to @
is not zero. However, all probilems may not be of generic nature. For some problems
there may be only one instanc e/question corresponding to each of the problems. For



example, the problem of finding out the largest integer that can be stored or can be Flementary Algorithmics
arithmetically operated on, in a given computer, is a single-instance problem. Many

of the interesting problems dike the ones given below, are just single-instance

problems.

Problem (i): Crossing the river in a boat which can carry at one time, alongwith the
“boatman only one of a wolf, a horse and a bundle of grass, in such a way that neither
wolf harms horse nor horse eats grass. In the presence of the boatman, neither wolf

attacks horse, nor horse attempts to eat grass.

Problem (ii): The Four-Colour Problem’ which requires us to find out whether a
political map of the world, can be drawn using only four colours, so that no two
adjacent countries get the same colour.

The problem may be further understood through the following explanation. Suppose we
are preparing a coloured map of the world and we use green colour for the terrestrial part
of India. Another country is a neighbour of a given country if it has some boundary in
common with it. For example, according to this definition, Pakistan, Bangladesh and
Myanmar (or Burma) are some of the countries which are India’s neighbours.

Then, in the map, for all the neighbour’s of India, including Pakistan, Bangladesh

and Myanmar, we can not use green colour. The problem is to show that the

minimum number of colours required is four, so that we are able to colour

the map of the world under the restrictions of the problem.

Problem (iif): The Fermat’s Last Theorem: which requires us to show that there
do not exist positive integers a, b, ¢ and n such that

a"+b"=c" withn>3,

‘The problem also has a very fascinating history. lis origin lies in the simple obse.vation that the equation
2+ yz =7

has a number of solutions in which x, y and z all are integers. For example, forx=3,y=4,z=35, the
equation is satisfied. The fact was also noticed by the great mathematician Pierre De Fermar (1601 —
1665). But, like all great intellectuals, he looked at the problem from a different perspective. Fermat felt
and claimed that for all integers n 2 3, the equation

Xy =gt

has no non-trivial' solution in which x, y and z are all positive integers. And he jotted down the above
claim in a comner of a book without any details of the proof.

However, for more than next 300 years, mathematicians could not produce any convincing proof of the
Fermat’s the-then conjecture, and now a theorem, Ultimately, the proof was given by Andrew Wiles in
1994. Again the proof is based not only on a very long computer program but also on sophisticated
modern mathematics.

Problem (iv): On the basis of another generalisation of the problem of finding integral solutions of
x*ty* = 2, great Swiss mathematician Leonhard Euler conjectured that for n > 3, the sum of (n — 1)

“ The origin of the Four-colour conjecture, may be traced to the observation by Francis Guthrie, a student
of Augustus De Morgan (of De Morgan's Theorem fame), who noticed that all the counties (sort of
parliamentary constituencics in our country) of England could be coloured using four colours so that no
adjacent counties were assigned the same colour, De Morgan publiciscd the problem throughout the
mathematical community. Leaving aside the problem of paraile postulzte and th. problem in respect of
Fermat’s Last Theorem, perhaps, this problem has been the most fascinxting and tantalising one for the
mathematicians, remaining unsolved for more than one hundred years. Ultimately, the problem was
solved in 1976 by two American mathematician, Kenneth Appel and Wolfgang Haken.

However, the proof is based on a computer program written for the purpose, that 100k 1000 hours of
computer time (in 1976). Hence, the solution generated, among mathematiciaas, a controversy in the
sense that many mathematicians feel such a long program requiring 1000 bours of computer time in
execution, may have logical and other bugs and hence can not be a reliable basis for the proof ofa
conjecture.

one solution, of course, is given by x = it = y=1z, though x, y and z, being zero, are not positive. i1
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number of nth powers of positive integers can not be an nth power of an integer. For a long time the
conjecturc neither could be refuted nor proved. However, in 1966, L.J. Lander and T.R. Parkin found a

counter example for n = 5, by showing that 27° +84° + 110° + 133° = 144°,

Coming back to the problem of finding the roots of a quadratic equation, it can be
easily seen that in finding the roots of a quadratic equation, the only operations that
have been used are plus, minus, multiplication and division of numbers alongwith the
aoperation of finding out the square root of a number. Using only these operations, it
is also possible, through step-by-step method, to find the roots of a cubic equation
over the real numbers, which, in general, is of the form

ax® +bx> +cx+d=0,
where a = 0, b, ¢ and d are real numbers.

Further, using only the set of operations mentioned above, it is also possible, through
« step-by-step method, to solve a biquadratic equation over real numbers, which, in
general, is of the form

ax* +bx’ +e’ +dx +e =0,
where a = 0, b, ¢, d and e are real numbers.

However, the problem of finding the roots of a general equation of degree five or
more, can not be solved, using only the operations mentioned above, #hrough a step-
by-step method, i.e., can vot be solved algorithmically.

In such cases, we may attempt some non-aigorithmic methods including solutions
tased on numetical methods which may not give exact but some good approximate
solutions to such problems. Or we may just use some hit and trial method, e.g.,
consisting of guessing a possible root and then verifying the guess as a possible
solution, by actually substituting the guessed root in the given equation. A hit and
trial method is not an algorithm; because we cannot guarantee the termination of
the method, where as discussed later, termination is one of the characteristic
properties of an aigorithm.

Jt may be noed that a ( general ) problem, like finding the roots of an equation of
degree 5 or more, may not be solvable algorithmically, i.e., through some step-by-step
method, still it is possible for some (particular) instances of the problem to have
algorithmic sclutions. For example, the roots of the equation

x’—=32=0
are easily available through a step-by-step method. Also, the roots of the equation

2x* — 3% + 1 = 0 can be easily found through a method, in which, to begin with, we
may take y = X°

Ex. 1) Give at least three examples of problems, each one of which has only finitely
many instances.

.
Hint:  Structures over Boolean set {0, !} may be good sources for such examples.

1.4 CHARACTERISTICS OF AN ALGORITHM

Next, we consider the concept of algorithm in more detail. While designing an
aigorithm as a solution to a given problem, we must take care of the following five
important characteristics of an algorithm:



1. Finiteness: An algorithm must terminate after a finite number of steps and Flementary Algorithusics
further each step must be executable in finite amount of time. In order to
establish a sequence of steps as an algorithm, it should be established that it
terminates (in finite number of steps) on a/l allowed inputs.

2. Definiteness'(no ambiguity): Each step of an algorithm must be precisely defined;
the action to be carried out must be rigorously and unambiguously specified for
each case. Through the next example, we show how an instruction may not be
definite.

Example 1.4.1: Method which is effective (fo be explained later) but not definite.
The following is a program fragment for the example method:

X1
Toss a coin,
If the result is Head then x «3 else x «4

{in the above, the symbol ‘¢ denotes that the vaiue on its R.H.S is assigned to the
variable on its L.H.S. Detailed discussion under (i) of Section 1.6.1}

All the steps, like tossing the coin etc.. can be (effectively) carried out. However, the
method is not definite, as two different executions may yield different outputs.

2. Inputs: An algorithm has zero or more, but enly finite, number of inputs.
Examples of algorithms requiring zero inputs:

(i)  Print the largest wtcger, say MAX, representable in the computer system
being used.

(ii) Print the ASCIH code of each of the letter in the alphabet of the computer
system being used.

(iti) Find the sum S of the form 7 +2+3+ .., where S is the largest integer iess
than or equal te MAX defined in Example (1) above

4. Output: An algorithm has one or more outputs. The requirement of at least one
output 1s obviously essential. because, otherwise we can not know the
answer’solution provided by the algorithm.

The outpuis have specific relation to the inpun. where the relation is defined by
the algorithm.

5. Effectiveness: An algorithm should be effective. This means that each of the
operation to be performed in an aigorithm must be sufficiently basic that it can,
in principle, be done exactly and in a finite length of time. by a person using
pencil and paper. It niay be noted that the "FINITENESS' condition is a special
case of 'EFFECTIVENESS'. If a sequence of steps is not finite, then it can not be
effective also.

A method may be designed which is a definite sequence of actiony bui is ot finite
(and hence not effective)

Example 1.4.2: If the following instruction 1s a part of an aigorithm
Find exact value of e using the following formuda

* There arc some methods, which are not definite, but still cailed algorithms viz., Monte Caric
aigorithms in particular and probabilistic algerithms in general. However, we restrict our
#gorithms to those methods which are definite alongwith other four characteristics. In other
cases, the full name of the method viz, probabilistic algorithm. is used. e
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e= 1+ 1/(11) + 12 + 3 +....
and add it to x.
‘Then, the algorithm is not effective; because as per instruction, computation of €
requires computation of infinitely many terms of the form //n! forn=1,2,3, ...,

which is not possible/effective.

However, the instruction is definite as it is easily seen that computation of each of the
term //n! is definite (at least for a given machine).

Ex.2) For each of the following, give one example of a method, which is not an
aigorithm, because .
(i) . the method is not finite
(ii) the method is not definite
(iii)  the method is not effective but finite.

1.5 PROBLEMS, AVAILABLE TOOLS &
ALGORITHMS

In order to explain an important point in respect of the available tools, of which one
must take care while designing an algorithm for a given problem, wé consider some
alternative algorithms for finding the product m*n of two natural numbers
mandn.’

First Algorithm:

The usual method of multiplication, in which table of products of pair of digits x, y
(i.e.; 0 <x, y <9) are presumed to be available to the system that is required to
compute the product m*n.

For example, the product of two numbers 426 and 37 can be obtained as shewn below,
using multiplication tables for numbers from 0 to 9.

Second Algorithm:

For this algorithm, we assume that the only arithmetic capabilities the system is
endowed with, are

(i)  that of counting and
(i)  that of comparing two integers w.r.t. ‘less than or equal to’ relation.

With only these two capabilities, the First Algorithm is meaningless.

For such a system having only these two capabilities, one possible algorithm to
calculate m*n, as given below, uses two separate portions of a paper (or any other
storage devices). One of the portions is used to accommodate marks upto n, the
multiplier, and the other to accommodate marks upto m*n, the resultant product.

The algorithm consti:utes the following steps:

Step I: Tnitially make a mark on First Portion of the paper.



Step 2: For each new mark on the First Portion, make m new mavrks on the Second
Portion.

Step 3: Count the number of marks in First Portion. If the count equais n, then count
the number of all marks; in the Second Portion and return the last count as the resuit.
However, if thé count in the First Portion is less than n, then make one more mark in
the First Portion and go to Step 2.

Third Algorithm:

The algorithm to be discussed, is known a la russe method. In this method, it is
presumed that the system has the only capability of multiplying and dividing any
integer by 2, in addition to the capabilities of Second Algorithm. The division must
result in an integer as quotient, with remainder as eithera O or 1.

&The algorithm using only these capabilities for multiplying two positive integers m
\and n, is based on the observations that

(2n) then (m/2) . 2n)=m . n.

x(i) If m is even then if we divide m by 2 to get (m/2) and multiprly nby 2 to get

Hence, by halving successive values of m {or (m — 1) when m is odd as explained
below), we expect to reduce m to zero ultimately and stop, without affecting at any
stage, the required product by doubling successive values of n alongwith some other
modifications, if required. '

(i) However, if m is odd then (m/2) is not an integer. In this case, we write
m=(m— 1)+ 1, so that (m —I) is even and (m — 1)/2 is an integer.
Then
m.n=(m-1)+1).n=(m-I)n+n
=({(m~—1)/2).(2n) +n.
where (m — 1)/2 is an integer as m is an odd integer.

For example, m = 7 and n= [2
Then

m*n=7*11=(7-D+D*11=(T~-1)*11+11
= u @*1)+11
2
Therefore, if at some stage, m is even, we halve m and double n and multiply the twe

numbers so obtained and repeat the process. But, if m is odd at some stage, then we
halve (m — 1), double n and multiply the two numbers so obtained and then add to the

product so obtained the odd value of m which we had before halving (m —1).
Next, we describe the a'la russe method/algorithm.

The algorithm that uses four variables, viz., First, Second, Remainder and
Partial-Result, may be described as follows:

Step I: Initialize the variables First, Second and Partial-Result respecifively with m
(the first given number), n (the second given number) and 0.

Step 2: If First or Second’ is zero, return, Partial-result as the final result and then
stop.

if, initially, Second # ¢, then Second # 0 in the subsequent calculations also.

Flementary Algorithmics
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Else. set the value of the Remainder us 1 if First is odd, else set Remainder as 0. .f
Remainder is 1 then add Second to Partial-Result to get the few value of Partial
Result.

Step 3: New value of First is the guotient obtained on (integer) division of the current
value of First by 2, New value of Second is obtained by multiplying Second by 2. Go
to Step 2.

Example 1.5.1: The logic behind the a’la russe method, consisting of Step 1, Step 2
and Step 3 given above, may be better understood, in addition to the argument given
the box above, through the following explanation:

Let First=9 and Second = 16

Then First * Second =9 * 16 =(4 *2+1}* 16
=4*(2*16)+1*16
where 4 = [9/2] = [first/2], 1 = Remainder.
Substituting the values back, we
first * second = [first/2] * ( 2 * Second) + Second.

Let us take First, = [First/2] = 4
Second, =2 * Second = 32 and
Partial-Result = First, * Second ;.
Then from the above argument, we get
First * Second = First, * Second, + Second
= Partial-Resuit; + Second.

Here, we may note that as First = 9 is odd and hence Second is added to
Partial-Result. Also ’
Partial-Result; =4*32=(2%2+0)*32=(2*2)*32+0*32
= 2% (2 * 32) = First , * Second ,.

Again we may note that First, = 4 is even and we do not add Second, to
Partial-Result,, where Partial-Result, = First; * Second,.

Next, we execute the a’la russe algorithm to compute 45 *.19.

First Second | Remaind Partial Result |
Initially: 45 19 0
Step 2 As value of Furst = 0, | 1 19
hence continue :
Step 3 22 38 N
Step 2 Value of first # 0, 0
continue
Step 3 i1 76
Step 2 Value of First = 0, 1 76+19:95
) continue |
Step 3 S 152
Step 2 Value of first # 0, 1 152+95=247
continue 3 D R
Step 3 2 04 -
Step 2 Value of First = 0, [
continue
Step3 10 T 608 1 608+247=855
} Step 2 ! . b .

As the value of the First is 0, the value 855 of Partial Result is returned as the resuit
and stop.



FE:}; A system has ONLY the following arithmetic ;:apabimiest

(i) that of counting,
(11)  that of comparing two integers w.r.t. ‘less than or equal " retation and
(iil)  those of both multiplying and dividing by 2 as well as 3.

Design an algorithm that multiplies two integers, and fully exploits the capabilities of
the system. Using the algoritim, find the product.

1.6 BUILDING BLOCKS OF ALGORITHMS

Next, we enumerate the basic actions and corresponding instructions used in a
computer system based on a Von Neuman architecture. We may recall that an
instruction is a notation for an action and a sequence of instructions defines a
program whereas a sequence of actions constitutes a process. An instruction is also
called a statement.

The foilowing tiree basic actions and corresponding instructions form the basis of
any imperative language. For the purpose of explanations, the notation similar to
that of a high-level programming language is used.

1.6.1 Basic Actions & Instructions

(i) Assignment of a value to a variable is denoted by

variable « expression;
where the expression is composed from variable and constant operands using familiar
operators like +, -, * etc. :

Assignment action includes evaluation of the expression on the R H.S. An example of
assignment instruction/statement is

je2%i+j-r;

it is assumed that each of the variables occurring on R.H.S. of the above statement,
has a value associated with it before the execution of the above statement. The
association of a value to a variable, whether occurring on L.H.S or on R.H.S, is made
according to the following rule:

For eack variable name, say i, there is a uzique location, say loc 1 (i), in the main
memory. Each location loc(i}, at any point of time contains a unigue value say v(ij.
Thus the value v(i) is asseciated to variable i.

Using these values, the expression ou R.H S. is evaluated. The value so obtained is
the new value of the variable on L.H.S. This value is then stored as a new value of the
variable (in this case, j) on LH.S. It may be noted that the variable on L.H.S (in this
case, j) may also occur on R.H.S of the assignment symbol.

In such cases, the valuc corresponding to the occurrence on R.H.S (ofj, in this case)
is finally replaced by a new value obtained by evaluating the expression on R.H.S (in
thiscase, 2 %0 +j —r).

The values of the other variables, viz., 1 and r remain unchanged due to assignment
statement.

{ii} The next basic action is to read values of variables i, j, etc. from some
secondary storage device, the identity of which is (implicitly) assumed here, by a
statement of the form

read (i), ,..):

Fiementars Algorithmics
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The vatues corresponding to vanables « .. the read statement, are, doe to read statement
stored 1n the corresponding locations foc() . Toc(j)..... in the main memory The values afc
supphed erther. by default. through the keyboard by the user or from some secondary o
external storuge  In the latter case. the wdentity ot the secondary or external storage is aiso
tied in the read staiement

spect ,
(i} The tast of the three basic actions, is to deliver/write values ol some variables
<av iy etc. to the monitor or to an external secondary storage by a swiemet of
the form
write (1, ] ...}

The values in the locations loc(i}, loc(j), ..., corresponding to the variablesi,j ..., in
the write statement are copied to the monitor or a secondary storage. Generally,
values are written to the monitor by default. In case. the values are to be written to a
secondary storage, then identity of the secondary storage is also specified in the write
statement. Further, if the argument in a write statement is some sequence of
characters enclosed withinquoies then the sequence of characters as such, but without
quotes. is given as output. For example, corresponding to the write statement.

Write {This equation has no real rools ™)
the algorithm gives the following output:
This equation has no real roots.

in addition to the types of instructions corresponding to the above mentioned actions.
there are other non-executable instructions which include the ones that are used to
define the structure of the data to be used in an algorithm. These issuzs shail be
discussed latter.

1.6.2 Control Mechanisms and Control Structures

in order to understand and to express an algorithm for solving a problem. it 1s not
enough to know just the basic actions viz., assignments, reads and writes. In addition.
we must know and understand the control mechanisms. These are the mechanisms by
which the human beings and the executing system become aware of the next
nstruction to be executed after finishing the one currently in execution. The sequence
of exccution of instructions need not be the same as the sequence in which the
astructions occur in program text. First, we consider three basic control mechanisms
or structuring rules, before considering more complicated ones.

(i) Direct Sequencing: When the sequence of execution of instructions 1s to be
the same as the sequence in which the instruction are written i program text.
the control mechanism is called direct sequencing. Control structure, (1.e.,
the notation for the control mechanism), for direct sequencing s obtained by
writing of the instructions,

. one after the other on successive lines, or even on the some line if there is
enough space on a line, and

. separated by some statement separator, say semi-colens, and

. in the order of intended execution.

For zxample. the sequence of the three next lines

4: B.

C.

D:
derotes that the execution of A 1s to be followed by execution of B. to be followed by
execution of C and finally by that of D



When the compaesite action consisting of actions denoied by AL B and 6. this
urder. 15 W be treated as a single component of some larger structure, brackets such as
“hegni..end” may be introduced, Le., in this case we may use the structure

Begin 4;B;C:D end.

Then the above is also called a {composite/compound) starement consisiing of four
(component) starement viz 4, 8, C and D.

(ii) Selection: In many situations, we intend to carry out some action A if
condition Q is satisfied and some other action 8 if condition @ 1s not satisfied.
This intention can be denoted by: ’

If Q then do A else do B.

Where A and B are instructions, which may be even composite instructions obtained
by applying these structuring rules recursively to the other instructions.

Further. in some situations the action 8.1s null. 1 ¢ if O is false. then no action s
stated.

This new situation may be denoted by
If Q then do 4

Ir this case. 1f Q15 true, A is executed. If O 1s not true, then the remaiming part of the
mnstruction is 1ignored, and the next instruction, if any. in the program 1s considered for
execution

Also, there are simanons when Q15 not just a Boolean variable 1.e., a variable which
can assume either a true or a false value only. Rather Q is some variable capable of
assumung some finite number of values say «. b, ¢, d. ¢, [ Further, suppose depending
upon the value of Q. the corresponding intended action 1s as given by the following
1able

Value - * Action
a 4
b 9
¢ B
d NO ACTION
¢ D
/ NO ACTION

[he above mtention can be expressed through the following notation

Case Q of
ab. A,
¢ ;8
e D,

end;

Example 1.6.2.1: We are to write a program segmient that converts % of marks to
grades as tollows

Y of marks (M) grade (G)
BNURSRS | A\
60« M < R0 R

Flementars Algorithmics
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50 <M< 60 _ C
40 <M< 50 D

M <40 F

Ther the corresponding notation may be:

Case M of

where M is an integer variable

(i)

Repetition: Iterative or repetitive execution of a sequence of actions, is the
basis of expressing long processes by comparatively simall number of
instructions. As we deal with only finite processes, therefore, the repeated
execution of the sequence of actions, has to be terminated. The termination
may be achieved either through some candition Q or by stating in advance the
number of times the sequence is intended to be executed.

(a) When we intend to execute a sequence S of actions repeatedly, while
condition Q holds, the following notation may be used for the purpose:

While (Q) do begin S end;

Example 1.6.2.2: We are required to find out the sum (SUM) of first n natural
numbers. Let a variable x be used to store an integer less than or equal to n, then the
algorithm for the purpose may be of the form:

algorithm Sum_First_N_1
begin
read (n); {assuming value of n is an integer 2 1
xel - SUM« 1
while (x<mjdo .. ..oooooiii oo Aal)
begin
XX+,
SUM «— SUM + x
end: {of while loop} ... .o (BD)
write (‘The sum of the first’, n, ‘natural numbers is” SUM)
end {of algorithm}

Explanation of the aigorithm Sum_First N_I:

Initially, an integer value of the variable 1 is read. Just to simplify the argument, we
assume that the integer n > 1. The next two statements assign value 1 to each of the
variables x and SUM. Next, we come the execution of the while-loop. The while-toop
extends from the statement (1) to (B1) both inclusive. Whenever we enter the ioop,

the condition x<n is (always) tested. If the condition x<n is true then the whole of the
rernainmg portion upto 3 (inclusive) is executed. However, if the condition is false

then ali the remaining statement of the while-loop, 1 ¢, ali statements upto and
including (A1) are skipped.



iyt

Suppose we read 3 as the value of n. and (initially) x equals i, because of ¥« |
Therefore, as 1<3, therefore the condition x<n is true. Hence the following portion of
the while loop is exgcuted:

begin
I x+1
SUM « SUM +x;

end
and as a consequence of execution of this composite statement

the value of x becomes I and
and the value of SUM becomes 3

As soon as the word end is encountered by the meaning of the while-loop, the whoie
of the while-loop between (1) and (1), (including (al) and (B1)) is again
executed.

By our assumption n = 3 and it did not change since the initial assumption about n;
however, x has become 2. Therefore, x<n is again satisfied, Again the rest of the
while loop is executed. Because of the execution of the rest of the loop, x becomes 3
and SUM becomes the algorithm comes to the execution of first statement of while-
loop, i.e., while (x<#) do, which tests whether x<n. At this stage x=3 and n=3.
Therefore, x<n is faise. Therefore, all statement upto and including (B,) are x<n
skipped.
Then the algorithm executes the next statement, viz., wriie (‘The sum of the first’, n,
‘natural numbers is°, sum). As, at this stage, the value of SUM is 6, the following
statement is prompted, on the monitor:
The sum of the first 3 nawural numbers is 6.
{t may be noticed that in the statement write (° ' n, ' , SUM) the variables n and
SUM are not within the quetes and hence, the values of n and SUM viz 3 and 6 just
before the write statement are given as output,
Some variations of the ‘while...do" notation, are used in different programming
tanguages. For example, if S is to be executed at least once, then the programming
fanguage C uses the following statement:

Do S while (Q)
Here S is called the bedy of the “do. while’ foop. It may be noted that here S is not
surrounded by the brackets, viz., begin and end. Jt is because of the fact do and while

enclose S.

Again consider the exampie given above, of finding out the sum of first n natural
numbers. The using ‘do ... while’ statement, may be of the form:

The above instruction is denoted in the programming language Pascal by
Repeat S until {not Q)
Example 1.6.2.3: Algorithm Sum_First N_2

Begin {of olgorithm}
read (n});

Elementary Algorithmies
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K-t SUMe¢-
do (ay
X o xo
SUMe«— SUM + »

)
}

while (x = m) L (32

end ;of algortihm

If number n of the times S is to be executed is known in advance, the
following notation may be used:

for v yarving from 1o (i+n- 1) do begin S end.:
OR
Jorv e-tion - —1)do
bogin 5 ey

where v 1s some integer vartable assuming initial value 1 and wereasing by 1 after
each cxecution of S and final execution of S takes place after v assumes the value
i-n-l

Then the execution of the for-loop is terminated. Again begin S do is called the body
of the for-loop. The variable X is called index variable of the for-loop.

Example 1.6.2.4: Again. consider the problem of finding the sum of first n natural
numbers, algorithm using “for ..." may be of the form:

algorithm Sum_First_N_3
begin
read (n).

SUMe 1
Jorx e 11ondo (a3)
begin
SUM ¢ SUN + © B3
e,
write (*The sum of the first first’. n. natural numbers numbers’, SUM)
end. {of the algorithm}

In the algorithm Suni_First_N_3 there is onl one statement in the body of the
for-toop. Therelore. the bracket words begin and end may not be used in the for-loop.
In this algorithm, also. it may be noted that only the variable SUM is initialized. The
variable X is not mitialized explicitly. The variable x is implicitly initialised to 1
rhrough the construct *for x varying from | to n do’. And, after each execution of the
body of the for-loop. x is implicitly incremented by 1.

A noticeable feature of the constructs (structuring rules) viz., sequencing, selection
and iteration, is that each defines a control structure with a single entry point and
single exit point. It is this property that makes them simple but powerful building
blocks for more compley control structures, and ensures thas the resultant structure
remains comprehensible to us.

Structured Programming. a programming style. allows only those structuring rules
which tollow “single enurv. single exit® rule.

Ex.4)  Write an algonthm that finds the real roots. if any, of a quadratic equation
ax’ - by - ¢ = 0 witha =0, b, ¢ as real numbers.



Ex.5) Flomentars Algorithmics
-0, m which 1. b, ¢ may be arbitrary real numbers, imcluding §
Ex.6) () Lxplain how the algorithm Sum First N 2 finds the sum of the first &
natural numbers
() Explain how the algorithm Sum_First N 3 fiuds the sum of the first 3

natural numbers.

1.6.3 Procedure and Recursion

Though the above-mentioned three control structures. viz., direct sequencing,
selection and repetition, are sufficient to express any algorithm, yet the following nvo
advanced control structures have proved to be quite useful in facilitating the
expression of complex algorithms viz.

(1) Procedure
(it)  Recursivn

ict us first take the advanced control structure Procediu

1.6.3.1 Procedure

Among a number of terms that are used, in stead of procedure, are subprogram and
even funciion. These terms may have shades of differences in their usage in different
programming languages. However, the basic idea behind these terms is the same, and
is explained next.

it may happen that a sequence frequently occurs either in the same algorithm
repeatedly wm different parts of the algorithm or may occur in different algorithms. In
such cases, writing repeatedly of the same sequence, 1s a wasteful activity. Procedure
is a mechanism that provides a method of checking this wastage.

Under this mechanism, the sequence of instructions expected to be repeatedly used in
one or more algorithms. is written only once and outside and independent of the
algorithms of which the sequence could have been a part otherwise. Therve may be
many such sequences and hence. there is need for an identification of each of such
sequences. For this purpose, cach sequénee is prefaced by statements 1o the following
format:

Procedure <Name> (<parameter-list>) [ < ripe>]
<declarations> (1.63.1)
<sequence of instructions expected to be occur repeatedly’

end;

where <uame>, <parameter-iist> and other expressions with in the angular brackets
as first and last symbols. are place-holders for suitable values that are to be substitiited
in their places. For example, suppose {inding the sum of squares of two variables is a
frequently required activity. then we may write the code for this activity independent
of the algorithm of which it would otherwise have formed a part. And then, in
(1.6.3.1), <name> may be replaced by “sum-square’ and <parameter-list> by the two-
element sequence x, 3. The variables like x when used in the definition of an
algonithm, are called formal parameters or simply parameters. Furihier, whenever
the code which now forms a part of a procedure, say sum-square is required at any
piace inan algorithm, then in place of the intended code, a statement of the form

sim-square {a, b); (I.().R 2)

15 written, where values of a aind b are defined before the “rcatien of the statement
under (1.6.3.2) within the algonthm.

[
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Jurther, the patr of brackets in [1 < type =] indicates that *: <type >’ is optional. If the
procedure passes some value computed by it 10 the calling program, then “: < type >’

is used and then <type> in (1.6.3.1) is replaced by the type of the value to be passed,
in this case infeger

In cases of procedures which pass a value to the calling program another basic
construct (in addition to assignmeny, read and write) viz., return (x) is used, where
x is a varigble used for the value to be passed by the procedure.

There are various mechanisms by which values of a and b are respectively associated
with or transferred to x and y. The variables like a and b, defined in the calling
algorithm to pass data to the procedure (i.e., the called algorithm), which the
procedure may use ir solving the particular instance of the problem, are called actual
parameiers or arguments.

Also. there are different mechanisms by which siatement of the form

sum-square (g, b) of an algorithm is associated with the code of the procedure for
which the statement is used. However, all these mechanisms are named as ‘calling
the procedure’. The main algorithm may be called as the ‘calling algorithm’ and the
procedure may be called ‘the called algorithra®. The discussion of these mechanisms
may be found in any book on concepts of programming languages'.

In order to explain the involved ideas, let us consider the following simple examples
of a procedure and a program that calls the procedure. In order to simplify the
discussion, in the following, we assume that the inputs etc., are always of the required
types only, and make other simplifying assumptions.

Exampie 1.6.3.1.1

Procedure sum-square (a, b : integer) : integer;

{denotes the inputs & and b are integers and the output is also an integer}
S: infege;{
. §1o store the required number}
begin -
S al+ b
Return (8):
end;

Program Diagonal-Length

{the program finds lengths of diagonals of the sides of right-angled triangles whose
lengths are given as integers. The program terminates when the length of any side is
not- positive integer}

L1, L2: integer; {given side lengths]
D: real;

{10 store diagonal length}

read (Li, L)

while (L;>0and L; > 0) do

D¢ square-root (sum-square (L1, L2))
write (‘For sides of given lengths’, Ly, Ly, ‘the required diagonal length is’ D); -
read (L, Lo);

end.

* For the purpose Ravi Sethi (1996) may be consulted.



Iz order to explain, how diagonal iength of a right-angled triangle is comp
program Diagonal-Length using the procedure sum-square. let us consider the
lengths being given as 4 and 5.

First Step: In program Diagonai-Length through the statement read {L,, Loyiwe read
Lias4andL; as5. AsLl,>0and L, > 0. Therefore, the program enters the
while-loop. Next the program, in order to compute the value of the diagonal calls tiie
procedure sum-square by associating with a the valuc of 1., as 4 and with b the value
of L, as 5. After these associations, the procedure sum-square takes control of the
computations. The procedure computes S as 41 = 16 + 25. The procedure returns 41
fo the program. At this point, the program again takes control of further execution.
The program uses the value 41 in place of sum-squate (L, L,). The program calls the
procedure square-root, which is supposed to be built in the computer system, which
temporarily takes control of execution. The procedure square-root returns value /41
and also returns control of execution to the program Diagonal-Lengt!; which in um
assigns this value to D and prints the statement: ’ ‘

For sides of given lengths 4 and 5, the required diagonal length is NETH

The program under while-loop again expects values of 1., and L from the user. If the
values supplied by the user are positive integers, whole process is repeated after
entering the while-loop. However, if either L, €0 (say — 34) or L, < 0, then while-
loop is not entered and the program terminates.

We summarise the above discussion about procedure as follows:

A procedure 1s a self-contained algorithm which is written for the purpose of plugging
into another algorithm, but is written independent of the aigorithm into which it may
be plugged.

1.6.3.2 Recursion

Next, we consider another important control structure namely recursion. In order to
facilitate the discussion, we recall from Mathematics, one of the ways in which the
factorial of a natural number n is defined:

Jactorial (1) =1 )
Sfactorial (n) = n* factorial (n—1). (1.63.2.1)

For those who are familiar with recursive defiitions like the one given above for
factorial, it is easy to understand how the value of (') is obtained from the above
definition of factorial of a natural nummber. However, for those who are not familiar
with recursive definitions, let us compute factorial (4) using the above definition.
By definition

factorial (4) = 4 * factorial (3).
Again by the definition

factorial (3) = 3 * factorial (2)
Similarly

factorial (2) = 2* factorial (1)
And by definition

factorial (1) =1
Subsuituting back values of factorial (1), factorial (2) etc., we get
factorial (4) = 4.3.2.1=24, as desired.

This definition sug;
of & naturai numbe

gests the foliowing procedure/algorithm for computing the factorial
T
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In the following procedure factortal (n), let fact be the variable which is used to pass
the value by the procedure factorial to a calling program. The variable fact is initially
assigned value 1, which is the value of factorial (1).

Procedure factorial (n)
fact: integer;
begin
fact « 1
if n equals 1 then return fact
else begin
fact ¢ n * factorial (n —1)
return (fact)
end;
end;

In order to compute factorial (n — !}, procedure factorial 1s called by itself, but this
time with (simpler) argument (n —1). The repeated calis with simpler arguments
continue until factorial is called with argument 1. Successive multiplications of
partial results with 2,3, ... upto n finally deliver the desired result. .

Though, it is already mentioned, yet in view of the significance of the matter, it is
repeated below. Each procedure call defines a variables fact, however, the
various variables fact defined by different calls are different from each other. In
our discussions, we may use the names factl, fact2, fact3 etc. However, if there is
no possibility of confusion then we may use the name fact only throughout.

Let us consider how the procedure executes for n = 4 compute the valuz 6f
factorial (4).

Initially, 1 is assigned to the variable fact. Next the procedure checks whether the
argument n equals 1. This is not true (as n is assumed to be 4). Therefore, the next
line with n = 4 is executed i.e.,

fact is to be assigned the value of 4* factorial (3).

Now n, the parameter in the headjng of procedure factorial (n) is replaced by 3. Again
as n # 1, therefore the next line with n =3 is executed i.e.,

fact = 3 * factorial (2)

On the similar grounds, we get fact as 2* factorial (1) and at this stagen = 1. The
value 1 of fact is returned by the last call of the procedure factorial. And here lies the
difficulty in understanding how the desired value 24 is returned. After this stage, the
recursive procedure under consideration executes as follows. When factorial
procedure is called withn = 1, the value 1 is assigned to fact and this value is
returned. However, this value of factorial (1) is passed to the statement fact «-2 *
factorial (1) which on execution assigns the value 2 to the variable fact. This value is
passed to the statement fact <3 * factorial (2) which on execution, gives a value of 6
to fact. And finally this value of fact is passed to the statement fact« 4 * factorial (3}
which in turn gives a value 24 to fact. And, finally, this value 24 is returned as value
of factorial (4).

Coming back from the definition and procedure for computing factorial (n), let us
come to general discussion.

Suinmarizing, a recursive mathematical definition of a function suggests the definition
of a procedure to compute the function. The suggested procedure calls itseff
recursively with simpler arguments and terminates for some simple argument the
required vatue for which, is directly given within the algorithm or procedure.



Definition: A procedure, which can call itself, is said to be recursive
procedure/algorithm. For successful implementation of the concept of recursive
procedure, the following conditions should be satisfied.

(i) There must be in-built mechanism in the computer system that supports the
calling of a procedure by itself, e.g, there may be in-built stack operations on a
set of stack registers.

(i) There must be conditions within the definition of a recursive procedure under
which, after finite number of calls, the procedure is terminated.

(iii) - The arguments in successive calls should be simpler in the sense that each
succeeding argument takes us towards the conditions mentioned in (ii).

In view of the significance of the concept of procedure, and specially of the concept of
ré&ursive procedure, in solving some complex problems, we discuss another recursive
algorithm for the problem of finding the sum of first n natural numbers, discussed
earlier. For the discussion, we assume n is a non-negative integer

procedure SUM (n : integer) : integer
s : integer;
Ifn =0 then return (0)
else
begin s n + SUM (n - 1);
return (s)
end;
end;

Ex.7) Explain how SUM (5) computes sum of first five natural numbers.

1.7 OUTLINE OF ALGORITHMICS

We have already mentioned that nor every problem has an algorithmic solution. The
problem, which has at least one algorithmic solution, is called algorithmic or
computable problem. Also, we should note that there is no systematic method (i.e.,
algorithm) for designing algorithms even for algorithmic problems. In fact, designing
an algorithm for a general algorithmic/computable problem is a difficult intellectual
exercise. It requires creativity and insight and no general rules can be formulated in
this respect. Asa consequence, a discipline called algorithmics has emerged that
comprises large literature about tools, techniques and discussion of various issues like
efficiency etc. related to the design of algorithms. In the rest of the course, we shall
be explaining and practicing algorithms. Actually, algorithmics could have been an
alternative name of the course. We enumerate below some well-known techniques
which have been found useful in designing algorithms:

i) Divide and conquer

i) Dynamic Programming
iii)  The Greedy Approach
v)  Backtracking

v) Branch and Bound

vi)  Searches and Traversals.

Most of these techniques will be discussed in detail in the text.
In view of the difficulty of solving algorithmically even the computationaliy solvable
problems, some of the problem types, enumerated below, have been more rigorously

studied:

(1) Sorting problems .

Etementary Algorithmics
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{ii)  Searching problems

(iiiy Linear programming probieras
(iv) Number-iheory problems

(v) String processing problems
(vi) Graph problems"

(vii) Geometric problems

(viii) Numerical problems.

Study of these specific types of problems may provide useful help andéuidance in
solving new problems, possibly of other problem types.

Next, we enumerate and briefly discuss the sequence of steps, which generally,
one goes through for designing algorithms for solving (algerithmic) problems,
and analyzing these algorithms.

1.7.1 Understanding the Problem

Upderstanding allows appropriate action. “This step forms the basis of the other steps
to the discussed. For understanding the problem, we should read the statement of the
probtem, if required, a number of times. We should try to find out

(i) the type of problem, so that if a method of solving problems of the type, is
already known, then the known method may be applied to solve the problem
under consideration.

(ii) the type of inputs and the type of expected/desired outputs, spetiaily, the
illegal inputs, i.e., inputs which are not acceptable, are characterized at this
stage. For example, in a problem of calculating income-tax, the income can not
be non-numeric character strings.

(iii} the range of inpats, for those inputs which are from ordered sets. For example,
in the problem of finding whether a large number is prime or not, we can not

give as input a number greater than the Maximum number-(Max, mentioned
above) that the computer system used for the purpose, can store and
arithmetically operate upon. For still larger numbers, some other representation
mechanism has to be adopted.

(iv) special cases of the problem, which may need different treatment for solving
the problem. For example, if for an expected quadratic equation a+bx+c=0, a,
the coefficient of X%, happens to be zero then usual method of solving quadratic
equations, discussed earlier in this unit, car: not be used for the purpose.

1.7.2 Anpalyzing the problem

This step is useful in determining the characteristics of the problem under

consideration, which may help in solving the problem. Some of the characteristics in
this regards are discussed below:

(1) Whether the problem is decompesable into independent smaller or easier
subproblems, so that programming facilities like procedure and recursion etc.

may be used for designing a solution of the problem. For example, the
problem of evaluating

j(S x? +sin? x cos” x)dx
can be do decomposed into smaller and simpler problems viz.,
S fxz dx and “.Sinzx Cos’x dx

(i) Whether steps in a proposed solution or solution strategy of the problem,
may or may not be igonorable, recoverable or inherently irrecoverable,



i.e., irrecoverable by the (very) nature of the problem. Depending upon the
nature of the problem, the solution strategy has to be decided or modified. For
example,

a)  While proving a theorem, if an unrequired lemma is proved, we may ignore it.
The only loss is the loss of efforts in proving the lemma. Such a problem is
called ignorable-step problem. ‘

b)  Suppose we are interested in solving 8-puzzle problem of reaching from some
initial state say

to some final state say

11213
8. 14
71615

by sliding, any one of the digits from a cell adjacent to the blank cell, fo the blank cell.
Then a wrong step cannot be ignored but has to be recovered. By recoverable, we
mean that we are allowed to move back to the earlier state from which we came to the
current state, if current state seems to be less desirable than the earlier state. The 8-
puzzle problem has recoverable steps, or, we may say the problem is a recoverable
problem

9] However if, we are playing chess, then a wrong step may not be even
recoverable. In other words, we may not be in a position, because of the
adversary’s move, to move back to earlier state. Such a problem is called an
irrecoverable step problem.

Depending on the nature of the problem as ignorable-step, recoverable-step or
irrecoverable-step problem, we have to choose our tools, technigques and strategies for
solving the problem.

For example, for ignorable-step problems, simple control structures for sequencing
and iteration may be sufficient. However, if the problem additionally has recoverable-
step possibilities then facilities like back-tracking, as are available in the programming
language PROLOG, may have to be used. Further, if the problem additionally has
irrecoverable-step possibilities then planning tools should be available in the
computer system, so that entire sequence of steps may be analyzed in advance to find
out where the sequence may lead to, before the first step is actually taken.

There are many other characteristics of a problem viz.,

. Whether the problem has certain outcome or uncertain outcome

. Whether a good solution is absolute or relative

- Whether the solution is a state or a path

. Whether the problem essentially requires interaction with the user etc.

which can be known through analyzing the problem under consideration, and
the knowledge of which, in turn, may help us in determining or guessing a correct
sequence of actions for solving the problem under consideration

1.7.3  Capabilities of the Computer System

We have already discussed the importance of the step in Section 1.5, where we
noticed how. because of change in computgtional capabilities, a totally different

Elementary Algorithmics



instroduetion to algorithm has to be designed to solve the same preblem (e.g., that of multiplying two
Algorithmics natural numbers).

Most of the computer systems used for educational purposes are PCs based on Von-
Neumann architecture. Algorithms, that are designed to be executed on such
machines are called sequential algorithms.

However, new more powerful machines based on parallel/distributed architectures,
are also increasingly becoming available. Algorithms, that exploit such additional
facilities, are called parallel/ distributed; such parallel/distributed algorithms, may not
have much resemblance to the corresponding sequential algorithms for the same
problem.

However, we restrict ourselves to sequential algorithms only.

1.7.4 Approximate vs Exact Sclution

For some problems like finding the square root of a given natural number n, it may
not be possible to find exact value for all n’s (e.g., n = 3). We have to determine in

+advance what approximaticn is acceptable, e.g., in this case, the acceptable error may
be, say, less than .01.

Also, there are problems, for which finding the exact solutions may be possible, but
the cost (or complexity, to be defined later) may be too much.

In the case of such problems, unless it is absolutely essential, it is better to use an
altertative algorithm which gives reasonably approximate solution, which otherwise
may not be exact. For example, consider the Travelling Salesperson Problem: A
salesperson has a list of, say n cities, each of which he must visit exactly once. There
are direct roads between each pair of the given cities. Find fhe shortest possible route
that takes the salesperson on the round trip starting and finishing in any one of the n
cities and visiting other cities exactly once.

In order to find the shortest paths, one should find the cost of covering each of the

n! different paths covering the n given cities. Even for a problem of visiting 10
cities, n!, the number of possible distinct paths is more than 3 million. Ina -
country like India, a travelling salesperson may be expected to visit even more than 10
cities. To find out exact solution in such cases, though possible, is very time
consuming. In such case, a reasonably good approximate solution may be more
desirable. '

1.7.5 Choice of Appropriate Data Structures

In complex problems particularly, the efficiencies of solutions depend upon choice of
appropriate data structures. The importance of the fact has been emphasized long back
in 1976 by one of the pioneer computer scientists, Nickolus Wirth, in his book entitled
“Algorithms + Data Structures= Programs ”

“In a later paradigm of problem-solving viz., object-oriented programming, choice of
appropriate data structure continues to be crucially important for design of efficient
programs.

1.7.6 Choice of Appropriate Design Technology

A design technique is a general approach for solving problem that is applicable to
computationally solvable problems from various domains of human experience.

We have already enumerated various design techniques and also various problem
domains which have been rigorously pursued for computational solutions. For each
problem domain, a particular set of techniques have been found more useful, though



other techniques also may be gainfully employed. A major part of the material of the Etementary Algorithenics
course, deals with the study of various techniques and their suitability for various

types of problem domains. Such a study can be & useful guide for solving new

problems or new problems types.

1.7.7 Specification Methods for Algorithms

in the introduction of the unit , we mentioned that an algorithm is a description or
statement of a sequence of activities that constitute a process of getting desired output
Jrom the given inputs. Such description or statement needs to be specified in some
notation or language. We briefly mentioned about some possible notations for the
purpose. Three well-known notations/languages used mostly for the purpose, are
enumerated below:

(i)  Natural language (NL): An NL is highly expressive in the sense that it can
express algorithms of all types of computable problems. However, main
problem with an NL is the inherent ambiguity, i.e., a statement or description in
NL may have many meanings, all except one, may be unintended and
misleading.

(i) A Pseudo code notation is a sort of dialect obtained by mixing some
programming language constructs with natura! language descriptions of
algorithms. The pseudo-code method of notation is the frequently used one for
expressing algorithms. However, there is no uniform/standard pseudo-code
notation used for the purpose, though, most pseudo-code notations are quite
similar to each other.

(i) Flewchart is a method of expressing algorithms by a collection of geometric
shapes with imbedded descriptions of algorithmic steps. However, the
technique is found to be too cumbersome, specially, to express complex
algorithms.

i.7.8 Proving Correctness of an Algorithm

When an algorithm is designed to solve a problem, it is highly desirable that it is
proved that it satisfies the specification of the problem, i.e., for each possible legal
input, it gives the required output. However, the issue of proving correctness of an
algorithm, is quite complex. The state of art in this fegard is far from its goal of being
able to establish efficiently the correctness/incorrectness of an arbitrary algorithm.

The topic is beyond the scope of the course and shall not discussed any more.

1.7.9 Analyzing an Algorithm

Subsection 1.7.2 was concerned with analyzing the problem in order to find out
special features of the problem, which may be useful in designing an algorithm that
solves the problem. Here, we assume that one or more algorithms are already designed
1o solve a problem. The purpose of analysis of algorithm is to determine the
requirement of computer resources for each algorithm. And then, if there.are more
than one algorithms that solve a problem, the analysis is also concerned with
choosing the bettek one on the basis of comparison of requirement of resources for
different available algorithms. The lesser the requirement of resources, better the
algorithm. Generally, the resources that are taken intc consider al
algorithms, include

(i) Time expected to be taken in executing the instances of the problem generally as
a function of the size of the insiance.

(it)  Memory space expected to be required by the computer system, in executing the
instances of the problem; generally as a functios of the size of the instances.
3i
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(i11)  Also sometimes. the man-hour or man-month taken by the team developing the
program, is also taken as a resource for the purpose.

The concerned 1ssues will be discussed from place to place throughout the course

material.

1.7.10 Coding the Algorithm

In a course on Design & Analysis of Algorithm, this step is generally neglected,
assuming that once an algorithm is found satisfactory, writing the corresponding
program should be a trivial matter. However, choice of appropriate language and
choice of appropriate constructs are also very important. As discussed earlier, if the
problem is of recoverable type then, a language like PROLOG which has
backtracking mechanism built into the language itself, may be more appropriate than
any other language. Also, if the problem is of irrecoverable type, then a language
having some sort of PLANNER built into'it, may be more appropriate.

Next, even an, efficient algorithm that solves a problem, may be coded into an
inefficient program. Even a correct algorithm may be encoded into an incorrect
program.

In view of the facts mentioned earlier that the state of art for proving an
algorithm/prograut correct is still far from satisfactory, we have to rely on testing the
proposed sojutions. However, testing of a proposed solution can be effectively carried
out by execunng the program on a computer system (an algorithm, which is not a
program cari not be exectited). Also by executing different algorithms if more than
one algorithm is available, on reasonably sized instances of the problem under
consideration, we may empirically compare their relative efficiencies. Algorithms,
which are not programs, can be hand-executed only for toy-sized instances.

1.8 SUMMARY

1. In this unit the following concepts have been formally or informally 8efined
and discussed:

" Problem, Solution of a Problem, Algorithm, Program, Process (all
section 1.1) . Instance of a problem (Section 1.2)

2. The differences between the related concepts of
(i)  algorithm, program and process (Section 1.1)
(i} probiem and instance of a problem (Section r2)
(iii) a general method and an algorithm (Section 1.4) and
(iv) definiteness and effectiveness of an algorithm (Sectign 1.4)

are explained

The following well-known problems are defined and discussed:

w

(i)  The Four-Colour Problem (Section 1.2)

(i) The Fermat s Last Theorem (Section 1.3)
(iii) Travelling Salesperson Problem (Section 1.7)
(iv) 8-puzzle problem (Section 1.7)

(v)  Goldbach conjecture (Solution of Ex.1)

(vi) The Twin Prime Conjecture (Solution of Ex.1)

4. The following characteristic properties of an algorithm are discussed
1Section 1.4)
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Finiteness
Definiteness
Inputs
Outputs
Effectiveness

(i
(i1)
(iiiy
(@iv)
)
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In order to emphasize the significant role that available tools play in the
design of an algorithm, the problem of muitiplication of two natural numbers
is solved in three different ways, each using a different set of available tools.
{Section 1.5}

fri Section 1.6, the building blocks of an algorithm including
(a)

(b)

the instructions viz.,

{i) assignment (ii) read and (iii) Write
control structures viz.,
(i) -sequencing {11} sef.
are discussed

and

slion

wid (i) repetition

The important concepts of procedure snd recursion are discussed in

Section 1.6.

In Section 10, the f v an important role iy
deveioping and choosing an algorithm for solving a given problem,

discussed:

@

(i)
(iii)
(i)

understanding the problem

analysing the problem

capabilities of the computer system used for solving the problem
whether required solution must be exact or an approximate sohution
maay be sufficient

choice of appropriate technology

notations for specification of an algorithm

proving cotrectness of an algorithm

analysing an algorithm and

coding the algorithm.

(v
(vi)
(vii)
{viiy
{ix)
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SGLUTIONS/ANSWERS

Ex.1)

Example Problem 1: Find the roots of the Boolean equation

a+bx+c =0,
where x,y,a,b,c € {0,1} and a=0

Further, values of a, b and ¢ are given and the value of x 1s to be determined.
Also x* = x.x is defined by the equations 0.0 =0.1=1.0 = 0 and 1 .1=1

Fhe problem hes only four instances viz

KHx+1=0 (fora=1=b=c¢)

CHx o =0 (fora=1=b, ¢=0)
X+l =0 (fora=1=c, b=0}
< =0 {fora=1,b=0=¢)



Ex.2)

iy

Exampie Problem 2: (Goldbach Conjecture): In 1742, Christian Goldbech
conjectured that every even integer n with n>2, is the sum of two prime
numbers. For example 4=2+2, 6=3+3, 8=5+3 and so on.

The conjecture seems to be very simple to prove or disprove. However, #o far
the conjecture could neither be established nor refuted, despite the fact tiit the
conjecture has been found to be true for integers more than 4.10'. Again the
Goldbach conjecture is a single instance problem.

Example Problem 3: (The Twin Prime Conjecture): Two primes &re @d to
be twin primes, if these primes differ by 2. For example,3and 5, 5 and 7, 11
and 13 etc. The conjecture asserts that there are infinitely many twin primes.
Though, twin primes have been found each of which has more than 32,220
digits, but still the conjecture has neither been proved or disproved. Again the
Twin Prime Conjecture is a single instance problem.

(i) A method which is not finite
Consider the Alternating series

S=1-1/2 +1/3—-1/4+1/5........

S can be written in two different ways, showing ¥2<S<l:
S=1-(1/2-1/3) = (1/4 =1/5) = (/6 = 1/T).........

{Showing S<I as all the terms within parentheses are positive}
S=(1-1/2) + (U3—1/4) + (U5 ~-1/6)+...........

{Showing 4<S, again as all terms within parenthesis are pesitive and
Sfirst term equals ¥}

The following method for calculating exact value of S is not finite.

Method Sum-Alternate- Series
begin
Se-1; nel
While n2 2 do

begin
SeS+(- 1)“*”.(1)
n

nen+l
end;
end.

(ii) A method which is not definite

Method Not-Definite

Read (x)
{Let an Urn contain four balls of different colours viz., black; white, blue and
red. Before taking the next step, take a ball out of the urn without looking at the
ball}

Begin

1f Color-ball= ‘black’ then
X X+1;
else
If color-ball= ‘white’ then
X€¢—X+2;
lse if colour-ball = ‘blue’ then x&-x+3



else
Re—Xt4;
end.
Then we can see that for the same value of x, the method Not-Definite may retura
different values in its different executions.

(i) If any of the following is a part of a method then the method is not
effective but finite.

(a) If the speaker of the sentence:
‘I am telling lies”*
is actually telling lies,
then x¢3
else x4

(b) If the statement:
*If the word Heterological is heterological”™
is true
then x«3
clse x4
Ex.3)

The algorithm is obtained by modifying a’ la russe method. To begin with, we
illustrate our method through an example.

Let two natural numbers to be multiplied be first and second.

Case I: When first is divisible by 3, say
first = 21 and second =16

Then first * second=21%* 16 = (7* 3}*16
= 7*(3*16)={[first/3]*(3*second)

P |
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" It is not possible to tell whether the speaker is actually telling lies or not. Because , if the

speaker is telling lics, then the statement: ‘7 am telling lies® should be false. Hence the speaker

is not telling lies. Similarly, if the speaker is not4elling lies then the statement: *7 am telling
lies” should be true. Therefore, the speaker is telling lies. Hence, it is nor possible to tell

whether the statement is true or not. Thus, the part of the method, and hence the method itself,
is not effective. But this part requires only finite amount of time to come to the conclusion that

the method is not effective.

" A word is said to be autological if it is an adjective and the property denoted by it applies to

the word itself. For example, each of the words English, polysyllabic are autological. The
word single is a single word, hence single is autological. Also, the word autological is
autological.

A word 1s heterological, if it is an adjective and the property denoted by the word, does not
apply to the word itself For example, the word monosyllabic is not monosyllabic. Similarly,
long is not a long word. German is not a German (language) word. Domble is not a double
word. Thus, each of the words: monosyllabric , long, German, and double is heterological.
But, if we think of the word heterological , which is an adjective, in respect of the matter of
determining whether it is heterological or not, then it is not possibie to make either of ihe two
statements:

(1} Yes, heterological is heterological
(it No, heterological is not heterological.

The reason being that cither of these the assertions alongwith defirition of heterological teads

to the assertion of the other. However, both of (1) and (it) above can not be asserted
simultaneously. Thus it is not possiblc o te!l whether the word teterological is heterclogical
or not

[o%
(v



introduction to Case 2= Whesi on division of first by 3, remainder=1
Algorithmics Let first=22 and second=16
Then i
first*second = 22*16= (7*3+1)*16
=7*3%16+]{*]6 = 7¥(3*16)+1*16
=[ first/3]¥(3*second)+1*second
= [ first/3] * (3* second)+ remainder * second

Case 3: When on division of first by 3, remainder=2

Let first=23 and second=16. Then

First * Second = 23*16=(7*3+2)*16

=(7%3)* 16+2%16 ~

=7*(3*16)+2*16=[first/3] *(3*second)+2*second
= [ first/3}* {3* second)+ remainder * second

After these preliminary investigations in the nature of the proposed algorithm,
i let us come to the proper solution of the Ex. 3, ie.,

Problem: To find the product m * n using the conditions stated in Ex. 3.

The required algorithm which uses variables First, Second, Remainder and
Partiai-Result, may be described as follows:

Step I+ Initialise the variables First, Second and Partial-Result respectively with
m (the first given number), n (the second given number) and 0.

Step 2: If First or Second® is zero, then return Partial-result as the final resul
and then stop. Else

“First,~{First/3] ; Remainder ¢ First — First,*3;
Partial-Result,« First;*Second;;
Partial-Result<Partial-Result,+Remainder; *Second;

Step 3:
{For computing Partial-Result;, replace First by First;; Secpnd by Second,, and Partial-Result by
Partial-Result, in Step 2 and repeat Step 2}

First¢— First, ; Second=Second
Partial-Result < Partial-Result,
And Go To Step2

* if, initially, Second = 0, then Second # O in the subsequent calculations also.
{Remainder is obtained through the equation

™ First = 3*First, +»Remaindérg
: with  0<Remainder,<2
Second, = 3*Second
Partiai-Resuit,= First, * Second,
Partial-iesult = First * Second = {First,*3+Remainder; }*(Sccond)
=(First,*3)*Second+Remainder; *Second
=Firsi, *(3*Second) +Remainder*Second
=First, *Second, +Remainder;*Second
=Partial-Result, +Remainder; *Second
Where 0<Remainder, <2
G Thus at every stage, we are multiplying and dividing, if required by at most 3



i

First Second | Remainder | Partial Result E
on division ]
by3 |

Initially: 52 19 0 :

Step 2 As value of First = 0, 1 19
hence continue

Step 3 17 57

Step 2 Value of first # 0, 2 2¥57+19 =133
continue,

Step 3 5 171

Step 2 Value of First = 0, 2 2%171+133 i
continue =475 i

Step 3 1 513

Step 2 Value of first # 0, i 513+475=983
continue

Step 3 0 304 |

As the value of the First is 0, the value 98R of Partial Result is returned as the result

and stop.

Ex. 4)

Algorithm Real-Roots-Quadratic

{this algorithm finds the real roots of a quadratic equation ax’+bx+c=0, in

which the coefficient a of x” is assumed to be non-zero. Variable temp is used 1o

store results of intermediate computations. Further, first and second are
variabie names which may be used to store intermediate results and finally io

store the values of first real root (if it exists) and second real root (if it exists) of

the equation}.

begin  {of algorithm)}

read (a);

while (a=0) do {so that finaily o+ 0}

read (a);
read (b,c});
temp < b*b — 4*a*c
If temp<0 then
begin

write (“the quadratic equation Has no real reots’.)

STOP
end;
else
i termp=0
begin

then

first= — b/(2%4)
write (“The two roots of the quadratic equation

end;

equal’. The root is’ first)

{as first’ is outside the quotes, therefore, value of first wiil
be given as output and not the word first will be output} .
&8 p /4

-else
{ie., when temp>0, i.e.

begin

, when two roots are distinct}

temp<— sq-root (temp);
firste- (— b+temp)/(2*a);
seconde- (— b~ temp)/(2*a);

Etementzry Algorithmics
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write (*The quadratic equation has iwo distinct mots,
viz'., first, second);

end; .
{of case when temp>0}

end; {of algorithm}

Ex. 5)
Algorithm Real-Roots-General-Quadratic

{In this case, a may be zero for the quadratic equation’

Variable name temp is used to store results of intermediate computations.
Further, first and second are variable names which may be used to store
intermediate results and finally, first and second stare the values of first real

root (if it exists) and second real root (if it exists) of the equation}.

begin {of algorithm}
read (a,b,c)

If (a=0) then
{i.e., when the equation is of the form bx+c=0}
begin

if (b=0) then

{i.e., when equation is of the form ¢=0}

begin

ife=0

{i.e., when equation is of the form 0.5°+0x+0=0; which is satisfied by
every real number}

write (‘every real number is a root of the given cquation’}
end; {of the case a=0, b=0, c=0}
else {when a=0, b=0and c# 0 then 0x° +0x+c=0 can not be satisfied by
any real number}
begin
write (“The equation has no roots’)
end {of case a=0, b=0 and ¢ # 0}
end {of case a=0, b=0}
else {when a=0 but b #0 i.e., when
the equation has only one root viz (—c/b)}
begin {when a=0, b# 0}
first : =~
Write (‘The equation is linear and its root is’ first)
end {whena=0,b=0}
else {whena# 0}
{The complete part of the algorithm of Ex.4 that starts with the statement
temp: < b*b—4 *a*c.
comes herej

Ex.6) (i)

Initially the value of variable n is read as 3. Each of the variables x and Sum is
assigned value 0. Then without any condition the algorithm enters the do...while
loop. The value x-is incremented to 1 and the execution of statement
SUM«-Sum +1 makes SUM as 1.

Next the condition x<n is tested which is true, because x = | and n = 3. Onee
the condition is true the body of the do..while loop is entered again and execuied
second time. By this execution of the foop, X becomss 2 and SUM becomes
142=3.



As x = 2< 3 = n, the body of the do..while loop is again entered and executed Flunestary Algerigamics
third time. In this round/iteration, x becomes 3 and SUM becomes 343 =4,

Again the condition x<n is tested But, now x = 3 1 = 3, therefore, x < # is false.

Hence the body of the do.. while loop is ne more executed i.e., the foop is

termunated. Next, the write statement gives the following output:

The sum of the first 3 natural numbers is 6.

The last stptement consisiing of end followed by dot indicates that the algorithin
is to be terminated. Therefore, the algorithm terminates.

Ex 6 (i)

The algorithm Sum_First_N_3 reads 3 as value of the variable n. Then the
slgorithm enters the for-loop. In the for-loop, x is implicitly initiatised to 1 and
the body of the for-loop is entered. The only statement in the body of the
Jor-loop, viz.

SUM« Sum+x

is executed to give the value | to SUM. After executing once the body of the
for-loop, the value of the index variable x is implemental incremented by 1to
become 2.

After each increment in the index variable, the value of the index variable is
compared with the final value, which in this case, is n equal to 3. If index
variable is less than or equal to n (in this case) then body of for-loop is executed
once ggain.

As x =< 3 =n hence SUM 3 « SUM+x is executed once more, making SUM
equal to i+2 =3, Again the index variable x is incremented by 1 to become 3.
@3 35 n (=3) therefore once again the body of the for-loop containing the only
statement SUM« SUM+x is executed making 6 as the value of SUM. Next x is
automatically incremented by 1 to make x as 4. But as 4 is not less than n (=3).
Hence the for-loop Is terminated. Nexs, the write statement gi-es the cutput:
The sum of the first 3 natural numbers is 6.

The last statement consisting of end followed by dot, indicates that the
algorithm is to be terminated. Hence, the algorithm is terminated.

ot
ol
~J

3

For computing SUM (5) by the algorithm
Asn=5#0
therefore
S5 ¢ nt SUM (n-1} = 5+SUM4)
{1t may be noted that in different calls of the procedure SUM, the variable
names occurring within the procedure, denote different variables. This is wiiy

instead of S we use the names S, for i=5,4,3,........}

Therefore, in order {6 compute SUM(S), we need to compute SUM (4}
n=4 # 0, therefore
Sa¢- 4+ SUM (35
Cortinuing like this, we get
Sy~ 3+ SUM{Z)
S e- 2 3UM (D)
Sy e 1+ SUM {0}



Introduction ie
Algorithmics

46
At this stage.n=0, and accordingly, the algorithm retumns value 0. Substituting
the value o of SUM (0) we get
S,= 1+0=1 which is returned by-SUM(1).
Substituting this value we get $;=3. Continuing like this, we get S;=6, S;=10
and Ss=15
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2.0 INTRODUCTION

We have already mentioned that there may be more thanyone algorithms, that solve a
given problem. In Section 3.3, we shall discuss eight algorithms to sort a given list of
numbers, each aigorithm having its own merits and demerits. Analysis of algorithms,
the basics of which we study in Unit 3, is an essential tool for making well-informed
decision in order to choose the most suitable algorithm, out of #he available ones if
any, for the problem or application under consideration. -

A number of mathematical and statistical tools, techniques and notations form an
essential part of the baggage for the analysis of algorithms. We discuss some of these
tools and techniques and introduce some notations in Section 2.2. However, for
detailed discussion of some of these topics, one should refer to the course material of
MCS-013.

Also; in this unit, we will study 2 number of well-known approximation functions.
These approximation functions which calculate approximate values of quantities
under consideration, prove quite useful in many situations, where soine of the
mvolved quantities are calculated just for comparison with each other. And the
correct result of comparisons of the quantities can be obtained even with approximate
values of the involved quantities. In such situaisons, the advantage is that the
approximate values may be calculated much more efficiently than can the actual
values.

2.1 OBJECTIVES

After going through this Unit, you should be abie to:

use a number of mathematical notations e.g,,
. .
3. I] LT T mod. log, e ete.

The understanding os the
theory of a routine may be
greatly aided by providing,
at the time of construction
0n¢ or two statements
cericerning the state of the
machine at well chose
points...In the exwreme form
of the theoretical method a
watertight mathematicai
proof is provided for the
assertions. In the extreme
form of the experimental
method the routine is tried
out one the machine with a
variety of initial conditions
and is pronounced fit if the
assertions hold in each case.
Both.methods have their
weaknesses.

AM. Turing
Ferranti Mark § |
Pragramming Manual (1950)
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® define and use a number of concepts like function, 1-1 function, onto function,

m
lo

orotonic function, floor and ceiling functions, mod function, exponentiation,
garithm functions etc

. define and use Mathematical Expectation

. Use of Principle of Mathematical Induction in establishing truth of infinitely

m:

any statements  and

. define and use the five asymptotic function viz.,

i o (O (n?) is pronounced as ‘big-oh of n”” or sometimes just as ch of n’)

Gy - (Q (n* ) is pronounced as ‘big-omega of n’ or sometimes just as
omega of n’’)

(i) O (@ (n%) is pronounced as ‘theta of n®)

@iv) o (0 (n?) is pronounced as ‘listie-oh of 0”*)

V) o (o (r) is pronounced as ‘little-omega of n™").

2.2 SOME USEFUL MATHEMATICAL

FUNCTIONS & NOTATIONS

Let us start with some mathematical defiritions.

2.2.1

Functions & Notations

Just to put the subject matter in proper coniext, we recall the following notations and
definitions.

Unless mentioned otherwise, we use the letters N, I and R in the following sense:

Notatio!
then

()

(i)

N=1{1,23..}
I={.,—2, —0,1,2,..}
R = set of Real numbers.

n2.2.1.1: Ifa,, a,...a, are nreal variables/numbers

Summation:

The expression
ay +ayt ettty
may be denoted in shorthand as

i=1
Product

The expression
ap X @3% ... X&X ..X 3
tmay be denoted in shorthand as
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Fuaction:

For two given sets A and B (which need not be distinct, i.e., A may be the same as &)
a rule { which associates with each element of A, a unique element of B, is called 2
function from A to B. If fisa function from a set A to a set B-then we denote the fact
byf: A— B. Also, forx € A, f(x) is called image of x in B. Then, A is called the
domain of f and B is called the Codomain of f.

Example 2,2,1.3:
Let f: T — I be defined such that
f(x)=x* foralixel

Then
fmaps —4 to i6
f maps 0 to 0
f map 5 to 25

Remark 2.2.1.4:
We may note the following:

)] if £ x —> y is a function, then there may be more than one elements, say x,
and x; such that

f(x;) = f(x2)
For example, in the Example 2.2.1.3
f(2)=f(-2)=4

By putting restriction that f(x) # f(y) if x # y, we get special functions, called
1-1 or injective functions and shall be defined soon.

(1) Though for each element x € X, there must be at least one elementy € Y
s.t f(x) =y. However, it is not necessary that for each elementy € Y,
there must be an element x € X such that f(x) = y. For example, for
y=—3€Ythereisnox € Xs.tf(x)=x’=-3.

By putting the restriction on a function f, that for each y € Y, there must be af least
one element x of X s.t f(x) =y, we get special functions called onto or surjective
functions and shall be defined soon.

Mext, we discuss some important functions.

Definition 2.2.1.5:

1-1 or Injective Function: A function {: A —> B is said to 1-1° or injective if
forx,ye A, if f(x) = f(y) thenx =y

We have already seen that the function defined in Example 2.2.1.3 is not i-1.
However, by changing the domain, through defined by the same rule, f becomes a
1-1 function.

Example 2.2.1.2:

in this particular case, if we change the domam from [to N = {1,2.3.. } then we can
eastly check that function

* Sor :authors write 1-to-1 in stéad of 1-1. However, other autho:s call a function 1-to-1 if
s both 1-1 and onte (to be defined 0 1n 2 short while!
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f:N—=1 defined as
f(x) = x°, forallx € N,

is 1-1.

Because, in this case, for each x € N its negative —x ¢ N. Hence for f(x) = f(y)
implies x = y. For example, If f(x) = 4 then there is only one value of x, viz, x =2 s.t
f2)=4.

Definition 2.2.1.7:

Onto/Surjective function: A function f: X — Y is said to ento, or surjective if to
every element of Y, the codomain of f, there is an element x € X s.t f(x) =y.

We have already seen that the function defined in Example 2.2.1.3 is not onto.

However, in this case either, by changing the codomain Y or changing the rule, (or
both) we can make f as Onte. .

Example 2.2.1.8: (Changing the domain)

LetX=I={...—3,-2,-1,0,1,2,3, ...}, but, we change Y as
Y={0,1,4,9,..}= tyl y=n*forne X}

then:it can be seen that
f X— Y defined by
fix) = »” for all x € X is Onto

Example 2.2.1.9: (Changing the rule)

Here, we change the rule sothat X =Y = {...—3,-2,-1,0,1.2,3..}
But f: X = Y is defined as
F(x)=x+3 forx € X.

Then we apply the definition to show that £is onto.
ifyey, theh, by definition, for { to be onto, there must exist an x € X such that
f(x)=y. So the problem is to find out x € X s.t f(x) =y (the given element of the

codomain y).

Let us assume that x € X exists such thal

fix}=y
ie., x+3=y
ie., x=y~-3

But, as y is given, x is known through the above equation. Hence f is onto.

Definition 2.2.1.10:

Monotonic Functions:  For the definition of monotonic functions, we consider
only functions

f:R->R

where, R is the set of real numbers’.

* Monotonic functions

f: XY,
may be defined even when cach of X and Y, in stead of being R, may be any ordered sets.
But. such general definition is not required for our purpose..



A function f: R — R is said to be tonically increasing if forx, ye Randx <y
we have f(x) < f(y).

In other words, as x increases, the value of its image f{x) also increases for a
monotonically increasing function.

Further, f is said to be strictly monotonically increasing, if x <y then {x) < f(y)

Exampie 2.2.1.11:
Let f: R — R be defined as f(x) = x + 3, forx € R

Then, for x,, X; € R, the domain, if x; 2 x, thenx, +3 > x, + 3, (by using monotone
property of addition), which implies f(x,) > f(x;). Hence, f is monotonically
increasing.

We will discuss after a short while, useful functiens called Floor and Ceiling
Sunctions which are monotonic but not strictly monotonic.

A function £: R — R is said to be monotonically decreasing, if, for x, y€ Randx <y
then f(x) > f{y).

In other words, as x increases, value of its image decreases.

Further, f is said to be strictly monotonically decreasing, if x <y then f(x) > Ky).
Example 2.2.1.12:

Let £ R —> R be defined as

F(x)=—-x+3

if X, 2 x; then — X; S~ x; implying — x+3<— %, +3,

which further implies f(x,) < f(x2)

Hence, f is monotonically decreasing.

Next, we define Floor and Ceiling functions which map every rea! number to an
integer.

Definition 2.2.1.13:

Floor Function: maps each rea/ number x to ihe integer, which is the greatest of ail
integers less than or equai to x. Then the image of ¥ is denoted by Lxl

instead of L x , the notation {x] is also used.
Forexample: | 2.5 J=2,1 =25 ]=-3,L 6 )=6.

Definition 2.2.1.14:

Ceiling Function: maps each veal number x to the integer, which is the least of ali
integers greater than or equal to x. Then the image of x is denoted by fx1

For exampie: [ 2.51=3,[-251=-2,[6 =6
Next, we state a useful result, without proof.
Result 2.1.1.10: For every real number x, we have

. 1 P
x—I<ixjex<ixl<x+1.

Some Pre-requisites and
Asymptotic Bounds

45
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£xampie £.2.1.132

Each of the floor function and ceiling function is a monotonically increasing function
but not strictly monotonically increasing function. Because, for real numbers x and y,
if xsythen y=x+kforsomek=0.

!_yj: Lx+kjf-integralpartof(x-kk)2integralpartofx: Lx]

Similarly

fyl =[x+ k1 = least integer greater than or equal to x + k 2 least integer
greater than or equal to x =[x1 ’

But, each of floor and ceiling function is not strictly increasing, because
L2sl=L27]=L29)=2

251=2.71 =[291=3
2.2.2  Modular Arithmetic/Mod Function
We have been implicitly performing modular arithmetic in the following situations:
@) If, we are following 12-hour clock, (which usually we do) and if it

11 O’clock now then after 3 hours, it will be 2 0O’clock and not 14 O’clock
(whenever the number of o clock exceeds. 12, we subtract n = 12 from the number)

@) If itis 5™ day (i.e. Friday) of a week, after 4 days, it will be 2™ day
(i.e., Tuesday) and not 9" day, of course of another, week (whenever the mumber of
the day exceeds 7, we subtractn =7 from the number, we are taking here Sunday as 7 day, i
stead of 0" day)

(iii) If, itis 6™ month (i.e., June) of a year, then after 8 months, it will be 2* month
(i.e., February) of, of course another, year ( whenever, the number of the month exceeds
12, we subtractn = 12)

In general, with minor modification, we have

Definition 2.2.2.1:

bmod n: ifn is a given positive integer and b is any integer, then

bmodn=r  where 0<r<n
and b=k*n+r

In other words, r is obtained by subtracting multiples of n' from b so that the remainder
r lies between O and (n —1). ‘ ’

For example: ifb=42andn= 11 then
bmodn=42mod 11 =9.

Ifb=—42 and n=11then
bmodn=—42mod11=2 (= —42=(-4)x 11 +2)

Mod function can also be expressed in terms of the floor function as follows:
b (mod n}=b ~{bmixn

Definition 2.2.2.2:

Factorial: For N = {1,2,3,...}, the factorial function
R factorial: N {0} -» Nu {0}
given by



factorial (n) = n x factorial (n— 1) Seme Pre-requisites and
has already been discussed in detail in Section 1.6.3.2. Asymptotic Bounds

Definition 2.2.2.3:

Exponentiation Function Exp: is a function of two variables x and n where x is any
non-negative real number and n is an integer (though n can be taken as non-integer
also, but we restrict to integers only)

Exp (x, n) denoted by x", is defined recursively as follows:
Forn=0

Exp (x, 0)=x°=!

Forn>0 !
Exp(x,n)=x x Exp(x,n~1)
ie
K =xx x™!

Forn<o,letn=-m ) form>0

L

™

In x", n is also called the exponent/power of x.

For example: if x = 1.5, n =3, then

Also, Exp (1.5,3) = (1.5 = (1.5) » [(1.5)°] = (1.5) [L.5 x (1.5)']
=L5[(1.5 x (1.5 x (1.5%)]

=LS[(1.5 x (1.5 x 1)]= 1.5 [(1.5 x 1.5)]
=15[2.25] =3.375

LI
(15). 3375

Further, the following rules apply to exponential function.

Exp (1.5, -3)=(1.5)"=

For two integers m and n and a real number b the following identities hold:

Err = o
by - b

b . b" - bm*n

For b 2 1 and for all n, the function b” is tonically increasing in n. In other
words, if n, 2 n, then b™ >b™ ifb21.

Definition 2.2.2.4:
Polynomial: A pelynomial in n of degree k, where k is a non-negative integer, over
R, the set of real numbers, denoted by P(n), is of the form
Pin)  =anftant+ . tanta,
wherea, #0and a; € R,i=0;1, ..., k.

Using the summation notation

k
Pm) =Y an' a0, a€R
i+0

47
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Each of {a, #') is called a term.
Generally the suffix k in Py(n) is dropped and in stead of P(n) we write P(n) only

We may note that P(n) = n* = 1.n* for any k, is a single-term polynomial. Ifk > O then
P(n) = n* is monotonically increasing. Further, if k <0 then p(n) =n" is
monotonically decreasing.

Notation: Though 0° is not defined, yet, unless otherwise mentioned, we will
take 0° = 1. The following is a very useful result relating the exponentials and
polynomials

Resuit 2.2.2,5: For any constants b and ¢ withb > 1

c
Lim =0
n-—w p?

The result, in non-mathematical terms, states that for any given constants b and ¢, but
. . 1°2° 3° k*
with b > 1, the terms in the sequence ——, —3 .5 Ty e
B b° b b -
approaches zero. Which further means that for constants b and c, and integer
variable n, the exponential term b®, for b > 1, increases at a much faster rate than
the polynomial term n°.

gradually decrease and -

Definition 2.2.2.6:

The letter e is used to denote the quantity

and is taken as the base of natural logarithm function, then for all real numbers x.

we define the exponential function

For, all real numbers, we have e* 2 1 +x

Further, if | x| <1then l4+x e <1 +x+ x*

The following is another useful result, which we state without proof:
. Y
Result 2.2.2.7: Lim (l +—) =e
n—w n

Definition 2.2.2.8:

Logarithm: The concept of logarithm is defined indirectly through the definition of
Exponential defined earlier. ifa>0,b>0 and ¢ > 0 are three real numbers, such that

c=2

Then b =log, ¢ (read as log of ¢ to the base a)
Then 2 is called the base of the algoritiam.
Yor example: if 2° = 64, the log,64 = 6,

i.e., 2 raised to power 6 gives 64.




Generally two bases viz 2 and e are ver ¥ commion in scientific and computing sqme Pre-requisites and

fields and hence, the following specials notations for these bases are used: © Asymptotic Bounds
(i} Ign  denotes log;n (basc 2)
(it} Inn  denotes logn (base e);

where the letter [ in In-denotes logarithm and the letzer n in In denotes natural.

The foilm&ing important properties of logarithms can be derived from the properties
of exponents. However, we just state the properties without proof.
Result 2.2.2.9:

For n, a natural number ard real numbers a, b and ¢ all greater than 0, the following
identities are true:

(i) log, (bc) = log, b+log, ¢
(i)  log, (b") = n log,b
(iii) logya = logb
(1v)  log, (i/b) = —loga
1

iog,b = .
“ o8 log, a
(vi) abeee - clogsa

2.3 MATHEMATICAL EXPECTATION

In average-case analysis of algorithms, to be discussed in Unit 3, we need the concept
of Mathematical expeciation. In order to understand the concept better, let us first
consider an example.

Example 2.1: Suppose, the students of MCA, who completed all the courses in the
year 2005, had the following distribution of marks.

Range of marks Percentage of students
who scored in the range

0% to20% 08
20% to 40% 20
40% to 60% . 57
60% to 80% 09
80% to 100% 06

If a student is picked up randomly from the set of students under consideration, what
is the % of marks expected of such a student? After scanning the table given above,
we intuitively expect the student to score around the 40% to 60% class, because, more
than half of the students have scored marks in and around this class,

Assuming that marks within a class are uniformly scored by the students in the class,
the above tabie may be approximated by the following more concise table:

G
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% marks Percentage of students scoring the marks

10 08
30 20
50 57
70 09
90 06

As explained earlier, we expect a'student picked up randomly, to score around 50%
because more than half of the students have scored marks around 50%.

This informal idea of expectation may be formalized by giving to each percentage of
marks, weight in proportion to the number of students scoring the particular
percentage of marks in the above table.

Thus, we assign weight (8/100) to the score 10% (- 8, out of 100 students, score on
the average 10% marks); (20/100) to the score 30% and so on.

Thus
Expected % of marks = 0x § -’r}()x—z—(i-+50x—sz—+70x—?—+90x~6—=47
100 100 100 100 100

The final calculation of expected marks of 47 is roughly equal to our intuition of the
expected marks, according to our intuition, to be around 50.

We generalize and formalize these ideas in the form of the folloving definition.

Mathematical Expectation

For a given set S of items, let to each item, one of the n vakues, say, Vi, Vz,..-,Va, D€
associated. Let the probability of the occurrence of an item with value v;be p;. [fan
item is picked up at random, then its expected value E(v) is given by

n
E(v) = ZP:V:‘ = PVt PpVa e Du-Vn

i~

2.4 PRINCIPLE OF MATHEMATICAL
INDUCTION

Frequently, .in establishing the truth of a set of statements, where each of the
statement is a function of a natural number n, we will be using the Principle of
Mathematical Induction. In view of the significance of the principle, we discuss it
here briefly.

The principle is quite useful in establishing the correctness of a countably many
infinite number of statements, through only finite number of steps.

The method consists of the following three major steps:

1. Verifying/establishing the correctness of the Base Case
2. Assumption of Induction Hypothesis for the given set of statements
3. Verifying/Establishing the Induction Step

We explain the involved ideas through the following example:

* 10 is the average of the class boundaries 0 and 20.



Let us consider the following sequence in which nth term S(n) is the sum of first Strme Pre-requisites and

{n—1) powers of 2, e.g., Asympiotic Bounds
S(1y = 2° =2-1
$(2) = 2°+ 2! =21

S@)y = 2°+2' 422 =2
We (intuitively) feel that

S(m)=2°+2'+...+ 2" should be 2" — 1 foralin> 1.
We may establish the correctness of the intuition, i.e., correctness of all the infinite
number of statements

S(n) = 2"~ foralln>1,
through only the following three steps:

i) Base Case: (In this example, n = I ) we need to show that
S(1)=2'-1=1

But, by definition S(1) =2°=1=2 -1 =21 is correct
(ii) Induction Hypothesis: Assume, for some k > base-value (=1, in this case)
that
S(ky=2*-1.
(i) Induction Step: Using (i) & (ii) establish that (in this case)
S(k+1) =211
In order to establish
S(k+1) =211, (A)
we use the definition of S(n) and Steps (i) and (ii) above

~‘By definition

S(k+1) = 2%+ 2%+, 42k
= 2%+ 2. 42 2k (B)

But by definition
2%+ 24 42 = S(K). ()

Using (C) in (B) we get
S(k+1) = 8(k) + 2* (D)

and by Step (ii) above
S(k) = 2%~ 11 (E)
Using (E) in (D), we get

S(k+l) = (2*—1)+2*
SS(kH1) =228 — 1 =24 g
which establishes (A).

-Ex.f) By using Principle of Mathematica! Induction, show that 6 divides o° — 1,
where n is a non-negative integer.

Ex.2) Let us assume that we have unlimited supply of postage stamps of Rs. 5and
Rs. 6 then R
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(i)  through, direct calculations, find what amounts can be.realized in terms
of ouly these stamps. '

(i)  Prove, using Principle of Mathematical Induction, the result of your
efforts in part (i) above. :

2.5 CONCEPT OF EFFICIENCY OF AN
ALGORITHM

1f a problem is algorithmically solvable then it may have more than one algorithmic
solutions. In order to choose the best out of the availabie solutions, there are criteria
for making such a choice. The complexity/efficiency measures or criteria are based

" on requirement of computer resources by each of the available solutions. The solutien

which takes least resources is taken as the best solution and is generally chosen for
solving the problem. However, it is very difficult to even enumerate all possible
computer resources e.g., time takeq by the designer of the solution and the time taken
by the programmer to encode the algorithm.

Mainty the twe computer resources taken into consideration for efficiency measures,
are time and space vequirements for executing the program corresponding to the
solution/algorithm. Until it is mentioned otherwise, we will restrict to only time
complexities of algorithms of the problems.

in order to understand the complexity/efficiency of an algorithm, it is very important
to understand the notion of the size of aa instance of the problem under consideration
and the role of size in determining complexity of the solution.

It is casy to realize that given an algorithm for multiplying two n x nmatrices, the
time required by the algorithm for finding the product of two 2 x 2 matrices, is
expected to iake much less time than the time taken by the same algorithm for
multiplying say two 100 x 100 matrices. This explains intuitively the notion of the
size of an instance of a problem and also the role of size in determining the (time)
complexity of an algorithm. If the size (to be later considered formally) of general
instance is n then time complexity of the algorithm solving the problem (not just
the instance) under consideration is some function of n.

In view of the above explanation, the notion of size of an instance of a problem plays
an important role in determining the complexity of an algorithm for solving the
problem under consideratign. However, it is difficult to define precisely the concept
of size in general, for all problerns that may be attempted for algorithmic solutions.

Formally, one of the definitions of the size of an instance of a problem may be taken
as the number of bits required in representing the instance.

However, for all types of problems, this does not serve propexly the purpose for which
the notion of size is taken into consideration. Hence different measures of size of an
instance of a problem, are used for different types of problem. For example,

(1) In sorting and searching problerns, the number of elements, which are to be
sorted or are considered for searching, is taken as the size of the instance of
the problem of sorting/searching.

(i1) In the case of solving polynomial equations or while dealing with the algebra
of polynomials, the degrees of polynomial instasices, may be taken as the
sizes of the corresponding instances.

There are two approaches for determining complexity {or time required) for executing
an algorithm, viz.,



{i) empirical {or a posteriori} and
{11} theoretical (or a priori).

In the empirical approach (the programmed) algorithm is actually executed on
various instances of the problem and the size (s) and time (¢) of execution for each
instance is noted. And then by some numerical or other technique, ¢ is determined as
a function of s. This function then, is taken as.complexity of the algorithm under
consideration.

In the theoretical approach, we mathematicaily determine the time needed by the
algorithm, for a general instance of size, say, n of the problem under consideration.
In this approach, generally, each of the basic instructions like assignment, read and
write and each of the basic operations like “+*, comparison of pair of integers etc., is
assumed to take one or more, but some constant number of, (basic} units of time for
execution. Time for execution for each structuring rule, is assumed to be some
function of the times required for the constituents of the structure.

Thus starting from the basic instructions and operations and using structuring rules,
one can calculate the time compiexity of a program or an algorithm.

The theoretical approach has a number of advantages over the empirical approact
including the ones enumerated beiow:

foy

£} The approach does not depend on the programming language in which the
algorithm is coded and on how it is coded in the language,

(ii) The approach does not depend on the computer system used for executing {2
prograrmed version of) the algorithm.

() Incase of a comparatively inefficient algorithm, which ulitimately is to be
rejected, the computer resources and programming efforts which otherwise
would have been required and wasted, will be saved.

{iv)  Instead of applying the algorithm to many different-sized instances, the
approach can be applied for a general size say n of an arbitrary i‘stance of the
problem under consideration. In the case of theoretical approach, the size n
may be arbitrarily large. However, in empirical approach, because of
practical considerations, only the instances of moderate sizes may be
considered.

Remark 2.5.1:

In view of the advantages of the theoretical approach, we are going to use it as
the only approach for computing complexities of algorithms. As mentioned earlier,
in the approach, no particular computer is taken into consideration for calculating time
complexity. But different computers have different execution speeds. However, the
speed of one computer is generally some constant multiple of the speed of the other.

Therefore, this fact of differences in the speeds of computers by constant
multiples is taken care of, in the complexity iunctions ¢ for general instance sizes
n, by writing the complexity function as c.¢(n) where ¢ is an arbitrary constant.

An important consequence of the above discussion is that if the time taken by one
machine in executing a solution of a problem is a polynomial (or exponential)
Junction in the size of the problem, then time taken by every machine is a polynomial
(or exponential) function respectively, in the size of the problem. Thus, functions
differing from each other by constant factors, when treated as time complexities
should not be treated as different, i.c., should be treated as complexity-wise
equivalent.

Some Pre-requisites ang
Asymptotic Bounds
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Remark 2.5.2:

Asymptotic Considerations: )

Computers are generally used to solve problems involving complex solutions. The -
complexity of solutions may be cither because of the large number of involved
computational steps and/or because of large size of input data. The plausibility of the
claim apparently follows from the fact that, when required, computers are used
generally not to find the product of two 2 x 2 miatrices but to find the product of two
n x 1 matrices for large n, running into tumndreds or even thousands.

Similarly, computers, when required, are generally used not only to find roots of
quadratic equations but for finding roots of complex equations including potynoniiat
equations of degrees more than hundreds or sometimes even thousands.

The above discussion leads to the conclusion that when considering time complexities
£,(r) and f,(n) of (computer) solutions of a problem of size n, we need to consider and
compare the behaviours of the two functions only for large values of n. If the relative
behaviours of two fursti ‘as for smaller values conflict with the relative behaviours
for larger values, then we may ignore the conflicting behaviour for smaller values.
For example, if the earhier considered two functions

f(m)=1000n"  and
£(n) = 50

represent time complexities of twe solutions of a problem of size 1, ther despite the
fact that

fi(m2f{ forn < 14,
we would still prefer the solution having f; (n) as time complexity because

fi(n) < () foralin>15.

This explains the reason for the presence of the phiase ‘3 2 Kk’ in the definitions
of the various measures of complexities and approximation { unctions, discussed
below:

Remark 2.5.3:

Comparaiive Efficiencies of Algorithms: Linear, Quadratic, Polynomial
Exponential

Suppose, for a given problem P, we have two algorithms say A and Az which solve
the given probiem P. Further, assume that we also know time-complexities Ty(m)and

T, (n) of the two algorithms for problem size n. How do we know which of the two
algorithms A, and A, is better?

The difficulty in answering the question arises from the difficulty in comparing time
complexities Ti(n) and TAn).

For example, let Ty(n) = 10000 and To(n) = 5n°
Then, for all n, neither Ty(n) Tyn) nor Tan) < Ty (0).

More explicitly

T, (@2 T; () fornsis and
T, (< T, (n) fornz 15

The issue will be discussed in more detail in Unit 3. However, here we may mention
that. in view of the fact that we generally use computers to solve problems of large



sizes, in the above case, the algorithms A, with time-complexity T, (1) = 10004 is
preferred over the algorithm A, with time-complexity T; {n} = 5u’, hecanse
Ty (n) <Tyin) for alia > 15,

In general if a problem is solved by two aigorithms say B; aed B, with time-
complexities BT (N) and BT,(n) respectively, then

(1) if BT, (n)isa polynomial in n,ie,

=a, nk 2 n'4. tan
13'1‘](n)~<lkn Ay Fata, Dt.taintag

for some k 20 with a, 's as real nutnbers and ag > ¢, and

BT, (n) is an exponential function of n, i.c., B T, {n) is of the form

BT, (n) = ¢ a" where ¢ and a are some real numbers with a > 1,
then generally, for large values of 8, BT, {1)<BT,{(n).
Hence, algorithm B, with pelynomial time complexity is assumed to the more
efficient and is preferred over algorithm B, with exponential time complexity,

(i) If, again a problem is solved by two algorithms D, and D, with respectively
polynomial time complexities DT, and DT 5 then if

degree (DTy) < degree (DT,),
then the algorithm D; is assumed to be more efficient and is preferred over D..

Certain complexity functions oceur so frequently that special names commensurate
with their usage may be given to such functions. For example, complexity function
¢ n is called linear time complexity and corresponding algorithm, is called as linear
algorithm.

Simmilarly, the terms ‘quadretic’ and Polynomial time ' complexity functions and
algorithms are used when the involved complexity functions are respectively of the
forms ¢ n’ and ¢;n* +. .. . .

In the next section we find examples of linear and quadratic aigorithms.

Remark 2.5.4:

For ail practical putposes, the use of ¢, in {c £2)} as time complexity measure, offseis
properly the effect of differences in the speeds of computers.. However, we need 10 be
on the guard, because in some raxely accurying situations, neglecting the effect of ¢
may be misleading. .

For example, if two algorithms A, and A, respectively take n” days and n° secs. for
execution of an instance of size n of a particular problem. Butza ‘day’ is a constant
multiple of a ‘second’. Therefore, as per our conventions we may take the two
complexities as of C: n” and C, #” for some constants Cyand Cy. As, we will discuss
later, the algorithm 4, taking C; n” time is theoretically preferred over the algorithmn
Aq with time complexity C; n’. The preference 1s based on asymptotic behaviour of
complexity functions of the algorithms. However in this case, onfy for instances
requiring millions of years, the algorithm A, requiring C, o’ time outperforms
algorithms A, requiring C, #°.

Remark 2.2.5;

Unit of Size for Space Cemplexity: Though raost of the literature discusses the
compiexity of an aigorithm only ir ierms of expected time of execution, genersily

Ssme Pre-requisites and

Asymptotic Boand

s

w

&



intreduction to
Algorithmics

neglecting the space complexity. However, space complexity has one big advantage
over time complexity.

In the case of space complexity, unit of measurement of space requirement can be
well defined as a bit. But in the case of time complexity such obvious choice is not
available. The problem lies in the fact that unlike “bit’ for space, there is no standard
time unit such as ‘second’ since, we do not have any standard computer to which
single time measuring unit is applicable.

Ex.3) For a given problem P, two algorithms A, and A, have respectively time
complexities T, (n) and T, (n) in terms of size n, where

Ty (@) = 4n’ +3n and

T, (@ = 2500n° + 4n .
Pind the range for n, the size of an instance of the given problem, for whichA, is more
efficient than A,.

2.6 WELL KNOWN ASYMPTOTIC FUNCTIONS &
NOTATIONS

We ofien want to know a quantity only approximately, and not necessarily exactly,
just to compare with another quantity. And, in many situations, cotrect COnParisci
may be possible even with approximate values of the quantities. The advantage of the
possibility of correct comparisons through even approximate values of quantities, is
that the time required to find approximate values may be much less thar the times
required to find exact values.

We will intreduce five approximation functions and their uotations.

The purpose of these asymptotic growth rate functions to be introduced, is to facilifate
the recognition of essential character of a complexity function through some simpier
functions delivered by these notations. For example, a complexity function f(n) =
5004 n® + 83 n’ + 19 n + 408, has essentiaily the same behaviour as that of g(n) = »°
as the problem size n becomes larger and larger. But g(n) = o’ is much more
comprehensible and its value casier to compute than the function f(n).

7.6.1 Enumerate the five well-known approximation functions and how
these are pronounced

i O: (O () is pronounced a3 “big-oh of n?’ or sometimes just as ol of n’)

Gi) (Q () is pronounced as ‘big-omega of n’ or sometimes just as
omega of n”)

@iy ©: (© (n’) is pronounced as “theta of 1°7)

(iv) o: (o (n?) is pronounced as “fittle-oh of n”)

(v) e (o (o) is pronounced as ‘little-omega of ).

The O-notation was introduced by Paul Bachman in his book Analytische
Zahlentheorie (1894)

These approximations denote relations from functions to functions.

For example, if functions
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f(n)=n’-5n and
g(n) = n’
then
O(f(n)) = gn) or O(@* - 5n) = n’

To be more precise, each of these notations is a mapping that associates a sef of’
functions to each function under consideration. For example, if f (n) is a polynomial
of degree k then the set O (f (n)) includes all polynomials of degree less than or equal
to-k.

Remark 2.6.1.1:

In the discussion of any one of the five notations, generaily two functions say fand g
are involved. The functiorp have their domains and codomains as N, the set of natural
numbers, i.e.,

N N
gN N

These functions may also be considered as having domain and codomain as R.

2.6.2 The Notation O

Provides asymptotic upper bound for a given function. Let f(x) and g(x) be two
functions each from the set of natural numbers or set of positive real numbers to
positive real numbers.

Then f(x) is said to be O (g(x)) (pronounced as big-ok of g of x) if there eist two
positive integer/real number constants C and Xk such that

f(x)<Cglx) forallx>k (A)

(The restriction of being positive on integersfreals is justified as all complexities are
positive numbers).

Example 2.6.2.1: For the function defined by

() =2 +3¢ + 1
show that

() f(x) = 0(x)
(i) fx) = O(x)
(i) ¥ = 0(fx)
(iv) x* = O(f(x))
v fix) %0 (x)

Solution:
Part (i)
Consider

fix) = 2x* +3x% +1
<23+ K =60 forailx > 1

{by replacing each term x' by the highest degree term x')
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. thereexist C=0andk =1 such that
fx)<C. ¥ forall x>k

Thus we have found the required constants C and k. Hence f(x) is o).
Part (ii)
As above, we can show that

fx)<6 x* forallx2>1.

However, we may also, by computing some values of f(x) and x*, find C and k as
follows:

f1)=243+1 =6 ;W=
f2)=222+322+1=29 @) =16
f3)=23"+3.3*+1=82 : (3) =81

forC=2 and k=3 we have
fix)<2.x* forall x > k

*
Hence  f(x) is O(x*").

Part (iii)

=

or C=1 andk=1 weget
©<C P +3x%+1) forallx >k

Part (iv)

We prove the result by contradiction. Let there exist positive constants C and k
such that ’

x*<C@x* +3x° +1) forallx2k
~xt < C (2% +3x74x%) = 6Cx° for x2k
L x'<6Cx forallx2k
implying x<6C forall x2k .
But for x =max of { 6 C + 1, k}, the previous statement is not true.

Hence the proof.

Part (v)

Again we establish the result by contradiction.

Let O (2 X*+3x%+1) =%

Then for some positive numbers C and k

2x> + 3x3+1 <C & for ali x 2k,

implying

x*<C «* for all x>k (0 X <27+30°+] for all x 21}
implying

x<C forx >k



Again for x = max {C + Lk}

The last inequality does not hold. Hence the result.

Example 2.6.2.2:

The big-oh notation can be used to estimate S,, the sum of first n positive integers

Hint: S,=142+3+ ... 4+n<nptn+.......... +n=n°

Therefore, S,=0 (n?).

Remark 2.6.2.2:

It can be easily seen that for given functions f(x) and g(x), if there exists one pair of C
and k with flx} < C.g (x) for all x > k, then there exist infinitely many pairs (C;, k;)
which satisfy

f(x) <Cig(x) for all x > k;:

Because for any C; 2 C and any k; > k, the above inequality is true, if f(x)< c. g(x) for
all x 2 k.

2.6.3 The Q Notation
The €2 Notation provides an asymptotic fower bound for a given function.

Let f(x) and g(x} be two functions, each from the set of natural numbers or set of
positive real mumbers to positive real numbers.

Then £ (x) is said to be Q (g(x)) (pronounced as big-omega of g of x) if there exist two
positive integer/real number Constants Candk  such that

fx) > C {glx)) whenever x 2 k

Example 2.6.3.1:

For the functions

f(x) =2x° + 3 + Land h (x) = 2x°—=3x7+2
show that

M =)
{ii) h(x)=Q (x*)
(i) h=QE)
iv)  x=Q(x)
™M X 2Q0x)
Selutions;

Part (i}

For C =1, we have
fx)2Cx® forallx21

Some Pre-requisites and
Asymptotic Bounds
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h(x) = 2x’=3x%+2
Let Candk>0 besuch that
2332422 Cx* forallx 2k
ie., 2—C)xX’=3x*+220 forallx>k
Then C = 1 and k> 3 satisty the last inequality.
Part (iii)
2x°-3x242 =Q (X))
Let the above equation be true.
Then there exists positive numbers C and k
s.t.
2%°-3x242>Cx> forallx2k
20-(3+0)x+220
It can be easily seen that lesser the value of C, better the chances of the above
inequality being true. So, to begin with, let us take C = 1 and try to find a value of k
s.t

2%~ 44220,
For x > 2, the above inequality holds

o k=2is such that
25°~4x*+2 20 forall x 2k
Part (iv)
Let the equality
= Q (2x-3+2)
be true. Therefore, let C>0 and k >0 be such that
© 2 CE-32 % +1))
For C = ¥ and k = 1, the above inequality is true.

Part (v)

We prove the result by contradiction.

Let x> = Q (3x°- 2x’+2)

Then, there exist positive constants C and k such that
C>COC-20+2) forallx2k
je,2C+)x¥23Cx’ +22Cx forallx 2k

S+t
EL—JLZ x forallxzk
C
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2.6.4 The Notation ®

Provides simultaneously both asymptotic lower bound and asymptotic upper bound
for a given function.

Let f(x) and g(x) be two functions, each from the set of natural numbers or positive
real humbers to positive real numbers. Then f{x) said to be © (g(x)) (proncunced as
big-theta of g of x) if, there exist positive constants C,, C, and k such that

C, g(x) < f(x) <'C, g(x) forall x > k.

(Note the last inequalities represent two conditions to be satisfied simultaneously. viz.,
C: g(x) <f{x) and flx) <C; g(x))

We state the following theorem without proof, which relates the three functions
0,8 6.

Theorem: For any two functions f(x) and g(x), f(x) = © (g(x)) ifand only if
ftx) = O (g(x) and ftx) = 2 (g(x)).
Examples 2.6.4.1: For the function

fx)=2x"+32+1,
show that

O fx-0&)

" (i) fix) = O )
(i) fx)* O (xY
Solutions

Part (i)
forC,=3,C,=1andk=4

LG <ix)<C % forall x > k

Part (i)
We can show by contradiction that no C, exists.
Let, if possible for some positive integers k and C,, we have 2x*+3x%+1<C,. x? for all
x>k

Then

x’< C, x* for all x>k

ie.,

x< C for all x>k

But for

X=: max {(71 + l,k}

The last inequality is not true.
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= max {Cl + l,k}

The last inequality is not true.
Part (iif)
fix) 0 (x%

We can show by contradiction that there does not exist C;

s.t

G <@ +33+ D)
If such a C;, exists for some k then C; <t <2
implying

C,x<6 forallx 2k

But for x = (LH\‘
C

2/

+3x> +1<6x° forall x 2 k1,

the above inequality is false. Hence, proof of the claim by contradiction.

2.6.5 The Notation o

The asymptetic upper bound provided by
tight in the sense that if f(x) = 2%° + 3% +1

big-oh motation may er may not be

Then for f (x) = O (x°), though there exist C and k such that

fix) <C () forallx2k

yet there may also be some values for which the following equality also holds

f(x) = C () for x
However, if we consider

f(x)=0 (x*)
then there can not exist positive integer C s.t

fx)=Cx* forallxzk

>k

The case of f(x) = O (x*), provides an example for the next notation of small-oh.

The Notation o

Let f(x) and g(x) be two functions, each from t
real numbers to positive real numbers.

Further, let C > 0 be any number, then {{(x) =

he set of natural numbers or positive

o(g(x)} {pronounced as little oh of

g of x) if there exists natural number k satisfying

fix)< C g(x) forallx zkz1

®)
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Here we mey noge the folloving points

) in the case of little-oh the constant C does not denend on the two ¢
and g (x). Rather, we can arbitrarily choose C »

(i1} The inequality (B) is strict whereas the inequality (A) of big-oh 1s not
necessarily strict.

Example 2.6.5.1: For f{x) = 2x’ + 3x* + 1, we have

(1) f{(x)=o(x") foranyn =>4

(i) f(x) # o{x") forn< 3

Solutions:
Part (i)

Let C > 0 be given and to find out k satisfying the requirement of little-oh.
Consider

23+ < C X

= 2+-£+L3 <Ccx™

X x

Case  whena=4¢

‘Then above inequality becomes

P

2+i+—ls-<c x

[
if we take k = max iw,ii'
¢
then
2¢+3¢+1 <Cx* forxz k.

In general, as X" > x* for n > 4,
therefore

2X°+3%+1 < C x" fornz4
forall x = k

f7 1
with k = max j—,l
lc
Part (i)
We prove the resuit by contradiction. Let, if posdibic. i

Then there exist positive constants C and k such: that Ox
for all x k.

Dividing by x* throughout, we got
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L3 3
Tt e < C
X x-

i<3andx 2k
As C is arbitrary, we take

C = 1, then the above inequality reduces to

301
2 =4 — <C.x" forn<3andx2k>1.
X X

Also, it can be easily seen that

<t forn<3andx>k>1.

1
= €1 forn<3
X

L2

i

However, the last inequality is not true. Therefore, the proof by contradiction.
Generalising the above example, we gei the

Example 2.6.5.3: If f(x) is a polynomial of degree m and g(x} is a polynomial of
degree n. Then

f(x) = o{g(x)) if and only if p>m.

We state (without proof) below two results which can be useful i finding small-oh
upper bound for a given function.

More generally, we have ‘
Theorem 2.6.5.3: Let f(x) and™g(x) be functions in definition of small-oh notation.
Then f(xj =ofg(x) if and only if

X0 g(x)

Next, we introduce the last asympilotic notation, namely, smali-omega. The relation o
small-omega to big-omega is similar to what is the relation of small-ch o big-oh

2.6.6 The Notation ®

Again the asymptotic lower bound Q may or may not be tight. However, the
asymptotic bound @ cannot be tight. The formal definition of @ is follows:

Let f(x) and g(x) be two functions each from the set of natural numbers or the set of
positive real numbers to set of positive real numbers.

Further

Let C > 0 be any number, then
f(x) = o (g(x))

if there c;(ist a positive integer k s.t

fix)>C gx) forallxzk
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Ex.4) Show that nf = O(™)
Ex.5) Show that n® + 3iogn = O(nz).
£x.6) Show that 2° = (5").

2,7 SUMMARY

in this unit, first of all, a number of mathematical concepts are defined. We defined
the concepts of function, 1-1 function, onto function, ceiling and floor functions, mod
function, exponentiation function and log function. Also, we introduced some
mathematical notations.

In Section 2.3, the concept of mathematical expectation is introduced, which is useful
in average-case analysis. Formally, mathematical expectation is defined as follows:

Mathematical Expectation

For a given set S of items, let to each item, one of the n values, say, v, v,,...,v,, be
associated. Let the probability of the occurrence of an item with value v;be p;. If an
item is picked up at random, then its expected value E(v) is given by

n

L
E(v) = ZP:VJ FhVi DVt P -Vy
1

Also, the Principle of Mathematical Induction is discussed, which is useful in
establishing truth of infinitely many statements.

The method of Mathermaticui Induction consists of the following three raajor
steps:

4. Verifying/establishing the correctuess of the Base Case
5. Assumption of Induction Hypothesis for the given set of statements
6. Verifying/Establishing the Induction Step

Complexity of an algorithun: There are two approaches to discussing and computing
complexity of an algorithm viz

(i) empirical

(i1) theoretical.

These approaches are briefly discussed in Section 2.5. However, in the rest of the
course only theoretical approach is used for the analysis and computations of

complexity of algorithms. Also, it is mentioned that analysis and computation of
complexity of an algorithm may be considered in terms of

(1) time expected to be taken or
(i) space expected to be required for executing the algorit}}m“

Again, we will throughout consider only the time complexity. Next, the concepts of
linear, quadratic, nolyromial and exponential time complexities and algorithms, are
discussed.

Next, five Well Knows Asymptotic Growth Rate functions are defined andg
cerrespending notztions are introduced. Some important resulis invelving these
are stated and/or proved

The notation O provides asymptotic upper bound for a given function.
(x) and g(x) be two functions each from the set of aatural numbers or set of
ositive real numbers to positive real numbers.

g



Example 2.6.6.1: Some Pre-requisites and

Asymptotic Bounds
IR =2x" +3x2 + 1

then

fix) = o (x)
and also

f(x) = o (x))

Solution:

Let C be any positive constant.

Consider

Hence

2w +3x%+1>Cx

To find out k> 1 satisfying the conditions of the bound ®.

2% +3x + i > C (dividing throughout by x)

Let k be integer with k>C+1

Then for all x 2 k

28+ 3x+ © 3 28 +3x 52 43k > 202 43C > C. (- k> TH)
LX) = o ();)

Again, consider, for any C >0,

23438 +1>Cx°
then

i3t sc Let k be integer with k > C+1
e
Then for x > k we have

W3+ 224352k +3>2C+35C
"

fix) =0 (x)

Tn general, we have the following two, theorems (stated without proof).

Theorem 2.6.6.2: If f(x) is a polynomial of degree n, and g(x) is a polynomial of
degree n, then .

f(x) = o (g(x)) if and only if m > n.

More generally

Theoreih‘2.6.6.3: Let f(x) and g(x) be functions in the definitions of little-omega
Then f(x) = o (g(x)) if and only if

- f(x) ' Te
Lim ——<=®
% )

Lim é(i(—): 0

HI )

a5



Then [(x) 1s sad 10 be O (g(x)) (pronounced as big-oh of g of xj if there exist two Seme Pre-requisites anc
positive integer/real number Constants C and k such that Asymptotic Bounds

f(x)<Cg(x) forallx>k
The Q notation provides an asymptolic lower bound for a given funciion

Let f{x) and g(x) be two functions, each from the set of natural numbers or set of
positive real numbers to positive real numbers.

Then f (x) is said to be Q (g(x)) (pronounced as big-omega of g of x) if there exist two
positive integer/real number Constants C and k  such that

f(x) 2 C (g(x)) whenever x 2 k

The Notation @

Provides simultaneously both asymptotic lower bound and asymptotic upper bound
for a given function.

Let f(x) and g(x) be two functions, each from the set of natural numbers or positive
real numbers to positive real numbers. Then f(x) said to be @ (g(x)) (pronounced as
big-theta of g of x) if, there exist positive constants C,, C, and k such that
Cogx)sfx)<Cig(x)forallx 2 k.

The Notation o

Let f(x) and g(x) be two functions, each from the set of natural numbers or positive
real numbers to positive real numbers.

Further, let C > 0 be any number, then f(x) = o(g(x)} (pronounced as little oh of
g of x) if there exists natural number k satisfying

fix) < C g(x) forallx > k=1
The Notation ©

Again the asymptotic lower bound Q may or may not be tight. However, the
asymptotic bound © cannot be tight. The formal definition of w is as follows:

Let f(x) and g(x) be two functions each from the set of natural numbers or the set of
positive real numbers to set of positive real numbers.

Further

Let C> 0 be any number, then
fx) = o (gx))

if there exist a positive integer k 5.t

fix)>C g{x) forallxzk

2.8 SOLUTIONS/ANSWERS

Ex. 1) We follow the threc-step method explained earlier.
i.ct S(n) be the statement: 6 divides o’ ~ n
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Ex. 2)

e

Base Case: For n = 0, we establish S(O) i.e., we establish that 6
divides 0° —0=0
But0 =6 x 0. Therefore, 6 divides 0. Hence S(0) is
correct.

induction Hypothesis: For any positive integer k assume that S(k) is

correct i.e., assume that 6 divides (k> — k).

Induction Step: Using the conclusions/assumptions of earlier steps to .
show the correctness of S(k+1) i.e., to show that 6 divides k+1)* —

(k+1).

Consider (k+1) —(k+1) = (3 + 3K + 3k +1) — (k +1)
=K+ 3K* + 2k =k(k+1) (k+2)

If we show thatk (f(ﬂ) (k+2) is di%fisiﬁle by 6 than by Principle of
Mathematical Induction the res_ult'follows.

Next, we prove that 6 divides k (k+1) (k+2) for all non-negative
integers.

As k, (k+1) and (k+2) are three consecutive integers, therefore, at least
one of thesc is even, i.¢c., divisible by 2. Hence it remains to show that
k(k+1) (k+2) is divisible by 3. This we establish through the following
case analysis:

(i)  Ifkis divisible by 3, then, of course, ktk+1) (k+2) is also divisible
by 3.

(ii)  If on division of k, remainder is 1, ie., ifk =3t + 1 for some integer
t then k (k+1) (k+2) = (3t+1) (3t+2) (3t+3) =3 (3t+1) Bt+2) (t + 1)
is divisible by 3. ' '

(iii) If on division of k, remainder is 2,1e.,ifk = 3t + 2 then
k(k+1) (k+2) = 3t +2) 3t + 3) (B3t +4) =33t + 2) (t+1) Bt + &) is
again divisible by 3.

Part (i): With stamps of Rs. § and Rs. 6, we can make the follow'ng
the following amounts

5 = 1x5+0x6
6 = 0x5+1x6 | using2 stamps
10 = 2x5+0x6
11 = Ix5+1x6 using 2 stamps
12 = Ox5+2x6
5. = Ix5+0x6
16 = 2x5+1x6
17 = Ix5+2x6 using 3 stamps
18 = 0x5+3x6

" 19 is not possible

20 = 4x5+0x6
21, Ix5+1ixo
22 = 2x5+2x6 using 4 stamps -
23 = Ix5+3x6



24 = O0x5+4x6 Some Pre-requisites and
Asymptotic Bounds

25 = 5x5+0x6
26 = 4x5+1x6
27 = 3Ix5+2%6
28 = 2x5+3x6 | using S stamps
29 = Ix5+4x6
30 = 0x5+5x%6

It appears that for any amount A > 20, it can be realized through stamps
of only Rs. 5 and Rs. 6.

Part (ii): We attempt to show using Principle of Mathematical
Induction, that any amount of Rs. 20 or more can be realized
through using a number of stamps of Rs. 5 and Rs. 6.

Base Step: For amount = 20, we have shown earlier that
20 =4.5+0.6.

Hence, Rs. 20 can be realized in terms of stamps of Rs. 5 and
Rs. 6.

Induction Hypothesis: Let for some k > 20, amount k can be realized in
terms of some stamps of Rs. 5 and some stamps of
Rs. 6.
Induction Step: Next, the case of the amount k+1 is analysed as
“follows:

Case (i): . If at east one Rs. S stamp is used in making an
amount of Rs. k, then we replace one Rs. 5 stamp by
one Rs. 6 stamp to get an-amount of Rs. (k+1).
Hence the result in this case.

Case (ii): If all the ‘Stamps’ in realizing Rs. k > 20 is through
only Rs. 6 stamps, then k must be at least 24 and
hence at least 4 stamps must be used in realzing k.
Replace 4 of Rs. 6 stamps by 5 of Rs. 5 stamps. So
that out of amount k, 6 x4 = 24 are reduced through
removing of 4 stamps of Rs. 6 and an amount of Rs.
5 x5 =25 is added. Thus we get an amount of

k—24 +25 =k+1. This completes the proof.

Ex.3) Algorithm A, is more efficient than A, for those vatues of n for which

4 +3n =T, (n) < T, (n)=2500 0 + 4n
ie.,

4n* +3<2500n° + 4

ie.,

4n® - 2500 < 10’ (i)
Consider

4n” - 2500 = 0

then n=50/2 =25
forn<25

4n? — 2500 < (25)* - 2500 <0 < i/n’
Hence (i) is satisfy
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Ex. 4)

Ex. 5)

Ex.6)

Next, consider n > 26

4n® = 2500 = 4(26) — 2500 = 2704 ~ 2500

1 i
> —

(a6 v’

=204> 1>

Therefore, for n > 26, (i)is not satisfied

Conclusion: For problem sizes n, with 1 <n < 25, A, is more
efficient than A,. However, for n > 25, A, is more
efficient than A,

n!/n" = (/n) ((n—1)/n) ((n—2)/n) (n—3)/m})...(2/m)(1/n)
= 1(0~(/n)) (1~(2/n)) (A1—(3)....(2/n)(1/n)

Each factor on the right hand side is less than equal to 1 for all value of
n. Hence, The right hand side expression is always less than one.

Therefore, n!/n" <1
or, ol <"
Therefore, n! =0( n")

For large value of n, 3logn < <n’
Therefore, 3logw/ n’< < 1
(a® + 3logn)/ v’ =1 + 3logn/ v’
or, (n® + 3logn)/ n? <2
or, n’ + 3logn = O(0?).
We have, 2°/5" <1

or, 2" <5"
Therefore, 2" = O(5").

2.9 FURTHER READINGS

A

Discrete Mathematics and Its Applications (I;ifth Editiony K.N. Rosen: Tata
McGraw-Hill (2003). i

Introduction to Alogrithms (Second Edition), T.H: Coremen, C.E. Leiserson &
C. Stein: Prentice — Hall of India (2002). ’
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3.0 INTRODUCTION

Analysis of algerithms is an essential tool for making well-informed decision in order
to choose the most suitable algorithm, out of the available ones, if any, for the
problem or application under consideration. For such a choice of an algorithm, which
is based on some efficiency measures relating to computing resources required by the
algorithm, there is no systematic method. To a large extent, it is a matter of judgment
and experience. However, there are sonte basic techniques and principles that help
und guide us in analysing algorithms. These techniques are mainly for

(1) analysing control structures and
(i) for solving recurrence relations, which arise if the algorithm involves recursive
structures.

In this unit, we mainly discuss models, tec'iniques and principles for analyzing
algorithms.

Also, sorting algorithims, which ferm gooa sources for learning how to design and
anaiyze algorithms, are discussed in detail in this unit.

1t appears that the wt
conditions which enabic
finite machine 10 make
calculations of unlimited
extent are fulfiiled in the
Analytical Engine...] have
converted the infinity of space.
which was required by the
conditions of the problem, 1nt
the infinity of time.

Charles Babbage
About
Provision of itcration &
conditional branching in the
design of his analytical engin
{vear 1834}, ihe firsi genera.
purpose digital computes
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Algorithmics 3.1 OBJECTIVES

After going through this Unit, you should be able to:
. explain and use various types of analyses of algorithms;

° tell how we compute complexity of an algorithm from the complexities of the
basic instructions using the structuring rules;

. solve recurrence equations that arise in recursive algorithms, and

© explain and use any one of the several well-known algorithms discussed in the
text, for sorting a given array of numbers.

3.2 ANALYSIS OF ALGORITHMS —SIMPLE
EXAMPLES

In order to discuss some simple examples of analysis of algorithms, we write two
algorithms for solving the problem of computing prefix averages (fo be defined). And
then find the complexities of the two algorithms. In this process,'we also find that
how minor change in an algorithm may lead to substantial gain in the efficiency of an
algorithm. To begin with we define the problem of computing prefix average.

Computing Prefix Averages: Fora given array A[1..n} of mumbers, the problem is
concerned with finding an array B(1..n] such that

B[1}=A[l]

B2} = average of first two entrics = (A[1] + A 2n2

B3] = average of first 3 entries = {A[1] + A[2]+ A[3)/3

and in general for I <i<n,

Bli] = average of first i entries in the array A[l..n]
=(A[{1] + A[2] + .. +A[iDA

Next we discuss two algorithms that solve the problem, in which second algorithm is
obtained by minor modifications in the first algorithm, but with major gains in
algorithmic complexity — the first being a quadratic algorithm, whereas the second
algorithm is linear. Each of the algorithms takes array A[1..n] of numbers as input and
returns the array B[1..n] as discussed above.

Algorithm First-Prefix-Average (A[1..n])

begin {of algorithm}
fori ¢ 1t1ondo
begin {first for-loop}
Sum « 0;
{Sum stores the sum of first i terms, obtained in different
iterations of for-loop}

forj« 1toido
begin {of second for-loop}
Sum <« Sum + A[j];
end {of second for- loop}
Bli} <~ Sum/i
end {of the first for-loop}
end {of algorithm}



Analysis of First-Prefix-Averages:

Step I: Intitalization step for setting up of the array A[l..n] takes constant time say
C,, in view of the fact that for the purpose, only address of A {or of A[1]) is to be
passed. Also after all the values of B[1..n] are computed, then returning ¢he array
B{1..n] also takes constant time say C,, again for the same reason.

Step 2:  The body of the algorithm has two nested for-loops, the outer one, called the
first for-loop is controlled by i and is executed n times. Hence the second for-loop
alongwith its body, which form a part of the first for-loop, is executed n times. Further
each construct within second for-loop, controlled by j, is executed i times just because
of the iteration of the second for-loop. However, the second for-loop itself is being
executed n times because of the first for-loop. Hence each instruction within the
second for-loop is executed (n.i) times for each value of i = 1,2, ..n.

Step 3: In addition, each controlling variable i and j is incremented by 1 after each
iteration of i or j as the case may be. Also, after each increment in the control
variable, it is compared with the (upper limit + 1) of the loop to stop the further
zxecution of the for-loop.

Thus, the first for-loop makes n additions (to reach (n+1)) and n comparisons with
(nt+1}).

The second for-ioop makes, for each vaiue of 1=1,2,...,n, one addition and one
comparison. Thus total number of each of additions and comparisons done just for
controiling variable j

n(n + i)

~

Z

= (1424, 4n) =

Step 4: Using the explanation of Step 2, we count below the number of times the
various operations are executed.

(i)"  Sum < Qs executed n times, once for cach value of i from 1 ton
(i)  On the similar lines of how we counted the number of additions and

comparisons for the control variable j, it can be seen that the number of each of

.. afn+1)
additions (Sum ¢ Sum + A [j]) and divisions (B[i] « Sum/i) is n—(ﬂ———J

Summerizing, the total number of operations performed in executing the First-Prefix-
Averages are

(i)  (From Step 1) Constant C, for initialization of A{l..n} and Constant C, for
returning B{1..n] ’
i1y (From Step 3)
Number of additions for control variable i = n.
Nuimber of Comparisons with (n+1) of variable i = n
n (n + 1)
2
Number of comparisons with (i+1) of control variable j =
n(n+1)
2
Number of initializations (Sum < () =n

Number of additions for control variable j =

- +1
Number of additions (Sum ¢ - Swum + 4]} = H(n2 )
.. 1
Number of divisions (in Sum/i; Uﬁ“; )

Rasics of Analysis
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Assuining each of the operations counted above takes some constant number of unit
operations. then total number of all operations is a quadratic function of n, the size
of the array All.n].

Next, we show that a minor modification in the First-Prefix-Algorithm, may lead
te an algorithm, to be called Second-Prefix-Algorithm and defincd below of
linear complexity only.

i
The main change in the algorithm is that the partial sums ZA[k] are not computed
k+1

i

afresh, repeatedly (as was done in First-Prefix-Averages) but Z Afk] is computed
k4l

oniy once in the variable Sum in Second_Prefix_Average. The new algorithm is given

below:

Algorithm Second-Prefix-Averages (A[l..al};

begin {of algorithm}
Sum - 0
for <~ 1 tondo
begin {of for foca}
Sum ¢~ S
B[i} ¢~ Sum/i.
end; {of for loop}
return (B[1..n]);
end {of algorithm}

Analysis of Second-Prefix-Averages

Stepl: As in First-Prefix-Averages, the intialization step of setting up the vaiues of
Afl..n] and of returning the values of B{1..n] eacb,takes a constant time say C and C;
(because in each case only the address of the first element of the array viz A[1] or
B{1] is to be passed)

The assignment through Sum < 0 is executed once
The for loop is executed exactly n times, and hence

Step 2: There are n additions for incrementing the values of the loop variable and n
comparisons with (n+1) in'order to check whether for loop is to be terminated or not.

Step 3: There n additions, one for each i (viz Sum + 4 [i]) and » assignments, aguin
one for each i {Sum « Sum + A[#]). Also there are n divisions, one for each i (viz
Swn/i) and n {more) assignments, one for each i (viz B[i] «— Sum/i}.

Thus we see that overall there are

(i) 2 nadditions

{ii} ncomparisons

(i) (2n+1) assignments

{iv) ndivisions

{+} C,; and C,, constanis for initialization and retarn.



As cach of the operations, viz addition, comparison, assignment and division takes a
constant number of units of time; therefore, the total time taken is €.
constant £, :

Thus Second-Prefix-Averages is a linear algorithm (or has linear time compiexily}

3.3 WELL KNOWN SORTING ALGORITHMS

in this section, we discuss the following well-known algorithms for sorting a given list
of numbers:

Insertion Sort
Bubble Sort
Sclection Sort
Shell Sort
Heap Sort
Merge Sort

7. Quick Sort

i

[

=3

For the discussion on Sorting Algorithms, let us recall the concept of Ordered Set

We know given two integers, say n, and n;, we can always say whether n; <n; or
n; < my. Similarly, if we are given two rational numbers or real numbers, say n, and
1, then it is always possible to tell whether n, <n; orn, <n,.

Ordered Sei: Any set S with a relation, say, <, is said to be ordered if for any two
clements x and y of 8, either x <y or y < xis true. Then, we may also say that
{S, <} is an ordered set.

Thus, if I. Q and R respectively denote set of integers, set of rational numbers and set
of real numbers, and if *< denotes ‘the less than or equal to’ relation then, each of
£ £, {Q. <) and (R, <) is an ordered set. However, it can be seen that the set
C=i{xtiy:rx, y €Rand i’ = — 1} of complex numbers is not ordered w.r.t ‘<’ For
example, it is not possible to tell for at least one pair of complex numbers, say 3 + 4i

and 4+34, whether 3 +4i <4 +3i, or 4 +3i <3+ 4i.

lust to facilitatc understanding, we use the list to be sorted as that of numbers.
However, the following discussion about sorting is equally valid for a list of elements
from an arbitrary ordered set. In that case, we use the word key in stead of numbe;
inn our discussion.

The general treatment of each sorting algorithm is as foliows:

i. First, the method is briefly described in English.

2. Next, an example explaining the method is taken up

3. Then, the algorithm is expressed in a pseudo- programming language.
4. The analysis of these algorithm is taken up later at appropriate places.

All the sorting aigorithms discussed in this section, are for sorting numbers in
increasing order.

Next, we discuss sorting algorithms, which formi a rich source for algoiinnis. Later,
we wiil have occasions to discuss general polynomial time algorithins, which of
course 1nctude linear and quadratic algorithms,

One of the unportant appiications for studying Sorting Algorithms 1s the area of
designing cfficient algorithms for searching an item in a given list. Ifa set or a list is
already sorted. then we can have more efficient scarching algorithms. which include

Basies of Ax
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binary scarch and B-Tree based search algorithms, each taking (c. log (n)) time,
where n is the number of clements in the Jist/set to be searched.

3.3.1 imsertion Sort

The insertion sort, algorithm for sorting a list L. of n numbers represented by an array
Af1..n] proceeds by picking up the numbers in the array from left one by one and each
1wwly picked up number is placed at its relative position, w.r.t the sorting order,
among the earlier ordered ones. The process is repeated till the each element of the lisi
is placed at its correct relative position, i.e., when the list is sorted.

Hxample 3.3.1.1

Al2] A{3] AM] A[ST Al6]
il 22 31 i10 50 40 { ¢ given list, initially}
{Pick up the left-most number 80 from the list, we get the sorted sublist}

up the next number 32 from the list and place it ar correct position
velative f0 50, 50 that the sublist considered so far is sorted).

32 80

{We may note in respect of the above sorted sublist, that in order to inser1 32
before 80, we have to shift 80 from first position to second and then insert 3z
in first positioii.

The task can be accomplished as foliows:

1. First 32 is copied in a iocation say m
2. 80 is copied in the location A[2] = 32 so that we have

A[L]  Af2] m
80 80 32
3. 32 is copied in A[1] from m so that we have
All]  A[2] Com
32 30 32

thus we get the sorted sublist given above}

32 80

{Next number 31 is picked up, compared first with 80 and then (if required)
with 32. in order to insert 31 before 32 and 80, we have to shift 80 to third
position and then 32 to second position and then 31 is placed in the firs

position}.

The task can be accomplished as follows:

1. First 31 is copied in a location say m
2. 80 is copied in the location A[3] = 31 so that we have
Afl]  A[2]  A[3] m
32 80 80 31
3. 32is copied in A2] from A[1] so that we have
Afl]  A[2]  Af3] m
32 32 80 37
4. the value 31 from m is copied in A[1] so that we get
Afl] A[2]  A[3] m
31 32 80 31

thus we get the sorted sublist}



31 32 80

{Next 110 is picked up, compared with 80. As 110>80, therefore, no skifting
and no more comparisons. 110 is placed in the first position afier 30}

3 32 86 110

{Next, number 50 is picked up. Firsi compared with 110, found less; next
compared with 80, again found less; again compared with 32. The correct
position for 50 is between 32 and 80 in the sublist given above. Thus, each of
110 and 80 is shifted one place to the right to make space for 50 and then 50
is placed over there

The task can be accomplished as follows:

1. First 50 is copied in a location say m
2. 110 is copied in the location A[5] = 50 so that we have
Afl]  A[2] A[3] A[4] A[S] m

31 32 80 110 110 50
3. 80 is copied in A[4] from Af3] so that we have
Afl]  A[2]  Af3]  A[4] Af5] m
31 32 80 80 110 50
4. the value 50 from m is copied in A[3] so that we get
Af1]  Af2] . A[3]  Af4] A[5] m
31 32 50 86 116 50

thits we get the following sorted sublist}
3 32 50 80 110

{Next in order to place 40 after 32 and before 50, each of the values 50, 80
and 110 need to be shifted one place to the right as explained above.
However, values 31 and 32 are not to be shifted. The process of inserting 40
at correct place is similar to the ones explained earlier}.

3 32 40 50 80 110

Algorithm: The Insertien Sort

The idea of Insertion Sort as explained above, may be implemented thréugh procedure
Insertion-Sort given below. 1t is assumed that the numbers to be sorted are stored in
an array Afl..n].

Procedure Insertion-Sort (A[l..n] : real)
begin {of procedure}

ifn=1

then

write (‘A list of one element is already serted’)
else

begin {of the case when r 2 2}
for j¢-2tondo

{to find out the correct relative position jor A[ j] and insert it there among
the already sorted elemenis A[7] to A [j — 11}

begin {of for loop}
IfAfj} < A[j — 1] then begin
{We shift entries only if A j}< A — 1]}
iej—1 me Al
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{In order o find correct relative position we store A[j] in m and start with the
last element Afj~1] of the already sorted part. Ifm is less than A[j~I], then
we move towards iefl, compare again with the new element of the array. The
process is repeated until either m > some element of the array or we reach the
left-most element A[1]}.

while (i > 0 and m < Afi}]) do
begin {of while loop}
Afi+1] « Ali]
ie—i—1
end

{After finding the correct relative position, we move all the elements of the
array found to be greater than m = A[j], one place to the right so as to make
a vacancy at correct relative position for Afj]}

end; {of while loop}

Ali+1] ¢ m
{i.e., m = A[j] is stored at the correct relative position}
end {if}

end; {of for loop}
end; {of else part}
end; {of procedure}

Ex. 1) Sort the Dllowing sequence of number, using Insertion Sort:
15, 10, 13, 9 12 7 -
Further, find the number of comparisons and copy/assignment operations
required by the algorithm in sorting the list.

3.3.2 Bubble Sort

The Bubble Sort algorithm for sorting of n numbers, represented by an array A[l..n],
proceeds by scanning the array from left to right. At each stage, compares adjacent
pairs of numbers at positions Afi} and A[i+1] and whenever a pair of adjacent
numbers is found to be out of order, then the positions of the numbers are swapped.
The algorithm repeats the process for numbers at positions Ai+1] and Afi+2].

Thus in the first pass after scanning once ali the numbers in the given list, the largest
number will reach its destination, but other numbers in the array, may not be in order.
In each subsequent pass, one more number reaches its destination.

3.3.2.1 Example

In the following, in each line, pairs of adjacent numbers, shown in bold, are
compared. And if the pair of numbers are not found in proper order, then the
positions of these numbers are exchanged.

The list'to be sorted has n = 6 as shown in the first row below:

iteration number i=1

80 32 31 110 50 40 4=
32 80 31 110 50 40 G=2
32 31 80 110 50 40

32 31 80 110 50 40

32 31 80 50 110 40 G=95
32 31 81 50 40 110 (G=1)

remove from further
consideration
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I the first pass iraced above, the maximum number 110 of the list reaches the Basics of Analysts
rightmost position (1.e 6 ® position). In the next pass, only the list of remaining

(n — 1) =5 elements, as shown in the first row below, is taken into consideration.

Again pairs of numbers in bold, in a row, are compared and exchanged, if required.

iteration numberi=2

31 32 81 50 40 G=2
31 32 81 50 40 G=3)
31 32 50 81 40 i=4)
31 32 50 40 81 G=b

remove from further
consideration

In the second pass, the next to maximum element of the list viz, 81, reaches the 5t
position from left. In the next pass, the list of remaining (n —2) = 4 elements are taken
into consideration.

iteration number i=3

31 32 50 40 G=2)

31 32 50 40 Gg=3)

31 32 40 50 Gg=1
T

remove from further
consideration

In the next iteration, only (n — 3) = 3 elements are taken into consideration.

31 32 40
31 32 40

In the next iteration, only n — 4 = 2 elements are considered

31 32
These elements are compared and found in proper order. The process
terminates.

Procedure bubblesort (Al1..n})
begin -
fori«-1to n—1do
forje-Tto(n — i),
{in each new iteration, as explained above, one less number of elements is
taken into consideration. This is why j varies upto only (n —i)}

i Alj} > A{j+1] then interchange A{jjand A[j+1].
end
{A{l..n] is in increasing order}

Note: As there is only one statement in the scope of each of the two for-foops,
therefore, no ‘begin” and ‘end’ pair is used.

£x.2) Sort the following sequence of numbers using Bubble Sort:
i5, 10, i3, 9, 12, 17.
Further, find the number of comparisons and assignments required by the
algorithm in sorting the list,
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3.3.3 Selection Sert

Selection Sort for sorting a fist L of n numbers, represented by an amay A{l..nj,
proceeds by finding the maximum element of the array and placing it in the last
position of the armay representing the list. Then repeat the process on the subarray
representing the sublist obrained from the list by excluding the current maximum
element.

The difference between Bubble Sort and Selection Sort, is that in Selection Sori tc find
the maximum number in the array, a new variable MAX is used to keep maximum of
all the values scanned upte a particular stage. On the other hand, in Bubble Sert, the
maximum number in the array under consideration is found by comparing adjacent
pairs of numbers and by keeping larger of the two in the position at the right. Thus

after scanning the whole array once, the maximum number reaches the right-most
position of the array under consideration.

The following steps constitute the Selection Sort algorithm:

Step 1: Create a variable MAX to store the maximum of the values scanned upto a
particular stage. Also create another variable say MAX-POS which keeps track of the
position of such maximum values.

Step 2: In each iteration, the whole list/array under consideration is scanned once to
find out the current maximum value through the variable MAX and to find out the

. position of the current maximum through MAX-POS.

Step 3: At the end of an iteration, the value in last position in the current array and
the (maximum) value in the position MAX-POS are exchanged.

Step 4: For further consideration, replace the list L by L - {MAX} {and the array A
by the corresponding subarray} and go to Step 1.

Example 3.3.3.1:
80 32 31 110 50 40 {« given initially}

Initially, MAX ¢ 80 MAX-POS «1
After one iteration, finally; MAX < 110, MAX-POS = 4

Numbers 110 and 40 are exchanged to get
80 32 . 3t 40 50 110
New List, after one iteration, to be sorted is given by:
80 32 31 40 50
Initially MAX « 80, MAX-POS «I
Finally also MAX < 80, MAX-POS«—1
.. entries 8C and 50 are exchanged to get

50 32 3t 40 80

New List, after second iteration, to be sorted is given h)_

w

0 32 3t . 40

Initially Max « 50, MAX-POS ¢
Finaily, also Max « 30. MAZ-POS «i



.. entries 50 and 40 are exchanged to get
40 32 31 50

New List , after third iteration, to be serted is givén by:

40 32 31
Initially & finally
Max «40; MAX-POS ¢ |
Therefore, entries 40 and 31 are exchanged to get

31 32 40

New List,_after fourth iteration, to be sorted is given by:
31 32.

Max ¢ 32 and MAX-POS ¢ 2
.. Noexchange, as 32 is the last entry

New List, after fifth iteration, to be sorted is given by:
31

This is a single-element list. Hence, no more iterations. The algorithm terminates
This completes the sorting of the given list.

Next, we formalize the method used in sorting the list.

Procedure Selection Sort (A{1..n])
begin {of procedure}
fori<-l1to(n—1) do
begin {of i for loop}
MAX « Ali];
MAX-POS « i
forj « itltondo
begin {j for-loop}*
If MAX < A[j] then
begin
MAX-POS «j
MAX « A[j]
end {of if }
end {of j for-loop}
A [MAX-POS] « A[n—i+1]
Aln—i+1] «- MAX
{the ith maximum value is stored in the ith position from right or
equivalently in (n —i + 1) th position of the array}
end {of'i loop}
end {of procedure}.

Ex.3) Sort the following sequence of numter, using Selection Sort:
15, 10, 13, 9, 12 7 )
Further, find the number of comparisons and cop: "sssigninent operations
required by the algorithm in sorting the list.

as there is only one statement in j-loop, we can Omit *begin’ and ‘end’.

Basics of Analysis
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4.3.4 Shell Sort

The sorting algorithm is named so in honour of D.L. Short (1959), who suggested the
algorithm. Shell Sort is also called diminishing -increment sort. The essential idea
behind Shell-Sert is to apply any of the other sorting algorithm (generally Insertion
Sort) to each of the several interleaving sublists of the given list of numbers to be
sorted. In successive iterations, the sublists are formed by stepping through the file
with an increment INC; taken from some pre-defined decreasing sequence of step-
sizes INC, - INC,> ... > INCG; ... > 1, which must terminate in 1.

Example 3.3.4.2: Let the list of numbers to be sorted, be represented by the next row.
1334121410518279116 (n=14)

Initially, we take INC as 5, ie.,

Taking sublist of elements at 5. 6™ and 11" positions. viz sublist of values 13, 10 and 7. After sorting
these values we get the sorted sublist

1 10 i3

Taking sublist of elements at 2 7% and | 2" positions, viz sublist of values 3. 5 and 9. After sorting
(hese values we get the sorted sublist.

3 S 9

Taking sublist of elements at 37 g* and ]3* positions. viz sublist of values 4. | and 11 After sorting
these values we gel the sorted sublist

1 4 it
Similarly, we get sorted sublist

6 8 12
Similarly, we get sorted sublist
2 14

{Note that, in this case, the sublist has only two elements " 1 15 5t sublist and n = 14 is less than

(e
«INC+5 | where INC =5}
INC )

After merging or interleaving the entries from the sublists, while maintaining the
initial relative positions, we get the New List:

73162105481413911 12
Next, take INC=3 and repeat the process, we get sorted sublists:
5 6 7 11 14,

2 3 4 12 13 and

-1 8 9 10

After merging the entries from the sublists, while maintaining the initial relative
positions, we get the New List: ,

New List

5216'387491112101413



Taking INC = 1 and repeat the process we get the sorted list Basics of Analysis
12 345 67 89 10 11 12 13 14

Note: Sublists should not be chosen at distances which are mutliples of each other

e.g. 8 4, 2 etc. otherwise, same elements may be technique compared again and
again.

Procedure Shell-Sort (A[1..n]: real)
K integer;
{10 store value of the number of increments}
INC [1..k]: integer
{to store the values of various increments)
begin {of procedure}
read (k)
forie~1to(k—1)do
read (INC [i])
INC[k] « 1
{last increment must be 1}
fori<¢1tokdo
{this i has no relation with previous occurrence of i}
begin
j« INC i}
re[nfjf;
fort«-1tokdo
{for selection of sublist starting at position t}
begin
o<r*j+t
then s«—r—1

elses 1
Insertion-Sort (A [t... (t + s * )]}
end {of t-for-loop}
end {i for-loop}
end {of procedure}.

Ex. 4) Sort the following sequence of number, using Shell Sort:
15, 10, 13, 9, 12 7
Further, find the number of comparisons and copy/assignment operations
required by the algorithm in sorting the list.
Also, initial INC = 3 and final INC = 1 for selecting interleaved sublists. For
sorting sublists use Insertion Sort.

3.3.5 Heap Sort

In order to discuss Heap-Sort algorithm, we recall the following definitions; where we
assume that the concept of a tree is already known:

Binary Tree: A tree is called a binary tree, if it is either empty, or it consists of a
node called the root together with two binary trees called the left subtree and a right
subtree. In respect of the above definition, we make the following observations:

i. It may be noted that the above definition is a recursive d-finition, in the sense
that definition of binary tree is given in its own terms {i.e., binary tree). In
Unit 1, we discussed other examples of recursive definitions.

-

2. The following are all distinct and the only binary trees having twe nodes.
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The following are all distinct and only binary trees having three nodes

g%

Q/Q O~
O
O

Heap: is defined as a binary tree with keys assigned to its nodes (one key per node)
such that the following conditions are satisfied:

(i)  The binary tree is essentially complete (of simply complete), 1.€, all its levels
are full except possibly the last jevel where only some rightmost leaves may be
missing.

(ii) Thekeyat each node is greater than or equal to the keys at its children.

The following binary tree is a Heap

()
¢
© ,

However, the following is ot & heap because the value 6 in & child node is more
thap the value 5 in tie parent node.
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Also, the following is not a heap, because, some leaves (e.g., right child of 5), in
between two other leaves (viz 4 and 1), are missing.

Alternative Definition of Heap:

Heap 1s an array H{1..n] in which every element in position i (the parent) in the first
half of the array is greater than or equal to elements in positions 2i and and 2i+1 (the
children):

HEAP SORT is a three-step algorithm as discussed below:

(1)  Heap Construction for the a given array

(it} (Maximum deletion) Copy the root value (which is maximum of all values in
the Heap) to right-most yet-to-be occupied location of the array used to store the
sorted values and copy the value in the last node of the tree (or of the
corresponding array) to the root.

(iii) Consider the binary tree (which is not necessarily a Heap now) obtained from
the Heap through the modifications through Step (ii) above and by removing
currently the last node from further consideration. Convert the binary tree into a
Heap by suitable modifications.

Example 3.3.5.1:

Let us consider applying Heap Sort for the sorting of the list 80 32 31 110 50 40
120 represented by an array A[l...7]

Step 1:  Construction of a Heap for the given list
First, we create the tree having the root as the only node with node-value 80 as shown

below:
N

Next value 32 is attached as left child of the root, as shown below
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As 32 < 80, therefore, heap property is satisfied. Hence, no modification of the tree.

Next, value 31 15 attacked as right child of the node 80, as shown below

Again as 31 < &0, heap property is not disturbed. Therefore, no modification of the
tree.

Next, value 110 is attached as left child of 32; as shown below.

However, 110> 32, the value in child node is more than the value in the parent node.
Hence the tree is modified by exchanging the values in the two nodes so that, we get

the following tree =

Again as 110 > 80, the value in child node is more than the value in the parent node.
Hence the free is modified by exchanging the values in the two nodes so that, we get

the following tree 0
Ofi¢

86
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Next, number 50 is attached as right child of 80 so that the new free is as given below

As the tree satisfies all the conditions of a Heap, we insert the next number 40 as left
child of 31 to get the tree

As the new insertion violates the condition of Heap, the values 40 and 31 are
exchanged to get the tree which is a heap

87
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Algorithmics 1o get the tree

Again, due to movement of 120 upwards, the Heap property is disturbed at nodes
‘110 and 120. Again 120 is moved up to get the following tree which is a heap.

OO
D OHE

After having constructed the Heap through Step 1 above we consider

Step 2&3: Consists of a sequence of actions viz (i) deleting the value of the root, (ii)
moving the last entry to the root and (iif) then readjusting the Heap

The root of a Heap is always the maximum of all the values in the nodes of the tree.
The value 120 currently in the root is saved in the last location B{n] in our case B[7}
of the sorted array say B[1..n] in which the values are to be stored after sorting in
increasing order.

Next, value 40 is moved to the root and the node containing 40 is removed from
further consideration, to get the following binary tree, which is not a Heap.

[n order to restore the above tree as a Heap, the value 40 is exchanged with the

maximum of the values of its two children. Thus 40 and 119 are exchanged to get the
tree which ts a Heap.

32
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110

80 40
Again 110 is copied to B[6] and 31, the last value of the tree is shifted to the root and

last node is removed from further consideration to get the following tree, which is not
a Heap

Again the root value is-exchanged with the value which is maximum of its children’s
value i.e exchanged with value 80 to get the following tree, which again is o a Heap.

\ N
@ Sﬂ‘i

Again the value 31 is exchanged with the maximum of the values of its children, i.e.,
with 50, to get the tree which is a heap.

Again 80 is copied in B[5] and 31, the value of the last node replaces 80 in the root
and the last node is removed from further consideration to get the tree which is not a
heap.
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Again, 50 the maximum of the two children’s values is exchanged with the value of
ihe 7ot 31 to get the tree, which is nor a heap.

Next, 50 is copied in B{4].

The entry 31 in the last node replaces the value in the root and the last node is deleted,
to get the following tree which is not a Heap

31y

OO

Again 40, the maximum ef the vajues of children is exchanged with 31, the vah is
the root. We get the Heap ’



Again
value

40 15 copied in B{3]. The value in the last node of the tree viz 31, replaces the
1 the root and the last node is removed from further consideration o get the
tree, which is not a Heap.

Again 32, the vaiue of its only chuld is exchanged with the value of the root to get the
Heap

Next, 32 is copied in B{2] and 31, the value in the last node is copied in the root and
the last node is deleted, to get the tree which is a Heap.

©

This value is copied in B[1] and the Heap Sort algorithm terminates.

Next, we consider the two procedure

1. Build-Heap and

2. Delete-Root-n-Rebuild

which constitute the Heap-Sort algorithm. The list L of n numbers to be sorted is
represented by an array A[1..n}

The following proceduse rzads one by one the values from the given fo-be-sorted
array A[1..n} and graduaily builds a Heap. For this purpose, it calls the procedure
Build-Heap. For building the Heap, an array H[}..n] is used for storing the elements of
the Heap. Once the Heap is built. the elements of A[1..n] are already sorted in H{1..n]
and hence A may be used for sorting the elements of finally sorted list for which we
used the array B. Then the following three steps are repeated n times, (n, the number
cf elements in the array); in the ith iteration.

(i)  The root element H{1] is copied in A{n — i+1] location of the given array A.
The first time, root element is stored in A[n]. The next time, root element is
stored in Afn —1] and so on.

(i  The last element of the array H{n — 1 + 1] is copied in the root of the Heap, i.¢.,
in H{1] and H[n - i + 1] is removed from further consideration. In other words,
in the next iteration, only the array H{1..(o — )] (which may not be a Heap) is
taken into consideration.

(it} The procedure Buidd-fleap is cailed w buiid the array H[1..(u —1)] into 2 Heap.

Procedure Heap-Sori (A {1 .. n]: real)
b(?g,‘.l\ 10f the procedure}
H{1.a] « Build-Heap (A{l..n])
Fori<-ltondo

Basics of Analysis



iatrodusiion to begin {for Iﬂfl}
Algorithmics Aln—i+ 1] « H[i}
H[l] < Hn—i+1]
Build-Heap (H [1.. (n ~1)])
end ifor-loop}
+ end {procedure}

Precedure Build-Heap

The following procedure takes an array B['*..m] of size m, which 1s to be sorted, and
buiids it into a Heap

Procedure Build-Heap (B{1..m]: real)
begin {of procedure}
for j=1to mdo
begin {of for-loop}
location <
while (location > 1) do
begin
Parent «— [location/2]
i Adlocation] € A iparent] then return {ie, quir while loop}
else
{i.e., of A{iocaiion] > A |parent] then}
begin {10 eschange A [parent] and A [location]}
temp < A [parent]
Afparent] «— A [location]
A [location] <« temp
end {of if .. then . elsc}
location < parent
end {while loop}
end {for loop}
end {of procedure}

Ex. 5) Sort the following sequence of number, using Heap Sort:
15, 10, 13, 9, 12 7
Further, find the number of comparisons and copy/assignment operations
required by the algorithm in sorting the list.

3.3.6 Divide and Conquer Technique

The ‘Divide and Conquer’ is a technique of solving problems from various domains
and will be discussed in details later on. Here, we briefly discuss how to use the
technique in solving sorting problems.

A sorting algorithm based on ‘Divide and Conquer’ technique has the following
outline:

Procedure Sort (list)
If the list has length 1 then return the list
Else {i.c. when length of the ligl is greather than 1}
begin
Partition the list into two sublisis say L and H,
Sort (L)
Sort (H)
Combine (Sort (L)), Sort (H)}
{during the combine operation, the sublists are merged in sorted order}
end. ' .
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(1) Merge Sort
(11} Quick Sort

3.3.7 Merge Sort

In this method, we recursively chop the ist into two sublists of almost equal sizes
and when we get lists of sizes one, then start sorted merging of lists in the reverse
order in which these lists were obtained through chopping. The following example
clarifies the method. ‘

Example 3.3.7.1 of Merge Sort:

GivenList:4 6 75 2 1 3
Chop the list to get two sublists viz.

(4, 6, 7, 5), (2 13)
where the symbol / * separates the two sublists

Again chop each of the sublists to get two sublists for each viz

(@, 6), -7, 50 (@, (1 3
Again repeating the chopping operation on each of the lists of size two or more
obtained in the previous round of chopping, we get lists of size 1 each viz4 and 6,7
and 5, 2, 1 and 3. In terms of our notations, we get

{(((4), (6)), (M), (5, ((2), (1), BN
At this stage, we start merging the sublists in the reverse order in which chopping was
applied. However, during merging the lists are sorted.

Start merging after sorting, we get sorted lists of at most two elements viz
(4, 6), 5, 7 @, (1,3

Merge two consecutive lists, each of at most two elements we get sorted lists
@, 5, 6 7, (1,2, 3)

Finally merge two consecutive lists of at most 4 elements, we get the sorted
fist: (1, 2,3,4, 5,6, 7

Procedure mergesort (A {1..n]}
if n>1 then
m & [n/2}
Ly Afl.m}
Ly Ajm+i.n]
Le¢ merge (mergesort (L;), mergesort (L,))
end

begin {of the procedure}
{i. is now sorted with elerients in nondecreasing order}
Next, we discuss merging of already sorted sublists
Procedure merge (Ly, Ly lists)
L. < cmpty list
While L; and L; are both nonempty de
begin
Remove smalier of the first elemeuts of L, and L, from
the list it is in and place it in L, immediately next te the right of the
earlier elements in L. If remeval of this element makes one list empty
then remove 2if elements from tie other list and append them to L
keeping the relative order of the elements intact.
clse repeat the process with the new lists L; and L,
end
(L is the merged list with efements sorted in increasing order}

3
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Ex. 63 Sort the following sequence of number, using Merge Sort:
is, 10, 13, 9, 12 7
Further, find the number of comparisons and copy/assignmeni operations
required by the algorithm in sorting the list.

33.8 Quick Sort

Quick Sort is also a ‘divide and conquer’ method of sorting. It was designed by
C.A.R. Hoare, one of the pioneers of Computer Science and also Turing Award
Winner for the year 1980. This method does more work in the first step of
partitioning the list into two sublists. Then combining the two lists becomes trivial.

To partition the list, we first choose some value from the list for which, we hope,
about half the values will be less than the chosen value and the remaining values will
be more than the chosen value

Division into sublists is done through the chowce and use of a pivot value, which is a
value in the given list so that ali values in the list less than the pivot are put in one list
and rest of the values in the other list. The process 1s applied recursively to the sublists
till we get sublists of lengths one.

Remark 3.3.8.1:

The choice of pivot has significant bearing on the efficiency of Quick-Sort algorithm.
Sometime, the very first value is taken as a pivot.

However, the first values of given lists may be poor choice, specially when the
given list is already ordered or nearly ordered. Because, then one of the sublists may
be empty. For example, for the list

7 6 4 3 2 1

the choice of first value as pivots, yields the list of values greater than 7, the pivot, as
empty.

Generally, some middle value is chosen as a pivot.

Even, choice of middle value as pivot may turn out to be very poor choice, ¢.g, for
the list

2 4 6 7 3 1 5
the choice of middle value, viz 7, is not good, because, 7 is the maximum value of the
list. Hence, with this choice, one of the sublists will be empty.

A better method for the choice of pivot position is to use a random number generator
1o generate a number j between 1 and n, for the position of the pivot, where n is the
size of the list to be sorted. Some simpler methods take median value of the of a
sample of values between 1 to n, as pivot position. For example, the median of the
values at first, last and middle (or one of the middle values, if n is even) may be taken:
as pivot.

Example 3.3.8.1 of Quick Sort

We use two indices (viz i & j, this example) one moving from left to right and other
moving from right to left , using the first element as pivot

In each iteration, the index i while moving from left to the right, notes the position of
the value first from the left that is greater than pivot and siops movement for the
iteration. Similarly, in each iteration, the index j while moving from right to left ncles
the position of the value first from the right that is less than the pivot and siops
movement for the iteration. The values at positions i and j are exchanged. Then. the
next iteration starts with current values of i and j onwards.
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[ ]

S 3 ! 9 8 2 4 7

i J
\the value 9 is the first value from lefl that is greater than the pivot viz 5 and the value 4 is the first value
from right that is less than the pivot. These values are exchanged to get the following list}

S 3 1 4 8 2 9 7

; X
{Moving i toward right and j toward left and i stops, if it reaches a value greater than the pivot and j
stops if j meets a value less than the pivot. Also both stop ifj <i. We get the list}

5 3 1 4 8 2 9 7
o ]
{4fter exchanging the values 2 and 8 we get the list)
5 3 1 4 2 8 9 7
i J
{ The next moves of i to the right and j to the left make J < i and this indicates the completion of one

iteration of movements of i and j o get the list with positions of i and, j as follows)

5 2 1 4 2 8 9 7
j i

{41 this stage. we exchange the pivol with value at position j, i.e, 2 and 5 are exchanged so that pivot
occuples almost the middle position as shown below.

2 3 1 4 5 8 9 7

{1t may be noted that ali values to the left of 5 are Iess than S and all values to the right of 5 are greater
than 5. Then the two sublists viz 2,3.1,4 and 8,9,7 are sorted independently}

2 3 1 4 and 8 7 9
i - ] i — « ]

2 3 1 4 and 8 7 9
i e i j

and g8 7 9

()
£

i i ] i

{as J < 1, exchanging the pivot values with 7, value
at jth position, we get}

1 3 4 and 7 8 9
i i
{as j < i, exchange pivot 2 with value I at j, we get
neglecting the pivot the two sublists to be sorted

as | and 3, 4}
1 2 3 4
and i i,
3 4
i i

{Pivot position = | = j. And pivot osition is neglecied therefore, we need to sort the
remaining lists which are respectively empty and {4}, which are already sorted.
This completes the sorting. Merging does not require any exira time as already the

entries are in sorted order}

On basis of the discussion above, we now formalize the Quick Sert
algorithm/procedure




introduction to Procedure Quick-Sort {Almin... max})
Algorithmics {min is the lower index and max the upper index of the array to be sorted using Quick Sort}
begin
if min < max then
p <~ partition (A[min..max]);
{p is the position s.t for min <i <
Ay} 24 [pl}
Quick-Sort (A [min .. p— 11;
Quick-Sort (A[pt1 .. max]);

A (i} SApland foralij2p+i,

end;

sbove procedure, the procedure partition is called. Next, we define the
procedure partition.

o

roceldure nartition (A fmin .. max[}

i, i1 integer;

s: real;

{in this procedure the first element is taken as pivot; ihe index i, used below moves from left io right
to find firsi value { = 1; from left such that Afv;] > Afi]. Similarly j moves from right to left and
finds first valu such that Afvy] < A[1]. 1fj >i, then Afi] and A[j] are exchanged. Ifj <1
then Af1] and A[j{ are exchangedy.

i min + 1} ¢ max

T

While (Alil<p) do

jeiTl
While (A[jl > p)  de
jej—i
exchange (A[1l, Al

{the éxchange operation involves three assignments. viz, temp « A i}, Ali]« 4[] and
A[j] « temp, where
temp is a new variable }
end; {of while loop}
exchange (A[1], Alil;
return j
{the index j is 5.t in the next iteration sorting is to be done for the two subarray
Af min .. j—1] and A[j+1 .. max)
Ex.7) Sort the following sequence of number, using Quick Sort:
15, 10, 13, - 9 1z 7
Further, find the number of comparisons and copy/assignment operations
reguired by the algorithm in sorting the list.

3.3.9 Comparison of Sorting Algorithms

“We give below just the summary of the time complexities of the various algorithms
discussed above. Some of these time complexities will be derived at different places.
»fter sufficient tools are developed for the purpose. Here these are included so that w:
may have an idea of the comparative behaviors of the algorithms discussed above.
Bach algorithm requires time for execution of two different types of actions, viz

1) Comparison of keys
1i1) assignment of values

‘The following table gives the time complexities requirement in terms of size n of the
jist to be sorted, for the two types of actions for executing the algorithms. Unless
mentioned otherwise, the complexities are for average case behaviors of the
algorithms:

6



Name of the Comparison of Keys Assignments
algorithm
Selection Sort 0.5n% + O(n) 3.0n+0f1)
‘Insertion Sort 0.25n" + O(n) (average) 0.25n* + O(n)
Shell Sort n'*to 1.6n"* for large n (empirically)
Heap Sort 2 n log n + O(n) (worst cas-) n log n + O(n)
Bubble Sort % (0’ —n log n) (average) -j; (n® —n) (average)
' i )
— (n’ = n) (worst) L (n* — n) (worst)
2 2
Quick Sort 1.39nlogn 0.69nlogn
Merge Sort nlogn to(nlog n—1.583n+ 1) nlogn
{ for linked lists) (for contiguous lists)

Merge Sort is good for linked lists but poor for contiguous lists. On the other hand,
Quick Sort is good for contiguous lists but is poor for linked lists.

In context of complexities of a sorting algorithm, we state below an important
theorem without proof.

‘Theorem: Any algorithm, based on comparison of keys, that sorts a list of n
elements, in its average case must perform at least log (n!) ~ (n log n + O(n)) number
of comparisons of keys.

3.4 BEST-CASE AND WORST CASE ANALYSES

For certain aigorithms, the times taken by an algorithm on two different instances,
may differ considerably. For this purpose, consider the algorithm
Insertion-Sort, already discussed, for sorting n given numbers, in increasing order.

Again, for this purpose, one of the two lists is TS[ 1..n] in which the elements are
already sorted in increasing order, and the other is TR[L..n} in which elements are in
reverse-sorted order, i.e., elements in the list are in decreasing order.

The algoritha Insertion-Sort for the array TS[1..n] already sorted in increasing order,
does not make any displacement of entries (i.e., values) for making room for out-of-
order entries, because, there are no out-of-order entries in the array.

In order to find the complexity of Insertion Sort for the array TS{1..n], let us consider
a specific case of sorting.

The already sorted list {1,3,5,7,9}. Initially A[1} = 1 remains at its place. For thé
next element A[2] = 3, at its place. For the next element A[2] = 3, the following
operations are performed by Insertion Sort:

1) je2

iy 1 j—1

(iti) me A[]

(iv) Afli+ 1]« m

(v) m<A[i] inthe while loop.

Basics of Analysis
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11 see that these are the minimum operation performed by Insertion Sort irrective
ue of Aj2]. Further, had A[2] been less than A[1], then more operations
ave been performed, as we shall see in the next example.

To conclude, as if A[2] 2 A[1] (as is the case, because A[2] =3 and Afl}=1) then
Insertion Sort performs 4 assignments and | comparison. We can see that in general,
if A[1+17 > A{l] then we require (exactly) 4 additional assignments and 1 comparison
1o place the value A{l+1] in its correct position, viz (I+1)th.

‘Thus in order fo use Insertion Sort to attempt to sort an already, in proper
arder, sorted list of n elements, we need 4(n—1) assignments and (n — 1)
comparison.

Further, we notice, that these are the minimum operations required to sort a list
of n elements by Insertion Sort.

Hence in the case of array TS[1..n], the Insertion-Sort algorithm takes linear time for
an already sorted array of n elements. In other words, Insertion-Sort has linear
Best-Case complexity for TS{1..n].

Next, we discuss the number of operations required by Insertion Seort for sorting
TR{1..n] which is sorted in reverse order. For this purpose, let us consider the sorting
of the list {9,7, 5,3, 1} stored as A[1]=9, A[2] =7, Al3] =5 A[4]=3 and A[S5]=1.
Iet m denote the variable in which the value to be compared with other values of the
array, is stored. As discussed above in the case of already properly sorted list, 4
assignments and one comparison, of comparing Ak +1] with A[k}, is essentially
required to start the process of putting each new entry Afk+1] after having already
sorted the list A{1] to Alk]. However,as 7= A2} =m < A{1]=6. All]is copied to
A[2) and m is copied to A[1]. Thus Insertion Sort requires one more assignment

(viz A[2] « A[1)).

At this stage A{1]=7 and A[2]=9. Itis easily seen that for a list of two elements, to
be sorted in proper order using Insertion-Sort, ai most one comparison and

5 (= 4 +1) assignments are required.

Next, m <~ A[3] =5, and m is first compared with A[2] =9 and as m < A[2], A[2]} is
copied to A[3]. So, at this stage both A[2] and A[3} equal 9.

Next, m = 5 is compared with A[1]=7 and as m < A[1] therefore A[1] is copied to
A[2], so that, at this stage, both A[i] and A[2] contain 7. Next5 inm is copied to
A[1]. Thus at this stage A[1] =5, A[2]= 7and A[3] = 9. And, during the last round,
we made two additional comparisens and two addition assignments

{viz A[3] < A[2] < A[1]), and hence total (4 + 2) assignments, were made.

Thus, so far we have made 1+ 2 comparisons and 5 + 6 assignments.

Continuing like this, for placing A[4] =3 at right place in the sorted list {5,7,9}, we
make 3 comparisons 7 assignments. And for placing A[S] = 1 at the right place in the
sorted list {3,5,7,9}, we make 4 comparisons and 8 assignments. Thus, in the case of

a list of 5 elements in reverse order, the algorithm takes 1+2+3+4 = i‘—j—z

comparisons and 5+6+7+8+9 =4 x 5+ (1+2+3+4+5) assignments.

In general, for a list of n elements, sorted in reverse order, the Insertion Sort
R -1)n 1 . 1
algflrlthm makes gn_:lj_ = —2~ (nz —n) comparisons and 4n + 3 (nz +n)

.l <

1,
= 5 (a2 + 9n) assignuients.



Agatn, it can be easily seen that {or a list of n elements, Insertion-Sort algorithmn Buasies of Analysis
1, . |
should make at most 3 (n* —n) comparisens and 3 (0" + 9n) assignments.

Thus, the total number of operations

:‘% (n2 —;1))+(~;- (nz +n}+4n} =n?+4n

If we assume that time-required for a comparison takes a constant multiple of the time
than that taken by an assignment, then time-complexity of Insertion-Sort in the case of
reverse-sorted list is a quadratic in n.

When actually implemented for n = 5000, the Insertion-Sort algorithm took 1000
times more time for TR[1..n], the array which is sorted in reverse order than for
TS{1..n], the array which is already sorted in the required order, to sort both the
arrays in increasing order.

3.4.1 Various Analyses of Algorithms

Earlier, we talked of time complexity of an algorithm as a function of the size n of
instances of the problem intended to be solved by the algorithm. However, from the
discussion above, we have seen that for a given algorithm and instance size n, the
execution times for two different instances of the same size n, may differ by a factor
of 1000 or even more. This necessitates for us to consider further differentiation or
classtfication of complexity analyses of an algorithm, which take into consideration
not only the size n but also types of instances. Some of the well-known ones are:

(1)  worst case analysis
(ii)  best case analysis
{iii} average case analysis
(iv) amortized analysis

We discuss worst-case analysis and best-case analysis in this section and the
other two analyses will be discussed in Section 2.9.

34.2 Worst-Case Analysis

Warst-Case analysts of an algorithun for a given problem, involves finding the
Tongest of all the times that can (theoreticaliy) be taken by various instances of a
given size, say n, of the problem. The worst-case analysis may be carried out by first
(1) Tinding the instance types for which algorithm runs slowest and then (ii) finding
running time of the algorithm for such instances. If c-werst (n) denotes the worst-
case complexity for instances of size n, then by the definition, it is guaranteed that no .
instance of size n of the problem, shall take more time then c-worst (n).

Worst-Case analysis of algorithms is appropriate for problems in which response-
time is critical. For example, in the case of problems in respect of controlling of
nuclear power plants, it is important to know an upper limit on the system’s response
time than (o know the time of execution of particular instances.

In the casc of the Insertion-Sort algorithm discussed earlier, we gave an outfine of
argument in support of the fact that Inserticn-Sort algorithm takes longest time

{1y for lists sorted in reverse order and
(11} if the size of such a list is n, then the longest time should correspond to
Iy

z L, : R
E {n +n ) comparisons and — {n” + 3n assignments.
L

G
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I other words, the worst time complexity of Insertion-Sort algorithm is a quadratic
polynomial in the size of ihe problem instance.

3.4.3 Best-Case Analysis

Best- Case Analysis of an algorithm for a given problem, involves finding the
shortest of all the times that can (theoretically) be taken by the various instances of a
given size, say n, of the problem. In other words, the best-case analysis is concerned
with

(i) finding the instances (types) for which algorithm runs fastest and then
(ii) with finding running time of the algorithm for such instances (types).

If C-best (n) denotes the best-case complexity for instances of size n, then by
definition, it.is guaranteed that no instance of size n, of the ptoblem, shall take less
time than :

C-best (n).

The best-case analysis is not as important as that of the worst-case analysis.
However, the best-case analysis may be useful guide for application to situations,
which need not necessarily correspond to the instance types taking shortest time, yet
which are close to such instance types. For example, a telephone directory of a
metropolitan city like Delhi, contains millions of entries -already properly sorted.
Each month, if a few thousand of new entries are to made, then if these entries are put
in the beginning of the directory, then in this form, without further processing, the
directory is a nearly sorted list. And, the Insertion-Sort algorithm which makes only
n comparisons and no.shifts for an already properly sorted list of n elements sorted in
the required order, may be useful for application to this slightly out-of-order new list
obtained after addition of a few thousand entries in the beginning of the earlier sorted
list of millions of entries.

In general, it can be shown that

(i) for an already sorted list of w elements, sorted in the required order, the

Insertion-Sort algorithm will make (n — 1) comparisons and 4 x (n—1)
assignments and

(i) (n— 1) comparisons and 4 (n — 1) assignments are the minimum that are
required of sorting any listof n elements, that is already sorted in the required
order.

Thus the best time complexity of Insertion Sort algorithm is a linear potynomial in the
size of the problem instance.

3.5 ANALYSIS OF NON-RECURSIVE CONTROL
STRUCTURES

Analysis of algorithms is generally a bottom-up process in which, first we consider
the time required for executing individual instructions. Next, we determine i
recursively time required by more complex structures where times required for less
complex structures are already calculated, already known, given or assumed. We
discuss below how the time required for structures obtained by applying basic
structuring rules for sequencing, repetition and recursion, are obtained, provided
times required for individual instructions or component program fragments, are
already known or given. First we consider the structuring rale: sequencing.



3.5.1 Sequencing ' Sasics of Anslysis

Let F, and F; be two program frapments, with t, and t, respectively the time required
for executing F, and IF,. Let the program fragment F, ; F be obtained by sequencing
the two given program fragments, i.e, by writing F, followed by F,.

Then sequencing rule states that the time required for the program fragment
F. Faisty+ 1,

Word of Caution: The sequencing rule, mentioned above, is valid only under the
assumption that no instruction in fragment F» depends on any instruction in Fragment
F). Otherwise, instead of t; + 1, the time required for executing the fragment F, ; F,
may be some more complex function of t; and t>, depending upon the type of
dependency of instruction(s) of F- on instructions of F;. Next, we consider the various
iterative or looping structures, starting with “For” loops. '

3.5.2 For Construct

In order to understand better the ideas involved, let us first consider the following two
simple examples involving for construct.

Example 3.5.2.1: The following program fragment may be used for computing sum
of
first n natural numbers:

fori=1lwndo
sum = sum + i.

The example above shows that the instruction sum = sum + i depends upon the loop
variable ‘’. Thus, if we write

P(i) : sum=sum + i
then the above-mentioned ‘for’ loop may be rewritten as

fori=1ltondo
Py,
end {for}

where i in P(i) indicates that the program fragment P depends on the loop variable i.

Example 3.5.2.2: The following program fragment may be used to find the sum of n
numbers, each of which is to be supplied by the user:

fori=1tondo
read (x);
sum = sum + X;
end {for}.

In the latter example, the program fragment P, consisting of two instructions viz.,
read {x) and sum = sum + x, do not involve the loop variable i. But still, there is
nothing wrong if we write P as P(i). This is in view of the fact that a function f of a
variable X, given by

fix) =x
may also be considered as a function of the two variables x and y, because

fix,y) = X +0.y
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Remark 3.5.2.3:

The for loop
fori=1tndo
P() ;
end for,
is actually a shorthand for the following program fragment
i=1
while i <n do
Pa);
i=i+]
end while ;

Therefore, we need to take into consideration the above-mentioned fact while
calculating the time required by the for loop fragment.

Remark 3.5.24:

The case when n = 0 in the loop for i = I to n do P (i) would not be treated as an error.
The case n = 0 shall be interpreted that P(i) is not executed even once.

Let us now calculate the time required for executing the loop
fori=1tondo

P(i).

end for

For this purpose, we use the expanded definition considered under Remark and, in
addition, we use the following notations:

fl : the time required by the ‘for’ loop

a : the time required by each of the assignments
=1 and i=it1

c : for each of the test i <nand
s: for sequencing the two instructions P(i) and i = i+1 in the
While loop.

t : the time required for executing P(i) once.

Then, it can be easily seen that

fl = a fori=1
+{(ntl)c Sor (n+1) times testing i <n
+ nt for n times execution of P(i)
_+ na for n times execution of i = i+
+ ns for n times sequencing

P@)and =i+ 1.
ie. '
fi=(n+l)a+ (n+tl)c+as+nt

In respect of the last equality, we make the following observations

(i) the quantity on R.H.S is bounded below by nt, n times the time of execution of
0]

(ii) if t, the time of exBcution of P(i) is much larger than each of



(4)  a, the ime for making an assignment

(b) ¢, the time for making a comparison and

(c) s, the time for sequencing two instructions, one afier the other,

“then fl, the time to be taken by the ‘for” loop is approximately ni, i.e., fl = nt

(1) If n=0ornis negative, the approximation fl ~ nt is completely wrong.
Because , w.r.t Remark 2.6.2.1 above, at least the assignment i = 1 is executed
and also the test i < n is executed at least once and hence fl < 0 or fl ~ 0 can not
be true.

3.5.3 While and Repeat Constructs

From the point of view of time complexity, the analysis of while or repeat loops is
more difficult as compared to that of for loops. This is in view of the fact that in the
case of while or repeat loops, we do not know, in advance, how many times the loop
is going to be executed. But, in the case of for loops, we can know easily, in advance
the number of times, the loop is going to be executed.

One of the frequently used techniques for analysing while/repeat loops, is fo define a
Junction say f of the involved loop variables, in such a way that

(i) the value of the function fis an integer that decreases in successive iterations of
the loop.

(1) the value of f remains non-negative throughout the successive executions of the
loop, and as a consequence.

(iti)  the value of freaches some minimum non-negative value, when the loop is to
terminate, of course, only if the Inop under consideration is a terminating loop.

Once, such a finction £, if it exists, is found, the analysis of the while/repeat loop gets
simplified and can be accomplished just by close examination of the sequence of
successive values of f,

We illustrate the techniques for computing the time complexity of a while loop
through an example given below. The repeat loop analysis can be handled on the
similar lines.

Example 3.53.1:

Let us analyze the following Bin-Search algorithm that finds the location of a value v
in an already sorted array A[1..n], where it is given that v occurs in A[ 1.. n ]

The Bin-Search algorithm, as defined below, is, in its rough version, intuitively applied by us in finding
the meaning of a given word in a dictionary or in finding out the telephone number of a person from the
telephone directory, where the name of the person is given In the case of dictionary search, if the word
1o be searched is say CARTOON, then in view of the Jfact that the word starts with letter C which is near
the beginning of the sequence of the leiters in the alphabet set, we open the pages in the dictionary near
the beginning. However, if we are looking for the meaning of the word REDUNDANT, than as R is 18"
letter out of 26 letters of English alphabet, we generally open to pages after the middle half of the
dictionary.

However, in the case of search of a known value v in a given sorted array, the values
of array are not know to us. Hence we do not know the relative position of v. This is
+n
-

why, we find the value at the middle position 1 — } in the given sorted array
L

. These cases arise:

. L+n ]
Af1..n] and then compare v with the value A {:’5)—{1
“«

o

r :
(1) Ifthevaluev = A LEJ ; then search is successtul and stop. Else,
- L !

Basics of Analysis
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array. Similarly

i N
iy ifv>A [L?} , than we search only the part A i(%—i}\;ﬂn] of the array

AY

And repeat the process. The explanation for searching v in a sorted array, is
formalized below as function Bin-Search.

Function Bin-Search { A{l.nl, V)
begin
i=1; j=n
while i<j do
tie, A[i] Sv< A1}

k = [G+) + 2]

Case v<A[kL j=k-1
v=A[k} {returnk }
v>Alk]: i=k+1

end case

end while { return i }
end function;

We explain, through an example, how the Bin-Search defined above works.

Let the given sorted array A{1..12] be

T

M [4 17 To 11 frs T8 [t [23 [24 j27 {30

andletv=11. Theni=1,j=12 and

[

and A[6] =15
Asv=11<15=A[6]

Therefore, for the next iteration

j=6-1=5
i =1 (unchanged)

hence k = Pl—s-‘rfs
L2

A3]=7
Asv=11>7=A[3]

For next iteration
. i becomes (k+1) = 4, j remains unchanged at 5.

Therefore new value of k = F—g—ﬂlﬂi
i

Asv=11>9=A[k]

-

Therefore, in new iteration i becomes k + 1 = 5, | remains unchanged at 5.
Therefore new



t
{
And ALk} = A[S]=11=v
Hence, the search is complete.
In order to analyse the above algorithm Bin-Search, let us define

Before analyzing the algorithm formally, let us consider tentative complexity of
algorithm informally. From the algorithm it is clear that if in one iteration we are
considering the array A{i..jlhavingj i +1 elements then next time we consider
cither A[ i .. k ~ 1] or A[(k + 1)..j] each of which is of length less than half of the
length of the earlier list. Thus, at each stage length is getting at least halved. Thus,
we expect the whole process to be completed in log2" > iterations.

We have seen through the above illustration and also from the definition that the array
which need to be searched in any iteration is Afi..j] which has (j — i + 1) number of
elements

Letus take f=j —i + 1 = [ength of the sequence currently being searched.
Initially £ = n — 1+1 =n. Then, it can be easily seen that f satisfies the conditions (i),
(i1) and (iii) mentioned above.

Also if foq, Jois and iy are the values of respectively f, j and i before an iteration of the
loop and fiew , jnew aNd ke the new values immediately after the iteration, then for
cach of the three cases v<A [k ], v=A[k]andv> A [ k ] we can show that

frew < fora/2

Just for explanations, let us consider the case v < A [ k ] as follows:
for v <A [ k], the instruction j = k — 1 is executed and hence
tnew = loig a0 jaew = [(iotg *+ joua) +2] — 1 and hence

faew = Jnew — tnew + 1= [{iotg + joia) + 2 - 1]~ igg + 1

< (ot *+ o) 2 — o
< (ot — Lo + 1)/2 = fqa/2

2+ frew < fold/2

tn other words, after each execution of the while foop, the length of the sub array of
A [ i.. n], that needs to be searched, if required, is less than half of the previous
subarray to be searched. As v is assumed to be one the values of A[ 1 .. n ], therefore,
in the worst case, the search comes to end when j = i, i.e., when length of the subarray
to be searched is 1. Combining with f,.,, < f,¢/2 after each interaction, in the worst
case, there will be t iterations satisfying

1 = (n/2Y) or n=2'
1e., t= }.log2 nj

Analysis of “repeat” construci can be carried out on the similar lines.

3.6 RECURSIVE CONSTRUCTS

"
We explain the process of analyzing time requirement by a recursive construct/
algorithm through the following example.
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Example 3.6.1:

Function factorial (n)
{computes n'. the factorial of n recursively
where nis a notpncganvc mlegcr}
begin
if n=0return |
else return (n * factorial (n—1))
end factorial

Analysis of the above recursive algorithm

We take n. the input, as the size of an instance of the problem of computing factorial
of n. From the above (recursive) algorithm, it is clear that multiplication is its basic
operation. Let M(n) denote the number of multiplications required by the
algorithm in computing factorial (n). The algorithim uses the formula

Factorial (n) = n* factorial (n—1) forn>0.

Therefore, the algorithm uses one extra multiplication for computing factorial (n) then
for computing factorial (n—1). Therefore,

M) = M(n—1)+ 1. forn>0 (3.6.1)

Also, for computing faciorial (0), no multiplication is required, as, we are given
factorial (0) = 1. Hence

M(0) = 0 (3.6.2)

The Equation ( 3.6.1) does not define M(n) explicitly but defines implicitly through
M(n—1). Such an equation is called a recurrence relation/equation. The equation

( 3.6.2) is called an initial condition. The equations (3.6.1) and (3.6.2 ) together form
a system of recurrences.

By solution of a system of recurrences, we mean an explicit formula, say for M(n} in
this case, free from recurrences in terms of n only, and not involving the function to
be defined, i.e., M in this case, directly or indirectly.

We shall discuss in the next section, in some detail, how to solve system of
recurrences. Briefly, we illustrate a method of solving such systems, calied Method of
Backward Substitution, through solving the above system of recurrences viz.

M@) = M(n—1) +1 (3.6.1)
and
M@O) = 0 (3.6.2)

Replacing nby(n 1{)in{ 2.7.1), wegetM(n—1) =M (n—2) +1 (3.6.3)
Using (2.7.3) in ( 2.7.1) we get ’

M(n) = Mm—1) + 1
M@=2)+1]+1,

]

Repeating the above process by replacing nin (2.7.1) successively by (n — 2),
(n—3),....... 1, we get -

Mm =M@m-1+1 =M(n-1)+1
=M@n-2)y+1]+1 =Mn—2)+2
=M@m=-3)+1]+2 =M(n—3)+3
=M(1)+ {n—1 =M(n—-D+i
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M(n} =0+n=n

3.7 SOLVING RECURRENCES

In the previous section, we illustrated. with an example, the method of backward
substitution for solving system of recurrences. We will discuss, in the next section,
some more examples of the method.

fu this section, we discuss some methods of solving systems of recurrences
However, the use of the methods discussed here, will be explained in the next section
though appropriate examples.

3.7.1 Method of Forward Substitution

We explain the method through the following example.
Example 3.7.1.1:

Let us consider the system of recurrences

Fin) = 2F(n—1)+1 for n>1 (3.7.1)
F(i1y = 1 (3.7.2)

First few terms of the sequence < F (n) > are, as given below.

filly = 1

f2) = 2*f(1)y+1 = 2x1+1 =3
f(3) = 2*£(2) +1 = 2x3+1 =7
fl4) = fi3)y+1 = 2x7+1 =15

Then, it can be easily seen that
Fn) =2"~-1 forn=1,2,3,4
We (intuitively) feel that
Fn)=2"—1 foralin > |
We ailemp( to establish the conectnéss of this intuition /feeling through Principle of
Mathematical Induction as discussed.
As we mentioned there, it is a Three-Step method as discussed below:
Step (i): We show forn =
F(hy=2'-1=1,
But F(1) = 1 is given to be true by defimtion of F given above.
Step (if): Assume for any k > |
F(k)=2" 1
Step (iiiy: Show

Flk+1)=2""~1.

For showing

a7
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Fktl) =2~ 1,
Consider, by definition,

FcH) =2F (K+1-1)+1
=2F@)+1
=12 (2*~ 1) + 1 (by Step (ii))

=2"-2+1
:an_l

Therefore, by Priﬁciple of Mathematical Induction, our feeling that F(n) = 2" — 1 for
ali n 2 1 is mathematically correct.

Next, we discuss methods which can be useful in many practical problems.

3.7.2 Solving Linear Second-Order Recurrences with Constant
Coefficients

Definitions: Recurrerces of the form

ai“(n)+bF(n—l)+cF(n-—2)=g(n) (3.7.2.1)
where a, b, ¢ are real numbers, a =0, are called linear second-order recurrences with
constani coefficients. Further, if g{n) =0 then the recurrence is called Homogeneous.
Otherwise, it is called inhomogeueous. Such systems of recurrences can be solved by
neither backward substitution method nor by forward substitution method.

In order to solve recurrences of the form (2.8.2.1).

First we consider only the homogeeous case, i.€., when g(n) = 0. The recurrence
becomes

aFmn) +bFn-1) +¢F(n—-2)=0 (3.7.2.2)

The above equation has infinitely many solutions except in the case when bothb=0
andc=0.

With equation (2.8.2.2) we associate an auxiliary quadratic equation, called
characteristic equation, given by

ax’+bx+c=0 (3.7.2.3)

Then the solutions of the recurrences (2.8.2.1) are given by the following theoreni,
which we staiz without proof.

Theorem 3.7.2.1:
Let x, and x, be the solutions of the auxiliary quadratic equation
a X +bx +c=0. Then
Case1:  Ifx, and x, are real and distinct then solution of (2.8.2.2) is given by
Fn) = a x] +Bx) (3.7.2.4)
Where « and {§ are two arbitrary real constants

Case II:  If the roots x, and x; are real but x; = %, then solutions of {3 7.2.2) ate
given by



F(n) = o X? +B nx{‘ . B (3.7.2.5) Basies of Analysis

Where, again, o and [} are arbitrary real constants.

Case HI: Ifx, and x, are complex conjugates given by u + iv, where u and v are real
numbeis. Then solutions of (2.8.2.2) are given by

F(n)=1" [acosn O +PBsinnf] (3.7.2.6)

where r= ‘/ w’+v? and 6 =tan"' (v/u) and o and P are two arbitrary real
constants.

Example 3.7.2.2:
Let the given recurrence be
F(n)—4F(n—1)+4F(n-2)=0. (3.7.2.7)
Then, its characteris‘tic équation is given by
X —4x+4=0,
The two solutions equal, given by x = 2.

Hence, by (3.7.2.5) the solutions of (3.7.2.7) are given by
Fn=a2"+pBn2"

Next, we discuss the solutions of the general (including inhomogeneous)
recurrences. The solution of the general second-order non-homogeneous recurrences
with constant coefficients are given by the next theorem, which we state without
proof.
Theorem 3.7.2.3:
The general solution to inhomogeneous equation

aFn)+b Fn—i}+cF(n-2)=gn) forn>1 (3.7.2.8)

can be obtained as the sum of the genera! solution of the homogeneous equation

aFm)+b Fln—-1D+c¢Fn—-2)=0
and a particular solution of (3.8.2.8).

The method of finding a particular solution of (3.8.2.8) and then a general solution of
(3.8.2.8) 1s explained through the fllowing examples.

Kxample 3.7.2.4
I_et us consider the inltomogeneous recurrence
Fn)=4Fn-—-1)+4F(@n-2)=3

{f F{n) = c is a particular soluiion of the recurrcnce, then replacing F(n), F(n—-1) and
F(n-2) by ¢ in the recurrence given above, we get

c—4c+dc=3
Le. c=3
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Also, the general solution of the characteric equUation (of the mhomogencow recrrence g
abovey VIZ :

Fn)—4Fn-1)y+4Fmn- 2)=0
Are (obrained from Example 2.8.2 2 as) & 2 Bn A

Hence general solution of the given recurrence 1s given by

Fm=a2"+fn2"+3
Where o and f are arbitrary real constants.

3.8 AVERAGE-CASE AND AMORTIZED
ANALYSIS

In view of the inadequacy of the best-case analysis and worst-case analysis for all
types of problems, let us study two more analyses of algorithms, viz, average-case
analysis and amortized analysis.

3.8.1 Average-Case Analysis

In Section 3.4, we mentioned that efficiency of an algorithm may not be the same for
all inputs, even for the same problem-size n. In this context, we discussed Best-Case
analysis and Worst-Case analysis of an algorithm.

However, these two analyses may not give any idea about the behaviour of an
algorithm on a iypical or random input. In this respect; average-case analysis is more
informative than its two just-mentioned counter-parts, particularly, when the
algorithm is to be used frequently and on varied types of inputs. In order to get really
useful informationfrom the average-case analysis of an algonthm, we must explicitly
mention the properties of the set of inputs, obtained either through empirical evidence
or on the basis of theoretical analysis. We explain the ideas through the analysis of the
following algorithm, that, for given an element K and an array A[l..n], returns the
index i in the array A{1..n], if A[ i | = K otherwise returns 0.

Algorithm Sequential_ Search ( A | 1..n LK)

begin
P«
while i<n and A[i] 2K} do
141~ 1
If 1<n return t
else return O
end:

Some of the assumptions, that may be made, i the case of the above algorithm, for the
purpose of average-case analysis, are

(i) for some number p, 0 <p < 1, p is the probability of successful search ~ and
p

{i1) in the case of successful search, the probability that first time K occurs in ith
position in A[1..n], is the same forall i= 1,2, ...n.

With these two assumptions, we make average-case analysis of the Algorithm

Sequential Search given above as follows: .

From (i) above, Probability of unsuccessful search = (1—p)

In view of assumption (it) above, in the case of successful search,
Probability of K occurring for the first time in the ith position n A{l..n] = p/n
for1= i,2,...n.

Therefore, 1f C,, (), the average complexity for an put array of n elements. 15 giver,
by

Cap (0} ={ L (p/n) + 2. (p/n) +....+ i (p/m) +.... + n. (p/m) +n{i-—phn



where the term i, (p) is the contribution of i comparisons that have been made when
executing while-loop i times such that i is the least index with Ali] = K after which
while-loop terminates.

Also. the last term (7. (/ —p}) is the contribution in which while-loop s executed
n umes and after which it is found that A [1}#Kfori=1,2, .., n

Simplifying R.H.S of the above equation, we get

o

Cm(n):(—} [1+2% +i+. *nj+n(1—p)
n,

_p nln+l)

a2

E(_':ilL 0 -p)

n. (I-p)

As can be seen from the above discussion, the average-case analysis is more difficult
than the best-case and worst-case analyses.

Through the above example we have obtained an idea of how we may proceed to find
average-case complexity of an algorithm. Next we outline the process of finding
average-case complexity of any algorithm, as follows:

(1) First categories all possible input instances into classes in such a way that inputs
in the same class require or are expected fo require the execution of the same
number of the basic operation(s) of the algorithm.

(n} Next, the probability distribution of the inputs for different class as, is obtained
empincally or assumed on some theoretical grounds.

) Using the process as discussed in'the case of Sequential-Search above, we
compute the average-case complexity of the algorithm.

11 is worth mentioning explicitly thar average-case complexity need not be the average
of the worst-case complexity and besi-case complexity of an algorithm. though in
some cases, the iwo may coincide.

Further. the effort required for computing the average-case, is worth in view of its
contribution in the sense, that 1n some cases, the average-case complexity is much
betier than the Worst-Case Complexity. For example, in the case of Quicksort
algorithm, which we study later, for sorting an array of elements, the Worst-Case
complexiy 1s a quadratic function whereas the average-case complexity is bounded by
some constant multiple of n log n. For large values of n, a constant multiple of

(1 {og 1y 1s much smaller than a guadratic function of n. Thus. without average-case
analysis. we may miss many on-the-average good algorithms.

3.8.2 Amortized Analysis
n the previous sections, we observed that

(1} worst-case and best-case analyses of an algorithm may not give a good idea
about the behaviour of the algorithm on a tvpical or random input.

(1) validity of the conclusions derived from wverage-case analysis depends on the
quality of the assumptions about probability distribution of the inputs of a given
size.

Another important fact that needs our attention ts the fact that most of the -operations,
including the most time-consuming operations, on a data structure (used for solving a
problem) do not occur in 1solation. but different operations, with different tine
complexities, occur as a part of a sequence of operations. Occurrences of a
particular operation in a sequence of operations are dependent on the occurrences of

Pasics of Analysis
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other operations in the sequence. Asa consequence, it may happen that the most tire
consuming operation can occur but only rarely or the operation only rarely consumes
its theoretically determined maximum time. We will support our claim later through
an example. But, we continue with our argument in support of the need for another
type of analysis, viz., amortized analysis, for better evaluation of the behaviour of an
algorithm. However, this fact of dependence of both the occurrences and complexity
of an gperation on the occurrences of other operations, is not taken into consideration
in the earlier mentioned analyses. As a consequence, the complexity of an algorithm
is generally over-evaluated.

Next, we give an exaraple in support of our claim that the frequencies of occurrences
of operations and their complexities, are generally interdependent and hence the
impact of the most time-consuming operation may not be ds bad as it is assumed or
appears to be.

Example 3.8.2.1:

We define a new data structure say MSTACK, which like the data structure STACK
has the usual operations of PUSH and POP. In addition there is an operation
MPOP(S, k), where S is a given stack and k is a non-negative integer. Then
MPOP(S, k) removes top k elements of the stack S, if S has at least k elements in the
stack. Otherwise it removes ail the elements of S. MPOP (S, k) may be formally
defined as

Procedure MPOP (S, k);
begin
While (not Empty (S) and k = 0) do
POP (S)
ke k-1
Endwhile;
EndMPOP.

For example, If, at some stage the Stack S has the elements

35 40 27 18 6 11

T T
. TOP BOTTOM
Then after MPOP (S, 4) we have
6 11
T T

TOP BOTTOM
Further another application of MPOP (S, 3) gives empty stack.

Continuing with our example of MSTACK, next, we make the following
assumptions and observations:

(1) Cost of each PUSH and POP is assumed to be 1 and if m 2 0 is the number of
elements in the Stack S when an MPOP (S, k) is issued, then

K if k<m
Cost (MPOP(S, K)) = [ s
|m otherwise

(1) If we start with an empty stack S, then at any stage, the number of elements
that can be POPed off the stack either through a POP or MPOP, can not
exceed the total number of preceding PUSHes.



The above statement can be further sirengthened as follows:
(il a) ~ If we start with an empty stack S, then, at any stage, the number of elements
" that can be popped off the stack through all the POPs and MPGPs can not
exceed the number of all the earlier PUSHes.

For Example, if S; denotes ith PUSH and M; denote jth POP/MPOP and if we have a
sequence of PUSH/POP/MPOP as (say)

S1 8, S3M; Sy S5 M; 86 S; M; Sg So Sy Sy My
Then in view of (i) above
Cost (M;) < Cost(8,S,S;)=3 }
Cost (M) + Cost M, < Cost (S; S; S3) + Cost (S4S5) =5
Cost (M) + Cost (My) + Cost (M3) < Cost (S; S, S;) + Cost (S4 Ss)
+ Cost (Se 87) =7

In general if we have a sequence of PUSH/PQP/MPOP, total n in number, then for a
sequence.

Sit Siz... Sy MiSy'Snr ... Sy, My ... Su S ...Sti My

Where Mj is cither a POP or MPOP and (3.82.1)
(h +D +0+D+ +(;+1) =n (3.8.2.2)
=0 it +i <n (3.8.2.3)
i.e, cost of all PUSHes <n. (3.8.2.4)

Cost (M;) <Cost (Sy; Siz ... 8;; ) =1;

Cost (My) < Cost (Sy; Sz ... Sy;,) = by
Cost (M,) < Cost (Sy Sz ... Sy, ) = s

~.Cost (M) + Cost (M) + ... + Cost (M,) < sum of costs of all Pushes
=i +iyt...H, <n(from(3.8.2.3))

Therefore total cost sequence of n PUSHES/POPs/MPOPs in (3.8.2.1) is
S<n+n=2n

Thus, we conclude that

Total cost a sequence of n operations in MSTACK < 2n, (3.8.2.5)
whatever may be the frequency of MPOPs in the sequence.

However, if we go by the worst case analysis, then in a sequence of n operations
(i)  all the operations may be assumed to be MPOPs

(11) the worst-case cost of each MPOP may be assumed as (n—1), because,
theoretically, it can be assumed for worst cas analysis purpose, that belore each
MPOP all the operations, which can ke at most (n—1), were pushes.

Thus, the worst-case cost of a sequence of n operations of PUSHes, and
MPOPs = . (n—{y = n~ — n. which is quadratic in n. (3.8.2. 6)

Thus, further, we conclude that though

(it the worst-case cost in this case as given by ( 3.8.2.6) is quadratic, yet
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{ii) because of interdependence of MPOPs on preceding PUSHes, the actual cost in
this case, as given by (3.8.2.5) which is only linear.

Thus, we observe that operations are not considered in isolation but as a part of a
sequence of operations, and, because of interactions among the operations, highly-
costly operations may either not be attained or may be distributed over the less cosily
operations.

The above discussion motivates the concept and study of AMORTIZED ANALYSIS,

3.9 SUMMARY

In this unit, the emphasis is on the analysis of algorithms, though in the process, we
have also defined a number of algo jthms. Analysis of an algorithm generally leads to
computational complexity/efficiency of the algorithm.

1t is shown that general analysis of algorithms may not be satisfactory for all types of
situations and problems, specially, in view of the fact that the same algorithm may
have vastly differing complexities for different instances, though, of the same size.
This leads to the discussion of worst-case and best-case analyses in Section 3.4 and of
average-case analysis and amortized analysis in Section 3.8.

In, Section 3.2, we discuss two simple examples of algorithms for solving the same
problem, to illustrate some simple aspects of design and analysis of algorithms. ’
Specially, it is shown here, how a minor modification in an algorithm may lead to
major efficiency gain.

In Section 3.3, the fbllowing sorting algorithms are defined ard illustrated with
suitable examples: .

(i) Insertion Sort

(ii) Bubble Sort

(iii) Selection Sort

(iv) Shell Sort

(v) Heap Sort

(vi) Merge Sort

(vii) Quick Sort

Though these algorithms are not analyzed here, yet a summary of the complexities of
these algorithms is also included in this section.

Next, the process of analyzing an algorithm and computing complexity of an
algorithm in terms of basic ifistructions and basic constructs, is discussed in
Section 3.5 and 3.6.

The Section 3.5 deals with the analysis in terms of non-recursive control structures in
and the Section 3.6 deals with the analysis in terms of recursive control structures.

3.10 SOLUTTONS/ANSWERS

Ex. 1) List.to be sorted: 15,10,13,9,12, 17 by Insertion Sort.

Let the given sequence of numbers be stored in A{1..6] and let m be a
variable used as temporary storage for exchange purposes.



Iteration (i): For placing A[2] at its correct relative position w.r.t A{1] Basics of Analysis
in the finally sorted array, we need the following operations:

(i) As A[2] =10 <15 = A [1], therefore, we need following
additional operations

(i) 10= A[2] is copied in m, s.t A[1] = 15, A[2] =10, m = 10

(i)  15=A[1]iscopiedin A [2]} s.t A[1]=15,A[2] =15, m= 10

{iv) 10 = m is copied in A[1], so that A[1]= 10, A[2] =15.

Thus, we made one comparison and 3 assignments in this iterations
Iteration (ii): Af this stage A[I1= 15 A[2] =10and A[3] =13

Also, for correct place for A [3] = 13 w.r.t A[1] and A[2], the following
operations are performed
@) 13 = A[3] is compared with A[2] =15

As A[3] < A[2], therefore, the algorithm further performs the
following operations

(it} 13 = A[3] copied to m so that m = 13
(i) A [ 2]iscopiedin A [3]s.t. A[3]=15=A[2]
@iv)  Then 13 =miscompared with
A [1] = 10 which is less than m.
Therefore A[2] is the correct location for 13
W) 13 = m is copied in A[2] .1, at this stage
A[l] =10, A[2] =13, A[3] =15
And m =13

In this iteration, the algorithm made 2 comparisons and
3 assignments

Iteration IIl: For correct place for A[4] =9 w.r.t A[1], A[2] and A[3],
the following operations are performed:

(6] Al4] =9 is compared with A[3] = 15.
As A[4] =9 <15 = A[3], hence the algorithm.

(ii) 9 = A[4] is copied to m so that m =9

(i)  15=A [3]iscopied to A [4] s.t A[4]=15=A[3]

(iv)  mis compared with A[2] = 13, as m < A [2]], therefore, further
the following operations are performed.

) 13 = A[2] is copied to A[3] s.t A[3]=13

(vi) m=09is compared with A[1] = 10, as performs the following
additional operations.

(vii) 10 = A[1] is copied to A[2]

(viii)  finally 9 = m is copied to A[1]

In this iteration 3 comparisons and 5 assignments were performed
So that at this stage we have
Afl] =9, Af2] =10, Af3] = {3, Af4] =15

Iteration IV:  For correct place for A[5] = 12, the fellov-ing operations
are performed.

® 12 = A [5] is compared with A{4] = 1§

wn
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In view of the earlier discussion, and in view of the fact that the
number 12 (contents of A[5]) occurs between A[2] = 10 and -
A[3] = 13, the algorithm need to perform, in all, the following
operations.

(@) Copy 12 =A[5] to m so thatm becomes
12 (one assignment)

(b) Three Comparisons of A[5] = 12 are with A[4] = 15,
A[3] =13 and A[2] = 10. The algorithm stops comparisons
on reaching a value less than value 12 of current cell

(c) The following THREE assignments: A[4] = 15 to A[5],
A[3]=13to Al4]and m=12to0 Af3]

Thus in this iteration 4 assig| ts and 3 comparisons were made.
And also, at this stage A[1] =9, A[2]1 =10, A[3] =12, A[4} = 13,
Af5S}=15and m=12. ~

Tteration V: The correct place for A{6] = 17, after sorting, w.r.t the
elements of A[1..5] is A[6] itself. In order to determine that A[6] is the
correct final position for 17, we perform the following operations.

) 17 = A[6] is copied to m {one assignment)

(it} m is compared with A[5] = 15 and as A[S]=15<17=m.
therefore, no more comparisons and no copying of elements A{1]
to A[5] to the locations respectively on their right.

(i)  (though this step appears to be redundani yet) the algorithim
executes it
17 =m is copied to A[G]

In this iteration 2 assignments and one comparison were performed.
To summerize:

In Titeration, | comparison and 3 assignment were performed
In Il iteration, 2 comparison and 3 assignment were performed
In ill iteration, 3 comparison and 5 assignment were performed
In IV iteration, 3 comparison and 4 assignment were performed
In V iteration, 1 comparison and 3 assignment were performed

Thus, in all, 10 comparisons and 18 assignments were performed to sort
the given array of 1 5,10,13,9,12 and 17.

List to be sorted: 15,10,13,9,12,17 by Bubble Sort.

A temporary variable m is used for exchanging values. An exchange
Ali] A[j] takes 3 assignments viz

m « Af{i}
Afij« A[}
Afj] € m

There are (6 — 1) = § iterations. In each iteration, whole list is scanned
once, comparing pairs of neighbouring clements and exchanging the
elements, if out of order. Next, we consider the different iterations.

In the following, the numbers in the bold are compared, and if required,
exchanged.
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15 10 13 9 12 17
10 15 3 9 12 17
10 13 15 9 2 i7
i0 13 9 15 12 17
I INE 9 12 15 Y]
10 i3 9 2 15 17

In this iteration, 5 comparisons and 5 exchanges i.e., 15 assignments,
were performed

Iteration II: The last element 17 is dropped from further consideration

10 13 9 12 15

10 13 9 . 12 15

10 9 13 12 15

10 9 12 13 15

10 9 ‘12 13 15
In this iteration 4 comparisons, 2 exchanges i.e., 6 assigi ts, were
performed.

Iteration III: The last element 15 is dropped from further consideration

10 9 12 13
g 10 12 13
9 10 12 13
9 10 12 13

In this iteration 3 comparisons and 1 exchange i.e., 3 assignments
were performed.

Iteration TV: The last element 13 is %ropped from further consideration

9 10 12
9 10 12
9 10 12

In this iteration, 2 comparisons and 0 exchanges, i.e., 0 assignments
were performed

Iteration V: The last element 12 is dropped from further consideration

9 19
9 . 10

In this iteration, 1 comparison and 0 exchange and hence 0
assignments were performed.

Thus, the Bubble sort algorithm performed (5+4+3+2+1) = 15
comparisons and 24 assignments in all.

List to be sorted: ]S,b 10, 13, 9, 12, 17 by Selection Sort.

There will be five iterations in all. In eack of the five iterations at least,
the following operations are performed:

® 2 initial assignments to MAX and MAX-POS and
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® 2 final assignments for exchangiig vaitivs us’
A [MAX_POS] and A [ n —i+1], the last element of the sublis. under
consideration.

Next we explain the various iterations and for each iteration, count
the operations in addition to these 4 assignments.

Iteration 1: MAX « 15

" MAX_POS«1
MAX is compared with successively 10, 13, 9, 12,-and 17, one at a time
i.e, 5 comparisons are performed.

Also MAX =15 <17 . MAX « 17and MAX_POS<6

Thus in addition to the 4 assignments mentioned above, 2 more
assignments and 5 comparisons are performed:

Iteration 2: Now the list under consideration is
15,10, 13,9, 12

Again MAX « 15, MAX_POS«1

Further MAX is compared successively with 10, 13, 9, 12 one at a time
and as none is more than 15, therefore, no change in the value of MAX
and MAX_POS. Ultimately 12 and 15 are exchanged to get the list 12,
the last element of the sublist under consideration 10, 13,9, 15.

Thus, this iteration performs 4 cemparisons and no additional
assignments besides the 4 mentioned earlier.

Iteration 3: The last element 15, is dropped from further consideration.
The list to be consideration in this iteration is 12, 10, 13,9

Initially MAX « 12 and MAX_POS« 1. MAX is compared with 10 and
then with 13. As 13 > 12 = current MAX. Therefore, MAX « 13, and
MAX_POS « 3 (2 additional assignments). Then MAX is compared
with 9 and then 13 and 9 are exchanged we get the list: 12, 10,9, 13 .

Thus in this iteration, 3 comparisons and six assighments are
performed, in addition to the usual 4.

Iteration 4: The last element 13, is dropped from furiher consideration.
The list to be sorted is 12, 10,9
Again MAX « 12, MAX POS« 1

The list after the iteration is 10,9, 12, Again 2 comparisons of 12 with 10
and 9 are performed. No additional assignments are made, in addition to
normal 4.

Iteration 5: The last element 12, is dropped from further consideration.
The list to be sorted is 10, 9. MAX « 10 and MAX_POS«1, One
comparison of MAX ~ 10 with 9. No additiona! assignment over and
above the normaf 4.

Finally, the list to be sorted is: 9 and the process of sorting terminates.

The number of operations performed iteration-wise, is given below:



Ex4)

Yy

In Iteration I : 5 comparisons and 6 assignments were
performed

In Iteration 11 : 4 comparisons and 4 assignments were
performed

In Iteration HI : 3 comparisons and 6 assighments were
performed

In Iteration IV : 2 comparisons and 4 assignments were
. performed
In Iteration V : 1 comparison and 4 assignments were
performed

Hence total 15 comparisons and 24 assignments were performed to
sort the list.

The array to besorted is A [1 .. 6] = {15, 10, 13, 9, 12, 17}

(i)  To begin with , increments in indexes to make sublists to be sorted,
with value 3 from INC [1] and value 1 from INC {2], are read.

Thus two READ statements are executed for the purpose.

(i)  For selection of sublists A [1] = 15, A[2] =9 and A [2] = 10,
A [5]=12and A[3] = 13 A [6] =17, the following operations are
performed:

for INC [1] =3

jeINC[1]=3

1« [n4}=[63]=2

Two assignments are and one division performed. (A)

Furtlier for each individual sublist, the following #ype of operations
are performed.

tel (éne assignment)
The comparison 6 =n < 2+3+1 is performed which returns true, hence

s« r—1=2—1=1is performed (one subtraction and one assignment)

‘Next, to calculate the position of A [t+3 x s}, one multiplication and one

addition is performed. Thus, for selection of a particular sublist, 2
assignments, one comparison, one subtraction, one addition and one
multiplication is performed

Thus, just for the selection of all the three sublists, the following
operations are performed:

6 Assignments

3 Comparisons

3 Subtractions

3 additions

3 multiplications

(iii) (a) For sorting, the sublist

A [1] = 15, A {2} = 9 using Insertion sort,

Basics of Analysis
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first, the comparison 9 = A [2] < A [1] = 15 is performed which is true,
hence

ie1
m« A[2] =9 (two assignments performed)

Next, the comparisons m =9 < A {1] =15 and 1 =i < 0 are performed.
both of which are true. (two comparisons)

15 = A [1] is copied to A [2]
andie-1-1=0 (assignment)

Next again the one comparisons is performed viz i > 0 which is false and
hence 9 = m < A [0] is not performed

Then 9 = m is copied to A [1] (one assignment)
(i) (b) For sorting the next sublist 10, 12

As A 2] =12 <10 = A[1] is not true hence no other operation is
performed for this sublist

{iii) (©) For sorting the next sublist 13,17

only one comparison of Af2} = 17<13=A {11, which is not true, is
performed.

We can count all the operations mentfioned above for the final answer.
To sort the list 15, 10, 13, 9, 12, 17 stored in A[1..6], using Heap Sort
first build a heap for the list and then recursively delete the root and
restore the heap.

Step I

(i) the five operations of assignments of values from 2 to 6 to ] the
outermost loop of variable, are made. Further, five assignments of the
form: location « j are made one for each value of j.

Thus 10 assignments are made so for.

(i) (a) Next,enter the while loop

Forj=2
2 = location > 1 is tested, which is true. (one comparison)
Hence
parent <« (_l%hor\.)ﬂ’ is performed. (one comparison)

A [location] = A [2] = 10 < 15 = A [1] = A {parent}
is tested which is true. Hence no exchanges of values. (one comparison)

The heap at this stage is
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(i) () Forj=3 )
3 = location >1 is tested (one comparison)

. which is true. Therefore,

Parent « {l"i’;‘f‘fﬁ}[%}ﬂ is performed (assignments)
A [location] =A [3]1=13<15=A[l]=A [parent]
is tested (one comparison)

As the last inequality is true, Hence no more operation in this case.

The heap at this stage is

©
N0

(i) (¢) Forje4
Location =4>1 is tested {one comparison)

which is true. Therefore

Parent « [E;“ﬂ}:i i}:2 is performeq {one assignment)

112!

A {locationj =A[4] =@ <10=A[2]is performed. (one comparison)

As the above inequality is true, no more operations in this case. The heap
at this stage is

(i) (d) Forj « 5is tested which

The Comparison
Location = 5> 1 is performed, (one comparison)
which is true. Therefore,
Parent <« {-IOM = i}:z
2 2]
is performed {one comparison)
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. At this stage the iree is

A [location] = A [5] = 12 < A[Parent] = A [2] = 10is
Performed. ) (one comparison)

which is not true. Hence the following additional operations are
performed:
A (2] and A [5] are exchanged (3 assignments) so that the trec becomes

Also, the operations

location « parent = 2 and parent « (location/2) = 1 are performed
(two assignment}

Further 2 = location >1 is tesied, (one comparison}

which is true. Therefore,
Allocation] = A [2] <A [1]= A [parent] is tested  (one comparison’

which is true. Hence nio more operations.

@) (e jeb

The comparison

Location = 6>1 is performed (one comparison)
location . : ot

Th‘erefore, parent « — =3 isperformed (one assignment)

A [location} = A [6]=17<9=A[3]is performed (one comparison)

which is rot true. Hence, the following additional operations are
performed

A [3] and A[6] are exchanged (3 assignment)
Next

location <3 {one assignment)
(location>1) is performed (one comparison}
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parent « [

location . X
=1 (one assignment}

is performed
Further

A [location] = 17 < 15 = A [parent] is performed,  (one comparison}
which is false.

Hence, the following operations are further performed

A{1]and A [3] are exchanged (3 assignments)
And A [location] « A [parent] = 1 is performed = (one assignments)
Also

(1 = location >1) is performed - (one comparison)

which is not true. Hence the process is completed and we get the heap

Step II: The foliowing three substeps are iterated 1 repeated S times:

a. To delete the root

b. to move the value of the last node into the root and the last node
is removed frem further consideration

(i) Convert the tree into a Heap.

The sub steps (i) and (ii) are performed 5 times each, which contribute to
10 assignments

Iteration (i): after first two sub steps the heap becomes the tree

N\
N
{(¢) { 10\)
N M
Root node is compared, one by one, with the values of its children

(2 comparisons)
The variable MAX stores 15 and MAX_POS stores the index of the right
child (Two assignment)
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O
JON

o ©
¢ \}

Py
P
{9

¢ Ay
s {10
o A S

Thus ia this iteration, 2 comparisons and $ assignments were performed

Eteration (i) 15 of the root is removed and 10, the value of last node, is
moved to fhe root to get the tree

()
-

)\

Again, the value 10 of the root is compared with the children
(2 comparison}

MAX first stores value 12 and then3, and MAX_POS stores first the
index of the left child and then index of the right child (4 assignments}

Then 13 and 10 are exchanged so that we get the Heap

r/ﬁ/d
N

jteration (iif): Again 13 of the root mode is removed and 9 of the last
node is copied in the root to get the tree

(T,\}

%,
P

",

g ©

2 comparisons are made of value 9 with 12 and 10. Also twe
assignments for MAX « 12 and MAX_POS < index of the Left —child,
are made. Also 12 and 9 are exchanged requiring 3 additional
assignments.

i24
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performed to get the heap :

Tteration (iv): 12 is removed and the value 10 in the last node is copied

in the root to get the tree

10 is compared with 9 (only one comparison)
and no assignments

In this iteration only one comparison is made

Iteration (v) (i): 10 is deleted from the root and 9 is copied in the root.
As the root is the only node in the tree, the sorting process terminates.

Finally, by adding the various operations of all the iterations, we get
the required numbers of operations.

List to be sorted: 15. 10, 13, 9, 12, 17 by Merge Sort.
Chop the given list into two sublists

(15, 10, 13) (9, 12, 17))
Further chopping the sublists we get

((15) (10, 13)), (9 (12, 17))
Further chopping the sublists we get sublists each of one element

{15, ((10),(13))), (9. (123, (17}

merging after sorting, in reverse order of chopping, we get
((15), (10,13)) ((9), (12, 17))

Again merging, we get

((10, 13, 15) (9,12, 17))

Again merging, we get

(9,10, 12,13, 15, 17)

This completes the sorting of the given sequence.

The sequence
15.10.13,9. 12,17,
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to be sorted is stored in A {1.. 6]

We take A [i] = 15 as pivot

iis assigned values 2, 3,4 efc. to get the first value from the ieft such that
Ali] > pivot. ) ) >

Similarly, j is moved backward from last index to get first j so that
Alj] < pivot.

The index i = 6, is the first index s.t 17 = Ali] > pivot = 15.
Alsoj =5 i.e. A {5] =12, is the first value from the right such that
A [j} <pivot.

As j < i, therefore
Aljj=A[5]=12is exchanged with pivot = 15 so that we get the array

12,10,13,9, 15,17

Next the two sublists viz 12, 10, 13, 9 and 17 separated by the pivot value
15, are sorted separately. However the relative positions of the sublists
w.r.t 15 are maintained so we write the lists as

(12,10,13,9), 15,(17).

The right hand. sublist having only one element viz 17is already sorted.

So we sort only left-hand sublist but continue writing the whole list.
Pivot for the left sublistisi2andi=3 and j = 4 are such that A[i] = 13 is

-the left most:-entry more than the pivot and A{j] =9 is the rightmost value,

which is less than the pivot = 12. After exchange of Afi] and Afj], we get

‘thedist (12, 10, 9, 13),15,(17). Again moving i to the right and j to the

left, we get, i=4andj=3Asj<i, therefore, the iteration is complete
and A[j] = 9 and pivot =12 are exchanged so that we get the list (9, 10)
12 (13)) 15 (17)Only-remaining sublist to-be sorted is (9, 10). Again pivot
is9,1=2 and j = 1,'so that A [i] is the left most yalue greater than the
pivot and A[j] is the right most value less than or equal to pivot. Asj <1,
we should exchange A [j] = A[1] with pivot. But pivot also equals A {11
Hence no exchange. Next, sublist left to sorted is {10} which being a
single element is already sorted. The sublists were formed such that any
element in a sublist on the left is less than any element of the sublist on
the right, merging does not require.

3.11 FURTHER READINGS

1. Foundations of Algorithms, R. Neapolitan & K. Naimipour:
(D.C. Health & Company, 1996).

2. ALGORITMICS: The Spirit of Computing, D. Harel:
(Addison-Wesley Publishing Company, 1987).

3. Fundamental Algorithms (Second Edition), D.E. Knuth:
(Narosa Publishing House).
4. Fundamentals of Algorithmics, G. Brassard & P. Brately:

(Prentice-Hall International, 1996).

5. F

de tals of Comp Algorithms, E. Horowitz & S. Sahni:

Fa
(Galgotia Publications)



6.

The Design and Analysis of digorithms, Anany Levitin:
{Bearson Education, 2003):

Discrete Mathematics and lts Applications, K.N. Rosen: (Fifth Edition). Tata
McGraw-Hill.(2003).

Introduction to Alogrithms (Second Edition), T.H. Coremen, C.E. Leiserson &
C. Stein: Prentice — Hall of India (2002).

Basics of Analysis



NOTES



Uttar Pradesh DESIGN AND ANALYSIS
A Rajarshi Tandon Open University OF ALGORITHMS
Block
DESIGN TECHNIQUES-I
UNIT 1
Divide-And-Conquer 5

UNIT 2
Graph Algorithms

29




Programme/Course Design Committee

Prof. Sanjeev K. Aggarwal Dr. Om Vikas, Senior Director

IIT, Kanpur Ministry of CIT, Dethi

Prof. M. Balakrishnan Dr. Kamal Vagrecha

[iT, Delhi School of Management Studies, IGNOU
Prof. Harish Karnick Dr. S. Venkataraman

T, Kanpur School of Sciences, IGNOU

Dr. Amit Kumar Faculty of School of Computer and

HT, Dethi Information Sciences

Dr. Naveen Kumar . .
Shri Shashi Bhushan

University of Dethi !

Shri Akshay Kumar
Prof. C. Pandurangan Shri Naveen Kumar
IT. Madras Prof. Manohar Lai

Shri M.P. Mishra

Prof. Parvin Sinclair.{Director)
Shri V.V, Subrahmanyam

Shri P.Venkata Suresh

Sh. Neeraj Sharma
Ram Lal Anand College
University of Dethi

Block Preparation Team

Dr. Amit Kumar (Editor) Prof. Manohar Lal
11T, Delhi. SOCIS, IGNOU

Sh. Neeraj Sharma
Ram Lal Anand College
University of Dethi

Course Coordinator: Prof. Manohar Lal

Biock Production Team

Shri Tilak Raj, S.0. (P); SOCIS, IGNOU

August, 2008 (Reprint)

©Indira Gandhi National Open University
ISBN—-81-266-2081-1

All rights reserved. No part of this work may be reproduced in any form by mimeograph or
any-other means, without permission in writfngfrom the Indira Gandhi Nationa! Open
University.

Reproduced and reprinted with the permission of Indira Gandhi Nation iversi

: " al Open University by,
Dr,A.AK.Slngh, Re.g_lstrar, U.P.R.T.Open University, Allahabad {June, 2012) R
Reprinted by : Nitin Printers. 1 Old Katra, Manmohan Park, Aliahabad.



BLOCK INTRODUCTION

In Block 1, we discussed a number of concepts and general issues about designing
solutions for problems and analysing those soiutions alongwith a number of examples
to illustrate the concepts and the concerned issues. Imporiant concepts that were
defined, included those of algorithm, program and process. The discussion of
important issues lead to the following observations/statements:

(i) Notalt problenis are solvable by algorithmic means.
(ii) Even for a problem for which an algorithmic solution exists, there is no
systematic method of designing an algorithm to solve the problem.

In view of the observation (ii) above, a number of technigues have been discovered to
design algorithms to solve problems. The study of all the major techniques is essential
in view of the fact that no single technique is found either universally applicable to
solvable problems or is found to be better than the other known techniques.

In this block, we study an important technique viz., Divide and Congquer. The
technique is found useful in solving those problems, which can be thought of as
composed of a number of sub-problems. Unit-1 of this block discusses the
technique.

Also graphs are found to be quite useful tools to represent and solve a number of
problems. Unit-2 of this block discusses solutions of a number of problems using
graphs for formal representation of the problems.
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1.0 INTRODUCTION

We have already mentioned that solving (a general) problem, with or without
computers, is quite a complex and difficult task. We also mentioned a large number
of problems, which we may encounter, even in a formal discipline like Mathematics,
may not have any algorithmic/computer solutions. Out of the problems, which
theoretically can be solved algorithmically, designing a solution for such a problem is,
in general, quite difficult. In view of this difficulty, a number of standard techniques,
which are found to be helpful in solving problems, have become popular in computer
science. Out of these techniques Divide-and-Conquer is.probably the most well-
known one.

The general plan for Divide-and-Conquer technique has the following three major
steps:

Step 1:  Aninstance of the problem to be solved, is divided into a number of smaller
instances of the (same) problem, generally of equal sizes. Any sub-instance
may be further divided into its sub-instances. A stage reaches when*l}:er a
direct solution of a sub-instance at some stage is available or it is not Turther
sub-divisible. In the latter case, when no further sub-division is possible, we
attempt a direct solution for the sub-instance. )

Step 2:  Such smaller instances are solved.

Step 3:  Combine the solutions so cbtained of the smaller instances to get the
solution of the original instance of the problem.

In this unit, we will study the technique, by applying it in solving a number of
problems.

1.1 OBJECTIVES

Afier going through this Unit, you should be able to:

. explain the essential idea behind the Divide-and-Conquer strategy for solving
problems with the help of 2 computer, and
. use Divide-and-Conquer strategy for solving problems.
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1.2 GENERAL ISSUES IN DIVIDE-AND-CONQUER

Recalling from the introduction, Divide-and-Conquer is a technique of designing
algorithms that (informally) proceeds as follows:

Given an instance of the problem to be sclved, split this into more than one
sub-instances (of the given problem). if possible, divide each of the sub-instances intc
smaller instances, till a sub-instnace has a direct solution available or no further
subdivision is possible. Then independently solve each of the sub-instances and then
combine solutions of the sub-instances so as to yield a solution for the original
instance.

The methods by which sub-instances are to be independently solved play an important
role in the overall efficiency of the algorithm.

Exampie 1.2.1:

We have an algorithm, alpha say, which is known to solve all instances of size n, of a
given problem, in at mostc 1 steps (where ¢ is some constant). We then discover an
dlgorithm, beta say, which solves the same problem by:

. Dividing an instance into 3 sub-instances of size n/2.
. Solve these 3 sub-instances.
. Combines the three sub-solutions taking d n steps in combining.

Suppose our original algorithm alpha is used to carry out the Step 2, viz., "solve these
sub-instances’. Let

Talpha) (n) = .Running time of alpha on an instance of size n.
T (beta) () = Running time of beta on an instance of size n.
Then, .

T(apha)(n) = ¢ n’ (by definition of alpha)

But

T (beta) () = 3 T (alpha) (/2) + 2 n

(3/4) (cn®) + dn

Soifdn < (cn’)/4 (i.e., d/c < n) then beta is faster than alpha.

In particu‘lar, for all large enough n’s, (viz., for n > 4d/c = Constant), beta is faster

_than alpha.

The algorithm beta improves upon the algorithm alpha by just a constant factor. But
if the problem size # is large encugh such that for some i> 1, we have

n > 4d/c  and also
2 > 4d/c  and even
w2 > 4d/c

which suggests that using beta instead of alpha for the Step 2 repeatedly until the
sub-sub-sub. . .sub-instances are of size no < = (4d/c), will yield a still faster algorithm.

o consider the following new algorithm for instances of size
Procedure gamma (n : problem size),

Ifn <=ngthen



Solve problem using Algorithim alpha;
else
Split the problem instance into 3 sub-instances of size n/2;
Use gamma to solve each sub-instance;
Combine the 3 sub-solutions;
end if ;
end gamma;

Let T (gamma) (n) denotc the running time of this aigorithm. Then

cn’ if n<=n,

T (gamma) (n) =
3T (gamma) (n/2) +dn, otherwise

we shall show how relations of this form can be estimated. Later in the course, with
these methods it can be shown that

T(gamma) (n) = O (n™8" ) =0m™®)

This is a significant improvement upon aigorithms alpha and beta, in view of the fact
that as n becomes targer the differences in the values of n'**and n? becomes larger
and larger.

The improvement that results from applying algorithm gamma is due to the fact that it
maximizes the savings achieved through beta. The (relatively) inefficient method
alpha is applied only to “smal! ” problem sizes.

The precise form of a divide-and-conquer algorithm is characterised by:

(i) The threshold input size, ny, below which the problem size is not further -
sub-divided.

(ii} The size of sub-instances into which an instance is split.
(iii} The number of such sub-instances.
(iv)  The method for solving instances of size n <= n,.

(ivj The algorithm used to combine sub-solutions.

In (ii}, it is more usual to consider the ratio of initial problem size to sub-instance size.

In our example, the ration was 2. The threshold in {1) is sometimes called the
{recursive) base value. In summary, the generic form of a divide-and-conquer
algorithm is:

Procedure D-and-C (n: input size);

begin
read (ng) H read the threshold value,
if n <=n,then
solve problem without further sub-division;
cise

Split into sub-instances each of size n/k;
for each of the r sub-instances do
D-and-C (n/k);
Combine the resulting sub-solutions to produce the solution to the original
problem:
end if;
end D-and-C;

Divide-And-Conquer
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Such algorithms are naturally and easily realised as recursive procedures in (suitable)
high-level programming languages.

1.3 INTEGER MULTIPLICATION

The following problem is a classic example of the application of Divide-and-Conquer
technique in the field of Computer Science.

Input: Two n-digit decimal numbers x and y represented as

X =X, 1 Xpop X1 Xg - and

Y =Ya1 Yn-2--Y1 Yo

where x;, y; are decimal digits.

Oﬁtpul: The (2n)_digit decimat representatipn of the product x * y.
Z=Z31 Zon-2 Zam3ZiZg

Note: The algorithm given below works for any number base, e.g., binary, decimal,
hexadecimal, etc. We use decimal simply for convenience.

The classical algorithm for multiplication requires O(r?) steps to multiply two n-digit
numbers.

A step is regarded as a single operation involving two single digit numbers, e.g.,
5+6, 3* 4, etc.

In 1962, A. A. Karatsuba discovered an asymptotically faster algorithm for
multiplying two numbers by using a divide-and-conquer approach.

The values x and y of the numbers with representations
X=X, X, X Xo and
Y =Ya-1 Yn-2-Y1 Yo

are clearly given by,
S y* 101 5 and
X = X ; an

i=o !

n-1
y=2%
i=0

p * 10%
Then, the resultant valuez =x * y
with representation

Z25Zyq-y Zop-2 Zon-3BiZg

is given by



2n -1 . el R Divide-And-Conquer
2= ¥ (/,»)“i(}':(in*IO’
= Li=0
For example:
581 = 5*10°+8*10' + 1 *10°
602 = 6* 107+ 0% 10" +2% 10°
581%602 349762 =3 % 10° +4%10°+9 % 10> +7x 10°+ 6 x 10'
' +2x 10"
Let us denote
4 Xn-1 Xn2 - oo X241 X{ns2
b = Xp2p—~ 1% 2] -2 - X5 . Xo
< = Yni¥n2 o0 Y2)+ 1 Y2y
d = Yo —1 Yy —2 ... Y1 Yo

Where [n/2] = largest integer less than or equal to n/2.

Then, ifa, b, ¢, and d are the numbers whose decimal representations are a, b, c and d
then

x=a*1oMip oy o= ok yg

For example, if n =4, x = 1026 and y = 7329 then a = 10, b=26,¢=73and d = 29,
and,

1026 = 10*10°+26 = a*10’+h
7329 = T35 10°+29 = c*i0’+d

t

X
¥
From this we also know that the result of multiplying x and y (i.e., z) is
z = x*y = (a* 10021 4 b) * (C\” 102 4 d)

= (@*c) 10+ (apd+b*cy* 10N 4 (p+ gy
where

if niseven

in,
2[n/2] = <1 .
[n+1  ifnisodd

ey, 1026 *7329is
(10 *73) % 10+ (10 # 29 + 25 * 73) * 102 + (26 *29)
730 * 10"+ 2188* 107 + 754 = 7.519,554.

tach of the terms (a*¢), (a * d),(b*c)and{(b*d)is a product of two [n/2]-digit
numbers.

Thus the expressicn for the multiplication of x and v in terms of the numbers
a, b, ¢ and d telis us that:

1 Two single digit numbers can be multiplied immediately.
{Recursive base: step 1)
2 ' n = 7 then the product of two n-digit numbers can be expressed in terms of

F products of two numbers” (Divide-and-conquer stage)

"loraeiven n-digit number, whenever we divides the sequence of digits into two

subseqguences, one of which has [/} digits, the other subsequence has n — /2] digits. which is
{n+1)

2 dieit 1 n iy even and ] Ty | ifnisudd. However, because of the convenience we
L2y

iy vall both os (0071 - digit sequenses/numbers, 9
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3. Given the four returned products, the calcuiation of the result of muhiplying
x and y involves only additions {can be done in O(n) steps) and multiplications
by a power of 10 (also can be done in O(n) steps, since it only requires placing
the appropriate number of Os at the end of the number). (Combine stage).
Steps 1-3, therefore, describe a Divide-and-Conquer algorithm for multiplying two
n-digit numbers represented in decimal. However, Karatsuba discovered how the
product of two n-digit numbers could be expressed in terms of three products each of
two (n/2)-digit numbers, instead of the four products that a conventional
implementation of the Divide-and-Conquer schema, as above, uses.

This saving is accomplished at the expense of a slightly more number of steps taken in
the ‘combine stage’ (Step 3) (although, this will still uses O(n) operations).

We continue with the earlier notations in which z is the product of two numbers x and
y having respectively the decimal representations

X FXgqXaa X1 Xp
Y Yo Ya-2Yi Yo

Further a,b,c,d are the numbers whose decimal representations are given by

a = Xn-t Xn2 «ver Xqu2pe1 X{ui2]
b = X~ 1IXp2p-2 ---X1 - Xo
[ = Vo1 Yo2 o - Y2l + 1 Yiw2}
d = Y2y -t Y2y -2 --- Y1 Yo

Let us compute the following 3 products (of two (r/2)-digit numbers):

U . a*c

\Y = b*d

w = (a+b)*(c+d)
Then

W=a*c +ta*d+b*c+b*d
=U+a*d+b*c+V

Therefore,
a*d+b*c=W-U-V.
Therefore,

z=x*y
= (a* 10™+ ) * (c * 102+ d)
= (a*cy* 1070 s (a*xd+b*c)* 10" +b*d
= U * 107 + (W—-U=V)* 1077+ V.,

This algorithm is formalised through the following function.

function Karatsuba  (xunder, yunder : n-digit integer; n : integer)
a, b, ¢, d: (n/2)-digit integer
U, V, W: n-digit integer;

begin
if n=1 then
return Xo ¥ yo!
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a 7 Ky Xy
b = Xy .- Xo;
C = Yoy -0 Y m2p
d = Y- --- Vo3

U = Karatsuba (a, c, [n2]);
Vv = Karatsuba (b, d, [v/2]);
W = Karatsuba (a+b, c+d, [n/2));

«Return U*10" 2[n/2] + (W=U—V) * 10" [n/2] + V;
; where 10"m stands for 10 raised to power m.
end if;
end Karatsuba;

Performance Analysis

One of the reasons why we study analysis of algorithms, is that if there are more than
one algorithms that solve a given problem then, through analysis, we can find the
running times of various available algorithms. And then we may choose the one be
which takes least/lesser running time.

This is useful in allowing comparisons between the performances of two algorithms to
be made.

For Divide-and-Conquer algorithms the running time is mainly affected by 3 criteria:

L The number of sub-instances {lef us call the number us «) into which a
problem is split.

® The ratio of initial problem size to sub-problem size. (let us call the ration

as )

L The number of steps required to divide the initial instance into substances and
to combine sub-solutions, expressed as a function of the input size, n.

Suppose, P, is a divide-and-conquer algorithm that instantiates alpha sub-instances,
gach of size n/beta.

Let TP (n) denote the number of steps taken by P on instances of size n. Then

TP(n)) = Constant  (Recursive-base)
T(P(n)) =  «T(Pnlp)+gamma(n)

In the case when «cand S are both constant (as mentioned earlier, in all the examples
we have given, there is a general method that car be used to solve such recurrence
relations in order to obtain an asymptotic bound for the running time Tp (n). These
methods were discussed in Block 1.

In general:
T(n) =«T(nP) +0(n" gamma)
Ofn " gamma) if alpha < beta “gamina
T(n) = 40(n"gammalogn) if alpha = beta “gamma
O (n" log"-beta (alpha)) if alpha > beta “gamma
in general:

Ty ~xT(nB) +0(n" gamma)
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(]

{where gamma is constant) has the solution

Ofn " gamma) if alpha <- beta
“gamma
T(n) = _ O(n"gamma logn) it alpha = beta
“gamma

0O (n " log"-beta (alpha))if if alpha > beta
"gamma

F.xwl) Using Karatsuba’s Method, find the value of the product 1026732 x 732912

1.4 BINARY SEARCH

Binary Search algorithm searches a given value or element in an already soried array
by repeatedly dividing the search interval in half. It first compares the value to be
searched with the item in the middlie of the array. If there is a match, then search is
successful and we can return the required result immediately. But if the value does not
match with the item in middle of the array, then it finds whether the given value is less
than or greater than the value in the middle of array. [f the given value is less than the
middie value, then the value of the item sought must lic in the lower half of the array.
However, if the given value is greater than the item sought, must lie in the upper half
of the array. So we repeat the procedure on the lower or upper half of the array
according as the given value is respectively less than or greater than the middie value.
The following C++ function gives the Binary Search Algorithm.

int Binary Seach (int * A, int low, int high, int value)

{ int mid:
while (low < high)
{ mid = (low + high) / 2;
if (value = = A [mid])
return mid;
else if (value < A [mid])
high = mid - I;
else low=mid + 1;
H

return — 1;
H
Explanation of the Binary Search Algorithm

it takes as parameter the array A, in which the value is to be searched. It also takes
the lower and upper bounds of the array as parameters viz., low and high respectively.
At each step of the interation of the while loop, the algorithm reduces the number of
clements of the array to be searched by half. if the value is found then its index is
returned. However, if the value is not found by the algorithm, then the loop terminates
ifthe value of the low exceeds the value of high, there will be no more items to be
searched and hence the function returns a negative value to indicate that item is not
found.

Analysis

As mentioned earlier, each step of the algorithm divides the block of items being
searched in half. The presence or absence of an item in an array of n elements, can be
established in at most g n steps.



Thus the running time of a binary search is proportional to lg » and we say thisis a
O(lg n) algorithm.

Ex. 2) Explain how Binary Search method finds or fails to find in the given sorted B

array:
8 12 75 26 35 48 57 78 86

93 97 . 108 135 i68 201

the following values

G 1S

(i) 93

(i) 43

1.5 SORTING

We have already discussed the two sorting algorithms viz., Merge Sort and Quick
Sort. The purpose of repeating the algorithm is mainly to discuss, not the design but,
the analysis part.

1.5.1 Merge Sort

As discussed in Block 1, Merge Sort is a sorting algorithm which is based on the
divide-and-conquer technique or paradigm. The Merge-Sort can be described in
general terms as consisting of 3 major steps namely, a divide step, recursive step and
merge step. These steps are described below in more detail.

Divide Step: If given array A has zero or t element then return the array A, as itis
trivially sorted. Otherwise, chop the given array A in almost the middle to give two
subarrays A, and A,, each of which containing about half of the elements in A.

Recursive Step:  Recursively sortarry Al and A}

Merge Step: Though recursive application of we reach a stage when subarrays of
sizes 2 and then of sizes 1 are obtained. At this stage two sublists of sizes | each are
combined by placing the elements of the lists in sorted order. The process of this type
oFcombinations of sublists is repeated on lists of larger and large sizes. To
accomplish this step we will define a C++ function void merge (int A []. int p, int ).
The recursion stops when the subarray has just only 1 element, so that it is trivially

sorted. Below is the Merge Sort function in C++-

n items

| L

low mi high
n/2 items

L[ l [

fow Anid hig

074 items

T L |

fow mid high

Divide-And-Conque:
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void merge_sort (int Alf, int p, it r)

{
if(p<r) //Check for base case
{

intq=(p+r1)2; //Divide step
merge_sort (A, p.q); //Conquer step
merge sort (A, q + 1, 1);/Conquer step

merge (A, p, G, 1); } //Combine step

Next, we define merge function which is called by the program merge-sort At this
stage, we have an Array 4 and indices p,g.,r such that p < g < 7. Subarray A[p .. q] is
sorted and subarray 4 [q + 1 . . r] is sorted and by the restrictions on p, g, 7, neither
subarray is empty. We want that the two subarrays are merged into a single sorted
subarray in A[p .. 7}. We will implement it so that it takes O(n) time, where
n=r—p + 1 =the number of elements being merged.

Let us consider two piles of cards. Each pile is sorted and placed face-up on a table
with the smallest card on top of each pile. We will merge these into a single sorted

" pile, face-down on the table. A basic step will be to choose the smaller of the two top

cards, remove it from its pile, thereby exposing a new top card and then placing the
chosen card face-down onto the output pile. We will repeatedly perform these basic
steps until one input becomes empty. Once one input pile empties, just take the
remaining input pile and place it face-down onto the output pile. Each basic step
should take constant time, since we check just the two top cards and there are n basic
steps, since each basic step removes one card from the input piles, and we started with
n cards in the input piles. Therefore, this procedure should take O(n) time. We don’t
actually need to check whether a pile is empty before each basic step. Instead ws will
put on the bottom of each input pile a special sentinel card. It ins a special value
that we use to simplify the code. We know in advance that there are exactly r—p + 1
non sentinel cards. We will stop once we have performed r —p + 1 basic step. Below
is the function merge which runs in O(n) time.

Void merge (int A{}. int p. int q. int r)
{

intnl=q-p+1

intn2=r-q:

int* L= new int[nl + 1};

int * R =new int [ n2 + 1];

for (inti=1;i<=nl;i++)
Lil=A(p+i-1}

for (intj = 1; j <=n2; j++)
R[jI=A[q+]];

L[0] = INT_MIN; //negative infinity
R[0] = INT_MIN; //negative infinity
Li{nl + 1] =INT_MAX; 1/ positive infinity

R[n2 + 1] = INT_MAX;// positive infinity
i=j=1;

for (int k = p;k <=r; kt+)
if (LI <= R D

<

<

Alk} = LIi}



Alk] =R{j];

it=n
¢ }
Analysing merge sort

For simplicity, we will assume that n is a power of 2. Each divide step yields two
subproblems, both of size exactly n/2. The base case occurs whenn=1. Whenn> 2,
time for merge sort steps are given below:

Divide: Just compute q as the average of p and r. D(n) = O(1).

Conquer: Recursively solve 2 subproblems, each of size n/2. Therefore, total time is
2T (n/2).

Combine: MERGE on an n-element subarray takes O(n) time. Therefore,
C(n) = O(n). Since D(n) = O(1) and C(n) = O(n), summed together they give a
function that is linear in n: O(n). Recurrence for merge sort running time is
T) = O(1)ifn=1,

T(n) = 2T (0/2) + O(m)ifn > 2.

Selving the merge-sert recurrence: By the master theorem, this recurrence has the
solution T(n) = O(n Ig n). Compared to insertion sort (O(n?) worst-case time), merge
sort is faster. Trading a factor of n for a factor of Ig n is a good deal. On small inputs,
insertion sort may be faster. But for large enough inputs, merge sort will always be
faster, because its running time grows more slowly than insertion sort’s.

1.5.2 Quick Sort

As mentioned earlier, the purpose of discussing the Quick Sort Algorithm is to discuss
its analysis

In the previous section, we discussed how the divide-and-conquer technique can
be used to design sorting algorithm Merge-sort, as summarized below:

- Partition n elements array 4 into two subarrays of n/2 elements each
- Sort the two subarrays recursively
- Merge the two subarrays

Running time: 7{(n) =2T (n/2) + 6 (n log n).

The Quick-Sort algorithm is obtained by exploring another possibility of dividing the
- elements such that there is no need of merging, that is

Partition a { 1...n] into subarrays A’ = A [ 1.q] and A” = A[q + 1...n] such that all
elements in A" are larger than ail elements in A".

Recursively sort A’and A"

(nothing to combine/merge. A is already sorted after sorting A”and 4”)

Divide-And-Conquer
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Design Techniques-1 Pseudo code for QUICKSORT:

QUICKSORY (4, p, 7} -

If p<r THEN
q=PARTITION (4, p, 1)
QUICKSORT (4, p, g —1)
QUICKSORT (4, g + 1, 1)

end if

The algorithm PARTITION, which is called by QUICKSORT, is defined after a short
while.

Then, in order to sort an array A of n elements, we call QUICKSORT with the three
parameters A, 1 and n QUICKSORT (4, /, n).

If q = n/2 and is 8(n) time, we again get the recurrence. If T(n) denotes the time taken
by QUICKSORT in sorting an array of n elements.

T(n) = 2T(/2) + 6 (n). Then after solving the recurrence we get the running time as
=T(r) = 0 (nlog n)

The problem is that it is hard to develop partition algorithm which always divides 4 in
two halves.

PARTITION (4, p, 1)
x=Alr]
i=p—1
FORj =pTO r—-1DO
IF 4 [J}<r THEN
i=i+1
Exchange 4 [ /] and A[j]
end if

end Do
Exchange A[/+ 1} and 4 [r]
RETURN i + 1

QUICKSORT correctness:

. Easy to show inductively, if PARTITION works correctly

Example:

[2 8 7 1 3 5 6 4 i=0,j=1
2} 8 7 i 3 5 6 4 i=1,j=2
21 8 | 7 1 3 s 6 4 i=1,j=3
2] 8 7 11 3 5 6 4 i=1,j=4
2 17 3 | 3 5 6 4 i=2,j=5
21 3 18 7 15 6 4 i=3.j=6
21 3 018 7 5 16 4 i=3,j=7
21 3|8 7 5 6 4 i=3,j=8
2 1 3 4 b7 5 6 8 q=

Average running time

The natural question: what is the average case running time of QUICKSORT?
Is it close to worst case (A(n’}, or to the best case 6 (n Ig n) ? Average time



depends on the distribution of inputs for which we take the average. Bivide-And-Conguer

. If we run QUICKSORT on a set of inputs that are already sorted, the average
running time will be close to the worst-case.

° Similarly, if we run QUICKSORT on a set of inputs that give bgood splits, the
average running time will be close to the best-case.

° It we run QUICKSORT on 2 set of inputs which are picked uniformly at
random from the space of all possible input permutations, then the average case
will also be close to the best-case. Why? Intuitively, if any input ordering is
equally likely, then we expect at least as many good splits as bad splits,
therefore on the average a bad split will be followed by a good split, and it gets
“absorbed” in the good split.

S0, under the assumption that all input permutations are equally likely, the average
time of QUICKSORT is 8 (n g n) (intuitively). Is this assumption realistic?

. Not really. In many cases the input is almost sorted: think of rebuilding indexes
in a database etc.

The question is: how can we make QUICKSORT have a good average time
irrespective of the input distribution?

. Using randomization.

1.6 RANDOMIZATION QUICK SORT"

Next. we consider what we call randomized algorithms, that is, algorithms that make
some random choices during their execution.

Running time of normal deterministic algorithm only depend on the input.

Running time of a randomized algorithm degends not only on input but also on the
random choices made by the algorithm.

Running time of a randomized algorithm is not fixed for a given input!

Randomized algorithms have best-case and worst-case funning times, but the inputs
for which these are achieved are not known. they can be any of the inputs.

We arce normally interested in analyzing the expected running time of a randomized
algorithm, that is the expected (average) runing time for all inputs of size n

To(m)= £, [T
Randomized Quicksort

We can euforce that all n! permutations are equally likely by randomly permuting the
input before the algorithm.

- Most computers have pseudo-random number generator random (1, n)
returning “random’ number between | and n. )

- Using pseudo-random number gencrator we can generate a random
permutation (such that all n! permutations equally likely) in O(n)
time:

Choose clement in A[ 1] randomly among elements in Afl.n],

choose clement in A[2] randomly among elements in 4 |2..n}, choose

clement in A[3] randomly among elements in 4 {3..n] and so0 on.

" Hhis seciion may be omitted atter one reading i7
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v
ternatively we can modify PARTITION slightly and exchange last efement in
- with random element in 4 before partitioning.

RAND PARTITION (4. p. r)
i=RANDOM (p, r)

Exchange 4 |r[ and A{i]
RETURN-PARTITION (4. p, r)

RANDQUICKSORT (4, p. 1)
IFp<r THEN
q = RANDPARTITION (4,p,7)
RANDQUICKSORT (4, p, g —1,7)

ENDIF

Expected Running Time of Randomized Quicksort

Let 7(n) be the running of RANDQUICKSORT for an input of size n.

. Running time of RANDQUICKSORT is the total running time spent in all
PARTITION calls.

. PARTITION is called n times

— The pivot element » is not included in any recursive calls.

One call of PARTITION takes O (1) time plus time proportional to the number of
iterations FOR-loop.

— In each iteration of FOR-loop we esmpare an element with the pivot
element.

If X is the number of comparisons A[j] <r performed in PARTITION over the entire
execution of RANDQUICKSORT then the running time is
On +X).

E[T (n)] = E[O(n + X)] =n+ E [X]

To analyse the expected running time we need to compute E[X]

To compute X we use zj, 2,....Z, to denote the elements in A where z, is the ith
smallest element. We also use Z, to denote {z, z., ...z}

Each pair of elements z; and z are compared at most once (when either of them is the
pivot)

- shn-l A
X Z;:] ZFM Xij where

) I If z; comparedto 'zi
Y 0 Ifz, notcomparedtoz;

Elxl = prxp)! S0 X ]

i=1

= -1 ¢n_;
= Lj =i+l E{Xd
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‘ To compute Pr [z, compared to | it is useful to consider when two elements are ner
compared.

Example: Consider an input consisting of rumbers 1 through .

Assumne first pivot it 7 => first partition separates the numbers into sets
{1.2,3,4,5,6} and {8, 9, 10}.

in partitioning. 7 is compared to all numbers. No number from the first set will ever
be compared to a number from the second set.

In general once a pivot r, z, < r < z, is chosen we know that z;and z; cannot later be
compared.

On the other hand if z; is chosen as pivot before any other element in Z; then it is
compared to each element in Z,. Similar for z.

In example 7 and 9 are compared because 7 is first item from Z;oto be chosen as pivot
and 2 and 9 are not compared because the first pivot in Z,4is 7.

Prior to an element in Z, being chosen as pivot the set Z, is together in the same
partition = any element in Z, is equally likely to be first element chosen as pivot =

the probability that z, or z, is chosen first in Zyis "
j-i+
2

Pr [z, compared to z,] = —=
Jj-i+l

We now have:

) - n-1 sn
E’X[ zi:l zj:i-rl Pr|izi comparedtozj]
2
= yp=lgn 2
“i= EJ:H! j-i+l
- n-lyn-i 2
Lic1 2ot g
= n-1¢n-i 2
Ziot kol
= 3P Oogn)
= O(n log n)

Since best caseis O(nlgn) = E | x| =¢ (n1g n) and therefore E| T(n)l =0 (nlg n).

Next time we will see how to make quicksort run in worst-case O(n log n ) time.

1.7 FINDING THE MEDIAN

The problem of finding the median of n elements is a particular case of the more
general selection problem. The selection problem can be stated as finding the ith
order statistic in a set of n numbers or in other words the ith smallest element in a set
of n elemeni. The miniraum is thus the 1% order statistic, maximum is the nth order

Devide-And-Conquer
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statistic and median is the n/2" order statistic. Also note that if n is even then there
will be two medians.

We will give here two algorithms for the solution of above problem. One is practica
randomized algorithm with O(n) expected running time. Another algorithm which is
more of theoretical interes: only, with O(n) worst case running time.

Randomized Selection

Theé key idea is to use the algorithm partition () from quicksort but we only need to
examine one subarray and this saving also shows up in the running time O(n). We
will use the Randomized Partition (A, p,r) which randomly partitions the Array A
around an element A[q] such that all elements from A[p] to A[q—1] are less than A[q]
and all elements A[g+1] to A[r] are greater than A[q]. This is shown in a diagram
below.

q = Randomized Partition (A, p, 1)

L <Alq] [ Al ] >Alq)
P q r

We can now give the pseudo code for Randomized Select (A, p, r, i). This procedure
selects the i"™ order statistic in the Amay A [p ..r].

Randomized Select (A, p, r, i)

if (p==r) then return A [p];
q = Randomized Partition (A, p, 1)
k=q-p+1;
if (i ==K) then return A [q] lq/;
if (i <k) then
return Randomized Select (A, p, q-1, i);
else
return Randomized Select (A, q+1, r, i-k);

Analyzing Randomized Select ()

Worst case: The partition will always occur in 0:n-1 fashion. Therefore, the time
required by the Randomized Select can be described by a recurrence given below:

T(n) = T(n—1) + O(n)
= O(n®) (arithmetic series)

This running time is no better than sorting.
“Best” case: suppose a 9:1 partition occurs. Then the running time recurrence would
be

T(n) = T(9n/10) + O(n)
= O(n)  (Master Theorem, case 3)

Average case: Let us now analyse the average case running time of Randomized
Select.

For upper bound, assume ith element always occurs in the larger side of partition:

Tw < + "zT(max(k,n—k ~1))+0(n)
n



2 n-l Divide-And-Conquer
< = YT(k)+O(n)
n k=n/2

Let’s show that T(n) = O(n) by substitution.

Assume T(n) < cn for sufficiently large c:

n-l
T(n) < 2 S Tk)+O(n) The recurrence we started with
nk=n/2 .
2 n-l
< = Yck+O() Substitute T(n) <cn for T(k)
N k=n/2
2c(n=l  n/2-1
= —| ¥ k- Yk |{+O(n) Split” the recurrence
n k=l k=1
2¢( 1 1{n An . Lo
= —|-a~In——|=--1|{=|+©O(n) Expand arithmetic series
n(z(" n 2(2 )2) (n) Expand a
cfn s
= on—1)-— 5(5—l)+®(n) Mudtiply it out
Tm) < o(n—1)- — %(g— l)«i—@(n) The recurrence so far
= cn—c— c;_n »%-&@(n) Subtract ¢/2
cn ¢ . .
= cn— (—Z- -3 +8(n)) Rearrange the arithmetic
< cn  (if ¢ is big enough) What we set out to prove

Worst-Case Linear Time Selection

Randomized algorithm works well in practice. But there exists an algorithm which has
a worst-case O(n) time complexity for find the ™ order statistic but which is only of
theoretical significance. The basis idea of worst case linear time selection is to
generate a good partitioning element. We will call this element x.

The algorithm in words:

1. Divide n elements into groups of 5

2. Find median of each group

3. Use Select () recursively to find median x of the [n/5] medians

Partition the n elements around x. Let k - rank (x)

if (i==Xk)then return x

AP

if (i <K) then use Select () recursively to find ith smallest element in first
partition

7. else (i > k) use Select () recursively to find (i—) th smallest element in last
partition.

There are at least ¥ of the 5-element medians which arc < x which equal to

[Ln/5 b2 ) = /101 and also there are at least 3 |n/10 elements which are < x. Now,
for large n. 3 [n/10]> w4 So at least n/4 elements are < x and similarly n/4 elements
are 2 x. Thus after partitioning around x, step 5 will call Select () on at most 3n/4
elements. The recurrence is therefore.

[
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N

T n/shy + T(3n/4) + ©n)

)y <
< T(n/5) + T(3n/4) + @ (n) [n/5 /<n/5
< cn/5 + 3en/@ (n)) Substitute T(n) = cn
= 19¢n20 + © (n) Combine fractions
= cn - (cn/20 - © (n)) Express in desired form
< cn if ¢ is big enough What we set out to prove

1.8 MATRIX MULTIPLICATION

in number of problems, matrix multiplications form core of algorithms to solve the
problems under consideration. Any saving in time complexity may lead to significant
improvement in the overall algorithm. The conventional algorithm makes o)
integer multiplications. Next, we discuss Strassen’s Algorithm which makes only

C (»**) integer multiplications for multiplying 2 n x n matrices.

Strassen’s Algorithm

Strassen’s recursive algorithm for multiplying n x n matrices runs in
8 (n®")=0 (n**)time. For sufficiently large value of r, therefore, it cutperforms
the 8 (n*) matrix-multiplication algorithm.

The idea behind the Strassen’s algorithm is to multiply 2 x 2 matrices with only 7
scalar multiplications (instead of 8). Consider the matrices

s M)

The seven submatrix products used are

g
h

P; =a.(g-h)
P, =(a+b).h -
P;=(ctd).e
Py=d.(f-¢)

Ps=(a+d).(e+h)
Ps =(b—d).(f+h)
P;=(a-c).(e+g)

Using these submatrix products the matrix products are obtained by

r = Ps+Py-Py+P
s = Py +P,
t = Py +P4
u = "Ps+P-P3-P

This method works as it can be easily seen that s = (ag — ah) + (ah + bh) =ag + bh. In
this method there are 7 multiplications and 18 additions. For (n x n) matrices, it can
be worth replacing one multiplication by 18 additions, since multiplication costs are
much more than addition costs.

The recursive algorithm for multiplying n x n matrices is given below:

. Partition the two matrices A, B into n/2 x /2 matrices.
2. Conquer: Perform 7 multiplications recursively.
3. Combine: Form using + and —.

The rusning time of above recurrence is given b)ﬂ\srccurrence given below:

T(n) =7T (W2)+ 6 (n%)
=@ (n"")
=0 (n**h



The current best upper bound for multiplying matrices is approximately O™y Divide-And-Conquer

Limitations of Strassen’s Algorithm

From a practical point of view, Strassen’s algorithm is often not the method of choice
for matrix multiplication, for the following four reasons:

. The constant factor hidden in the running time of Strassen’s algorithm is farger
than the constant factor in the naive 6 (n°) method.

When the matrices are sparse, methods tailored for sparse matrices are faster.
Strassen’s algorithm is not quite as numerically stable as the naive method.
The sub matrices formed at the levels of recursion consume space.

N )

Ex. 3) Muﬁi)?‘fthe following two matrices using Strassen’s algorithm

I's 6 -7 6]
. {and
La 3 5 9_[

1.9 EXPONENTIATION

Exponentiating by Squaring is an algorithm used for the fast computation of large
powers of aumber x. [t is also known as the square-and-muitiply algorithm or
binary exponentiation. It implicitly uses the binary expansion of the exponent. It is
of quite general use, for example, in modular-arithmetic.

Squaring Algerithm

Fhe following recursive algorithm computes x”, for a positive integer #:
X, ifn=1
5 o
Power (x. n) Power (x°, n/2), ifniseven
b . .
x. {Power (x*, (n — 1)/2)), ifn>2isodd

Compared 10 the ordinary method of muitiplying x with itselfn - | times, this

algorithm uses only O (log #) multiplications and therefore speeds up the computation
of ¥ tremendously

Further Applications

The same idea aliows fast computation of farge exponents modulo a number.
Lispecially in cryptography. it is useful to compute powers in a ring of integers modulo
4. Itcan also be used to compute integer powers in a group, using the rule

Power (x. ~n) = (Power (x, .

i’he method works in every semigroup and is often used to compute powers of
tnatrices.

Examples 1.9.1:
1373977 (mod 2345)

would take a very long time and lots of storage spuce if the native method is used:
compute 13789 then take the remainder when divided by 2345. Even using a more
cftective method wili take a long time: square 13789, take the remainder when
divided by 2345, multiply the result by 13789, and so on. This will take 722340
modular multiplications. The square-and-multiply algorithm is based on the
ohservation that 137897 13789 (13789 G0 if we computed 137892 then
the full computation would only take 361170 moduiar multiplications. This is a gain

[
Led
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of a factor of two. But since the new problem is of the same type, we can apply the
same observation again, once more approximately having the size.

The repeated application this algorithm is equivalent to decomposing the exponent (by
a base conversion to binary) into a sequence of squares and products: for example,

= x* xx!

= () * x*x

=(x*x)*x algorithm needs only 4 multiplications instead of
7-1=6
where 7=(111); =27 +2'+2°

Some more examples:

%! = ((x®)?*x)? because 10 = (.1010), = 2* + 2', algorithm needs 4 multiplications
instead of 9 ’

X% = (& * %)) * x)?)” because 100 = (1 100 100)2 = 2° +2° + 22, algorithm
needs 8 multiplications instead of 99

xM0 = (O3 * )P * X)) * )% * x)P))? because 10° = (1 111 101 000),, algorithm
needs 14 multiplications instead of 999

X000 — (R )PV Y because 10°=( 11 110
100 001 001 000 000),, algorithm needs 25 multiplications

X090 = ((((CCCCCCUO * )2 * %)) * 307 PO #x) * x)?)7 * x)7*
A )0 *09)7)))%)))* because 10°= (111 0011 100 101 101 100 101 000
000 000),, algorithm needs 41 multiplications

Addition Chain

In mathematics, an addition chain is a sequence ap, a),—a,, ax... that satisfies
a=1,and
foreachk > 0:

a, =3 +a;forsomei<j<k

For example: 1,2, 3, 6, 12, 24, 30, 31 is an addition chain for 31, of length 7, since

2=1+1
3=2+1
6=3+3
12=6+6
24=12+12
30=24+6
31=30+1

Addition chains can be used for exponentiation: thus, for example, we only need
7 multiplications to calculate 5°":

5* =5tx 5!
57 =51 x5
56 :53 x 53
52=5%x 5°
5M 512, gh2
530_524 x 56
53]_530X 5\

Addition chain exponentiation

In mathematics, addition chain exponentiation is a fast method of exponentiation. It
works by creating a minimal-length addition chain that generates the desired
exponent. Each exponentiation in the chain can be evaluated by multiplying two of
the earlier exponentiation results.



Fhis aigorithm works better than binary exponentiation {or high exponenis. However.
it trades off space for speed, so it may not be good on over-worked systems.

110 SUMMARY

The unit discusses various issues in respect of the technique viz., Divide and Conguier
for designing and analysing algorithms for solving problems. First, the general plan of
the Divide and conquer technique is explained and then an outline of a formal Divide-
and-conquer procedure is defined. The issue of whether at some stage to solve 2
probiem directly or whether to further subdivide it, is discussed in terms of the relative
efficiencies in the two alternative cases.

The technique is illustrated with examples of its applications to sotving problems of
(large) integer multiplication, Binary search, Sorting, of finding median of a given
data, of matrix multiplication and computing exponents of a given number. Under
sorting, the well-known techniques viz., Merge-sort and quick-sort are discussed in
detail.

1.11 SOLUTIONS/ANSWERS

Exl) 1026732 x 732912

In order to apply Karatsuba’s method, first we make number of digits in the
two numbers equal, by putting zeroes on the left of the number having lesser
number of digits. Thus, the two numbers to be multiplied are written as

x = 1026732 and y = 0732912.
As n = 7, therefore [n/2] = 3, we write

x=1026 x 10° + 732 =a x 10’ +b

y=0732x 10° +912=¢c 10° +d
where &= 1026, b=732

¢ =0732, d=9i2

Then

X xy =(1026 x 0732) 10°**+ 732 x 912
+[(1026 + 732) x (7324 912)
~ (1026 x 0732)— (732 x 912’
= (1026 x 0732) 10°+ 732 % 912 +
[(1758 x 1644) — (1026 x 0732) — (732 x 912)]10°
.. (A)

Though, the above may be simplified in another simpler way, yet we want to
explain Karatsuba’s method, therefore, next, we compute the products.

U = 1026 x 732
Vo= 732 x912
P 1758 x 1644

Let us consider only the product 1026 x 732 and other involved products may
be computed similarly and substituted in (A).

Let us wrile
U= 1026 « 732 = (10 x 107 +26) (07 x %ﬁ +32y

(10 % T) 16" 26 x 32+ {(10 + 7) (26 +32)
~10 x 726 x 32)] i



Design Techriques-f

26

17 % 10°+26 x 32+ (17 x 58— 70— 26 x 32) 10’

At this stage, we do not apply Karatsuba’s algorithm and compute the products of
2-digit numbers by conventional method.

Ex.2) The number of elements in the given list is 15. Let us store these in an array
say A{1..15]. Thus, initially low = t and high = 15 and, hence,
mid = (1+15)/2=8.

In the first iteration, the search algorithm compares the value to be searched
with A[8] =78

Part (i):

Part (ii):

The value to be searched = 15
As 15 < A[8] =78, the algorithm iterates itself once more.
In the second iteration, the new values become

fow=1high=mid—1=7
. 1+7
and hence (new) mid = [T’] =4
L

As 15 < A[4] = 26, the algorithm iterates once more. In the
third iteration, the new values become

i

low=1, high4—1=3

Therefore, mid= ('—;%: 2

As 15 > A[2] = 12, the algorithm iterates itself once more. In
fourth iteration, new values become
low=mid+1=2+1=3, high = 4

Therefore
(new) mid = F%t} =3

As A[3] = 15 (the value to be searched)
Hence, the algorithm terminates and returns the index value 3
as output.

The value to be searched = 93

As the first iteration is common for all values to be searched,
therefore, in the first iteration

low=1, high =15 and mid = 8
As 93 > A[8]=178, :

therefore, the algorithm iterates once more. In the second
iteration, new values are

low=mid+1=9, high = 15
and (new) mid = 9—*21—5:12, where A[12]= 108

As 93 < A[12]= 108,

Therefore, the algorithm iterates once more. For the third



Part (iii):

Ex.3) Let us denote

e

iteration Bivide-And-Conquer
fow=9; highzmid—‘1=l2—lili
B 9+1t .
and (new) mid = T~ =10 with A[10] =93

As A[10] = 93, therefore, the algorithm terminates and
returns the index value 10 of the given array as output.

The value to be searched is 43. As explaihed earlier, in the
first iteration

low=1, high= 15 and mid=8
As 43 < A[8] = 78, therefore, as in part (i) -
low=1, high=8—1=7and mid=4

As 43 > A[4] = 26, the algorithm makes another iteration in
which '

low=mid+1=5 high=7and (new)mid=(5+7)2+6

Next, as 43 < A[6] = 48, the algorithm makes another
iteration, in which

low =35 high=6—-1=5
hence mid = 5, and A[5]} =35
As 43 > A[S], hence value # A[5].

But, at this stage, low is not less than high and hence the
algorithm returns - 1, indicating failure to find the given
value in the array.

and

{c gl [-7 6

(fhl |5 9

Then

Pi=a.(g-h)
=5{6-9)=~15

Py=(a+bh).h=(5+6).9=99,
Pio(etd).e=(=4+3).(=T)=7

Py=d. (f-e)=3.(5— (=) =36;
Ps=(atdy(e+h=(5+3) (=T +9=16
Po=(b=d)(f+h)=(6—3).(5+9)=42
Pr=(a—c)(etg) = (5—(=4)(=T+6)=—9

Then, the product matrix is

i
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where

t= Pyi Py— Py + P
=16+36-99+42=—5
s=P,+P,=—15+99=84
t=Py+Pe=T7+36=43
u=Pst+tP —P;—P;

=16+ (= 15)—7—{=9)

=16—15-7+9
=3
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2.0 INTRODUCTION

A number of problems and games like chess, tic-tac-toe etc. can be formulated and
solved with the help of graphical notations. The wide variety of problems that can be
salved by using graphs range from searching particular information to finding a good
or bad move in a game. In this Unit, we discuss a number of problem-solving
techniques based on graphic notations, including the ones involving searches of
graphs and application of these techniques in solving game and sorting problems.

2.1 OBJECTIVES

After going through this Unit, you should be able to:

. explain and apply various graph search techniques, viz Depth-First Search
(DFS), Breadth-First-Search (BFS), Best-First Search, and Minimax Principle;

s discuss relative merits and demerits of these search techniques, and

. apply graph-based problem-solving techniques ¢o solve sorting problems and to
games.

22 EXAMPLES

To begin with, we discuss the applicability of graphs to a popular game known as
NIM.

2.2.1  NIM/Marienhad Game

The game of nim is very simple to play and has an interesting mathematical structure.
Nim is a pame for 2 players, in which the players take turns alternately, Initially the
players are given a position consisting of several piles, each pile having a finite
number of tokens. On each turn, a player chooses one of the piles and then removes at

least ane token fiom that pile. The player whe picks up the last token wins.-

Assuming your opponent plays optimally, there may be some positions/situations in
which the player having the current move cannat w in. Such positions are calied
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“fosing positions” (for the player whose turn it is to move next). The positions which
are not losing ones are called winning.

Marienbad is a variant of a nim game and it is played with matches. The rules of this
game are similar to the nim and are given below:

(1) ltisatwo-player game
(2) It stans with n matches ( n must be greater or equal to 2i.e., n >= 2)

(3) The winner of the game is one who takes the last match, whosoever is left with
no sticks, loses the game.

(4)  Onthe very first turn, up to n -1 matches can be taken by the player having the
very first move.

{5) Onthe subsequent turns, one must remove at least one match and at most twice
the number of matches picked up by the opponent in the last move.

Before going into detailed discussion through an example, let us explain what may be
the possible states which may indicate different stages in the game. At any stage, the
following two numbers are significant: :

(i)  Thetotal number of match sticks available, after picking up by the players so
far.

(ii)  The number of match sticks that the player having the move can pick up.
We call the ordered pair a state in the game, where

i : the number of sticks available
j : the number of sticks that can be picked, by the player having
the move, according to the rules.
For example:

(i)  Initially if n is the number of sticks, then the state is (n, n—1), because the
players must leave at least one stick.

(i)  While in the state (i, j), if the player having the move picks up k sticks then the
state after this move, is (i — k, min 2k, i —k)),
which means

(a) the total number of available sticks is (i — k)

(b) the player, next to pick up, can not pick up more than the double of the
number of sticks picked up in the previous move by the opponent and also
clearly the player can not pick up more than the number of sticks
available, i.e., (i—%)

(iii) We can not have the choice of picking up zero match sticks, unless no match

stick is available for picking. Therefore the state (i, 0) implies the state (0,0),
After discussing some of possible states, we elaborate the game described above
through the following example.

Example 2.2.1:

Let the initial number of matches be 6, and iet player A take the chance to move first.
What should be A’s strategy to win, for lis first move. Generally, A will consider all
possible moves and choose the best one as follow:

. if A takes § matches, that leaves just one for B, then B will take it and win the
game;
L if A takes 4 matches, that leaves 2 for B, then B will take it and win;

L] if A takes 3 matches, that leaves 3 for B, then B will take it and win;
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® il A takes 2 match, that leaves 4 for B, then B will take it and win;

® if A takes I match, that leaves 5 for B. In the next step, B can take 1 or Arecall
that B can take at most the twice of the number what A just took) and B will 20
to either of the states (4,2) or (3,3) both of which are winning moves for A, R's
move will lead to because A can take ail the available stick and hence there wil
be not more sticks for B to pick up. Taking a look at this reasoning process, it is
for sure that the best move for A is just taking one match stick.

The above process can be expressed by a directed graph, where each node

corresponds to a position (state) and each edge corresponds a move between two

positions, with each node expressed by a pair of numbers < ij>,0<=j<=j and

i: the number of the matches left;

j : the upper limit of number of matches which can be removed in the next move, that
is, any number of matches between 1 and j can be taken in the next move.

As mentioned earlier, we have

The initial node: < nn—1 >,

Edges leaving the node < ij > can lead to the node < i- k, min(2k, j - k) >,
with0 <k <i.

In the directed graphshown below, rectangular nodes denote losing nodes and
oval nodes denote winning nodes:

Figure 1

aterminal node <0, 0 >, from which there is no legal move. It isa losing
position.

anonterminal node is a winning node (denoted by a circle), if at least one of its
successors is a losing node, because the player currently having the move is can
leave his opponent in losing position.

¢ anonterminal node is a losing node (denoted by a square) if alf of its successors
are wining nodes. Again, because the player currently having the move cannot
avoid leaving his opponent in one of these winning positions.

How to determine the wining nodes and losing nodes in a directed graph?
Intuitively, we can starting at the losing node < 0, 0 >, and work back according to
the definition of the winning node and losing node. A node is a iosing node, for the
current player, if the move takes to a state such that the opponent can make at least
one move which forces the current player to lose. On the other hand, a node is a
winning node, if after making the move, current piayer will leave the opponent in a
state, from which opponent'can not win. For instance, in any of nodes < [, 1 >,

Graph Algorithms
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<2,2>,<3,3>and - 4, 4 >, aplayer can make a move and leave his opponent to
be in the position < 0, 0 >, thus these 4 nodes are wining nodes. From position
< 3,2 >, two'moves are possible but both these moves take the opponent to a winning
position so it is a losing node. The initial position < 6, 5 > has one move which takes
the opponent to a losing position so it is a winning node. Keeping the process of
going in the backward direction, we can mark the types of nodes in a graph. A
recursive C program for the purpose, can be implemented as follows:

2.2.2  Function for Computing Winning Nodes

function recwin(, j)
{ Return frue if and only if node < i, j > is winning,
we assume § <=j< =j}
fork=1tojdo
{ if not recwin(i - k, min(2k, i — k))
then return frue
}

return false

Ex.1) Draw adirected graph for a game of Marienbad when the number of match
sticks, initially, is 5. N

2.3 TRAVERSING TREES

Traversing a tree means exploring all the nodes in the tree, starting wsith the root and
exploring the nodes in some order. We are already aware that in the case of binary
trees, three well-known tree-traversal techniques used are preorder, postorder and
inorder. In preorder traversal, we first visit the node, then all the nodes in its left
subtree and then all nodes in the right subtree. In postorder traversal, we first visit
the left subtree, then all the nodes in the right subtree and the root is traversed in the
last. In inorder traversal, the order of traversal is to firstisit all the nodes in the
leftsubtree, then to visit the node and then all the nodes in its right subtree. Postorder
and preorder can be generalized to nonbinary trees. These three techniques explore
the nodes in the tree from left to right.

Preconditioning

Consider a scenario in which problem might have many similar situations or
instances, which are required tge solved. In such a situation, it it might be useful to
spend some time and energy in calculating the auxiliary solutions (i.e., attaching
some extra information to the problem space) that can be used afterwards to fasten
the process of finding the solution of each of these situations. This is known as
preconditioning. Although some time has to be spent in calculating / finding the
auxiliary solutions yet it has been seen that in the final tradeoft, the benefit achieved
in-terms-of speeding up of the process of finding the solution of the problem will be
much more than the additional cost incurred in finding auxiliary/additional
information.

In other words, let x be the time taken to solve the problem without preconditioning, y
be the time taken to solve the problem with the help of some auxiliary results (i.e.,
after preconditioning) and let t be the time taken in preconditioning the problem space
i.e., time taken in calculating the additional/auxiliary information. Then to solve n
typical instances, provided thaty <x, preconditioning will be beneficial only
when ,
nx >t + ny
ie, nx—ny>t
er B> t/(x—-y)



Preconditioning is also useful when only a few instances of a problem need to be
solved. Suppese we need a solution to a particular instance of a problem, and we nced
it in quick time. One way is to solve all the relevant instances in advance and store
their solutions so that they can be provided quickly whenever needed. But this is a
very inefficient and impractical approach.— i.e., to find solutions of all instances when
solution of only one is needed. On the other hand, a popular alternative could be to
calculate and attach som: additional information to the problem space which will be
useful to speedup the process of finding the solution of any given instance that is
encountered. :

.. For an example, let us consider the problem of finding the ancestor of any given node
in a rooted tree (which may be a binary or a general tree).

In any rooted tree, node u will be an ancestor of node v, if node u lies on the path
from root to v. Also we must note that every node is an ancestor of itself and root is an
ancestor of all nodes in the tree including itself. Let us suppose, we are given a pair of
nodes (u,v) and we are to find whether u is an ancestor or v or not. If the tree contains
n nodes. then any given instance can take Q(n) time in the worst case. But, if we
attach some relevant information to each of the nodes of the tree, then after spending
Q(n) time in preconditioning, we can find the ancestor of any given node in constant
time.

Now to precondition the tree, we first traverse the tree in preorder and calculate the
precedence of each-node in this order, similarly, we traverse the tree in postorder and
calculate the precedence of each node. For a node u, let precedepré|u] be its
precedence in preorder and let precedepost[u]| be its precedence in postorder.

Iet uand v be the two given nodes. Then according to the rules of preorder and
postorder traversal, we can see that :

In preorder traversal, as the root is visited first before the left subtree and the right
subtree, so,

It precedepref{u] <= precedepre[v]. then
uisanancestorof v or  uis to the left of v in the tree.

in postorder traversal, as the root is visited last, because, first we visit leftsubtree,
then right subtree and in the fast we visit root so,

if precedepost{u] >= precedepost{v], then
uisanancestorofv  or  uis to the right of v in the tree.

So for i to be an ancestor of v, both the following conditions have to be satisfied:
precedepre(u] < precede[v] and precedepost{u} = precedepost{v].

Thus, we can sce that after spending some time in calculating preorder and postorder
precedence of cach node in the tree. the ancestor of any node can be found in constant
time.

2) Forthe following binary tree, in which A is the root:

Graph Aigosithuns
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2.4 DEPTH-FIRST SEARCH

The depth-first search is a search strategy in which the examination of a given vertex
u, is defayed when a new vertex say v is reached and examination of v is delayed
when new vertex say w is reached and so on. When a leaf is reached (i.¢., a node
which does not have a successor node), the examination of the leaf is carried out. And
then the immediate ancestor of the leaf is examined. The process of examination is
carried out in reverse order of reaching the nodes.

In depth first search for any given vertex u, we find or explore or discover the first
adjacent vertex v (in its adjacency list), not already discovered. Then, in stead of
exploring other nodes adjacent to u, the search starts from vertex v which finds its
first adjacent vertex not already known or discovered. The whole process is repeat for
each-newly discovered node. When a vertex adjacent to v is explored down to the
leaf, we back track to explore the remaining adjacent vertices of v. So we search
farther or deeper in the graph whenever possible. This process continues until we
discover all the vertices reachable from the given source vertex. If still any
undiscovered vertices remain then a next source is selected and the same search
process is repeated. This whole process goes on until all the vertices of the graph are
discovered.

The vertices have three adjacent different statuses during the process of traversal or
searching, the status being: unknown, discovered and visited. Initially all the vertices
have their status termed as ‘unk'nqwn’, after being explored the status of the vertex is
changed to ‘discovered’ and after all vertices adjacent to a given vertex are discovered
its status is termed as ‘visized”. This technique ensures that in the depth first forest, at
a time each vertex belong to only one depth-first tree so these trees are disjoint.

Because we leave partially visited vertices and move ahead, to backtrack later, stack
will be required as the underlying data structure to hold vertices. In the recursive
version of the al orithm given below, the stack will be implemented implicitly,
however, if we write a non-recursive version of the algorithm, the stack operation
have to be specified explicitly. ‘

In the algorithm, we assume that the graph is represented using adjacency list
representation. To store the parent or predecessor of a vertex in the depth-first search,
we use an array parent[]. Status of a “vertex’ i.e., unknown, discovered, or visited is
stored in the array status. The variable rime is taken as a global variable. V is the
vertex set of the graph G. ' ’

In depth-first search algorithm, we also timestamp each vertex. So the vertex u has
two times associated with it, the discovering time d/u] and the termination time #//.
The discovery time corresponds to the status change of a vertex from unknown to
discovered, and termination time corresponds to status change from discovered to
visited. For the initial input graph when all vertices are unknown, time is initialized to
0. When we start from the source vertex, time is taken as | and with each new
discovery or termination of a vertex. the time is incremented by 1. Although DFS
algorithm can be written without time stamping the vertices. time stamping of vertices
helps us in a better understanding of this algorithm. However. one drawback of time
stamping is that the storage requirement increases.

Also in the aigorithm we can see that for any given node u. its discovering time will
be less than its termination time i.c.. d{u] = t{ul.
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Program
DFS(G)

/IThis fragment of algorithm performs initializing
/land starts the depth first search process

for all verticesu € V

I

2 { status[u] = unknown;

3 parentfu] = NULL;

4 time=0 }

5 for each vertex u € V

6 {if status[u] == unknown
7 VISIT(u)

VISIT(U)

' i status{u] = discovered;

2 time=time + 1;

3 d[u] =time;}

4 for each Vertex v € V adjacent to u

5. {if status[v] == unknown
parent[v] = u;
7 VISIT(V);

8 time = time + 1;
9 tfu] = time;
10 statusfu] = visited;}

In the procedure DFS, the first for-loop initializes the status of each vertex to
unknown and parent or predecessor vertex to NULL. Then it creates a global variable
time and initializes it to 0. In the second for-loop belonging to this procedure, for each
node in the graph if that node is still unknown, the VISIT(u) procedure is called. Now
we can see that every time the VISIT (u) procedure will be called, the vertex u it wnll
become the root of a new tree in the forest of depth first search.

Whenever the procedure VISIT(u) will be called with parameter u, the vertex u will be
unknown. So in the procedure VISIT(u), first the status of vertex u is changed to
‘discovered’, time is incremented by | and it is stored as discovery time of vertex u in
dful]. ’

When the VISIT procedure will be called for the first time, d{u] will be 1. In the
Jor-loop for each given vertex u, every unknown vertex adjacent to u is visited
recursively and the parentf] array is updated: When the for-loop concludes, i.e., when
every vertex adjacent to u is discovered, the time is increment by 1 and is stored as the
termination time of u i.e. t{u] and the status of vertex u is changed to “visited’.

Analysis 6f Depth-First Search

In procedure DFS(), each for loop takes time O( [v] ), where | V| is the number of
vertices in V. The procedure VISIT is called once for every vertex of the graph. In the
procedure visit for each of the for-loop is executed equal to the number of edges
emerging from that node and yet not traversed. Considering the adjacency list of all
nodes to total number of edges traversed are O( [ED), where |E |, is the number of
edges in E. So the running time of DFS is, therefore, O (j vi+le I)
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Fxample 2.4.1:

For the graph given in Figure 24.1.1 Use DFS to visit various vertices. The vertex
[ is taken as the starting vertex and, if there are more than one vertices adjacenito a
vertex, then the adjacent vertices are visited in lexicographic order.

In the following,
{i)  theiabel i/ indicates that the corresponding vertex is the ith discovered vertex.

1) the label ifj indicates that the corresponding vertex is the ith discovered vertex
and jth in the combined sequence of discovered and visited.

(8) (c) (D) v
OROAORC

Figure 2.4.1.1: Statas of D changes to discovered, d[D} =1

Figure 2.4.1.2: D has two neighbors by convention A is visited first i.e., the status of A changes io
discovered, d[A] =2

Figure 2.4.1.3: A has two unknown ncighbors B sad C, so status ¢f B changes to “discovered'. i.e.,
d{B}=3



Figure 2.4.1.5: AH of E's neighbors are discovered so status of vertex E is changed to ‘visited’ and
tEl=5

Figure 2.4.1.6: The nearest unknown neighbor ok B is I, so we change status of F to ‘discovered’,
d{F=6

“igure 2.4.1.7: Similarly vertices G, ¥ and H are discovered respectively with d{G| = 7, d[C] = 8
and dfH] =9

Graph Adgorithms
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Figure 2.4.1.8: Now as ali the neighbors of H are already discovered we hacktrack, to O aad stores
its termination time as t{H} = 10

b
=

1716

G113 T2

Yigure 2.4.1.9: We find the termination time of remaining nodes in reverse order, backiracking
along the origina! path ending with 0.

The resu;tant parent pointer tree has its root at I, since this is the first node visited.
Each new node visited becomes the child of the most recently visited node. Also we
can see that while D is the first node to be “discovere . it is the last node ferminated
This is due to recursion because each of D)'s neighbors must be discovered and
terminated before D can be terminated. Also, all the edges of the graph. which are not
used in the traversal. are between a node and its ancestor. This property of depth-first
search differentiates it from breadth-tirst scarch tree.

Also we can see that the maximum termination time for any verte is 16, which is
twice the number of vertices in the graph because time is incremented only when a
vertex is discovered or terminated and each vertex is discovered once and terminated
once.

Properties of Depth-first search Algorithm
(1) Parenthesis Structure

Inagraph G, if uand v are two vertices such that u is discovered before v then the
following cases may occur:

(a) fvis discovered before v is terminated. thien v will be finished before u
(i.e.. the vertex which is being discovered later will be terminated first).
This property exists because of the recursion stack. as the vertes v which
is discovered after u will be pushed on the stack at a time when v is
already on the stack. so v will be popped out of the stack first e v will
be terminated first.

Also the interval [d{v].4 v]] 15 contained in the interval {dlulafui]. «
the v is the proper descendant of .

Say
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thi Huis terminated before vis discovered then in this case tluf < diviso
the two intervals are disjoint.

tn this case tfu] < t]v] so the two intervals are disjoint.

Note: We should remember that in depth-first search the third case of overlapping
intervals is not possible i.e.. situation given below is not, possible because of
recursion.,

{23 Another important property of depth-first search (sometimes called white path
property) is that v is a descendant of u if and only if at the time of discovery of
u. there is at least one path from u to v contains only unknown vertices (ic,
white vertices or vertices not yet found or discovered).

(3)  Depth-First Search can be used (0 find connected components in a given graph:

One useful aspect of depth first search algorithm is that it traverses connected
component one at a time and then it can be used to identify the connected
components in a given graph.

4y Depth-first search can also be used to find cycles in an undirected graph:
we know that an undirected graph has a cycle if and only if at some particular
point during the traversal, when u is already discovered, one of the neighbors v
of u is also already discovered and is not parent or predecessor of u.

We can prove this property by the argument that it we discover v and find that
uis already discovered but u is not parent of v then u must be an ancestor of v
and since we traveled u to v via a different route. there is a cycle in the graph.

aST‘Irace how DFS traverses (i.e.. discover andi\vrirsi[s) the graph given below
when starting node/vertex is B.

Depth First Search in Directed Graphs

The earlier discussion of the Depth-First search was with respect to undirected graphs.

Next. we discuss Depth-First strategy with respect to Directed Graph. In a directed
graph the relation of *hinary adjacent 10" is not symmetric, where the relation of
“heing adjacent 10 is symmetric for undirected graphs.

to perform depth first search in directed graphs. the algorithm given above can be
used with minor maditications. The main difference exists in the interpretation of an
“adjacent vertex™. In a directed graph vertex v is adjacent to vertex u if there is a
directed edge from u to v. If a directed edge exists fron: u to v but not from v to u.
then v is adjacent to u but u is not adjacent to v.

Because of this change, the algorithm behaves differently. Some of the previously
given properties may no longer be necessarily applicable in this new situation.

Graph Algorithms
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Edge Classification

Another interesting property of depth first search is that search can be used to classify
different type of edges of the directed graph G(V.E). This edge classification gives us
some more information about the graph.

The different edges are:

{a) Tree Edge: Anedgetoastili unknown’ vertex i.e., edge (u,v) is a tree edge il
it is used to discover v for the first time.

(b)  Back edge: An edgeto an already «discovered” or ancestor vertex i.e., edge
(u,v) is a back edge if it connects to a vertex v which is already discovered
which means v is an ancestor of u.

(c) Forward edge: Anedgetoan already “visited’ descendant (not possible in
undirected graph) i.e., edge (u, v) is a forward edge if v is a descendant of u in
the depth first tree. Also, we can se¢ that d[u] <d{v}].

(d) Cross edge: An edge to an already “visited” neighbor, which is not a

descendant. As long as oné vertex is not descendant of the other, cross edge can
g0 between vertices in the same depth first tree or between vertices in different
depth first trees.

Note: In an undirected graph, every edge is either a tree edge or back edge, i.e.,
forward edges or cross edges are not possible.

Example 2.4.2:

In the following directed graph, we consider the adjacent nodes in the increasing
alphabetic order and let starting vertex be.

Figure 2.4.2.2: a has unkaown two neighbors 2 and d, by convention b is visited first, i.e the status

of b changes to discovered, dla} =2
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bors ¢ and d, by ¢ ion ¢ is discovered firsti.e.,

Figure 2.1.2.3: b has two unknown ig
dje}=3

Figure 2.4.2.4: ¢ has ounly a single neighbor 4 which is already discovered so ¢ is terminated i.e.,

tie} =5

Figure 2.4.2.5: The algorithm backtracks recursively to b, the next unknown neighbor is d, whose

status is change to discovered ie., didf =5

2.4.2.6: d has no neighbor, xo d terminates, tjdl =6

Figure

1t
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Figure 2.4.2.7: The algorithm backtracks recursively to b,
b(terminated) is visited i.e., tib] =7

which has no unknown i sse

Figure 2.4.2.8: The algorithm hackiracks to a which has no
tja] =8.

unknown neighbors so a is visited ie.,

Figure 2.4.2. 9: The connected component is visited so the al

Igorithm moves to next component

starting from e (because we are moviug in increasing alphabetic order) so ¢ is

‘discovered’ ie., dle] =9

Figure 2.4.2. 10: e has two unknow n neighbors f and g2,
dif] =10

by convention wi discover i ie.,



figare 2.4.2. 12: The algorithm backtraeks to e, which has g as the next "unknown’ neighbor, g is
‘discovered’ i.e., dig} =12

Figure 2.4.2. 13: The only neighbor of g is e, which is already discovered, so g(terminates) is
‘visited” ie., tig]=12

Figure 2.4.2. 14: The algorithm backtrachs to e, which has no unknown ngighbors left so
¢ (terminates) is visit e, tle} = 14
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Some more properties of Depth first search (in directed graph)

(1} Givena directed graph, depth first search can be used to determine whether it
contains cycle.

(2)  Cross-edges go trom a vertex of higher discovery time to a vertex of lower
discovery time. Alsc a forward edge goes from a vertex of lower discovery time
to a vertex of higher discovery time.

(3) Tree edges, forward edges and cross edges all go from a veriex of higher
termination time to a vertex of lower finish time whereas back edges go from a
vertex of lower termination time to a vertex of higher termination time.

(4) A graph is acyclic if and only if f any depth first search forest of graph G yields
no back edges. This fact can be realized from property 3 explained above, that if
there are no back edges then all edges will go from a vertex of higher
termination time to a vertex of lower termination time. So there will be no
cycles. So the property which checks cycles in a directed graph can be verified
by ensuring there are no back edges.

2.5 BREADTH-FIRST SEARCH

Breadth first search as the name suggests first discovers all vertices adjacent to a
given vertex before moving to the vertices far ahead in the search graph. If G(V.E) is
a graph having vertex set V and edge set E and a particular source vertex s. breadth
first search find or discovers every vertex that is reachable from s. First it discovers
every vertex adjacent to s, then systematically for cach of those vertices it finds the all
the vertices adjacent to them and so on. In doing so. it comptites the distance and the
shortest path in terms of fuwest numbers of edges from the source node s 1o each of
the reachable vertex. Breadth-first Search also produces a breadth-first tree with root
vertex s in the process of searching or traversing the graph.

For recording the status of each vertex, whether it is still unknown, whether it has
been discovered (or found) and whether atl of its adjacent vertices have also been
discovered. The vertices are termed as unknown, discovered and visited respectively.
So if (u,v) € E and u is visited then v will be either discovered or visited i.e.. either v
has just been discovered or vertices adjacent to v have also been found or visited.

As breadth first search forms a breadth first tree, so it in the edge (u.v) vertex v is
discovered in adjacency list of an already discovered vertex u then we say that u is the
parent or predecessor vertex of V. Fach vertex is discovered once only.

The data structure we use in this algorithm is a queue to hold vertiges. In this
algorithm we assume that the graph is represented using adjacency list representation.

frontfuf is used to represent the element at the front of the queue. Empiy() procedure

returns true if queue is empty otherwise it returns false. Queue is represented as Q.
Procedure enquenc() and dequeue() are used to insert and delete an clement from the
queue respectively. The data structure Status[|is used to store the status of each veriex
as unknown or discovered or visited.

2.5.1 Algorithm of Breadth First Search

{ for each vertex u € V - {5}
2 status{u} = unknown
3 status|s}=discovered

4 enqueue(Q.s)

5 while(empty[Q] !+ false)

6 u = front[Q]
7 for each vertex v € Adjacent to u
8 if status{v] = unknown



9 status]v] = discovered Graph Algorithms
Y] parent (v) = u
1 end for

12 enqueue(Q,v);

13 dequeue(Q)

14 status{u] = visited
15 print “u is visited”
16 end while

The algorithm works as follows. Lines 1-2 initialize each vertex to ‘unknown’.
Because we have to start searchirig from vertex s, line 3 gives the status *discoverea’
to vertex s. Line 4 inserts the initial vertex s in the queue. The while loop contains
statements from line 5 to end of the algorithm. The while loop runs as long as there
remains “discovered’ vertices in the queue. And we can see that queue will only
contain ‘discovered” vertices. Line 6 takes an element u at the front of the queue and
in lines 7 to 10 12 the adjacency list of vertex u is traversed and each unknown vertex
v in the adjacency list of u, its status is marked as discovered. i's parent is marked as u
and then it is inserted in the queue. In the line 13, vertex u is removed from the queue.
In line 14-15, when there are no more elements in adjacency list of u, vertex u is
removed from the queue its status is changed to “visited” and is also printed as visited.

The algorithm given above can also be improved by storing the distance of each
vertex u from the source vertex s using an array distance[] and also by permanently
recording'the predecessor or parent of each discovered vertex in the array parent{]. In
fact, the distance of each reachable vertex from the source vertex as calcufated by the
BFS is the shortest distance in terms of the number of edges traversed. So next we
present the modified algorithm for breadth first search.

2.5.2 Maedifted Algorithm
Program BFS(G.s)

for each vertex u € s v - {s}

I

2 status[u] = unknown
3 parent{u} -+ NULL

4 distance[u] = infinity

5 status[s] = discovered

6 distancefs] =0

7 parent[s] = NULL

8 enqueue(Q.s)

9 while empty(Q) ! false
1o u = front{Q]

it for each vertex v adjacent to u

12 if statusf v} = unknown

I3 status{v] = discovered

14 parent[v] = u

15 distance[v] = distancefu] + 1

16 enqueue(Q,v)

17 dequeue(Q)

18 status[u] = visited R
19 print “u is visited™

In the above algorithm the newly inserted line 3 initiclizes the parent of each vertex to
NULL. line 4 initializes the distance of each vertex from the source vertex to infinity,
line 6 initializes the distance of source vertex s to 0, line 7 initializes the parent of
source vertex s NULL, tine 14 records the parent of v as u, line 13 calculates the
shoriest distance of v from the source vertex s, as distance of u plus 1.
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{n the figure given below, we can see the graph given initially, in which only source s
is discovered.

Disance £ 1

Pa;:m‘al b d e N 2‘
L 1 T 1

3 e g

Figure 2.5.1.1: Initial Input Graph

Disunce { ]
s @

b ¢ & ¢ f g
o =]=1>T~1=

Figure 2.5.1.2: After we visits

We take unknown (i.¢., undiscovered) adjacent vertex of s and insert them in queue,
first aand then b. The values of the data structures are modified as given below:

Next, after completing the visit of a we get the figure and the data structures as given
below: .

Distance [ |

s a b c d4 & F g
oI Tz]=I=]=]
Pavent { }

f &

s a b < d ¢
Tl T T

Queuc is:
BII¢er 2T T 1]

Figure 2.5.1.3: After we visita
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Figure 2.5.1.4: After wevisitb

Distance [ }
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Parent} |
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Queue is:
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Figure 2.5.1.5: After we visit ¢

Distance | } )

5 3 b ¢ d e £ p
OTTTeT e =1=]=]
Parent | |

s 4 b ¢ d ¢ f g
s el Td]
Queue is:

[

Jrjel T T 17T

Figure 2.5.1.6: After we visit d
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Figure 2.5.1.7: After we visite
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Figure 2.5.1.8: After we visit f
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Figure 2.5.1.9: Afterwe visit g

Figure I: Initial Input Graph

Figure 2: We take unknown (i.e.. undiscovered) adjacent vertices of s and insert them
in the queue. -

Figure 3: Now the gray vertices in the adjacency list of u are b. c and d. and we can
visit any of them depending upon which vertex is inserted in the queue first. As in this
example, we have inserted b first which is now at the front of the queue. so next we
will visit b.

Figure 4. As there is no undiscovered vertex adjacent 1o b s0 no new vertex will be
inserted in the queue, only the vertex b will be removed from the queue.

Figure 3: Vertices ¢ and f are discovered as adjacent vertices of ¢, so they are inserted
in the queue and then ¢ is removed from the queue and is visited.

Figure 6 Vertex g is discovered as the adjacent vertex of d an after thatd is removed
from the queue and its status is changed to visited.

Figure 7: No undiscovered vertex adjacent to ¢ is found so ¢ is removed from the
queue and its status is changed to visited.

Figure §: No undiscovered vertex adjacent to {'is found so { is removed from the
queue and its status is changed to visited.

Figure 9: No undiscovered vertex adjacent to g is found so g is removed from the
queuc and its status is changed to visited. Now as queue becomes empty so the while
foop stops.
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2.6 BEST FIRST SEARCH & MINIMAX
PRINCIPLE ‘

Best First Search

in the two basic search algorithms we have studied before i.e., depth first search and
breadth first search we proceed in a systematic way by discovering/finding/exploring
nodes in a predetermined order. In these algorithms at each step during the process of
searching there is no assessment of which way to go because the method of moving is
fixed at the outset.

The best first search belongs to a branch of search algorithms known as heuristic
search algorithms. The basic idea of heuristic search is that, rather than trying all
possible search paths at each step, we try to find which paths seem to be getting us
nearer to our goal state. Of course, we can’t be sure that we are really near to our goal
state. It could be that we are really near to our goal state. It could be that we have to
take some really complicated and circuitous sequence of steps to get there. But we
might be able to make a good guess. Heuristics are used to help us make that guess.

To use any heuristic search we need an evaluation function that scores a node in the
search tree according to how close to the goal or target node it seems to be. It will just
be an estimate but it should still be useful. But the estimate should always be on the
lower side to find the optimal or the lowest cost path. For example, to find the
optimal path/route between Delhi and Jaipur, an estimate could be straight arial
distance between the two cities.

There are a whole batch of heuristic search algorithms e.g., Hill Climbing, best first
search, A¥ ,AO* etc. But here we will be focussing on best first search.

Best First Search combines the benefits of both depth first and breadth first search
by moving along a single path at a time but change paths whenever some other path
tooks more promising than the current path.

At each step in the depth first search, we first generate the successors of the current
node and then apply a heuristic function to find the most promising child/successor.
We then expand/visit (i.e., find its successors) the chosen successor i.e., find its
unknown successors. If one of the successors is a goal node we stop. If not then ail
these nodes are added to the list of nodes generated or discovered so fart. During this
process of generating successors a bit of depth search is performed but ultimately if
the solution i.e., goal node is not found then at some point the newly
found/discovered/generated node will have a less promising heuristic value than one
of the top level nodes which were ignored previously. If this is the case then we
backtrack to the previously ignored but currently the most promising node and we
expand /visit that node. But when we back track, we do not forget the older branch
from where we have come. Its last node remains in the list of nodes which have been
discovered but not yet expanded/ visited . The search can always return to it if at some
stage during the search process it again becomes the most promising node to move
ahead. :

Choosing the most appropriate heuristic function for a particular search problem is not
easy and it also incurs some cost. One of the simplest heuristic functions is an
estimate of the cost of getting to a solution from a given node this cost could be in
terms of the number of expected edges or hops to be traversed to reach the goal node.

We shouid always remember that in best first search although one path might be
selected at a time but others are not thrown so that they can be revisited in future if the
selected path becomes less promising.
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Although the example we have given below shows the best first search of a tree, it is
sometimes important to search a graph instead of a tree so we have to take care that
the duplicate paths are not pursued. To perform this job, an algorithm will work by
searching a directed graph in which a node represents a point in the problem space.
Each node, in addition to describing the problem space and the heuristic value
associated with it, will also contain a link or pointer to its best parent and points to its
successor node. Once the goal node is found, the parent link will allow us to trace the
path from source node to the goal node. The list of successors will allow it to pass the
improvement down to its successors if any of them are already existing.

In the algorithm given below, we assume two different list of nodes:

* OPEN list > is the list of nodes which have been found but yet not expanded
i.e., the nodes which have been discovered /generated but whose
children/successors are yet not discovered. Open list can be implemented in the
form of a queue in which the nodes will be arranged in the order of decreasing
prioity from the front i.., the node with the most promising heuristic value (i.e.,
the highest priority node) will be at the first place in the list.

¢ CLOSED list > contains expanded/visited nodes i.c., the anodes whose"
successors are also genereated. We require to keep the nodes in memory I we
want to search a graph rather than a tree, since whenever a new node is generated
we need to check if it has been generated before.

The algorithm can be written as:
Best First Search

Place the start node on the OPEN list.

Create a list called CLOSED i.e., initially empty.

If the OPEN list is empty search ends unsuccessfully.

Remove the first node on OPEN list and put this node on CLOSED list.

If this is a goal node, search ends successfully.

Generate successors of this node:

For each successor :

(a) If it has bot been discovered / generated before i.e., it is not on OPEN,
evaluate this node by applying the heuristic function, add it to the OPEN
and record its parent.

(b) If it has been discovered / generated before, change the parent if the new
path is better than the previous one. In that case update the cost of getting tc
this node and to any successors that this node may already have.

7. Reorder the list OPEN, according to the heuristic merit.

8. Gotostep 3.

s

Example

In this example, each node has a heuristic value showing the estimated cost of getting
to a solution from this node. The example shows part of the search process using best
first search.

ONOL

Figure § Figure 2 Figure 3




Figure 4 Figure §
Figure I: A is the starting node

Figure 2: Generate its successors B and C

Figure 3: As the estimated goal distance of C is less so expand C to find its successors
dand e.

Figure 4: Now D has lesser estimated goal distance i.e., 4 , so expand D to generate
F and G with distance 9 and |1 respectively.

Figure 5: Now amang all the nodes which have been discovered but yet not expanded
B has the smallest estimated goal distance i.e., 8, so now backtrack and expand B and
S0 on.

Best first searches will always find good paths to a goal node if there is any. But it
requires a good heuristic function for better estimation of the distance to a goal node.

The Minimax Principle

Whichever search technigue we may use, it can be seen that many graph problems
including game problems, complete searching of the associated graph is not possible.
The alternative is to perform a partial search or what we call a limited horizon search
from the current position. This is the principle behind the minimax procedure.

Minimax is a method in decision theory for minimizing the expected maximum loss.
It is applied in two players games such as tic-tac-toe, or chess whére the two players
take alternate moves. It has also been extended to more complex games which require
general decision making in the presence of increased uncertainty. All these games
have a common property that they are logic games. This means that these games can
be described by a set of rules and premises. So it is possible to know at a given point
of time, what are the next available moves. We can also call them full information
games as each player has complete knowledge about possible moves of the adversary.

In the subsequent discussion of games, the two players are named as MAX and MIN.
We are using an assumption that MAX moves first and after that the two players will
move alternatively. The extent of search before each move will depend o the play
depth — the amount of lookahead measured in terms of pairs of alternating moves for
MAX and MIN.

As I have already specified, complete search of most game graphs is computationally
infeasible. 1t can be seen that for a game like chess it might take centuries to generate
the complete search graph even in an environment where a successor could be

Graph Algorithms
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generated in a few nanoseconds. Therefore, for many complex games. we must accept
the fact that search to termination is impossible instead we must use partial searching
techniques.

or searching we can use either breadth first, depth first or heuristic methods except

that the termination conditions must now be specified. Several artificial termination

conditions can be specified based on factors such as time limit. storage space and the
depth of the deepest node in the search tree.

in a two player game, the first step is to define a static evaluation function efun(),
which aitaches a value to each position or state of the game. This value indicates how
good it would be for a player to reach that position. So after the search terminates, we
must extract from the search tree an estimate of the best first move by applying a
static evaluation function efun() to the leaf nodes of the search tree. The evaluation
function measures the worth of the leaf node position. For example, in chess a simple
static evaluation function might attach one point for each pawn, four points for each
rook and eight points for queen and so on. But this static evaluation is too easy to be
of any real use. Sometimes we might have td sacrifice queen to prevent the opponent
from a winning move and to gain advantage in future so the key lies in the amount of
tookahead. The more number of moves we are able to lookahead before evaluating a
move, the better will be the choice.

In analyzing game trees, we follow a convention that the value of the evaluation
function will increase as the position becomes favourable to player MAX | so the
positive values wiil indicate position that favours MAX whereas for the positions
favourable to player MIN are represented by the static evaluation function
having megative values and values near zero correspond to game positions nat
favourable to either MAX or MIN. Ii: a terminal position, the static evaluation
function returns either positive infinity or negative infinity where as positive infinity
represents a win for player MAX and negative infinity represents a win for the player
MIN and a value zero represents a draw.

In the algorithm, we give ahead, the search tree is generated starting with the current
game position upto the end game position or fookahead limit is reached. Increasing
the lookahead limit increases search time but results in better choice. The final game
position is evaluated from the MAX's point of view. The nodes that belong to the
player MAX receive the maximum value of its children. The nodes for the player MIN
will select the minimum value of its children.

In the algorithm, lookahead limit represents the lookahead factor in terms of number
of steps, u and v represent game states or nodes. maxmove() and minmove() are
functions to describe the steps taken by player MAX or plaver MIN to choose a
move, efun() is the static evaluation function which attaches a positive or negative
integer value to a node ( i.e., 2 game state). value is a simple variable.

Now to move number of steps equal to the lookahead limit from a given game state u,
MAX should move to the game state v given by the following code :

maxval = -
for each game state w that is a successor of u
val = minmove(w.lookaheadlimit)
it (val >= maxval)
maxval ~ val
voow maove o the state v
The minmove() function is as follows :

minmoveiw, lookaheadlingt)
|

1
ittlookaheadlimit 1 or w has ne successor)



return efun(w)
else

minval = +

for each successor x of w
val = maxmove(x,lookaheadlimit — 1)
if (minval > val)

minval = val
return{minval)

}
‘The maxmove() function is as follows :
maxmove(w, lookaheadlimit)

if (lookaheadlimit = = 0 or w has no successor)
return efun(w)
else
maxval = -
for each successor x of w
val = minmove(x,lookaheadlimit — 1)
if (maxval < val)
maxval = val
return{maxval)
}
We can see that in the minimax technique, player MIN tries to minimize te advantage
he allows to player MAX, and on the other hand player MAX tries to maximize the
advantage he obtains after each move.

Let us suppose the graph given below shows part of the game. The values of leaf
nodes are giverr using efun() procedure for a particular game then the value of nodes

above can be calculated using minimax principle.Suppose the lookahead limit is 4 and
it is MAX’s turn.

Speeding up the minimax ‘ajgorithm using Alpha-Beta Pruning

We can take few steps to reduce the search time in minimax procedure. In the figure
given below, the value for node A is 5 and the first found value for the subtree starting
at node B is 3. So since the B node is at the MIN player level, we know that the
selected value for the B node must be less than or equal to 3. But we also know that
the A node has the value 5 and both A and B nodes share the same parent at the MAX
level immediately above. This means that the game path starting at the B node can
never be selected because 5 is better than 3 for the MAX node. So it is not worth

Graph Algorithm .
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spending time to search for children of the B node and so we can safely ignore all the
remaining children of B.

This shows that the search on same paths can sometimes be aborted ( i.e., it is not
required to explore all paths) because we find out that the search subtree will niot take
us to any viable answer.

5 7 3

This optimization is known as aipha beta pruning/procedure and the values, below
which search need not be carried out are known as alpha beta cutofTs.

A general algorithin for alpha beta procedure is as follows:
t. Have two values passed around the tree nodeés:

The alpha value - which holds best MAX value found at the MAX level
The beta value - which holds best Min value found at the MIN level

2. At MAX player level, before evaluating each child path, compare the returned
value of the previous path with the beta vaiue. if the returned value is greater
then abort the search for the current nede.

3. At Min player level,before evaluating eachh child path, compare the returned
value of the previouss path with the alpha value. If the value is lesser then abor:
the searh for the current node.

‘We should note that:

©  The alpha values of MAX nodes (including the start value) can never decrease.
@ The beta value of MIN nodes can never increase.

So we can see that remarkable reductions in the amount of search needed to evaiuate 2
good move are possible by using alpha beta pruning / procedure.

Analysis of BFS Algorithm

In the algorithm BFS, let us analyse the running time taken by the algorithm on a
graph G. We can see that each vertex is inserted n the queue exactly once and also
deleted from the queue exactly once. So for each the insertion and deletion from the
queue costs O(1) time therefore for all vertices queue insertion and deletion would
cost O(V) time. Because graph is represented using adjacency list and adjacency fist
of each vertex is scanned at most once. We cau see that the total length of all
adjacency list is no. of edge E in the graph G. So a total of O(E) time to spent in
scanning all adjacency lists. The initialization portion costs G(V). So the fotal runnin;
time of BFS is O(V+E).
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2.7 TOPOLOGICAL SORT

In many applications we are required to indicate precedences or dependencies among
various events. Using directed graphs we can easily répresent these dependencies. i .t
a directed graph G with vertex set V and edge set E. An edge from a vertex u to vertex
v in the directed graph will then mean that v is dependent on u or v precedes v. Also
there cannot be any cycles in these dependency graphs as it can be seen from the
following simple argument. Suppose that u is vertex and there is an edge from uto u,
i.e., there is a single node cycle. But the graph is dependency graph; this would mean
that vertex u is dependent on vertex u which means u must be processed before u
which is impossible.

A directed graph that does not have any cycles is known as directed acyclic graph.
Hence, dependencies or precedences among events can be represented by using
directed acyclic graphs.

There are many problems in which we can easily tell which event follows or precedes
a given event, but we can’t easily work out in which order all the events are held. For
example, it is easy to specify/look up prerequisite relationships between modules in a
course, but it may be hard to find an order to take all the modules so that all
prerequisite material is covered before the modules that depend on it. Same is the case
with a compiler evaluating sub-expressions of an expression like the following:

(@a+b}c—d)~ (a— b)(c+d)

Both of these problems are essentiaily equivalent. The data of both problems can be
represented by directed acyclic graph (See figure below). In the first each node is a
module; in the second example each node is an operator or an operand. Directed edges
occur when one node depends on the other, because of prerequisite relationships
among courses or the parenthesis order of the expression. The problem in both is to
find an acceptable ordering of the nodes satisfying the dependencies. This is referred
to as a topological ordering. More formally it is defined below.

Directed Acyclic Graph

A topological sort is a linear ordering of vertices in a directed acyclic graph
(normally called dag) such that, if there is path from node u to node v, then v appears
after u in the ordering. Therefore, a cyclic graph cannot have a topological order. A
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topological sort of a graph can be viewed as an ordering of its vertices along a
horizontal line so that all directed edges go in one direction.

The term topological sort comes from the study of partial orders and is sometimes
called a topological order or linear order.

ALGORITHM FOR TOPOLOGICAL SORT

Our algorithm picks vertices from a DAG in a sequence such that there are no other
vertices preceding them. That is, if a vertex has in-degree 0 then it can be next in the
topological order. We remove this vertex and look for another vertex of in-degree 0 ir
the resulting DAG. We repeat until all vertices have been added to the topological
order. -

The algorithm given below assumes that the direceted acyclic graph is represented
using adjacency lists. Each node of the adjacency list contains a variable indeg which
stores the indegree of the given vertex. Adj is an array of |V] lists, one for each vertex
inVv.

Topological-Sort(G)
I for each vertex ue G

2 do indegfu] = in-degree of vertex u
3 if indeg[u] =0

4 then enqueue(Q,u)
5whileQ =0

6 do u = dequeue(Q)

7 printu

8 for each v € Adj[u]

9 do indegfv] = indeg[v] - 1
10 if indegfv] =0

i1 then enqueue(Q,v)

The for loop of lines 1-3 calculates the indegree of each node and if the indegree of
any node is found to be 0, then'it is immediately enqiieeud. The while loop of lines 5-
11 works as follows. We dequeue a vertex from the queue. lts indegree will be

zero( Why?). It then output the vertex, and decrement the in degree of each vertex
adjacent to u. If in the process, the in degree of any vertex adjacent to u becomes 0,
then it is also enqueued.

TOPOLOGICAL SORT - ANOTHER APPROACH

We can also use Depth-First Search Traversal for topologically sorting a directed
acyclic graph. DFS algorithm can be slightly changed or used as it is to find the
topological ordering. We simply run DFS on the input directed acyclic graph and
insert the vertices of a node in a linked list or simply print the vertices in decreasi?g
order of the termination time.

To see why this approach work, suppose that DFS is run on a given dag G = (V,E) to
determine the finishing times for its vertices. Let u, v € V, if there is an edge in G frotr
u to v, then termination time of v will be less than termination time of u i.c.,

tfv] <t[u]. Since, we output the vertices in decreasing order of termination 1ime, the
vertex with least number of dependencies will be outputted first.

ALGORITHM

1. Run the DFS algorithm on graph G. In doing so compute the termination time
of each vertex. .

2. Whenever a vertex is terminated (i.e. visited), insert it in the front o f'a list.

3. Output the list.



RUNNING TIME

Let n is the number of vertices (or nodes, or activities) and m is the number of edges
(constraints). As each vertex is discovered only onge, and for each vertex we loop
over all its outgoing edges once. Therefore, total running time is O(n+mn).

2.8 SUMMARY

This unit discusses some searching and sorting techniques for sorting those problems
each of which can be efficiently represented in the form of a graph. In a graphical
representation of a problem, generally, a node represents a state of the problem, and
an arrow/arc represents a move between a pair of states.

Graph representation of a problem is introduced through the example of a game of
NIM/ Marienbad. Then a number of search algorithms viz., Depth-First, Breadth-First,
Best-First, and Minimax principal are discussed. Next, a sorting algorithm viz.,
Topological sort is discussed.

2.9 SOLUTIONS/ANSWERS

Ex. I)
32 42
l—— 2,2
3.2
33
0.0
43
»{ U1
J
2,1

Ex.2) o

Graph Algorithms

57
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Ex.3)
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BLOCKINTRODUCTION

In Block 1, we discussed a number of concepts and general issues about designing
solutions for problems and analyzing these solutions alongwith a number of examples
to illustrate the concepts and the concerned issues. Important concepts that were
defined, included those of algorithm, program and process. The discussion of
important issues lead te the following observations/staternents:

(i) Not all problems are solvable by élgorithmic means.
(ii) Even for a problem for which an algorithmic solution exists, there is no
systematic method of designing an algorithm to solve the problem.

In view of the observation (ii) above, a number of techniques have been discovered to
design algorithms to solve problems. The study of all the major techniques is essential
in view of the fact that no single technique is found either universally applicable to
solvable problems or is found to be better than the other known techniques.

In Block 2, we discussed well-known techniques including Divide and Conquer and
those requiring graph representations for solving problems.

In this block (i.e., Block 3), we further add more techniques and skills, tc our
repertoire, to solve (difficult) problems.

In Unit 1 of this block, we discuss the Dynamic Programming technique.

The Dynamic Programming is a technique for solving optimization problems, using’
bottom-up approach. The essential idea of the dynamic programming is to avoid
calculating the same thing repeatedly, usually by keeping a table of known results,
that fills up as instances of the problem are solved.

In Unit 2, we discuss Gréedy technique for designing algorithms. The essence of
Greedy Technique is: In the process of solving an optimization problem, initially and
at subsequent stages, we evaluate the costs/benefits of the various available
alternatives for the next-step. Choose the step which is optimal in the sense that either
‘it is the least costly or it is maximum profit yiclding. In this context, it may be noted
that the overall solution, yielded by choosing locally optimal steps, may not be
optimal. ..

" In the discussion of algorithmically unsolvable problems, we need the understanding
of the topics of finife automata, regular languages, context-free grammar, pushdown
automata and Turing Machine. In Unit 3 of the block, we discuss finite automata. In
Unit 4 of the block, we discuss pushdown automata. Turing Machine is discussed in .
the next block.






UNIT1 DYNAMIC PROGRAMMING

Structure Page Nos.
1.0 Introduction 5
1 Objectives . i8
2 The Problem of Making Change : 87
1.3 The Principle of Optimality 43
1.4 Chained Matrix Multiplication ’ 14
) Matrix Multiplication Using Dynamic Programming 15
1.6 Summary 17
1.7 Solutions/Answers 18
18 Further Readings 21

1.0 INTRODUCTION

In the earlier units of the course, we have discussed some weli-known techniques,
rncluding the divide-and-conquer technique, for developing algorithms for
nigorithmically solvable problems. The divide-and-conquer technique, though quite
useful in solving problems from a number of problem domains, yet in some cases, as
shown below, may give quite inefficient algorithms to solve problems.

n
Example 1.0.1: Consider the problem of computing binomial coefficient (k) (or in
linear notation ¢ (u, k)) where n and k are given non-negative integers with n>k. One

way of defining and calculating the binomial coefficient is by using the following
recursive formula ’

1 if k=nork=0
-1 -1
HER . if0<k<n (1.0.1)
k k-1 k
0 otherwise ’

The following recursive algorithm named Bin (n, k), implements the above formula
for computing the binomial coefficient.

Fuaction Bin (n, k)

If k =n or k = 0 then return 1
else return Bin (n-1, k-1) + Bin (n-1, k)

For computing Bin (n, k) for some given values of n'and k, a number of terms Bin
(,J), 1si<and 1<j<k, particularly for smaller values of i and j, are repeatedly
calculated. For example, to calculate Bin (7, 5), we compute Bin (6, 5).and Bin (6, 4).
Now, for computing Bin (6, 5), we compute Bin (5, 4) and Bin (5, 5). But for
calculating Bin (6, 4) we have to calculatg Bin (5, 4) again. If the above argument is
further carried out for still smaller values, the number of repetitions for Bin (i, j)
increases as values of i and j decrease.

For given values of n and k, in order to compute:Rin (n, k), we need to call Bin (1, 3)
for 1 Si<n—1and!<j<k-1and as the values of  and j decrease, the number of
times Bin (i, j) is required to be called and executed generally increases.

The above example follows the Divide-and-Conquer technique in the sense that the
task of calculating C(n, k) is replaced by the two relatively simpler tasks, viz.,
calculating C(n—-1, k) and C (n—1, k-1). But this technique, in this particular case,
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makes large number of avoidable repetitions of computations. This is not an isolated
instance where the Divide-and-Conquer technique leads to inefficient solutions. In.
such cases, an alternative technique, viz., Dynamic Programming, may prove quite
useful. This unit is devoted to developing algorithms using Dynamic Programming
technique. But before, we discuss the technique in more details, let us briefly discuss
underlying idea of the technique and the fundamental difference between Dynamic
Programming and Divide-and-Conquer technique.

Essential idea of Dynamiic Programming, being quite simple, is that we should avoid
calculating the same quantity more than once, usually by keeping a table of known
results for simpler instances. These results, in stead of being calculated repeatedly, .
can be retrieved from the table, as and when required, after first computation. ’

Comparatively, Divide-and-Conquer is conceptually a fop-down approach for
sélving problems or developing algorithms, in which the problem is attempted
initially with complete instance and gradually replacing the more complex instances
by simpler instances.

On the other hand; Dynamic Programming is a bottom-up approach for solving
problems, in which we first attempt the simplest subinstances of the problem under
consideration and then gradually handle more and more compléx instances, using the
results of earlier computed (sub) instances. -

We illustrate the bottom-up nature of Dynamic Programming, by attempting solution
of the problem of computing binomial coefficients. In order to calculate C(n, k), for
given numbers n and k, we consider ann x k table or matrix of the form shown

.below.

The (i, j) th entry of the table contains the value C(i, j). We know,

CG0)
C©,

fl

1 for ailli=0,1,2,...,n and
0 for i=1,2,...,k

It

Thus, initially the table looks like

o 1 2 3 K

ol 1 o 0o 0 0
1o
1
i
n | o1

Then row C (1, j) for j = 1, 2, .... k may be filled up by using the formula

CEj=Cl-Lj-D+ CH-Lj
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After filling up the entries of the first row, the table takes the following form: Dynamic Programming

0 1 2 3 k
0 1? 0 0 0 0
v .
1 1 1 0 0 0
2 1 '
1
n | o1

From the already calculated values of a given row i, adding successive pairs of
consecutive values, we get the values for (i + 1)th row. After completing the entries
for row with index 4, the table may appear as follows, where the blank entries to the
right of the main diagonal are all zeros.

0 1 2 3 4 k
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
n i

We Summarize below the process followed above, for calculating C(i, j):

First of all, the simplest values C(i, 0) = 1 fori=1,2, ..., nand (0, j) = 0 for

;= 1, are obtained directly from the given formula. Next, more complex values are
calculated from the already available less complex values. Obviously, the above
mentioned process is a bottom-up one.

Though the purpose in the above discussion was to introduce and explain the Dynamic
Programming technique, yet we may also consider the complexity of calculating
C (n, k) using the tabular method.

Spate Complexity/Requirement: In view of the following two facts, it can be easily
seen that the amount of space required is not for alf then x k entries but only for k
values of any row C (i, j) for j=1,2, ....., k independent of the value of i:

(i) The value in column 0 is always 1 and hence need not be stored.

(i)  Initially 0® row is giveri by C(0,0)= 1 and C (0,j) =0 forj=1, 2, ...., k. Once
any value of row 1, say C(1, j) is calculated the values C(0, j-1) and C(0, j) are
no more required and hence C {1, j} may be written in the space currently
occupied by CX0, j) and hence no extra space is required to write C (1, j).

Li general, when the value C(3, J) of the 1.h row is caleulated the value C (I- 1, j)isno
more required and hence the cell currently occupied by C (i —1, j) can be used to store
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the value C(i, j). Thus, at any time, one row worth of space is enough to calculate
Cin, k). Therefore, space requirement is 0 (k).

Time Complexity: If we notice the process of caleulating successive values of the
table, we find that any value C (i, j) is obtained by adding 1’s. For example,

©(4, 2} = 6 is obtained by adding C(3, 1) =3 and C(3, 2) = 3. But then C(3, D is
obtained by adding C(2, 0) = T and C(2, 1)=2. Again C(2, 1) is obtained by adding
(1, 0)=1and C(l, 1) = 1. Similarly, C(3, 2) and hence C(4, 2) can be shown to
have been obtained by adding, directly or indirectly, a sequence of 1’s. Also, the
number of additions for calculating C(n, k) can not be more than all the entries in the
(n-1) rows viz,, 1,2, ..... (n-1), each row containing k elements.

Thus, number of additions < n k.

Therefore, the time complexity is 6 (k).

In the next sections, we shall discuss solution of some well-known problems, using
Dynamic Programming technique.

1.1 OBJECTIVES

After going through this unit, you should be able to:

» explain the dynamic programming technique for solving optimization problems:

7 apply the dynamic programming technique for solving optimization problems.
specially you should be able to solve the following wetl-known problems using
this technique:

o Shortest paths problems

o Knapsack Problem

o Chained Matrix Multiplication Problem
o Problem of making change

. Understand the principle of optimality.

1.2 THE PROBLEM OF MAKING CHANGE

First of all, we state a special case of the problem of making change, and then discuss
the problem in its general form.

We, in India, have currency notes or coins of denominations of Rupees 1,2, 5, 10, 20,
50, 100, 500 and 1000. Suppose a person has to pay an amount of Rs. 5896 after
having decided to purchase an article. Then, the problem is about how to pay the
amount using minimum number of coins/notes.

A simple, frequently and unconsciously used algorithm based on Greedy technique is
that after having collected an amount A < 5896, choose a note of denomination D,
which is s.t

® A+1><589 and
{11) D 1s of maximum denomination for which (1) is satisfied, i.e, ifE> D
then A+E > 5896.

In general, the Change Problem may be stated as follows:

Letd,, dy, .....dy, with d; >0 for i = 1,2, .., k, be the only coins that are available such
that each coin with denomination d; is available in sufficient quantity for the purpose
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of making payments. Further, let A, a positive integer, be the amount to be paid using
the above-mentioned coins. The problem is to use the minimum number of coins, for
the purpose.

The problem with above mentioned algorithm based on greedy technique, is that in
seme cases, it may either fail or may yieid suboptimal solutions. In order to establish
inadequacy of greedy technique based algorithms, we consider the following two
examples. ’

Example 1.2.1: Let us assume a hypothetical situation in which we have supply of
rupee-notes of denominations 5, 3 and 2 and we are to collect an amount of Rs. 9.
Then using greedy technique, first we choose a note of Rupees 5. Next, we

choose a 3-Rupee note to make a total amount of Rupees 8. But then according to
greedy technique, we can not go ahead in the direction of collecting Rupees 9. The
failure of greedy technique is because of the fact that there is a solution otherwise, as
itis possible to make payment of Rupees 9 using notes of denominations of Rupees 5,
Rupees 3 and Rupees 2, viz., 9 =5+2+2, .

Example 1.2.2: Next, we consider another example, in which greedy algorithm may
yield a solution, but the solution may not be optimal, but only suboptimal. For this
purpose, we consider a hypothetical situation, in which currency notes of
denominations 1, 4 and 6 are available. And, we have to collect an amount of

8 =6+1+1. But this solution uses three currency notes/coins, whereas another
solution using only two currency notes/coins, viz., 8 = 4+4, is available.

Next, we discuss how the Coin Problem is solved using Dynamic Programming
technigue.

As mentioned earlier, to solve the coin problem using Dynamic Programming
technique, we construct a table, some of the entries in which, corresponding to simple
cases of the problem, are filled up initially from the definition of the problem. And
then recursively entries for the more complex cases, are calculated from the already
known ones. :

We recall the definition of the coin problem:

Pay an amount A using minimum number of coins of denominations d, 1 <i <k Itis
assumed coins of each denomination, are available in sufficient quantities.

Each of the denomination d;, 1 <i < k, is made a row label and each of the value j for
[ <j< A is made a column label of the proposed table as shown below, where A is the
amount to be paid:

Amount —» 1 2 3 4 . j ... A
denomination
=4,
d,
d > C[i, ]
a

Dynamic Programming
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In the table given on page no. 9, 0<d,; <d, <... < dy and Cli, j] denotes the
minimum number of coins of denominations di, d,, ...., d; {only) that is used to make
an amount j, where more than one coin of the same denomination may be uscd. The
value C[i, j] is entered in the table with row label d; and column label .

Next, in respect of entries in the table, we make the following two observations:

(i)  In order fo collect an amount 0, we require zero number of coins, which is true
whether we are allowed to choose from, say, one of the successively larger sets
of denominations viz., {d}, {di, &2}, {di, dz, ds}, ..., {d\, d5, ..., dy}. Thus,
entries in the table in the column with 0 as column label, are all 0’s.

(i) Ifd, # 1, then there may be some amounts j {including j = 1) for which, even
with dynamic programming technique, no solution may exist, i.e., there
may not be any number of coins of denominations d,, d,, ... dy for which
the sum is j. Therefore, we assume d; = 1. The case d, # 1 may be handled
similarly.

As d; = 1, therefore, the first row of the table in the jth column, contains j, the
number of coins of denomination only d, = 1 to form value j.

Thus, the table at this stage looks like—

0 1 2 3 4 j A
d, 0 1 2 3 4 .. § .. A
d;

4 0

dy 0

Next fori 22andj > 1, the value C[i, j], the minimum number of coins of
denominations upto d; (only) to sum up to j, can be obtained recursively through
either of the following two ways:

(i) We choose a coin of denomination d; the laigest, available at this stage; té
make up j (provided, of course, j 2 d). In this case, rest of the amount to be
made cut of coins of denomination dy, ds, ..., d; is (j —d;). Thus, in this case,
we may have—

Cli,jl=1+ Cli,j- &}, j2diifj=d; (1.2.1)

oS
Pl

We do not choose a coin of denomination d; even when such a coin is
available. Then we make up an amount j out of coins of denominations
dy, dy, ..., dir (only). Thus, in this case, we may have

Chi.jl = Cli-L, ] ifizt (1.22)
If we choose to fill up the table row-wise, w increasing order of column numbers, we

can easily see from (i) and (ii) above that both the values — C[i, j - d;j and C{i~1, j}
are already known for comparison, to find out-better alternative for C[i, j].
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By definition, CI[i, j] = min { 1 + C| i,j-dil, C[i-L,j]} and can be calculated, as
the two involved values viz., C [i,j — di| and C [i~1, j] are already known.

Comment 1.2.3

Ify " d,in case (1.1) then the Equation (1.1) is impossible. Mathematically we can
say Cl 1) d] = w1fj < d;, because, then the case is automatically excluded from
consideration for calculating Cfi, j].

Similarly we take
Cli-1,j] = o if i<t
Following the above procedure, Cfk, A] gives the desired humber-.

In order to explain the above method, let us consider the earlier example for which
greedy algorithm gave only suboptimal solution.

Example 1.2.4: Using Dynamic Progr ing technigue, find out mini b
of coins required to collect Rupees 8 out of coins of denominations 1, 4, 6.

From the earlier discussion we already know the following portion of the table to be
developed using Dynamic Programming technique.

d=11]0 1 2 3 4 5 6 7 8
d=4 |0
d=6 |0

Next, let us calculate C[2,1], which by definition, is given by

C[2, 1] =min {1 +c{l, 1-4], ¢ [1,1]}

By the comment above C {1, -3} =
. C2,1]=C[L, 1]=1

Similarly, we can show that

CB3,1]=C[2,1]=1

Next we consider

C[2, 2] =min{1+C(2,~2), C(1,2)]
Again C[2,-2]=w

Therefore, C[2,2] =[1,2] =2
Similarly, C[3, 2] =2

On the similar lines, we can show that
C[2,3]=CJ1,3]=3

C[3,3]=C[2,3] =3

Next, interesting case is C/2, 4}, i.e., to find out rLiinimum number of coins to make an
amount 4 out of coins of denominations 1, 4, 6. By definition, :

Dynamic Programming
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ClZ, 4] =min {1 +C (2, 4— 4), C({1,4)}

But C[2, 0] = 0 and C {1, 4] = 4, therefore,
=pin {1 +4, 4} =1 12,4}

By following the method expiained through the above example sleps, finally, we ge:
the table as

0 1 2 3 4 5 6 7 8
di=170 i 2 3 4 5 4 7 « 8
d=4 |0 i 2 3 1 2 3 4 2
d=6 10 i 2 3 1 2 1 2 2

Let us formalize the method explained above of computing C[k, 4], in the general
case, in the form of the following algorithm:

Function Min-Num-Coins (A, D[1..k])

{gives the minimum number of coins to add up 10 A where the number k of
denominations and the value 4 are supplied by the calling procedure/program}

array C[l1...k, 0... A]

Fori=1tok .

Read(d[i])

{Feads the various denominations available with each di ination coin in sufficient
numbers}.

{assuming d; = 1, initialize the table C { } as follows}

Fori=1tok

Cli,0]=0
Forj=1to A

ClLjl=j
Ifi=1andj<d[i]then

Clijl=w
élse

if

j<d[i]then

Clijl=Cli~-1,]
else

Cl1,j]=min 1+C {i,j~d [i]), C[i—-1,j]}
réturn C [ k, A]

Comments 1.2.5

Comment 1: The above algorithm explicitly gives only the number of coins, which
are minimum to make a pre-assigned amount A, yet it can also be used to determine
the set of coins of various denominations that add upto A.

This can be seen through the following argument:

By definition, C [1, j] = either 1 # C[i, j — di] or C {i -1, j], which means either we
choose a coin of denomination d; or we do not choose a coin of denomination d,,
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depending upon whether 1 + C{i, j - di] S C[i—1, jl or not. Applying the abeve rule
recursively for decreasing values of i and j, we know which ceins are chosen for
making an amount j out of the available coins.

Cemment 2: Once an algorithm is designed, it is important to kaow its
computational complexity in order to determine its utility.

In order to determine C[k, A], the above algorithm computes k x (A + 1) values
through additions and comparisons. Therefore, the complexity of the algorithm is
8 (k . A), the order of the size of the matrix Cfk, A}.

1.3 THE PRINCIPLE OF OPTIMALITY

The Principle of Optimality states that components of a globally optimum solution
must themselves be optimal. Or, Optimality Principle states subsolutions of an optimal
solution must themselves be optimal.

While using the Dynamic Programming technique in solving the coin problem we
tacitly assumed the above mentioned principle in defining C [i, j], as minimum of
1+Cfij~djand C{i-1,j]. The principle is used so frequently and without our
being aware of having used it.

However, we must be aware that there may be situations in which the principle may
not be applicable. The principle of optimality may not be true, specially, in situations
where resources used over the (sub) components may be more than total resources
used over the whole, and where total resources are limited and fixed. A simple
example may explain the point. For example, suppose a 400-meter race champion
takes 42 seconds to complete the race. However, covering 100 meters in 10.5 seconds
may not be the best/optimal solution for 100 meters. The champion may take less
than 10 seconds to cover 100 meters. The reason being total resources (here the
concentration and energy of the athlete) are limited and fixed whether distributed
over 100 meters or 400 meters.

Similarly, for a vehicle with best performance over 100 miles, can not be thought of
interms of 10 times best performance over 10 miles. First of all, fuel usage after’
some lower threshold, increases with speed. Therefore, as the distance to be covered
increases (e.g., from 10 to 100 miles} then fuel has to be used more cautiously,
restraining the speed, as compared to when distance to be covered is less {e.g., 10
miles). Even if refuelling is allowed, refuelling also takes time. The drivers
concentration and energy are other fixed and limited resources; which in the case of
shorter distance can be used more liberally as compared to over longer distances, and
in the process produce better speed over short distances as compared to over long
distances. The above discussion is for the purpose of driving attention to the fact that
principle of optimality is not universal, specially when the resources are limited and
fixed. Further, it is to draw aitention that Dynamic Programming technique assumes
validity of Principle of Optimality for the problem domain. Hence, while applying
Dynamic Programming technique for solving optimisation problems, in order for the
validity of the solution based on the technique, we need to ensure that the Optimality
Principle is valid for the problem domain.

Ex. 1) Using Dynamic Programmir{é, solve the following prdblem (well known as
Knapsack Problem). Also write the algorithm thai solves the problem.

We are given n objects and a knapsack. For i =1, 2. ..., n, object i has a positive
weight w, and a positive value v,. The knapsack can carry a weight not exceeding W.
Our aim 15 to fill the knapsack in a way that maximizes the value of the objects
included in the knapsack. Further, it is assumed that the objects may not be broken

Bynamic Programming
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into pieces”. In other words, either a whole object is to be included or it has to be
excluded.

14 CHAINED MATRIX MULTIPLICATION

In respect of multiplication of matrices, we recall the following facts:

(i) Matrix multiplication is a binary operation, i.e., at one time only two
matrices can be multiplied.

(i) However, not every given pair of matrices may be multiplicable. If we have
to find out the product M;M; then the orders of the matrices must be of the
fromm x nandn x p for some positive integers m, n and p. Then matrices
M, and M,, in this order, are said to be multiplication — compatible. Number
of scalar (number) multiplications required is mnp.

As can be easily seen that matrix mulﬁplication is not commutative. Even
M; M; may not be defined even if M; M, is defined.

(iti)  Matrix multiplication is associative in the sense that if M; M, and M, are three
matrices of order mx n, nx p and pxq then the matrices

(M; M) M; and M, (M; M) are defined,
M, My) My =M, (M; M3)
and the product is an m X n matrix.

@iv) Th(;ugh, for three or more matrices, matrix multiplication is associative, yet
the number of scalar multiplications may very significantly depending upon
how wé pair the matrices and their product matrices to get the final product.

For example, If A is 14 x 6 matrix, B is 6 x 90 matrix, and C is 90 x 4 matrix, then
the number of scalar multiplications required for (AB)C is

14 x 6 x 90= 7560 (for (AB) which of order 14 x 90)
Plus 14 x 90 x 4 = 5040 (for product of (AB) with C)

equal to 12600 scalar multiplication.
On the other hand, number of scalar multiplications for A(BC) is

6 x 90 x 4=2160 (for (BC) which is of order 6 x 4)
Plus 14 x 6 x 4=336 (for product of with BC)

equal to 2496 scalar multiplication

Summering: The product of matrices A (14 x 6), B(6 x 90) and C(90 x 4) takes
12600 scalar operators when first the product of A and B is computed and then
product AB is multiplied with C. On the other hand, if the product BC is calculated
first and then product of A with matrix BC is taken then only 2496 scalar
multiplications are required. The later number is around 20% of the former. In case
when large number of matrices are to be multiplied for which the product is defined,
proper parenthesizing through pairing of matrices, may cause dramatic saving in
number of scalar operations.

* Another version allows any fraction x; with 0<x;<1. However, in t{xis problem, we
assume either x; = 1 orx; = 0. i
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This raises the question of how tc parenthesize the pairs of matrices within the Dynamic Programming
expression A(A; ... A,, a product of n matrices which is defined; so as to optimize

the computation of the product A, A, ... A,. The product is known as Chained

Matrix Multiplication.

Brute-Force Method: One way for finding the optimal method (i.e., the method
which uses minimum number of scalar (numerical) operations) is to parenthesize the
expression A A, ... A, in all possible ways and calculate number of scalar
multiplications required for each way. Then choose the way which requires minimum
number of scalar multiplications.

However, if T(n) denotes the number of ways of putting parentheses for pairing the
expression AA, ... A,, T(n) is an exponentially increasing function. The rate at
which values of T(n) increase may be seen from the following table of values of T(n)
forn=1,2,......

n : 1 2 3 4 S 10 15
Tm): 1 1 2 5 14 4862 ... 2674440

These values of T(n) are called Catalan numbers.

Hence, it is almost impossible to use the method for determining how to optimize the
computation of the product A(A, ... A,.

Next, we discuss how to optimize the computation using Dynamic Programming
Technique.

1.5 MATRIX MULTIPLICATION USING
DYNAMIC PROGRAMMING

It can be seen that if one arrangement is optimal for A|A, ... A, then it will be optimal
for any pairings of (A,... Ay) and (Ay:1A,). Because, if there were a better pairing for
say AjA; ... Ay, then we can replace the better pair A A, ... Ayin AjA; ... Ay Ay ...
A, to get a pairing better than the initially assumed optimal pairing, leading to a -
contradiction. Hence the principle of optimality is satisfied.

Thus, the Dynamic Programming technigue can be applied to the problem, and is
discussed below:

Let us first define the problem. Let A;, 1 <i<n, bead;; x d; matrix. Let the vector
d [ 0.. n] stores the dimensions of the matrices, where the dimension of

Ajis di; x d;fori=1,2, ..., n. By definition, any subsequence A A of

AA; ... A for 1 €j <k <nis a well-defined product of matrices. Let us consider a
table m [1.. n, 1 .. n] in which the entries m; for | <i <j <n, represent optimal (i.e.,
minimum) number of operations required to compute the product matrix-(A; ... A}).

We fill up the table diagonal-wise, i.e., in one iteration we fill-up the table one
diagonal m; i.,, at a time, for some constant s > 0. Initially we consider the biggest
diagonal my; for which s =0. Then next the diagonal m; ;. for s=1and so on.

First, filling up the entries my;, i = 1, 2, ..., n.

Now my;; stands for the minimum scalar multiplications required to compute the
product of single matrix A;. But number of scalar multiplications required are zero.

Hence,
m; =0 fori=1,2,...n
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Filling up entries for my; . ;; fori=1,2, ..., (- 1;

™ 4y denotes the minimum sumber of scalar multiplication required to find the

product A; Ay As A;isdy; X dimatrixand Ay, is d; X d, matrix. Hence,
there is a unique number for scalar multiplication for computing A; Ay, giving

m; g4y = Gipdiding
fori=1,2,..,(n~1).

The above case is also subsumed by the general case
Mg+ for s>1

For the expression
AiApi .. A,

let us consider top-level pairing
(A Ay A) (Ag L Ay

forsomok withi <j<i-+s.

Assuming optimal number of scalar multiplication viz., my; and my,; are already
known, we can say that

M v = MiRigens (M + My o+ diy dj dig)
fori=1,2,...,n—s.

When the term d;., d; d;. represents the number of scalar multiplications required to
multiply the resultant matrices (A; ... Aj) and (Aj ... Awy)

Summing up the di ion, we come the definition m;;,, fori=1,2,...(n -1) as
fors=0: m;;=0 _7 ’ fori=1,2,...,n
fors=1: M = diy d; disy fori=1,2,...,(o-1)
for 1 <s<n:

M s = MMNiggeo( My M5 + dig di dis ) Cfori=1,2, ..., (n-s)

Then my 4 is the final answer
Let us illustrate the algorithm to compute my. s+, discussed above through an example

Let the given matrices be

Al of order 14x%x6
A2 of order 6 %90
A3 of order 90 x 4
Ad of order 4 x 35

Thus the dimension of vector d [0..4] is given by {14, 6, 90, 4, 35]
Fors =0, we know my;= 0. Thus we have the Matrix
Next, consider for s = 1, the entries

Wi = diy & diny
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me = &dd = l4x6x9 = 7560
mys = d‘ dz d; = 6 x 90x4 = 3240
My, = dy ds dy = 9 x4 x35 = 1260
1 2 3 4

1 I/ 0 7560

i
2 0 3240
3 0 1260

Next, consider for s = 2, the entries

my; =min (my;+my; +14 X 6 x 4, my +my;+ 14 X 90 x 4)
min (0 +3240 + 336, /560 +0 + 5040)
3576

My = min (my+ms;+6 X 90 X 35, my; + iy +6 x 4 x 35)
= min {0 + 1260 + 18900, 3240 + 0 + R40)
4080

fi

!

it

Finally, for s =3

My = min (m;; +my + 14 x 6 x 35, {whenk =1}
My, +myq + 14 x 90 x 35, {whenk =2}
M;; + muge + 14 x 4 x 35) {when k = 3}

= min (0 + 4080 + 2090, 7560 + 324G + 44100, 3576 +0 + 1960)
5536

it

Hence, the optimal number scalar multiplication, is 5536.

1.6 SUMMARY

(¢)] The Dynamic Programming is a technique for solving optimization
Problems, using bottom-up approach. The underlying idea of dynamic
programming is to avoid calculating the same thing twice, usually by
keeping a table of known results, that fills up as substances of the
problem under consideration, are solved.

2) In order that Dynamic ngramming technique is applicable in solving an
optimisation problem, it is necessary that the principle of optlmahty is
applicable to the problem domain.

3) The principle of optimality states that for an optimal sequence of
decisions or choices, each subsequence of decisions/choices must also be
optimal.

4) The Chain Matrix Mulfiplication Problem: The problem of how to
parenthesize the pairs of matrices within the expression A,A; ... A,, a product
of n matrices which is defined; so as to minimize the number of scalar
multiplications in the computation of the product A,A; ... A,. The product is
known as Chained Matrix Multiplication.
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The Knapsack Problem: We are given n objects and a knapsack. Fori=1,
2, ..., n,objectihasa positive weight w; and a positive value v;. The
inapsack can carry a weight not exceeding W. The problem requires that
the knapsack is filled in a way that maximizes the value of the objects
included in the knapsack.

Further, a special case of knapsack problem may be obtained in which the
objects may not be broken into pieces”. In other words, either a whole object
is to be included or it has to be excluded.

1.7

SOLUTIONS/ANSWERS

Ex. 1)

First of all, it can be easily verified that Principle of Optimality is valid in the
sense for an optimal solution of the overall problem each subsolution is also
optimal. Because in this case, a non-optimal solution of a subproblem, when
replaced by a better solution of the subproblem, would lead to a better than
optimal solution of the overall problem. A contradiction.

As usual, for solving an optimization problem using Dynamic Programming
technique. we set up a table V[1..n, 0..W].

In order to label the rows we first of all, order the given objects according to
increasing relative values R = v/w.

Thus first object O, is the one with minimum relative value R,. The object O, is
the one with next least relative value R, and so on. The last object, in the
sequence, is Oy, with maximum relative weight R,

The ith row of the Table Corresponds to object O; having ith relative value,
when values are arranged in increasing order. The jth column corresponds i¢
weight j for 0<j <W. The entry Knap [i, j] denotes the maximum value that can
be packed in knapsack when objects Oy, O, ...,0; only are used and the
included objects have weight at most j.

Next, in order to fill up the entries Knapl[i, j], 1<i <nand 0<j SW, of the tabie,
we can check, as was done in the coin problem that,

(i Knapli,0]=0 fori=1,2,...,n

Gi) Knap[1,j]=V,forj=1,..., W
where V is the value of Oy

* . . . . - . -
- Another version allows any fraction x; with 0<x;<1. However, in this problem, we assume either x; =

orx;=10.
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‘Where V is the value of the object O,.

Further, when calculating Knap [i, j}, there are two possibilities: either

(i) The ith object O; is taken into consideration, then
Knap [i, j] = Knap [i-1,j-wi] +v; or

(ii) The ith object O; is not taken into consideration then
’ Knap [i, j]= V[i-1, j]
Thus we define

Knap {i, j] = max {Knap [i-1, j], Knap [i-1, j - wi] + vi}

The above equation is valid for i =2 and j > w;. In order that the above equation may
be 27 puivable otherwise also, without viclating the intended meaning we take,

(i) = Knap[0,j]=0 forj=20 and
(ii) Knap [i, jj=—o fork<0

We explain the Dynamic Programming based solution suggested above, through, the
tollowing example.

We are given six objects, whose weights are respectively 1, 2, 5, 6, 7, 10 units and
whose values respectively are 1, 6, 18, 22, 28, 43. Thus relative values in increasing
order are respectively 1.00, 3.00, 3.60, 3.67, 4.00 and 4.30. If we can carry a
maximum weight of 12, then the table below shows that we can compose a load
whose value is 49.

Weights 012 3 4 5 6 7 8 9 10 11 12

Relative Values
wi=1,v;=1, R, = 1.00 011 1 1 1 1 1111 1 1
w2=2,v;=6,R, = 3.00 016 7 77 777771 7 71
wy=5,v;=18,R;=360 |0 1 6 7 7 18 192425 25 25 25 25
Wo=6,v=22,R,=367 |0 16 7 7 18 222428 29 29 40 4l

Ws=7,vs=28 Rs=400 10 1 6 7 7 18 222829 34 35 40 46

We=10,v=43,R¢=430 0 1 6 7 7 18 222829 34 43 44 49
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Algorithm for the solution sf the solution explained above of the Knapsack
Problem. .

Funciion Knapsack (W, Weight [ 1..n], value [1.nj}

{returns the maximum value corresponding to maximum allowed weight W, where
we are given n objects O, 1 <i < n, with weights Weight [ i ] and values Value [ i i
aray R{1.n], Knap{!i.n, 0.W]

Fori=1ton do

begin
read (Weight [i ] )
read (valuefi})
Rii}] /weight{i}
end-

Forj=1tondo

{Find k such that R{k] is minimum of

R{j}, R{+1}, ...R[n]}

Begin
k=]
Fort=j+liondo
R{t]<R{k] then
k=t
Exchange (R{j1, R[k1);
Exchange (Weight[j }, Weight [ k ]);
Exchange (Walue [j ], value [k 1};

{At this stage R[ 1.. n] is a sorted array in increasing order and Weight [ j] and value
[ i} are respectively weight and vaiue for jth ieast relative value}
{Néxt, we complete the table knap for the problem)

Fori=1lton do
Knap {i,0] =0 fori=1,..,,n
Knap [ 1,j] =valuef1] forj=1,..,W

{Value [ 1 ] is the value of the objéct with minimum relative value}
{Next values for out of the range of the table Knap}

If i<0and j> Othen
Krap[i.j]=0

EBlseif j <0 —then
Knap{i,jl=—o

Fori = 2 to n do

Forj = 1 to W _ do
Knap [ 1, j} = maximum {Knap [i-1,j}, Knap i - 1, ~ Weight [i]
+value [1}]

Return Knap [ n, W]
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2.0  INTRODUCTION

Algorithms based on Greedy technique are used for solving optimization problems.
An optimization problem is one in which some value (or set of values) of interest is
required to be either minimized or maxi..ized w.r.t some given relation on the values.
Such problems include maximizing profits or minimizing costs of, say, production of
some goods. Other examples of optimizatibn problems are about

L finding the minimum number of cuﬂ'ency notes required for an amount, say of
Rs. 289, where arbitrary number of currency notes of each denomination from
Rs. 1 1o Rs. 100 are available, and

e finding shortest-path covering a number of given cities where distances between
pair of cities are given.

As we will study later, the algorithms based on greedy technique, if exist, are easy to
think of, imptement and explain about. However, for many interesting optimization
problems, o algorithm based on greedy technique may yield optimal solution. In
support of this claim, let us consider the following example:

Example 1.1: Let us suppose that we have to go from city A to city E through either
city B or city C or city D with costs of reaching between pairs of cities as shown
below:

Figure 2.0.1

Then the greedy technique suggests that we take the route from A to B, the cost of
which Rs.3000, is the minimum among the three costs, (viz., Rs. 3000, Rs. 4000 and
Rs. 5000) of available routes.



Wi
However, at B there is only one route available to reach E. Thus, greedy algorithm
suggests the route from A to B to E, which costs Rs.11000. But, the route from A to C
to E,‘coﬁs only Rs.9000. Also, the route from A to D to E costs also Rs.9000.

Thus, locally better solution, at some stage, suggested by greedy technique yields
overall (or globally) costly solution. ' i

The essence of Greedy Technique is : In the process of solving an optimization
problem, initially and at subsequent stages, we evaluate the costs/benefits of the
various available alternatives for the next step. Choose the alternative which is
optimal in the sense that either it is the least costly or it is the maximum profit
vielding. In this context, it may be noted that the overall solution, yielded by
choosing locally optimal steps, may not be optimal.

2.1 OBJECTIVES

After studying unit,.you should be able to:
° explain the Greedy technique for solving optimization problems,
. apply the Greedy technique for solving‘ optimization problems;

. apply Greedy technique for solving well-known problems including shortest
path problem.

2.2 SOME EXAMPLES

In order to set the subjcct-matter to be discussed in proper context, we recall the
general characteristics of greedy algorithms. These algorithms are:

° used to solve optimization problems,

. most straight forward to write,

. easy to invent, easy to implement, and if exist, are efficient,
® may not yield a solution for an arbitrary solvable problem,

. short-sighted making decisions on the basis of information immediately on
_hand, without worrying about the effect these decisions may have in future, and

® never reconsider their decisions.

In order to understand the salient features of the algorithms based on greedy
technique, let us consider some examples in respect of the following Minimum
Number of Notes Problem: :

In a business transaction, we are required to make payment of some amount A (say
Rs.289/-). We are given Indian currency notes of all denominations, viz., of
1,2,5,10,20,50,100, 500 and 1000. The problem is to find the minimum number of
currency notes to make the required amount A, for payment. Further, it is assumed
that currency notes of each denomination are available in sufficient numbers, so that
-one may choose as many notes of the same denomination as are required for the
purpose of using the minimum number of notes to make the amount.

Example 2.2.1

In this example, we discuss, how intuitively we attemptto solve the Minimum
Number of Notes Problem, to be specific, to make an amount of Rs.289/-.

Greedy Techaiques
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Solutien: Intuitively, to begin with, we pick up a note of denomination D, satisfying
the conditions.

1) D <289 and
iy Dy is another denomination of a note such that D; <289, then D, < D.

in other words, the picked-up note’s denomination D is the largest among all the
denominations satisfying condition (i) above.

The above-mentioned step of picking note of denomination D, satisfying the above
two conditions, is repeated till either the amount of Rs.289/- is formed or we are clear
that we can not make an amount or Rs.289/- out of the given denominatigns.

We apply the above-mentioned intuitive solution as follows:

To deliver Rs. 289 with minimum number of currency notes, the notes of different
denominations are chosen and rejected as shown below:

Chosen-Note-D ination Total-Value-So far

100 0+100 289
100 100+100= < 289
o0 200100289
50 200+50 289
—50 250+50>289
20 250+20 289
26 270+ 20>289
i0 270+ 10 289
10 280 F 10289
5 280+ 5<289
5 — RS +—5> 28—
2 285+ 2 < 289
2 287+ 2 =289

The above sequence of steps based on Greedy technique; constitutes an algorithm to
solve the problem.

To summarize, in the above mentioned solution, we have used the strategy of
choosing, at any stage, the maximum denomination note, subject to the condition that
the sum of the denominations of the chosen notes does not exceed the required amount
A = 289.

The above strategy is the essence of greedy technique.

Example 2.2.2

Next, we consider an example in which for a given amount A and a set of available
denominations, the greedy algorithm does not provide a solution, even when a
solution by some other method exists.

Let us consider a hypothetical country in which notes available are of only the
denominations 29, 30 and 50. We are required to cotlect an amoeunt of 90.

Attempted solution through above-mentioned strategy of greedy technique:

1) First, pick up a note of denomination 50, because 50 < 30. The amount
obtained by adding denominations of all notes picked up sc far is 50.

it} Next, we can not pick up a note of denomination 50 again. However, if we
pick up another note of denomination 50, then the amount of the picked-up
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notes becomes 100, which is greater than 90. Therefore, we do not pick up Greedy Techniques
any note of denomination 50 or above. _

i) Therefore, we pick up a note of next denomination, viz., of 30. The amount
made up by the sum of the denominations 50 and 30 is 80, whick is less then
90. Therefore, we accept a note of denomination 30.

iv) Again, we can not pick up another note of denomination 30, because
otherwise the sum of denominations of picked up notes, becomes 80+30=1 10,
which is more than 90. Therefore, we do not pick up only note of
denomination 30 or above.

v} Next, we attempt to pick up a note of next denomination, viz., 20. But, in that
case the sum of the denomination of the picked up notes becomes 80-+20=100,
which is again greater than 90. Therefore, we do not pick up only note of
denomination 20 or above.

vi) Next, we attempt to pick up a note of still next lesser denomination. However,
there are no more lesser denominations available.

Hence greedy algorithm fails to deliver a solution to the problem.

However, by some other technique, we have the following solution to the
problem: First pick up a note of denomination 50 then two notes each of
denomination 20.

Thus, we get 90 and , it can be easily seen that at least 3 notes are required to make an
amourt of 90. Another alternative solution is to pick up 3 notes each of denomination
30.

£xample 2.2.3

Next, we consider an example, in which the greedy technique, of course, leads to a
solution, but the solution yielded by greedy technique is not optimal.

Again, we consider a hypothetical country in which notes available are of the only
denominations 10, 40 and 60. We are required to collect an amount of 80.

Using the greedy technique, to make an amount of 80, first, we use a note of
denomination 60. For the remaining amount of 20, we can choose note of only
denomination 10. And), finally, for the remaining amount, we choose another note of
denomination 10. Thus, greedy technique suggests the following solution using 3
notes: 80 = 60 + 10 + 10.

However, the following solution uses only two notes:
80 =40 +40

Thus, the solutions suggested by Greedy technique may not be optimal.

AExJ) Give another example in which greedy technique fails fo deliver an optimal
solution.

2.3 FORMALIZATION OF GREEDY TECHNIQUE

In order to develop an algorithm based on the greedy technique to solve a general
optimization problem, we need the following data structures and functions:

() A setor list of given/candidate values from which choices are made, to reach
a solution. For example, in the case of Minimum Number of Notes problem,
the list of candidate values (in rupees) of notes is {1, 2,5, 10, 20, 50, 100, 500,
1000;}. Further, the number of notes of each denomination should be clearly
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(i)

{v}

hatthe!
mentioned. Otherwise, it is assumed that each candidate value can be used as

many times as required for the solution using greedy technique. Let us call this
set as

GV: Set of Given Values

Set (rather multi-sef) of considered and chosen values: This structure
contains those candidate values, which are considered and chosen by the
atgorithm based on greedy technique to reach a solution. Let us call this
structure as

CV: Structure of Chosen Values

The structure is generally not a set but a multi-set in the sense that values may
he repeated. For example, in the case of Minimum Number of Notes problem,
if the amount to be collected is Rs. 289 then

CVv ={100, 100, 50, 20, 16,5, 2,2}

Set of Considered and Rejected Values: As the name suggests, this is the set
of all those values, which are considered but rejected. Let.us call this set as

RV: Set of considered and Rejected Values

A candidate value may belong to both CV and RV. But, once a value is put in
@V, then this value can not be put any more in CV. For cxample, to make an
zmount of Rs. 289, once we have chosen two notes each of denomination 100,
we have

TV ={100, 100}

At this stage, we have collected Rs. 200 out of the required Rs. 289. At this
stage RV = {1060, 500}. So, we can chose a note of any denomination except
those in RV, i.e., except 1000 and £00. Thus, at this stage, we can chose a note
of denomination 100. However, this choice of 100 again will make the total
amount collected so far, as Rs. 300, which exceeds Rs. 289. Hence we reject
the choice of 100 third time and put 100 in RV, so that now RV = {1000, 5060,
100}. From this point onward, we can not chose even denomination 100.

Next, we consider some of the functions, which need to be defined in an
algorithm using greedy technique to solve an optimization problem.

A function say SolF that checks whether a solution is reached or not. However,
the function does not'check for the optimality of the obtained solution. In the
case of Minimum Number of Notes problem, the function SolF finds the sum of
all values in the multi-set CV and compares with the desired amount, say

Rs. 289. For example, if at one stage CV = {100, 100} then sum of values in
CV is 200 which does not equal 289, then the function SolF returns ‘Solution
not reached’. However, at a later stage, when CV = {100, 100, 50, 20, 10, 5, 2,
2}, then as the sum of values in CV equals the required amount, hence the
function SolF returns the message of the form ‘Solution reached’.

it may be noted that the function only informs about a possible solution.
However, solution provided through SolF may not be optimal. For instance in
the Example 2.2.3, when we reach CV = {60, 10, 10}, then SolF returns
Solution reached’. However, as discussed earlier, the solution

&0 + 10 + 10 using three notes is not optimal, because, another solution
using onl o notes, viz., 80 = 40 + 40, is still cheaper.

Selection Function say SefF finds out the most promising candidate vaiue out
of the values not yet rejected, i.e., which are not in RV, i the case of Minimur:
Number of Notes problem, for collecting Rs. 289, at the stage when

RV = {1000, 500} and CV = {100, 100} then first the function SelF atterpts
the denromination 100. But, through function SolF, when it is found that by



addition of 100 to the values already in CV, the total value becomes 300 which Greedy Techaiques
exceeds 289, the value 100 isrejected and put in RV. Next, the function SelF

attempts the next lower denomination 50. The value 5¢ when added t¢ the sum

of values in CV gives 250, which is less than 289. Hence, the value 50 is

returned by the function SelF.

(vi) The Feasibility-Test Function, say FeaF. . When a new value say v is chosen
by the function SelF, then the function FeaF checks whether the new set,
obtained by adding v to the set CV of already seiected values, is a possible part
of the final solution. Thus in the case of Minimum Number of Notes problem,
if amount to be collected is Rs. 289 and at some stage, CV = {100, 100}, then
the function SelF returns 50. At this stage, the function FeaF takes the control.
it adds 50 to the sum of the values in CV, and on finding that the sum 250 is
less than the required value 289 informs the main/calling program that {100,
100, 50} can be a part of some final solution, and needs to be explored Further.

(vii) The Objective Function, say ObjF, gives the value of the solution. For
example, in the case of the problem of collecting Rs. 289; as CV = {100, 100,
50, 20, 10, 5, 2, 2} is such that sum of values in CV equals the required value
289, the function ObjF returns the aumber of notes in CV, i.e., the number 8.

After having introduced a number of sets and functions that may be required by

an algorithm based on greedy technique, we give below the outline of greedy

technique, say Greedy-Structure. For any actual algorithm based on greedy

technique, the various structures the functions discussed above have to be
_replaced by acrual functions.

These functions depend upon the problem under consideration. The Greedy-
Structure outlined below takes the set GV of given values as input parameter
and returns CV, the set of chosen values. For developing any algorithm based
on greedy technique, the following function outline will be used.

2.3.1 Function Greedy-Structure (GV:set): set

CV « b {initially, the set of considered values is empty}
While GV # RV and not SolF (CV) do

begin
v « SelF (GV)
IfFeaF €CV U {v}) then
CV « CVu {v}
else RV «— RV U {v}
end

// the function Greedy Structure comes out
// of while-loop when either GV=RV, i.e., all
// given values are rejected or when solution is found

If SolF (CV) then returns ObjF (GV)
else return “No solution is possible”
end function Greedy—Structure

2.4 MINIMUM SPANNING TREE

In this section and some of the next sections, we apply greedy technique to develop
clgorithms to solve some well-known problems. First of all. we discuss the
applications for finding minimum spanning tree for a given (undirected) graph. In
order to introduce the subject matter, let us consider some of the relevant dpﬁnitions.
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Definitions

A Spanning tree of a conuecied graph, say G = (V, B} with V as set of vertices and ©
as set of edges, is its connected acyclic subgraph (1., a tree) that contains al the
vertices of the graph.

A minimum spavining tree of a weighted connected graph is its spanning tree of the
smallest weight, where the weight of a tree is defined as the sum of the weights on ali
its edges.

The minimum spanﬁiug tree problem is the problem of finding a minimum
spanning tree for a given weighted connected graph.

‘The minimum spanning tree problem has a number of useful applications in the
following type of situations:

Suppose, we are given a set of cities alongwith the distances between each pair of
cities. In view of the shortage of funds, it is desired that in stead of connecting
directly each pair of cities, we provide roads, costing least, but allowing passage
between any pair cities along the provided roads. However, the road between some
pair of cities may not be direct, but may be passing through a number of other cities.

Next, we illustrate the concept of spanning tree and minimum spanning tree through
the following example.

Let us consider the connecied weighted graph G given in Figure 4.1.

D
gr\ -(»)

Figure: 2.4.1

For the graph of Figure 2.4.1given above, ¢ach of Figure 2.4.2, Figure, 2. 4.3 and
Figure. 2.4.4 shows a spanning tree viz., T, T, and T, respectively.
Out of these, T, is a minimal spanaing tree of G, of weight 1+2+3 = 6.

Figure: 2.4.2



Figure: 2.4.3

T;

Figure: 2.4.4
Remark 2.4.1:

The weight may denote (i) length of an edge between pair of vertices or (ii) the cost of
reaching from one tawn to the other or (iii) the cost of production incurred in reaching
from one stage of praduction to the immediate next stage of production or (iv) the cost
of construction of a part of a road or of laying telephone lines between a pair of towns.

Remark 2.4.2:

The weights on edges are generally positive. However, in some situations the weight
of an edge may be zero or even negative. The negative weight may appear to be
appropriate when the problem under consideration is not about ‘minimizing costs’ but
about ‘maximizing profits’ and we still want to use minimum spanning tree
algorithms. However, in such cases, it is not appropriate to use negative weights,
because, more we traverse the negative-weight edge, lesser the cost. However, with
repeated traversals of edges, the cost should increase in stead of decreasing.

Therefore, if we want to apply minimum spansing tree technique to ‘maximizing

profit problems, then in stead of using negative weights, we replace profits pi by M-p; -

where M is some positive number s.t
M > Max {p; : pj is the profit in traversing from ith node to jth node}
Remark24.3:

From graph theory, we know that a given connected graph with n vertices, must have
exactly (n-1) edges.

As mentioned earlier, whenever we want to develop an algorithm based on greedy
technique, we use the function Greedy-Structure given under 2.3.1. For this purpose,

Greedy Techniques
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Design Techniques-i] we need to find appropriate values of the various sets and functions discussed in
Section 3.

in the case of the problem of finding minimum-spanning tree for a given
connected graph, the appropriate values are as follows:

M

{ii)

(iii)

(i)

i\

i)

(vii)

GV:  The set of candidate or given values is given by
GV = E, the set of edges of the given graph (V, E).

CV: The structurc of chosen values is given by those edges from E, which
together will form the required minimum-weight spanning tree.

RV: set of rejected values will be given by those edges in E, which at some
stage will form a cycle with earlier selected edges.

In the case of the problem of minimum spanning tree, the function SolF
that checks whether a solution is reached or not, is the function that checks
that

(a) all the edges in CV form a tree,

{b)  the set of vertices of the edges in CV equal V, the set of all edges in the
graph,and |

{c}  the sum of the weights of the edges in CV is minimum possible of the
edges which satisfy (a) and (b) above.

Selection Function: depends upon the particular algorithm used for the
purpose. There are two well-known algorithms, viz., Prim’s algorithm and
Kruskal’s algorithm for finding the Minimum Spanning Tree. We will
discuss these algorithms in detail in subsequent sections.

FeaF: Feasibility Test Function: In this case, when the selection function
SelF returns an edge depending on the algorithm, the feasibility test function
FeaF will check whether the newly found edge forms a cycle with the earlier
slected edges. If the new edge actually forms a cycle then generally the newly
found edge is-dropped and search for still another edge starts. However, in
some of the algorithms, it may happen that some earlier chosen edge is
dropped. : :

In the case of Minimum Spanning Tree problem, the objective function may
return

(a) the set of edges that constitute the required minimum spanning tree and
(b) the weight of the tree selected in (a) above.

Ex. 2)

Find a minimal spanning tree for the following graph.
]
a
5 : 2
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2.5 PRIM’S ALGORITHM

The algorithm due to Prim builds up a minimum spanning tree by adding edges to
form a sequence of expanding subtrees. The sequence of subtrees is represented by the
pair (Vr, Ey), where Vy and Errespectively represent the set of vertices and the set of
edges of a subtree in the sequence. Initially, the subtree, in the sequence, consists of
just a single vertex which is selected arbitrarily from the set ¥ of vertices of the given
graph. The subtree is built-up iteratively by adding an edge that has minimum weight
among the remaining edges (i.e., edge selected greedily) and, which at the same time,
does not form a cycle with the earlier selected edges.

We illustrate the Prim’s algorithm through an example before giving a semi-formal
definition of the algorithm.
Example 2.5.1 (of Prim’s Algorithm):

Let us explain through the following example how Prim’s algorithm finds a minimal
spanning tree of a given graph. Let us consider the following graph:

Initially
V. =(a)
E.=¢

Figure: 2.5.1

In the first iteration, the edge having weight which is the minimum of the weights
of the edges having a as ont of its vertices, is chosen. In this case, the edge ab with
weight 1 is chosen out of the edges ab, ac and ad of weights respectively 1,5 and 2.

Thus, after First iteration, we have the given graph with chosen edges in bold and
V1 and Er as follows:
V. =(a,b)

E, = ( (ab)

Figure: 2.5.2

Greedy Techniques
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In the next iteration, out of the edges, not chosen earlier and not making a cycle with
carlier chosen edge and having either a or b as one of its vertices, the edge with
mwmimum weight is chosen. In this case the vertex b does not have any edge
originating out of it. In such cases, if required, weight of a non-existent edge may be
taken as . Thus choice is restricted to two edges viz., ad and ac respectively of
weights 2 and 5. Hence, in the next iteration the'edge ad is chosen. Hence, after
sécond iteration, we have the given graph with chosen edges and V and Ey as
follows:

'V’T = (a, b, d)
ET = (@), (3,d)

Figure: 253

In the next iteration, out of the edges, not chosen earlier and not making a cycle with
earlier chosen edges and having either a, b or d as one of its vertices, the edge with
minimum weight is chosen. Thus choice is restricted to edges ac, dc and de with
weights respectively 5, 3, 1.5. The edge de with weight 1.5 is selected. Hence, after
third iteration we have the given graph with chosen edges and Vy and E1 as
follows: '

V. =(a,b,d, e
E; = ((2,0),(a,d).(d, )

Figure: 2.5.4

In the next iteration, out of the edges, not chosen earlier and not making a cycle with
zarlier chosen edge and having either a, b, d or € as one of its vertices, the edge with
minimum weight is chosen. Thus, choice is restricted 1o edges dc and ac with weights
respectively 3 and 5. Hence the edge dc with weight 3 is chosen. Thus, after fourth
iteration, we have the given graph with chosen edges and Vy and E; as follows:



V. =(a,b,d, &)
E.= ((ab),(ad)(de)(dc))-

-
Figure: 2.5.5

At this stage, it can be easily seen that each of the vertices, is on some chosen edge
and the chosen edges form a tree.

Given below is the semiformal definition of Prim’s Algorithm
Algorithm Spanning-Prim (G)

// the algorithm constructs a'minimum spanning tree
// for which the input is a weighted connected graph G = (V, E)
// the output is the set of edges, to be denoted by Er, which together constitute a
minimum spanning tree of the given graph G
/1 for the pair of vertices that are not adjacent in the graph to each other, can be given
// the label w indicating “infinite” distance between the pair of vertices.
/1 the set of vertices of the required tree is initialized with the vertex v,
V1 {vo }
ET <« ¢ // initially ET is empty
/I let n = number of vertices in V
Fori=1 to[nl-1 do
find a minimum-weight edge ¢ = (v', u') among all the edges such that v' is in VT and
u'isin V- VT,
V1 Vru {u'}
Er=Er u{e}
Return Et '

Ex. 3) Using Prim’s algorithm, find a minimal spanning tree for the graph given
below:

Greedy Techniques
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2.6 KRUSKAL’S ALGORITHM

Next, we discuss another method, of finding minimal spanning tree of a given
weighted graph, which is suggested by Kruskal. In this method, the emphasis is on
the choice of edges of minimum weight from amongst all the available edges, of
course, subject to the condition that chosen edges do not form a cycle.

The connectivity of the chosen edges, at any stage, in the form of a subtree, which was
emphasized in Prim’s algorithm, is not essential.

We briefiy describe the Kruskal’s algorithm to find minimal spanning tree of a given
weighted and connécted graph, as follows:

(i)  First of all, order all the weights of the edges in increasing order. Then repeat
the following two steps till a set of edges is selected containing all the vertices
of the given graph.

{(ii) Choose an edge having the weight which is the minimum of the weights of the
edges not selected so far.

(iif) If the new edge forms a cycle with any subset of the earlier selected edges, then
drop it, else, add the edge to the set of selected edges.

‘We illustrate the Kruskal’s algorithm through the following:
Example 2.6.1:

‘Let us consider the following graph, for which the minimal spanning tree is required.

Figure: 2.6.1

Let E, denote the set of edges of the graph that are chosen upto some stage.

According to the step (i) above, the weights of the edges arc arranged in increasing
order as the set
{1,3,42 5,6}

In the first iteration, the edge (a,b) is chosen which is of weight 1, the minimum of
all the weights of the edges of the graph.

As single edge do not form a cycle, therefore, the edge {a,b) is selecied, so that

kS

E, = {(2.,0))
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After first iteration, the graph with selected edges in bold is as shown below: Greedy Techniques

Figure: 2.6.2
Second Iteration

Next the edge (c,d) is of weight 3, minimum for the remaining edges. Also edges
(a,b) and (c,d) do not form a cycle, as shown below. Therefore, (c,d) is selected
so that,

E; = ((a)b}, (c.d))

Thus, after second iteration, the graph with selected edges in bold is as shown below

Figure: 2.6.3

It may be obseryed that the selected edges do not form a connected subgraph or
subtree of the given graph.

Third Iteration

Next, the edge (a,d) is of weight 4.2, the minimum for the remaining edges. Also the
edges in E, alongwith the edge (a,d) do not form a cycle. Therefore, (a,d) is selected
so that new E; = ((a,b), (c,d), (a,d)). Thus after third iteration, the graph with selected
edges in bold is as shown below.
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Figure: 2:6.4
Fourth Iteration )
Mext, the edge (a,c) is of weight 5, the minimum for the remainin} edge. However,

the edge (a,c) forms a cycles with two edges in By, viz., (a,d) and (c,d). Hence (a,c) is
rot selected and hence not considered as a part of the to-be-found spanning tree.

At the end of fourth iteration, the graph with selected edges in bold remains the same
as at the end of the third iteration, as shown below:

Figure: 2.6.6



Fifth Iteration

Next, the edge (e,d), the only remaining edge that can be considered, is considered.
As (e,d) does not form a cycle with any of the edges in E,. Hence the edge {e,d) is put
in Eg. The graph at this stage, with selected edge in bold is as follows.

Figure: 2.6.7

At this stage we find each of the vertices of the given graph is a vertex of

some edge in E;. Further we observe that the edges in E; form a tree, and hence, form
the required spanning tree. Also, from the choice of the edges in Ey, it is clear that the
spanning tree is of minimum weight. Next, we consider semi-formal definition of
Kruskal’s algorithm.

ALGORITHM Spanning-Kruskal (G)

// The algorithm constructs a minimum spagning tree by choosing successively edges
/I of minimum weights out of the remainirg‘;dges.

// The input to the algorithm is a connected graph G = (V, E), in which V is the set of
i/ vertices and E, the set of edges and weight of each edge is also given.

/! The output is the set of edges, denoted by Ey, which constitutes a minimum

1/ spanning tree of G

// the variable edge-counter is used to count the number of selected edges so far.

// variable t is used to count the number of edges considered so far.

Arrange the edges in E in nondecreasing order of the weights of edges. After the
arrangement, the edges in order are labeled as ey, ¢, ...¢|g
Ey < ¢ // initialize the set of tree edges as empty
edge-counter < 0 // initialize the ecounter to zero
te0 // initialize the number of processed edges as zero
// let n = number of edges in V
B

While edge-counter <n— 1

t «t +1// increment the counter for number of edges considered so far
if the edges e, does not form a cycle with any subset of edges in Er then

begin -

4 igf, ¢, alongwith edges earlier in Er do not form a cycle

/l then add e, to Ey and increase edge counter

EreEr vie};

edge-counter «— edge-counter + 1
end if
return Ey

Greedy Tetimtqus
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D%
Summary of Kruskal’s Algorithm

*  The algorithm is always successful in finding a minimal spanning tree

®  (Sub) tree structure may mot be maintained, however, finally, we get a minimal
spanning tree

Computing Complexity of Kruskals’s

Let a be the number of edges and n be the number of nodes, initially given.
Then

(i) 8 (alog a) time is required for sorting the edges in increasing orders of lengths

(i) An efficient Union-Find operation takes (2a) find opera!io’ﬁs and (n —1) merge
operations. )

Thus Complexity of Kruskal’s algorithm is O(a log a)

Ex. 4) Using Kruskal’s algorithm, find a minimal spanning tree for the following g
graph

2.7 DIJKSTRA’S ALGORITHM

Directed Graph:

So far we hava discussed applications of Greedy technique to solve problems
involving undirected graphs in which each edge (a, b) from a to b is aiso equally an
edge fromb to a. In other words, the two representations (a,b) and (b,a) are for the
same edge. Undirected graphs represent symmetrical relations. For example, the
refation of ‘brother’ between male members of, say a city, is symmetric. However, in
the same set, the relation of “father” is not symmetric. Thus a general relation may be
symmetric or asymmetric. A géneral relation is represented by a directed graph, 1n

_which the (directed) edge, also called an arc, {a, b) denotes an edge from a to b.

However, the directed edge (a,b) is not the same as thé directed edge (b,a). In the
context of directed graphs, (b,a) denotes the edge from b to a. Next, we formally
define a directed graph and then solve some problems, using Greedy technique,
involving directed graphs.

Actually, the notation (a,b) in mathematics is used for ordered pair of the two
elements viz., a and b in which a comes first and ther: b follows. And the ordered
pair (b,a) denotes a different ordered set in which b comes first and then a follows,



However, we have misused the notation in the sense that we used the notation (a,b) to
denote an unordered set of two elements, i.e., a set in which order of occurrence of a
and b does not matter. In Mathematics the usual notation for an unordered set is
{a,b}. In this section, we use parentheses (i.e., (and)) to denote ordered sets and
braces (i.e., {and}) to denote a geneal (i.e., unordered set).

Definition:

A directed graph or digraph G = (V(G), E(G)) where V(G) denotes the set of
vertices of G and E(G) the set of directed edges, also called arcs, of G. An arc from a
to b is denoted as (a, b). Graphically it is denoted as follows:

a P},

in which the arrow indicates the direction. In the above case, the vertex a is sometimes
called the tail and the vertex b is called the head of the arc or directed edge.

Definition:

A Weighted Directed Graph is a directed graph in which each arc has an assigned
weight. A weighted directed graph may be denoted as G = (V(G), E(G)), where any
element of E(G) may be of the form (a,b,w) where W denotes the weight of the arc
(a,b). The directed Graph G =((a, b, c, d, €), (b, a, 3), (b, d, 2) (a, d,7), (¢, b, 4),
(c,d, 5), (d, e, 4), (e, c, 6))) is diagrammatically represented as follows:

Figure: 2.7.1

Single-Source Shortest Path

Next, we consider the problem of finding the shortest distances of each of the vertices
of a given weighted connected graph from some fixed vertex of the given graph. All
the weights between pairs of vertices are taken as only positive number. The fixed
vertex is called the source. The problem is known as Single-Seurce Shortest Path
Problem (SSSPP). One of the well-known algorithms for SSSPP is due to Dijkstra.
The algorithm proceeds iteratively, by first consider the vertex nearest to the source.
Then the algorithm considers the next nearest vertex to the source and so on. Except
for the first vertex and the source, the distances of all vertices are iteratively adjusted
taking into consideration the new minimum distances of the vertices considered
earlier. If a vertex s not conuected to the source by an edge, then it is considered to
have distance co from the source.

Algorithm Single-source-Dijkstra (V,E,s)

H The inputs to the algorithm consist of the set of vertices V, the set of edges E, and s
// the selected vertex, which is to serve as the source. Further, weights wiij) betwees
/# every pair of vertices i and j are given. The algorithm finds and returns d,, the

i minimum distance of each of the vertex v in V from s. An array D) of the size of

#/ number of vertices in the gropk is used to store distances of the various veriices

i from the source. Initially Distance of the source from itself is taken as 0

Greedy Technigues
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/! and Distance D(v) of any other vertex v is taken as co.
// Iteratively distances of other vertices are modified taking into consideration the
/ minimum distances of the various nodes from the node with most recently modified
/ distance
D(s) « 0
Foreach vertex v=s do
D@ «w»
// Let Set-Remaining-Nodes be the set of all those nodes for which the final minimum
// distance is yel to be d~termined. Initially
Set-Remaining-Nodes « V
while (Set-Remaining-Nodes # ¢) do
begin
choose v ¢ Set-Remaining-Nodes such that D(v) is minimum
Set-Remaining-Nodes ¢ Set-Remaining-Nodes ~ {v}
For each node x € Set-Remaining-Nodes such thats w(v, x) # do
D(%) < min {D(x), D(v) + w (v, X)}
end

Next, we consider an example to illustrate the Dijkstra’s Algorithme

Example 2.7.1

For the purpose, let us take the following graph in which, we take a as the source

Figure: 2.7.2
Step Additional S = Set-of- Distances from source of
node Remaining Nodes b,c,de
Initialization a (b,c,d,e) [3, ,7 ]
1 b (c.d,e) [3,3+4,3+2,]
2 d (e [3,3+4,3 +2,3+2+4]
3 ¢ (e) 3,7,5,9]

For minimum distance from a, the node b is directly accessed; the node ¢ is accessed
through b; the node d is accessed through b; and the node e is accessed through b and
d.

Ex.5) Using Dijkstra’s algorithm, find the minimum distances of all the nodes from
node b which is taken as the source node, for the following graph.
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2.8 SUMMARY

In this unit, we have discussed the greedy technigue the essence of which is : In the
process of solving an optimization problem, initially and at subsequent stages,
evaluate, the costs/benefits of the various available alternatives for the next step.
Choose the alternative which is optimal in the sense that either it is the least
costly or it is the maximum profit yielding. In this context, it may be noted that
the overall solution, yielded by choosing locally optimal steps, may not be optimai.
Next, well-known algorithms viz., Prim’s and Kruskal’s that use greedy technique, to
find spanning trees for connected graphs are discussed. Also Dijkstra’s algorithm for
solving Single-Source-Shortest path problem, again using greedy algorithm, is
diseussed.

2.9 SOLUTIONS/ANSWERS

Ex.1)

Consider the following graph, in which vertices/nodes represent cities of a
country and each edge denotes a road between the cities denoted by the
vertices of the'edge. The label on each edge denotes the distance in 1000
kilometers between the relevant cities. The problem is to find an optimal path
from Al to A4.

Then greedy techniques suggests the route A1, A3, A4 of length 9000 kilometers,
whereas the optimal path A1, A2, A4 is of length 8000 kilometers only.
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We will learn some systematic methods of finding 2 minimal spanning tree of
a graph in later sections. However, by hit and trial, we get the following
minimal spanning tree of the given graph.

Ex.3)

The student should include the explanation on the lines of Example 2.5.1.

However, the steps and stages in the process of solving the problem are as
follows.

Initially

Vi=(a)
Er=¢




s

In the following figures, the edges in bold denote the chosen edges.

After First lteration

Vi=(a, b)
Er={(a, b))

After Second Iteration

Vr=(a,b,d)
Er={(@a,b),(a,d)

After Third Iteration

Vi={a,b,c,d
Er={((a,b),(a, d), (c, d))

.

—{ 4

Greedy Techniques
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Design Techniques-TI After Fourth Iteration

Vi=(a,b,c,d,e)
Er={(a, b), (3, d), (c, d), (c, &))

Ex. 4)

The student should include the explanation on the lines of Example 2.6.1.

However, the steps and stages in the process of solving the problem are as
follows:

The edges in bold denote the selected edges.
After First Iteration

Ey=((c, &)

After Second Iteration

Eg=((c, ), (a,d)

44



After Third Iteration

Eg={(c. ¢}, (a, d), (¢, )

After Fourth Iteration
We can not take edge ac, because it forms a cycle with (a, d) and (c, d)

After Fifth Iteration

Eg=((c, ), (a, d), (¢, d), {2, b))

Now, on the above four edges all the vertices of the graph lie and these « zes form a
tree which is the required minimal spanning tree.

Ex. 5)
A copy of the graph is given below

Greedy Techniques
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Step Additional N =S'et—of~ Distances from source of

rode Remaining Nodes a,cd e
Initialization B (a,c,d,e) 6, . .1
1 E (a,c,d) 16,2,31,]
2 kY (a, d) [6,2,31))
3 d (a) [5,2,3,1]

For minimum distance from b, node a is accessed through d and g; node ¢ is accessed
through ¢; node d is accessed through e and node ¢ is accessed directly.
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3.0 INTRODUCTION

in the earlier two blocks and unit 1 and unit 2 of this biock, we discussed a number of
issues and techniques about designing algorithms. However, there are a number of
problems for each of which, no algorithmic solution exists. Examples of such
probiems will be provided in unit 2 of biock 4. However, many of these examples are
found from the discipline of the well-known models of computation viz., finite
automata, push-down automata and Tuning machines. In this unit, we discuss the
topic of Finite Automata.

3.1 OBJECTIVES

After studying tlﬁs unit, you should be abje to:

define a finite automata for computation of a language;

obtain a finite automata for a known language;

create a grammar from language and vice versa;

explain and create context free grammar and language;

define the pushdown automata;

apply the pumping lemma for non-context free languages; and

find the equivalence of context free grammar and Pushdown Automata.

e & & 6 ¢ o ¢

3.2 REGULAR EXPRESSIONS

In this unit, first we shall discuss the definitions of alphabet, string, and language with
some important properties.

3.2.1 Introduction te Defining of Languages

Yor a language, defining rules can be of two types. The rules can either tell us how
test a string of alphabet letters that we might be presented with, to see if it is a valid
word, i.e., a word in the language or the rules can tell us how to construct all the
words in the language by some clear procedures.
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Alphabet: A fintte set of symbols/characters. We gencrally denote an alphabet by 2.
It we start an alphabet having only one letter, say, the letter z, then L = {z}.

Letter: Each symbol of an alphabet may also be called a letter of the alphabet or
simply a letter.

Language over an alphabet: A set of words over an alphabet. Languages are
denoted by letter L with or without a subscript.

String/word over an alphabet: Every member of any language is said to be a string
or a world.

Example 1: Let L; be the language of all possible strings obtained by
Li={z. 2z, 722,222z . . . . .. }

This can also be written as
Li={"Y forn=1,2,3, ...

A siring of length zero is said to be null string and is represented by A.
Above given language L, does not inciude the null string. We could have defined it
s0.as to include A. Thus, L = {Z° in=0, 1,2, 3...} contains the null string.

In this language, as in any other, we can define the operation of concatenation, in
which two strings are written down side by side to form a new losger string. Suppose
u=ab and v = baa, then uv is called concatenation of two strings u and v and is

uv = abbaa and vu = baaab. The words in this language clearly analogous to the

positive integers, and the operation of concatenation are analogous to addition:

2" concatenated with z" is the word z™™,

Example 2: If the word zzz is called ¢ and the word 2z is called d, then the word
fermed by concatenating ¢ and d is

cd = zzz7z

When twe words in our language L, are concaienated they produce another word in
the language L;. However, this may not be true in all languages.

Example 3: If the language is L, = {zo,Mzzz, 22277, 2272277%. ...}

= {z

= {z"" forn=0,1,2,3....}
then ¢ = zzz and d = zz2zz are both words in L,, but their concatenation cd = zzzzzzzz
is not a word in L,. The reason is simple that member of L, are of odd length while
after concatenation it is of even length.

Note: The alphabet for L, is the same as the alphabet for L,.

Example 4: A Language L, may denote the language having strings of even lengths
include of length 0. In other words, Ls = {A, zz, zzzz, Ly

Ancther interesting language over the alphabet £ = {z} may be

Example 5: L;= {z": p is a prime natural number}.
There are infinitely many possible languages even for a single letter alphabet
Z={z}.

In the above description of concatenation we find very commonly, that for a single
letter alphabet when we concatenate ¢ with d, we get the same word as when we
concatenate d with ¢, that is cd = dc But this relationship does not hold for ali
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languages. For example, in the English language when we concatenate “Ram” and
“goes” we get “Ram goes”. This is, indeed, a word but distinct from “goes Ram”.

Now, let us define the reverse of a language L. 1fc is a word in L, then reverse (¢} is
the same string of letters spelled backward.
The reverse (L) = {reverse (w), wel}

Example 6: Reverse (zzz) = 72z
Reverse (173) =371

Let us define a new language called PALINDROME over the alphabet £ = {a,b}.
PALINDROME = {A, and all strings w such that reverse {w} = w}
= {A, a, b, aa, bb, aaa, aba, bab, bbb, aaaa, abba, ...}

Concatenating two words in PALINDROME raay or may not give a word in
palindrome, e.g., if u = abba and v = abbcba, then uv = abbaabbcbba which is not
palindrome.

3.2.2 Kleene Closure Definition

Suppose an aiphabet £, and define a language in which any string of ictters from Z is a
word, even the nufl string. We shall call this language the closure of the aiphabet.

We denote it by writing * after the name of the alphabet as a superscript, which is
written as I, This notation is sometimes also known as Kleene Siar.

For a given alphabet Z, the language L consists of all possible strings, inciuding the
null string.

For example, If 3. = {z}, then, & =L, = {A, 2,22, 222 .....}

Example 7: If £ = {0, 1}, then, £* = {A, 6,1, 00,01, 10, 11, 000, 001 e}

So, we can say that Kleene Star is an operation that makes an infinite language of
strings of letters out of an alphabet, if the aiphabet, £ #¢. However, by the definition
aiphabet ¥ may also be ¢ . In that case, £"is finite. By “infinite language, we mean 2
language with infinitely many words.

Now, we can geueralise the use of the star operator to languages, i.e., i 2 set of
words, not just sets of alphabet letters.

Definition: If s is a set of words, then by s we mean the set of all finite strings
formed by concatenating words from s, where any word may be used as often.

Example 8: If s = {cc, d}, then
s = {nor any word composed of faciors of cc und 4}

= {~ or all strings of ¢’s and d’s in which ¢’s occur in even clumps}.
The string ccdeeed 1s not i s since it has a clump of ¢’s of length 3.

Ixix=naorx={ec)d(co)?al L Lee)m(d)im} where i, i e dm 2 0.

Positive Closure: If we want to modify the concept of closure to refer to only the
concatenation leading to non-nuil strings from a set s, we use the notation + instead of
* This pius operation is called positive closure.

Thearem 1 For asy set s of strings prove that s = (5‘} =8

Proof: We know that every word in s is made up of faciess from s |

Models for Executing
Algorithms-{: FA
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Also, every factor from s” is made up of factors from s.

Therefore, we can say that every word in's” is made up of factors froms.

First, we shows™ cs'. (i)

" o N .
Letx € s .... Then X = xy.....x, for some x; € s~ which implies s"'cs

T
Next, we shows s .
e .
s Cs (ii)

By above inclusions (i) and (ii}; we prove that
s =3

Now, try some exercises.

E£x.1} If u=ababb and v = baa then find
(1) uv (i) vu (iii) uv (iv) vu (v) uuv.

Ex.2) Write the Kleene closure of the following:
() {aa, b}
(i) {a, ba}

3.2.3 Formal Definition of Regular Expressions

Certain sets of strings or languages can be represented in algebraic fashion, then these
algebraic expressions of languages are called regular expressions. Regular
expressions are in Bold face. The symbols that appear in regular use of the letters of
the alphabet X are the symbol for the null string A, parenthesis, the star operator, an
the plus sign. :

The set of regular expressions ig defined by the following rules:

f.  Every letter of T can be made into a regular expression A itseif is a regular
expression.

2. If P and m are regular expressions, then so are
(UM
(i) Im
(iii) Hm
i r
® r=1

3. Nothing else is regular expression.

For example, now we would build expression from the symbols 0,1 using the
operations of union, concatenation, and Kleene closure.

(i) 01 means a zero followed by a one (concatenation) *
(i) 0+1 means either a zero or a one (union)
(iii) 0" means A+0-+00+000+..... (Kleen closure).

With parentheses, we can build larger expressions. And, we can associate meanings
with our expressions. Here’s how

Expression Set represented

(0+1)" all strings over {0,1}

0°10°10" strings containing exactly two ones
©0+1)'11 strings which end with two ones.
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The language denoted/represented by the regn;lar expression R is L(R).

“xample 9: The language 1. defined by the regular expression ab*a is the set of ai!
strings of 2’s and b’s that begin and end with a’s, and that have nothing but b’s inside.

L = {aa, aba, abba, abbba, abbbba, } -

fxample 10: The language associated with the regular expression ' contains all
the strings of a’s and b’s in which all the a’s (if any) come before ail the b’s {if any}.

L= {A,a,b, aa, ab, bb, aaa, aab, abb, bbb, aaa,.. B

Note that ba and aba are not in this language. Notice also that there need not be the
same number of a’s and b’s.

£xample 11: Let us consider the language 1 defined by the regular expression

(at+b)’ a(a+b)’. The strings of the language L are obtained by concatenating a string
from the language corresponding.to (a+b)” followed by a string from the Janguage
associated with {(a+b)". We can also say that the language is a set of all words over the
alphabet £ = {a,b} that have ana in them somewhere.

To make the association/correspondence/relation between the regular expressions and
their associated languages more explicit, we need to define the operation of
multiplication of set of words.

Definition: If § and T are sets of strings of letiers {they may be finite or infinite seis),
we define the product set of strings of letters {0 be. ST = {all combinations of a string

from S concatenated with a siring from T in that order}.

Example 12: If S = {a, aa, aaa}, T= {bb, bbb}
Then, ST = {abb, abbb, aabb, aabbb, aaabb, aaabbb}.

Example 13: If S= {a bb bab}, T = {A bbbb}
Then, ST = {a bb bab abbbb bbbbbb babbbbb}

Example 14: If L is any language, Then, La= AL =L.

Fx.3) Find a regular expression to describe each of the following languages:

(a) {ab,c}
(b) {a,b,ab,ba,abb,baa,....}
(c) {Aa,abb,abbbb,....}

Ex.4)  Find a regular expression over the alphabet {0,1,} to describe the set of all
binary numerals without leading zeroes (except 0 itself). So the language is
the set

3.2.4 Algebra of Regular Expressions

- are many general equalities for regular expressions. We will list a few simpie
cqualities together with some that are not so simple. Al! the properties can be verified
using properties of languages and sets We will assure that R.S and T denote the
arbitrary regular expressions

Sroperties of Regular Expressions

L. (R8T = RH(S+T)

Modeis for Executing
Algorithms-i: FA
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2. R+R=ER

3. Rtg={§+R=R.
4. R+S=S+R

5. R¢=¢R=¢

6. Ra=AR=R

7. (RS)T=R(ST)

8.  R{S+T)=RS+RT

8. {S+T)R=SR+TR
10 ¢ =A"=n
11 RE=R"=R"
12 RR' =RR=R"=r+RR’
13. (R48) =(R'S) = (R'+SY =R'S = (R'S)’R' =R(SR’)’
14, (RS) =(R'S") = (R'+8")
Theorem 2: Prove thai R+KR =R
Proof : We know the following equalities:
LR+R) = LIRYUL(R) = L{R}
SoR+tR=R
Theorem 3: Prove the distributive property
R(5+T) = RS+RT
Proof: The following set of equalities will prove the property:
LR ($+T)) = L(R)L(S+T)
LRYLSUL(T))

= (LRILSHULR)L(T))
L(RS+RT)

1

[

Similarly, by using the equalities we can prove the rest. The proofs of the rest of the
equalities are lef as exercises.

Example 15: Show that R+RS'S =a'bS", where R = b+aa’band S is any regular
expression.

R+RS'S = RA+RS’S (property 6)
=R(A+S"S) (property 8)
=R(A+SS") (property 12)
=RS" (property 12)

= (b+aa'b)S" (definition of R)
=(a+aa’) bS” (properties 6 and 8)

=a'bS". (Property 12)

Try an exercise now.

Ex.5) Establish the following equality of regular expressions:
b’(abb™+aabb"+aaabb’)' = (b+ab+aab+aaab)’
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As we already know the concept of language and regular expressions, we have an Models for Executing
important type of language derived from the regular expression, called regular Algorithms-I: FA
language.

33 REGULAR LANGUAGES

Language represented by a regular expression is called a regular language. In other
words, we can say that a regular language is a language that can be represented by a
regular expression.

Definition: For a given alphabet Z, the following rules define the regular language
associated with a regular expression.

Rule 1: §,{A} and {a} are regular languages denoted respectively by regular
expressions $and A.

Rule 2: For each a in X, the set {a} is a regular ianguage denoted by the regular
" expression a.

Rule 3: If 1 is a regular expression associated with the language L and m is a regular
expression associated with the language M, then:

(i) The language = {xy : xeL and yeM} is a regular expression associated with the
regular expression lm.

(ii)— The regular expression I+m is associated with the language formed by the union
of the sets L and M.

language (Hm) = LUM

(iii) The language associated with the regular expression (I)” is L', the Kleen Closure
of the set L as a set of words:

language (I") =L,
Now, we shall derive an importaht relation that, ali finite ianguages are regular.

Theorem 4: If L is a finite language, then L can be defined by a regular expression.
In other words, all finite languages are regular.

Proof: A language is finite if it contains only finitely many words.

To make one regular expression that defines the language L, turn all the words in L
into bold face type and insert plus signs beiwéen them. For example, the regular
expression that defines the language L = {baa, abbba, bababa} is baa + abbba +
bababa.

Example 16: If L = {aa, ab, ba, bb}, then the comesponding regular expression is
aa + ab +ba + bb.

Another regular expression that defines this language is (a+b) (a+bj.

3¢, a particular regular language can be represented by more than one reguiar
expressions. Also, by definition, each regular language must have at least one regular
expression corresponding to it )

Try some exercises,

Ex.6) Find a language to describe each of the following regular expressions:
(a) ath (b))  atd (o) a'be'tac

53
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alphabet {a,b}.

(a) strings with even length.
(b) strings containing the sub string aba.

In our day to day life we oftenly use the word Automatic. Automation is the process
where the output is produced directly from the input without direct involvement of
mankind. The input passes from various states in process for the processing of a
language we use very important finite state machine called finite automata

3.4 FINITE AUTOMATA

Finitc automata are important in science, mathemaucs, and engincering. Engineers
like them because they are superb models for circuits (and, since the advent of VLSI
systems sometimes finite automata represent circuits.) computer scientists adore them
because fhey adapt very likely to algorithm design. For example, the iexical analysis
portion of compiling and translation. Mathematicians are introduced by them too due
to the fact that there are several nifty mathematical characterizations of the sets they
accept.

Can a machine recognise a language? The answer is yes for some machine and some
elementary class of machines called finite automata. Regular languages can be
represented by certain kinds of algebraic expressions by Finite automaton and by
certain grammars. For example, suppose we need to compute with numbers that are
represented in scientific notation. Can we write an algorithm to recognise strings of
symbols represented in this way? To do this, we need to discuss some basic
computing machines called finite automaton.

An automata will be a finite automata if it accepts all the words of any regular
language where language means a set of strings. In other words, The class of regular
language is exactly the same as the class of languages accepted by FA’s, 4
deterministic finite automata.

24.1  Definition

A system where energy and information are transformed and used for performing
some functions without direct involvement of man is called automaton, Examples are
automatic machine tools, automatic photo printing tools, etc.

A finite automata is similar to a finite state machine. A finite automata consists of
five parts:

(1) a finite set of states;

(2) a finite set of alphabets;

(3) an initial state;

(4) asubset of set of states (whose elements are called “yes” state or; accepting
state;) and

(5) a next-state function or a transition state function.

A finite automata over a finite alphabet A can be thought of as a finite directed graph
with the property that each node omits one labelled edge for each distinct element of

» A. The nodes are called states. There is onc special state called the start (or initial)
state, and there is a possible empty set of states called final states.

For example, the labelled graph in Figurel given below represents a DFA over the
alphabet A = {a,b} with start state 1 and final state 4.

N4



3
B
FN]

Models for Exezuting
Algorithms-I: FA

L~
Fma! State
Start — @ .) ab

a
Figure 1: Finite automata

We always indicate the start state by writing the word start with an arrow painting to
it. Final states are indicated by double circle.

The single arrow out of state 4 labelled with a,b is short hand for two arrows from
state 4, going to the same place, one labelled a and one labelled b. It is easy to check
that this digraph represents a DFA over {a,b} because there is a start state, and each
state emits exacily two arrows, one labelled with a and one labelled with b.

So, we can say that a finite automaton is a collection of three tuples:

L. A finite set of states, one of which is designated as the initial state, called the start
state, and some (may be none) of which we designated as final states.

2. Analphabet X of possible input letters from which are formed strings that are to
be read one letter at a time.

G

A finite set of transitions that tell for each state and for each letter of the input
alphabet which state to go to next.

For example, the input alphabet has only two letters a and b. Let us also assume that
«here are only three states, x, y and z. Let the following be the rules of transition:

1. from state x and input a go to state y;

2. from §Fate x and input b go to state z;

3. from state y and input b go to state x;

4. from state y and input b go to state z; and
5. from state z and any input stay at state z.

Let us also designate state x as the starting state and state z as the only final state.
Let us examine what happens to various input strings when presented to this FA. Let
us start with the string aaa. We begin, as always, in state x. The first ietter of the
string is an a, and it tells us to go state v (by rule 1). The next input (instruction) is
also an 2, and this tells us (by rule 3) fo go back fo state x. The third input is another
a, and (b] Rule 1) again we go to the state y. There are no more input letters in the
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input string, so our trip has ended. We did not finish in the final state (statg 23, so we
have an unsuccesstul cr at o of our run.

‘The string aaa is not in th Ly of all strings that leave this FA in state z. The set
of all strings that do leave us .1y a final state is calied the language defined by the finite
automaton. The input string aaa is not in the language defined by this FA. We may
say that the string aaa is not accepted by this FA because it does not lead to a final
state. We may also say “aaa is rejecied by this FA.”  The set of all strings accepted is

the language associated with the FA. So, we say that L is the language accepted by

this FA. FA is also called a language recogniser.

Let us examine z different input string for this same FA. Let the input be abba. As
always, we start in state x. Rule 1 tells us that the first input letter, a, takes us te state
y. Once we are in state y we read the second input letter, which is eb. Rules 4 now
iells us to move {0 state z. The third input letter is a b, and since we are in state z,
Ruie 5 tells us to stay there. The fourth input letter is an a,'and again Rule 5 says state
z. Therefore, after we have followsed the instruction of each input letter we end up in
state z. State 7 is designated as a final state. So, the input stiing abba has taken us
successfully to the final state. The string abba is therefore a word in the language
associated with this FA. The word abba is accepted by this FA.

It is not difficult for us to predict which strings will be accepted by this FA. {fan
input string is made up of only the letter a repeated some number of times, then the
action of the FA will be jump back and forth between state x and state v. No such
word can ever be accepted.

To get into state z, it is necessary for the string to have the letter b in it as soonasab
is encountered in the input string, the FA jumps immediately to state z 5o matter what
state it was before. Once in state z, it is impossible to leave. When the input strings
rmn o, the FA will still be in state 2, leading to acceptance of the string.

Sas the FA above will accept ali the strings that have the letter b in them 2nd no cother
strings. Therefore, the language associated with this FA is the one defined by the
regular expression (a+h)’ b(a+h)".

The list of transition rules can grow very long. It is much sinipicr to summarise them
iri a table format. Each row of the table is the name of one of the states in FA, and
each column of this table is a letter of the input alphabet. The cntries inside the table
are the new states that the FA moves into the transition states. The transition table for
the FA we have described is:

Table ]
Input

State

a b

Start x y z

Y X 7

Final z ’ ;

The machine we have alres 1 i hist and the transition table can

be depicted by the <tate



Figure 2: State Rausition granh

Mote: A single state can b2 start as well as'final state both. There will be only one
start state and none or more than one final states in Finite Automaton.

3.4.2  Another Method toc Describe FA

There is a traditional method to describe finite automata which is extremely intuiiive,
It is a picture called a graph. The states of the finite automaton appear as veriices of
the graph while the transitions from state to state under inputs are the graph edges.
The state graph for the same machine also appears in Figure 3 given below.

>()0)-
uc} u‘o uofl

Figure 3: Finite autemata

v

The fimite automata shown in Figure 3 can also be represented in Tabular form as
below:

— Table 2

. Input

i State 0 1 Accept?
|

i

| Start 1 1 2 No

l Finai 2 2 3 Yes

| 3 3 3 No

Before continuing, let’s examine the computation of a finite automaton. QOur first
example begins in state one and reads the input symbols in turn changing states as
necessary. Thus, a computation can be characterized by a sequence of states. {Recall
that Turing machine configurations needed the state plus the tape content. Since a
finite automata on never writes, we always know what is cn the tape and need only
ook at a state as a configuration). Here is the sequence for the input 0001001.

Input Read: € 0 0 i ] 0

i
States : 1 -5 1 E P A A T A .

Exampie 17 (An elevator caniroller) [tat’s

hmagine an elevator that serves two
floors. Inputs are calls 1o a floor ertherirom

@ the ¢levator or from the floor
. This makes threv distinct Inputs possiblz namety

Models for Executing
Algorithms-1: FA
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0 - no calls
1 - call to floor one
2 - call to floor two

The elevator itself can be going up, going down, or halted at a floor. Ifitis on a floor,
it could be waiting for a call or about to go to the other floor. This provides us with
the six states shown in Figure 4 along with the state graph for the elevator controller.

W1 Waiting on first floor
Ul About to go up

UP Going up

DN Going down

W2 Waiting-second floor
D2 About to go down.

Figure 4: Elevator control

A transition state table for the elevator is given in Table 3:

‘Table 3: Elevator Control

State Input .
None call to 1 call to 2
W1 (wait on 1) Wi w1 8}
Ul (start up) UP Ul UP
up w2 D2 w2
DN w1 w1 Ul
W2 (wait on 2) w2 DN . w2
D2 (start down) DN DN D2

Accepting and rejecting states are not included in the elevator design because
acceptance is not an issue. If we were to design a more sophisticated elevator, it
might have states that indicated:

Finite automata

a)  power faukyrem
b)  overloading, or
dé)  breakdown

In this case, acceptance and rejection might make sense.




Let us make a few small notes about the design. If the elevator is about to move ( i.e., Models for Executing
in state U1 or D2) and it is called to the floor it is presently on it will stay. (This may Algorithms-1: FA
be good Try it next time you are in an elevator.) And, if it is moving (up or down)

and gets called back the other way, it remembers the call by going to the U1 or D2

state upon arrival on the next floor. Of course, the elevator does not do things like

open and close doors (these could be states too) since that would have added

complexity to the design. Speaking of complexity, imagine having 100 floors.

That is our levity for this section. Now that we know what a finite automaton is, we

must (as usual) define it precisely.

Definition : A finite automation M is a quintuple M = (0,2, 8,95, F) where :

Q is a finite set (of states)

Z is a finite alphabet (of input symbols)
8: Q x £ - Q (next state function)
qoeQ (the starting state)

FcQ (the accepting states})

We also need some additional notation. The next state function is called the transition
function and the accepting states are often called final states. The entire machine is
usually defined by presenting a transition state table or a transition diagram. In this
way, the states, alphabet, transition function, and final states are constructively
defined. The starting state is usually the lowest numbered state. Our first example of
a finite automaton is:

M=({q, @, @}, {01}, 8, qu, {a2}

Where the transition function 3, is defined explicitly by either a state table or a state
graph.

3.5 SUMMARY

In this unit we introduced several formulations for regular languages, regular
expressions are algebraic representations of regular languages. Finite Automata are
machines that recognise regular languages. From regular expressions, we can derive
regular languages. We also made some other observations. Finite automata can be
used as output devices - Mealy and Moore machines.

3.6 SOLUTIONS/ANSWERS

Ex.1)

(i) ababbbaa

(ii) baaababb

(iii) ab abb ab abb
(iv) baa baa

(v) ababbababb baa

Ex.2)

(1) Supposeaa=x
Then {x, b}' = {A, X, b, XX, bb, xb, bx, xxx, bxx, xbx, xxb, bbx, bxb, xbb,
bbb} substituting x = aa .
{aa,b}° = { A, aa, b, aaaa, bb, aab, baz, aaaaaa, baaaa, aabaa,

(ii) {a,ba}’= { A, a, ba, aa, baba, aba, baa, .. }

59
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Ex.3)

(a) .atbic
(b) ab"+ba’
(c) ata(bb)’

Ex.4)
0+1(0+1)"

Ex.5)
Starting with the left side and using properties of regular expressions, we get
b'(abb” + aabb"+aaabb")"

= b’((ab+aab+aaab)b’)" (property 9)
= (b + ab + aab + as=¥)’ (property 7).

Ex.§)

(@) {ab}
®) {a,Abbb,...b%. .}
(¢} {ab,ab,bc,abbbce,...ab"be?,....}

Ex.7)

(a) (aa+ab+ba+bb)’
() (a+b) sba(a+h)’
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4.0 INTRODUCTION

We have mentioned earlier that not every problem can be solved algorithmically and
that good sources of examples of such problems are provided by formal models of
computation viz., FA, PDFA and TA. In the previous unit, we discussed FA. In this
unit, we discuss PDFA, CFG and related topics.

4.1 OBJECTIVES

After going through this unit, you should be able to:

e explain and create context free grammar and language;

e define the pushdown automata;

e find the equivaience of context free grammar and Pushdown Automata, and
® create a grammar from language and vice versa.

4.2 FORMAL LANGUAGE & GRAMMAR

In our day-to-day life, we often use the common words such as grammar and
language. Let us discuss it through one example.

Example 1: If we talk about a sentence in English language, “Ram reads”, this
sentence is made up of Ram and reads. Ram and reads are replaced for <noun> and
<verb>. We can say simply that a sentence is changed by noun and verb and is
written as

<senfence> -» <noun> <verb>
where noun can be replaced with many such vales as Ram, Sam, Gita.... and also

<verb> can be replaced with many other values such as read, write, go .... Asnoun
and verb are replaced, we casiy write

<noun> - 1
<noun-> - Ram
<noun> 4 Sam
<verb> > reads
<verb> - wiltes

From the above, we can coliget all the values in two categories. One is with the
parameter changing its values further, and another is with termination. These
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collections are called variables and terminals, respectively. In the above discussion
variables are, <sentence>, <noun> and <verb>, and terminals are I, Ram, Sam, read,
write. As the sentence formation is started with <sentence>, this symbol is special
symbol and is called start symbol.

Now formally, a Grammar G=(V, %, P, S) where,

® Viscalled the set of variables. e.g., {S, A, B, C}
& ZIisthe set of terminals, e.g., {a, b}
®  Pisa set of production rules
{- Rules of the form A - a where Ae (VUY)" and e (VUZ) eg.S - aA).
®  Sisaspecial variable called the start symbol SeV.

Structure of grammar: If L is a language over an alphabet A, then a grammar for L
consists of a set of grammar rules of the form

X ->y

where x and y denote strings of symbols taken from A and from a set of grammar
symbols disjoint from A. The grammar rule x — y is called a production rule, and
application of production rule (x is replaced by y), is called derivation.

Every grammar has a special grammar symbol called the start symbol and there must
be at least one production with the left side consisting of only the start symbol. For
example, if S is the start symbol for a grammar, then there must be at ieast one
production of the form S— y.

Example 2: Suppose A = {a,b,c} then a grammar for the language A" can be
described by the following four productions:

S> A (i)
S— aS (ii)
S-> bS (iii)
S—» ¢S (iv)
S =>aS =—aaS => aacS = aacbS => aacb = aacb
using  using  using using using
prod.{u) prod.(it) prod.(iv) prod.(iii) prod.(i}
The desired derivation of the string is aacb. Each step in a derivation corresponds to a

branch of a tree and this true is called parse tree, whose root is the start symbol. The
completed derivation and parse tree are shown in the Figure 1,2,3:

. PN
RN N\

Figure 1: S => aS Figure 2: § => aS = aa$

o
192]
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Figure 3: S => aS=> aaS = aacS

Let us derive the string aacb, its parse tree is shown in Figure 4.
S =>aS = aaS = aacS- = aachS = aacba = aach

S

PN
a c/S\S
7\,
AN

A

Figure 4: Parse tree deriving aach

Sentential form: A string made up of terminals and/or non-terminals is called a
sentential form. )

In example 1, formally grammar is rewritten as

InG=(V,Z,P,S) where
V = {<sentence>, <nour>, <verb>}
% = {Ram, reads,...}
P = <sentence> ~» <poun> <verb>
<noun> — Ram
<verb> — reads, and
S = <semtence>

If x and y are sentential forms and o — f is a production, then the replacement of &
by B in xay is called a derivation, and we denote it by writing

xay = xBy
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To the left hand side of the above production rule x is left context and y is right
context. If the derivation is applied to left most variable of the right hand side of any
production rule, then it is called lefimost derivation. And if applied to rightmost then
is called rightmost derivation.

The language of a Grammar:

A language is generated from a grammar. If G is a grammar with siart symbol S and
set of terminals 7, then the language of G is the set

LG = (WlWeX and § = W

Any derivation involves the application production Rules. If the production rule 1s

s

applied once, then we write @ =>B. When it is more tharn one, it is written as ®=>§.
G : a

Recursive productions: A preduction is called resursive if its left side occurs on its

right side. For example, the production S -3 aS is recursive. A production A -> «is

indirectly recursive. If A derives a sententisl form that contains A, Then, suppose we
have the following grammar:

S -» bisA
A —» ¢/bS

the productions S —» aA aud A - bs are both indirectly recursive becausz of the
following derivations:

S = aA = ab§,
A = bS = baA

A grammar is recursive if it contains either a recursive production or an indirectly
recursive production.

A grammar for an infinite language must be recursive.

a

Example 2: Consider {a,a,2,..,2", ..} = {a" | n20}.

MNotice that any string in this language is sither A or of the form ax for some stung x in
the languags. The following grammar will derive any of these strings:

S > AlaS.
Now, we shall derive the siving aaa:
S => aS = aaS = aaaS => aaa.

Example 4: Consider {A, ab, aabb, ..., a"b", ...} = {a“b"!n‘z()}.

Notice that any string in this language is either A or of the form axb for some string x
in the laaguage. The following grammar will derive any of the strings:

S -> n/aSb.
For example, we will derive the string aaabbb;
S = aSb = aaSbb => aaaSbbb => aaabbb.

Example 5: Consider a languége: {n, ab, abab, ..., (ab)", ...} = {(ab)" ! 20}

Notice that any string in this language is either A or of the form abx for some string x
in the language. The following grammar will derive any of these strings:

S -> AfabS.



A
Far example, we shalf derive the string ababab:

§ = abS => ababS =» abababS => ababab.

Sometimes. a language can be written in terms of simpler languages, and 2 grammar
can be constructed for the language in terms of the grammars for the simpler
languages. We will now concentrate on operations of union, product and closure.

Suppose M -and N are languages whose grammars have disjoint seis of non-texminals.
Suppose also that the start symbols for the grammars of M and N are Aand B,
vespectively. Then, we use the following rules to find the new grammars generated
from M and N: '

Union Rule:-The language MUN staris with-the two productions
S-» A/B.

Product Rule: The language MN starts with the preduction.
S— AB

Ciosure Rule: The language M starts with the production
S — AS/A.

Example 6: Using the Unien Rule:

Let’s write a grammar for the following language:
L= {r, a,b,aa bb,..,ab" .. }.

L can be written as union.
L=MuUN,
Where M = {a*| 020} and N = {b"| n20).
- Thus, we can write the following grammar for L:

S A[B union rule,
A —> ~aA grammar for M,
B -> A/bB grammar for 1.

Example 7: Using the Product Rule:

We shall write a grammar for the following language:
L= {a"b" | m,n=0}.

L can be written as a product i. = MN, where M = {a"’@ m>0} and N = {b" | n>0}. -
Thus we can write the following grammar for L:

S = AB product rule
A > AJaA grammar for M,
B — ~/bB grammar for N,

Example 8: Using the Closure Rule: For the tanguage L of all strings with zero or
more occurrence of aa or bb. L= {aa, bb}". If welet M = {aa, bb}, thenL =M.
Thus, we can write the following grammar for L:

S --» AS/A closure mie,
A —» aa/bb grammar for M.

Models for Executing
Algorithms-11: PDFA &
THeg
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We can simplify the grammar‘lm);; substituting for A to obtain the following grammar:
S —> aaS/bbS/n

Example 9: Let £ = {a, b, c}. LetS be the start symbol. Then, the language of
palindromes over the alphabet T has the grammar.

S — aSa/bSb/cSc/alblc/n.

For example, the palindrome abcba can be derived as follows:
S => aSa = abSba => abcba

Ambiguity: A grammar is said to be ambiguous if its language contains some string
that has two different parse tree. This is equivalent to saying that some string has two
distinct leftmost derivations or that some string has two distinct rightmost derivations.

Example 10: Suppose we define a set of arithmetic expressions by the grammar:

E — a/b/E-E

b a a b
Figure 5: Parse tree Figure 6: Parse tree showing ambiguity

This is the parse tree for an ambiguous string.

The language of the grammar E —> a/b/E-E contains strings like a, b, b-a, a-b-a, and
~b—a~b. This grammar is ambiguous because it has a string, namely, a~b—a, that has
two distinct parse trees.

Since having two distinct parse trees mean the same as having two distinct left most
derivations. .

E=E-E> a-E>a-BE-E=>a-b-E=a-b-a
E=E-E> E-E-E=a-E-E=>a-b-E=>a—b-a,

The same is the case with rightmost derivation.

L A derivation is called a leftmost derivation if at each step the leftmost non-
terminal of the sentential form is reduced by some production.

. A derivation is called a rightmost derivation if at each step the rightmost non-
terminal of the sentential form is reduced by some production.

Let us try some exercises.

Ex.8) Given the following grammar
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For each of the following strings, construct a leftmost derivation, a rightinosi

derivation and a parse tree.

@ [} ® 11 © 0 @ wnn

Ex.9) Find a grammar for each language

{a) {a™" | m,neN, n>m}.
()  fa"bc"|neNy}.

ix.10) Find a grammar for each Alanguagc:

{a) The even palindromes over {a, b}.
{b) The odd palindromes over {a, b}.

Chomsky Classification for Grammar:

As you have seen earlier, there may be many kinds of production rules. So, on the
basis of production rules we can classify.a grammar. According to Chomsky
classification, grammar is classified into the following types:

b
Type 0: This grammar is also called unrestricted grammar. As its name suggests,
it is the grammar whose production rules are unrestricted.

All grammars are of type 0.

Type 1: This grammar is also called context sensitive grammar. A production of
the form xAy — xaty is called a type 1 production if a#a, which means length of the
working string does not decrease.

In other words, ]xAy <l xaylas a#A. Here, x is left context and y is right context.

A grammar is called type 1 grammar, if all of its productions are of type 1. For this,
grammar S —» A is also allowed.

The language generated by a type [ grammar is called a type 1 or context sensitive
language,

Type 2: The grammar is also known as context free grammar. A grammar is called
type 2 grammar if all the production rules are of type 2. A production is said to be of
type 2 if it is of the form A — a where A€V and ae(VUE)". In other words, the left
hand side of production rule has no left and right context. The language generated by
atype 2 grammar is called context free language.

Type 3: A graminar is called type 3 grammar if all of its production rules are of type
3. (A production rule is of type 3 if it is of form A — A, A —> a or A —> aB where
aeX and A,BeV), i.e., if a variable derives a terminal or a terminal with one variable.
This type 3 grammar is also called regular grammar. The language generated by
this grammar is called regular language.

Ex.11) Find the highest type number that can be applied to the following grammar:
(a) S -> ASB/b, A— aA
(b) S — aSa/bSb/a/b/a
(c) S — Aa, A~ S/Ba, B — abc.
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43 CONTEXT FREE GRAMMAR (CFG)

We know that there are non-regular fanguages. For example, {a"b" | n>0} is non-
regular language. Therefore, we can’t describe the language by any of the four
representations of regular languages, regular expressions, DFAs, NFAs, and regular
giammars. .

Language {a"b" ! 10} car be easily described by the non-regular grammas:
S — A/aSb.
So, a context-free grammar is a grammar whose productions are of the form :
S—>x

Where § is a non-terminal and x is any string over the alphabet of terminals and nos-
texminals. Any regular grammar is context-free. A language is context-free language
if it is generated by a context-free grammar.

A grammar that is not context-free must contain a production whose left side is a
string of two or more symbois. For example, the production Sc — x is not part of any
context-free grammar,

Most programming languages are context-free. For example, a grammar for some
typical statements in an imperative language might look like the following, where the
words in bold face are considered to be the single terminals:

S — while E do 8/ if E then S else S/{SL}/i: = E
L~» SL/a

E —>....(description of an expression)
I —....(description of an identifier).

We can combine context-free languages by union, language preduct, and closure to
form new contcxt-free languages.

Definition: A context-free grammar, called a CFG, consists of three components:
1. Analphabet I of letters called terminals from which we are going to make
strings that will be the words of a language. ’

2. A set of symbols called non-terminals, one of which is the symbols, start
symbol.

3. A finite set of productions of the form
One non-terminal — finite string of terminals and/or non-terminals.

Where the strings of terminals and non-terminals can consist of only terminals or of
only non-terminals, or any combination of terminals and non-terminals or even the
empty string.

The language generated by a CFG is the set of all strings of terminals that can be
produced from the start symbol S using the productions as substitutions. A language
generated by a CFG is called a context-free language.

Example 11: Find a grammar for the language of decimal numerals by observing that
2 decimal numeral is either a digit or a digit followed by a decimal numeral
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$=>DS = 7S = 7DS = 7DDS => 78DS => 7808 = 780D => 780.
Example 12:Let the set of alphabet A = {a, b, ¢}

Then, the l.ang‘uage of palindromes over the alphabet A has the grammar:
S— aSaibSblcScfa!b!clA

For example, the palindrome abcba can be derived as follows:
P = aPa = abPba = abcba

Example13: Letthe CFGisS — L|LA

A—>LA|DA|A
L-albl...|z
D-ol1f..]o

The language generated by the grammar has all the strings formed by a, b,c ....z, 0
1,...9.

We shall give a derivation of string aZb to show that it is an identifier.
S=LA=aA =aDA = a?A > a2lA = albA = a2b

Context-Free Language: Since the set of regular language is closed under all the
operations of union, concatenation, Kleen star, intersection and complement. The set
of context free languages is closed under union, concatenation, Kleen star only.
Union

Theorem 1: if L, and L, are context-free languages, then LUL, is a context-free
language.

Proof: If L, and L, are context-free languages, thenyeach of them has a context-free
grammar; call the grammars G, and G,. Our proof requires that the grammars have
no non-terminals in common. So we shall subscript all of G,’s non-terminals with a 1
and subscript all of G,’s non-terminals with a 2. Now, we combine the two gramimars
into one grammar that will generate the union of the two languages. To do this, we
add one new non-terminal, S, and two new productions.

S-S,
I's,

S is the starting non-terminal for ihe new union grammar and can be replaced either
by the starting non-terminal for G, or for G,, thereby generating either a string from
L; or from L,. Since the non-terminals of the two original languages are completely
different, and once we begin using one of the original grammars, we must complete
the derivation using only the rules from that original grammar. Note that there is no
need for the alphabets of the two languages to be the same.

Concatenation

Theorem 2: If L, and L, are context-free languages, then L,L, is a context-free
language.

Proof : This proof is similar to the last one. We first subscript all of the non-terminals
of G; with a 1 and all the non-terminals of G, with a 2. Then, we add a new

nonterminal, 8, and one new rule to the combined grammar:

S — S8,

69
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S is the starting non-terminal for the concatenation grammar and is replaced by the
concatenation of the two original starting non-terminals.
.

Kleene Star

Theorem 3: If L is a context-free language, then L' is a context-free language.

Proof : Subscript the non-terminals of the grammar for L with a 1. Then add a new
starting nonterminal, S, and the rules

S —>S:S
N _ ‘

The rule S — 8,8 is used once for each string of L that we want in the string of L,
then the rule S — A is used to kill off the S.

Intersection

Now; we will show that the set of context-free languages is not closed under
intersection. Think about the two languages L; = {a"b"c" | n,m=0} and

L, = {a™"c"{n,m>0}. These are both context-free languages and we can give a
grammar for each one:

Gy

S —> AB
A — aAb
| A
B-—>cB
A

Gz:'
S-> AB
A —aA
| A

B > bBc
[ A

The strings in L; contain the same number of a’s as b’s, while the strings in [, contaix
the same number of b’s as ¢’s. Strings that have to be both in'L, and in L;, i.¢., strings
in the intersection, must have the same numbers of a’s as b’s and the same number of
b'sasc’s.

Thus, LinL, = {a"b"c" anO}. Using Pumping lemma for context-free languages it
can be proved easily that {a” 6"c"

n > 0} is not context-free tanguage. So, the class

of context-free languages is not closed under intersection.

.
Although the set is not closed under intersection, there are cases in which the
intersection of iwo context-free languages is context-free. Think about regular
languages, for instance. All regular languages are contexi-free, and the intersection of
two regular languages is regular. We have some other special cases in which an
intersection of two context-free janguages is context, free.

Suppose that L; and L, are context-free languages and that LycL,. Then L,nL, =L,
which is a context-free language. An example is EQUAL m{a"b"}. Since strings in
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{a"b"} always have the same number of a’s a:lia s, the intersection of these two ~ Models for Executing
tanguages is the set {a"b"}, which is context-free. Algorithms-ik: PB!"éT?
Another special case is the intersection of a regular language with a non- regula.r
context-free language. In this case, the mteraectxon will always be context-free. An
example is the intersection of L, = a'b*a’, which is regular, with L,= PALINDROME.
LinL, = {3"b"a" | m,n > 0}. Thislanguage is context-free.

Complement

The set of context-free languages is not closed under complement, although there are
again cases in which the complement of a context-free language is context-free.

Theorem 4: The set of context-free languages is not closed under complement.

Proof: Suppose the set is closed under complement. Then, if L, and L, are context-
free, so are Ll and L,. Since the set is closed under union, L, ‘U L, is also context-
free, as is (L;'U L, ). But, this last expression is equivalent to LynL, which is not
guaranteed to be context-free. So, our assumptmn must be incorrect and the set is not
closed under complement :

Here is an example of a context-free language whose complement is not context-free.
The language {a"b"c" | n>1} is not context-free, but the author proves that the
complement of this language is the union of seven different context-free languages
and is thus context-free. Strings that are not in {a"b"c" [n>1} must be in one of the
following languages: :

M, = {a"b%" | p.q,r21 and p>q} (more a’s than b’s)
= {a% | p,q,r21 and g>p} (more b’s than a’s)
= {a"b% | p,q,r>1 and s>} (more a’s than ¢’s)
= {a""%"|p,q,r>1 and r>p} {more ¢’s than a’s)

M = the complement of a"b’c"” (letters out of order)

el adl Sl o

Using Closure Properties

Sometimes, we can use closure properties to prove that a language is not context-free.
Consider the language our authror calls DOUBLEWORD = {ww | we(; (a+b)’}.- Is this
language context-frec? Assume that itis. Form the intersection of DOUBLEWORD
with the regular language 2’ b” a* b, we know that the intersection of a context-free
language and a regular language is always context-free. The intersection of
DOUBLEWORD and is a®b™"b™ | n,m > 1}. But, this language is not context-free, so
DOUBLEWORD cannot be context-free.

Think carefully when doing unions and intersections of languages if one is a superset
of the other. The union of PALINDROME and (a+b) is ( (a+b)’, which is regular. So,
sometimes the union of a context-free language and 2 regular language is regular. The
union of PALINDROME and a’ is PALINDROME, which is context-free but not
regular.

Now try some exercises:

Ex.12) Find CFG for the language over X = {a,b}.
(a) Al words of the form
a*b’a’, wherex,y,z=1,2,3... andy = 5x+7z

(b)  Forany two positive integers p and g, the language of all words of the
form a* b’ a”, where x, y, 2= 1,2,3.. and y = px + qz.
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44 PUSHDOWN AUTOMATA (PDA)

Informally, 2 pushdown automata is a finite automata with stack. The corresponding
acceptor of context-free grammar is pushdown automata. There is one start state and
there is a possibly empty-set of final states.- We can imagine a pushdown automata as
a machine with the ability to read the letters of an input string, perform stack
operations, and make state changes.

The execution of a PDA always begins with one symbol on the stack. We should
always specify the initial symbol on the stack. We assume that a PDA always begins
‘execution with a particular symbol on the stack. A PDA will use three stack
operations as follows:

(i)  The pop operation reads the top symbol and removes it from the stack.

(i) The push operation writes a designated symbol onto the top of the stack. For
example, push (x) means put x on top of the stack.

(iii) The nop does nothing to the stack.

We can represent a pushdown automata as a finite directed graph in which each state
(i-e., node) emits zero or more labelled edges. Each edge from state i to state j
labelled with three items as shown in the Figure 7, where L is either a letter of an
alphabet or A, S is a stack symbol, and 0 is the stack operation to be performed.

LS
i i
Figure 7: Directed graph

It takes fine pieces of information to describe 2 labelled edge. We can also represent
it by the following 5-tuple, which is called a PDA instruction.

(,1,8,0,j)

An instruction of this form is executed as follows, where w is an input string whose
letters are scanned from left to right.

If'the PDA is in state i, and either L is the current letter of w being scanned or L= A,
and the symbol on top of the stack is S, then perform the following actions:

(1) execute the stack operation 0;
(2) move to the state j; and
"(3) ifL# A, then scan right to the next letter of w.

A string is accepted by a PDA if there is some path (i.e., sequence of instructions)
from the start state to the final state that consumes all letters of the string. Otherwise,
the string is rejected by the PDA. The language of a PDA is the set of strings that it
accepts.

“Nendeterminism: A PDA is deterministic if there is at most one move possible from
each state. Otherwise, the PDA is non-deterministic. There are two types of non-
determinism that may occur. One kind of non-determinism occurs exactly when a
state emits two or more edges labelled with the same input symbol and the same stack
symbol. In other words, there are two 5-tuples with the same first three components.
For example, the following two 5-tuples represent nondeterminism:

(i, b, ¢, pop, j)
@i, b, c, push(D), k).



dodets |
The second kind of nondeterminism occurs'when a stite emits two edges labelled with
thé same stack symbol, where one input symbol is A and the other input symbol is not.
For example, the following two 5-tuples represent non-determinism because the
machine has the option of consuming the input letter b or cleaning it alone.

@, A, ¢, pop, j)
(i, b, ¢, push(D), k).

Example 14: The language {a"b" | 00} can be accepted by a PDA. We will keep
track of the number of a’s in an input string by pushing the symbo! Y onto the stack
for each 2. A second state will be used to pop the stack for each b encountered. The
following PDA will do the job, where x is the initial symbol on the stack:

aX a,Y bY
push(Y) ¥ Vpush(Y) by PoF (Y AX
Pop Top
— > > @7
AKX

nop

Figure 8: Pushﬁown automaia
The PDA can be represenied by the foilowing six instructions:

(0, A, X, nop, 2)

(0, a, X, push(Y), 0),
\ (0,2, Y, push(¥), 0),

(0, b, Y, pop,1),

(1,b,, pop,1),

(1, A, X, nop,2).

This PDA is non-deterministic because either of the first two instructions in the list
can be executed if the first input letter is a and X is on the top of the stack. A
computation sequence for the input string aabb can be written as follows:

(0, aabb, X) start in state 0 with X on the stack,
(0, abb, YX) consume a and push Y,
(0,bb, YYX) consume a and push Y,

{1, b, YX) consume b and pop.

0, A, X) consume b sad pop .

(2, A, X) move to the final state.

Equivalent Forms of Acceptance:

Above, we defined acceptance of  string by a PDA in ierms of final state acceptance.
That is 3 string is-accepted if it has been consumed and the PDA is in a final state.
But, there is an alternative definition of accepiance cailed empty stack acceptance,
which requires the input string to be consumed and the stock to be empty, with no
requitemeni that the machine be in any pariicular state. The class of languages
accepted by PDAs that use empty stack acceptance is the same class of languages
accepted by PDAs that use final state acceptance.

Models for Executing
Algorithms-Il: PHFA &
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Example 15: (An empty stack PDA): Let’s consider the language {a"b"] n>0}, the
PDA that follows will accept this language by empty stack, where X is the initiai
symbol on the stack.

a,X b,X.

(¥ push(X) "y o

m_+ ‘; '
O TTax @
pop

Figure 9: Pushdown automata

PDA shown in Figure 9 can also be represented by the following three instructions:

{0, 3, X, push (X), 0),
{0, A, X, pop, 1},
(1, b, X, pop, 1).

This PDA is non-determinstic. Let’s see how a computation proceeds. For example,
a computation sequence for the input string aabb can be as follows:

(0, aabb, X) start in state 0 with X on the stack
(0, abb, XX) consume a and push X
(0, bb, XXX) consume a and push X
*.(1, bb, XX) pop.
(1, b, X) consume b and pop
(1, A, A} consume b and pop (stack is empty)}

Now, try some-exercises.

Ex.13) Build a PDA that accepts the language odd palindrome.

Ex.14) Build 2 PDA that accepts the language even palindrome.

45 SUMMARY

In this unit we have considered the recognition problem and found out whether we can
solve it for a larger class of languages. The corresponding accepter for the context-
free languages are PDA’s. There are some languages which are not context free. We
can prove the non-context free languages by using the pumping lemma. Also in this
unit we discussed about the equivalence two approaches, of getting a context free
language: One approach is using context free grammar and other is Pushdown
Automata.

4.6 SOLUTIONS/ANSWERS

Ex.1)
(2) S—>8[S] >8]~ ]
(b) S — S[S] > [S] - [S[S ]] = [{S] - [{1}.

Similarly rest part can be done.



Ex.5)

Ex.6)

Ex.7)

(a) S -» aSblasb
A —> bAD
(1) S— aSabSbin
(®  S-—> aSabSbab.

(a) S — ASB (type 2 production)
S — b (type 3 production)
A — aA (type 3 production)

So.the grammar s of type 2.

) S —» aSa (type 2 production)
S —> bSb (type 2 production)
S —> a (type 3 production)
S — b (type 3 production)
S — A (type 3 production)

So the grammar is of type 2.

{c) Type 2.

(a) S—AB
S — aAb%A
B — b'Ba/a

®) S AB
A > aAbVa
B — b%Ba/a

Suppose language is {wew’:we {a,b}} then pda is

(C, a, x, push (a), 0), (0, b, x, push (b), 0},
(0, a, a, push (a), 0), (0, b, a, push (b), 0),
(0, 2, b, push (a), 0), (0, b, b, push (b), 0),
0, ¢, a, nop, 1), (0, c, b, nop, 1),
(0, ¢, x, nop, 1), (1, a, a, pop, 1),
(1, b, b; pop, 1), (1, s, x; nop, 2),

Language is {ww':we {a,b}"}. Similarly as Ex 6.

47 FURTHER READINGS
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BLOCK INTRODUCTION

In the earlier three blocks we discussed various issues and techniques about designing
algorithms. However, the discussion should not convey the impression that every
problem can be solved by algorithmic means. In unit 1, we discuss TM, a model of
computation, and so far the ultimate model of computation, which forms a basis for
providing examples of unsolvable problems. Then in unit 2, we discuss issues and
cexamples of algorithmically unsolvable problems.

On the other hand, there are a number of problems, for each of which, there are more
than one solution. In order to know which one of the solutions is better, we discuss
complexity of algorithms. The concept of complexity of algorithms is not only useful
in comparing algorithms for solving problems, but also in discussing the nature of
algorithms in respect of the matter whether the answers to questions through the
algorithm shall be available in reasonable amount of time.
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1.2 Prelude to Formal Definition . 6
1.3 Turing Machine: Formal Definition and Examples 8
1.4 Instantaneous Description and Transition Diagram 13

1.4.1 Instantaneous Description

1.42 _ Transition Diagrams
1.5 Some Formal Definitions 16
1.6  Observations 19
1.7 Turing Machine as a Computer of Functions . 21
1.8 Summary 31
1.9 - Solutions/Answers 31
1.10 Further Readings 38
1.0 INTRODUCTION .

In unit 3 and unit 4 of block 4, we discussed two of the major approaches to modeling
of computation viz. the automata/machine approach and linguistic/grammatical -
approach. Under grammatical approach, we discussed two models viz., Regular
Languages and Context-free Languages.

Under automata approach, we discussed two models viz., Finite Automata ahd
Pushdown Automata. Next, we discuss still more powerful automata for cotriputation,

Turing machine (TM) is the next more powerful model of automata approach
which recognizes more languages than Pushdown automata models do. Also Phrase-
structure model is the corresponding grammatical model that. matches Turing
machines in computational power..

Notations: Turing Machine (TM}, Deterministic Turing Machine, Non-Deterministic
Turing Machine, Turing Thesis, Computation, Compugational Equivalence,
Contfiguration of TM, Turing-Acceptable Language, Turing Decidable Language,
Recursively Enumerable Language, Turing Computable Function.

™ : Turing Machine
: Set of tape symbols, includes #, the blank symbol
2 : Set of input/machine symbols, does not include #
Q : the finite set of states of TM
F : Set of final states
abc... : Members of ),
o : Variable for menibers of 3,
Txor x: Any symbol of . other than x
# : The blank symbol *
o, B,Y: Variables for String over 3.
L : Move the Head to the Left
R Move the Head to the Right
q : Astate of TM, i.e,g€Q

sorqy : The start/initial state
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‘The halt state. The same symbot h is used for the purpose of denoting
halt state for all halt state versions of TM. And then h is not used for
other purposes.

The empty string

Configuration C, is obtained from configuration C,in one move

of the machine M )

Configuration C, is obtained from configuration C,in finite number
of moves.

The. symbol a is the symbol currently being scanned by the Head

Or

The symbol a is the symbol currently being scanned by the Head.

1.1 OBJECTIVES

After going through this unit, you should be able to:

e define and explain various terms mentioned under the title key words in the
previous section;

®  construct TMs for simplg computational tasks;

* realize some simple matliematical fuactions as TMs; and

®  apply modular techniques for the construction of TMs for more complex
functions and computational tasks from TMs already constructed for simple
functions and tasks.

1.2 PRELUDE TO FORMAL DEFINITION

In the next section, we will notice through a formal definition of TM that a TM is an
abstract entity constituted of mathematical objects like sets and a (partial) function.
However, in order to help our understanding of the subject-matter of TMs, we can
visualize 2 TM as a physical computing device that can be represented as a figure as
shown in 1.2.1 below:

Infinite Tape i
[d Ja Jof# Jelbloo. ...

@QQ

Read}Write
Hepd

" Finite Control

TURING MACHINE
Figure: 1.2.1



Such a view, tn addition to being more comprehensible to human beings, canbe a
quite useful aid in the design of TMs accomplishing some computable tasks, by
allowing informal explanation of the various steps involved in arriving at a particular
design. Without physical view and informal explanations, whole design process
would be just a sequence of derivations of new formal symbolic expressions from
carlier known or derived symbolic expressions — not natural for human
understanding.

According to this view of TM, it consists of

(1)  atape, with an end on the left but infinite on the right side. The tape is divided
into squares or ceils, with each cell capable of holding one of the tape symbols
including the blank symbol #. At any time, there can be only finitely many celis
of the tape that can contain non-blank symbols. The set of tape symbols is
denoted by I". ’

As the very first step in the sequence of operations of 2 TM, the input, as a
finite sequence of the input symbols is placed in the left-most cells of the
tape. The set of input symbols denoted by ., does not contain the blank
symbol #. However, during operations of a TM, a cell may contain a tape
symbol which is not necessarily an input symbol.

There are versions of TM, to be discussed later, in which the tape may be
infinite in both ieft and right sides — having neither left end nor right end.

(i)  afinite control, which can be in any one of the finite number of states.
The states in TM can be divided in three categories viz.,

{a) -the Initial state, the state of the control just at the time when TM starts its
operations. The initial state of a TM is generally denoted by qo or s.

(b) the Halt state, which is the state in which TM stops all further operations.
The halt state is generally denoted by h. The halt stute is distinct from the
initial state. Thus, a TM HAS AT LEAST TWQ STATES.

(c) Other states

(ili) @ tape head (or simply Head), is always stationed at-one of the tape cells and
provides communication for interaction between the tape and the finite control.
The Head can read or scar the syraboi in the cell under it. The symbol is
communicated to the finite control. The control taking into consideration the
symbol and its current state decides for further course of action including-

o the change of the symbol in the cell being scanned and/or
® change of its state and/or ’

® moving the head to the Left or to the Right. The control may decide not to
move the head.

The course of action is cailed a move of the Turing Machine. In other words, the
move is 2 function of current state of the control and the tape symbol being
scanned.

In case the control decides for change of the symbol in the cell being scanned, then
the change is carried out by the head. This change of symbol in the cell being

scanned is called writing of the cell by the hiead.

Initially, the head scans the left-most cell of the tape.

Models for Executing of
Algorithms - {Il: T™M
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Now, we are ready to consider a formal definition of a Turing Machine in the next
seetion.

1.3 TURING MACHINE: FORMAL DEFINITION
AND EXAMPLES

There are 2 number of versions of 2 TM. We consider below Halt State version of
formal definition a T™M.

Definition: Turing Machine (Halt State Version)
A Turing Machine is a sextupie of the form (0, %, /; & q,, h), where

{1y Qs the finite set of states,
{iiy I is the fimte set of non-blank information symbols,
{iif) | is the set of tape symbols, including the blank symbol #

{1v} 8 1s the next-move partial function from Q x| to Qx [ x {L, R, N},
where ‘L’ denotes the tape Head moves io the left adjacent cell, ‘R’ denotes
tape Head moves jo the Right adjacent cell and ‘N ° denotes Head does not
move, 1.., continues scanning the same ceil.

In other words, for g € Q and a, € |, there exists (not necessarily always,
because §is a partial function) some g; € Q and some g, € [ such that & (qiay) =
(q;, a;, x), where x may assume any one of the values ‘L.’, ‘R’ and ‘N’.

The meaning of 3 {q;, a) = (g;, @, X) is that if q; is the current state of the TM,
and a, is cell currently under the Head, then TM writes g, in the cell currently
under the Head, enters the state q; and ihe Head moves to the right adjacent celi,
if the value of x is R, Head moves to the left adjacent cell, if the value of x is L
and continues scanning the same cell, if the value of x is N.

v} qo € Q, is the initial/start state. v

{vi) h e Q isthe ‘Hals State’, in which the machinéﬁstops any further activity.

Remark 1.3.1

Again, there are a number of variations in literature of even the above version of TM.
For example, some authors allow at one time only one of the tw., ~~tions viz.,

(1) writing of the current cell and (ii) movement of the Head to the left or to the right.
However, th:s restricted version of TM can easily be seen to be computationally
equivalent to the definition of TM given above, because one move of the TM given by
the definition can be replaced by at most two moves of the TM introduced in the ~
Remark.

in the next unit, we will discuss different versions of TM and issues relating to
equivalences of these versions.

In order to illustrate the ideas involved, let us consider the following siinple
examples.

3

Example 1.3.2

Consider the Turing Machine (Q, X, [, s, Go h) defined below that erases all the non-
biank symbols on the tape, where the sequence of non-blank symbols does mo contain
any blank symbol # in-between:



Q={q,, h} £={a,b},] = {a, b, # Models for Executing
.and the next-move funciion 8is defined by the following table: Algorithms = Rf: Th

}; State o : Input Symbol d(q, 0)
CO— a ' {90 #: R}
o : b ' {90, #, R}
140 # {h, #, N}
b # ACCEPT _

Next, we consider how to design a Turing Machine to accomplish some
computational task through the following example. For this purpose, we need
the definition. : :

A string Accepted by a TM

Asstring o over X is said to be accepted by a TM M = (Q, 3,1, 8, qo, h) if when the
-string o is placed in the left-most cells on the tape of M and TM i started in the
initial state qo then after a finite number of moves of he TM as determined by §,
Turing Machine is in state h (arid hence stops further operations). The concepts will
be treated in more details later on. Further, a string is said to be rejected if under the
conditions mentioned above, the TM enters a state q # h and scans some symbol x,

then & (g, x) is not defined.

Example 1.3.3

Design a TM which accepts all strings of the form b" d" for n > 1 and rejects all other
strings. .

Let the TM M to b designed is given by M=(Q, %,[,6, qo, h) with X = { b, d}. The
values of Q, T, ,-0, shall be determined by the design process explained below.
However 10 begin with we take | = {b, d, #}.-

We illustrate the design process by considering various types of strings which are to
be accgpted or rejected by the TM.

As input, we consider only those strings which are over {b, d}. Also, it is assumed
that, when moving from left, occurrence of first # indicates termination of strings
over| . :

Case I: When the given string is of the form b" d™ ® ld)' forn2l,m>1as
shown below forn=2m =1

We are considerihg this particular-type of strings, because, by taking simpler cases of

the type, we can determine some initial moves of the required TM both for strings to

be accepted and strings to be rejected.

PR P P O S A

Where ‘- * denotes o;fé' ofb, dor #

. -~
Igitially, TM should mark left-most b. The term mark is used here in tlfkense ghat
the symbol is scanned matching with corresponding b or d as the case may be. To
begin with, the TM should attempt to match, Srom the left, the first b to the d which is
the first d after all b’s have exhausted. For this purpose, TM should move right
skipping oyer alt b’s. And after scanning the corr ponding d, it should move
left, until we reach the b, which is the last b that was marked.
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Next, TM should mark the b, if it exists, which is immediately on the right of the
oreviously marked b. i.¢., should mark the b which is the left-most b which is yet to be
marked.

But, in order to recognize the yet-to-be-marked left-most b, we must change each of
the b’s, immediately on marking, to some other symbol say B. Also, for each b, we
atiempt to find the left-most yet-to-be-marked d. In order to identify the left-most
yet-to-be-marked d, we should change each of the d’s immediately on marking it, by
some other symbol say D. :

Thus we require two additional Tape symbols B and D, i.e,l = {b, d, B, D #}.

After one iteration of replacing one b by B and one d by D the tape would be of the
form ’ )

N

R TS EN P R E P

and the tape Head would be scanning left-most b,

In respect of the states of the machine, we observe that in the beginning, in the
initial state qo, the cell under the Headisab, and then this b is replaced by a B; and at
this stage, if we do not change the state then TM would-attempt to change next b
ajso to B without matching the previous b to the corresponding d. But in order to
recognize the form b d* of the string we do not want, in this round, other b’s to be
changed to B’s before' we have marked the corresponding d. Therefore.

5 (qo,b) =(q,B, R).

Therefore, the state must be changed fo some new state say ¢;. Also in order to locate
corresponding d, the movement of the tape Head must be to the right. Also, in state
1, the TM Head should skip over all b’s to move to the right to find out the first d
from left. Therefore, even on encountering b, we may still continue in state q;.
Therefore, we should have

8 (a1.b) = (q1.b, R).

However, on ericountering a d, the behaviour of the machine would be different, i.e.,
now- TM would change the first d from left to D and start leftward journey. Therefore,
after a d is changed to D, the state should be changed to say q;. In state g we start
leftward journey jumping over D’s and b’s. Therefore

3 (q,d) =(q, D, L) and
8(qD)=(q, D, L) and
8 (a2 b) =(qz b, L).

In q,, when we meet the first B, we know that none of the cells to the left of the
current cell contains b and, if there is some b still left on the tape, then it is in the cell
just to the right of the current cell. Therefore, we should move to the right and then if
it 15 a b, it is the Jeft-most b on the tape and therefore the whole process should be
repeated, starting in state qo again.

Therefore, before entering b from the left side, TM should enter the initial state do.
Therefore,

8 (@, B) = (4, B, R).

For to-be-accepted type string, when all the b’s are converted to B’s and when the
fast d is converted to D in qz, we move towards left to first B and then move to right in
o then we get the following transition:



from configuration Models for i':xecnting of

|_B rE ] D ‘ ) ! # ‘ m ! Algorithms — 1I1:" TM
G2
to configuration
(B [B _Tp o J# [# J
T
Yo

Now we consider a special subcase of b™d™ (b ldi’, in which initially we have the
following input

[ D - Tb | ]

Which after some moves changes to

L

[B D |b I ]

JQo

‘The above string is to be rejected. But if we take & (qo, D) as qo then whole process
of matching b’s and d’s will be again repeated and then even the (initial) input of the
form ’

[v [d& [v - & [# |

will be incorrectly accepted. In general, in state qo, we encounter D, if ali b’s have
already been converted.to B’s and corresponding d’s to D’s. Therefore, the next state
of 8'(qo, D) cannot be qo.

Let
8 (go» D)= (g D, R).

As explained just above, for a string of the to-be-accepted type, i.¢., of the form b" d",
in gy we do not expect symbols b, B or even another d because then there will be more
d’s than b’s in the string, which should be rejected.

In all these cases, strings are to be rejected. One of the ways of rejecting a string
say s by a TM'is first giving the string as (initial) input to the TM and then by not
providing a value of § in some state q # h, while making some move of the TM.

Thus the TM, not finding next move, stops in a state-q # h. Therefore, the string
is rejected by the TM.

Thus, each of &{qs, b), (a3, B) and (qs, D) is undefined

Further, in q;, we skip over D’s, therefore

8(q5, D)=(q5, D, R)

Finally when in qs, if we meet #, this should lead to accepting of the string of the form
b" d", i.e., we should enter the state h. Thus,

3 (g ) =0, #N)

Next, we consider the cases not covered by b" ) | d)" withn 1,m 1are.
Such :

Case I1 whenn=0 butm %0, i.e., when inpu string is of the form'd™ (b | d)’ for
m# 0. ) :
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Case IV whien the input is of the form # .............

Now we consider the cases‘in detail.

Case I

1 ' ]
T
Qo

The above string is io be rejecied, therefore, we take 8(qq, d) as undefined

Case III: When the input is of the form b" # #.. .#.._, say
Lb T# i ]
1

RU

After one round we have
(B__T# [
T

G
As the string is to be rejected, therefore,
8 (qs; #) is undefined

‘ Case IV: When # is the left-most symbeol in the input

[# 1.0 1# I... [# ...
; -
9

As the string is to be rejected, therefore, we take 3(qq, #) as undefined

We have considered all possible cases of input strings over = {b,d} and in which
while scanning from left, occurrence of the first # indicates termination of strings
over/. :

After the above discussion, the design of the TM that accepts strings of the form
b ard rejects all other strings over {b, d}, may be summarized as follows:

The TM is given by (Q, Z, [,s, Qo, h) where
Q={q, q1, ©2, g3, h}

L={b,d}

[ ={b,4,B,D,#

The next-move partial function 8 is given by

b d B D
% | {9,B,R) |* * (93, D, R)
Gl {91, b, R) {9, D, L) * {91, D, R)
G | {9 b L) |* (9B, R) | {q,,D, L) |*
s | * * (g, D, R) (h, 4, N)
h * Accept

*| *idE

*

* * *

“** Indicates the move is not defined.



Remark 1.3.4 Modis for Eu—ﬁg of
. ' Adgsrtaans — [3:
in general, such lengthy textual explanation as provided in the above case of

design of a TM, is not given. We have included such lengthy explanation, as the
purpose is to explain the very process of design. In general, table of the type givea
above along with some supporting textual statements are sufficient as solutions to
such problems. In stead of tables, we may give Transition Diagrams (fo be

defined).

Ex. 1) Designa TM that recognizes the language of all strings of even lengths over
the alphabet {a, b}.

Ex. 2) Designa TM that accepts the language of all strings which contain aba as a
sub-string.

1.4 INSTANTANEOUS DESCRIPTION AND
TRANSITION DIAGRAMS

The following differences in the roles of tape and tape Head of Finite Automaton
(FA) and pushdown Automaton (PDA) on one hand and in the roles of tape and tape
head of Tuning Machine on other hand need to be noticed:

(i)  Thecells of the tape of an FA or a PDA are only read/scanned but are never
changed/written into, whereas the cells of the tape of a TM may be written
also. )

(i) The tape head of an FA or a PDA always moves from left to right. However,
the tape head of a TM can move in both directions.

As a censequence of facts mentioned in (i) and (ii) above, we conclude that in
the case of FA and PDA the information in the tape cells already scanned do
not play any role in deciding future moves of the automaton, but in the case of.
a TM, the information contents of all the cells, including the ones earlier
scanned also play a role in deciding future moves. This leads to the slightly
different definitions of configuration or Instantaneous Description (ID) in
the case of a TM. .

1.4.1 Instantaneous Description

The total configuration or, for short just, cqnﬁguraﬁon ofa Turing Machine is the *
information in respect of: ’

{i)  Contents of all the cells of the tape, starting from the left-most celi up,to atleast
the last cell containing a non-blank symbol and containing all cells upto the cell
being scanned. ’

(ii)  The cell currently béing scanned by the machine and

(iii) The state of the machine.

Some authors use the term Instantaneous Description instead of Total
Configuration.

Enitial Configuration: The total configureiion at the start of the (Turing) Machine is
called the initial configuration.

Helted Configuration: is a configuration whose state component is the Halt state.



Complexity & There are various notations used for deneoting the total configuration of a Turing
Completeness Machine.

Notation 1: We use the notations, illustrated below through an example:

Let the TM be in stéte gs scanning the symbol g with the symbols on the tape as

follows:

I # e ld]alf[#fe[nfk[alr]#] #
Then one of the notations is )
i#l#ibldlalfl#lgTihlki#lM#l #

9

Notation 2: However, the above being a two-dimensional notation, is sometimes
inconvenient. Therefore the following linear notations are frequently used:

{qs,##bdaf#,g,hk), in which third component of the above 4-component vector,
contains the symbol being scanned by the tape head.

Alternatively, the configuration is also denoted by (qs,## bdaf# g hk), where the
symbel under the tape head is underscored but two last commas are dropped.

It may be noted that the sequence of blanks after the last non-blank symbol, is not
shown in the configuration. The notation may be alternatively written (g, W, g, u)
where w is the string to the left and u the string fo the right respectively of the symbol
that is currently being scanned. '

In case g is the left-most symbol then we use the empty string € instead of w.
Similarly, if g is being currently scanned and there is no non-blank character to the
right of g then we use e, the empty string instead of u.

Notation 3: The next notation neither uses parentheses nor commas. Here the state is
written just to the left of the symbol currently being scanned by the tape Head. Thus
the configuration (qs, ##bdaf#, g, h, k) is denoted as # # bdaf#qsghk

Thus if the tape is like
e Iw [# Lo |
T
s )
then we may denote the corresponding configuration as (qs, €, g, u). And, if the tape
is like
N G A A
T
de

Then the configuration is (gs, abc, g, €) or (s, abc g ) or alternatively as abcgsg by the

following notation.

1.4.2 Transition Diagrams

In some situations, graphical representation of the next-move (partial) function & of a
Turing Machine may give better idea of the behaviour of a TM in comparison to the
tabular representation of 3.



A Transition Diagram of the next-move functions  of a TM is a graphical
representation consisting of a finite number of nodes and (directed) labelled arcs
between the nodes. Each node represents a state of the TM and a label on an arc from
one state (say p) to a state (say q) represents the information about the required input
symbol say x for the transition from p tc q to take place and the action on the part of
the control of the TM. The action part consists of (i) the symbol say y to be written in
the current cell and (ii) the movement of the tape Head.

Then the label of an arc is generdlly written as x/(y, M) where Mis L, R or N.
Example 1.4.2.1

LetM={Q, Z,[, 3, qo, h}

Where Q ={qo 9.9 b}
z ={0,1}
[ =10,1,#
and & be given by the following table.
0 1 #
Qo - - @ #R)
Q (42,0, R) (91, #,R) (h, #,N)
Q@ (0,0, 1) @, L, R) (h,#,N)
h - N .

‘Then, the above Turing Machine may be denoted by the Transition Diagram shown
below, where we assume that qq is the initial state arid h is a final state.

V#R

.00, L

Figure: 1.4.2.1

Ex. 3) Design 2 TM-M that recognizes the language L of all strings over {a, b, ¢}
with ,
(i) number of a’s = Number of b*s = Numberofc’s and

Models for Executing
Algorithms - IIT: TM
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(ii) if (i) is Satisfied, the final confents of the iape are the same as the input, i.c.;
the initial contents of the tape are also the final contents of the tape, else
_rejects the strmg .-

_Ex. 4) Draw the Transmon Dxagmm of the TM that recognizes strings of the form b“

d%, n 21 and was des;gned in the prevmus section. :
N R

Ex 5) Design-a TM that accepts all the language of all palmdroma over the alphabet
{a, b}. A palindrome is a string which equals the string obtained by reversing
‘the order of occurrence of letters in it. Further, find computattons for each of -
“the strings (i) babb (ii) bb (iii) bab. )

Ex. 6) Construct a TM that éopies_a given sﬁ'ing. over {a,b}. Furtherfinda , =~
computation of the TM for the string aab.

15 SOME FORMAL DEFINITIONS

In the previous sections of the unit, we have used, without formally defining some of
the concepts like move, acceptance and releuxon of strings by a TM. In thls section,
we define these concepts formally

In the rest of the section we assume the TM under consideration s

M=(Q. L], 5 g h)

Definition: Move of a Turmg Machine. We give formal defi mtzan of the concept

by considering three possible dj ﬁ'erent types of moves, viz.,
®  ‘move to theleft’
e ‘move to the right’, and

. ‘Do not Move'..

- For the definition and notation for Move, assume the TM is in the configuration

(92 ='42 o Bigs Biy Apgp oo Ag)

“ase (i) 8(a,q) = &b,p, L), for motion to left
Consnder the following three subcases:

v

Case i(a) i i> I, then the move is the activity of TM of gomg from the. conﬁguratwn

(@, 2 23, ... ay,a;, a,-,, a.,)' to' the configuration

(P, a1 ... g, By, 385y ... @) and is denoted as’
D312 o B, By By - ) m (P, 212z, B, b, 204, e ).

The suffix M, denoting the T™ under consideration, may be dropped ifthe machme
under conmderauon is known from the context. .

Case ib) ifi=1the move‘leads to hanging configuration, as TM is already
scanning lefi-most symbol and attémipts to move to the left, whxc‘n is not posszblc
Hence move is not defined. -

- Case i(¢) wheni=nandb is the blank symbol #, then the move is denoted as

(G818 . 301, 0 €) F(Q 212y ... 2o, 2, €L).

Case (ii) 8 a;, ) = &b, p, R), for motion to the right
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Case ii(a) if i < n then the move is denoted as

@ a2, 8,80 a) - (p,a,..2, ba.,, Bz ... a,)

Case ii(b) ifi = n the moveis denoted as
(9 2y ...a5, 85,e) |- @ 2 ....#%¢)

Case (i) 8( a;, q) = (b, P; ‘No'Move’) when Head does not move,
then the move is denoted as

@2 a3 a) b (0,2, &, b a,, ... a,)
Definition: A configuration results (or is derived) from another- configuration.

We illustrate the concept through an example based on say Case (iii) above of the
definition of ‘move’. In this case, we say the configuration (p, a, ... a,, b, 24y
a,) results in a single move or is derived in a single move, from the configuration
@ a...201,8, 8;41... 2,). Also, we may say that the move yields the configuration
(iar... ., b8, ... a,) or the configyration @, 21...3,.1,8;, ;4. a, ) yields the
configuration (p, a,... a, b, 2+ ... 8,) in a single move.

Definition: Configuration results in n Moves or finite number of moves.

If, for some positive integer n, the configurations ¢;, c, ... c, are such that c;results
from c;, in a single move, ie.,
Ciot F oo . fori=2,..n

then, we may say that ¢, results from c, in n moves or a finite number of moves. The
fact is generally denoted as

g " ca or ¢ F* e
The latter notation is the preferred one, because generally n does not play significant
role in most of the relevant discussions.
The notation ¢, |- * ¢, also equivalently stands for the statement that ¢; yields ¢, in
finite number of steps.

Definition: Computation

If ¢ois an initial configuration and for some n, the configurations ¢y, ¢, ..., ¢, are
suchthat co, |- ¢( |- ... | c,, then, the sequence of configurations ¢y, ¢; ... c,
constitutes a computation.

Definition: A String ® € Y'acceptable by a TM

o is said to be acceptable by TMM if (qo, ®) |- (h, rforrel*

Informally, o is acceptable by M, if when the machine M is started in the initial state
4o after writing @ on the lefimost part of the tape, then, if after finite number of
moves, the machine M halts (i.e., reaches state h and of course, does not hang and
does not continue moving for ever) with some string y of tape symbols, the original
string @ is said to be accepted by the machine M, ‘

Definition: Length of Computation

If Cy is initial configuration of 2 TM M and C,, Ci...., Cy is a computation, then 1 is
called the length of the computation Cy, Cy, ....C,.

Befinition: Input to a Computation

In the initial configuration, the string, which is on that portion of the tape beginning
with the first non-blank square and ending with the last non-blank square, is called
input to the computation.



Complexity &
Completeness

Definition: Language ack:epted bya TM

M=®, 1,5, go h ), denoted by L(M), and is defined as
LM)={olo < X andifo = a ... a, then

(Qo» € 21, 8,...20) |- .

(1, by ... by, by, by bn)

forsome b, by ....b, € "

L{M), the language accepted by the TM M is the set of all finite strings © over Z
which are accepted by M.

Definition: Turing Acceptable Language

A language L over some alphabet is said to be Turing Acceptable Language, if there
exists a Turing Machine M such that L = L (M).

Deﬁmtlon Turing Decidable Language

There are at least two alternatc but of course, equivalent ways of deﬁmng a Turing
Decidable Languagc as given below: '

~

&
Definition: A language L over 2, i.e., L 2" is said to be Turing Decidable, if both
the languages I. and its complement '~ L are Turing acceptable.

Definition: A language L over ¥, ie., L < X is said to be Turing Decxdable if there
is a function

¥ (YN} )
such that for each © € 2.
Y ifoel
fi{o)= e
E foweL
Remark 1.5.1

A very important fact in respect of Turing acceptability of a string (or a language)
needs our attention. The fact has been discussed in details in a later unit about
undecidability. However, we briefly mention it below.

For a TM M and an input string ® € ¥, even after a large number of moves we
may not reach the halt state. However, from this we can neither conciude that
‘Halt state will be reached in a finite ber of moves’ nor can we conclude that
Halt state wili not be reached in a finite number moves.

This raises the question of how to decide that an input string w is not accepted by
aTM M.

An input string w is said to be ‘not accepted’ by a TMM =(Q, %, [,s, go, h) if any
of the following three cases arise:

(1)  There is a configuration of M for which there is no next move i.e., there

may be a state and a symbol under the tape head, for which § does not have
a value.

(i) The tape Head is scanning the left-most cell containing the symbol x and
the state of M is say g and 5 (x, @) suggests a move to the ‘left’ of the
current cell. However, there is no celi to the left of the left-most cell.



Therefore, move is not possible. The potentially resulting situation (can’t
say exactly configuration) is called Hanging configuration.

(iii) The TM on the given input w enters an infinite loop. For example, if
configuration is as

Iy ]
1 .
9o

and we are given
8 (40, ¥)=(qu x, R)

and 8 (q1, ) = (qo; ¥, L)
Then we are.in an infinite loop.

1.6 OBSERVATIONS

The concept of TM is.one of the most imi:brtant concepts in the theory of

Computation. In view of its significance, we discuss a number of issues in respect of

TMs through the following remarks.

Remark 1.6.1

Turing Machine is not just another computational model, which may be further
extended by another still more powerful computational model. It is 7ot only the most
powerful computational model known so far but also is conjectured to be the ultimate
computational model.

Turing Thesis: The power of any computational process is captured w:thm the class
of Turing Machines.

It may be noted that Turing thesis is just a conjecture and not a theorem, hence,
Turing Thesis can not be logically deduced from mere elementary facts. However, the
conjecture.can be shown to be false, if'a more powerful computational model is
proposed that can recognize ail the languages which are recognized by the TM modet
and also recognizes at least one more language that is not recognized by any TM.

In view of the unsuccessful efforts made in this direction since 1936, when Turing
suggested his model, at least at present, it seems to be unlikely to have a more
powerful computational model than TM Model.

Remark 1.6.2

The Finite Automata and Push-Down Auiomata models were used only as accepting
devices for languages in the sense that the automata, when given an input string from
a language, tells whether the string is acceptable or not. The Turing Machires are
designed to play at least the following three different roles:

(i)  As accepting devices for languages, similar to the role played by FAs and
PDAs,

(i) As a computer of functions. In this role, a TM represents a particular function

. (say the SQUARE function whick gives as output the square of the integer given
as input). Initial input s treated as rep.resenting an argument of the function.
And the (final) string on the tape when the TM enters the Halt State is treated as
representative of the value obtained by an application of the function to the
argument represented by the initial string.-

Maedeis for Executing
Algorithms - III: TM
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(ii) As an enumerator of strings of a language that outputs the strings of a
language, one at a time, in some systematic order, i.e., as a list.
Remark 1.6.3

Halt State of TM vs. set of Final States of FA/PDA

We have already briefly discussed the differences in the behaviour of TM on entering
the Halt State and,the behaviour of Finite Automata or Push Down Automata on
entering a Final State.

A TM on entering the Halt State stops making moves and whatever string is there on
the tape, is taken as output irrespective of whether the position of Head is at the end
or in the middle of the string on the tape. However, an FA/PDA, while scanning a
symbol of the input tape, if enters a final state, can still go ahead (as it can do on
entering a non-final state) with the repeated activities of moving to the right, of
scanning the symbol under the head and of entering a new state etc. In the case of
FA [/ PDA, the portion of string from left to the symbol under tape Head is accepted if
the state is a final state and is not accepted if the state is not a final state of the
machine.

To be more clear we repeat: the only difference in the two situations when an FA/PDA
enters a final state and when it enters a non-final state is that in the case of the firs¢
situation, the part of the input scanned so far is said to be accepted/recognized,
whereas in the second situation the input scanned so far is said to be unaccepted.

Of course, in the Final State version of TM (discussed below), the Head is
allowed movements even after entering a Final State. Some definite statement like
‘Accepted/Recognized’ can be made if, in this version, the TM is in Final State.

Remark 1.6.4
Final State Version of Turing Machine

Instead of the version discussed above, in which a particular state is designated as
Halt State, some authors define TM in which a subset of the set of states Q is
designated as Set of Final States, which may be denoted by F. This version is
extension of Finite automata with the following changes, which are minimum required
changes to get a Turing Machine from an FA.

(i) The Head can move in both Left and Right directions whereas in PDA/F. A the
head moves only to the Right.

(i) The TM, while scanning a cell, can both read the cell and also, if required,
change the value of the cell, i.e., can write in the cell. In Finite Automata, the
Head only can read the cell. It can be shown that the Halt State version of TM is
equivalent to the Final State version of Turing Machine. ’

(iii) In this version, the TM machine halts only if in a given state and a given symbol
under the head, no next move is possible. Then the (initial) input on the tape of
TM, is unacceptable.

Definition: Acceptability of ® € ¥’ in Final State Version

Let Mi=(Q,%[,8,q,F) ,
be a TM in final state version. Then w is said to be acceptable if Cy is the initial
configuration with w as input string to M; and

GG
is such that
Co=(p, % 3, B)
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with p in F, set of final states, and a € [, the set of tape symbols, and «, B € [ Modeis for Executing
Algorithms — II: T™M

Equivalence of the Two Versions

We discuss the equivalence only-informally. If in the Halt state version of a TM in
stead of the halt state h, we take F= {h} then it is the Final state version of the TM.
Conversely, if F= { fi, f,,...... £} is the set of final states then we should note the fact
that in the case of acceptance of a string, a TM in final state version enters a final state
only once and then halts with acceptance. Therefore, if we rename each of the final
state as h, it will not make any difference to the computation of an acceptable or
unacceptable string over 3. Thus F may be treated as {h}, which further may be
treated as just h.

1.7 TURING MACHINE AS A COMPUTER OF
FUNCTIONS

In the previous section of this unit, we mentioned that a Turing Machine may be used
as—

(i) A language Recognizer/acceptor
(it} A computer of Functions

(iii) An Enumerator of Strings of a language.

We have already discussed the Turing Machine in the role of language accepting
device. Next, we discuss how a TM ean be used as a computer of functions.

Remark 1.7.1

For the purpose of discussing TMs as computers of functions, we make the following
assumptions:

® A string ® over some alphabet say Y. will be written on the tape as #o#, where #
is the blank symbol.

@  Also initially, the TM will be scanning the right-most # of the §tring #o#.

Thus, the initial configuration, {qo, #o#) represents the starting point for the
‘computation of the function with @ as input.

The assumption facilitates computation of composition of functions.

Though, most of the time, we require functions of one or more arguments having only
integer values with values of arguments under the functions again as integers, yet, we
consider functions with domain and codomain over arbitrary alphabet sets say £, and
Z, respectively, neither of which contains the blank symbol #.

Next we define what is t by computation, using Turing Machine, of a
function

fI - )
Definition:. A function £ £ 5" - ¥, is said to be 71 uring-Computable, or simply

computable, if there is a Turing Machine M = (Q, X, f , 8, go, b ), where Z contains the
following holds: ' '

(a0, #o#) Fa(h, #pt)

whenever @ € I, and p € £, satisfying f{©) = p. 21
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Remark 1.7.2

it may be noted that, if the siring © contains some symbols from the set
£ - Iy, 1.¢., symbols not belonging to the domain of f, ther the TM may hang or‘may
sot halt at all. ’

Remark 1.7.3

Next, we discuss the case of functions which require k arguments, where k may be
any finite integer, greater than or equal to zero. For example,
the operation PLUS takes two arguments m and n and returns m + n.

The function f with the rule
Xy, )=(2x+y)*z
takes three arguments.

The function C with rule
c() =17
takes zero number of arguments

Let us now discuss how to represent k distinct arguments of a function f on the
tape. Suppose k =3 and x, X;, y; ¥2 ¥3 and z, z, are the three strings as three
arguments of function f. If these three arguments are written on the tape as

t# le §x2 iYI !Yz "y, izx IZ; J#

then the above tape contents may even be interpreted as a single argument viz.,

X1.%3, ¥1'Y2 ¥3 21 2. Therefore, in order, to avoid such an incorrect interpretation,
the arguments are separated by #. Thus, the above three arguments will be written on
the tape as

Fix Ix J# Ty, 1Y, v [# {ze Tz [#

In general, if a function f takes k > 1 arguments say @, @, ..., ©, where each of these
arguments is a string over Z, {i.e., #ach ; belongs to Zo') and if f (0, @, .0, @) =1
for some p € Z,"; then we say f is Turing Computable if there is a Turing Machine
M such that ’

(qo » & #o e, . Bk e) i (b e #pf, €)

Also, when f takes zero number of arguments and f( ) = i then, we say f is
computable, if there is a Turing Machine M such that

(o, ##e) uh e #ute)
Remark 1.7.4

In stead of functions with countable, but otherwise arbitrary sets as domains and
ranges, we consider only those functions, for each of which the domain and range is
the set of natural numbers. This is not a serious restriction in the sense that any
countable set can, through proper encoding, be considered as a set of natural numbers.

For natural numbers, there are various representations; some of the well-known
representations are Roman Numerals (e.g., VI for six), Decimal Numerals (6 for six),
Binary Numerals (110 for six). Decimal number system uses 10 symbols viz., 0, 1, 2
34,5, 6,7, 8 and 9. Binary number system uses two symbols denoted by 0 and 1.

In the discussion of Turing Computable Functions, the unary representation
described below is found useful. The unary numbor system uses one symbol only:



Let the symbol be denoted by I then the number with name six is represented as 1111 Models for Executing of
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twenty is represented in unary systems by writing the symbol I, twenty times. In order

to facilitate the discussion, the number n, in unary notation will be denoted by ." in

stead of writing the symbol I, n times.

The advantage of the unary representation is that, in view of the fact that most of the
symbols on the tape are input symbols and if the input symbol is just one, then the
next state will generally be determined by only the current state, because the other
determinant of the next state viz., tape symbol is most of the time the unary symbol.

We recall that for the set X, the notation X" represents the set of all finite strings of
symbols from the set X. Thus, any function f from the sgt of natural number to the s€
of natural numbers, in the unary notation, is a function of the form f: -

Definition: The function f: N —> N with f(n) = m for each n € N and considered as
£ {I}" — {I}", with {I} a unary number system, will be called Turing Computable
function, if a TM M can be designed such that M starting in initial tape

configuration
’ #1171 ... I #
with n consective I's between the two #’s of the above string, halts in the following
configuration
#1101 ... 1#

containing f(n) =m I's between the two #’s

The above idea may be further generalized to the functions of more than one
integer arguments. For examplg, SUM of two natural numbers n and m takes two
integer arguments and returns the integer (n + m). The initial configuration with the
tapc containing the representation of the two arguments say n and m respectively, is of
the form

# 11 . T#IT...... 14

where the string contains respectively n and m I's between respective pairs of #’s and
Head scans the last #. The function SUM will be Turing computable if we can
design 2 TM which when started with the initial tape configuration as given above,
halts in the Tape configuration as given below:

where the above string contains n + m consecutive ['s between pair of #’s.

Example 1.7.5
Show that the SUM function is Turing Computable.

The problem under the above-mentioned example may also be stated as: Construct
TM that finds the sum of two natural numbers.

The following design of the required TM, is not ¢fficient yet explains a number of
issues about which a student should be aware while designing a TM for
computing a function.

-]
Legal and Illegal Configuratiops for SUM function:

Tn order to understand the design process of any TM for a {computable) function in
general and that of SUM in pamcular let us consider the possible legal as well as
illegal initial configuration types as follows:

o
D)

- .
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Note: in the following, ike sequence *..." denote, any sequence of I's possibly empry
and the sequences * ***' denotes any sequence of Tape symbols possibly empty anc
possibly including #. Underscore denotes the cell being scanned.

Legal initial configuration types:

Configuration (i)

ENSEENN TN R
T

Yo
representing n =0, m =0

Configuration (ii)

EN I [ # {f**

n=0,m=0
Configuration (iii)

AN R

b
Qo
nx0,m=0
Configuration (iv)
# 11 [... [# 1 ... T# [*= ]
T
9o
n#0,m=#0
We treat the following configuration
[ # L. T# T.. [# T.. R
£S
Yo

containing two or more than two #'s to the left of # being scanned in initia
configuration, as valid, where *...” denotes sequence of I's only. :

Some illegal initial configurations:

Configuration (v)

t** l I ... ] K _]
T

Where at least one of *** does not contain # and im'tizﬂly the Head is scanning an [ o
any symbol other than # . The configuration is invalid as it does not contain require«
number of #’s.

Conﬁgu}ation (vi), though is a special case of the above-mentioned configuration, ye

it needs to be mentioned separately.
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Left most symbol is I or any other non-# symbol
Where *** does not contain any #,

Configuration (vii)
r;{ l i | | Kk ]

Where *** does not contain # then the configuration represents only one of the
natural numbers.

Also, in case of legal initial configurations, the final configuration that represents the
result m + n should be of the firm.

i I A EX ]
T
halt

with ¢...” representing exactly m + n I’s.

Also in case of illegal initial configurations, the TM to be designed, should be in

ane of the following three situations indicating non-computability of the function

with an illegal initial input, as explained at the end of Section 1.5:

{1) the TM has an infinite loop of moves;

(i) the TM Head attempts to fali offthe left edge (i.e., the TM has Hanging
configuration); or

(iii) the TM does not have a move in a non-Halt state.

We use the above-mentioned description of initial configurations and the
corresponding final configurations, in helping us to decide about the various
components of the TM to be designed:

At this stage, we plan how to reach from an initial configuration to a final
configuration. In the case of this problem of designing TM for "UM function, it is
easily seen that for a legal initial configuration, we need to remove the middle # to get
a final configuration.

a)  Summing wp initially the machine is supposed to be in the initial state (say) qo

(b)  In this case of legal moves for TM for SUM function, first move of the Head
should be to the Left only

(¢} In this case, initially there are at least two more #’s on the left of the # being
scanned. Therefore, to keep count of the #’s, we must change state after
scanning each # . Let q,, q; and q; be the states in which the required TM euicrs
after scanning the three #'s

{d)  Iu this case the movement of the Head, zfter scanning the initial # and also after
scanuing one mere # on the left, should continue to move to the Left only, so as
to be able to ensure the presence of third # also.  Also, in states q, and g, the
TM need not change state on scanning 1.

Thus we have,
&{qo, #) = (qu, # L),
25
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Slan ) = (g A L)
and
g = (qi, L. 1), 8(qx, 1) = (qo, L L)

Hosvever, from this point onward, the Head should stari moving to the Right.
S8 {qa #) =(q5, # R).
Thus, at this stage we are in a configuration of the form.

N i IEI 1 ]

For further guidance in the matter of the design of the required TM, we
again look back on the legal configurations.

(¢) Inthe configuration just shown above in g3, if the symbol being scanned is # (as
in case of configuration (i) and configuration (i), then the only action required
is to skip over I's, if any, and halt at the next # on the right.

However, if the symbol being scanned in g, of the above configuration, happens
to be an t (as in case of configuration (iii} and configuration (iv}) then the
actions to be taken, that are to be discussed afier a while, have to be different.
But in both cases, movement of the Head has to be to the Right. Therefore, we
need two new states say qq and qs such that

8as %) = (9s#R)
(the processing /scalming argument on the left, is completed).

3(aq5, ) = (g5, LR)
(the scanning of the argument on the lefi, is initiated).

Taking into consideration the cases of the initial configuration (i) and configuration

(ii) we can turther say that

8q;, D = (@nLR)
3qn#) = (halt, #,N)

Next, taking into consideration the cases of initial configuration (iii) and configuratior
(iv) cases, we decide about next moves including the states etc., in the current state
qs.

We are in the following general configuration
(that subsumes the initial configuration (iii) and configuration (iv} cases)

Where the blank spaces between #’s may be empty.or non-empty sequence of I's.
Next landmark symbol is the next # on ‘the right. Therefore. we may skip over the I's
without changing the state i.e.,

&g, 1) = (95 LR)
But we murt change the state when # is encountered in g5, otherwise, the next

sequence of I's will again be skipped over and we will not be able to distinguish
between configuration (iii) and configuration (iv) for further necessary action
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3(gs, #) = (qo, #, R)
(notice that, though at this stage, scanning of the argument on the left is completed,
vel we can not enter in state q,, as was done earlier, because in this case, the
sequence of subsequent actions have to be different. In this case, the# in the middie
has to be deleted, which is not done in siate q.).

Thus, at this stage we have the general configuration as

T

(e 1 [E ] ; [#
Qo

Next, 11 4. 1 the current symbol is a #, as is the case in configuration (iit}, then we
must halt after moving to the left r.e.,

8(qe, #) = (hait, #, L)
we reach the final configuration

Lor |1 MT* [# } J
halt

However, if we are in the configuration (iv) then we have

i ERE L# I

e
Then the following sequence of actions is required for delcring the middle #:

Action (i): To remove the # in the middle so that we get a continuous sequence of I's
to represent the final result. For this purposes, we move to the left and replace the #
by . But then it will give one I more than number of I’s required in the final result.
Therefore,

Action (ii): We must find out the rightmost | and replace the rightmost I by # and
stop, 1.e., enter halt state. In order to accomphsh Action (it) we reach the next # on
the right, skipping over all I's and then on reaching the desired #, and then move left
to an I over there. Next, we replace that I by # and halt.

Translating the above actions in terms of formal moves, we get

For Action (i)

8ae D = (g L L)
3gs, #) = (gs, L R)

(af this stage we have replaced the # in the middie of two sequences of I's by an I)

v dction (i1}

O(Ge. 1 © g ILRY
(g, #1 (q. H.1)
S D thalt, = Ny
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.y R
g

It can be verified that through above-mentioned moves, the designed TM does not
have a next-move at some stage in the case of each of the illegal configurations.

Formaily, the SUM TM can be defined as:

SUM=(Q, %1, 8, qo, h)

where Q = { qq, q1,..-.q0, halt}
T ={1}
U=y,

and

the next-move (partiai) function & is given by the Table

1 #
Go - (@, % L)
G Q.1 L) @ # L)
Gz (g I L) (@, #, R) ]
[* s, 1, R) s, #, R)
Qs (g, , R) (halt, #, N)
T a (¢, I, R) (@ ¥, )
96 Q1 L) (halt, #, 1)
9 - s, I, R)
[+3 @ L R) (99, #, L)
Go (halt, #, N)
hait - -

‘=" indicates that & is nor defined.

Remark 1.7.6

As mentioned earlier also in the case of design of TM for recognizing the language of
strings of the form b"d", the design given above contains too detailed explanation of
the various steps. The purpose is to explain the involved design process in fine
details for better understanding of the students, However, the students need not
supply such details while solving a problem of designing TM for computing a
function. While giving the values of Q, 3., [ explicitly and representing § either by a
izble or a transition diagram, we need to give only some supporting statements to help
understanding of the ideas involved in the definitions of Q, %[ and 5.

Example 1.7.7

Construct a TM that multiplies two integers, each integer greater than or equal to zero
{Probiem mey also be posed as: show that multiplication of two natural numbers is
Turing Compuiable).

fuformal Description of the solution:

The legal and illegal configurations for this problem are the same as those of the

problem of designing TM for SUM function. Also, the moves required to check the
validity of input given for SUM function are the same and are repeated below:

8qo, #) = (q. # L)
8ai, #) = (qn # L)
8o, D = (q, L L)
8a, #5 = (g4 R)
8 D = (@ L L)

Next, we determine the rest of the behaviour of the proposed TM.
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When n = 0 covering configuration (i) and configuration (ii) The general
configuration is of the form

L4 [# 1 [# |
T

q3
To get representation of zero, as, one of the multiplier and multiplic and is zero, the
result must be zero. We should enter state say q, which skips all I's and meets the
next # on the right.

Once the Head meets the required #, Head should move to the left replacing all I's by
#’s and halt on the # it encounters so that we have the configuration

F#*If; l _1# | |
Halt

The moves suggested by the above explanation covering configuration (i) and
configuration (ii) are:

3@, #H = (@ # R)
8(qs D (s, I, R)
8(qn, M = (g5, # L)
8(as, h = (a5, # L)
8(qs, H = (Halt, #, R)

[}

Case II

Covering configuration (iii), we have at one stage

L# 1 1 [+ T# 1] |
7

qQs

[f we take 8(q;, I} = (qs, #. R), then we get the following desired configuration in
finite number of moves:

[ T#  T# ] # 14 1% |

Case 111
While covering the configuration {iv), At one stage, we are in the configuration

« nl's » | |<—— mI‘s——)i
I R E 1

]
E2|

1
T
L)

In this case, the final configuration is of the form

i <« mnl’s - i

v 1. 1+ (i 1. 11

IINEN

Halt

Modess ior Executing

Algorithms — 111 TO¥
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Complexity & The strategy to get the representation for o m I's consists of the following steps:
Completcitess ‘
iy Replace the left-most §m the representation of n by # and then copy the m I's in
the cells which are on the right of the # which was being scanned in the initial
configuration. In the subsequent moves, copying of I's is initiated in the cells
which are in the left-most cells on the right hand of last I’s on the tape,
containing continuous infinite sequence of #'s.

Repeat the process till all I’s of the initial representation of n, are replaced by #.
At this stage, as shown in the following figure, the tape contains m I's of the
initial representation of the integer m and additionally n.m I's. Thus the tape
contains m extra #’s than are required in the representation of final result.
Hence, we replace all I's of m by #'s and finally skipping over all I's of the
representation of (n . m) we reach the # which is on the right of all the (n . m)
s on the tape as required.

Alternatively: In stead of copying n times of the m I's, we copy only (n-1)
times to get the configuration

7] [# 11 1w 7 LoD Jd 1] [T T# ]

le mIs > | e (-)mrs > | 1

‘Then we replace the # between two sequences of I's by I and replace the right-most 1
by # and halt.

The casc of illega! initiai configurations may be handled on similar lines as were
handed for SUM Turing machine

Remark 1.7.8

The informal details given above jer the design of TM for multiplication Sfunction
are acceptable as complete answer/solution for any problem about design ofa
Turing Machine. However, if more detailed formal design is required, the
examiner should explicitly mentiosn about the required details.

Details of case (iii) are not being provided for the following reasons:

{i)  Details are left as an exercise for the students

(i) After some time we will learn how to construct more complex machines out of
already constructed machines, starting with the construction of very simple
machines. One of the simple machines discussed later is a copying machine
which copies symbols on a part of the tape, in other locations on the tape.

Ex. 7) Design a T™ to compute the binary function MONUS (or also called PROPER
SUBTRACTION) defined as follows:

Monus: N x N-»N
(Note 0 also belongs to N)

such that

{m—n ifmzn’
monus (m, n) =
0 else

Ex.8) To compute the function n (mod 2)

30 Let if fdenotes the function, then
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f() if niseven,

f(n) = -
w 11 if nis odd

1.8 SUMMARY

In this unit, after giving informal idea of what a Turing machine is. the concept is
formally defined and iflustrated through a number of examples. Further, it is expluineg
how TM can be used to compute mathematical functions. Finally, a techmque is
explained for designing more and more complex TMs out of already de RN
starting with some very simple TMs.

1.9 SOLUTIONS/ANSWERS

Ex. 1)
The transition diagram of the required TM s as shown below:

o R
(S8 18

e T
= ) ~—~ <
R

bR

N
>

The required TM M =(Q, £, T, §, qo, h) woth

Q = {qo, q; b} ‘ .
L=1{a,b} and T =fa b #j

The next move funciion & is given by the transition diagram above. If the
input string 1s of even length the TM reaches the halt state h. However, if the
input string is of odd length, then TM does not find any next move in state g,
indicating rejection of the string. :

Ex.2)

The transition diagram of the required TM is as shown below:

N

Figure: 1.9.2

Therequired TM M = (Q, I, T, 3, Jo, h) with 3
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Ex. 3)

TE

Q= {qo, g1, G2, b}
Z={a,b} and[ ={a, b, #}.

The next move function is given by the transition diagram above.

The transition diagram almost explains the complete functioning of the
required TM. However, it may be pointed out that, if a string is not of the
required type, then the blank symbol # is encountered either in state g, or in
state q, or in state q,. As there is no next move for (qo, #), (q, #) or Q(qz, #).
therefore, the string is rejected.

The transition diagram of the required TM is as shown below:

2]

“~
P

7

__/.®
DE
%

4

|

!
0
9
5

(erdom
J

|
A
Moo

| o

The required TM M =(Q, %, T, 3, go, h) with

Q = {qo, 1> G2, @3 s Gs, Gss q7. h}
Z=1{a,b,c} andT={g,b,c, A, B,C,# 6isshown by the diagram.

The design strategy is as follows:

Step I: While moving from left to right, we find the first occurrence of a if it
exists. If such an a exists, then we replace it by A and enter state q, either
directly or after skipping b’s and c’s through state Q4.

In state q,, we move towards left skipping over all symbols to reach the
leftmost symbol of the tape and enter state gs.

In qs, we start searching for b by moving to the right skipping over all non-
blank symbols except b and if such b exists, reach state Q2.

In state q, we move towards left skipping over all symbols to reach the
leftmost symbol of the tape and enter .

In g, we start searching for ¢ by moving to the right skipping over ali non-
blank symbols except ¢ and if such ¢ exists, reach state Q.

In state q,, we move towards left skipping all symbols to reach the lefimost
symbol of the tape and enter state qq.

If in any one of the states qs, gs O q, 1O NEXt move is possible, then reject the
strmg.

Else repeat the above process till all a’s are converted to A’s, all b’s to B’s
and all ¢’s to s,
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Step II: is concerned with the restoring of a’s from A’s, b’s from B’s and ¢s Models for Executing of

. N - LS o - 3 1] ¥R TR
from C’s, while moving from right to lefl in state q; and then afcr Algorithms - f11: “t%
successfully completing the work move to halt state h.

Ex. 4)
The Transition Diagram of the TM that recognizes strings of the form b* d",
u 21 and designed in the previous section is given by the following Figure.
121, R
. bb, R
¥ -
T Sk 7Y E b,
e (G e (Y s oy
~— ’,,/‘*
20, Kl ‘l:/;; -
D e @
L
[ 572 &Ry 13
Figure: 1.9.4
Ex. 5)

The transition Figure of the required TM is as shown below.

al R
6 K
(:?{ L O —_— HiH, R
o = QO
S \. i L
) Y
0, L \

b7, L
(SR >
“

AN
i \
TN e G/
=

———ET Rk

Figure: 1.9.5
I'he required TM M = (Q, £, I, §, q, h) with

Q = {90, q1, 92, a3, Ga, s, h}
Z={a,b} and[={a,b,#}"

The next move function is given by the transition diagram above.’
The proposed TM functions as foliows:

(1) In state qo, at any stage if TM finds the blank symbol then TM has
found a palindrome of even length. Otherwise, it notes the symbol
being read and attempts te match it with last non-blank symbol on the
tape. If the symbotl is a, the TM replaces it by # goes to state q, in
which it skips all a’s and b’s and on #, the TM from q, will g0 to q3 to
find 2 matching a in last non-blank symbol position. If a is found, TM
goes to gs replace a by #. However, if b is found then TM has no more
indicating the string is not a palindrome. However, if in state q: only #'s
are found, then it indicates that the previous ‘a’ was the middle most
symbol of the given string indicating palindrome of odd length.
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Complexity & Similar is the.case when b is found in state go, except that the next state is
Completeness g2 in this case and roles of a's and b's are interchanged in the above
argumerit

i1} The fact of a string not being a palindrome is indicated by the TM
when in state gz the symbol b is found or in state qa the symbol a is found.
The initial configuration is gobabb.

The initial configuration is g.bb. Consider the computation:

(i}  qebabb #.q.babb  #agq.bb | #abba.# | #abqb  #aqsb# b #qsab b
qstab b #qub | ##q.b b #bqi# b #HEqib,
As there 1s 1o move in state g on b, therefore, string is not accepted.

(iy the

wration is qubb. Consider the computation:
asbb b #qib b #bg | #qub # bogs ### | g% F h#
(1¥e may drop #'s in the rightmost positions).

(i) The mitiai configuration is qybab. Consider the computation:
qobab + #qab b #agqb | #gsa #} gk | #qo#t b h#t
(Note }* denotes sequence of any finite number of ).

Ex.6)
The transition diagram of the required TM is as shown below.

ALK
wER

Figure: 1.9.6

The required TMM = (Q, £, T, 8, qo, h) with
Q= {Qu. Qi @+ 4. G5, Q5+ Gs» 97> 1}
¥ =1{a, b} andI'={ab, #}.

The next move function is given by the fransition diagram above.
34



In the solution of the probiem, we can deviate slightly from our convention of
placing the input sring on the left-most part of the tape. In this case, we
place # in the leftmost cell of the tape followed by the input string.

Therefore, in the beginning in the initial state gy, the T™ is scaming # in
stead of the first symbol of the input.

Before we outline the functioning of the proposed TM let us know that for the
input string aab is placed on the tape as

— T . . 5 - ,
14 la TA I'b i VB | HEx o 1
and for the input, output on the tape is of the form N

L la Ta (b T# TA ja 1b TF 75 ==

Outline of the functioning of the proposed TM

The TM in state q; notes the leftmost a or b, replaces it by A or B respectively
and copies it in the next available # (the first # on the right is left as marker
and is not taken as available). If the symbol in the state q is a, then TM while
skipping symbols passes through state q; and reaches q;. However, if the
symbol in state q, is b, then TM while skipping symbols passes through state
qs and reaches state q;. Then TM copies the symbol and reaches the state Q-
Next, TM starts its leftward journey skipping over a’s, b’s, A’s, B’s and # and
meets A or B in qr. At this stage, TM goes to state q;. Then repeats the
whole process until the whole string is copied in the second part of the tape.

But, in this process original string of a’s and b’s is converted to a string of A’s
and B’s. At this stage TM goes from qy to state g to replace each A by a and
each B by b. This completes the task. -

The Computation of the TM on input aab

The initial configuration is qe#abb. Therefore, the computation is
qo#abb | #qabb | #Aqmab

b #Aaq,b | #Aabga#t

b #Aabiqs | #Aabgs #a
| #Aabgeb#a

b #Aqgabla | #g,Aabka

} #Aqab#a
(At this point whole process is repeat and, therefore, we use ,[_" representing
a finjte number of })

b #AAqobHaa

* #AABqgb#aab
At this stage TM enters state q.

| #AAq;Bi#aab
b #Ag-Abitaab
I #q;Aab#¥aab
I q-#Aab#aab
b h#aab#aab

In respect of the design of the TM (Q,% r,S,qu,h) , where
=4[ = {L,#} where we made the following observations:

Models for Executing of
Algorithms - {1{: T™M .
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Complexity & Observation 1: Gescral form of the tape is
Tompieteness
!

1 ... |1 # \1 oI i# |

There are three significant positions of #, which need to be distinguished viz.,
right-most # on left of I's, middle #, middle # and lefi-most # on the right of
's. Therefore, there should be change of stat= on visiting each of these
positions of #.

Observation 2: Initial configration is

Pt

L L]
I D O | S b

and as observed above
8 (g ¥ =(au# 1)

The following forms of the tape

|

|
IR

[ [#1#]1 I
T
q
guide us to moves
3(qi, D) =(q %L}
change of state is essential else other I’s will also be converted to #’s,
8 (qu, #)= (hal, #,N)

Observation 3: The moves are guided by principle that convert the lefi-most  Ito
# on the right side the corresponding right-most I to # on the left-side

3(q, 1) = (@10
8(q M= (4L
3(q, D = (@, LD
5(qs, #) = (@ #R)

{We have reached the right-most # on the left of all I's as shown below)

(¢l | EX % ]

{f we have configration of the form

el [#]




then it must have resulted from initial configuration in which m < n represented by Models for Executing

say Algorithms ~ 13i: T™M
oo o Je [ Jr Jv ¢ ]
T
Qs
Therefore, we must now enter a state say q; which skips all I's on the right and then
halts
Therefore
8% = (@#R)
8@nD) = (a7, LR)
8(qr#) = (halt,#, N)
Next, we consider 8 (s, I)
3(q,D) = (a5,#%R)
(state must be changed otherwise, all I's will be changed to #'s)
8(s,D = (4 LR)
8(gs,#) = (a5, # R)
(the middle # is being crossed while moving from left to right)
3 (‘Ig, D = (g LR)
340, #) = (90, #, N)
(the left-most # on right side is scanned in s to reach go so that whole process
may be repeated again.)
Summarizing the above moves the transition table for 8 function is given by
I #
do @,#L)
q Q%L (halt, #,L)
| % (@ LL) 1 @n#D)
9 (g, LL) (qu #,L)
G4 (qS’ #v R) (‘h, #’ R)
gs 95 L R) 9s # R)
s (@ LR) (9. #R)
qz (g, LR) (halt, #, N)
Halt - -
Ex.8)
By our representation conventions, the initial configuration is as follows:
[T Ti#lAL
]
Jo
e
If n is even, then f{n) =0 which further is represented by final configuration
EERER
T
halt
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Gox

If n s odd, then f(x) = I which is represented by f(n) = 1 which is represented
by a final configuration of the form,

2 L T ]

g s

ait

The strategy of reaching from initial configuration to a final configuration is
that after scanning even number of I's we enter state g, and after scanning odd
number of I's, we enter state q; and then take appropriate action, leading to
the following (partial) definition of transition function &:

8(qe,#) = (qn#L)
() = (qn# L)
3(q,#) = (hal, #,N)
3l) = (q@#L)
8(q,#) = (a4, #R)
(g #) (halt, I, R)

For the transition

S (qi, &) = (g;, &, m), the sequence of actions is as follows: First a, is written
in the current cell so far containing a,. Then mover. ¢~+ of tape head is made
to left, to right or ‘no move’ respectively according as +..2 value of mis L, R
or N. Finally the state of the control changes to q;.

The transition function & for the above computation is

3 # 1

9 (g, #,1) @Qu# L) |
qu (g3, #. R) (g #, L)

Q@ (halt, #, N) Qu# L)

qs (halt, I, R} -
halt - -

The students are advised to make transition diagram of the (partial)
function defined by the above table.

1.10 FURTHER READINGS
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2.0 INTRODUCTION

In this unit, we discuss issues and problems that exhibit the limitations of computing
devices in solving problems. We also prove the undecidability of the halting
nroblem. It is related to Godel's Incompleteness Theorem which states that there is
no system of logic strong enough to prove ail true sentences of number theory.

In addition, we wiil discuss a number of other problems, which though can be
formulated properly, yet are not solvable through any computational means. And we
will prove that such problems cannot be solved no matter what language is used.
what machine is used. and how much computational resources are devoted in
attempting to solve the problem etc.

2.1 OBJECTIVES

After going through this unit, you should be able to:

L] show that Halting Problem 1s uncomputab[e/unsplvabie/undecidabie;

° to explain the general technique of Reduction to establish other problems as
uncomputable;

* establish unsolvability of many unsolvable problems using the technique of
reduction;

® enumerate large number of unsolvabie problems, including those about Turing
Machines and about various types of grammars/languages including context-
free, context-sensitive and unrestricted etc.

2.2 DECIDABLE AND UNDECIDABLE
PROBLEMS

A function g with domain D is said to be cvmputabic if there exists some Turing
machine

M- {Q, 2, T, 6, gg, F) such that
' Jow E’ : arg(w). qe F forallweD

39
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where,

%> @ denotes the initial configuration with left-most symbol of the string o being
scanned in state §, and q; g(w) denotes the final c.

A function is said to be uncomputable if no such machine exists. There may be a
“Turing machine that can compute f on part of its domain, but we call the function
computable only if there is a Turing machine that computes the function on the who}
of 1ts domain.

i‘or some problems, we are interested in simpler solution in terms of “yes” or “no”.
For exampte, we consider problem of context free grammar i.e., for a context free
grammar G, Is the language L(G) ambiguous. For some G the answer will be “yes”,
for others it will be “no”, but clearly we must have one or the other. The problem is
to decide whether the statement is true for any G we are given. The domain for this
problem is the set of all context fre¢ grammars. We say that a problem is decidable if
there exists a Turing machine that gives the correct answer for every statement in the
domain of the problem.

Similarly, consider the problem of equivalence of context free grammar i.e., to
determine whether two context free grammars are equivalent. Again, given context
free grammars G, and G,, the answer may be “yes” or “no”. The problem is to
decide whether the statement is true for any two given context free grammars G, and
;. The domain for this problem is the set of all context free gras.  rs. We say that
a problem is decidable if there exists a Turing machine that gives the correct answer
for every statement in the domain of the problem.

A class of problems with two outputs “yes” or “no” is said to be decidable (solvable)
if there exists some definite algorithm which always terminates (halts) with one of
two outputs “yes™ or “no”. Otherwise, the class of problems is said to be undecidable
(unsolvable).

2.3 THE HALTING PROBLEM

There are many problem which are not computable. But, we start with a problem
which is important and that at the same time gives us a platform for developing later
resuits. One such problem is the halting problem. Algorithms may contain loops that
may be infinite or finite in length. The amount of work done in an algorithm usually
depends on the data input. Algorithms may consist of various numbers of loops,
nested or in sequence. Informally, the Halting problem can be put as:

Given a Turing machine M and an input w to the machine M, determine if the
machine M will eventually halt when it is given input w,

Trial solution: Just run the machine M with the given input w.

e - ifthe machine M halts, we know the machine halts.

L4 But if the machine doesn’t halt in a reasonable amount of time, we cannot
conclude that it won’t halt. May be we didn’t wait long enough.

What we need is an algorithm that can determine the correct answer for any Mand w
by performing some analysis on the machine’s description and the input. But, we will
show that no such algorithm exists.

Let us see first, proof devised by Alan Turing (1936) that halting problem is
unsolvable.
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Suppose you have a solution to the halting problent in terms of a machine, say, H. Unsolvable Probiems

H takes two inputs:

a program M and
an input w for the program M. -

a4 &

i

H generates an output “half” if H determines that M stops on input w or it outputs
“laop” otherwise.

‘)l-‘;
M halt
—p —
w__p |y loop
H

Se now H can be revised o tabe M as both inputts {the program and its input) and H
should be able to determine if M will halt on M as its input.

Let us construct a new, simple glgorithm K that takes H's output as its input and does
the following: .

1. if H outputs “Joop” then K halts,
2. otherwise H’s output of “half” causes K to loop forever.

That is, K will do the eppesite of H's output.

M
M halt
] e
—»,
M loop halt
H
Since K is a program, let us use K as the input to K.
K K . hait
—P ! loop
| l | 3
K loop halt
H

If H says that K halts then K itself would Ioop (that’s how we constructed it).
If H says that K loops then K will halt.

in either case H gives the wrong answer for K. Thas H cannot work in all cases.
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We've shown that it is possibie to construct an input that causes any solution H to
fail. Hence, The halting problem is undecidable.

Now, we formally define what we mcan by the halting problem.

Definition 1.1: Let Wy be a string that describes a Turing machine M = (Q. %, T, 8,
o, F), and let w be a siring in %", We will assume that Wy and w are encoded as a
string of 0’s and 1°s. A solution of the halting problem is a Turing machine H, which
for any Wy and w, performs the computation

qo Wi W |". X1 Gy %2 if M applied to w haits, and
oWy w | ™ yiquy2if M applied to w does not halt.
Here q, and q, are both final states of H.

‘Theerem 1.1: There does not exist any Turing machine H that behaves as required
by Definition 1.1. The halting problem is therefore undecidable.

Proof: We provide proof by contradiction. Let us assume that there exists an
algorithm, and consequently some Turing machine H, that solves the halting
problem. The input to H will be the string Wy w. The requirement is then that, the
Turing machine H will halt with cither a yes or no answer. We capture this by asking
that H will halt in one of twe corresponding final states, say, g, or g, . We want H 1o
operate according to the foliowing rules:

qo Wy w [~ w xiayx if M applied to w halts, and
Qo Wy w 1M ¥1GY: if M applied to w does not halt.

This situation can also be visualized by a block diagram given below:

Wy w

Next, we modify H to produce H; such that
4 If H says that it will halt then H, itself would loop

® If H says that H wili not halt then H, will hait.

We can achieve this by adding two more states say, q; and go. Transitions are definec
from g, 6 q;, from q, to g:and from g, to q,, regardiess of the tape symbol, in such 2
way that the tape remains unchanged. This is shown by another block diagram given
below.
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5
e

qn

Wy w

Formally, the action of H, is described by

QWuw |~ o if M applied to w halts, and

Go Wy w l*' "l YiGny: if M applied to w does not halt.
Here, o stands for Turing machine is in infinite loop i.e., Turing machine will run
forever. Next, we construct another Turing machine H, from H, This new machine
takes as input Wy and copies it, ending in its initial state qo. After that, it behaves
exactly like H;. The action of H, is such that
Qo Wyl ™1 G Wy Wy |7 o if M applied tc Wy, halts, and
2 Wil Y2 - if H, applied to Wy does not halt. -

This clearly contradicts what we assumed. In either case H, gives the wrong answer
for Wy. Thus H cannot work in all cases.

We’ve shown that it is possible to construct an input that causes any solution H to
fail. Hence, the halting problem is undecidable.

Theorem 2.2: If the halting problem were decidabie, then every recursively
enumerable language would be recursive. Consequently, the halting problem is

undecidable.

Proef: Recall that

1. Alanguage is recursively enumerabie if there exists a Turing machine that
accepts every string in the language and does not accept any string not in the
language. ’

2. A language is recursive if there exists a T u‘ring machine that accepts every

string in the language and rejects every stcing not in the language.

Fet L be arecursively enumerable language on %, and let M be a Turing machine that
accepts L. Let us assume H be the Turing machine that solves the halting problem
We construct from this following algorithm:

i Apply H to Wy w. if H says “no”, then by definition w is not in L.

2, IfH says “yes”, then apply M to w. Rut M must halt, 5o it will ultimately tell
us whether w is in 1. or not.
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This constitutes a membership algorithm, making L recursive. But, we know that
theré are recursively enumerable languages. that are not recursive. The contradiction
implies that H cannot exist i.e., the halting problem is undecidable.

2.4 REDUCTION TO ANOTHER UNDECIDABLE
PROBLEM

Once we have shown that the haiting problem is undecidable, we can show that a
targe class of other problems about the input/output behaviour of programs are
undecidable.

Examples of undecidable problems

&  About Turing machines:
» Is the language accepted by a TM empty, finite, regular, or context-free?
« Does a TM meet its “specification ?” that is, does it have an)} “bugs.”

@ About Context Free languages
s Are two context-free grammars equivalent?

« s a context-free grammar ambiguous?

Not so surprising, Although this result is sweeping in scope, may be it is not too
surprising. If a simple question such as whether a program halts or not is
undecidable, why should one expect that any other property of the input/output
behaviour of programs is decidable? Rice’s theorem makes it clear that failure to
decide halting implies failure to decide any other interesting question about the
input/output behaviour of programs. Before we consider Rice’s theorem, we need to
understand the concept of problem reduction on which its proof is based.

Reducing problem B to problem A means finding a way to convert problem Bto
problem A, so that a solution to problem A can be used to solve problem B.

One may ask, Why is this important? A reduction of problem B to problem A shows
that problem A is at least as difficult to solve as problem B.Also, we can show the
following:

° To show that a problem A is undecidable, we reduce another problem that is
known to be undecidable to A. :

e  Having proved that the halting problem is undecidable, we use problem
reduction to show that other problems are undecidable.

Example 1: Tot:\lity Problem

Decide whether an arbitrary TM halts on all inputs. (If it does, it computes a “total
function™). This is equivalent to the problem of whether a program can ever enter an
infinite loop, for any input. It differs from the halting problem, which asks whether it
enters an infinite loop for a particular input.

Proof: We prove that the halting problem is reducible to the totality problem. That
is, if an algorithm can solve the totality problem, it can be used to solve the halting
problem. Since no algorithm can solve the halting problem, the totality problem must
also be undecidable.

The reduction is as follows. For any TM M and input w, we create another ™M,
that takes an arbitrary input, ignores it, and runs M on w. Note that M, halts on all
inputs if and only if M halts on input w. Therefore, an algorithm that tells us whether



‘The reduction is as follows. For any TM M and input w, we create another TM M,
that takes an arbitrary input, ignores it, and runs M on w. Note that M, halts on all
inputs if and only if M halts on input w. Therefore, an algorithm that tells us whether
M, halts on all inputs aiso tells us whethier M halts on input w, which would be 2
solution to the halting problem.

Hence, The totality problem is undecidable.

Example 2: Equivalence problem

Decide whether two TMs accept the same Ianguage. This is equivalent to the probler
of whether two programns compute the same output for every input.

Proof: We prove that the totality problem is reducible to the equivalence probiem.
That is, if an algorithm can solve the equivalence problem, it can be used to solve the
totality problem. Since no algorithm can sclve the totality problem, the equivalence
problem must also be unsolvable.

The reduction is as follows. For any TM M, we can construct a TM M; that takes any
input w, runs M on that input, and outputs “yes” if M halts on w. We can also
construct 2 TM M, that takes any input and simply outputs “yes.” If an aigerithm can
sell us whether M, and M, are equivalent, it can also tell us whether M; halts on ail
inputs, whichi would be a solution to the totality problem.

Hence, the equivalence problem is undecidable.

Practical implications

e The fact that the totality problem is undecidable means that we cannot write a
program ihat can find any infinite loop in any program.

@  The fact that the equivalence problem is undecidable means that the code
optimization phase of a compiler may improve a program, but can never
guarantee finding the optimally efficient version of the program. There may be
potentially improved versions of the program that it cannot even be sure are
equivalent.

We now describe a more general way of showing that a problem is undecidable
i.e., Rice’s theorem. First we introduce some definitions

L A property of a program (TM) can be viewed as the set of programs that have
that property. '

s A functional (or non-trivial) preperty of a program (TM) is one that some
programs have and some don’t.

Rice’s theorem (proof is not required)

e  “Any functional property of programs is undecidable.”
® A functional property is:
(i) a property of the input/output behaviour of the program, that is, it
describes the mathematical function the program compites.
(i) nontrivial, in the sense that it is a property of some programs but not ali

programs.

Examnles of functional propeities

0

@ The language accepted by a TM contains at leasi two strings

Algorithmically
Unsolvabie Problems
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® The language accepted by a TM is empty (contains no strings).

. The language accepted by a TM contains two different strings of the same
length,

Rice’s theorem can be used to show that whether the language accepted by a Turing
machine is context-free, regular, or even finite, are undecidable problems.
Not all properties of programs are functional.

2.5 UNDECIDABILITY OF POST
CORRESPONDENCE PROBLEM

Undecidable problems arise in language theory also. It is required to develop
techniques for proving particular problems undecidable. In 1946, Emil Post proved
that the following problem is undecidable:

Let X be an alphabet, and lei L and M be two lists of nonempty strings over , such
that L and M have the same number of strings. We can represgnt L and M as follows:

L=(w, wy,ws, .., W)
M= (v, vy, V3,0, W)

Does there exist a sequence of one or more integers, which we represent as
(1,3, k, ..., m), that meet the following requirements:

. Each of the integers is greater than or equal to one.

° Each of the integers is less than or equal to k. (Recall that each list has k
strings).

. The concatenation of w;, wj, Wy, ..., W, is equal to the concatenation of
Vis Vis Vig o5 Vi

If there exists the sequence (i, J, k, ..., m) satisfying above conditions then
(i, ], k, ..., m) is a solution of PCP.

Let us consider some examples.
Example 3: Consider the following instance of the PCP:

Alphabet & = {a,b }
List L = (a, ab)
List M = (aa, b)

We see that ( [, 2 ) is a sequence of integers that solves this PCP instance, since the
concatenation of a and ab is equal to the concatenation of aa and b

(i.e ,wy wy =v, v; = aab). Other solutions include: (1,2,1,2),(1,2,1,2,1,2)
and so on.

Example 4: Consider the following instance of the PCP Alphabet ¥ = {0, ] |

List L = ( 0, 01000, 01 )
List M = ( 000, 01, 1 )

iequence of integers that solves this problem is (2, 1, 1, 3), since the
1catenation of 01000, 0, 0 and 01 is equal to the concatenation of 01, 000,
O and 1(i.e., wy, wi, Wi w1 = vy vy vy = 010000001).
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2.6 UNDECIDABLE PROBLEMS FOR CONTEXT Unsofvable Problems
FREE LANGUAGES

The Post correspondence problem is a convenient tool to study undecidable questions
for context free languages. We illustrate this with an example.

Theorem 1.2: There exists no algorithm for deciding whether any given context-free
grammar is ambiguous.

Proof : Consider two sequences of strings A = (1, W, ... , Up) and
B = (v, V2, ... , V) Over some alphabet Y. Choose a new set of distinct symbols a;,
a, ... , &y, such that

fa, 2z, ..., 80 N2 =,
and consider the two languages
La={uy, ... uxacd... 3 a)} defined over A and {a;, 3, ..., @}
and
Lp={vivjy ... ivpagdy ..., 3 a;} defined over B and {aj, ay, ... , an}.
Let G be the context free grammar given by
(S,S4.Se}, {an, 32, .., a0} WX, P, S)

where the set of productions P is the union of the two subsets: the first set Px
consists of

S > Sa,
Sa —USaa; | ua;, i=1,2,..,n,

the second set Pg consists of

S — S,
Se —>viSea; | v, i=1,2,...,n

Now take
Ga= ({882}, fan, ., b UL, PaS)
and

G =({S,Ss }, {a. 2 ..., 8m} VX, P, S)

Then,

Ly = L(Ga),

Ly = L(Gg),’
and

L{G) = LauU Lg.

It is casy to see that G, and Gy by themselves are unambiguous. Ifa given st'ring inL
(G) ends with a;, then its derivation. with grammar G must have started with S= u;
S, a,. Similarly, we<an tell at any later stage which rule has to be applied. Thus, I/ G
1s ambiguous it must be because there is w for which there are two derivations
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S= Sp= viSay= vivi.. Vi .33 = w.

-Consequently, if G is ambiguous, then the Post correspondence problem with the pair
(A, B) has a solution. Conversely, If G is unambiguous, then the Post correspondence
problem cannot have solution,

If there existed an algorithm for solving the ambiguity problem, we could adapt it i
solve the Post correspondence problem. But, since there is no algorithm for the Post
correspondence problem, we conclude that the ambiguity problem is undecidable.

2.7 OTHER UNDECIDABLE PROBLEMS

@  Does a given Turing machine M halt on all inputs?

® Does Turing machine i halt for any input? (That is, is L(M)=2?)
e Do two Turing machines M, and M; accept the same fanguage?
@ Isthe language L(M) finite?

® Does L(M) contain any two strings of the same length?

L] Does L{M) contain a string of length k, for some given k?

e If Gis a unrestricted grammar.

® Does L{GY = 7

L] Does L{G) infinite 7

e If G is a context sensitive grammar.

? Does L(G) =T ?

e Does L{G}) infinite ?

4 If L, and L, are any context free languages over Z.

e DoesLy, M, =7

e DoesL, =1L, ?

° DoesLic L, ?

@ If L is recursively enumerable ianguage over Z.

® Does L empty ?

e Does L finite ?

Ex. 1) Show that the state-entry problem is undecidable.
Hint: The problem is described as follows: Given any Turing machine M = (Q, Z,
T, 8, qo, F) and any g € Q, we I, to determine whether Turing machine M,

when given input w, ever enters state q.

Ex. 2} Show that the blank tape halting problem is undecidable.

48
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T'he problem is described as follows: Given a Turing machine M, Does Unsolvable Problems

1 uring machine M halts when given a blank input tape?

Ex. 3) Consider the following instance of the PCP:

Alphabet £=1{0,1,2}
ListL=(0,1,2)

List M =( 00, 11,22)

Does PCP have a solution ?

Ex. 4) Consider the following instance of the PCP:

Alphabet Z={a,b}

List L = ( ba, abb, bab )
List M = ( bab, bb, abb )
Does PCP have a solution ?

Ex.5) Does PCP with two lists A = (b, babbb, ba) and B = (bbb, ba, a) have a

solution ?

Ex. 8) Does PCP with two lists A = (ab, b, b) and (abb, ba, bb) have a solution ¥

Ex.7) Show that there does not exist algorithm for deciding whether or not
L (Gy) N L(Gg) = & for arbitrary context free grammars G, and Gg.

2.8 SUMMARY

®

A decision problem is a problem that requires a yes or no answer. A decision
problem that admits no algorithmic solution is said to be undecidable.

No undecidable problem can ever be solved by a computer or computer
program of any kind. In particular, there is no Turing machine to solve an
undecidable problem.

We have not said that undecidable means we don’t know of a solution today
but might find one tomorrow. It means we can never find an algorithm for the
problem.

We can show no solution can exist for a problem A if we can reduce it into
another problem B and problem B is undecidable.

2.9

SOLUTIONS/ANSWERS

Ex. 1)

The problem is described as follows: Given any Turing machine M = (Q,
Z,T, 38, qo F) and any q € Q, we I, to determine whether Turing machine
M, when given input w, ever enfers state q.

The problem is to determine whether Turing machine M, when given input
w, ever enters state q.
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Ex. 2)

Ex. 3)

Ex. 4)

ey,
The only way a Turing machine M halts is 1f it enters a state g for wiuch
some transition function &(q;, a;) is uadefined. Add a new final state Z to
the Turing machine, and add all these missing transitions to lead to state Z.
Now use the (assumed) state-entry procedure to test whether state Z is ever
entered when M is given input w. This will reveal whether the original
machine M halts. We conclude that it must not be possible to build the
assumed state-entry procedure.

tis another preblem which is undecidable. The problem is described as
follows: Given a Turing machine M, docs Turing machine M halts when
given a blank input tape?

Here, we will reduce the blank tape halting problem to the halting problem.
Given M and w, we first construct from M a new machine M, that starts
with a blank tape, writes w on it, then positions itself in configuration qgw.
After that, M, acts exactiy like M. Hence, M,, will halt on a blank tape if
and only if M halts on w.

Suppose that the blank tape halting problem were decidable. Given any M
and w, we first construct M,, then apply the blank tape halting problem
algorithm to it. The conclusion tells us whether M applied to w will halt.
Since this can be done for any M and w, an algorithm for the blank tape
halting problem can be converted into an algorithm for the halting problem.
Since the halting problem is undecidable, the same must be true for the
blank tape halting problem.

There is no solution to this problem, since for any potential solution, the
concatenation of the strings from list L will contain haif as many letters as
the concatenation of the corresponding strings from list M.

We can not have string beginning with w, = abb as the counterpart v, = bb
exists in another sequence and first character does not match, Similarly, no
string can begin with w; = bab as the counterpart v, = abb exists in another
sequence and first character does not match. The next choice left with us is
start the string with w, = ba from L and the counterpart v, = bab from M.
So, we have

ba
bab
The next choice from L must begin with b. Thus, either we choose Wi OF W

as their string starts with symbol b. But, the choice of y ; will make two
string look like:

baba
babbab

While the choice of w, direct to make choice of v3 and the string will look !
like:




Ex. 5)

Ex. 6)

Ex. 7)
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babab

bababb
Since the string from list M again exceeds the string from list L by the
single symbol 1, a similar argument shows that we should pick up w; from
list L and v from list M. Thus, there is only one sequence of choices that

generates compatible strings, and for this sequence string M is always one
character Jonger. Thus, this instance of PCP has no solution.

We see that ( 2, I, 1, 3 ) is a sequence of integers that solves this PCP
instance, since the concatenation of babbb, b, b and ba is equal to the

concatenation of ba, bbb, bbband a (i.e., wow, w; wy = va v, v, v3 =
babbbbbba).

For each string in A and corresponding string in B, the length of string of
A is less than counterpart string of B for the same sequence number,
Hence, the string generated by a sequence of strings from A is shorter than
the string generated by the sequence of corresponding strings of B.
Therefore, the PCP has no solution

Proof : Counsider two grammars
Ga=({Sa}. {a,an....2,) U, Py S,
and

Gy = ({Sp }. {1, a5, ..., a4} U X, Py, Sp).

where the set of productions P, consists of
Sa-->uSaa, fua,, i=1,2,..,n,

and the set of productions Py consists of
Sp = viSaz; | viay, =12,

where consider two sequences of strings A = (uy, Uy, ... L Uy) and B - (vy,
Vi, ..., Vin) Over some alphabet .. Choose a new set of distinct symbols a;,

a,, ..., ay, such that

{a, 8, ... an) N2 =0,

Suppose that 1{Ga) and L{Gy) have a common element, i.e.,

Sam uSai= . way .aa

and

S vSa, = v, Vio Vidy .33,

Then the pair (A, B) has a PC-solution. Conversely, if  the pair does not
have a PC- solution, then L{G4) and L(Gy) cannot have a common

clement. We conclude that 1(G.) M LGy 1s nonempty if and only if (A,
B) has a PC- solution.
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3.0 INTRODUCTION

In unit 2 of the block, we discussed a number of problerns which cannot be solved by
algorithmic means and alse discussed a number of issues about such problems.

In this unit, we will discuss the issue of efficiency of computation of an algorithm in
terms of the amount of time used in its execution. On the basis of analysis of an
algorithm, the amount of time that is estimated to be required in executing an
algorithun, will be referred to as the time complexity of the algorithm. The time
complexity of an algorithm is measured 1n terms of some (basic) fime unit {not second
or nano-second). Generally, time {aken in executing one move of a TM, is taken as
{basic) time unit for the purpose. Or, aliernatively, time taken in executing some
elementary operation like addition, is taken as one unit. More corplex operations like
multiplication etc, are assumied to require an infegral number of basic units. As
mentioned earlier, given many algorithms (solutions) for solving a problem, we wouid
like to choose the most efficient algorithm from amougst the available ones. For
comparing efficiencies of algorithms, that solve a particular problem, time
complexities of algorithms are considered as functions of the sizes of the problems {(to
be discussed). The time complexity functions of ihe algorithms are compared in terms
of their growth rates (fo be defined) as growth rates are considered important measures
of comparative efficiencies.

The concept of the size of a problem, though a fundamental one, yet is difficult to
define precisely. Generally, the size of a prob!~m, is measured in terms of the size of
the input. The concept of the size of an inpui of a problem may be explained
informally through examples. In the case of multiplication of two nxn {squares)
matrices, the size of the problem may be taken as n’, i.e, the number of elements in
2ach wiatrix to be multiplied. For problems invelving polynomials, the degrees of the
polynomials may be taken as measure of the sizes of the problems.

For a problem, a solution with time complexity which can be expressed as a
: pelynomial of the size of the problem, is considered to have an efficient solution.
_However, not many problems that arise in practice, admit any efficient algorithms, as
these problems can be solved, if at all, by only non-polynomial time algorithms. A
problem which does not have any (known) polynomial time algorithm is called an
intractab!le vroblem.
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We may note that the term sofurion i its general form nced not be an aigorithm. 1f by
tossing a coin, we get the correct answer to each wnstance of a problem, then the
process of tossing the coin and gefting answers constitutes a solution. But, the process
1s niot an algorithm. Similarly, we solve problems based on heuristics, 1.e., good
suesses which, generally but not necessarily always, lead to solutions. All such cases
of solutions arc not algorithms, or algorithmic solutions. To be more explicit, by an
algorithmic solution A of a problem L (considered as a language) from a problem
domain ¥ we mean that among other conditions, the following are satisfied. A is a
step-by-step method in which for each instance of the problem, there is a definite
sequence of execution steps (et involving any guess work). A rerminates for each
xe¥’, irrespective of whetherx € L or x # L.

i

In this sense of algorithmic solution, only a selution by a Deterministic TM ix called
an algorithm. A soluiicn by a Non-Deterministic TM may not be an algorithm.

{1} However, for every NTM solution, there is'a Deterministic 1M (DTM) solution
of a problem. Therefore, if there is an NTM solution of a problem, then there is
an algorithmic solution of the problem. However, the svimmenry my ond here.

The computational equivalence of Deterministic and Non-Deterministic TAMs
does not state or guarantee any equivalence in respect of requivement of
resources like time and space by the Deterministic and Non-Determunistic
models of TM, for solving a (solvable) problem. To be more precise, if a
problem is solvable in polynomial-time by a Non-Deterministic Turing
Machine, then it is, of course, graranteed that there is a deterministic TM that
solves the problem, but it is nor guaranteed that there exists a Deterministic TM
that solves the problem in polynomial time. Rather, this fact forms the basts for
one of the deepest open questions of Mathematics, which is stated as “shether P
=NP?’(P and NP to be defined soon).

The question put in simpler language means: Is it possible to design a
Deterministic TM to solve a problem in polynomial time, for which, a
Non-Deterministic TM that solves the problem in polynomial time, has already
been designed?

We summarize the above discussion trom the intractable problem’s definition
onward. Let us begin with definitions of the notions of P and NP.

P denotes the class of all problenis, for each of which there is at least one
knovwn polynomial time Deterministic TM solving it.

NP denofes the class of all problems, for each-of Which, there is at least one
known Non-Deternumnistic polynomial time solution. However, this solution
may not be reducible to a polynomial time algorithm, i.e, to a polynonmal time
DTM.

Thus starting with two distinct classes of prablems, viz., tractable problems and
intractable problems, we mtroduced two classes of problems called P and NP. Some
mnteresting relations known about these classes arce:

(1) P =setof tractable problems
(1) P NP.

(The relation (i) obove simply Tollows from the fact that every Determinsstic TM s a
spectal case of . Non-Deiemunistic TM).

However, it s not known whether PNP or P oo NP This forms the basts Tor the
subject matter of the rest of the chapter. As a first step. we introduce some notstions

to facihtate the discussion of the concept of compuiational complexity
P
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After going through this unit, you should be able to:

. explain the concepts of time complexity, size of a problem, growth rate of a
function:

. define and explain the well-known notations for growth rates of functions,
viz.,0,Q, OT :

. explain criteria for classification of problems into undefinable defineable but
not solvable, solvable but not feasible, P,NP, NP hard and NP-Complete etc.

. define a number of problems which are known to be NP-complete problems;

. explain polynomial reducticn as a technique of establishing problems as
NP-hard; and . d

° establish NP-completeness of a number of problems.

3.2 NOTATIONS FOR GROWTH RATES OF
FUNCTIONS

The time required by a solution or an algorithm for solving a (solvable) problem,
depends noz only on the size of the problemy/input and the number of operations that
the algorithny/solution uses, bus also on the hardware and softwarc-used tn execute the
solution. However, the éffect ofchange/xmpmvement in hardware and software on
the time required may be closely approximated by a consrans.

Suppose, a supercomputer exceutes instuctions one million times faster ihan another
computer. Then irrespective of the size of a (solvable) problem and the soluiion used
to solve it, the supercomputer solves the problem roughly million times faster than the
computer, if the same solution is used on both the machines to solve the preblem.
Thus we conclude that the time requirement for exceution of a solution, changes
roughly by a constant factor on change in hardware, software and environmental
fuctors.

3.2.1  The Constant Factor-in Complexity Measure

An important consequence of the above discussion is that if the time taken by one
machine in executing a solution of a probiem is a polynomial (or cxponential)
function in the size of the problem, then time taken by every machine is a pelynomial
(o1 exponential) function respectively, in the size of the problem. Thus, fwz(:liuns;
differing from cach other by constant factors, when tgeated as time complexities
should not be treated as different. i.e., should be treated as complexity-wise

.

3.2.2 Asymptotic Considerations o

Computers are generally used to solve problems involving complex solutions. The
complexity of solutions may be either because of the large number of involved
computational steps and/or large sfze of input data. The plausibility of the claim
apparently follows from the fact that, when required, computers are used generally

not tf’ find the product of two 2 x 2 matrices but to find the product of two n »n "
matrices for jarge n running into hundreds or even thousands.

Smularly, compqters, when required, are generally used not to find roots of
quadratic equations but for - finding roots of complex ‘equations including
polynomiala equations of degrees more than hundreds or somelimes even thousands.
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@) O(O (n®) is pronounced as ‘big-ch of n®* or sometimes just as oh of n’)

The above discussion leads to the conclusion that when considering time complexities
f,(n) and f(n) of (computer) solutions of a problem of size n, we need to consider and
compare the behaviours of the two functions only for large values of n. If the relative
behaviours of two functions for smaller vatues conflict with the relative behaviours
for larger values, then we may ignore the conflicting behaviour for smaller values.
For example, if the earlier considered two functions

fi(n) = 1000 v’ and
f(n)= Sn’

represent time complexities of two solutions of a problem of size n, then despite the
fact that

fim)znn) forn< 14,
we would still prefer the solution having f, (n) as time complexity because
fi(n) <6 (ny feralln > 15.

This explains the reason for the presence of the phrase ‘n 2 Kk’ in the definitions
of the various measures of complexities discusscd below:

3.2.3 Well Known Asymptotic Growth Rate Notations

In the following we discuss some well-known growth rate notations. These notations
denote relations from functions to functions.

For example, if functions
g NN are given by

fln)=n"-5n and

go)=n’
then
o(fin)) = g(n)  or O - 5n) =10’

(the notation O to be defined scon).

To be more precise, each of these notations is a mappin _ that associates,a set of
functions to each function. For cxample, if f (n) is a polynomial of degree k then the
set O (f (n)) includes all polynomials of degree fess than or equal to k.

The five well-known notations and how these are pronounced:

i Q0 (@ (n® ) is pronounced as ‘big-omega of n® or sometimes just as
omega of 1)

)y © (® (n’) is prononnced as ‘thicia of ")
{ivi o (c (n?) is proncunced as ‘littlc-oh of 0”)

v o (w (1) is proncunced as ‘little- omega of n’")
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in the discussion of any one of the five notations, generally two functions say f and g

are involved. The functions have their domains and Codomains as N, the set of natural

numbers, i.e.,

N N
gN N

These functions may also be considered as having domain and codomain as R.

Remark 3.2.3.2

The purpose of these asymptotic growth rate notations and functions denoted by these
notations, is to facilitate the recognition of essential character of a complexity
function through some simpler functions delivered by these notations. For example, a
complexity function f{n) = 5004 n’ + 83 o + 19 n + 408, has essentially the same
behaviour as that of g(n) = n’ as the problem size n becomes larger and larger. But
g(n) = n’ is much more comprehensible than the function f(n). Let us discuss the
notations, starting with the notation 0.

3.2.4 The Notation O

Provides asymptotic upper bound for a given function. Let f(x) and g(x) be two
functions each from the set of natural numbers or set of positive reai numbers to
positive real numbers.

Then f (x) is said to be O (g(x)) (pronounced as big-oh of g of x) if there exist two
positive integer/real number Constants C and k such that

fx)<Cg(x) forallx=k (A)

(The restriction of being positive on integersireals is justified as all complexities are
positive numbers).

Example 3.2.4.1: For the function defined by

f(x)=2* +3x> + 1
show that

() fx) = 0
(i) f(x) = O (x%
(i) x° O (f(x))
iv) x* # O(f(x)
v fx) =0 (xH

it

i

Solutions
Part (i)
Consider

f(x) = 2x" #3x% +1
<2433 41 &P =6y forall x> i

(by replacing each term x' by the highest degree term x*)

. thereexist C=6andk = ! such that
fx)<C. x> forali x>k

seg



Complexity & Thus, we have found the required constants C and k. Hence f(x) is O(x*).
Completeness .

Part (ji)

As above, we can show that

fix)<6 x* forallx>1.

However, we may also, by computing some values of f{x) and x*, find C and k as

follqws:
f{1)=243+1 =6 ; (1*=1
f2)=22"+32°+1=29 ; @)*=16
f3)=23°+332+1=82  ; (3)* =81

forC=2 and k= f we have
fiy<2.x* forall x = k

Hence, f{x) is O(x*).
Part (i)

for C=1 andk=1 weget
< C +33+1) forallx>k

Part (iv)

We prove the result by contradiction. Let there exist positive constants C and k
such that

K <C %’ +3x7 +1) foralix2k
~xt < O +3x%+x%) = 6Cx for x2k
L X'$6Cx® forallxzk

implying x<6C forallx>k

But for x = max of { 6 C + 1, k}, the previous statement is not true.
Hence the proof.

Part (v)

Again we establish the result by contradiction.

Let O 2 *+3x%+1) =X

Then for some positive numbers C and k

2x% + 3x%+1 <C & for all x 2k,

implying

KsCx foralixzk (0 X 2043+ for all x 21)
implying

x<C forx 2k

Again for x =max  {C+1,k}

The last imaquality does not hold. Hence the result.

Example: The big-oh notation can be used to estimate S, the sum of first n positive
integers

Hint: S,=1+2r3+.......... tmlntn o +n=1u
Therefore; §, = 0 (n?). ’
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It can be easily seen that for given functions f{x) and g(x), if there exists one pair of C
and k with flx) < C.g (x) foralix 2k, then there exist infinitely many pairs {C,, k;
which satisfy

fx) < Ci g(x) forall x > k;.

Because forany C; > C and any k; 2 k, the above inequality is true, if f{x)< c.g(x) for
all x> k. .

3.2.5 The Notation Q

Provides an asymptotic lower bound for a given funct®n.

Let f{x) and g(x) be two funétions, each from the set of natural numbers or set of
positive real numbers to positive real numbers.

Then £ (x} is said to be Q (g(x)) (pronounced as big-omega of g of x) if there exist two
positive integer/real number Constants C and k such thag

fix) > C (g(x)) whenever x > k

Example 3.2.5.1: For the functions
) f(x) =2x* + 3% + 1 and h (x) = 2°=3x+2 -
show that .

(i) fx)=Q ()
(i) h=Q )
(i)  h(x=Q )
(v) X’ =Q(hx)
) LzQ (b))

Solutions:
Part (i)

For C =1, we have
f(x)>Cx* forallx >}

Part (ii)

h(x) = 2x°~ 3x*+2

Let Candk>0 be such that
2°-3x%422>Cx’  forallx 2k
ie, (2-C)*-3x™220 forall x >k

Then C = 1 and k> 3 satisfy the last inequality.
Part (iii)

27 w2 =Q(x%)

I ¢t the above equation be true.

Then there exists positive numbers C and k

st ’
- 342> Cx* forallx >k
2x°-(3+C)x*+220
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it can be easily seen that lesser the value of C, better the chances of the above
inequality being true. So, to begin with, let us take C = 1 and try to find a value of k
s.t

2 4x*42 2 0.

For x > 2, the above inequality holds
o k=21is such that

25— 4x*+22>0forall x > k
Part (iv)
Let the equality
© = Q (25°-3x%+2)
be true. Therefore, let C>0 and k > 0 be such that
2032 )
For C = % and k = 1, the above inequality is true.
Part (v) .
We prove the result by contradiction.
Letx* = Q (3x’-2¢*+2)
Then, there exist positive constants C and k such that

¥2CBx -2 +2) forallxzk

ie, 2C+1)x*23Cx¥ +22Cx’ forall x 2k

26+ 5 % forallx2k i
7 1
Butforanyxz 2 (—L—C(—jf-—)

The above inequality can not hold. Hence contradiction.

3.2.6 The Notation @

Provides simultaneously both asymptotic lower bound and asymptotic upper bound
for a given function.

Let f(x) and g(x) be two functions, each from the set of natural numbers or positive
real numbers to positive real numbers. Then f(x) said to be © (g(x)) (pronounced as
big-theta of g of x) if, there exist positive constants C,, C; and k such that

C, g(x) < f(x) < Cy g(x) forallx 2 k.

{Note the last inequalities represent two conditions to be satisfied simultaneously viz.,

C; g(x) <fix) and fix) <C, g(x)).

We state the following theorem without proof, which relates the three functions
0,0,0

Theorem: For any two functiqns f{x) and g(x), f(x) = © (g(x)) ifand only if
f{x) = O (g(x)) and f{x) = Q (g(x)). ‘



Examples 3.2.6.1: For the function
f(x)=2x*+3x*+1, show that

) =0 )

(i) flx)z 0K

(i) fx)= © ()g")

Solutions

Part (i)

forC,=3,C;=1andk=4

1. X f(x)<C % forallx >k
Part (ii)

We can show by contradiction that no C, exists.

Let, if possible for some positive integers k and C,, we have 2x*+3x*+1<C,. x* for all

x>k
Then
x*< C, x* for all x>k
ie.,
x< C; for all x>k
But for
x=max {Ci+1,k}
The last inequality is not true

Part (iii)
f(x) 2 0 (%)

We can show by contradiction that there does not exist C,
s.t

Cx <@ +3x+1)

If such a C, exists for some k then C, x* < 2x* +3x* + 1 < 6x* forall x > k>1,

implying
Cyx<6 forallx 2k

But forx = {—6—+l]
C.

2

the above inequality is false. Hence, proof of the claim by contradiction.

3.2.7 The Notation o

The asymptotic upper bound provided by big-oh notation may or ay not be

tight in the sense that if f(x) =2x* +3x* +1

Then for f(x) = O (x*), though there exist C and k such that
f(x) <C(x’) forallx >k

yet there may aiso be some values for which the following equality also holds

Complexity of
Algorithms
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f(x) = C (x*) for x>k
However, if we consider
fx)= 0 (x*)
then there can not exist positive integer C s.t
fx)=Cx* forallx >k
The case of f (x) = O (x¥), provides an example for the next notatior.r of small-oh.
The Notation o

Let f{x) and g(x) be two functions, each from the set of natural numbers or positive
real numbers to positive real numbers.

Further, let © > 0 be any number, then f{x) = o(g(x)) (prenounced as little oh of
g of xj if there exists natural number k satisfying

f{x) <C g(x) forall x > k=1 (B)
Here we may note the following points:
(1)  Inthe case of little-oh the constant C does not de;}cnd on the two functions £(x}

and g (x). Rather, we can arbitrarily choose C >0.

(i.i) The inequality (B) is strict whereas the inequality (A) of big-oh is not
necessarily strict.

Example 3.2.7.1: For f(x) = 2x* + 3x’ + 1, we have

G fExy=o(x") ‘ for anyn24.
(i} fx) £ o{x") forn< 3

Solution

Let C> 0 be given and to find cut k satisfying the requirement of little-oh.
Consider

Case whenn=4
Then above inequality becomes

2+ .3L+_‘3. <C x

XX
. : 7 .
if we take k = max {-El}

then
23+ 341 < Cxt forx>k

In general, as X" > x* forn > 4,

therefore
2 +3+1 < C %" forn>4
forallx 2k

.1}

[P EN]

with k = max !
i



Part (ii)

We prove the result by contradiction. Let, if possible, f{x) = 0(x") for n<3.

Then there exist positive constants C and k such that 2343+H1< C X
for all x> k. ’

Dividing by x° throughout, we get

2+ 2 Jrl2 <Cx?
X x
n<3andx2k
As C is arbitrary, we take
C = 1, then the above inequality reduces to

2+ 3,1 <ccx? forns3andxzk21.
X X2

Also, it can be easily seen that

< forn<3andx2kx1
S22+ 3+-12— <1 forn<3
X x

However, the last inequality is not true. Therefore, the proof by contradiction.
Generalizing the above example, we get the
Example 3.2.7.2: I f(x) is a polynomial of degree m and g(x) is a polyncemial of
degree n. Then

f(x) = o{g(x)) if and only if n>m.

we state (without proof) below two results which can be useful in finding small-oh
upper bound for a given function

More generally, we have
Theorem 3.2.7.3: Let {(x) and g(x) be functions in definition of small-oh notation.

Then f(x) = o(g(x) if and only if -

Lim M =0
g(x)
Lim x—> «©

Next, we introduce the last asymptotic notation, namely, small-omega. The relation of
small-omega to big-omega is similar to what is the relation of small-oh e big-oh.

3.2.8 The Notation ®

Again the asymptotic lower bound € may or may not be tight. However, the
asymptétic bound o cannot be tight. The formal definition of & is follows:

;

Let f(x) and g(x) be twe functions each from the set of natural numbers ot the set of
positive real numbers to set of positive real numbers.

Further

Let C > © be any number, then

Complexity of
Algorithms
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Complexity & fx) = (2(x))
Completeness if there exist a positive integer k s.t
fx)>C gx) forallx>k

Example 3.2.8.1: If f(x) = 2: + 3% + |

then

fx) =0 (x)
and also

=0 )

Solution:
Let C be any positive constant.
Consider

2°+3x+1>Cx

To find out k> I satisfying the conditions of the bound .

1
27 +3x+ — >C (dividing throughout by x)
x
Let k be integer with k>C+1

Then forall x> k

23+ L > 2+ 3ok +3k>2C* 43C>C. (- k2 C+l)
X
LX) =0 (x)
Again, consider, for any C > 0,

2¢+3x3+1>Cx2
then

2X+3+ -5 >C Letkbe integer with k > C+1
Then for x 2 k we have "
X3+ L 22x+3>2k+3>2C+35C
Hence *
) = o (%)

In general, we have the following two theorems (stated without proof).

Theorem 3.2.8.2: If f(x) is a polynomial of degree n, and g(x) is a polynomial of
degree n, then

f{x) = ® (g(x)) if and only if m > n.

More generally

Theorem 3.2.8.3: Let f(x) and g(x) be functions in the definitions of little-omega
Then {(x) = o g(x) if and only if



Lim S x) .o X C Co::lplex.itygi

¥ > do 2 (%) A gorithims
or

Lim g(x)

x = o f(x)

=0

i

Ex.1)  Show that n! = O(n").
Ex.2)  -Show that n’ + 3logn = O(n).

Ex.3) Show that 2“ = O(5™).

33 C.LASSIFICATION OF PROBLEMS

The fact of being engaged in solving probiems may be the only sure mdlcatlon ofa
living entity being alive (though, the distinction between entities being alive and not
being alive is getting fuzzier day by day). The problems, attempted to be solved, may
be due to the need for survival in a hostile and competitive environment or may be
because of intellectual curiosity of knowing more and more of the nature. Ir: the
previous unit, we studied a number of problems which are not solvable by
computational means. We can go still further and categorize the problems, which
we or may , into the following broead classes:

(I) © Problems which can not even be defined formally.

By a formal definition of a problem, we mean expressing in terms of mathematical
-entities like sets, relations and functions etc., the information concerning the problem,
in-respect of at least ; -

i

5

a)  Possible inputs

b)  Possible outcomes .

¢)  Entitles occurring and operations on these entities in the (dynamic)
~ problem domains.

In this sense of definition of a problem, what to talk of solving, most of the problems
can not even be defined. Think of the following problems.

- a)  Why the economy is not doing weil?
b)  Why there is hunger, illiteracy and suffermg despite mtemahonal efforts
to eradicate these? _
¢)  Why some people indulge in corrupt practices despite being economically
well?

These are some of problems, the definition of each of which require enumeration of _
potentially infinite parameters, and hence are almost impossible to define.

(in Problems which can be formally defined but can not be solved by
computational means. We discussed somie of these problems in the previous
unit. . :

() Problems which, though theoretically can be solved by computational means,
yetare infeasible, i.e., these problems require so large amount of
computational resources that practically is.not feasible to solve these
problems by computational means. These problems are called intractable or
infeasible problems. The distinguishing feature of the problems is that for
each of these problems any solution has time complexity which is
exponential, o at least non-polynomial, function of the problem size.
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(IV}  Problems that are called feasible or theoretically not difficult to solve by
computational means. The distinguishing feature of the problems is that for
each instance of any of these problems, there exists a Deterministic Turing
Machine that solves the probiem having time-complexity as a polynomial
function of the size of the problem. The class of problem is denoted by P.

V) Last, but probably most interesting class include large number of problems,
. for each of which, it is not known whether it is in P or not in P.
These problems fall somewhere between class Il and class IV given above
However, for each of the problems in the class, it is known that it is in NP,
i.e., each can be solved by at least one Non-Deterministic Turing Machine,
the time complexity of which is a polynomial function of the size of the
problem.

A problem from the class NP can equivalently but in more intuitive way, be
defined as one for which a potential solution, if given, can be verified in
polynomial time whether the potential solution is actually a sotution or not.

The problems in this class, are called NP-Complete problems (to be formally defined
later). More explicitly, a prob?em is NP-complete if it is in NP and for which no
polynomial-time Deterministic TM solution is known so far.

Most interesting aspect of NP-complete problems, is that for sach of these problems
neither, so far, it has been possible to design a Deterministic polynomial-time TM
solving the problem nor it has been possible to show that Deterministic polynomial -
time TM solution can not exist.

The idea of NP-completeness was introduced by Stephen Cook” in 1971 and the
satisfiability problem defined below is the first problem that was proved to be NP-
complete, of course, by S. Cook. '

Next, we enumerate some of the NP-complete problems without justifying why
these problems have been placed in the class. Justification for some of these
preblems will be provided in later sections.

A good source for the study of NP-complete problems and of related topics is Garey &
Johnson'

Problem 1: Satisfiability problem (or, for short, SAT) states: Given a Boolean
expression, is it satisfiable?

Explanation: A Boolean expression involves

(i)  Boolean variables x,, X,..., X;, ..., €ach of which can assume a value either
TRUE ( generally denoted by 1) or FALSE (generally denoted by 0) and

(ii)  Boolean/logical operations: NOT(x, ) (generally denoted by x; or1x;), AND
(denoted generally by A), and OR (denoted by v/ ). Other logical operators
like & and <> can be equivalently replaced by some combinations of v , A and

(ii1)  Pair of parentheses

(iv) A set of syntax rules, which are otherwise well known.

" Cook S.A: The complexity of Theorem praviding procedures, proceedings of the third annual ACM
symposium on the Theory of Computing, New York: Association of Computing Machinery, 1971,
pp. 151-158. )

+ Garoly M.R. and Johnson D.S. : Computers and Intractability: A guide to the Theory of
NP-Completeness, H.Freeman, New York, 1979.



For example
((xi~ X2) Vv Txy) is (legal) Boolean expression.
}\/ext, we explain other concepts involved in' SAT.

Tfuth Assignment: For each of the variables involved in a given Boolean
expression, associating a value of either 0 or 1, gives a truth assignment, which in turn
gives a-truth-value to the Boolean expression.

For example: Let x,= 0, x,=1, and x;=1 be one of the eight possible assigx{rriénts to
a Boolean expression involving xy, X, and x;
Truth-value of a Boolean expression.

Truth value of ((x; AXy) vl X3) for the truth-assignment x,=0, x,=1 and x;=1 is
@AvID=(©Ov0)=0

Satisfiable Boolean expression: A Boolean expression is said to be satisfiable if at
least one truth assignment makes the Boolean expression True.

For example: x;=1, x,=0 and x;= 0 is one assignment that makes the Boolean
expression ((x; A xz)v] x3) True. Therefore, ((x; A X2) Vv 1 X3) is
satisfiable.

‘Problem 2+ CSAT or CNFSAT Problem: given a Boolean expression in CNF, is
it satisfiable?

Zxplanation: A Boolean formula FR is said te be in Conjunctive Normal Form (i.e.,

CNF) if it is expressed as C; A C, A ... AC, where each C; s a disjunction of the

form

Xit V Xz V...V Xig

where each x;is a literal. A literal is either a variable x; or negation x; of variable x;

Each C; is called a conjimct. It can be easily shown that every logical expression can

equivalently be expressed in CNF .

Problem 3: Satisﬁability (or for short, 3SAT) Problem: given a Boolean expression
: in 3-CNF, is it satisfiable?

Further Explanation: If each conjunct in the CNF of a given Boolean expression
contains exactly three distinct literals, then the CNF is called 3-CNF.

Problem4:  Primality problem: given a positive integer n, is n prime?
TroblemS:  Traveing salesman Problem (TSP)

Given a set of cities C= {C,, C;, .... C;} with n >1, and a function d which assigns to
each pair of cities (C;, C;) some cost of travelling from C; to C;. Further, a positive
integer/real number B is given. The problem is to find a route (covering each city
exactly once) with cost at most B.
Problem 6:  Hamiltonian circuit problem (H C P) given an undirected graph

G =(V, E), does G contain a Hamiltonian eircuit?

Further Explamation: A Hamiltonian circuit of a graph G = (V, E) is a set of edges
that connects the nodes into a single cycle, with each node appearing exactly once.
We may note that the number of edges on a Hamiltonian circuit must equal the
number of nodes in the graph.

Complexity of
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Cemplexity & Further, it may be noted that HCP is a special case of TSP in which the cost between
Completeness pairs of nodes is the same, say 1.

Example: Consider the graph

Then the above graph has one Hamiltonian circuit viz., (1, 2, 4, 3, 1)

Problem 7: The vertex cover problem (V C P) (also known as Node cover
problem): ‘Given a graph G =(V,E) and an integer k, is there a
vertex cover for G with k vertices?

Explanation: A vertex cover for a graph G is a set C of vertices so that each edge of
G has an endpoint in G. For example, for the graph shown above,
{1, 2, 3} is a vertex cover. It can be easily seen that every superset of
a vertex cover of a graph is also a vertex cover of the graph.

Problem 8: K-Colourability Problem: Given a graph G and a positive integer
k, is there a k-colouring of G?°

Explanation: A k-colouring of G is an assignment to each vertex of one of the k
colours so that no two adjacent vertices have the same color. It may be recalled that
two vertices in a graph are adjacent if there is an edge between the two vertices.

o

= 2

3 . 4

As the vertices 1, 2, 3 are mutually adjacent therefore, we require at least three colours
for k-colouring problem.

Problem 9: The cemplete subgraph problem (CSF Complete Sub) or clique
problem: Given a graph G and positive integer k, does G have 2
complete subgraph with k vertices?

Explapation: For a given graph G = (V, E), two vertices v, and v, aré said to be
adjacent if there is an edge connecting the two vertices in the graph
A subgraph H= (V, E,) of 2 graph G = (V, E) is a graph such that
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Vi¢ Vand E,c E. In other words, each vertex of the subgraph is a
vertex of the graph and each edge of the subgraph is an edge of the
graph.

Complete Subgraph of a given graph G is a subgraph in which
every pair of vertices is adjacent in the graph.

For example in the above graph, the subgraph containing the vertices {1,2,3}
and the edges (1, 2), (1, 3), (2, 3) is a complete subgraph or a clique of the graph.
However, the whole graph is not a clique as there is no edge between vertices 1 and 4.

Problem 10: Independent set problem: Given a graph G = (V, E) and a positive
integer k, is there an independent set of vertices with at least k elements?

Explanation: A subset V; of the set of vertices V of graph G is said to be
independent, if no two distinct vertices in V, are adjacent. For example, in the abowe
graph V, = {1, 4} is an independent set.

Problem 11:  The subgraph isomorphism problem: Given graph G, and G,,
does G, contain a copy of G, as a subgraph?

Explanation: Two graphs H, = (V, E ) and H, = (V,, E,) are said to be isomorphic
if we can rename the vertices in V, in such a manner that after renaming, the graph H,
and H, look identical (not necessarily pictorially, but as ordered pairs of sets)

For Example

1 2

W
.

are isomorphic graph because after mapping 1 —>a, 2-»b, 3 —c¢ and 4 —> d, the two
graphs become identical.

Problem 12:  Given a graph g and a positive integer k, does G have an “edge
cover” of k edges?

Explanation: Fora given graph G = (V,E ), a subset E, of the set of edges E of the
graph, is said to be an edge cover of G, if every vertex is an end of at least one of the
edges in E,.

For Example, for the graph

o

The two-edge set {(1, 4), (2, 3)} is an edge cover for the graph.

4

Problem 13:  Exact cover problem: For a given set ®={S, S,, ..., S}, where
each S; is a subset of a given set S, is there a subset Q of @such

that for each x in S, there is exactly one S; in Q for which % is in
§?

Complexity of
Algorithms
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Example: LetS = {1, 2, ...,10}

and @ = { S, S, Ss, Sy, S5} s.t

S, = {1,3,5)

Sa=  {2,4,6)

S;=  {1,2,3,4}

Sy=  15,6,7,9, 10}

Ss=  {1,89,10}

Then Q = { S, S, Ss} is a set cover for S.

Problem 14: The knapsack problem: Given a list ofk integers n;, n,... ny, can we
partition these integers into two sets, such that sum of integers in each
of the two sets is equal to the same integer?

3.4 REDUCTION, NP-COMPLETE AND NP-HARD
PROBLEMS :

Earlier we (informally) explained that a problem is called NP-Complete if P has at
least one Non-Deterministic polynomial—time solution and further, sg far, no
polynomial-time Deterministic TM is known that solves the problem.

In this section, we formally define the concept and then describe a general technique
of establishing the NP-Completeness of problems and finally apply the technique to
show some of the problems as NP-complete. We have already explained how a
problem can be thought of as a language L over some alphabet %, Thus the terms
problem and language may be interchangeably used.

For the formal definition of NP plet: poly ial-time reduction, as
defined below, plays a very important role.

In the previous unit, we discussed reduction technique to establish some of the
problems as undecidable. The method that was used for establishing undecidability of
a language using the technique of reduction, may be briefly described as follows:

Let P, be a problem which is aiready known to be undecidable.  We want to check
whether a problem P, is undecidable or not. If we are able to design an algorithm
which transforms or constructs an instance of P, for each instance of Py, then P, is also
undecidable. ' ' :

The process of transformation of the instances of the problem already known to the
undecidable to instances of the problem, the undecidability is to checked, is called
reduction.

Some-what similar, but, slightly different, rather special, reduction called polynomial-
time reduction is uséd to establish NP-Completeness of problems.

A Polynomial-time reduction is a polynomial-time algorithm which constructs the
instances of a problem P, from the instances of some other problems P;.

A method of establishing the NP-Completeness (o be formally defined later) of 2
problem P, constitutes of designing a polynomial time reduction that constructs
an instance of P, for each instance of P;, where P, is already known to be
NP-Complete.



|

The dirvection of the mapping must be clearly understood as shown below.

Polynomial-time
P, —> P,

Reduction

(Problem already known to be undecidable) ————P (Problem whose NP-Completeness
is to be established)

Though we have already explained the concept of NP-Completeness, yet for the sake
of completeness, we give below the formal definition of NP-Compleness

Definition: NP-Complete Problem: A Problem P or equivalently its language L,
is said to be NP-complete if the following two conditions are satisfied:

(i) The problem L; is in the class NP
(i) For any problem L, in NP, there is a polynomial-time reduction of L, to L,.

In this context, we introduce below another closely related and useful concept.

Definition: NP-Hard Problem: A problem L is said to be NP-hard if for any
problem L, in NP, there is a polynomial-time reduction of L, to L:

In other words, a problem L is hard if only condition (ii) of NP-Completeness is*
satisfied. But the problem has may be so hard that establishing L as an NP-class
problem is so far not possible.

However, from the above definitions, it is clear that every NP-complete problem L
must be NP-Hard and additionally should satisfy the condition that L is an NP-class
problem.

In the next section, we discuss NP-completeness of some of problems discussed in the
previous section.

3.5 ESTABLISHING NP-COMPLETENESS OF
PROBLEMS

In general, the process of establishing a problem as NP-Complete is a two-step
process. The first step, which in most of the cases is quite simple, constitutes of
guessing possible solutions of the instances, one instance at a time, of the problem
and then verifying whether the guess actually is a solution or not.

The second step involvés designing a polynomial-time algorithm which reduces
instances of an already known NP-Complete problem to instances of the problem,
which is intendéd to be shown as NP-Complete.

However, 1o begin with, there is a major hurdle in execution of the second step. The
above technique of reduction can not be applied unless we already have established at
least one problem as NP-Complete. Therefore, for the first NP-Complete problem, the
NP-Completeness has to be established in a different manner.

As mentioned earlier, Stephen Cook (1971) established Satisfiability as the first
NP-Complete problem. The proof was based on explicit reduction of the language of
ahy non-deterministic, polynomial-time TM to the satisfiability problem.

The proof of Satisfiability problem as the first NP-Complete problem, is quite lengthy
and we skip the proof. Interested readers may consult any of the text given in the
refetence.

Complexity of
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© 5k
Assuming the satisfiality problem as NP-complete, the rest of the problems that we
establish as NP-complete, are established by reduction method as explained above.
A diagrammatic notation of the form.

+

Q

Indicates: Assuming P is already established as NP-Complefe, the NP-Completeness
of Q is established by through a polynomial-time reduction from P to Q.

A scheme for establishing NP-Completeness of some the problems mentloned in
Section 2.2, is suggested by Figure. 3.1 given below:

SAT

A
3-CNF-SAT

/

Clique Problem ’ ~a

.

Vertex Cover

Subset -Sum

h 4
Hamiltenian Cycle

A 4
Travelling Salesman/v ]

Figure: 3.1

Example 3.4.1: Show that the Clique problem is an NP-complete problem.

Proof : The verification of whether every pairs of vertices is connected by an edge in
E, is done for different paris of vertices by a Non-deterministic TM, i.e., in parallel.
Hence, it takes only polynomial time because for each of n vertices we need to verify
at most n (n+1) /2 edges, the maximum number of edges in a graph with n vertices.

We nexi show that 3- CNF-SAT problem can be transformed to cllque problem in
polynomial time.

Take an instance of 3-CNF-SAT. An instance of 3CNF-SAT consists of a set of n
clauses, each consisting of exactly 3 literals, each being either a variable or negated
variable. It is satisfiable if we can choose literals in such a way that:



Compiexity of

® at feast one literal from each clause is chosen Algorithms

® it Titeral of form x is chosen, no literal of form —x is considered.

Figure: 3.2

For each of the literals, create a graph node, and connect each node to every node in
other clauses, except those with the same variable but different sign. This graph can
be easily computed from a boolean formula & in 3-CNF-SAT in polynomial time.
Consider an example, if we have--

D= :x, VoV Aa(xiVaxyVax)a{ -x V—xV —Xy)
then G is the graph shown in Figure 3.2 above.

in the given example, a satisfying assignment of @ is (x, =0, x, =0, x3=1). A
corresponding clique of size k = 3 consists of the vertices corresponding to X, from
the first clause, —x; from the second clause, and —X;3 from the third clause.

The problem of finding n-element clique is equivalent to finding a set of literals
satisfying SAT. Because there are no edges between literals of the same clause, such
a clique must contain exactly one literal from each clause. And because there are no
edges between literals of the same variabie but different sign, if node of literal x is in
the clique, no node of literal of form --x is.

This proves that finding n-clement clique in 3n-element graph is NP-Complete.
Example 5: Show that the Vertex cover problem is an NP- complete.

A vertex cover of an undirected graph G = (¥, E) is a subset ¥"of the vertices of the
graph which contains at least one of the two endpoints of each edge.
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Figure: 3.3 Figure: 3.4

The vertex cover problem is the optimization problem of finding a vertex cover of
minimum size in a graph. The problem can also be stated as a decision problem :

VEE

[EX-COVER = {<G, k>| graph & has a vertex cover of size k }.

A deterministic algorithm to find a vertex cover in a graph is to list ali subsets of
vertices of size k and check each one io s2¢ whether it forms a vertex cover. This
algerithm is exponential in 4.

Proof : To show that Vertex cover problem e NP, for a given graph G = (V, E), we
take V'’ V and verifies to see if it forms a vertex cover. Verification can be done
by checking for each edge (u, v} « E whetheru € V” or v & V*. This verification can
be done in polynomial time.

Now, We show that clique problem can be transformed to vertex cover problem in
polynomial time. This transformation is based on the notion of the complement of 2
graph G. Given an undirected graph G = (V, E), we define the complement of Gas
G’ ={(V, B"), where E* = { (u, v) [ {u, v} € E}. i.e., G’ is the graph containing exactly
those edges that are not in G. The transformation takes a graph G and & of the clique
problem. It computes the complement G” which can be done in polynemial time.

To complete the proof. we can show that this transformation is indeed reduction : the
graph has a clique of size & if and only if the graph G’ has 2 vertex cover of size
V- &

Suppose that G hasa clique V' o V. with V'] = k. We claim that V-V’ is a vertex
cover in G, Let (i, v) be any edge in E’. Then, (u, v) € E, which implies that atleast
one of u or v does not belong to V', since every pair of vertices in V’ is connected by
an edge of E. Equivalently, atleast one of u or v is in V ~ V7, which means ‘that edge
(u, v) is covered by V — V°. Since (u, v) was chosen arbitrarily from E’, every edge of
E’ is covered by a vertex in V — V. Hence, the set V — V. which has size [V| - £,
forms a vertex cover for G,

Conversely, suppose that G has a vertex cover V' < V , where [V’ = [V]| - k. Then,
forallu, ve V,if(u,v) € E’, thenu € V' or v e V' or both. The contrapositive of
this implication is that foraltu, v e V,ifug V’ andv g V', then{u, v) e E. In
other words, V - V' is a clique, and it has size |V|-[V’|= k.

For example, The graph G(V,E) has a clique {A, B, E}. The complement of graph G
is given by G’ and have independent set given by {C, D, F}.

This proves that finding the vertex cover is NP-Complete.

Ex.4) Show that " the Partition problem is NP.

Ex.5) Show that the k-colorability problem is NP.



Ex.6) Show that the Independent Set problem is NP- complete. Complexiiy of
Algorithms

Ex.7) Show that the Travelling salesman problem is NP- cemplete.

3.6 SUMMARY

In this unit in number of concepts are defined.

P denotes the class of all problems, for each of which there is at least one known
polynomial time Deterministic TM solving it.

NP denotes the class of all problems, for each of which, there is at least one known
Non-Deterministic polynomial time solution.. However, tHis solution may not be
reducible to a polynomial time algorithm, i.e., to a polynomial time DTM.

Next, five Well Known Asymptotic Growth Rate Notations are defined.

The notation O provides asymptotic upper bound for a given function.
Let f(x) and g(x) be two functions each from the set of natural numbers or set of
positive real numbers to positive real numbers.

Then f (x) is said to be O (g(x)) (pronounced as big-oh of g of x) if there exist two
positive integer/real number Constants C and k such that

f(x)<Cg(x) forallx>k

The £ notation provides an asymptolic lower bound for a given function.

Let f(x) and g(x) be two functions, each from the set of natural numbers or set of
positive real numbers to-positive real numbers.

Then f (x) is said to be Q (g(x)) (pronounced gs big-omega of g of x} if there exist two
positive integer/real number Constants C and k such that

f(x) 2 C (g(x}) whenever x >k
The Notation ®

Provides simultaneously both asymptotic lower bound and asymptotic upper bound
for a given function.

Let f(x) and g(x) be two functions, each from the set of natural numbers or positive
real numbers to positive real numbers. Then f(x) said to be @ (g(x)) (pronounced as
big-theta of g of x) if, there exist positive constants C;, C, and k such that

Cog(x) < f(x) <Cig(x) forall x > k.

The Notation o

Let f(x) and g(x) be two functions, each from the set of natural numbers or positive
real numbers to positive real numbers. :

kurther, let C > 0 be any number, then f(x) = o(g(x)) (pronounced as littie oh of g of
\) if there exists natural number k satisfying—

f{x) <Cg(x) forallx > k>1
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The Netation

Again the asymptotic lower bound € may or may not be tight. However, the
asymptotic bound o cannot be tight. The formal definition of w is follows:

Let f(x) and g(x) be two functions each from the set of natural numbers or the set of
positive real numbers to set of positive real numbers
Further
Let C > C© be any number, then
fx) = o (g(x})
if there exist a positive integer k s.t

) >C g(x) forallx 2 k

In Section 3.2 in defined, 14 well known problems, which are known to be
NP-Complete.

in Section 3.3 we defined the following concepts:

" A Polynomial-time reduction is a polynomial-time algorithm whichconstructs the

instances of a problem P, from the instances of some other problems P,.

Definition: NP-Complete Problem: A Problem P or equivalently its language L,
is said to be NP-complete if the following two conditions are satisfied:

(i)  The problem L; is in the class NP
(i) For any problem I, in NP, there is a polynomial-time reduction of L, io I.,.

Definition: NP-Hard Problem: A problem L is said to be NP-hard if for any
problem L, in NP, there is a'polynomial-time reduction of L; to L. :

Finally in Section 3.4, we discussed how some of the problems defined in Section 3.2
are established as NP-Complete.

3.7 SOLUTIONS/ANSWERS .

Ex.l)
nl/n" = (wn) ((n-1)/n) ((n-2)n) ((n-3)/n).. (2/n)(1/n)
= 1(1-(1/n)) (1-(2/n)) (1-(3/m))...(2/m)(1/n)
Each factor on the right hand side is less than equal to 1 for all value of n.
Hence, The right hand side expression is always less than one.
Therefore, nim” <1 -~
or, n! <n" °
Therefore, nf=0(n")
Ex. 2)
For large value of n, 3logn < < n’ N

Therefore, 3logn/ n’< < 1
'+ 3logn)/ n® =1+ 3logn/ n’
or, (n* +3logn)/ n’ <2

or, n* +3logn = O(n?).



Ex.3)

Ex. 4)

Ex.5)

Ex. 6)

Proof :
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We have, 2%/5" <1
or, 2" <5"
Therefore, 2" = O(5%).

Given a set of integers, we have to divide the set in to two disjoint sets such
that their sum value is equal .

A deterministic algorithm to find two disjoint sets is to list all possible
combination of two subsets such that one set contain & elements and other
contains remaining (n—k) elements. Then to check if the sum of elements of
one set is equal to the sum of elments of another set. Here, the possible
number of combination is C(n, k). This algorithm is exponential in n.

To show that the partition problem e NP, for a given set S, we take S, S,
S;cSand$;N S, =@ and verify to see if the sum of all elements of set Siis
equal to the sum of all elements of set S,; This verification can be done in
polynomial time.

Hence, the partition problem is NP.

The graph coloring problem is to determine the minimum number of colors
needed to color given graph G(V, E) vertices such that no two adjacent
vetices has the same color. A deterministic algorithm for this requires
exponential time. )

If we cast the graph~coloring problem as a decision problem i.e., can we
color the graph G with k-colors such that no two adjacent vertices have same
color ? We can verify that if this is possible then it is possible in polynomial
time.

Hence, The graph —coloring problem is NP.

An independent set is defined as a subset of a vertices in a graph such that no
two vertices are adjacent.

The independént set problem is the optimization problem of finding an
independent set of maximum size in a graph. The problem can also be stated
as a decision problem :

INDEPENDENT-SET = {<G, k>| G has an independent set of atleast size k}.

A deterministic algorithm to find an independent set in a graph is to list all
subsets of vertices of size k and check each one lo see whether it forms an
independent set. This algorithm is exponential in k.

To show that the independent set problem € NP, for a given graph

G =(V, E), we take V’C V and verifies to see if it forms an independent set.
Verification can be done by checking forue V' and v € V’, does uv)eE.
This verification can be done in polynomial time.

Now, We show that clique problem can be transformed to independent set,
problem in polynomial time. The transformation is similar clique to vertex
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cover. This transformation is based on the notion of the complement of a
graph G. Given an undirected graph G = (V, E), we define the complement of
Gas G’ =(V,E), where B = { (u, V)| (u,v) ¢ E}.ie, G isthe graph
containing exactly those edges that are not in G. The transformation takes a
graph G and k of the clique problem. It computes the complement G* which.
can be done in polynomial time.

To complete the proof; we can show that this transformation is indeed
reduction : the graph has a clique of size kif and only if the graph G has an
independent set of size {V}- k.

Suppose that G has a clique V' <V with V| = k. We claim that V-V’ isan -
independent set in G”. Let (u, v) be any edge in E’. Then, (v, v) ¢ E, which
implies that atleast one of u or v does not belong to V’, since every pair of
vertices in V' is connected by an edge of E. Equivalently, atleast one of u or
vis in V - V*, which means that edge (u, v) is covered by V - V’. Since

(u, v) was chosen arbitrarily from E’, every edge of E’ is covered by a vertex
in V — V", So, either u or v is in V — V” and no two adjacent vertices are in

V - V. Hence, the set V — V°, which has size [V]- k, forms an independent
set for G,

Figure: 3.5

Figure: 3.6

© \r exampie, The graph G(V,E) has a clique {A, B, C, D} givenby
Figure 3.3. The complement of graph G is given by G’and have independent
.t given by {EF}



Ex.7)

Proof : To show that travelling salesman problem € NP, we show that verification of

This transformation can be performed in polynomial time. This proves that Complexity of
finding the independent set problem is NP-Complete. Algorithms

the problem can be done in polynomial time. Given a constant M and a
closed circuit path of a weighted graph G = (V, E) . Does such path exists in
graph G and total weight of such path is less than M ?, Verification can be
done by checking, does (u,v) € E and the sum of weights of these edges is
less than M. This verification can be done in polynomial time.

Now, We show that Hamiltonian circuit problem can be transformed to
travelling problem in polynomial time. It can be shown that , Hamiltonian
circuit problem is a special case of the travelling salesman problem. Towards
this goal, given any Graph G(V, E), we construct an instance of the Vi-city
Travelling salesman by letting d;; = 1 if (vi, v;) € E, and 2 otherwise. We let
the cost of travel M equal to [V|. It is immediate that there is a tour of length
M or less if and only if there exists a Hamiltonian circuit in G.

Hence, The travelling salesman is NP-complete.
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